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Abstract 

In recent years the drive to produce more complex integrated circuits while 
spending less design time has driven the demand for design automation tools. 
The search for design automation methods has resulted in the design of 
numerous behavioral synthesis and logic synthesis tools. This report describes a 
system that fills the gap between traditional behavioral synthesis and logic syn­
thesis tools. Techniques are introduced for improving the microarchitecture 
structure and using feedback from lower-level optimization tools to guide design 
optimizations while attempting to meet user specified area and time constraints. 
These techniques include the capability for mixing layout styles such as custom 
layout for random-logic components and bit-slicing for regularly structured com­
ponents. In this manner the entire design, control logic and datapath, can be 
optimized at the same time. Further, this paper presents a new methodology for 
microarchitecture-level optimization that greatly reduces the amount of 
technology-specific knowledge necessary to perform the optimizations. 
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1. Introduction 

Generation of digital hardware generally passes through four stages of develop­

ment: behavior, microarchitecture, logic, and layout. Behavior describes the func­

tionality of the hardware and has often been written using simulation languages 

such as VHDL or programming languages such as C. Behavioral synthesis tools 

convert these descriptions into a microarchitecture structure called a Register­

Transfer-Level design. This structure consists of components such as ALU s, 

memories, registers, counters, and multiplexors. Each of these components can m 

turn be expanded into a logic-level design consisting of gates and flip-flops. Finally 

a layout can be generated from transistors that compose each gate. 

Today's designers are increasingly able to enter their designs at higher levels of 

abstraction. Recently a number of tools that can translate a behavioral description 

to structure have been developed. Some of these tools are tuned to a particular style 

of architecture and hence little further optimization is required on the microarchi­

tecture level. Other tools produce varying styles of architecture usually involving 

control and datapath sections. As these architectures are more general, they tend 

to be less polished and more optimization of their microarchitecture structure is 

required. 
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1.1. Previous Work 

Various approaches have been taken to convert the microarchitecture design 

into a design that can be passed to a layout tool. Some tools describe the behavior 

of microarchitecture components as a set of boolean equations and flip-flops, then 

rely heavily on logic synthesis tools to reduce the logic and make an efficient design 

[Br86) [StMu86) [TsWe88] [WeRo88). They employ logic generators that produce a 

design of generic logic gates for each microarchitecture component's descript.ion, 

then use tools such as [BrRu87) to reduce the number of gates in a component, res­

tructure critical paths, and map the design into a particular standard cell or gate­

array library. The design can then be passed to a standard cell or gate-array layout 

tool. Thus optimization in this respect is focused on the inside of each component. 

SILC [GuPa90) includes a component rearchitecting step that selects a different 

style of architecture for components along a critical path. For example, a ripple 

carry adder can be converted to a carry-lookahead adder or something in between 

to improve the speed. Thus the style of component can be changed after logic 

optimization fails to meet the necessary constraints. 

Other behavioral synthesis tools designed for datapath generation can base 

their architecture on a standard cell layout or a bit-sliced layout [TrDi89]. Optimi­

zation is carried out for that particular layout style. Still another approach is to 

construct the design using off-the-shelf components [BiBr88] including microproces­

sors, DMA controllers, dynamic RAMS, etc. 
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Numerous tools for behavioral and logic synthesis have been previously 

reported. This chapter describes a system that fills the gap between the behavioral 

synthesis tools and logic synthesis tools by using a microarchitecture optimizer. 

Behavioral synthesis tools often use estimators in design refinement. These estima­

tors may be technology independent and are usually not accurate enough to make 

decisions for fine tuning the microarchitecture design. On the other hand, logic 

synthesis tools can accurately gauge area and time but operate on too low of a level 

to adequately make microarchitecture modifications. 

In this paper, techniques are introduced for improving the microarchitecture 

structure and for employing constraint driven synthesis based on the user's require­

ments for time and area. These techniques include the capability for mixing layout 

styles such as custom layout for random-logic components and bit-slicing for regu­

larly structured components. In this manner the entire design, control logic and 

datapath, can be optimized at the same time. Further, this paper presents a new 

methodology for microarchitecture-level optimization that greatly reduces the 

amount of technology-specific knowledge necessary to perform the optimizations. 

Microarchitecture components are generated by a database based on a set of param­

eters from the microarchitecture optimization tool. Thus the microarchitecture 

optimizer does not need to deal with multiple logic optimization tools, layout 

module generators, transistor sizing tools, etc. 
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Often the structures produced by behavioral synthesis tools contain 

inefficiencies such as constants that can be propagated through a design. and com­

mon subexpressions that appear multiple times in the design, each time with repli­

cated hardware. These can partly result from the fashion in which the user wrote 

the behavioral description. Also the design needs to be directed towards a certain 

set of constraints for time and area. Tradeoffs must be made along different paths. 

On critical paths optimizations that reduce time are required, possibly at the 

expense of increased area. Non-critical path optimizations attempt to reduce area 

as long as doing so does not create a new critical path. In performing these 

tradeoffs, the microarchitecture optimizer can select a different architectural style 

for the component, merge components and reoptimize. their logic, insert buffers to 

improve drive capability, replace a set of components with a single component that 

performs the same function but more closely meets the constraints, restructure com­

ponents to reduce delay (such as factoring multiplexors), duplicate logic to reduce 

delay, or change the layout style of the component (such as selecting a bit-sliced 

layout instead of a layout of random-logic gates). These type of improvements are 

nearly impossible to pursue once the design has been expanded into lower level 

logic. 

The remainder of this paper is organized as follows. Section 3 discusses general 

issues related to optimization of designs from a behavioral description into layout. 

Section 4 examines a system architecture that performs such synthesis. Types of 

microarchitecture optimization are the focus of Section 5 and strategies for their 
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application are presented in Section 6. Finally results of using microarchitecture 

optimization are examined in Section 7. 

2. Design Synthesis Process 

Transforming a behavioral description into layout reqmres the work of a 

number of stages: behavioral synthesis, microarchitecture optimization, logic optimi­

zation, floorplanning, and layout. This section describes the goals and interactions 

of these tools and how microarchitecture optimization fits into the larger picture. 

Behavioral synthesis tools convert a behavioral description into a datafiow 

graph with each node representing a functional operator (such as add or compare) 

[CaRo85) [OrGa86) [McPa88]. These operations must be assigned to a control step, 

through the process of scheduling [PaGa87] [PaKn87], that chooses a point in time 

at \Vhich the operation will be performed. In addition, the operator is assigned to a 

particular hardware module, through the process of binding [TsSi86] [PaPM86). 

During this process, the synthesis tool explores multiple designs and attempts to 

determine which designs appear most likely to meet the set of user constraints. 

Estimators are employed to guide the synthesis tool towards one or more such 

designs. 

Estimates for behavioral synthesis tools are usually obtained in one of two 

fashions. The first technique uses a set of formulas that when given a component 

type (ALU, Register, etc.) and its set of parameters ( eg., number of inputs, archi-
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tecture style, technology-type) produces a rough estimate of the time and area. 

Such estimates are not finely tuned but help to weed out unacceptable designs. A 

second technique is to expand the design into a lower level design consisting of 

gates, possibly even mapping the gates into a technology-specific library. Alterna­

tively, a high-level floorplan of the microarchitecture components can be generated 

to obtain a feel for design characteristics. These methods require more time to pro­

duce the estimates and will usually be reserved for use when the number of possible 

designs has been greatly narrowed. 

The use of estimators allows the behavioral synthesis tool to select an overall 

architecture by making decisions on the number of busses, use of pipelining, etc. In 

addition, the synthesis tool attempts to minimize the number of connections 

between modules and reduce the total number of modules. An appropriate archi­

tectural style must also be chosen for each microarchitecture component, such as 

ripple-carry or carry lookahead when using an adder. Because the estimates are 

only a rough predictor of the final design after layout, more rigorous analysis and 

optimization is required of the microarchitecture design. Thus there is a need for a 

microarchitecture optimization tool. 

