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nal catalogue reveals Earthś multiscale microbial diversity”. Nature, 2017, DOI:
http://dx.doi.org/10.1038/nature24621.

†R. A Quinn, †J. A. Navas-Molina, †E. R Hyde, S. Jin Song, Y. Vázquez-Baeza,
G. Humphrey, J. Gaffney, J. J Minich, A. V Melnik, J. Herschend, J. DeReus, A.
Durant, R. J Dutton, M. Khosroheidari, C. Green, R. da Silva, P. C Dorrestein, R.
Knight “From sample to Multi-Omics conclusions in under 48 Hours”, mSystems,
2016, DOI: 10.1128/mSystems.00038-16.

E. R. Hyde, J. A. Navas-Molina, S. J. Song, J. Kueneman, G. Ackerman, C. Car-
dona, G. Humphrey, D. Boyer, T. Weaver, J. Mendelson, V. McKenzie, J. Gilbert,
R. Knight. “The oral and skin microbiomes of captive Komodo dragons are signifi-
cantly shared with their habitat”, mSystems, 2016, DOI: 10.1128/mSystems.00046-
16.

J. R. Rideout, Y. He, , J. A. Navas-Molina, W. A. Walters, L. K. Ursell, S. M.
Gibbons, J. Chase, D. McDonald, A. González, A. Robbins-Pianka, J. C. Clemente,
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Advances in ’omics technologies are producing vast amounts of data, bring-

ing microbiome research to a whole new level. This increase in data is pushing the

limits of existing analysis tools, creating a rapidly-changing environment in which

new tools are constantly being released. This presents a challenge to researchers,

who need to constantly learn new analytical tools, expose themselves to new envi-

ronments such as cloud computing or supercomputers, and deal with the problems

resulting from a heterogeneous environment lacking the enforcement of standards.
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This thesis demonstrates how computational optimizations, enforcement of stan-

dards, and minimizing the learning curve for analytical tools and computational

environments empower researchers to push the microbiome field forward.

Chapter 1 motivates and contextualizes the thesis, exposing the challenges

and opportunities that current microbiome research faces as it presents itself as a

big data field. Next, Chapter 2 presents the first gold standard approach for an-

alyzing microbiome data, improvements in analytical tools, and examples of how

these improvements move microbiome research forward. Chapter 3 describes a

system that lowers the access barrier to cloud computing that researchers without

a computational background face. Chapter 4 exposes the importance of meta-

analyses to increase researchers’ ability to discover new findings and how much

effort is currently spent to perform such meta-analyses. This chapter also presents

Qiita, a web-based system focused on facilitating meta-analyses by enforcing stan-

dards, normalizing data representation and processing, and providing a common

interface to current state-of-the-art analysis tools. Chapter 5 describes how using

the tool improvements and data standardizations presented in Chapters 2 and 4,

respectively, speed up the process of analyzing microbiome samples to levels never

reached before. Finally, the concluding chapter of this thesis discusses the results

and the opportunities opened due to these advances, paying special attention to

precision medicine, a topic in which the microbiome is becoming key.
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Chapter 1

What is the microbiome and why

is it important?

The microbiome is the group of microorganisms that live in, on, and around

us. Understanding the interactions between these microorganisms and their niche

can lead to advances in a wide variety of research areas, including, but not limited

to human and pet health [31, 57, 205], forensics [50, 80], climate change [195] and

pharmaceuticals [149, 128].

Researchers have at their disposal multiple technologies that allow them

to make different inquiries about the microbial system that they are investigat-

ing. Target gene sequencing (such as 16S/18S ribosomal ribonucleic acid (rRNA)

or Internal Transcribed Spacer (ITS) marker gene sequencing surveys) allows re-

searchers to survey the different bacteria and Archaea present in a sample. Shotgun

metagenomics provides a view of the functional potential of the microbial commu-
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nity, and metatranscriptomics confirms gene expression at a specific time point.

Metabolomics surveys provide a view of the small molecules contained in a sample,

either from microbial or host origin. The combination of the results of these tech-

nologies is crucial to establish correlations between the microorganisms and their

environment. The vast amount of data generated by these technologies requires

fast and efficient resources and tools for effective data analysis. The work presented

in this thesis is motivated by the challenges that microbial ecologists are facing

when analyzing such large microbiome datasets, some of which are summarized in

the following section.

Section 1.1, in full, reproduces the material as it appears in “The micro-

biome and big data”. J. A. Navas-Molina, E. R. Hyde, J. G. Sanders and R. Knight.

Current Opinion in Systems Biology, 2017, DOI: 10.1016/j.coisb.2017.07.003. The

dissertation/thesis author was the primary author of this paper.
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1.1 The microbiome and big data

Microbiome datasets have expanded rapidly in recent years. Advances in

DNA sequencing, as well as the rise of shotgun metagenomics and metabolomics,

are producing datasets that exceed the ability of researchers to analyze them on

their personal computers. Here we describe what Big Data is in the context of

microbiome research, how this data can be transformed into knowledge about mi-

crobes and their functions in their environments, and how the knowledge can be

applied to move microbiome research forward. In particular, the development of

new high-resolution tools to assess strain-level variability (moving away from Op-

erational Taxonomic Unit (OTU)), the advent of cloud computing and centralized

analysis resources such as Qiita (for sequences) and Global Natural Products Social

Molecular Networking (GNPS) (for mass spectrometry), and better methods for

curating and describing “metadata” (contextual information about the sequence

or chemical information) are rapidly assisting the use of microbiome data in fields

ranging from human health to environmental studies.

