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ABSTRACT 

We have experimentally s tudied the k i n e t i c s  of 
amorphous silica p r e c i p i t a t i o n  from aqueous so lu t ion  
up t o  100°C and containing up t o  1M N a C 1 .  Empirical 
equations fo r  t h e  r a t e  of  molecular deposi t ion on 
su r faces  as a function of temperature, dissolved 
s i l ica  Concentration, pH and s a l i n i t y  are presented. 
Empirical t ype  curves which depict  t he  decrease i n  
dissolved s i l ica  concentration through homogeneous 
nucleat ion of c o l l o i d a l  s i l i c a  a r e  a l s o  presented. 
Two p r a c t i c a l  examples related. t o  g e a t h e x x l  p r a c t i c e  
are given. 

It appears t h a t  &der most condi t ions silica 
p r e c i p i t a t e s  as r e l a t i v e l y  pure amorphous s i l ica .  
Th i s  conclusion is  supported by geothermal f i e l d  
experience, laboratory research and t h e o r e t i c a l  con- 
s ide ra t ions .  The scope of our study was r e s t r i c t e d  
accordingly. 

The process of amorphous si l ica p r e c i p i t a t i o n  
from supersaturated bulk aqueous 
the  following s teps:  

phase c o n s i s t s  of 

1) Growth of polymeric s i l i c ic  ac id  complexes 
t o  cr i t ical  nucleus s i ze .  

2) Nucleation of an amorphous silica phase 
(from here on simply AS) i n  t he  form of 
c o l l o i d a l  p a r t i c l e s .  

Growth of t h e  s u p e r c r i t i c a l  AS p a r t i c l e s  
by f u r t h e r  molecular deposi t ion of s i l i c i c  
acid on t h e i r  surfaces .  

Coagulation o r  f loccu la t ion  of c o l l o i d a l  
p a r t i c l e s  t o  give a ge l .  

Cementation of t h e  p a r t i c l e s  i n  t h e  g e l  by 
chemical bonding and f u r t h e r  deposi t ion of 
s i l i c a  between t h e  p a r t i c l e s .  

3) 

4) 

5) 

6 )  Rarely, growth of a secondary phase i n  the 

i n t e r s t i c e s  between t h e  AS p a r t i c l e s .  
secondary deposi t ion of FeS and of c a l c i t e  
has been reported,  but is  uncommon. 

Such 

The above process occurs when the  concentration 
of dissolved s i l ica  is  high enough f o r  homoyeneous 
nucleat ion t o  occur a t  a s i g n i f i c a n t  rate. 
roughly, t h i s  r equ i r e s  a s a t u r a t i o n  r a t i o  ( the  r a t i o  
of concentration t o  the  equi l ibr ium s o l u b i l i t y )  of 
two o r  g rea t e r .  I f  t h i s  condition i s  m e t ,  massive 
p r e c i p i t a t i o n  occurs. This is t h e  case wi th  the  
r e s idua l  ( f lashed)  br ine a t  Niland, Cerro P r i e t o  and 
Wairakei, and deal ing wi th  the  consequences p re sen t s  
t he  g r e a t e s t  technical  problems encountered a t  these 
sites. 

Very 

I f  t he  concentration of dissolved s i l i c a  is too 
low f o r  massive homogeneous nucleat ion t o  occur,  
r e l a t i v e l y  slow molecular deposi t ion upon s o l i d  sur- 
faces  becomes the major p r e c i p i t a t i o n  mechanism. 
product of t h i s  process ( e s s e n t i a l l y  s t e p  3 of the 
above scheme alone) is a dense v i t r eous  si l ica.  

The 

The goal of t h i s  study has been t o  generate  
s u f f i c i e n t  experimental d a t a  and t h e o r e t i c a l  ana lys i s  
concerning s t e p s  1) t o  3) t o  enable t h e i r  uhenomemo- 
logy and k i n e t i c s  t o  be q u a n t i t a t i v e l y  predicted and 
in t e rp re t ed  over most of t h e  range of p r a c t i c a l  con- 
cern. 

