
UC Irvine
ICS Technical Reports

Title
Microarchitecture optimization for timing and layout

Permalink
https://escholarship.org/uc/item/8mj0j5r7

Authors
Zanden, Nels Vander
Gajski, Daniel
Kanehara, Kenichi

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8mj0j5r7
https://escholarship.org
http://www.cdlib.org/

Notice: Tl1js Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

MICROARCHITECTURE OPTIMIZATION FOR
TIMING AND LAYOUT

by

Nels V ander Zanden
D~iiiel Gajski =~-

Kenichi Kanehara

Technical Report 91-40

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

Abstract

In recent years the drive to produce more complex integrated circuits while
spending less design time has driven the demand for design automation tools.
The search for design automation methods has resulted in the design of
numerous behavioral synthesis and logic synthesis tools. This report describes a
system that fills the gap between traditional behavioral synthesis and logic syn­
thesis tools. Techniques are introduced for improving the microarchitecture
structure and using feedback from lower-level optimization tools to guide design
optimizations while attempting to meet user specified area and time constraints.
These techniques include the capability for mixing layout styles such as custom
layout for random-logic components and bit-slicing for regularly structured com­
ponents. In this manner the entire design, control logic and datapath, can be
optimized at the same time. Further, this paper presents a new methodology for
microarchitecture-level optimization that greatly reduces the amount of
technology-specific knowledge necessary to perform the optimizations.

ht},

TABLE OF CONTENTS

CHAPTER

1. Introduction 1

1.1. Previous \Vork .. 2

2. Design Synthesis Process 5

3. System Architecture 8

3.1. Component Database 10

3.2. Behavioral Synthesis 11

3.3. Microarchitecture Optimization 12

3.4. Floorplanning/Layout 15

4. Types of Microarchitecture Optimization ... 16

4.1. Minimization ... 16

4.2. Factorization 18

4.3. Swap Equivalent Signals on the Same Component 22

4.4. Merge Similar Units 24

4.5. Merge Unsimilar Units .. 30

4.6. Style Change 31

4. 7. Duplicate Logic 32

4.8. Merge Multiple Components and Optimize 32

4.9. Extraction of Common Subexpressions .. 33

4.10. Addition of Buffers ... 38

5. Strategies for Microarchitecture Optimization 38

5.1. General Design Improvements .. 41

5.2. Random Logic Grouping 43

5.3. Timing Optimization 45

5.4. Area Optimization 48

6. Experimental Results 50

6.1. Benchmark Experiments ... 51

II

6 .2. .A .. nalysis . / 1

7. Conclusion 76

BIBLIOGR.A..PHY ... 78

l ll

LIST OF FIGURES

Figure 1. ::VfIL 0 Environment . 10

Figure 2. Tool Interface \vi th the Component Database 15

Figure 3. Minimization Rules 17

Figure 4. Factorization of Microarchitecture Components 18

Figure 5. Example of Factorization 22

Figure 6. Signal Swapping 23

Figure 7. Merge Similar Units 26

Figure 8. Three Possible Merging Cases 28

Figure 9. Results of N'Ierging 29

Figure 10. Rule for Merging . 29

Figure 11. Merging U nsirnilar Uni ts 30

Figure 12. Component Duplication 33

Figure 13. Common Subexpression Extraction 34

Figure 14. Common Subexpression Elimination :..................................... 36

Figure 15. Common Subexpression Elimination Example 38

Figure 16. Overview of Microarchitecture Optimization 39

Figure 17. Random Logic Grouping :.. 44

Figure 18. Option for performing ALU functions 49

Figure 19. Block Diagram of the Rockwell Counter 52

Figure 20. Three Optimization Approaches for the Rockwell Counter 55

Figure 21. Block Diagram of Armstrong Counter .. 56

Figure 22. Three Optimization Approaches for Armstrong Counter 59

Figure 23. Block Diagram of DRACO 60

Figure 24. Three Optimization Approaches for Draco2 66

Figure 25. Three Optimization Approaches for Draco3 67

Figure 26. Three Optimization Approaches for Draco Schematic 68

Figure 27. Layout of Module Generator Design for Draco2 70

Figure 28. Layout of MISII Design for Draco2 ... 71

1

1. Introduction

Generation of digital hardware generally passes through four stages of develop­

ment: behavior, microarchitecture, logic, and layout. Behavior describes the func­

tionality of the hardware and has often been written using simulation languages

such as VHDL or programming languages such as C. Behavioral synthesis tools

convert these descriptions into a microarchitecture structure called a Register­

Transfer-Level design. This structure consists of components such as ALU s,

memories, registers, counters, and multiplexors. Each of these components can m

turn be expanded into a logic-level design consisting of gates and flip-flops. Finally

a layout can be generated from transistors that compose each gate.

Today's designers are increasingly able to enter their designs at higher levels of

abstraction. Recently a number of tools that can translate a behavioral description

to structure have been developed. Some of these tools are tuned to a particular style

of architecture and hence little further optimization is required on the microarchi­

tecture level. Other tools produce varying styles of architecture usually involving

control and datapath sections. As these architectures are more general, they tend

to be less polished and more optimization of their microarchitecture structure is

required.

2

1.1. Previous Work

Various approaches have been taken to convert the microarchitecture design

into a design that can be passed to a layout tool. Some tools describe the behavior

of microarchitecture components as a set of boolean equations and flip-flops, then

rely heavily on logic synthesis tools to reduce the logic and make an efficient design

[Br86) [StMu86) [TsWe88] [WeRo88). They employ logic generators that produce a

design of generic logic gates for each microarchitecture component's descript.ion,

then use tools such as [BrRu87) to reduce the number of gates in a component, res­

tructure critical paths, and map the design into a particular standard cell or gate­

array library. The design can then be passed to a standard cell or gate-array layout

tool. Thus optimization in this respect is focused on the inside of each component.

SILC [GuPa90) includes a component rearchitecting step that selects a different

style of architecture for components along a critical path. For example, a ripple

carry adder can be converted to a carry-lookahead adder or something in between

to improve the speed. Thus the style of component can be changed after logic

optimization fails to meet the necessary constraints.

Other behavioral synthesis tools designed for datapath generation can base

their architecture on a standard cell layout or a bit-sliced layout [TrDi89]. Optimi­

zation is carried out for that particular layout style. Still another approach is to

construct the design using off-the-shelf components [BiBr88] including microproces­

sors, DMA controllers, dynamic RAMS, etc.

3

Numerous tools for behavioral and logic synthesis have been previously

reported. This chapter describes a system that fills the gap between the behavioral

synthesis tools and logic synthesis tools by using a microarchitecture optimizer.

Behavioral synthesis tools often use estimators in design refinement. These estima­

tors may be technology independent and are usually not accurate enough to make

decisions for fine tuning the microarchitecture design. On the other hand, logic

synthesis tools can accurately gauge area and time but operate on too low of a level

to adequately make microarchitecture modifications.

In this paper, techniques are introduced for improving the microarchitecture

structure and for employing constraint driven synthesis based on the user's require­

ments for time and area. These techniques include the capability for mixing layout

styles such as custom layout for random-logic components and bit-slicing for regu­

larly structured components. In this manner the entire design, control logic and

datapath, can be optimized at the same time. Further, this paper presents a new

methodology for microarchitecture-level optimization that greatly reduces the

amount of technology-specific knowledge necessary to perform the optimizations.

Microarchitecture components are generated by a database based on a set of param­

eters from the microarchitecture optimization tool. Thus the microarchitecture

optimizer does not need to deal with multiple logic optimization tools, layout

module generators, transistor sizing tools, etc.

4

Often the structures produced by behavioral synthesis tools contain

inefficiencies such as constants that can be propagated through a design. and com­

mon subexpressions that appear multiple times in the design, each time with repli­

cated hardware. These can partly result from the fashion in which the user wrote

the behavioral description. Also the design needs to be directed towards a certain

set of constraints for time and area. Tradeoffs must be made along different paths.

On critical paths optimizations that reduce time are required, possibly at the

expense of increased area. Non-critical path optimizations attempt to reduce area

as long as doing so does not create a new critical path. In performing these

tradeoffs, the microarchitecture optimizer can select a different architectural style

for the component, merge components and reoptimize. their logic, insert buffers to

improve drive capability, replace a set of components with a single component that

performs the same function but more closely meets the constraints, restructure com­

ponents to reduce delay (such as factoring multiplexors), duplicate logic to reduce

delay, or change the layout style of the component (such as selecting a bit-sliced

layout instead of a layout of random-logic gates). These type of improvements are

nearly impossible to pursue once the design has been expanded into lower level

logic.

The remainder of this paper is organized as follows. Section 3 discusses general

issues related to optimization of designs from a behavioral description into layout.

Section 4 examines a system architecture that performs such synthesis. Types of

microarchitecture optimization are the focus of Section 5 and strategies for their

5

application are presented in Section 6. Finally results of using microarchitecture

optimization are examined in Section 7.