1.1.1 From cells to bits: what is big data in microbiome

research?

Since the term “microbiome” was coined by Joshua Lederberg in 2001 [107],

the microbiome research field has exploded both in terms of the heterogeneity of

the data produced and in the amount of data generated. Early approaches to
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characterizing the microbiome were based on targeted detection techniques in the

laboratory, such as culturing and assays based on the Polymerase Chain Reac-

tion (PCR), and assessed limited numbers of subjects (on the order of tens) [17].

The introduction of sequencing technologies revolutionized the field, enabling in-

vestigators to characterize microbial communities directly from primary samples.

Historically, the 16S ribosomal ribonucleic acid (rRNA) gene, a marker gene that

exists in all bacteria and archaea as an essential part of the ribosome, has been

targeted for these sequence-based profiling efforts. Its ubiquity among bacteria

and archaea and the low cost of the approach has made it the most widely used

for microbiome profiling of samples. Similarly, amplification and sequencing of the

18S rRNA gene and the Internal Transcribed Spacer (ITS) permit investigators to

profile the eukaryotic and fungal communities present in a sample using similar

techniques. Since the introduction of Next Generation Sequencing (NGS), tech-

nologies have evolved from generating a few hundred thousand reads per run (454

GS) to tens of million reads (Illumina MiSeq) or even a few billion reads per run

(Illumina HiSeq) [64]. Benchmarked protocols, such as those used by the Earth

Microbiome Project (EMP) and widely adopted by researchers around the globe,

facilitate meta-analyses of unprecedented size-investigators can combine studies,

each with hundreds to thousands of samples, into a single large analysis effort.

The precipitous drop in sample processing and sequencing costs associated with

new technology development is enabling researchers to move beyond simple tax-

onomy and abundance-based work to species and strain level profiling as well as

4



descriptions of functional pathways through whole genome shotgun metagenomics

sequencing. As a result, researchers are able to ask more critical questions of their

samples and are utilizing other technologies, such as detection of small molecules

via mass spectrometry, to confirm or refute hypotheses driven by functional path-

way and gene abundance information obtained from shotgun sequencing data.

The rate at which these technologies are increasing their data output is

faster than our computational power is growing [217], effectively shifting the costs

of a research study from the sequencing pipeline to the data analysis pipeline.

Additionally, as researchers utilize larger and larger datasets, they are able to

design large-scale studies to ask (and answer) complex questions. The metadata

associated with samples, therefore, is becoming an increasingly large contribu-

tor to microbiome big data and the challenges associated with streamlining data

analysis. Standards such as Minimum information about a marker gene sequence

(MIMARKs) [225] have helped investigators format their metadata to facilitate

data analysis and data upload to repositories such as the European Bioinformatics

Institute’s European Nucleotide

Archive (EBI ENA). Nevertheless, as samples are increasingly processed in paral-

lel with multiple different protocols (i.e., 16S, 18S, ITS, shotgun, metabolomics,

etc.), correct formatting of metadata to capture this information and facilitate

multi-omics correlative analyses will require careful attention and appropriate im-

plementation of tools capable of handling hundreds to thousands of columns of
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data for hundreds to thousands of samples. Tools such as Qiita 1 are being devel-

oped to address the challenges associated with analyzing large numbers of samples,

processed via multiple different protocols, and with complex metadata-and these

tools rely on both the availability and effective usage of large-scale compute re-

sources. The ability to apply tools such as Quantitative Insights into Microbial

Ecology (QIIME) in the cloud; e.g., using Amazon Web Services (AWS) [162], has

broadened these capabilities far beyond the original user base, and enabled users in

developing countries such as Bangladesh to use these tools without operating their

own large-scale compute infrastructure. These techniques are now being applied

in the United States through Illumina’s BaseSpace 2 and NIH’s Cloud Pilot 3.

1.1.2 From bits to knowledge: how is big data moving mi-

crobiome research forward?

Initial efforts to characterize and understand the healthy human micro-

biome using NGS techniques [196, 29] raised more questions than answers, and led

to the explosion of microbiome research that has identified associations between

the microbiome and diseases as varied as obesity, inflammatory bowel disease,

cardiovascular disease, and autism (among many others). Most of these studies

have simply identified associations and the question of causation or simple asso-

ciation remains unknown. Key studies, such as the obesity work done by Jeffrey

1http://qiita.microbio.me
2https://basespace.illumina.com/home/index
3https://commonfund.nih.gov/bd2k/commons
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I. Gordon and his team at Washington University [201, 202, 169] and the per-

sonalized nutrition work done by Eran Segal of the Weizmann Institute [226] are

coming closer to answering the question of causality versus association. However,

it is becoming increasingly clear that integrating DNA sequence data with other

omics techniques such as metatranscriptomics (sequencing the RNA), proteomics

(sequencing the proteins), and metabolomics (characterizing the metabolites) will

be key for advancing microbiome research. An example of the power of combin-

ing multiple techniques for assessing the microbiome is the National Institutes of

Health (NIH) Human Microbiome Project (HMP), the largest human microbiome

sequencing effort at the time of its publication in 2012. 16S rRNA gene amplicons

were generated from total of 4788 samples collected from 242 healthy adults [196]

and sequenced using 454 pyrosequencing. Additionally, a whole genome shotgun

sequencing on the paired-end Illumina platform was performed on a subset of 681

samples, generating 2.9 Gigabases per sample (close to 2 terabytes of data for the

entire dataset).