The r e s u l t s  presented i n  t h i s  paper are of a 
preliminary na tu re  and sub jec t  t o  expansion arid 
r ev i s ion .  We do, however, consider them t o  be ade- 
quate f o r  most p r a c t i c a l  app l i ca t ions  as f a r  as they 
80 * 

Values of constants  not defined i n  the  t e x t  are 
given i n  t h e  Nomenclature sec t ion .  

- The Homogeneous Nucleation of Colloidal  AmorDhous 
5 L l r  ci 

The voluminous ga l - l i ke  depos i t s  encountered a t  
Cerro P r i e to ,  Wairakei, and Niland cons i s t  of floccu- 
l a t e d  c o l l o i d a l  amorphous s i l i c a .  
and white  s c a l e s  associated with the  gel- l ike mter- 

The crumbly grey 
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i a l s  are cemented c o l l o i d a l  agregates. This  colloi- 
d a l  s i l i ca  is produced by homogeneous nuc lea t ion  i n  
t h e  l i q u i d  phase, i.e, nuc lea t ion  by growth of  poly- 
mers t o  cri t ical  nucleus s i z e  without t h e  p a r t i c i -  
pat ion o f  some preexis t ing  s o l i d  p a r t i c l e .  

With most substances heterogeneous nuc lea t ion  
is  dominant, and homogeneous nucleat ion is very slow, 
rare i n  na ture ,  and d i f f i c u l t  t o  study i n  the  labo- 
ra tory.  The p r e c i p i t a t i o n  of amorphous s i l i ca  is  
an apparent except ion t o  t h i s  because of t h e  very 
l o w  sur face  tens ion  of t h e  silica-water i n t e r f a c e  - 
between 35 and 50 e r g s  cm-2 over t h e  range of major 
p r a c t i c a l  i n t e r e s t .  (By comparison, t h e  sur face  
tens ion  of t h e  water-air i n t e r f a c e  is about 70-80 
e r g s  a-2.) This  means t h a t  enormous numbers of 
p ~ t i z l c z  ccs be roduced by homogeneous nuclezi ion 
(on the  order  lo1$ to  10l8 per  l i t e r ) ,  and t h i s  
completely swamps t h e  e f f e c t s  of heterogeneous nu- 
cleat ion. 

We have der ived t h i s  semi-empirical expression 
f o r  t h e  sur face  tens ion  of the  AS-water i n t e r f a c e :  

y(ergs  an-2) = yo - no kB T In  (l+KaS) (1)  

where 

yo= 59.5 + 0.015 T 
84 1 

T Ka = exp (1.072 - -1 

(The second term i n  (1) expresses  t h e  thermodynamic 
e f f e c t  of t h e  chemisorption of d i s s o l r = i  s i l i c a  cn 
t h e  sur face  of  AS.) 

A p r a c t i c a l  consequence c f  the  c!nr.ins-ce of 
hozogeneous nuc lea t ion  is :nat tne p r e c i p i t a t i o n  of  
amorphous s i l i c a  i s  experimentally reproducible  and 
predic tab le .  This  is because the ra te  of homogeneous 
nucleat ion i s  determiaed by b a s i c  thermodynamic and 
chemical v a r i a b l e s  (covcentrat ion,  surface tens ion ,  
e t c . )  and not  by o f t e n  unknown trace contaminants 
as  is  t h e  case w i t h  heterogeneous nucleat ion.  