2. Design Synthesis Process

Transforming a behavioral description into layout reqmres the work of a

number of stages: behavioral synthesis, microarchitecture optimization, logic optimi­

zation, floorplanning, and layout. This section describes the goals and interactions

of these tools and how microarchitecture optimization fits into the larger picture.

Behavioral synthesis tools convert a behavioral description into a datafiow

graph with each node representing a functional operator (such as add or compare)

[CaRo85) [OrGa86) [McPa88]. These operations must be assigned to a control step,

through the process of scheduling [PaGa87] [PaKn87], that chooses a point in time

at \Vhich the operation will be performed. In addition, the operator is assigned to a

particular hardware module, through the process of binding [TsSi86] [PaPM86).

During this process, the synthesis tool explores multiple designs and attempts to

determine which designs appear most likely to meet the set of user constraints.

Estimators are employed to guide the synthesis tool towards one or more such

designs.

Estimates for behavioral synthesis tools are usually obtained in one of two

fashions. The first technique uses a set of formulas that when given a component

type (ALU, Register, etc.) and its set of parameters (eg., number of inputs, archi-

6

tecture style, technology-type) produces a rough estimate of the time and area.

Such estimates are not finely tuned but help to weed out unacceptable designs. A

second technique is to expand the design into a lower level design consisting of

gates, possibly even mapping the gates into a technology-specific library. Alterna­

tively, a high-level floorplan of the microarchitecture components can be generated

to obtain a feel for design characteristics. These methods require more time to pro­

duce the estimates and will usually be reserved for use when the number of possible

designs has been greatly narrowed.

The use of estimators allows the behavioral synthesis tool to select an overall

architecture by making decisions on the number of busses, use of pipelining, etc. In

addition, the synthesis tool attempts to minimize the number of connections

between modules and reduce the total number of modules. An appropriate archi­

tectural style must also be chosen for each microarchitecture component, such as

ripple-carry or carry lookahead when using an adder. Because the estimates are

only a rough predictor of the final design after layout, more rigorous analysis and

optimization is required of the microarchitecture design. Thus there is a need for a

microarchitecture optimization tool.

The major goals of microarchitecture optimization are to: (a) remove inefficient

constructs (such as replaceing two multiplexors that have the same set of inputs

with a single multiplexor), (b) select a style of architecture for each component that

suits the area/time requirements, (c) insert buffers on outputs that have a high

7

fanout, (d) select vvhich microarchitecture components to combine and perform logic

optimization on as a single unit, and (e) select a layout style for each microarchitec­

ture component such as PLA, random logic, bit-sliced, etc. Once the initial

microarchitecture structure has been cleaned up, the optimizer has two options in

producing the final design: (a) completely expand and optimiz e or (b) only par­

tially expand and optimize. The first approach is to combine all components into a

single combinational block and optimize. Logic optimization tools have been shown

to be very effective for reducing the area of a design or restructuring logic to meet

timing constraints. This approach may not be the best, however. First, logic

optimization of large designs may require large amounts of CPU time and memory.

The same will be true in the layout phase when floorplanning is performed. Second,

some optimizations can be made at the microarchitecture level that cannot be made

at the logic level. These optimizations include changing the architectural style of

the microarchitecture component or changing its layout style.

The second approach involves only a partial expansion of the design. Various

groups of the components can be combined into a single component and optimized.

For example, random logic gates can be grouped together and passed to a logic

optimization tool while more regularly structured components such as AL Us are

optimized separately and not combined with th~ surrounding logic. Layout module

generators can also be employed in this approach. Module generators can be used

for components with a regular style of architecture such as AL Us and registers. For

these components a one-bit layout slice is generated and then replicated based on

8

the componenfs bit width. The bit-sliced layout \vill typically be more compact

than what could be generated usmg standard cell or custom layout generators to

layout the same logic from a random logic description. Thus using module genera­

tors for components with regular structures will usually result in denser layouts. In

some circumstances, however, a component such as a small ALU can be combined

with surrounding logic to reduce the number of gates. This saving of gates may

produce a smaller layout than if module generators had been used. Thus the

microarchitecture optimizer must be able to discover such conditions.

After microarchitecture optimization, a fioorplan must be generated for the

design and a layout produced for each microarchitecture component. The fioor­

planner stacks the bit-sliced components in a vertical fashion and then places the

random logic modules around the bit-sliced border. Components along the critical

path should be placed close together to reduce the amount of delay caused by rout­

ing. Timing information can be supplied by the microarchitecture optimizer for this

purpose.

3. System Architecture

This section describes a microarchitecture optimization tool and illustrates how

it fits in to a larger system that synthesizes layouts from VHDL behavioral descrip­

tions. The system architecture is shown in Figure 1. It consists of six major pieces:

a component database, logic optimization tools, a behavioral synthesis tool, a tech­

nology mapper, a microarchitecture optimizer, and a fioorplanning/layout system.

~

_____ __./

Component
Database

~

.....
~

9

[VHDL
Behavioral
Description J

Component Parameters _____ ! __,
Generic Components ..._

Behavioral
Synthesis

(GENUS Library) - ----!----
r Generic "I

Microarchitecture
Netlist

\... ~
I

Component Parameters ----........ ~---
Technology-Specific
GENUS Component

Component Parameters +
Component Specifications

Technology-Specific
Component

Component Layout
Style

Layout of
Component

....
~

Technology
Mapper

Technology-Specific
Microarchitecture

1 Netlist
'" ~

!
Microarchitecture

Optimizer

I

• Floorplanning/
Layout

- \\ j~

,,
Layout Logic
Module Optimization

Generators Tools

Figure 1. MILO Environment

MILO

10

3.1. Component Database

The central system tool is a component database [ChGa90). It supplies com-

ponents and statistics on components to the synthesis tools. Synthesis tools can

pass a set of parameters and specifications to the database and then receive a list of

r

components that meet the requirements. Parameters include the component type

(eg., ALU, Counter, MUX), number of inputs, clock type (rising-edge, falling edge),

etc. Specifications include the load that each output pin must drive, the maximum

delay to each output pin, and an area requirement.

The component database contains a library of logic generators that produce a

boolean equation representation that describes the low-level behavior of the com-

ponent. One or more generators can be selected based on the parameters supplied

by the synthesis tool. The boolean equations include constructs for describing

sequential logic so that logic generators for components such as registers and

counters can be constructed. The boolean description is passed to a logic optimizer

[VaGa88) with a set of time constraints. The logic optimizer produces a

t1echnology-specific design using components from a designated library or can gen-

erate complex gates and select transistor sizes for use in a custom layout. The logic

optimizer produces a report file listing delays and area. This information can be

passed to synthesis tools when they request such information about a component.

The database al~_o contains knowledge about components that can be produced

by layout module generators. Estimators provide data on delay times and area

11

based on the bit-width.

3.2. Behavioral Synthesis

A behavioral synthesis tool [LiGa89) accepts a VHDL behavioral description

and produces a VHDL structural netlist consisting of generic components from

GENUS [Dutt88), a library of generic microarchitecture components. One special

property of GENUS components is the use of one control line per function. Thus a

four-bit multiplexor has four data-in lines and four select lines -- one to control each

data line. In an ALU, there are separate control lines for ADD, SUBTRACT, AND,

OR, etc. This component property removes the problem of control encoding from

behavioral synthesis as component encodings may depend on a particular technol­

ogy library. If necessary control encoding can be performed later during technology

mappmg.

The behavioral synthesis tool begins by converting the input description into a

datafiow graph. A graph qitic then operates on the datafiow graph, removmg

redundancies in the behavioral description. The behavioral operators are· then

bound to GENUS components. The final architecture produced by the behavioral

synthesis tool consists of random logic blocks of control logic and a datapath con­

taining components such as ALUs, shifters, and registers.

The components in the generic netlist are converted to technology-specific com­

ponents by a technology mapper. The technology mapper queries the database by

..

12

providing the set of component parameters. The database returns one or more com­

ponents that meet the specified parameters. From this set of components the tech­

nology mapper selects the component that contains the smallest set of functions

required. For example, if a component with the ADD and SUBTRACT functions is

requested, the database may return two components: an ADD /SUBTRACT unit

and an ALU. The technology mapper would select the ADD/SUBTRACT unit.

Since the technology mapper does not pass a set of timing or area constraints to the

database, the database will return the most area efficient design. Currently the

technology mapper maps generic components into only components that are imple­

mented from gates and optimized by the logic optimizer. Later implementations

will include mappings of other types of components, such as those from layout

module generators. In any event, these types of components are currently inserted

later, during the microarchitecture optimization phase if appropriate.