The HMP shotgun metagenomics data revealed a key observation: while

no taxon was observed in all individuals (i.e., no core healthy microbiome was

identified), the functional pathways inferred from the shotgun data were evenly

distributed across individuals and body sites. While this was an important ob-

servation, the addition of other data types, such as RNA-seq or metabolomics

would have provided precise information regarding the actual activity of the mi-

crobial community and which small molecules were present, respectively, further
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exemplifying importance of combining different -omics techniques for generating

hypotheses that ultimately lead to studies designed to obtain a more complete

picture of a given microbial community (and the significance of its presence). For

example, as reported by Bouslimani et al. [15], using a paired sequencing-mass

spectrometry approach allowed the investigators to identify correlations between

Propionibacterium genera and the presence of oleic acid, palmitic acid, mono-oleic,

and palmitic acylated glycerols on human skin. Hypothesizing that Propionibac-

terium mediates the hydrolyzation of triacylglycerides or diacylglycerides from

human acylated glycerols, Bouslimani et al. cultured Propionibacterium acnes in

a medium supplemented with the triglyceride triolein and examined the resulting

metabolic products, ultimately confirming their hypothesis.

Microbiome citizen science initiatives such as the American Gut Project

(AGP) 4 have made significant contributions to the field by democratizing mi-

crobiome research and thus providing large-scale datasets that can be used as

comparative frameworks for other studies. Citizens support the science by sending

samples from their bodies, their pets, or their environment as well as the nec-

essary funds to cover the sample processing. These projects face the challenge

of dealing with large numbers of samples; while most current microbiome studies

contain hundreds or a few thousand samples, these citizen science efforts contain

a continually growing number of samples that in some cases are on the order of

over ten thousand samples, pushing the limits of the current computational tools.

4http://americangut.org
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Furthermore, this democratization is not free: subject data is self-reported, and

at times, significant amounts of data are necessary to correctly characterize the

sample source. The AGP currently collects up to 400 variables about study par-

ticipants, including detailed dietary information proffered through a standardized

food frequency questionnaire (VioScreen). Analyzing all these variables is a chal-

lenge, and one solution is crowd sourcing the data analysis itself. All de-identified

AGP data are made public as soon as they are available, allowing researchers

and clinicians around the world to use the data to identify correlations between

those variables and the microbiome data which can generate new hypotheses, or

to contextualize their own studies with the largest open source human microbiome

dataset that currently exists. The power of meta-analyses is apparent from early

work by Lozupone and Knight [120], in which 21,752 16S rRNA sequences from di-

verse environments sampled across 111 studies were analyzed together to find that

the main environmental driver differentiating microbial communities was salinity,

rather than temperature, humidity, or a number of other environmental factors.

However, when we restrict the analysis to the human gut microbiome, techni-

cal factors that differ between studies, such as DNA extraction, PCR primers,

and sequencing platform are often larger than the biological effects we seek to

discover [122]. Performing similar large-scale meta-analyses with the AGP data

and the hundreds of other publicly available human microbiome datasets will be

critical for identifying universal microbiome signatures associated with different

health and disease states, and for understanding which technical variables have
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larger effect sizes than biological variables. Big Data has also proven critical in

the context of microbial epidemiology. Using Mycobacterium tuberculosis as an

example, Guthrie and Gardy [68] describe the utility of using NGS techniques for

understanding disease outbreaks. Whole genome sequencing of a specific pathogen

can reveal the infection path (including patient 0) of the outbreak by allowing

investigators to follow mutations from several strains isolated from infected in-

dividuals. Whole genome sequencing can also be used to diagnose disease. For

example, determination of antibiotic resistance of M. tuberculosis is a notoriously

difficult clinical problem; current gold-standard diagnostic techniques are culture-

based and can take up to 8 weeks to generate results. Whole genome sequencing

can reduce this time to a few days when the mutations responsible for drug re-

sistance are well characterized and the reference databases are high quality. As

a byproduct, the usage of whole genome sequencing for outbreak tracking and

rapid diagnostics generates a genome catalogue that can be used for new drug

development as well as better disease characterization. Clinical sequencing and

diagnostic timeframes are becoming even faster with the advent of nanopore se-

quencing technology, currently commercialized by Oxford Nanopore Technologies

(ONT) through the MinION sequencer. The reads produced by ONT devices are

longer but comparatively less accurate compared to other sequencing technologies;

however, they are generated extremely rapidly and portably. Similar in size and

price to a high-end smartphone, the MinION sequencer facilitates near-immediate

data acquisition, meaning sequences can be generated much closer to the biological
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source. Nanopore sequencers have been used to perform same-day diagnosis of tu-

berculosis [210] as well as in situ monitoring of an Ebola outbreak [159]. The speed

and portability can also benefit non-epidemiological microbiome work by making

field-based work where sample transit and storage are difficult to impossible more

obtainable. The MinION has already been used for on-site microbiological surveys

in Antarctica [82] and produced the first sequences generated in space aboard the

International Space Station [25].