Figures  1 t o  4 present  experimental r e s u l t s  
which depic t  t h e  d e c l i n e  of  dissolved s i l i ca  wi th  
t i m e  via t h e  homogeneous nucleat ion mechanism. 
These experiments were performed a t  var ious pH’s 
i n  a l o w  s a l i n i t y  buffered medium i n  which t h e  
sodium ion a c t i v i t y  was approximately O.O69M, and 
t h e  time scales w e r e  s h i f t e d  t o  covert  a l l  d a t a  t o  
a nominal pH of 7.0. These condi t ions a r e  approxi- 
mately equivalent  t o  a .088M (= 5200 ppm) N a C l  
s o l u t i o n  a t  pH 7. Note that the t i m e  scales are 
logari thmic.  Thus, at any given temperature, t h e  
t i m e  needed f o r  homogeneous nucleat ion to  run i ts  
course may vary from a few minutes t o  thousands 
of  minutes, depending on t h e  i n i t i a l  s i l i ca  con- 
cent ra t ion .  

What is r e a l l y  important here  i s  t h e  s a t u r a t i o n  
r a t i o :  

s = c/co (2 )  

t o  eva lua te  Co, we recoment  using the  empir ical  
expression given by Fournier  and Rowel f o r  t h e  
e q u i l i b r i m  s o l u b i l i t y  of AS: 

(3 1 73 1 
T Co = a n t i l o g l o  (1.52 - -1 

I n  general ,  t h e  homogeneous nucleat ion process is 
very s l o w  i f  S is less than about 2.  

Note that a t  t h e  lower i n i t i a l  concentrat ions 
a t  each temperature t h e r e  i s  a c e r t a i n  induction 
per iod  during which t h e r e  i s  l i t t l e  concentrat ion 
change. T h i s  is  because i t  takes  a c e r t a i n  amount 
of time f o r  t h e  nuc lea t ion  process  t o  produce enough 
p a r t i c l e s  t o  not iceably  e f f e c t  t h e  dissolved s i l i ca  
concentrat ion.  With higher i n i t i a l  concentrat ions 
t h e  induct ion per iod is  s h o r t  o r  even absent due t o  
t h e  much higher nuc lea t ion  rate. A t  30°C and C i  
- 0.7gL-l, t h e  curves  become almost independent of 
Ci. 
t h e  rate of nuc lea t ion  proper is so l a r g e  t h a t  i t  
i s  no longer t h e  ra te  l i m i t i n g  process.  

This  i s  because under these  extreme condi t ions 

P r a c t i c a l l y  speaking, wi th  a l a r g e  i n i t i a l  
s a t u r a t i o n  r a t i o ,  amorphous s i l ica  g e l s  may form 
within the  process  equipment and associated piping.  
This  is  observed at  Cerro P r i e t o  and Xiland. With 
small s a t u r a t i o n  r a t i o s ,  massive p r e c i p i t a t i o n  w i l l  
not  occur wi th in  t h e  process  equipment, but may 
very w e l l  occur f u r t h e r  downstream. 

We have generated a l a r g e  quant i ty  of such 
nuc lea t ion  d a t a  from room temperature t o  IOO‘C and 
have w r i t t e n  a computer program which can nmcr-  
i c a l l y  (and r igorous ly)  model t h e  homogeneous 
nucleat ion process;  i .e . ,  i t  can reproduce t h e  
curves i n  these  f igures .  Af te r  w e  have f i t t e d  the  
necessary parameters using our experimental da ta ,  
we w i l l  b e  a b l e  t o  q u a n t i t a t i v e l y  model and predic t  
t n e  process ,  even under the  experimentally inaccess- 
i s b l e  condi t ions c h a r a c t e r i s t i c  of f i e l d  prac t ice .  
I n  p a r t i c u l a r ,  Eq . ( l )  w i l l  be adjusted t o  reconci le  
i t  wi th  the  nuc lea t ion  data.  
documented and made a v a i l a b i e  t o  h t e r e s t e d  out- 
s i d e  users .  

The FroSrzx x i l l  be 

MOLECULAR DEPOSITION ON SOL13 S U E A C E S  

By molecular depos i t ion  we  mean t h e  formation 
of compact, nonporous amorphous s i l i c a  by chemical 
bonding of dissolved s i l i c a  molecules d i r e c t l y  unto 
s o l i d  surfaces .  