3.3. l\1icroarchitecture Optimzation

At this point the design consists of two levels. One is the microarchitecture

netlist, the other is a technology-specific gate-level netlist for each microarchitecture

component. The rnicroarchitecture optimizer first employs rules that make transfor­

mations that should improve both time and area. For example, converting a regis­

ter and incrementer into a counter. Next the critical paths are identified. The

optimizer requests faster components from the database, selects different layout

styles (random logic or bit-sliced), and decides which components to merge and

13

apply logic optimization. Once critical paths have been processed, the microarchi­

tecture optimizer operates on non-critical components, making similar decisions as

in the critical path improvement phase but this time with an eye toward area

improvements. The microarchitecture optimizer then produces a VHDL netlist that

is passed to the floorplanner /layout assembler for layout.

The microarchitecture optimizer uses a new methodology for selecting microar­

chitecture components to be used in the design. The microarchitecture optimizer

does not perform component rearchitecting and does not have knowledge of tools for

logic optimization, transistor sizing, and other component reoptimization tech­

niques. Instead, these tasks are left to the component database. The microarchitec­

ture optimizer passes a set of time/ area constraints to the database and the data­

base examines possible ways to achieve the constraints. The database can choose

from different architectural styles and can choose from multiple optimization tools

to redesign the component. This frees the microarchitecture optimizer from dealing

with technology concerns and having to know what set of component optimization

tools exist at any one time. All of this is centralized in the database.

Integration of the database with the microarchitecture optimizer and the logic

optimization tools is achieved with two servers [ChGa89] as shown in Figure 2: a

component server, and a knowledge server. The component server is the part that

interfaces with the microarchitecture optimizer. Queries are made from the

microarchitecture optimizer to the component server through the Component Query

14

Component
Component Definitions Component Attribute

Component Generator Tools Requests Requests

Knowledge
Server

Fixed
Components

Parameterized
Components

Component
Instantiations

Component
Generator

Tools

Component
Server

Component
Selector··

Attribute
Retrieval

Optimization/
Layout Tools

Figure 2. Tool Interface with the Component Database

15

Language (CQL) and a list of components or a set of component attributes are

returned. In this manner, the microarchitecture optimizer can simply request the

functions required of a component: an layout implementation style, and a set of

delay parameters. From this information the component database checks its com­

ponent list which includes fixed components (components that have already been

generated) and parameterized comp on en ts (those that can be generated when pro­

vided a set of parameters). The component database knows from its component list

whether a component generator needs to be called to generate a design for the com­

ponent or whether the component design already exists (as in the cas.e of a fixed

component). Once a component is generated, the database can call an appropriate

logic optimization tool or layout tool.

The knowledge server is used to insert new fixed components, insert new com­

ponent generators, and insert logic optimization and layout tools. Thus when a new

logic optimization or layout tool is available, the knowledge server will be accessed

to store information about how to call the new tool. Also designers can build their

own components and insert them into the component database through the

knowledge server.

3.4. Floorplanning/Layout

Finally the technology-specific microarchitecture netlist is passed to a layout

synthesis system that performs floorplanning on the microarchitecture design and

creates a layout for each component [WuGa90]. The layout tool decides how to

16

partition the random logic into blocks for layout. It also can modify the microarchi­

tecture optimizer's selection of bit-sliced components, converting them to random

logic if doing so will result in a better layout. Module generators are called to pro­

duce the bit-sliced layouts and a custom layout generator called to produce a layout

for each random logic block. The floorplanner selects how to partition the random

logic based on shape sizes that can be used to fill in the bit-sliced logic mismatches.

The floorplanner attempts to place similar-sized bit-sliced components together

and place random logic into slots where mismatches in the length of the bit-sliced

logic occurs. Other random logic is placed along the border of bit-sliced com­

ponents.

4. Types of l\1icroarchitecture Optimization

The goal of microarchitecture optimization 1s to optimize the design for

area/time without changing the state assignment. This section describes the types

of optimizations that can be performed.

4.1. l\!Iininization

This type of optimization should be one of the first to be applied. It reduces

the number of components or the amount of logic in a component. Figure 3(a) and

Figure 3(b) show examples of minimization rules. Figure 3(a) shows the removal of

the redundant signal A as an input to the multiplexor. Figure 3(b) shows the

17

A MUX4 A MUX3

8) 8 c
A c

so S1 S2 S3 so
S3

(a)

4 5

\ I
) 9

(b)

Figure 3. Minimization Rules

replacement of an adder by the sum of its two constant values.

18

4.2. Factorization

Factorization is used to extract early arriving signals in order to speed up late

arriving ones. It may also be necessary to factor components in order to meet the

requirements of a layout module generator. For example, module generators may

only be able to construct 4 to 1 or 2 to 1 multiplexors. Figure 4 illustrates the fac-

torization of a multiplexor.

Procedure 4.1 describes the factoring algorithm. The algorithm factors a single

component having tRf inputs, R being the set of all required input to output delays.

The procedure Factor is recursive and takes five parameter~: 1) c, which indicates

A
B
c
D

8

8
A

) B

c

MUX2

8

MUX4 MUX3
8

8

SO S1 82 83

D

83

Figure 4. Factorization of Microarchitecture Components

19

Let:R={r I required delay from input to output};
each component Ci has delay di and si inputs;

C0 be the component to be factored
n=number of component inputs that still need to be assigned;
s=last tried component size that failed to meet the constraints;
D

3
=smallest delay through any multiplexor that can be generated by the database

Function Factor(c,R,n,s,C
0

)

Begin
start:

nt = n;
R1 = R;
C1 = fincLnew_component(R, n, s);
if(01J * ¢)

it(c> 0)
assign cl to the cth input of co

for(i=l;i:5s 1;i++)
if(min(r-d1)>D

3
&& ((n-s 1+i)> 1))

n = n - Factor(i,R={r~=r-d 1},n-s 1 +i,s 1 , C
1
);

else
r

3
= smallest r in R;

assign r
6

to i-th input of C
1

;

R = R- {r };
3

n = n - 1;
~n==O) return(nt);

if(lft~=n)
/* Not able to assign all inputs, try again * /
n = n1;

s =st!
R = ll1;

goto start;
return(n t-n);
End

Function find_new_component(R,n ,s)
Begin
largest_allowable_delay = min(r);
max_number_oUnputs = min(s-1, n);
if (there exist database components C. such that

si :5 max_number_of_inputs &&
1
di :5 largest_allowable_delay)

select component C1 such that s
1
~ all Si

else
c1 = <P;

return(C 1);

End

Procedure 4.1

20

which input of the parent component the factored out inputs should be connected

to, 2) the set R 3) n, the maximum number of inputs to be factored out of the

parent component, 4) s, the size of the last component that failed to meet the con­

straints, and 5) C
0

, the component to be factored.

The factoring algorithm begins by sorting the set of required delays, R, from

smallest delays to largest delays. Then the database is queried to find the same

type of component but with fewer inputs. For example, consider Figure 5. In Fig­

ure 5, the database is shown to have returned three components having six or fewer

inputs. The 2-input multiplexor has a delay of 2ns, the 4-input multiplexor has a .

delay of 5ns, and the 6-input multiplexor has a delay of 7ns. Figure 5 shows the

factoring process for a six to one multiplexor. The set of required delays, R, is

shown to be (5~ 5, 6, 6, 7, 9) for inputs A through F, respectively. Since the six

input multiplexor did not meet the required delays, the next smallest one 1s

selected. In this case it is the four input multiplexor.

The next stage is to assign the inputs to this new component. All inputs whose

required delays will not be satisfied if they are factored out (ie., the delay through

the new component + the smallest possible delay through any component of the

same type) are connected directly to the new component. The remaining signals

represent those that can be factored out. The algorithm queries the database again

to find the component with the most inputs that will still meet the timing con­

straints when the signals are extracted. This component will then be processed

recursively in a similar manner. When a solution is found that meets the time

21

List of multiplexors returned by the component database:

(size, delay) = (2,2) (4,5) (6, 7)

ABC DEF
Set of required delays A = (5,5,6,6, 7,9)

A B C D E F

(a) Initial Implementation

RR
A A B C D

(b) (c)
A B

(d)
A B C

(e)

c C D E F

(f) (g)

Figure 5. Example of Factorization

22

constraints, the algorithm ends.

For the example of Figure 5, input A cannot be factored out of the 4 to 1 mul­

tiplexor or its timing constraint of 5 will not be met. That is, the delay of the four

input multiplexor (with delay of 5) plus the delay of the smallest multiplexor (2-

input MUX with delay of 2) is greater than the required delay of 5 for input A. For

this reason, input A is connected directly to the 4-input multiplexor (Figure 5(b)).

The set R then becomes (5, 6, 6, 7, 9) with only five more inputs to be assigned.

For similar reasons, inputs B, C, and D are assigned directly to the 4-bit multi­

plexor as shown in Figure 5(c). At this point, not all inputs have been assigned and

there are no unused multiplexor input ports. Therefore, using the 4 to 1 multi­

plexor has failed. The set R is reset to the original (5, 5, 6, 6, 7, 9) and another

attempt is made using a smaller multiplexor. If a 2 to 1 multiplexor is used, inputs

A and B can be factored out using a second 2 to 1 multiplexor (Figure 5(d)). The

time constrain ts are still met and the new set R is (6, 6, 7, 9). The largest multi­

plexor that can be used to factor out input C is a 2 to 1 multiplexor (Figure 5(e)).