The major goals of microarchitecture optimization are to: (a) remove inefficient 

constructs (such as replaceing two multiplexors that have the same set of inputs 

with a single multiplexor), (b) select a style of architecture for each component that 

suits the area/time requirements, ( c) insert buffers on outputs that have a high 
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fanout, ( d) select vvhich microarchitecture components to combine and perform logic 

optimization on as a single unit, and ( e) select a layout style for each microarchitec­

ture component such as PLA, random logic, bit-sliced, etc. Once the initial 

microarchitecture structure has been cleaned up, the optimizer has two options in 

producing the final design: (a) completely expand and optimiz e or (b) only par­

tially expand and optimize. The first approach is to combine all components into a 

single combinational block and optimize. Logic optimization tools have been shown 

to be very effective for reducing the area of a design or restructuring logic to meet 

timing constraints. This approach may not be the best, however. First, logic 

optimization of large designs may require large amounts of CPU time and memory. 

The same will be true in the layout phase when floorplanning is performed. Second, 

some optimizations can be made at the microarchitecture level that cannot be made 

at the logic level. These optimizations include changing the architectural style of 

the microarchitecture component or changing its layout style. 

The second approach involves only a partial expansion of the design. Various 

groups of the components can be combined into a single component and optimized. 

For example, random logic gates can be grouped together and passed to a logic 

optimization tool while more regularly structured components such as AL Us are 

optimized separately and not combined with th~ surrounding logic. Layout module 

generators can also be employed in this approach. Module generators can be used 

for components with a regular style of architecture such as AL Us and registers. For 

these components a one-bit layout slice is generated and then replicated based on 
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the componenfs bit width. The bit-sliced layout \vill typically be more compact 

than what could be generated usmg standard cell or custom layout generators to 

layout the same logic from a random logic description. Thus using module genera­

tors for components with regular structures will usually result in denser layouts. In 

some circumstances, however, a component such as a small ALU can be combined 

with surrounding logic to reduce the number of gates. This saving of gates may 

produce a smaller layout than if module generators had been used. Thus the 

microarchitecture optimizer must be able to discover such conditions. 

After microarchitecture optimization, a fioorplan must be generated for the 

design and a layout produced for each microarchitecture component. The fioor­

planner stacks the bit-sliced components in a vertical fashion and then places the 

random logic modules around the bit-sliced border. Components along the critical 

path should be placed close together to reduce the amount of delay caused by rout­

ing. Timing information can be supplied by the microarchitecture optimizer for this 

purpose. 

3. System Architecture 

This section describes a microarchitecture optimization tool and illustrates how 

it fits in to a larger system that synthesizes layouts from VHDL behavioral descrip­

tions. The system architecture is shown in Figure 1. It consists of six major pieces: 

a component database, logic optimization tools, a behavioral synthesis tool, a tech­

nology mapper, a microarchitecture optimizer, and a fioorplanning/layout system. 
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3.1. Component Database 

The central system tool is a component database [ChGa90). It supplies com-

ponents and statistics on components to the synthesis tools. Synthesis tools can 

pass a set of parameters and specifications to the database and then receive a list of 

r 

components that meet the requirements. Parameters include the component type 

(eg., ALU, Counter, MUX), number of inputs, clock type (rising-edge, falling edge), 

etc. Specifications include the load that each output pin must drive, the maximum 

delay to each output pin, and an area requirement. 

The component database contains a library of logic generators that produce a 

boolean equation representation that describes the low-level behavior of the com-

ponent. One or more generators can be selected based on the parameters supplied 

by the synthesis tool. The boolean equations include constructs for describing 

sequential logic so that logic generators for components such as registers and 

counters can be constructed. The boolean description is passed to a logic optimizer 

[VaGa88) with a set of time constraints. The logic optimizer produces a 

t1echnology-specific design using components from a designated library or can gen-

erate complex gates and select transistor sizes for use in a custom layout. The logic 

optimizer produces a report file listing delays and area. This information can be 

passed to synthesis tools when they request such information about a component. 

The database al~_o contains knowledge about components that can be produced 

by layout module generators. Estimators provide data on delay times and area 
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based on the bit-width. 

3.2. Behavioral Synthesis 

A behavioral synthesis tool [LiGa89) accepts a VHDL behavioral description 

and produces a VHDL structural netlist consisting of generic components from 

GENUS [Dutt88), a library of generic microarchitecture components. One special 

property of GENUS components is the use of one control line per function. Thus a 

four-bit multiplexor has four data-in lines and four select lines -- one to control each 

data line. In an ALU, there are separate control lines for ADD, SUBTRACT, AND, 

OR, etc. This component property removes the problem of control encoding from 

behavioral synthesis as component encodings may depend on a particular technol­

ogy library. If necessary control encoding can be performed later during technology 

mappmg. 

The behavioral synthesis tool begins by converting the input description into a 

datafiow graph. A graph qitic then operates on the datafiow graph, removmg 

redundancies in the behavioral description. The behavioral operators are· then 

bound to GENUS components. The final architecture produced by the behavioral 

synthesis tool consists of random logic blocks of control logic and a datapath con­

taining components such as ALUs, shifters, and registers. 

The components in the generic netlist are converted to technology-specific com­

ponents by a technology mapper. The technology mapper queries the database by 

.. 
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providing the set of component parameters. The database returns one or more com­

ponents that meet the specified parameters. From this set of components the tech­

nology mapper selects the component that contains the smallest set of functions 

required. For example, if a component with the ADD and SUBTRACT functions is 

requested, the database may return two components: an ADD /SUBTRACT unit 

and an ALU. The technology mapper would select the ADD/SUBTRACT unit. 

Since the technology mapper does not pass a set of timing or area constraints to the 

database, the database will return the most area efficient design. Currently the 

technology mapper maps generic components into only components that are imple­

mented from gates and optimized by the logic optimizer. Later implementations 

will include mappings of other types of components, such as those from layout 

module generators. In any event, these types of components are currently inserted 

later, during the microarchitecture optimization phase if appropriate. 

3.3. l\1icroarchitecture Optimzation 

At this point the design consists of two levels. One is the microarchitecture 

netlist, the other is a technology-specific gate-level netlist for each microarchitecture 

component. The rnicroarchitecture optimizer first employs rules that make transfor­

mations that should improve both time and area. For example, converting a regis­

ter and incrementer into a counter. Next the critical paths are identified. The 

optimizer requests faster components from the database, selects different layout 

styles (random logic or bit-sliced), and decides which components to merge and 
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apply logic optimization. Once critical paths have been processed, the microarchi­

tecture optimizer operates on non-critical components, making similar decisions as 

in the critical path improvement phase but this time with an eye toward area 

improvements. The microarchitecture optimizer then produces a VHDL netlist that 

is passed to the floorplanner /layout assembler for layout. 

The microarchitecture optimizer uses a new methodology for selecting microar­

chitecture components to be used in the design. The microarchitecture optimizer 

does not perform component rearchitecting and does not have knowledge of tools for 

logic optimization, transistor sizing, and other component reoptimization tech­

niques. Instead, these tasks are left to the component database. The microarchitec­

ture optimizer passes a set of time/ area constraints to the database and the data­

base examines possible ways to achieve the constraints. The database can choose 

from different architectural styles and can choose from multiple optimization tools 

to redesign the component. This frees the microarchitecture optimizer from dealing 

with technology concerns and having to know what set of component optimization 

tools exist at any one time. All of this is centralized in the database. 