Below about 100°C, homogeneous nuc lea t ion  is  
usua l ly  t h e  dominant p r e c i p i t a t i o n  mechanism. The 
major s ign i f icance  of molecular deposi t ion here  i s  
t h a t  i t  i s  the  molecular mechanism of the  growth 
of  c o l l o i d a l  p a r t i c l e s  ahd of t h e  conversion of 
gel- l ike d e p o s i t s  t o  s o l i d  scale. However, a t  
higher temperatures molecular deposi t ion f r o n  
so lu t ion  may by i t s e l f  produce s c a l e  a t  a s ign i -  
f i c a n t  rate. Although t h e  deposi t ion r a t e  is very 
small  (about 1 mm/year i n  t h e  f lashed  b r i n e  pipcs  
,-lose LO t n t  s trar -  s c ’ y r a t o r s  a t  Cc,rro ? r i t > t o j ,  
th i s  sra l l .  is a lm~ls t  i n d e s t r u c t i b l e  one<. fcrmed. 

We s tudied  t h e  molecular depos i t ion  process  by 
adding known amounts of c o l l o i d a l  s i l i c a  of  known 
s p e c i f i c  surface area t o  our  so lu t ions .  To calcu- 
late t h e  molecular depos i t ion  rate per u n i t  area 
on a s p h e r i c a l  p a r t i c l e  of r a d i u s  r , .  t i s t ’  t l i e  

t’ x p r e s  s 1 on : 

(g cm-zmin- ) = k (T ) f p~ (pH, INa+l) 

1-s-1 exp 

2 
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where 

and y is t o  be ca l cu la t ed  using.Eq. (1). The 
function fpH accounts for t h e  e f f e c t s  of pH and 
s a l i n i t y ,  and w i l l  be presented below. r t  is equal 
t o  un i ty  a t  pH = 7 and Na+ = 0.069. To c a l c u l a t e  
t h e  molecular deposi t ion r a t e  i n  t h e  upits of urn/ 
day, mult iply t h e  values  calculated.  from Eq. (3) hy 
6.52 x IO6. The f ac to r  i n  b racke t s  i n  Eq. (4a) js 
derivable  from the  Law of  Nicroscopic Reve r s ib i l i t y ,  
and i t  accounts f o r  t h e  g r e a t e r  s o l u b i l i t y  of smal- 
ler  p a r t i c l e s .  To c l c u l a t e  t he  deposi t ion rate on 
a f l a t  surface,  s e t  = 0. ;t 

Note t h a t  Eq. (4a) is an rrpparcwt f .wrth order  
rate law.  This  shows t h a t  the i n i t i  formation 
of t h e  f i r s t  chemical bond between-. ;ecule  of 
monosi l ic ic  ac id  (MSA) i n  so lu t ion  . 
su r face  is not t he  rate determining 
deposi t ion process. Rather, f u r t h e r  condensation 
and rearrangement of chemisorbed s i l ica  spec ie s  is 
rate determining. 
t h e  amount of chemisorbed s i l i c a  is determined by 
it. Deposition rates a t  pH - 7, Na+ = 0.069M 
and var ious temperatures and dissolved s i l ica  con- 
cen t r a t ions  were calculated (and extrapolated)  from 
our experimental da t a  and are presented i n  Figure 
5. The dashed l i n e  r ep resen t s  the approximate 
concentration l i m i t  above which homogeneous nuclea- 
t i o n  supersedes deposi t ion on added p a r t i c l e s  as 
the dominant mechanism. Our da t a  a c t u a l l y  covers 
only the range between 50 and :CODC and below the  
dashed l i n e .  However, we bel ieve t h e  ex t r apo la t ed  
values t o  be good enough f o r  p r a c t i c a l  app l i ca t ion .  