In addition, input C can be factored out again using another 2 to 1 multiplexor and

the time constraints are still met (Figure 5(£)). In a similar fashion, inputs D, E,

and F can be assigned as in Figure 5(f).

4.3. Swap Equivalent Signals on the Sarrn Corq:><ment

If two signals on a component are interchangeable and one has less delay than

another, the early arriving signal can be swapped with the late arriving signal.

23

Figure 6(d) demonstrates how this can be accomplished. Swapping of component

pins can be described as follows. Let I(c) = {i
1

I j = 1..n} be a set of equivalent

inputs to a component c, where i1 = {a1, r
1
, s). a1 is the arrival time, r

1
is the

required time. and s. = r. - a. is the slack. .)))

Let T = {i. Is. < 0 j = 1..n} be a set of critical inputs, N = {i. Is. C:?: 0 j = l..n}
) J J J

be a set of non-critical inputs. Sets T and N can then be sorted according to each

pin's slack. Swapping of pins then takes place as shown in Procedure 4.2. The algo-

rithm tests whether a pin from T can be swapped with a pin from N. If doing so

does not create a new critical path, the pins are swapped.

A
8
c
D

A-> F 2.0ns
D -> F 3.0ns

F -->
Signal D is on the critical path

Figure 6. Signal Swapping

D
8
c
A

F

24

Let ABS() be the absolute value function

Procedure Swap_Fins (T, N)
Begin
k=O
For j =0 to tI1

Begin
i. = the jth pin of T;

) .

st = the slack of pin ii;
ik = the kth pin of N;
sn = the slack of pin ik;
If ABS(st) s ABS(sJ then

Begin

End
End

swap(ii' ik);
k = k + 1;
End If

4.4. Merge Sinilar Units

Procedure 4.2

Two components can be merged when one of them performs a subfunction of

the other. For example, in Figure 7, combining a register and shifter into a register

that performs a shift. Merging rules examine connectivity between two components

and their functionality. Functionality of components can be found by querying the

database for a list of functions that the microarchitecture component performs. The

merge can be performed for two components, c0 and c1 , when function(c0) C

function(c
1
). For example, in Figure 7, the function shift is a function that can also

Clock

N

N-bit Register

0 Q ~___,

Clk

Shift left

25

N-bit Shifter

SHL SHA

0102

MUX

10
11
12
13

Shift right--- so S1 S2 S3

MUX N-bit Shift Register

N
01 10

0 0 Q

02 11 Clock lk
SHLSHR

S3
Shift left

S2
Shift right

Figure 7. Merge Similar Units

N

26

be performed as part of the register component. Thus a register that does not per­

form a shift and a shifter can be combined into a single shift register.

~ferging of similar components is accomplished in two subphases: 1) same type

component merging, and 2) different type component mergmg. Same type com­

ponent mergmg IS accomplished by an algorithm that proceeds from the design's

input pins to the design's output pins, examining whether two components that are

of the same type are connected together (eg., two multiplexors, two adders, etc).

The algorithm checks a list of valid component types for merging. If a match IS

found, the mergmg procedure continues, otherwise the next set of components 1s

examined. Then, there are three cases that occur when merging components:

(1) A component is only connected to a component of similar function to itself as

in Figure 8(a).

(2) A component is connected to multiple components, some of which are of a simi­

lar function, some of which are of a different function. An example of this is in

Figure 8(b).

(3) A component is connected to multiple components, all of which are of the same

function type.

For case 1 occurrences, the two components are merged. Thus the design of

Figure 8(a) becomes the design of Figure 9(a). In a case 2 occurrence, the two com­

ponents c
1

and c
2

are merged to create a new component, but c1 must remain con­

nected to those components which are of different types. Thus the design of Figure

27

A.
2 to 1
MUX 2 to 1

MUX
B

C1 c
C2

(a)

Adder c

2 to 1
A MUX C3

B 2 to 1
C1 MUX

D
C2

(b)

2 to 1
E MUX

2 to 1
A MUX C2

B 3 to 1
C1 MUX

c
D

C3

(c)

Figure 8. Three Possible Merging Cases

A

8

A
8

c

2 to 1
MUX

A
B

E

A
B

c
D

3 to 1
MUX

(a)

c

A
B

D

(b)

3 to 1
MUX

4 to 1
MUX

(c)

28

Adder

3 to 1
MUX

Figure 9. Results of Merging

29

S(b) becomes that of Figure 9(b). In case 3 occurrences. component c
1

is merged

with all components that its output is connected to. For example, the design of

. Figure 8(c) becomes the design of Figure 9(c). Though the design of Figure 9(c) is

more expensive than that of Figure 8(c) it is used as an intermediate step in optimi-

zation. This is discussed in further detail later.

Merging of different type components is performed using rules. There is one

rule for each type of merge operation. For example, a rule to perform the optimiza-

tion of Figure 7 is shown in Figure 10. If the connectivity of the components is

found to be similar to that of Figure 7, then the component database is queried to

produce the new set of components which are substituted into the design.

If there is a component C1 with functionality = register
AND there is a component C2 with functionality = shifter
AND output Q of C1 is connected to input I of component C2
AND there is a component C3 with functionality = multiplexor
AND output Q of C1 is connected to input I of C3
AND output 0 of C3 is connected to input D of C1

Then
C4 = Query Component Database for a shift register
CS = Query Component Database for a multiplexor with two

fewer inputs than C3
Replace C1, C2, and C3 with C4 and CS

Figure 10. Rule for Merging

30

4.5. Merge Unsimilar Units

Two components can be merged into a single component that performs a

different function than any of the original units. For example, combining a register

and incrementer into a counter, as in Figure 11. Rules for this type of merging are

similar to those for merging similar functional units. In this case, however, for two

components, c0 and cl' function(c0) U function(c1) ~ function(C1), where C1 is a com­

ponent that can be generated by the component database. For example, in Figure

11 the register and incrementer are both subfunctions of a counter component that

can be generated by the database. Mergeability can be determined by querying the

database with a list of functions desired in a component to determine if such a com­

ponent can be created.

Register lncrementer Counter

0 > Clock a

R

Reset Reset

Figure 11. Merging Unsimilar Units

31

4.6. Style Change

The optimizer can query the component database to request a component that

performs the same function(s) but is faster or has a smaller area. The database

returns a list of components from which the optimizer can select one based on the

time and area requirements. Part of the database query can include a layout style

request. For components having a bit-sliceable architecture, such as ALU s, the

optimizer will request a bit-sliced layout style. By placing the component in the

bit-sliced datapath, routing area can be reduced. As mentioned earlier, bit-slices

usually tend to be faster and smaller than their equivalent random-logic implemen­

tation. Transistor sizes in the designs produced by layout module generators are

fixed, however. In some cases larger transistor sizes may be required for drive capa­

bility and speed. Buffers can usually be inserted to add greater drive capability.

For greater speed, however, larger transistor sizes for gates in a design typically

decrease the delay. Thus producing a random-logic design with larger transistor

sizes than those used in the bit-sliced cell may result in a faster design. As stan­

dard cells have fixed transistor sizes, a transistor sizing program, such as

[Wu VG90), can be combined with a custom-layout generator to produce the layout

for the component. Estimators that calculate delays for bit-slice logic, based on a

single slice, and for random-logic, based on gate type and transistor sizes, assist the

microarchitecture optimizer in determining which design will be faster.

32

The database searches through its list of different architectural styles for the

component to select one that it estimates will come closest to meeting the specified

constraints [ChGa90]. For each style, the database maintains a range of delays and

area that can be obtained. Then, depending on the layout style, the database can

call tools such as logic optimizers, transistor sizing tools, etc., to generate the low

level design in terms of gates or a layout. In this manner, the microarchitecture

optimizer is freed from the low level details and is not concerned with which low

level optimization tools should be called.

4. 7. Duplicate Logic

Duplication of components is a technique designed to improve the speed of a

path at the cost of additional area. It is the reverse of factorization. Figure 12

shows the duplication of the two-input multiplexor in order to reduce the delay

along a critical path.

4.8. Merge Multiple C-Omponents and Optimize

This technique combines components performing different functions into a sin­

gle unit and then applies logic optimization. Optimization of this type can be par­

ticularly effective when some of the inputs to tl}e components are constants. The

optimization of the constants will propagate through the logic. Thus in cases where

the rnicroarchitecture optimizer believes constant propagation in the logic will

occur, it will merge even bit-sliceable components, optimize them, and treat them as

33

MUX2 MUX3 c c
A

A
MUX2 > B

B
MUX2

Figure 12. Component Duplication

random logic. Constant propagation is obvious when a number of the component's

inputs are constants. Components connected to the output of such a component

should also be combined into the random logic since the constants can usually be

propagated through several levels of microarchitecture components.