Integration of the database with the microarchitecture optimizer and the logic 

optimization tools is achieved with two servers [ChGa89] as shown in Figure 2: a 

component server, and a knowledge server. The component server is the part that 

interfaces with the microarchitecture optimizer. Queries are made from the 

microarchitecture optimizer to the component server through the Component Query 
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Language (CQL) and a list of components or a set of component attributes are 

returned. In this manner, the microarchitecture optimizer can simply request the 

functions required of a component: an layout implementation style, and a set of 

delay parameters. From this information the component database checks its com­

ponent list which includes fixed components (components that have already been 

generated) and parameterized comp on en ts (those that can be generated when pro­

vided a set of parameters). The component database knows from its component list 

whether a component generator needs to be called to generate a design for the com­

ponent or whether the component design already exists (as in the cas.e of a fixed 

component). Once a component is generated, the database can call an appropriate 

logic optimization tool or layout tool. 

The knowledge server is used to insert new fixed components, insert new com­

ponent generators, and insert logic optimization and layout tools. Thus when a new 

logic optimization or layout tool is available, the knowledge server will be accessed 

to store information about how to call the new tool. Also designers can build their 

own components and insert them into the component database through the 

knowledge server. 

3.4. Floorplanning/Layout 

Finally the technology-specific microarchitecture netlist is passed to a layout 

synthesis system that performs floorplanning on the microarchitecture design and 

creates a layout for each component [WuGa90]. The layout tool decides how to 
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partition the random logic into blocks for layout. It also can modify the microarchi­

tecture optimizer's selection of bit-sliced components, converting them to random 

logic if doing so will result in a better layout. Module generators are called to pro­

duce the bit-sliced layouts and a custom layout generator called to produce a layout 

for each random logic block. The floorplanner selects how to partition the random 

logic based on shape sizes that can be used to fill in the bit-sliced logic mismatches. 

The floorplanner attempts to place similar-sized bit-sliced components together 

and place random logic into slots where mismatches in the length of the bit-sliced 

logic occurs. Other random logic is placed along the border of bit-sliced com­

ponents. 

4. Types of l\1icroarchitecture Optimization 

The goal of microarchitecture optimization 1s to optimize the design for 

area/time without changing the state assignment. This section describes the types 

of optimizations that can be performed. 

4.1. l\!Iininization 

This type of optimization should be one of the first to be applied. It reduces 

the number of components or the amount of logic in a component. Figure 3( a) and 

Figure 3(b) show examples of minimization rules. Figure 3( a) shows the removal of 

the redundant signal A as an input to the multiplexor. Figure 3(b) shows the 
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Figure 3. Minimization Rules 

replacement of an adder by the sum of its two constant values. 
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4.2. Factorization 

Factorization is used to extract early arriving signals in order to speed up late 

arriving ones. It may also be necessary to factor components in order to meet the 

requirements of a layout module generator. For example, module generators may 

only be able to construct 4 to 1 or 2 to 1 multiplexors. Figure 4 illustrates the fac-

torization of a multiplexor. 

Procedure 4.1 describes the factoring algorithm. The algorithm factors a single 

component having tRf inputs, R being the set of all required input to output delays. 

The procedure Factor is recursive and takes five parameter~: 1) c, which indicates 

A 
B 
c 
D 

8 

8 
A 

) B 

c 

MUX2 

8 

MUX4 MUX3 
8 

8 

SO S1 82 83 

D 

83 

Figure 4. Factorization of Microarchitecture Components 
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Let:R={r I required delay from input to output}; 
each component Ci has delay di and si inputs; 

C0 be the component to be factored 
n=number of component inputs that still need to be assigned; 
s=last tried component size that failed to meet the constraints; 
D

3
=smallest delay through any multiplexor that can be generated by the database 

Function Factor(c,R,n,s,C
0

) 

Begin 
start: 

nt = n; 
R1 = R; 
C1 = fincLnew_component(R, n, s); 
if(01J * ¢) 

it(c> 0) 
assign cl to the cth input of co 

for(i=l;i:5s 1;i++) 
if(min(r-d1)>D

3 
&& ((n-s 1+i)> 1)) 

n = n - Factor(i,R={r~=r-d 1},n-s 1 +i,s 1 , C
1
); 

else 
r

3 
= smallest r in R; 

assign r
6 

to i-th input of C
1

; 

R = R- {r }; 
3 

n = n - 1; 
~n==O) return(nt); 

if(lft~=n) 
/* Not able to assign all inputs, try again * / 
n = n1; 

s =st! 
R = ll1; 

goto start; 
return( n t-n); 
End 

Function find_new_component( R,n ,s) 
Begin 
largest_allowable_delay = min(r); 
max_number_oUnputs = min(s-1, n); 
if (there exist database components C. such that 

si :5 max_number_of_inputs &&
1 
di :5 largest_allowable_delay) 

select component C1 such that s
1 
~ all Si 

else 
c1 = <P; 

return( C 1); 

End 

Procedure 4.1 
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which input of the parent component the factored out inputs should be connected 

to, 2) the set R 3) n, the maximum number of inputs to be factored out of the 

parent component, 4) s, the size of the last component that failed to meet the con­

straints, and 5) C
0

, the component to be factored. 

The factoring algorithm begins by sorting the set of required delays, R, from 

smallest delays to largest delays. Then the database is queried to find the same 

type of component but with fewer inputs. For example, consider Figure 5. In Fig­

ure 5, the database is shown to have returned three components having six or fewer 

inputs. The 2-input multiplexor has a delay of 2ns, the 4-input multiplexor has a . 

delay of 5ns, and the 6-input multiplexor has a delay of 7ns. Figure 5 shows the 

factoring process for a six to one multiplexor. The set of required delays, R, is 

shown to be (5~ 5, 6, 6, 7, 9) for inputs A through F, respectively. Since the six 

input multiplexor did not meet the required delays, the next smallest one 1s 

selected. In this case it is the four input multiplexor. 

The next stage is to assign the inputs to this new component. All inputs whose 

required delays will not be satisfied if they are factored out (ie., the delay through 

the new component + the smallest possible delay through any component of the 

same type) are connected directly to the new component. The remaining signals 

represent those that can be factored out. The algorithm queries the database again 

to find the component with the most inputs that will still meet the timing con­

straints when the signals are extracted. This component will then be processed 

recursively in a similar manner. When a solution is found that meets the time 
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List of multiplexors returned by the component database: 

(size, delay) = (2,2) ( 4,5) (6, 7) 

ABC DEF 
Set of required delays A = (5,5,6,6, 7,9) 

A B C D E F 

(a) Initial Implementation 

RR 
A A B C D 

(b) (c) 
A B 

(d) 
A B C 

(e) 

c C D E F 

(f) (g) 

Figure 5. Example of Factorization 
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constraints, the algorithm ends. 

For the example of Figure 5, input A cannot be factored out of the 4 to 1 mul­

tiplexor or its timing constraint of 5 will not be met. That is, the delay of the four 

input multiplexor (with delay of 5) plus the delay of the smallest multiplexor ( 2-

input MUX with delay of 2) is greater than the required delay of 5 for input A. For 

this reason, input A is connected directly to the 4-input multiplexor ( Figure 5(b) ). 

The set R then becomes (5, 6, 6, 7, 9) with only five more inputs to be assigned. 

For similar reasons, inputs B, C, and D are assigned directly to the 4-bit multi­

plexor as shown in Figure 5( c). At this point, not all inputs have been assigned and 

there are no unused multiplexor input ports. Therefore, using the 4 to 1 multi­

plexor has failed. The set R is reset to the original (5, 5, 6, 6, 7, 9) and another 

attempt is made using a smaller multiplexor. If a 2 to 1 multiplexor is used, inputs 

A and B can be factored out using a second 2 to 1 multiplexor ( Figure 5( d)). The 

time constrain ts are still met and the new set R is ( 6, 6, 7, 9). The largest multi­

plexor that can be used to factor out input C is a 2 to 1 multiplexor ( Figure 5( e)). 

In addition, input C can be factored out again using another 2 to 1 multiplexor and 

the time constraints are still met ( Figure 5(£)). In a similar fashion, inputs D, E, 

and F can be assigned as in Figure 5( f). 