A t  any given concentrat ion,  t he re  is a tempera- 
t u r e  a t  which the deposi t ion rate has a maximum 
value. Below t h i s  temperature, rate increases  with 
temperature i n  the  usual way. Above t h i s  tempera- 
t u r e ,  thep rate of deposi t ion decreases because the  
increasing s o l u b i l i t y  of s i l ica  causes t h e  r a t e  of 
t h e  back r eac t ion  (i.e., d i s so lu t ion )  t o  increase 
even more rapidly.  A t  t he  s a t u r a t i o n  temperature 
f o r  any given concentration, t h e  deposi t ion rate 
goes t o  zero. The p r a c t i c a l  consequence of t h i s  
is  t h a t  t he  molecular deposi t ion rate is a week 
function of temperature a t  temperatures lower than 
about 15°C below t h e  s a t u r a t i o n  temperature. How- 
ever ,  t h e  rate v a r i e s  s t rongly with s i l i c a  concen- 
t ra t  ion. 

The dependence on .S a r i s e s  because 

EFFECTS OF pH 

It has long been bel ieved t h a t  the rate of amor- 
phous s i l i c a  deposi t ion is proport ional  t o  t h c  5ur- 
face densi ty  of ionized s i l a n o l  groups on t h e  si l ica 
surface2. 
t he  rate proved t h i s  hypothesis conclusively.  We 
found t h a t  the r a t e  as a funct ion of pH c a l c u l a t e  
from our data  matched su r face  charge E. pH d 
t h e  l i t e r a t u r e 3  t o  within experimental e r r o r .  

Our experiments on t h e  pH dependence of 

The funct ion fpH f i t t e d  t o  our d a t a  and evaluat-  
ed at [Na+] = 0.06Y is presented in  Figure 6. I t  is 
the so lu t ion  of an equat ion which descr ibes  the ex- 
change of protons on t h e  s i l ica  su r faces  f o r  sodium 
ions.  Unfortunately, t h e r e  is no closed form ex- 
pression f o r  fpH. I n  order t o  f a c i l i t a t e  nunerical  
use of fpH, We have f i t t e d  empir ical  closed form 

:El?, LEON TSAO 25 

expressions t o  t h e  "exact" calculated values.  
are given below f o r  a constant sodium a c t i v i t y  of 
0.069M. 

These 

A t  pH< 5.9, use the  expression: .  

loglOfpH= x - 2.2583f0 + loglO(l-fO) + 0.9248 (Sa) 

where 

x pH - 7.6 

f o  = an t i log lox  

A t  5.9 < pH< 8.0, use 

10glOfpH = x - 2,113 log1 (1  + a n t i l o g l o  
(x/2.113)) - xP(9.653S + 1 . 7 9 0 1 ~  
+ 4.1811~~) + 0.9248 (5b) 

We found t h a t  the r eac t ion  rate ceases t o  in- 
crease i n  proportion to zurface charge a t  about 
pH 8. This is  due t o  the  o f f s e t t i n g  e f f e c t  of t he  
increase of s i l ica  s o l u b i l i t y  wi th  inc reas ing  pH. 
Our da t a  suggests  t h a t  f o r  8.0 < pH < 9.0 i t  is an 
adequate approximation t o  set fpH = 2.70. 
r e s u l t s  should not be used about pd9. 

Our 

Increasing the pH a t  constant s a l i n i t y  inc reases  
the  rates of molecular deposi t ion and homogeneous 
nucleat ion by the  same fac to r .  The e f f e c t  upon t h e  
la t ter  is  a consequence of t h e  e f f e c t  upon the  
former. 

EFFECTS OF SALSNITY 

Dissolved salts have two important e f f e c t s  upon 
these  processes: 

1) They decrease the  s o l u b i l i t y  of amorphous 
' s i l i c a  and, thereby, increase the  r a t e  of 

homogeneous nucleation. 

2) Increasing t h e  salt concentrat ion at con- 
s t a n t  pH increases  t h e  su r face  charge 
dens i ty  and. thereby, t h e  rate of mole- 
cu la r  deposit ion.  

The second e f f e c t  i nc reases  t h e  r a t e s  of mole- 
cu la r  deposi t ion and homogeneous nucleat ion by t h e  
same fac to r .  The f i r s t  e f f e c t  increases  only the  
rate of homogeneous nucleat ion.  
cussed i n  d e t a i l  below. 