4.9. Extraction of C-O:rnrrnn Subexpressions

Designs can often have the same logic duplicated in different .parts of the

design. Local transformations will not detect this. Therefore, global analysis is

required to find and extract such common subexpressions. An example of common

subexpression extraction is shown in Figure 13.

34

A

F1
F1 B

> A
2

A
2 B MUX2 AEG2

B F2 F2
c

Figure 13. Common Subexpression ~xtraction

Common subexpression elimination is performed for each component type. For

example, it will be performed separately for multiplexors and adders. The algorithm

consists of three steps: 1) for each component which is of the selected component

type: a set N is generated that contains all the inputs to that component, 2) a set L

of possible subexpressions is generated, 3) a common subexpression is selected and

extracted. This process is repeated until no more subexpressions are present.

As an example, consider Figure 14. In this example, the component type is

adder. For each adder (components c1 , c2, c3, and c4), the set Ni is generated. Every

net is assigned a unique id number (for example, nets n12 and n23 in Figure 14).

Two components that have an input connected to the same net have that net id

number in common. Each set N is sorted by the net id numbers. From Figure 14,

n9

35

n23

n12

n16

n15

N1 = {n9, n12, n23}

N2 = {n12, n23}

ADD

C1

ADD

C2

ADD

C3

ADD

C4

N3 = {n9, n12, n16, n23}

N4 = {n9, n15, n16}

S1

S2

S3

S4

Figure 14. Common Subexpression Elimination

36

the N sets generated are: N
1

= {n9, nl2, n23}, N
2

= {n12~ n23}, N 3 = {n9, n12, n16,

n23}, and N 4 = {n9, n15, n16}.

The second step is to identify possible common subexpressions. A common

subexpression Se is present if the following expression is true: Ni n Njl > 1. A set of

common subexpressions, 5 .. , is generated for each N. n N .. Each set 5 .. must have at
I) l J I)

least two elements or be the null set as only two or more inputs can be extracted.

From the four N sets generated above, the sets Sii are as follows: S
12

= {n12, n23},

S 13 = {n9, n12, n23}, S
14

= </>, S 23 = {nl2, n23}, S 24 = </>,and S 34 = {n9, n16}. A set

L is created from the S sets. It contains no duplicated entries but instead keeps a

count of the number of occurrences for each subexpression. Thus the set L is

{{n12,n23}:2, {n9,n12,n23}: 1, {n9,n16}: l}.

From L a subexpression for extraction is chosen using the following criteria: a)

most number of occurrences, and b) smallest subexpression. In the case of Figure

14, the set in L with the largest number of occurrences is {n12,n23}. Figure 15(a)

shows the new design after the common subexpression is extracted. The set

{n12,n23} is removed from Land any set containing {n12,n23} as a subset (for exam-

ple the set {n9, n12, n23}) is replaced with the net id for the extracted subexpres-

sion (in this case, n30 as shown in Figure 15). The new set L is {{n9, n30}:1,

{n9,n16}:1}. Since both sets have the same number of occurrences and the same size,

the first set {n9,n30} is selected. Figure 15(b) shows the design after the extraction

of this set. The new set L for the design of Figure 15(b) is{¢}. Therefore there are

37

S2

n12 ADO
n30 ADD

t-r---'---...J

n23 S1
n9-.......---1

ADD

53
n16

ADD

S4
n15

(a)

S2
n12 ADD

30 ADD

n23 S1
n9

ADD

n16 S3

ADD

S4
n15

(b)

Figure 15. Common Subexpression Elimination Example

38

no more subexpressions to extract.

4.10. Addition of Buffers

Some components that drive large loads may require the addition of buffers at

their outputs. This can reduce the delay by providing greater drive power.

Methods of doing this have been discussed in [GuPa90) [SiSV90]. One solution is to

partition the load by constructing a fanout tree from buffers. This tree should be

constructed in a manner that does not violate the time constraints yet minimizes

the amount of area increase.

[GuPa90] also mentions that in standard cell designs, components with higher

drive capacity can be selected. Alternatively, some duplication of logic can be used

to reduce fanout. In our case, the component database contains tools for transistor

sizing and can generate a layout using a custom layout generator. This allows the

design to be more finely tuned than when using standard cells. With the custom

layout capability component transistor sizes are not fixed at discrete intervals.

Rather,. transistor sizes can be selected on a continuous basis in order to meet delay

requirements.

5. Strategies for lVlicroarchitecture Optimization

Having examined types of optimization techniques, we now describe an algo­

rithm for applying them. A block diagram of the optimization process is shown in

39

Figure 16. It is divided into three parts: a data structure. a control section~ and a

set of optimization procedures. The data structure contains the design netlist 1

statistics for delay and area, a set of user constraints, a set of critical paths 1 and a

set of non-critical paths. Critical and non-critical path sets are determined by the

timing analyzer in the control section. The controller also selects which optimization

Data
Structures

Critical Path
Set

Non-Critical
Path Set

Net list

User-Constraints

Control

Critical Path
Selector

Time
Analyzer

Non-Critical
Path Selector

Optimization
Controller

Optimization
Techniques

Critical
Path General Design

Optimizer

Time Optimizer

Random Logic
Grouper

Area Optimizer

Figure 16. Overview of Microarchitecture Optimization

40

procedure to use. Each optimization procedure corresponds to one phase of the

optimization process. The microarchitecture optimization is carried out in four

phases: general design improvement, random logic grouping, timing optimization

and area optimization.

Phase 1 of the algorithm: general design improvement, attempts to reduce the

number of components and to prepare the design for timing optimization should

that be necessary. For example, to be able to refactor multiplexors along the critical

path, all multiplexors that can be merged should be merged into a single multi­

plexor. Then the timing optimizer can decide how to refactor the single multi­

plexor. Thus optimizations in this phase set up techniques that will be performed

later or employ techniques that improve both the time and area of a design.

Phase 2 groups random logic components for logic optimization. Microarchitec­

ture optimizations are not performed on random logic gates. Instead, they are

passed to the database which has tools for restructuring the logic to meet a set of

constraints passed by the microarchitecture optimizer. Thus Phase 2 prepares the

design for Phases 3 and 4 by reducing the number of components that the microar­

chitecture optimizer must deal with. In doing so, it groups components that will be

implemented using random logic gates rather than a bit-sliced layout.

Phase 3 applies time reduction techniques. The microarchitecture design is ori­

ginally tuned for area by the technology mapper. Therefore, in this phase, the

microarchitecture optimizer operates on critical paths, making necessary time for

41

area tradeoffs.

Phase 4 works on non-critical paths, attempting to reduce the design's area.

During area optimization, some microarchitecture components may be merged with

others for logic optimization. These types of optimizations must be performed after

timing optimization because once components are merged, the microarchitecture

optimizer cannot recognize the original component functionality. This information

is necessary for some of the timing optimization techniques.

Procedure Optimize_lVIicroarchitect ure (microarchi t ec t ure design)
Begin
General_Design_Improvemen ts(microarchi tecture_design)
Random_Logic_Grouping(microarchitecture_design)
Identify critical path set
While (Critical path set is not empty)

Begin
criticaLpath = select_critical_path(criticaLpath_set)
Timing_Optimization(criticaLpath)
Remove criticaLpath from critical_path_set
End

Identify non critical path set
While (Non critical path set is not empty)

Begin
non_critical_path = select_non_critical_path(non_critical_path_set)
Area_Optimization(non_criticaLpath)
Remove non_criticaLpath from non_critical_path_set
End

End

5.1. General Design lrq>rovements

To improve the overall design, Phase 1 proceeds as follows:

42

Procedure GeneraL.Design_Improven"£nts (rnicroarchitecture design)
Begin

Merge Similar Units (from inputs to outputs of the design)
~\forge UnSimilar Units (from inputs to outputs of the design)
Apply :\Iinimization Rules (from inputs to outputs of the design)
Perform Common Subexpression Elimination

End

Phase 1 begins with components of similar types being merged. As mentioned

earlier, this is necessary for refactoring and common subexpression recognition.

Further it reduces the number of components and hence makes minimization rules

easier to apply. For example, performing the optimization of Figure 3 would be

more difficult to discover if the multiplexor containing the common signal A were

factored into two multiplexors, each containing the signal A.

Next unsimilar components are merged usmg a set of rules. These rules also

reduce the number of components in the design. Once all merging is complete, a set

of minimization rules can be applied to clean up redundant and unnecessary logic in

the microarchitecture design. Up to this point, all optimizations reduce the number

of microarchitecture components in the design. The next step, common subexpres-

sion extraction, increases the number of microarchitecture components but reduces

the actual amount of logic required to implement them. It allows hardware that is

redundant in a number of components to be shc:-red. Common subexpression elimi-

nation is not performed on random logic as this can be performed by logic optimiza-

tion tools.