1.1.3 Looking to the future: opportunities and challenges

The tools and technologies that have enabled microbiome research thus far

continue to improve at breakneck pace. Increased usage of fast, portable sequencers

such as the MinION and of multi-omics techniques means that the amount of data

collected by microbiome researchers will quickly reach never before seen sizes,

which will pose challenges for data storage and analysis. This wealth of informa-

tion also will facilitate the understanding of bacterial community mechanics and

interactions like never before, leading to groundbreaking developments not only in

human health [204, 31, 114], but also in agriculture [178], biofuels [75], and many

other applications. One of the biggest challenges facing the field as investigators

aim to achieve these goals is the ability to integrate and correlate the massive

amounts of data produced by these protocols and to identify biologically relevant

information that can be used to formulate testable hypotheses. As investigators

begin to utilize and combine multi-omics technologies, they are faced with tools
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and protocols that are at different stages of development. For example, one of

the difficulties associated with mass spectrometry analysis of small molecules is

that in many cases we are unable to determine whether molecules are microbial or

host-derived due to lack of annotation, and if indeed derived from the microbiome,

which specific group(s) of bacteria generated the chemical signature. Applying

mass spectrometry techniques to more and more microbiome datasets will enable

researchers to build the existing databases. Even among sequence data, biases exist

towards well studied environments, such as the human gut, while less studied en-

vironments, such as coral reefs, are not represented accurately (Earth Microbiome

Project, in review). Developing tools to cross-compare sequence and small molecule

data is also a key challenge; many of the techniques to assess sequence data are

phylogeny based and cannot be applied to mass spectrometry outputs. Addition-

ally statistical approaches for assessing microbiome sequence data [138, 126] will

need to be validated on mass spectrometry data, or new, appropriate tools will

need to be developed. Finally, visualizing multi-omics data together in a clear,

meaningful way poses an interesting challenge, particularly given that such tools

will need to be able to process thousands of data points from thousands of sam-

ples. Large-scale meta-analyses, such as those described in the previous section,

also pose a unique challenge. Current 16S rRNA studies contain tens of millions

of reads, and the amount of data utilized in meta-analyses is likely to be orders

of magnitude larger as shotgun sequence and metabolomics data become a rou-

tine part of microbiome studies. The largest known meta-analysis in existence,
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performed on the first 27,742 samples from 91 different studies in the EMP 5 ex-

posed key problems. First, the current tools utilized to analyze the data cannot

handle more than 30,000 samples at a single time. Additionally, the importance

of standardizing metadata also became crystal clear. Although standard meta-

data definitions exist, data repositories currently do not enforce their compliance,

and the metadata normalization effort is shifted to the researcher performing the

meta-analysis. New tools as well as more accurate documentation will be key to

facilitate the adoption of the standards in the community.

Last but not least, one of the most important challenges that will face mi-

crobiome research in the near future is the translation of results from the laboratory

to everyday life. The human body is a supra-organism containing a wide variety

of microorganisms that provide up to 99% of the genetic material present in our

bodies. Ignoring this part of the system when assessing the well-being of a person

is akin to performing a routine physical but only checking the blood pressure of

the patient. Although the ultimate goal of human microbiome research is to im-

plement clinical microbiome surveys, there is much work to be done before this

goal can be realized. First, and most importantly, more data need to be collected

and analyzed. Well-designed studies on clinical cohorts will be key for identifying

meaningful host-microbiome associations and how these associations can be lever-

aged to improve human health. Universal Standard Operating Procedures (SOP)

will also be critical to minimize lab to lab variation [181], including protocols for

5http://earthmicrobiome.org

13

http://earthmicrobiome.org


sample collection, handling, storage and processing, as well as standardizing anal-

ysis tools. Clinician education will also be critical to enable health care providers

to understand the limits of microbiome research as well as the advantages, and

easy to understand microbiome analysis reports will be a key part of clinician

education. Finally, sample processing and analysis times and costs need to be

reduced. While in some cases genomic analysis is more rapid than gold standard

diagnostics, in many cases, the processing time and costs outweigh the advantages

of these techniques. For example, RNA-seq remains a lengthy, complex approach.

The MinION may be useful for addressing this issue as it is able to directly accept

RNA without the requirement for cDNA generation; however, widespread use of

this tool will likely be closely tied to a reduction in the current error rate suffered

by the system.

Microbiome research is currently on the precipice of producing orders of

magnitude more data than ever before. To accurately assess and utilize this data,

investigators will rely on the development of tools, pipelines, and SOPs able to

effectively handle big data. Together, researchers, clinicians, and computer scien-

tists are poised to revolutionize microbiome research and its applications in human

health, agriculture, food science, and a number of other critical fields.
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Chapter 2

Analyzing large scale microbial

community cohorts

Chapter 1 exposed some of the challenges that researchers face when analyz-

ing the big datasets resulting from microbial community studies. These challenges

are exacerbated in massive iniatives like the Earth Microbiome Project (EMP)

[59, 58, 197] and the American Gut Project (AGP) 1.