It w i l l  be dis-  

Except at very low s a l i n i t y ,  most of t h e  dis-  
soc i a t ed  s i l a n o l s  on the  s i l ica  surface have ca t ions  
bound t o  them - i n  t h e - c a s e  of our experiments, 
sodium. This means t h a t  eodiun and hydrogen ion 
a c t i v i t y  do not have independent e f f e c t s  upon the  
rate; r a the r ,  i t  is  the r a t i o  of sodium t o  hydrogen 
a c t i v i t y  that is important. Therefore, Figure 6 
and t h e  expressions f o r  fpH given above may be 
used t o  Calculate  t h e  e f f e c t  o f - s a l i n i t y  upon the  
molecular deposi t ion rate as w e l l .  

'To  do t h i s ,  c a l c u l a t e  a "nominal pH value" 
defined by 

and then read o f f  t h e  value of fpH from Figure 6 or  

I 

3 
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ca lcu la t e  it from Eq. (5a or  b) using the value of 
p k o m  i n  place of pH. 

For example, . to c a l c u l a t e  t h e  molecular deposi- 

F i r s t ,  read the deposit-  
t i o n  r a t e  of 100°C, pH 6 .5 ,  [Na+] - 0.06911 and 
0.7g/L dissolved s i l i c a :  
ion rate a t  pH 7.0 and [Na+l = 0.069M from the 
Figure 5 .  This  value is 0.22 umlday. Second, 
c a l c u l a t e  pHno, using the  equation above. This  is 
7.5. 
6; t h i s  is 1.8. Fina l ly ,  mult iply the  two n m b e r s  
together  t o  obtain t h e  deposi t ion rate which is 
0.40 Urnlday. 

Third,  read the value of fpH (7.5) from Figure 

Our d a t a  suggests  t h a t  t h i s  procedure is  adequate 
f o r  so lu t ions  which contain up t o  a t  least 1M N a C l ,  
and i t  may be adequate a t  even higher s a l i n i t i e s .  
However, it cannot be recomnended f o r  use a t  s a l i n i -  
t ies  much below 5200 ppm. A t  very l o w  s a l i n i t i e s  
d i s soc ia t ion  without ion p a i r i n g  becomes important, 
and the b a s i c  assumption of t he  equivalent  and 
opposi te  e f f e c t s  of hydrogen and sodium a c t i v i t y  
col lapses .  We hope t o  remedy t h i s  shortcoming by 
de ta i l ed  r eana lys i s  of t h e  low s a l i n i t y  su r face  
charge da t a  i n  t h e  l i t e r a t u r e .  

The dissolved s o l i d s  i n  r e a l  geothermal b r i n e s  
are usual ly  predominantly sodium chlor ide,  but  o the r  
salts  are a l s o  present .  We have found t h a t ,  i n  
most cases ,  i t  is s u f f i c i e n t  t o  use an "e f f ec t ive  
s o d i m  ion a c t i v i t y "  calculated as 0.77 t i m e s  t he  
(molar) concentration of chloride.  I f  bicarbonate 
is present as a major ion,  use t h e  sum of t h e  
chlor ide and bicarbonate concentrat ions i n  place 
of ch lo r ide  alone. The r a t i o n a l e  f o r  t h i s  procedure 
is t h a t  t h e  var ious o the r  major ca t ions  t h a t  may 
be present have e s s e n t i a l l y  t h e  save e f f e c t s  a s  
sodium, and t h e  a c t i v i t y  lowering e f f e c t s  of di-  
valent  anions ?FDroximately compensates f o r  the 
concentration of the ca t ions  t h a t  accompany them. 