43

5.2. Random Logic Grouping

Phase 2 collects certain types of components to be optimized together as ran-

dom logic. This is performed as follows:

Procedure Random_I.ogic_Grouping (rnicroarchitecture design)
Begin
Group Logic Gates into random logic components
Group Non-Bit-Sliceable Components into random logic components
Group Components with Constant Inputs into random logic components
End

Phase 2 groups components that will then be optimized as a single random

logic component. During this phase, three types of components can be grouped: 1)

gates, 2) components for which bit-slicing is difficult, and 3) bit-sliceable ~om-

ponents that have constants as inputs. Type 1 components, gates such as N AND,

AND, and XOR, each have a lower-level technology specific implementation. For

example, at the microarchitecture level, one could have a 12-input AND gate. Of

course: a gate with this many inputs is usually not physically implementable as a

single gate. Thus the technology-specific design is constructed from smaller gates

that are available in the specified technology. Phase 2 groups all random logic gates

at the microarchitecture level that are connected together and forms a single com-

ponent of type "random logic", as shown in Figure 17.

Type 2 components, for which bit-slicing is difficult, such as a decoder, will

also be grouped with the random logic gates that they are connected with. Finally,

44

A
D a F1

A Random D a F1
Clk B

Logic
Clk c

D
B E

=>
F D a c F2

D a F2 Clk

Clk

GLJ-Logic
H

F3
I F3

J

Figure 17. Random Logic Grm.~ping

bit-sliceable components with constant inputs will be added to the random logic set.

Components connected to the outputs of the type 3 components will also be

grouped into the random logic since during logic optimization, the constants will

often propagate through.

For each microarchitecture component, the database has a file containing a set

of boolean equations that describe the behavior of the component. As mentioned

earlier, the equations can represent sequential logic as well as combinational logic.

The microarchitecture optimizer can request that the database create a new com-

ponent by merging two componen.t 's equation files. Logic optimization on this new

component can then be performed by tools in the database.

45

5.3. Timing Optimization

Timing analysis is performed as the first stage of Phase 3. Delays and setup

times for each component can be found by querying the database. The timing

analyzer calculates four types of worst delay: 1) input pins to registers, 2) register to

register, 3) registers to output pins, and 4) input pins to output pins. The worst

delays at the design's output pins are compared with the required delays that are

entered by the user. Output pins with negative slacks do not meet the delay con-

straints. Slack is computed as:

slack = actual delay - required delay

Required delays are also calculated at each register data input. The required

delay is calculated based on the required maximum clock width, which is entered by

the user:

required delay = max clock width - setup time

Actual delays are calculated based on the worst delay to the register's input,

the setup time for that input, and the worst delay to the clock input of the register:

actual delay = worst delay to register input + setup time -
worst delay to register clock input

The slack is then computed from the actual and required delay values. A slack

value is found for every component's output pin in a similar manner by subtracting

46

the actual delay from the required delay.

After timing analysis, the goal of timing optimization is to make sure that no

component's outputs have a negative slack value. Any component having such an

output is said to be on a critical path. Ideally these negative slack values are raised

to zero, with any value over zero representing over optimization (assuming

area/time tradeoffs must be made).

Timing optimization is performed for each critical path. The worst critical

path (ie., the one having the largest negative slack) is processed first. Timing

optimization along the critical path proceeds as follows:

Procedure Timing_ Optimization (Critical Path)
Begin

Swap Equivalent Signals
Factor
New Component Style Selection
l\!Jerge Multiple Components for Optimization

End

Phase 3 operates on microarchitecture components along the critical paths. It

uses factoring, signal swapping, new component selection, and merging of com-

ponen ts in order to reduce delay. The timing optimization phase ends as soon as

there are no critical paths.

Signal swappmg is performed first smce there is no area increase associated

with it. Usually, however, improvements in delay from this type of optimization are

..

47

small. Factoring is employed in the second step to produce shorter paths for critical

signals. This technique usually increases the area only slightly. The set of required

delays is calculated for each input to the output of the factorable component.

These delays are passed to the factoring routine which then attempts to factor in a

manner that will meet those delays.

In the third step of Phase 3, the optimizer selects new component styles by

querying the database to find out what components are available with smaller

delays. The component that comes closest to satisfying the required delays at each

output is selected. Thus the optimizer tries to set each of the slacks at the output

pins to zero.

Having failed to fix all critical paths with the previous three steps, the microar­

chitecture optimizer attempts to combine bit-sliceable components into a random

logic component and query the database to apply logic optimization. In addition,

the database can use a transistor sizing program to size the transistors in a fashion

that will meet the time constraints. By using larger transistor sizes than those used

in the bit-sliced approach (where transistor sizes are fixed), it may be possible to

produce a faster component. If indeed the database returns a faster component, the

microarchitecture optimizer will switch the layout style to a custom layout. Of

course, the random logic approach combined with the large transistor sizes results

in larger area.

48

5.4. Area Optirrization

Finally, Phase 4 performs area optimizations along non-critical paths. It

mainly employs new component selection and component merging. Components

that have outputs with positive slacks are examined for possible area/time tradeoffs.

Area optimization operates as follows:

Procedure Area_Optimization (Non-Critical Path)
Begin

New Component Style Selection
Merge Multiple Comps for Optimization

End

New component selection includes choosing a bit-sliced layout style for com-

ponents where doing so results in an area reduction. Some components, such as

multiplexors, may need to be factored in order to use a layout module generator.

For example, only 4-to-l and 2-to-l multiplexors may be available. An 8 to 1 multi-

plexor would then need to be factored. This can be achieved by the algorithm

presented earlier.

In some cases, a layout module generator exists but contains more functions

than are required. For example, consider an ALU. The bit-slice of the module gen-

erator may perform addition, subtraction, eight logical functions (eg., NAND,

AND), and a set of comparison functions (eg., equal, greater than, zero). If only the

addition operation, the comparison functions, and a logical AND are required, the

layout module generator performs more functions than are necessary. Thus a

49

random logic implementation will probably produce the smallest area design. If

there is already a random logic component connected to the ALU, the ALU can be

merged into the random logic component and the logic reoptimized.

An alternative approach to generating the random logic design is to separate

the groups of functions that need to be performed. For example. Figure 18 shows

that three groups of functionality can be generated for our example of the ALU: an

arithmetic unit (adder), a comparator, and a logical AND. A multiplexor is used to

choose the addition function or the logical AND. In this case all components can be

AND

- 2 to 1
MUX

....___ F

A /"' Adder
\..

I /"'
\.. ADD 8

Comparator - -
>
<

Figure 18. Option for performing ALU functions

50

implemented using the layout module generators and placed in the bit-sliced data­

path during layout.

6. Ex:perhnmtal Results

This section presents experiments performed using MILO. A number of design

examples were written in VHDL, then run through VSS to generate the initial

microarchitecture design. The designs were then run through MILO with the fol­

lowing four strategies:

(1) Optimize the design for area and produce an underlying gate-level design for

each microarchitecture component.

(2) Optimize the design for time and produce an underlying gate-level design for

each microarchitecture component.

(3) Optimize the design for area and use the module generators for all bit-sliceable

microarchitecture components, gate-level designs for all other components.

(4) Optimize the design for time and use the module generators for all bit.,.sliceable

microarchitecture components, gate-level designs for all other components.

To get an idea of how good these optimizations were compared to a traditional

straight logic optimization, the output design from VSS consisting of microarchitec­

ture components was completely expanded into a fiat gate-level design. This design

was run through MISII and then through a transistor sizing program. The logic

51

optimization was also performed for both area and time. Thus each example was

run six different ways.

Five different benchmarks were run through MILO: Rockwell Counter,

Armstrong Counter, and three different versions of DRACO: Draco2, Draco3, and

Draco Schematic. A short description of each of these designs and their results are

shown in the following sections. In the final section a comparison of all of the

optimizations performed by MILO and MISII is made and conclusions are drawn.

6.1. Benchmark Ex:perimmts

6.1.1. Rockwell Omnter

The Rockwell Counter benchmark was supplied by Rockwell International and

is a design used in telephone switching networks. It has four inputs as shown in the

block diagram of Figure 19: 1) CLK, the system clock, 2) RST, which performs a

synchronous reset of the counter, 3) DTI, a 12-bit data input, and 4) LDE, a con­

trol line which loads the counter with input DTI. It has only one output, DTO,

which represents the value of the count.

The counter is a divide by 3328 counter that operates as follows:

(1) The counter has a start count of 0 and a terminal count of 3327.

(2) The counter increases by 208 on each clock edge. If the count is greater than

3327, the counter will start at the previous start count plus 26 (eg., the first

52

Rockwell
LOE Counter

12
OTI 12

OTO
AST

CLK

Figure 19. Block Diagram of the Rockwell Counter

time: 0 + 26). If the previous start count plus 26 is greater than 207, then the

count will start at the previous start count plus 1.

(3) There are 26 sequences (ie., 26 start counts) before the counter reaches 3327

and wraps back to 0.

(4) The counter has an active high load enable which synchronously loads the

counter. The state machine must adjust to the new state so as to keep the

same counting sequence.