The EMP is a collaborative effort of more than 500 investigators, and aiming

to characterize the Earth’s microbial life using amplicon sequencing, metagenomics

and metabolomics. The goal of the EMP is to process up to 200,000 samples for

16S ribosomal ribonucleic acid (rRNA) marker gene sequencing, releasing the data

as the data are generated prior to publication and crowd sourcing the data analysis.

More than 60 publications have already resulted from data generated by the EMP,

1http://americangut.org
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and these average 17 citations per paper per year 2. Currently, the EMP is in its

second phase, in which the researchers aim to generate the shotgun metagenomic

assemblies and metabolomic profiles of 500 samples.

The AGP is the largest crowd sourced, crowd funded, citizen science project.

It aims to open microbiome analysis to anyone, and to create a vast, free, micro-

biome dataset. In the AGP, the participants donate a sample (typically a stool

sample, although the project is not limited to stool) as well as the financial con-

tribution that supports processing, sequencing and analysis of the sample. AGP

participants complete a questionnaire with dietary and lifestyle questions. The

answers to the questionnaire are then stored in a standard set of columns, and are

made publicly available together with the sequences, both de-identified.

Both of these initiatives are releasing a powerful framework to the research

community. On the one hand, researchers around the globe can mine the datasets

to find new trends and generate new hypotheses. On the other hand, they can use

it to contextualize their own samples and increase the power of their own analyses

by comparing them against these cohorts. The success of these type of initiatives,

however, relies on the use of standardized practices for sample processing and

analysis, to minimize technical differences between the samples. The EMP released

standard protocols 3 for sample collection and preparation, which have been widely

adopted by the community and cited around 2000 times 2. Normalizing the data

2http://www.earthmicrobiome.org/publications/
3 http://www.earthmicrobiome.org/protocols-and-standards/
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analysis is as important as normalizing the data processing to minimize technical

differences. Quantitative Insights into Microbial Ecology (QIIME) [20], an open-

source pipeline for analyzing microbiome data developed in the Knight lab, is one

of the most popular 4 tools for those analyses. With 155 scripts and over 1000

parameters, the risk of introducing technical differences during the data analysis

step is high. Section 2.1, published in the journal Methods in Enzymology, 2013,

contains the first gold standard approach for the analysis of microbial community

datasets, as well as providing to the researchers with suggestions about how to

minimize the introduction of technical differences while analyzing the data. As

the first author of this publication, I co-wrote the text, generated the majority of

the figures and wrote the IPython notebook [153] attached to the publication.

Section 2.1, in full, reproduces the material as it appears in “Advancing

our understanding of the human microbiome using QIIME”. J. A. Navas-Molina,

J. M. Peralta-Sanchez, A. Gonzalez, P. J. McMurdie, Y. Vazquez-Baeza, Z. Xu,

L. K. Ursell, C. Lauber, H. Zhou, S. J. Song, J. Huntley, G. L. Ackermann, D.

Berk-Lyons, S. Holmes, J. G. Caporaso and R. Knight. Methods in Enzymology,

2013, DOI: 10.1016/B978-0-12-407863-5.00019-8.

4The original paper has been cited over 8,700 times according to Google Scholar at the moment
of this writing
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2.1 Advancing our understanding of the human

microbiome using QIIME

High-throughput DNA sequencing technologies, coupled with advanced bioin-

formatics tools, have enabled rapid advances in microbial ecology and our under-

standing of the human microbiome. Quantitative Insights into Microbial Ecology

(QIIME) is an open-source bioinformatics software package designed for microbial

community analysis based on DNA sequence data, which provides a single analysis

framework for analysis of raw sequence data through publication quality statistical

analyses and interactive visualizations. In this paper, we demonstrate the use of

the QIIME pipeline to analyze microbial communities obtained from several sites

on the bodies of transgenic and wild-type mice, as assessed using 16S ribosomal

ribonucleic acid (rRNA) gene sequences generated on the Illumina MiSeq platform.

We present our recommended pipeline for performing microbial community anal-

ysis, and provide guidelines for making critical choices in the process. We present

examples of some of the types of analyses that are enabled by QIIME, and discuss

how other tools, such as phyloseq and R, can be applied to expand upon these

analyses.

2.1.1 Introduction

Advances in DNA sequencing technologies, together with the availability

of culture-independent sequencing methods and software for analyzing the mas-
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sive quantities of data resulting from these technologies, have vastly improved our

ability to characterize microbial communities in many diverse environments. The

human microbiota, the collection of microbes living in or on the human body, is

of considerable interest: microbial cells outnumber human cells in our bodies by a

ratio of up to 10 to 1 [174]. These microbial communities contribute to healthy hu-

man physiology [35, 38, 191] and development [39, 90], and dysbiosis (or imbalance

in these communities) is now known to be associated with disease, including obe-

sity [199] and Crohn’s disease [41]. More recently, evidence from transplants into

germ-free mice suggests that some of these associations may be causal, because cer-

tain phenotypes can be transmitted by transmitting the microbiota [23, 133, 202],

even including transmission of human phenotypes into mice [74, 93, 184].