We have s tudied Homogeneous nucleat ion i n  N a C l  
so lu t ions  both experimentally and t h e o r e t i c a l l y ,  
and have managed t o  quant i fy  the " s o l u b i l i t y  e f f e c t "  
( ( I )  above) as well .  To within experimental e r r o r ,  
we  are a b l e  t o  account f o r  i t  using the  simple 
a r t i f i c e  of a "nominal concentration": 

(7) 

The value of Cnom is  t o  be used i n  place of C 
only i n  connection with Figures 1 t o  4. Do not 
use i t  i n  connection with Figure 5 or  Eqs. (2) and 
(4a). 

Thus, t o  approximately p red ic t  t h e  course of 
homogeneous nucleation f o r  a given s e t  of condit- 
ions: 

1) Calculate  Cnom and look up or  ic:erpolate 
the appropriate  curve i n  Figures 1 t o  4. 

Calculate  p€&,, and fpH (pHnom) using Eq. 
(5a or  b) or  Figure 6. 

2) 

3 )  S h i f t  t he  t i m e  s c a l e  of t h e  curve obtained 
i n  s t e p  1) by log10 fpH i n  t h e  appropriate  
d i r ec t ion .  

We have a l s o  s tudied t h e  c a t a l y t i c  e f f e c t s  of 
Th i s  data  has not  yet  been completely f luoride.  
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analyzed. Houever, p r a c t i c a l l y  speaking, the e f f e c t  
of 20 ppm f l u o r i d e  may be ignored above about pH 5 ,  
and that of 2 ppm f l u o r i d e  may be ignored above 
about pH 4. 

SOME PRACTICAL EXAMPLES; OR, HOW NOT TO REINJEm 

Case 1): 

Consider a hypothet ical  geothermal development 
at which the spent  b r i n e  contains  5200 ppm NaC1, 
0.5 g/L dissolved SiO2, and is del ivered t o  the 
r e i n j e c t i o n  w e l l  a t  75OC and pH 7. The b r ine  de- 
l i v e r e d  t o  t h e  r e i n j e c t i o n  w e l l  is  completely clear 
and goes r i g h t  through a membrane f i l t e r .  
dec i s ion  is made t o  r e i n j e c t .  
a t  400 t / h r  i n t o  an aqu i f e r  of 2OOOC i n i t i a l  tem- 
perature ,  4 = 0.1, h = 20 m and volumetric s o l i d  
rock heat capaci ty  = 2460 kj/m30C. After  about 12 
days the thermal f ron t  is about 60 meters i n t o  the  
formation, and the  f l u i d  t r a v e l  time from wellbore 
t o  thermal f r o n t  is  about 50 hours - 3,000 minutes. 
Referr ing t o  Figure 2, w e  see t h a t  t he re  is now 
ample t i m e  f o r  homogeneous nucleat ion t o  occur be- 
f o r e  t h e  f l u i d  reaches the  thermal f ron t .  The 
r e s u l t  is t h a t  t h e  i n j e c t a b i l i t y  of that horizon 
i s  damaged by s i l i c a  p r e c i p i t a t i o n .  Furthermore, 
we l l  t reatments  with c a u s t i c  of HF a r e  not e f f e c t i v e  
because the damage is  30 t o  60 meters away from the 
wellbore.  

The 
Reinject ion commences 

Case 2):  

Can one r e i n j e c t  s t r a i g h t  from the f i r s t  s t age  
steam sepa ra to r s  a t  Cerro P r i e t o ?  Assume the  fol-  
lowing typ ica l  b r ine  condi t ions a t  t he  in j ec t ion  
w e l l :  160°C, 0.95 gfL dissolved SiOz, e f f e c t i v e  
[Na+] = 0 .25  and n e g l i g i b l e  suspended s o l i d s .  
b r ine  pH a t  r e s e r v o i r  temperature is not known, 
but is approximately 7.8 a t  room temperature. This 
gives  a nominal pH of about 8.3 (which is within 
the range of weak pH dependence) and fpH = 2 .7  
(from Figure 6) .  
is  read from Figure 5 as about 1.3 : idday.  Correct- 
ing f o r  pH, we ob ta in  t h e  a c t u a l  deposi t ion rate of 
3.5 pm/day = 1.3 mm/year. This is cons i s t en t  with 
the observed rate of v i t r eous  s i l i c a  deposi t ion 
near  t h e  sepa ra to r s  a t  Cerro P r i e t o .  Because pore 
permeabili ty i s  dominant a t  Cerro P r i e t o ,  i t  is 
c l e a r  t h a t  i n j e c t i n g  t h i s  b r i n e  would r ap id ly  plug 
t h e  i n j e c t i o n  wel l .  