4.3. Swap Equivalent Signals on the Sarrn Corq:><ment 

If two signals on a component are interchangeable and one has less delay than 

another, the early arriving signal can be swapped with the late arriving signal. 
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Figure 6( d) demonstrates how this can be accomplished. Swapping of component 

pins can be described as follows. Let I( c) = {i
1 

I j = 1..n} be a set of equivalent 

inputs to a component c, where i1 = {a1, r
1
, s). a1 is the arrival time, r

1 
is the 

required time. and s. = r. - a. is the slack. . ) ) ) 

Let T = {i. Is. < 0 j = 1..n} be a set of critical inputs, N = {i. Is. C:?: 0 j = l..n} 
) J J J 

be a set of non-critical inputs. Sets T and N can then be sorted according to each 

pin's slack. Swapping of pins then takes place as shown in Procedure 4.2. The algo-

rithm tests whether a pin from T can be swapped with a pin from N. If doing so 

does not create a new critical path, the pins are swapped. 

A 
8 
c 
D 

A-> F 2.0ns 
D -> F 3.0ns 

F --> 
Signal D is on the critical path 

Figure 6. Signal Swapping 

D 
8 
c 
A 

F 
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Let ABS() be the absolute value function 

Procedure Swap_Fins (T, N) 
Begin 
k=O 
For j =0 to tI1 

Begin 
i. = the jth pin of T; 

) . 

st = the slack of pin ii; 
ik = the kth pin of N; 
sn = the slack of pin ik; 
If ABS( st) s ABS( sJ then 

Begin 

End 
End 

swap(ii' ik); 
k = k + 1; 
End If 

4.4. Merge Sinilar Units 

Procedure 4.2 

Two components can be merged when one of them performs a subfunction of 

the other. For example, in Figure 7, combining a register and shifter into a register 

that performs a shift. Merging rules examine connectivity between two components 

and their functionality. Functionality of components can be found by querying the 

database for a list of functions that the microarchitecture component performs. The 

merge can be performed for two components, c0 and c1 , when function( c0) C 

function(c
1
). For example, in Figure 7, the function shift is a function that can also 
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be performed as part of the register component. Thus a register that does not per­

form a shift and a shifter can be combined into a single shift register. 

~ferging of similar components is accomplished in two subphases: 1) same type 

component merging, and 2) different type component mergmg. Same type com­

ponent mergmg IS accomplished by an algorithm that proceeds from the design's 

input pins to the design's output pins, examining whether two components that are 

of the same type are connected together ( eg., two multiplexors, two adders, etc). 

The algorithm checks a list of valid component types for merging. If a match IS 

found, the mergmg procedure continues, otherwise the next set of components 1s 

examined. Then, there are three cases that occur when merging components: 

(1) A component is only connected to a component of similar function to itself as 

in Figure 8( a). 

(2) A component is connected to multiple components, some of which are of a simi­

lar function, some of which are of a different function. An example of this is in 

Figure 8(b ). 

(3) A component is connected to multiple components, all of which are of the same 

function type. 

For case 1 occurrences, the two components are merged. Thus the design of 

Figure 8(a) becomes the design of Figure 9(a). In a case 2 occurrence, the two com­

ponents c
1 

and c
2 

are merged to create a new component, but c1 must remain con­

nected to those components which are of different types. Thus the design of Figure 
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Figure 8. Three Possible Merging Cases 
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S(b) becomes that of Figure 9(b). In case 3 occurrences. component c
1 

is merged 

with all components that its output is connected to. For example, the design of 

. Figure 8( c) becomes the design of Figure 9( c). Though the design of Figure 9( c) is 

more expensive than that of Figure 8( c) it is used as an intermediate step in optimi-

zation. This is discussed in further detail later. 

Merging of different type components is performed using rules. There is one 

rule for each type of merge operation. For example, a rule to perform the optimiza-

tion of Figure 7 is shown in Figure 10. If the connectivity of the components is 

found to be similar to that of Figure 7, then the component database is queried to 

produce the new set of components which are substituted into the design. 

If there is a component C1 with functionality = register 
AND there is a component C2 with functionality = shifter 
AND output Q of C1 is connected to input I of component C2 
AND there is a component C3 with functionality = multiplexor 
AND output Q of C1 is connected to input I of C3 
AND output 0 of C3 is connected to input D of C1 

Then 
C4 = Query Component Database for a shift register 
CS = Query Component Database for a multiplexor with two 

fewer inputs than C3 
Replace C1, C2, and C3 with C4 and CS 

Figure 10. Rule for Merging 
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4.5. Merge Unsimilar Units 

Two components can be merged into a single component that performs a 

different function than any of the original units. For example, combining a register 

and incrementer into a counter, as in Figure 11. Rules for this type of merging are 

similar to those for merging similar functional units. In this case, however, for two 

components, c0 and cl' function(c0) U function(c1) ~ function(C1), where C1 is a com­

ponent that can be generated by the component database. For example, in Figure 

11 the register and incrementer are both subfunctions of a counter component that 

can be generated by the database. Mergeability can be determined by querying the 

database with a list of functions desired in a component to determine if such a com­

ponent can be created. 

Register lncrementer Counter 

0 > Clock a 

R 

Reset Reset 

Figure 11. Merging Unsimilar Units 
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4.6. Style Change 

The optimizer can query the component database to request a component that 

performs the same function( s) but is faster or has a smaller area. The database 

returns a list of components from which the optimizer can select one based on the 

time and area requirements. Part of the database query can include a layout style 

request. For components having a bit-sliceable architecture, such as ALU s, the 

optimizer will request a bit-sliced layout style. By placing the component in the 

bit-sliced datapath, routing area can be reduced. As mentioned earlier, bit-slices 

usually tend to be faster and smaller than their equivalent random-logic implemen­

tation. Transistor sizes in the designs produced by layout module generators are 

fixed, however. In some cases larger transistor sizes may be required for drive capa­

bility and speed. Buffers can usually be inserted to add greater drive capability. 

For greater speed, however, larger transistor sizes for gates in a design typically 

decrease the delay. Thus producing a random-logic design with larger transistor 

sizes than those used in the bit-sliced cell may result in a faster design. As stan­

dard cells have fixed transistor sizes, a transistor sizing program, such as 

[Wu VG90), can be combined with a custom-layout generator to produce the layout 

for the component. Estimators that calculate delays for bit-slice logic, based on a 

single slice, and for random-logic, based on gate type and transistor sizes, assist the 

microarchitecture optimizer in determining which design will be faster. 



32 

The database searches through its list of different architectural styles for the 

component to select one that it estimates will come closest to meeting the specified 

constraints [ChGa90]. For each style, the database maintains a range of delays and 

area that can be obtained. Then, depending on the layout style, the database can 

call tools such as logic optimizers, transistor sizing tools, etc., to generate the low 

level design in terms of gates or a layout. In this manner, the microarchitecture 

optimizer is freed from the low level details and is not concerned with which low 

level optimization tools should be called. 

4. 7. Duplicate Logic 

Duplication of components is a technique designed to improve the speed of a 

path at the cost of additional area. It is the reverse of factorization. Figure 12 

shows the duplication of the two-input multiplexor in order to reduce the delay 

along a critical path. 

4.8. Merge Multiple C-Omponents and Optimize 

This technique combines components performing different functions into a sin­

gle unit and then applies logic optimization. Optimization of this type can be par­

ticularly effective when some of the inputs to tl}e components are constants. The 

optimization of the constants will propagate through the logic. Thus in cases where 

the rnicroarchitecture optimizer believes constant propagation in the logic will 

occur, it will merge even bit-sliceable components, optimize them, and treat them as 
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MUX2 > B 
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MUX2 

Figure 12. Component Duplication 

random logic. Constant propagation is obvious when a number of the component's 

inputs are constants. Components connected to the output of such a component 

should also be combined into the random logic since the constants can usually be 

propagated through several levels of microarchitecture components. 