Illumina’s MiSeq and HiSeq DNA sequencing instruments respectively se-

quence tens of millions, or billions, of DNA fragments in a single sequencing run

[96]. The rapidly increasing data volumes typical of recent studies drives a need

for more efficient and scalable tools to study the human microbiome [61]. QIIME

[20] is an open-source pipeline designed to provide self-contained microbial commu-

nity analyses, from interacting with raw sequence data through publication-quality

statistical analyses and visualizations.

QIIME integrates commonly used third-party tools, and implements many

diversity metrics, statistical methods, and visualization tools for analyzing micro-

bial data. Consequently, most individual steps in the microbial community analysis

can be performed in multiple ways. Here, we describe how samples are prepared
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for an Illumina MiSeq run, the QIIME pipeline, and our view of the current best

practices for analyzing microbial communities with QIIME. Although there are

other pipelines available, including mothur [177], the RDP tools [150, 151], ARB

[123], Visualization and Analysis of Microbial Population Structures (VAMPS) 5,

and other platforms, in this review we focus on analysis with the MiSeq platform

and QIIME as this combination is increasingly popular as a method for analyzing

microbial communities and a detailed comparison of other available pipelines and

sequencing platforms is beyond the scope of the present work.

2.1.2 QIIME as integrated pipeline of third party tools

An early barrier to adoption of QIIME was that it was difficult to install,

in part because of the large number of software dependencies (third party pack-

ages that need to be installed before QIIME is operational). The large number

of dependencies was, however, a deliberate choice made during QIIME develop-

ment. To build a pipeline for sequence analysis that encompasses the many steps

from sequence collection, curation, and statistical analysis, the user must con-

sider many existing tools that have been developed to perform specific functions,

and extensively benchmarked on their ability to perform these functions, such as

the UCLUST program for clustering sequences into Operational Taxonomic Unit

(OTU) [43]. A pipeline thus has two options: either re-implement the algorithm,

or use the existing software (by creating a wrapper that allows its input and output

5http://vamps.mbl.edu
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to be incorporated into the pipeline). The QIIME developers choose to wrap all

the algorithms rather than re-implement them. This choice preserves the integrity

of the programs that make up the pipeline, as there is no doubt that the tool being

used is the one designed, created, and tested by the original authors, and, in most

cases, peer-reviewed by the scientific community. The reuse of existing software

also allows the QIIME pipeline to include and distribute newly developed and im-

proved algorithms more rapidly than would be possible if each algorithm had to be

re-implemented and re-tested to check that it matched the original. Thus QIIME

users can be sure that they have the most up-to-date tools for their analysis, and

can credit the authors of the component software packages appropriately.

One important, but sometimes poorly understood, aspect of the QIIME

pipeline is that it wraps algorithms and tools produced by other researchers into a

single pipeline for sequence analysis. It is therefore important to cite the individual

tools that you use as well as QIIME itself. For example, an analysis using the

default QIIME parameters [20] would use UCLUST [43] to cluster the sequences

against the GreenGenes database [37], assign taxonomy using the RDP classifier

[213], and build Principal Coordinate Analysis (PCoA) beta diversity plots using

UniFrac [118]. It is important for researchers who are considering contributing to

the QIIME pipeline to recognize that their contributions will be cited, so that they

can continue to expand upon their work. For example, the pick otus.py script alone

offers a choice of nine different clustering algorithms, each developed by researchers

who should be acknowledged if their particular algorithm is used.
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For taxonomy databases and other reference databases, including Green-

Genes, it is also important to cite the release version that you are using [37], not

least because the results will change depending on which release you used, and

others may not be able to reproduce your results without this information. For

GreenGenes, the default taxonomy database in QIIME, the version is named after

the release date, such as the 12 10 release. The latest version of GreenGenes can

always be downloaded from the qiime.org website. Using the same GreenGenes

reference database version is critical for comparisons of taxonomy assignments

and OTU across different studies. For this reason, all the studies in the QIIME

database are always processed against the same release version of GreenGenes.

An overview of some of the key tools used by the default QIIME pipeline

follows:

• UCLUST [43]. Used for OTU picking.

• USEARCH [43]. Used for OTU picking and chimera checking.

• RDP Classifier [213]. Used for taxonomy assignment.

• GreenGenes Database [37]. Used as a reference database for taxonomy as-

signment and reference-based OTU picking (see below).

• PyNAST [19]. Used for multiple sequence alignment.