The 

The pH,, = 7.0 d e p o s i t i m  r a t e  

We hope t h a t  such mistakes w i l l  be avoided. 
i;z.;ever, w e  emphasize t h a t  both of t hese  b r ine  
streams would be deemed i n j e c t i b l e  under the  cri t i-  
r ia  present ly  i n  vogue: they would be ab le  t o  pass 
f r e e l y  through a micron-sized membrance f i l t e r  and 
would not cause v i s i b l e  fou l ing  of metal su r f aces  
during f i e l d  tests of a few days duration. It is 
p rec i se ly  the refinement of such c r i t e r i a  t h a t  we 
hope t o  have accomplished with t h e  work summarized 
here. 

z 

N&CLATURE 

A l l  concentration i n  t h i s  paper a r e  expressoE 
I n  terms of g/L o r  molesf l .  What is meant is  t h e  
moun t  of material t h a t  would be  contained i n  one 
l i ter  of b r i n e  cooled down t o  room temperature. 
Therefore,  t hese  concentrat ion values do not vary 
wi th  temperature, and are equal  t o  concentration:. 
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pH = minus log base 10 of t h e  hydrogen ion 
a c t i v i t y  

pHn, 

r = t h e  r a d i u s  of  a spher ica l  p a r t i c l e  o f  AS; 

- 'hominal pH" (see t e x t )  

cm 

= t h e  ra te  of molecular depos i t ion  of d i s -  
solved s i l i ca  on an AS surface;  g cm-2 
min- 1 

R,d 

i n  terms of amount per  Kg H20 a t  low s a l i n i t y .  
convention was chosen because i t  is most convenient 
f o r  labora tory  work and seems t o  be the  one usua l ly  
employed i n  geothermal prac t ice .  

T h i s  

abbreviat ion fo r  amorphous s i l ica  

= concentrat ion of dissolved s i l i ca  i n  g 
SiO2/L ( r e f e r r e d  t o  room temperature; 
see above) 

S 

T = absolu te  temperature; Kelvins 

Y = sur face  tension of t h e  AS-water i n t e r f a c e ;  

= C/Co = s a t u r a t i o n  r a t i o ;  dimensionless 

ergs cm-2 

= sur face  tension of the  AS-water i n t e r -  
face  i n  the  hypothet ical  state of no 
chemisorption; e r g s  

Yo 

? 5 cm-3 - t h e  number dens i ty  of Si02 
'.n u n i t s  i n  s o l i d  AS 

= i n i t i a l  concentrat ion of dissolved s i l i c a ;  
.dL 

(see t e x t  1 
= ''no>in31 concentration" of dissolved s i l i c a  

= concentrat ion of d i sso lved  s i l i ca  i n  equi- 
l ib r ium wi th  s o l i d  AS a t  a given T and 
low s a l i n i t y ;  g/Kg H20 

= funct ion which expresses  t h e  e f f e c t  of pH 
and s a l i n i t y  upon t h e  rate of  molecular 
deposi t ion (see t e x t ) ;  dimensionless 

= 1.38054 x e r g s  K'l; Boltzmann's 
cons tan t ,  a fundamental phys ica l  constant  

= t h e  apparent rate constant  f o r  molecular 
deposi t ion a t  pH = 7 and [Sa'] = 0.06~ 

= t h e  equi l ibr ium constant  f o r  chemisorption 
of dissolved s i l i c a  on t h e  sur face  of AS; 
dimensionless 

= concentrat ion of sodium chlor ide;  moles/L 
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