4.9. Extraction of C-O:rnrrnn Subexpressions 

Designs can often have the same logic duplicated in different .parts of the 

design. Local transformations will not detect this. Therefore, global analysis is 

required to find and extract such common subexpressions. An example of common 

subexpression extraction is shown in Figure 13. 
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Figure 13. Common Subexpression ~xtraction 

Common subexpression elimination is performed for each component type. For 

example, it will be performed separately for multiplexors and adders. The algorithm 

consists of three steps: 1) for each component which is of the selected component 

type: a set N is generated that contains all the inputs to that component, 2) a set L 

of possible subexpressions is generated, 3) a common subexpression is selected and 

extracted. This process is repeated until no more subexpressions are present. 

As an example, consider Figure 14. In this example, the component type is 

adder. For each adder (components c1 , c2, c3, and c4), the set Ni is generated. Every 

net is assigned a unique id number (for example, nets n12 and n23 in Figure 14). 

Two components that have an input connected to the same net have that net id 

number in common. Each set N is sorted by the net id numbers. From Figure 14, 



n9 

35 

n23 

n12 

n16 

n15 

N1 = {n9, n12, n23} 

N2 = {n12, n23} 

ADD 

C1 

ADD 

C2 

ADD 

C3 

ADD 

C4 

N3 = {n9, n12, n16, n23} 

N4 = {n9, n15, n16} 

S1 

S2 

S3 

S4 

Figure 14. Common Subexpression Elimination 
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the N sets generated are: N
1 

= {n9, nl2, n23}, N
2 

= {n12~ n23}, N 3 = {n9, n12, n16, 

n23}, and N 4 = {n9, n15, n16}. 

The second step is to identify possible common subexpressions. A common 

subexpression Se is present if the following expression is true: Ni n Njl > 1. A set of 

common subexpressions, 5 .. , is generated for each N. n N .. Each set 5 .. must have at 
I) l J I) 

least two elements or be the null set as only two or more inputs can be extracted. 

From the four N sets generated above, the sets Sii are as follows: S
12 

= {n12, n23}, 

S 13 = {n9, n12, n23}, S
14 

= </>, S 23 = {nl2, n23}, S 24 = </>,and S 34 = {n9, n16}. A set 

L is created from the S sets. It contains no duplicated entries but instead keeps a 

count of the number of occurrences for each subexpression. Thus the set L is 

{{n12,n23}:2, {n9,n12,n23}: 1, {n9,n16}: l}. 

From L a subexpression for extraction is chosen using the following criteria: a) 

most number of occurrences, and b) smallest subexpression. In the case of Figure 

14, the set in L with the largest number of occurrences is {n12,n23}. Figure 15( a) 

shows the new design after the common subexpression is extracted. The set 

{n12,n23} is removed from Land any set containing {n12,n23} as a subset (for exam-

ple the set {n9, n12, n23}) is replaced with the net id for the extracted subexpres-

sion (in this case, n30 as shown in Figure 15). The new set L is {{n9, n30}:1, 

{n9,n16}:1}. Since both sets have the same number of occurrences and the same size, 

the first set {n9,n30} is selected. Figure 15(b) shows the design after the extraction 

of this set. The new set L for the design of Figure 15(b) is{¢}. Therefore there are 
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Figure 15. Common Subexpression Elimination Example 
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no more subexpressions to extract. 

4.10. Addition of Buffers 

Some components that drive large loads may require the addition of buffers at 

their outputs. This can reduce the delay by providing greater drive power. 

Methods of doing this have been discussed in [GuPa90) [SiSV90]. One solution is to 

partition the load by constructing a fanout tree from buffers. This tree should be 

constructed in a manner that does not violate the time constraints yet minimizes 

the amount of area increase. 

[GuPa90] also mentions that in standard cell designs, components with higher 

drive capacity can be selected. Alternatively, some duplication of logic can be used 

to reduce fanout. In our case, the component database contains tools for transistor 

sizing and can generate a layout using a custom layout generator. This allows the 

design to be more finely tuned than when using standard cells. With the custom 

layout capability component transistor sizes are not fixed at discrete intervals. 

Rather,. transistor sizes can be selected on a continuous basis in order to meet delay 

requirements. 

5. Strategies for lVlicroarchitecture Optimization 

Having examined types of optimization techniques, we now describe an algo­

rithm for applying them. A block diagram of the optimization process is shown in 
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Figure 16. It is divided into three parts: a data structure. a control section~ and a 

set of optimization procedures. The data structure contains the design netlist 1 

statistics for delay and area, a set of user constraints, a set of critical paths 1 and a 

set of non-critical paths. Critical and non-critical path sets are determined by the 

timing analyzer in the control section. The controller also selects which optimization 
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Time 
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Optimization 
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Path General Design 
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Time Optimizer 

Random Logic 
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Figure 16. Overview of Microarchitecture Optimization 
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procedure to use. Each optimization procedure corresponds to one phase of the 

optimization process. The microarchitecture optimization is carried out in four 

phases: general design improvement, random logic grouping, timing optimization 

and area optimization. 

Phase 1 of the algorithm: general design improvement, attempts to reduce the 

number of components and to prepare the design for timing optimization should 

that be necessary. For example, to be able to refactor multiplexors along the critical 

path, all multiplexors that can be merged should be merged into a single multi­

plexor. Then the timing optimizer can decide how to refactor the single multi­

plexor. Thus optimizations in this phase set up techniques that will be performed 

later or employ techniques that improve both the time and area of a design. 

Phase 2 groups random logic components for logic optimization. Microarchitec­

ture optimizations are not performed on random logic gates. Instead, they are 

passed to the database which has tools for restructuring the logic to meet a set of 

constraints passed by the microarchitecture optimizer. Thus Phase 2 prepares the 

design for Phases 3 and 4 by reducing the number of components that the microar­

chitecture optimizer must deal with. In doing so, it groups components that will be 

implemented using random logic gates rather than a bit-sliced layout. 

Phase 3 applies time reduction techniques. The microarchitecture design is ori­

ginally tuned for area by the technology mapper. Therefore, in this phase, the 

microarchitecture optimizer operates on critical paths, making necessary time for 
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area tradeoffs. 

Phase 4 works on non-critical paths, attempting to reduce the design's area. 

During area optimization, some microarchitecture components may be merged with 

others for logic optimization. These types of optimizations must be performed after 

timing optimization because once components are merged, the microarchitecture 

optimizer cannot recognize the original component functionality. This information 

is necessary for some of the timing optimization techniques. 

Procedure Optimize_lVIicroarchitect ure ( microarchi t ec t ure design) 
Begin 
General_Design_Improvemen ts( microarchi tecture_design) 
Random_Logic_Grouping( microarchitecture_design) 
Identify critical path set 
While (Critical path set is not empty) 

Begin 
criticaLpath = select_critical_path( criticaLpath_set) 
Timing_Optimization( criticaLpath) 
Remove criticaLpath from critical_path_set 
End 

Identify non critical path set 
While (Non critical path set is not empty) 

Begin 
non_critical_path = select_non_critical_path( non_critical_path_set) 
Area_Optimization( non_criticaLpath) 
Remove non_criticaLpath from non_critical_path_set 
End 

End 

5.1. General Design lrq>rovements 

To improve the overall design, Phase 1 proceeds as follows: 
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Procedure GeneraL.Design_Improven"£nts (rnicroarchitecture design) 
Begin 

Merge Similar Units (from inputs to outputs of the design) 
~\forge UnSimilar Units (from inputs to outputs of the design) 
Apply :\Iinimization Rules (from inputs to outputs of the design) 
Perform Common Subexpression Elimination 

End 

Phase 1 begins with components of similar types being merged. As mentioned 

earlier, this is necessary for refactoring and common subexpression recognition. 

Further it reduces the number of components and hence makes minimization rules 

easier to apply. For example, performing the optimization of Figure 3 would be 

more difficult to discover if the multiplexor containing the common signal A were 

factored into two multiplexors, each containing the signal A. 