Table 1 shows the optimization results for the Rockwell Counter when optimiz-

ing for time, while Table 2 shows the results when optimizing for area. In this exam-

ple, the design with the fewest transistors is achieved using the module generators

53

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 206.0 1800

MILO Module
233.5 1484 GenerAtnrs

MISll Gates 222.5 1344

Table 1. Time Optimization Results for the Rockwell Counter

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 327.0 1158

MILO Module
337.5 1056 GenerAtnrs

MISll Gates 413.0 1170

Table 2. Area Optimization Results for the Rockwell Counter

during rnicroarchitecture optimization. The area of the designs employing only

gates are roughly equal. When comparing time results, MILO's optimization with

gates produced the smallest delay, followed by MILO 's optimization using the

54

module generators. The optimization by :VIISII produced the largest delay.

Table 3 displays the tradeoff of time for area when comparing the time optim-

ized designs with the area optimized designs. The change in time and area is shown

as a percentage. For example, MILO's optimization using only gates achieves a 37%

improvement in time at a cost of a 55% increase in area when comparing the time

· optimized design with the area optimized design. This table illustrates that fairly

substantial reductions in time can be achieved at a cost of additional area. Finally,

Figure 20 compares the three optimization approaches (MILO with gates, MILO

with module generators and gates, and MISII) graphically. The curve represents

the potential to achieve area/time tradeoffs between the best area optimized design

and the best time optimized design, although this ability has not actually been

Optimization Optimization time difference area difference
Tool Style (%) (%)

MILO Gates -37.0 +55.4

MILO Module -30.8 +40.5
(Generators

MISll Gates -46.4 +14.8

Table 3. Time/ Area Tradeoffs for Rockwell Counter

400

time(ns)

300

200

100

generators
+gates

0
1000 1250

55

MILO
only gates

1500 1750

Area (transistors)

2000

Figure 20. Three Optimization Approaches for the Rockwell Counter

tested.

6.1.2. ArIIBtrong Counter

The Armstrong Counter is a benchmark adapted from [Arms89). As shown in

the block diagram of Figure 21, it has four inputs: 1) CLK, the system clock, 2)

CON, a two-bit input that selects which function the counter will perform, 3)

DATA, a four-bit input that determines the end count for the counter, and 4)

STRB, an asynchronous line that loads the two values DATA and CON into regis-

ters. It has a single four-bit output, CON_OUT.

56

Armstrong
CLK Counter

4

CNT_OUT,..._

DATA

STAB

Figure 21. Block Diagram of Armstrong Counter

The behavior of the Armstrong Counter is as follows:

(1) On the rising edge of STRB, the values of DATA and CON will be loaded.

(2) The counter can perform four functions as specified by the value of CON: dear

the counter, load a limit register, count up to a limit, or count down to a limit.

Table 4 shows the optimization results for the Armstrong Counter when optim-

izing for time, while Table 5 shows the results when optimizing for area. In this

example, MIL O's optimization with module generators produced the smallest delay,

followed by MILO's optimization using the gates. The optimization by MISH pro-

duced the largest delay. When comparing area results, the design with the fewest

transistors is again achieved using the module generators during microarchitecture

... ,...
,'.JI

Optimization Optimization time area
Tool Style (ns) (# of transistors)

MILO Gates 28.0 486

MILO
Module 20.0 393 Gener:.1tnrs

MISll Gates 43.5 484

Table 4. Time Optimization Results for the Armstrong Counter

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 38.0 486

MILO
Module

20.0 395 Gener:.1tnrs

MISll Gates 74.5 460

Table 5. Area Optimization Results fqr the Armstrong Counter

optimization. The area of the MISII design is smaller that that produced by MILO

using gates.

58

Table 6 displays the tradeoff of time for area when comparing the time optim-

ized designs with the area optimized designs. The change in time and area is shown

as a percentage. Optimization by ::VIILO using only gates shows a 263 reduction in

delay with no increase in transistor count. This indicates that the improvement in

time was mainly due to changes in transistor sizing. Finally, Figure 22 compares

the three optimization approaches (MILO with gates, MILO with module generators

and gates, and MISII) graphically. Again, the curve represents the potential to

achieve area/time tradeoffs between the best area optimized design and the best

time optimized design. For the Armstrong Counter, MIS II has the largest distance

between the area and time optimized designs.

Optimization Optimization time difference area difference
Tool Style (%) (%)

MILO Gates -26.3 +0.0

MILO
Module

-0.0 -0.5 Generators

MISll Gates -41.6 +5.2

Table 6. Area/Time Tradeoffs for the Armstrong Counter

100

time(ns)

75

50

25

0
375

MILO
module

.- generators
+gates

,59

400 425

Area (transistors)

450

~
475

I MILO
only gates

500

Figure 22. Three Optimization .Approaches for Armstrong Counter

6.1.3. DRACO

DRACO is another benchmark obtained from Rockwell International and i$ the

most complex of all our benchmarks. A block diagram of DRACO is shown in Figure

23: consisting of nine inputs and one output. DRACO is primarily intended to inter-

face 16 I/O ports to a microprocessor's 8-bit multiplexed address/ data bus and con-

trol signals. DRACO was developed by Rockwell as an ASIC chip.

Three VHDL descriptions of the DRACO chip were written. Each description

represented DRACO at a different level of abstraction. "Draco Schematic" was

derived from the logic schematic provided by Rockwell International. "Draco2" and

"Draco3" were more abstract versions and each used a different style of modeling in

60

16 Draco
DATA BUS

PARITY

POWER 16

CE_L
110 BUS

RESET_L

READ_L
8

WRITE_L AD_OUT

ALE

ERROR_L
8

AD_IN

Figure 23. Block Diagram of DRACO

VHDL. Thus the designs produced by VSS from each of these descriptions are

quite different.

Table 7 through Table 12 demonstrate optimization results for time and area

on the DRACO examples. For examples "Draco2" and "Draco3", MILO's optimiza­

tions proved to be the .best in terms of delay. Optimization by MILO using module

generators resulted in the best designs in terms of area. Table 13 through Table 15

show the tradeoff of time for area when comparing the time optimized and area

61

Optimization Optimization time area
Tool Style (ns) (# of transistors)

MILO Gates 194.5 5868

MILO Module
109.0 3390 Generators

MISll Gates 283.5 5800

Table 7. Time Optimization Results for Draco2

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 226.5 5152

MILO Module
117.5 3390

Gener~tnrs

MISll Gates 342.0 4668

Table 8. Area Optimization Results for Draco2

62

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 101.5 5544

MILO Module 135.0 3968
Gener~tor~

MISll Gates 138.5 4202

Table 9. Time Optimization Results for Draco3

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 115.5 5298

MILO
Module 176.5 3492

Gem~r:::1tnr~

MISll Gates 174.5 4206

Table 10. Area Optimization Results for Draco3

63

Optimization Optimization time area
Tool Style (ns) (# of transistors)

MILO Gates 205.0 5658

MILO
Module

135.5 3026
Generators

MISll Gates 149.0 4216

Table 11. Time Optimization Results for Draco Schematic

Optimization Optimization time area
Tool Style (ns) (#of transistors)

MILO Gates 206.0 4486

MILO
Module

136.5 3018
Gener~tnrs

MISll Gates 258.0 3762

Table 12. Area Optimization Results for Draco Schematic

64

Optimization Optimization time difference area difference
Tool Style (%) (%)

MILO Gates -14.2 +13.9

MILO
Module -7.2 +7.5 ·.·

Gener~tnrs
;

MISll Gates -17.1 +24.1

Table 13. Time/ Area Tradeoffs for Draco2

Optimization Optimization time difference area difference
Tool Style (%) (%)

MILO Gates -12.1 +4,6c

MILO
Module

-23.5 +13.6 Generators

MISll Gates -20.6 -0.1

Table 14. Time/ Area Tradeoffs for Draco3

65

Optimization Optimization time difference area difference
Tool Style (%) (%)

MILO Gates -0.5 +26.1

MILO Module -0.7 +0.3 Generators .. ·'
C'.""

MISll ·Gates . '~:~~C-'42.2 • +12.1
.. ,;.;

.

Table 15. Time/ Area Tradeoffs for Draco Schematic

optimized designs. Figure 24 through Figure 26 compare the three optimization

approaches.