• UniFrac [118]. Used as a phylogenetic metric for beta diversity analysis.
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2.1.3 PCR and sequencing on Illumina MiSeq

Microbial community analysis typically begins with the extraction of DNA

from primary samples (note that although most of this DNA comes from cells in

the sample, some may consist of dead cells or extracellular DNA, so the representa-

tion of the active community from these sources is not perfect). Although methods

for DNA extraction vary, several large initiatives such as the Earth Microbiome

Project (EMP) [59] and the Human Microbiome Project (HMP) [196, 29, 200] have

standardized on the MOBIO PowerSoil DNA extraction kit 6 to efficiently recover

DNA from a wide range of sample types. After extraction, samples are Poly-

merase Chain Reaction (PCR) amplified under permissive conditions with primers

containing the MiSeq sequencing adapters, a 12-nucleotide Golay barcode (first

introduced in [49]) on the forward primer, followed by the bases matching the 16S

rRNA gene; the reverse primer is not barcoded [22]. The annealing temperature is

set to 50◦C, which in our hands minimizes PCR artifacts (both primer dimer and

background smear) while encouraging the primers to anneal to the largest diversity

of sequences possible. Similarly, we believe that including sequencing adaptors and

barcodes in the PCR step has advantages over multiple enzymatic treatments of

the 16S amplicon that are otherwise needed to introduce adaptors and barcodes

after PCR. The first, and most important consideration is the reduction of sam-

ple handling, which lowers the chance of contamination, mislabeling and loss of

small-volume samples during preparation. Combining the adapters and barcodes

6http://www.mobio.com
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in the PCR step allows for exact well-to-well mapping of samples to primers, pro-

viding a standardized way to track sample-barcode combinations through library

preparation, an important consideration when sequencing hundreds to thousands

of samples using 96- or 384-well sample preparation formats.

Because the MiSeq can generate a large number of sequences per run, many

samples can be multiplexed on each single sequencing run. The choice of barcodes

thus deserves some attention. For instance, homebrew barcodes can be as simple

as using an arbitrary sequence of known nucleotides placed at the front of the

amplicon and fed into an informatics pipeline for detection. Although simple, this

approach has limited ability to detect sequencing error [22], and increases the risk

of misassignment of a sequence to the wrong sample. The use of error correcting

barcodes, such as Hamming [73] or Golay codes [22], allows the user to detect and

correct errors in the barcode, decreasing the chances that a sequence is assigned

to the wrong sample. Error-correcting barcodes also allow the user to retain more

sequences, because 8-nucleotide Hamming codes can detect and correct 2 and 1 bit

errors, respectively [73], and 12-nucleotide Golay codes can detect and correct 4

and 3 bit errors, respectively [72]. With the unique Golay codes described in [22],

up to 2167 samples could be multiplexed on a single MiSeq run at a depth of 4600

per sample, certainly sufficient to detect the effects of many biological phenomena

of interest [95, 97]. As the QIIME default settings detect Golay barcodes, we

encourage the use of these codes when possible to maximize sequence retention

and assignment accuracy.
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Detailed instructions for loading the MiSeq for amplicon runs with custom

barcodes can be found on the EMP website 7. Briefly, pooled libraries are analyzed

by Bioanalyzer (Agilent Technologies) and diluted to 2 µM quantitated by use of a

Qubit Fluorometer (Life Technologies, High Sensitivity reagents). The phiX spike-

in library (Illumina Inc.) is also diluted to 2 µM prior to use. Denaturation of the

pooled 16S rRNA gene amplicon libraries and the phiX control is performed ac-

cording to manufacturer’s instructions (Illumina Inc.), giving a denatured template

concentration of 20 ρM . Denatured templates are further diluted to 5 ρM (using

Illumina HT1 buffer) and subsequently combined to give an 85% 16S rRNA gene

amplicon library and 15% phiX control pool (1000 µL total volume). Improve-

ments in the Illumina analysis software may allow reduction of this phiX spike-in,

allowing more of the sequences to be used for 16S rRNA gene amplicons.

MiSeq reagent cartridges are prepared according to the manufacturer’s in-

structions (Illumina Inc.). The sample pool (1000 µL total volume) is loaded in

to cartridge position 17. Custom 16S rRNA gene Read 1, Index Read, and Read

2 sequencing primers are added directly to cartridge wells containing the standard

Illumina Read 1, Index Read, and Read 2 sequencing primers (wells 12, 13 and 14

respectively, 5 µL each primer at 100 µM concentration [22]). Primers are added

to wells using a long gel loading tip, and gently mixed using a plastic Pasteur

pipette. Care must be taken to assure that reagents in the cartridge are localized

to the bottom of the wells, and that no bubbles are present.

7http://www.earthmicrobiome.org

25

http://www.earthmicrobiome.org


The spike-in of PhiX, at least at low levels, is still critical for obtaining us-

able amplicon data because the optics require diversity at each nucleotide position,

which is not possible with absolutely conserved nucleotides within the 16S rRNA

gene (or most other genes of interest). Many users have had difficulty mixing this

protocol for custom amplicons with Illumina’s own indexing protocol, which allows

a maximum of 96 samples to be multiplexed per run at the time of writing. It is

critical to use either this protocol exactly (allowing arbitrary numbers of custom

barcodes) or to use Illumina’s barcoding protocol, but not to mix and match steps

and reagents.

2.1.4 QIIME workflow for conducting microbial commu-

nity analysis

The Illumina MiSeq technology can generate up to 107 sequences in a single

run [96]. QIIME takes the instrument output, and generates useful information

about the community represented in each sample. At a coarse-grained level, we

divide this process into upstream and downstream stages (Figure 2.1). The up-

stream step includes all the processing of the raw data (sequencing output), and

generating the key files (OTU table and phylogenetic tree) for microbial analysis.

The downstream step uses the OTU table and phylogenetic tree generated in the

upstream step to perform diversity analysis, statistics and interactive visualiza-

tions of the data. Additionally, QIIME increasingly interfaces with other packages
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such as IPython and R, allowing additional analyses to be conducted.