Next unsimilar components are merged usmg a set of rules. These rules also 

reduce the number of components in the design. Once all merging is complete, a set 

of minimization rules can be applied to clean up redundant and unnecessary logic in 

the microarchitecture design. Up to this point, all optimizations reduce the number 

of microarchitecture components in the design. The next step, common subexpres-

sion extraction, increases the number of microarchitecture components but reduces 

the actual amount of logic required to implement them. It allows hardware that is 

redundant in a number of components to be shc:-red. Common subexpression elimi-

nation is not performed on random logic as this can be performed by logic optimiza-

tion tools. 
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5.2. Random Logic Grouping 

Phase 2 collects certain types of components to be optimized together as ran-

dom logic. This is performed as follows: 

Procedure Random_I.ogic_Grouping ( rnicroarchitecture design) 
Begin 
Group Logic Gates into random logic components 
Group Non-Bit-Sliceable Components into random logic components 
Group Components with Constant Inputs into random logic components 
End 

Phase 2 groups components that will then be optimized as a single random 

logic component. During this phase, three types of components can be grouped: 1) 

gates, 2) components for which bit-slicing is difficult, and 3) bit-sliceable ~om-

ponents that have constants as inputs. Type 1 components, gates such as N AND, 

AND, and XOR, each have a lower-level technology specific implementation. For 

example, at the microarchitecture level, one could have a 12-input AND gate. Of 

course: a gate with this many inputs is usually not physically implementable as a 

single gate. Thus the technology-specific design is constructed from smaller gates 

that are available in the specified technology. Phase 2 groups all random logic gates 

at the microarchitecture level that are connected together and forms a single com-

ponent of type "random logic", as shown in Figure 17. 

Type 2 components, for which bit-slicing is difficult, such as a decoder, will 

also be grouped with the random logic gates that they are connected with. Finally, 
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Figure 17. Random Logic Grm.~ping 

bit-sliceable components with constant inputs will be added to the random logic set. 

Components connected to the outputs of the type 3 components will also be 

grouped into the random logic since during logic optimization, the constants will 

often propagate through. 

For each microarchitecture component, the database has a file containing a set 

of boolean equations that describe the behavior of the component. As mentioned 

earlier, the equations can represent sequential logic as well as combinational logic. 

The microarchitecture optimizer can request that the database create a new com-

ponent by merging two componen.t 's equation files. Logic optimization on this new 

component can then be performed by tools in the database. 
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5.3. Timing Optimization 

Timing analysis is performed as the first stage of Phase 3. Delays and setup 

times for each component can be found by querying the database. The timing 

analyzer calculates four types of worst delay: 1) input pins to registers, 2) register to 

register, 3) registers to output pins, and 4) input pins to output pins. The worst 

delays at the design's output pins are compared with the required delays that are 

entered by the user. Output pins with negative slacks do not meet the delay con-

straints. Slack is computed as: 

slack = actual delay - required delay 

Required delays are also calculated at each register data input. The required 

delay is calculated based on the required maximum clock width, which is entered by 

the user: 

required delay = max clock width - setup time 

Actual delays are calculated based on the worst delay to the register's input, 

the setup time for that input, and the worst delay to the clock input of the register: 

actual delay = worst delay to register input + setup time -
worst delay to register clock input 

The slack is then computed from the actual and required delay values. A slack 

value is found for every component's output pin in a similar manner by subtracting 
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the actual delay from the required delay. 

After timing analysis, the goal of timing optimization is to make sure that no 

component's outputs have a negative slack value. Any component having such an 

output is said to be on a critical path. Ideally these negative slack values are raised 

to zero, with any value over zero representing over optimization (assuming 

area/time tradeoffs must be made). 

Timing optimization is performed for each critical path. The worst critical 

path (ie., the one having the largest negative slack) is processed first. Timing 

optimization along the critical path proceeds as follows: 

Procedure Timing_ Optimization (Critical Path) 
Begin 

Swap Equivalent Signals 
Factor 
New Component Style Selection 
l\!Jerge Multiple Components for Optimization 

End 

Phase 3 operates on microarchitecture components along the critical paths. It 

uses factoring, signal swapping, new component selection, and merging of com-

ponen ts in order to reduce delay. The timing optimization phase ends as soon as 

there are no critical paths. 

Signal swappmg is performed first smce there is no area increase associated 

with it. Usually, however, improvements in delay from this type of optimization are 

.. 
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small. Factoring is employed in the second step to produce shorter paths for critical 

signals. This technique usually increases the area only slightly. The set of required 

delays is calculated for each input to the output of the factorable component. 

These delays are passed to the factoring routine which then attempts to factor in a 

manner that will meet those delays. 

In the third step of Phase 3, the optimizer selects new component styles by 

querying the database to find out what components are available with smaller 

delays. The component that comes closest to satisfying the required delays at each 

output is selected. Thus the optimizer tries to set each of the slacks at the output 

pins to zero. 

Having failed to fix all critical paths with the previous three steps, the microar­

chitecture optimizer attempts to combine bit-sliceable components into a random 

logic component and query the database to apply logic optimization. In addition, 

the database can use a transistor sizing program to size the transistors in a fashion 

that will meet the time constraints. By using larger transistor sizes than those used 

in the bit-sliced approach (where transistor sizes are fixed), it may be possible to 

produce a faster component. If indeed the database returns a faster component, the 

microarchitecture optimizer will switch the layout style to a custom layout. Of 

course, the random logic approach combined with the large transistor sizes results 

in larger area. 
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5.4. Area Optirrization 

Finally, Phase 4 performs area optimizations along non-critical paths. It 

mainly employs new component selection and component merging. Components 

that have outputs with positive slacks are examined for possible area/time tradeoffs. 

Area optimization operates as follows: 

Procedure Area_Optimization (Non-Critical Path) 
Begin 

New Component Style Selection 
Merge Multiple Comps for Optimization 

End 

New component selection includes choosing a bit-sliced layout style for com-

ponents where doing so results in an area reduction. Some components, such as 

multiplexors, may need to be factored in order to use a layout module generator. 

For example, only 4-to-l and 2-to-l multiplexors may be available. An 8 to 1 multi-

plexor would then need to be factored. This can be achieved by the algorithm 

presented earlier. 

In some cases, a layout module generator exists but contains more functions 

than are required. For example, consider an ALU. The bit-slice of the module gen-

erator may perform addition, subtraction, eight logical functions (eg., NAND, 

AND), and a set of comparison functions ( eg., equal, greater than, zero). If only the 

addition operation, the comparison functions, and a logical AND are required, the 

layout module generator performs more functions than are necessary. Thus a 
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random logic implementation will probably produce the smallest area design. If 

there is already a random logic component connected to the ALU, the ALU can be 

merged into the random logic component and the logic reoptimized. 

An alternative approach to generating the random logic design is to separate 

the groups of functions that need to be performed. For example. Figure 18 shows 

that three groups of functionality can be generated for our example of the ALU: an 

arithmetic unit (adder), a comparator, and a logical AND. A multiplexor is used to 

choose the addition function or the logical AND. In this case all components can be 

AND 

- 2 to 1 
MUX 

....___ F 

A /"' Adder 
\.. 

I /"' 
\.. ADD 8 

Comparator - -
> 
< 

Figure 18. Option for performing ALU functions 
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implemented using the layout module generators and placed in the bit-sliced data­

path during layout. 

6. Ex:perhnmtal Results 

This section presents experiments performed using MILO. A number of design 

examples were written in VHDL, then run through VSS to generate the initial 

microarchitecture design. The designs were then run through MILO with the fol­

lowing four strategies: 

( 1) Optimize the design for area and produce an underlying gate-level design for 

each microarchitecture component. 

(2) Optimize the design for time and produce an underlying gate-level design for 

each microarchitecture component. 