In addition to comparisons of transistor counts, two layouts were generated by

SLAM for Draco2 designs as an additional comparison. Figure 27 shows the layout

for Draco2 that was produced from thedesign optimized by MILO using the m~dule

generators. The layout consists ·of two sectioris: the Ief{:hand portion is a custom

layout consisting of random logic. The right hand portion of the layout is the bit-

sliced datapath produced by the module generators. Figure 28 shows the layout for

Draco2 that was produced from the design optimized by MISH. It consists entirely

of a custom layout for random logic. As would be expected, the design with the

module generators is smaller than the random logic design. The total layout area of

the random. logic design is 14,668,600 square micrometers compared with only

400

time(ns)

300

200

100

0
2000 3000

66

"---· MISll

~.MILO
only gates

..__, MILO
module generators +gates

4000 5000 6000

Area (transistors)

Figure 24. Three Optimization Approaches for Draco2

400

time(ns)

300

200

100

0
2000

67

MISll

~ J
MILO

module generators + gates

3000 4000

Area (transistors)

MILO
only gates

~

5000 6000

Figure 25. Three Optimization Approaches for Draco3

time(ns)

300

200

100
' MILO

68

~MISll
module generators + gates

0
2000 3000 4000

Area (transistors)

5000

MILO
only gates

6000

Figure 26. Three Optimization Approaches for Draco Schematic

69

Figure 27. Layout of Module Generator Design for Draco2

70

Figure 28. Layout of MISII Design for Draco2

i1

s,.392,672 square micrometers m the).IILO module generator design. This

represents an area difference of 703.

6.2. Analysis

Table 16 compares optimization by ~IILO using only gates and straight logic

optimization by MISII. MILO when using only gates produces faster designs in four

of the five cases, ranging from 7% faster to 35% faster. In one of the five cases

MILO is slower by 37%. This demonstrates that MILO can produce faster designs

Benchmark MILO MISll
(%) (%)

Draco2 69 100

Draco3 73 100

Draco Schematic 138 100

Armstrong Cntr. 64 100

Rockwell Cntr. 93 100

Table 16. Comparison of MILO and MISII Timing Optimization

72

on average.

Table 17 compares optimization by ~IILO using only gates and straight logic

optimization by MISII of the examples for area. In four of the five cases, MISII pro-

duces a design with a smaller area. This is to be expected as the MILO logic optim-

izer is primarily geared for time optimization. However, MILO's optimization with

module generators compensates by providing area efficient bit-sliced layouts. The

best designs in terms of area were usually achieved when using module generators as

shown in the tables that follow.

Benchmark MILO MISll
(%) (%)

Draco2 1 1 1 100

Draco3 132 100

Draco Schematic 119 100

Armstrong Cntr. 106 100

Rockwell Cntr. 99 100

Table 17. Comparison of MILO and MISII Area Optimization

73

Table 18 compares optimization usmg modules generators ·with optimization

using only gates and optimizing for time. Table 19 shows the same comparison for

area. The table shows that in most of the cases, optimization with the module gen-

erators produced a design with the smallest area and fastest speed. Table 20 and

Table 21 make the same comparison with module generators but use the MISII

results as the base for comparison.

These experiments demonstrate the effectiveness of MILO in generating

efficient designs for either time or a~ea. By optimizing the microarchitecture design

Benchmark
MILO

MILO (gates) (module gen.)
(%) (%)

Draco2 56 100

Draco3 133 100

Draco Schematic 85 100

Armstrong Cntr. 71 100

Rockwell Cntr. 113 100

Table 18. MILO gate vs. MILO module generator designs (Time)

i4

Benchmark
MILO

MILO (gates) (module gen.)
(%) (%)

Draco2 66 100

Draco3 66 100

Draco Schematic 67 100

Armstrong Cntr. 81 100

Rockwell Cntr. 91 100

Table 19. MILO gate vs. MILO module generator designs (Area)

75

MILO
MISll (gates) Benchmark (module gen.)

(%) (%)

Draco2 38 100

Draco3 97 100

Draco Schematic 91 100

Armstrong Cntr. 46 100

Rockwell Cntr. 105 100

Table 20. MISII vs. MILO module generator designs (Time)

76

Benchmark
MILO

MISll(gates) (module gen.)
(%) (%)

Draco2 73 100

Draco3 83 100

Draco Schematic 80 100

Armstrong Cntr. 86 100

Rockwell Cntr. 90 100

Table 21. MISII vs. MILO module generator designs (Area)

instead of simply expanding the design and performing logic optimization, superior

designs can be produced. Further, the results demonstrate flexibility in generating

designs with different layout styles -- those using only gates and those incorporating

a bit-slice capacity.

7. Conclusion

In this report, we presented a tool for optimization of register-transfer level

designs. The tool operates on top of a set of logic synthesis tools that provide area

and delay information for individual microarchitecture components. This informa-

77

tion is used to modify the microarchitecture design by employing techniques such as

changing a component's architectural or layout style and groupmg selected com­

ponents for optimization as a random-logic component. Further
1

a new methodol­

ogy was presented for microarchitecture-level optimization that greatly reduces the

amount of technology-specific knowledge necessary to perform the optimizations.

Microarchitecture components are generated by a database based on a set of param­

eters from the microarchitecture optimization tool. Thus the microarchitecture

optimizer does not need to deal with multiple logic optimization tools, layout

module generators, transistor sizing tools, etc. Finally, a set of experiments were

presented indicating that microarchitecture optimization techniques can produce

faster designs or designs with smaller area than those obtained by logic optimization

alone.

18

BIBLIOGRAPHY

[BiBr88] Birmingham, \V.P, Brennan, A., Gupta, A.P., and Siewiorek, D.P.,
"MICON: A Single-Board Computer Synthesis Tool", IEEE Circuits
and Devices ~Magazine, January, 1988.

[Br86] Brayton, R., et al., "Multiple-Level Logic Optimization System",
ICCAD, 1986.

[Br Ru87] Brayton, R., Rudell, R., Sangiovanni-Vincen telli, and Wang, A., "MIS: A
Mutiple-Level Logic Optimization System", IEEE Transactions on
Computer-Aided Design, Vol. CAD-6, No. 6, Nov. 1987.

[CaRo85] Camposano, R., and Rosenstiel, W., "A Design Environment for the Syn­
thesis of Integrated Circuits", llth EUROMICRO Symposium on
lvlicroprocessing and lvlicroprogramming, Sept. 1985.

[ChGa90] Chen, G.D., and Gajski, D.D., "An Intelligent Component Database F<?r
Behavioral Synthesis", 27th DAG, 1990.

[Dutt88] Dutt, N.D., "GENUS: A Generic Component Library for High Level Syn­
thesis", Technical Report 88-22, University of California, Irvine, Sept.
1988.

[GuPa90] Gupta, G., Pastorello, D., and House, G., "Timing Optimizations in a
High-Level Synthesis System", ICCD, 1990.

[LiGa89] Lis, J.S., and Gajski, D.D., "VHDL Synthesis Using Structured Model­
ing", 26th DAG, 1989.

[OrGa86] Orailoglu, A., and Gajski, D., "Flow Graph Representation", 23rd DAG,
June, 1986.

[PaGa87] Pangrle, B.M., and Gajski, D.D., "Design Tools for Intelligent Silicon
Compilation", IEEE Transactions on Computer-Aided Design, Vol. 6,
No. 6, November 1987.

[PaKn87] Paulin, P.G., and Knight, J.P., "Force-Directed Scheduling for the
Behavioral Synthesis of ASIC's", IEEE Transactions on Computer­
Aided Design, Vol. 8, No. 6, June 1987.

[PaPM86] Parker, A.C., Pizarro, J., and Milnar, M., "MAHA: A Program for Data­
path Synthesis", 23rd DAG, 1986.

[SiSV90] Singh, K.J., and Sangiovanni-Vincentelli, A., "A Heuristic Algorithm for
the Fanout Problem", 27th DAG, 1990.

79

[StMu86) Stroud, C.E, ::VIunoz 1 R.R., and Pierce, D.A. 1 "CONES: A System for
Automated Synthesis of VLSI and Programmable Logic From Behavioral
:VIodels", ICCAD, 1986.

[TrDi89) Trick, M.T., and Director, S.W., "LASSIE: Structure to Layout for
Behavioral Synthesis Tools", 26th DAG, 1989.

[TsSi86] Tseng, C.J., and Siewiorek, D.P., "Automated Synthesis of Data Paths
in Digital Systems", IEEE Transactions on Computer-Aided Design,
Vol. 5, No. 3, July 1986.

[TsWe88] Tseng, C.J., Wei, R.S., Rothweiler, S.G., Tong, M.M., and Bose, A.K.,
"Bridge: A Versatile Behavioral Synthesis System", 25th DAG, 1988.

[VaGa88] Vander Zanden, N.B., and Gajski, D.D., "MILO: A Microarchitecture
and Logic Optimizer", 25th DAG, 1988.

[WeRo88] Wei, R.S, Rothweiler, R., and Jou, J.Y., "BECOME: Behavior Level Cir­
cuit Synthesis Based On Structure Mapping", 25th DAG, 1988.

[WuGa90] vVu, C.H., and Gajski, D.D., "Silicon Compilation from Register-Transfer
Schematics", International Symposium on Circuits and Systems, 1990.

[WuVG90] Wu, C.H., Vander Zanden, N., and Gajski, D.D., "A New Algorithm for
Transistor Sizing in CMOS Circuits", European Design Automation
Conference, 1990.

1111 llllll l ll lll Ill Ill I ~111~ ll llll Ill ll lllll ll Ill I~ 11 ~I Ill
3 1970 00882 4853