( 3) Optimize the design for area and use the module generators for all bit-sliceable 

microarchitecture components, gate-level designs for all other components. 

( 4) Optimize the design for time and use the module generators for all bit.,.sliceable 

microarchitecture components, gate-level designs for all other components. 

To get an idea of how good these optimizations were compared to a traditional 

straight logic optimization, the output design from VSS consisting of microarchitec­

ture components was completely expanded into a fiat gate-level design. This design 

was run through MISII and then through a transistor sizing program. The logic 
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optimization was also performed for both area and time. Thus each example was 

run six different ways. 

Five different benchmarks were run through MILO: Rockwell Counter, 

Armstrong Counter, and three different versions of DRACO: Draco2, Draco3, and 

Draco Schematic. A short description of each of these designs and their results are 

shown in the following sections. In the final section a comparison of all of the 

optimizations performed by MILO and MISII is made and conclusions are drawn. 

6.1. Benchmark Ex:perimmts 

6.1.1. Rockwell Omnter 

The Rockwell Counter benchmark was supplied by Rockwell International and 

is a design used in telephone switching networks. It has four inputs as shown in the 

block diagram of Figure 19: 1) CLK, the system clock, 2) RST, which performs a 

synchronous reset of the counter, 3) DTI, a 12-bit data input, and 4) LDE, a con­

trol line which loads the counter with input DTI. It has only one output, DTO, 

which represents the value of the count. 

The counter is a divide by 3328 counter that operates as follows: 

(1) The counter has a start count of 0 and a terminal count of 3327. 

(2) The counter increases by 208 on each clock edge. If the count is greater than 

3327, the counter will start at the previous start count plus 26 ( eg., the first 
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Figure 19. Block Diagram of the Rockwell Counter 

time: 0 + 26). If the previous start count plus 26 is greater than 207, then the 

count will start at the previous start count plus 1. 

( 3) There are 26 sequences (ie., 26 start counts) before the counter reaches 3327 

and wraps back to 0. 

( 4) The counter has an active high load enable which synchronously loads the 

counter. The state machine must adjust to the new state so as to keep the 

same counting sequence. 

Table 1 shows the optimization results for the Rockwell Counter when optimiz-

ing for time, while Table 2 shows the results when optimizing for area. In this exam-

ple, the design with the fewest transistors is achieved using the module generators 
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Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 206.0 1800 

MILO Module 
233.5 1484 GenerAtnrs 

MISll Gates 222.5 1344 

Table 1. Time Optimization Results for the Rockwell Counter 

Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 327.0 1158 

MILO Module 
337.5 1056 GenerAtnrs 

MISll Gates 413.0 1170 

Table 2. Area Optimization Results for the Rockwell Counter 

during rnicroarchitecture optimization. The area of the designs employing only 

gates are roughly equal. When comparing time results, MILO's optimization with 

gates produced the smallest delay, followed by MILO 's optimization using the 
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module generators. The optimization by :VIISII produced the largest delay. 

Table 3 displays the tradeoff of time for area when comparing the time optim-

ized designs with the area optimized designs. The change in time and area is shown 

as a percentage. For example, MILO's optimization using only gates achieves a 37% 

improvement in time at a cost of a 55% increase in area when comparing the time 

· optimized design with the area optimized design. This table illustrates that fairly 

substantial reductions in time can be achieved at a cost of additional area. Finally, 

Figure 20 compares the three optimization approaches (MILO with gates, MILO 

with module generators and gates, and MISII) graphically. The curve represents 

the potential to achieve area/time tradeoffs between the best area optimized design 

and the best time optimized design, although this ability has not actually been 

Optimization Optimization time difference area difference 
Tool Style (%) (%) 

MILO Gates -37.0 +55.4 

MILO Module -30.8 +40.5 
( Generators 

MISll Gates -46.4 +14.8 

Table 3. Time/ Area Tradeoffs for Rockwell Counter 
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Figure 20. Three Optimization Approaches for the Rockwell Counter 

tested. 

6.1.2. ArIIBtrong Counter 

The Armstrong Counter is a benchmark adapted from [Arms89). As shown in 

the block diagram of Figure 21, it has four inputs: 1) CLK, the system clock, 2) 

CON, a two-bit input that selects which function the counter will perform, 3) 

DATA, a four-bit input that determines the end count for the counter, and 4) 

STRB, an asynchronous line that loads the two values DATA and CON into regis-

ters. It has a single four-bit output, CON_OUT. 
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Figure 21. Block Diagram of Armstrong Counter 

The behavior of the Armstrong Counter is as follows: 

(1) On the rising edge of STRB, the values of DATA and CON will be loaded. 

(2) The counter can perform four functions as specified by the value of CON: dear 

the counter, load a limit register, count up to a limit, or count down to a limit. 

Table 4 shows the optimization results for the Armstrong Counter when optim-

izing for time, while Table 5 shows the results when optimizing for area. In this 

example, MIL O's optimization with module generators produced the smallest delay, 

followed by MILO's optimization using the gates. The optimization by MISH pro-

duced the largest delay. When comparing area results, the design with the fewest 

transistors is again achieved using the module generators during microarchitecture 
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Optimization Optimization time area 
Tool Style (ns) (# of transistors) 

MILO Gates 28.0 486 

MILO 
Module 20.0 393 Gener:.1tnrs 

MISll Gates 43.5 484 

Table 4. Time Optimization Results for the Armstrong Counter 

Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 38.0 486 

MILO 
Module 

20.0 395 Gener:.1tnrs 

MISll Gates 74.5 460 

Table 5. Area Optimization Results fqr the Armstrong Counter 

optimization. The area of the MISII design is smaller that that produced by MILO 

using gates. 
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Table 6 displays the tradeoff of time for area when comparing the time optim-

ized designs with the area optimized designs. The change in time and area is shown 

as a percentage. Optimization by ::VIILO using only gates shows a 263 reduction in 

delay with no increase in transistor count. This indicates that the improvement in 

time was mainly due to changes in transistor sizing. Finally, Figure 22 compares 

the three optimization approaches (MILO with gates, MILO with module generators 

and gates, and MISII) graphically. Again, the curve represents the potential to 

achieve area/time tradeoffs between the best area optimized design and the best 

time optimized design. For the Armstrong Counter, MIS II has the largest distance 

between the area and time optimized designs. 

Optimization Optimization time difference area difference 
Tool Style (%) (%) 

MILO Gates -26.3 +0.0 

MILO 
Module 

-0.0 -0.5 Generators 

MISll Gates -41.6 +5.2 

Table 6. Area/Time Tradeoffs for the Armstrong Counter 
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Figure 22. Three Optimization .Approaches for Armstrong Counter 

6.1.3. DRACO 

DRACO is another benchmark obtained from Rockwell International and i$ the 

most complex of all our benchmarks. A block diagram of DRACO is shown in Figure 

23: consisting of nine inputs and one output. DRACO is primarily intended to inter-

face 16 I/O ports to a microprocessor's 8-bit multiplexed address/ data bus and con-

trol signals. DRACO was developed by Rockwell as an ASIC chip. 

Three VHDL descriptions of the DRACO chip were written. Each description 

represented DRACO at a different level of abstraction. "Draco Schematic" was 

derived from the logic schematic provided by Rockwell International. "Draco2" and 

"Draco3" were more abstract versions and each used a different style of modeling in 
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Figure 23. Block Diagram of DRACO 

VHDL. Thus the designs produced by VSS from each of these descriptions are 

quite different. 

Table 7 through Table 12 demonstrate optimization results for time and area 

on the DRACO examples. For examples "Draco2" and "Draco3", MILO's optimiza­

tions proved to be the .best in terms of delay. Optimization by MILO using module 

generators resulted in the best designs in terms of area. Table 13 through Table 15 

show the tradeoff of time for area when comparing the time optimized and area 
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Optimization Optimization time area 
Tool Style (ns) (# of transistors) 

MILO Gates 194.5 5868 

MILO Module 
109.0 3390 Generators 

MISll Gates 283.5 5800 

Table 7. Time Optimization Results for Draco2 

Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 226.5 5152 

MILO Module 
117.5 3390 

Gener~tnrs 

MISll Gates 342.0 4668 

Table 8. Area Optimization Results for Draco2 
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Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 101.5 5544 

MILO Module 135.0 3968 
Gener~tor~ 

MISll Gates 138.5 4202 

Table 9. Time Optimization Results for Draco3 

Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 115.5 5298 

MILO 
Module 176.5 3492 

Gem~r:::1tnr~ 

MISll Gates 174.5 4206 

Table 10. Area Optimization Results for Draco3 
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Optimization Optimization time area 
Tool Style (ns) (# of transistors) 

MILO Gates 205.0 5658 

MILO 
Module 

135.5 3026 
Generators 

MISll Gates 149.0 4216 

Table 11. Time Optimization Results for Draco Schematic 

Optimization Optimization time area 
Tool Style (ns) (#of transistors) 

MILO Gates 206.0 4486 

MILO 
Module 

136.5 3018 
Gener~tnrs 

MISll Gates 258.0 3762 

Table 12. Area Optimization Results for Draco Schematic 
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Optimization Optimization time difference area difference 
Tool Style (%) (%) 

MILO Gates -14.2 +13.9 

MILO 
Module -7.2 +7.5 ·.· 

Gener~tnrs 
; 

MISll Gates -17.1 +24.1 

Table 13. Time/ Area Tradeoffs for Draco2 

Optimization Optimization time difference area difference 
Tool Style (%) (%) 

MILO Gates -12.1 +4,6c 

MILO 
Module 

-23.5 +13.6 Generators 

MISll Gates -20.6 -0.1 

Table 14. Time/ Area Tradeoffs for Draco3 
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Optimization Optimization time difference area difference 
Tool Style (%) (%) 

MILO Gates -0.5 +26.1 

MILO Module -0.7 +0.3 Generators .. ·' .. .. 
C'."" 

MISll ·Gates . '~:~~C-'42.2 • +12.1 
.. ,;.; 

. 

Table 15. Time/ Area Tradeoffs for Draco Schematic 

optimized designs. Figure 24 through Figure 26 compare the three optimization 

approaches. 

In addition to comparisons of transistor counts, two layouts were generated by 

SLAM for Draco2 designs as an additional comparison. Figure 27 shows the layout 

for Draco2 that was produced from thedesign optimized by MILO using the m~dule 

generators. The layout consists ·of two sectioris: the Ief{:hand portion is a custom 

layout consisting of random logic. The right hand portion of the layout is the bit-

sliced datapath produced by the module generators. Figure 28 shows the layout for 

Draco2 that was produced from the design optimized by MISH. It consists entirely 

of a custom layout for random logic. As would be expected, the design with the 

module generators is smaller than the random logic design. The total layout area of 

the random. logic design is 14,668,600 square micrometers compared with only 
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Figure 24. Three Optimization Approaches for Draco2 



400 

time(ns) 

300 

200 

100 

0 
2000 

67 

MISll 

~ J 
MILO 

module generators + gates 

3000 4000 

Area (transistors) 

MILO 
only gates 

~ 

5000 6000 

Figure 25. Three Optimization Approaches for Draco3 



time(ns) 

300 

200 

100 
' MILO 

68 

~MISll 
module generators + gates 

0 
2000 3000 4000 

Area (transistors) 

5000 

MILO 
only gates 

6000 

Figure 26. Three Optimization Approaches for Draco Schematic 



69 

Figure 27. Layout of Module Generator Design for Draco2 
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Figure 28. Layout of MISII Design for Draco2 
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s,.392,672 square micrometers m the ).IILO module generator design. This 

represents an area difference of 703. 

6.2. Analysis 

Table 16 compares optimization by ~IILO using only gates and straight logic 

optimization by MISII. MILO when using only gates produces faster designs in four 

of the five cases, ranging from 7% faster to 35% faster. In one of the five cases 

MILO is slower by 37%. This demonstrates that MILO can produce faster designs 

Benchmark MILO MISll 
(%) (%) 

Draco2 69 100 

Draco3 73 100 

Draco Schematic 138 100 

Armstrong Cntr. 64 100 

Rockwell Cntr. 93 100 

Table 16. Comparison of MILO and MISII Timing Optimization 
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on average. 

Table 17 compares optimization by ~IILO using only gates and straight logic 

optimization by MISII of the examples for area. In four of the five cases, MISII pro-

duces a design with a smaller area. This is to be expected as the MILO logic optim-

izer is primarily geared for time optimization. However, MILO's optimization with 

module generators compensates by providing area efficient bit-sliced layouts. The 

best designs in terms of area were usually achieved when using module generators as 

shown in the tables that follow. 

Benchmark MILO MISll 
(%) (%) 

Draco2 1 1 1 100 

Draco3 132 100 

Draco Schematic 119 100 

Armstrong Cntr. 106 100 

Rockwell Cntr. 99 100 

Table 17. Comparison of MILO and MISII Area Optimization 
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Table 18 compares optimization usmg modules generators ·with optimization 

using only gates and optimizing for time. Table 19 shows the same comparison for 

area. The table shows that in most of the cases, optimization with the module gen-

erators produced a design with the smallest area and fastest speed. Table 20 and 

Table 21 make the same comparison with module generators but use the MISII 

results as the base for comparison. 

These experiments demonstrate the effectiveness of MILO in generating 

efficient designs for either time or a~ea. By optimizing the microarchitecture design 

Benchmark 
MILO 

MILO (gates) (module gen.) 
(%) (%) 

Draco2 56 100 

Draco3 133 100 

Draco Schematic 85 100 

Armstrong Cntr. 71 100 

Rockwell Cntr. 113 100 

Table 18. MILO gate vs. MILO module generator designs (Time) 
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Benchmark 
MILO 

MILO (gates) (module gen.) 
(%) (%) 

Draco2 66 100 

Draco3 66 100 

Draco Schematic 67 100 

Armstrong Cntr. 81 100 

Rockwell Cntr. 91 100 

Table 19. MILO gate vs. MILO module generator designs (Area) 
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MILO 
MISll (gates) Benchmark (module gen.) 

(%) (%) 

Draco2 38 100 

Draco3 97 100 

Draco Schematic 91 100 

Armstrong Cntr. 46 100 

Rockwell Cntr. 105 100 

Table 20. MISII vs. MILO module generator designs (Time) 
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Benchmark 
MILO 

MISll(gates) (module gen.) 
(%) (%) 

Draco2 73 100 

Draco3 83 100 

Draco Schematic 80 100 

Armstrong Cntr. 86 100 

Rockwell Cntr. 90 100 

Table 21. MISII vs. MILO module generator designs (Area) 

instead of simply expanding the design and performing logic optimization, superior 

designs can be produced. Further, the results demonstrate flexibility in generating 

designs with different layout styles -- those using only gates and those incorporating 

a bit-slice capacity. 

7. Conclusion 

In this report, we presented a tool for optimization of register-transfer level 

designs. The tool operates on top of a set of logic synthesis tools that provide area 

and delay information for individual microarchitecture components. This informa-
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tion is used to modify the microarchitecture design by employing techniques such as 

changing a component's architectural or layout style and groupmg selected com­

ponents for optimization as a random-logic component. Further
1 

a new methodol­

ogy was presented for microarchitecture-level optimization that greatly reduces the 

amount of technology-specific knowledge necessary to perform the optimizations. 

Microarchitecture components are generated by a database based on a set of param­

eters from the microarchitecture optimization tool. Thus the microarchitecture 

optimizer does not need to deal with multiple logic optimization tools, layout 

module generators, transistor sizing tools, etc. Finally, a set of experiments were 

presented indicating that microarchitecture optimization techniques can produce 

faster designs or designs with smaller area than those obtained by logic optimization 

alone. 
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