To illustrate some of the main features of QIIME, together with some of the

analyses that can be performed outside QIIME, we use an example dataset consist-

ing of samples from different body sites of 12 mice: the oral cavity, ileum, cecum,

colon, fecal pellet, skin and whole mouse sample by homogenizing the mouse car-

cass. 7 mice were wild type genotype (WT from here so on), while the 5 remaining

mice were transgenic (TG from here so on). The samples were collected by students

during the IQ-Bio course taught by Manuel Lladser and Rob Knight during Spring

2013 at University of Colorado at Boulder (course identifiers: APPM5720-001-

2013, CHEM4751-001-2013, CHEM5751-001-2013, CSCI4830-006-2013, CSCI7000-

006-2013, MCDB6440-001-2013).

Upstream analysis steps

The QIIME analysis workflow starts with the sequencing output (fastq

files), and a user-generated mapping file. The mapping file contains information

for understanding what is in each sample and is therefore critical for performing

the rest of the analyses; it is in tab-delimited text format. The main information

in this file is a unique identifier for each sample, the barcode used for each sam-

ple, the primer sequence used, and a description for each sample, together with

additional user-defined information that is necessary for understanding the results

such as which species the sample was taken from, which site on the body is be-

ing studied, clinical variables relevant to the study, etc. The sample identifier,
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Figure 2.1: QIIME workflow overview. The Upstream process (brown boxes)
includes all the steps that generate the OTU table and the phylogenetic tree. This
step starts by preprocessing the sequence reads and ends by building the OTU
table and the phylogenetic tree. The Downstream process (blue boxes) includes
steps involved in analysis and interpretation of the results, starting with the OTU
table and the phylogenetic tree and ending with alpha and beta diversity analyses,
visualizations and statistics.
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barcode and primer sequence information are required for the first step of the QI-

IME workflow. This preprocessing step combines sample demultiplexing, primer

removal and quality-filtering. Additional information provided about the samples

in the mapping file is helpful for later steps, especially for analyses that aggre-

gate the samples by these fields (for example, comparing lean to obese subjects).

We therefore recommend including as much additional data about the samples as

possible (often called sample metadata). This auxiliary information is also very

useful for identifying contaminated samples. For example, SourceTracker [88] is a

package included in QIIME that identifies the proportion of different community

sources, including contamination, in each sample based on a database of samples

from known communities.

De-multiplexing and quality filtering. As mentioned above, high-

throughput sequencing allows multiple samples to be combined in a single se-

quencing run [96]. However, each sequence must then be linked back to the in-

dividual sample that it came from via a DNA barcode. The barcodes, which are

short DNA sequences unique to each sample, are incorporated into each sequence

from a given sample during PCR. QIIME uses the barcodes in the mapping file

to demultiplex, i.e. to assign the sequences back to the samples they are derived

from, using error-correcting codes where available (as noted above). QIIME is also

able to demultiplex variable-length barcodes such as those used in the HMP: see

Variable-length barcodes in Other features below.

During demultiplexing, QIIME removes the barcodes and primer sequences
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because they are not needed in later steps. Thus, the result after demultiplexing

is a sequence matching the amplified 16S rRNA gene.

The third part of preprocessing is quality-filtering. Quality-filtering im-

proves diversity estimates with Illumina sequencing substantially [14]. Illumina

instruments, like most sequencing instruments, generate a quality score for each

nucleotide (Phred), related to the probability that each nucleotide was read in-

correctly. QIIME uses the Phred score and user-defined parameters to remove

sequence reads that do not meet the desired quality. These user-defined parame-

ters are: the percentage of consecutive high quality base calls (p), the maximum

number of consecutive low quality base calls (r), the maximum number of ambigu-

ous bases (typically coded as N) (n) and the minimum Phred quality score (q).

For a detailed discussion of how these parameters affect diversity results, see [14].

This study recommends standard values for these parameters as r = 3, p = 75%,

q = 3 and n = 0, which are the default values in the QIIME pipeline. However,

the optimal values for these parameters can vary both for individual sequencing

runs and for different downstream analyses: for example, analyses such as machine

learning benefit from larger numbers of low-quality sequences, whereas accurate

counts of OTUs from a mock community require fewer, higher-quality sequences.

Table 2.1 contains an overview of the guidelines presented in [14] for tuning these

parameters to a given dataset.

The Illumina quality filtering approach differs in its fundamental principles

from 454 denoising [160, 168]. 454 denoising is based on flowgram clustering [160,
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161] and is primarily targeted at reducing homopolymer runs, which are not a

problem on the Illumina platform to the same extent. In contrast, the Illumina

quality filtering is based on a per-base Phred quality score and does not target

indels.

The QIIME quality filtering process works as follows. Starting at the be-

ginning of the sequence, QIIME checks that the next r Phred values exceed the

user-defined quality threshold q. If the test is positive, it continues slicing the

window of r bases until the test fails, or the end of the sequence is reached. The

sequence is then trimmed to the last base that met the quality threshold. The

next test determines whether the length of the trimmed sequence exceeds p, ex-

pressed as the percentage of length of the raw sequence. If this check fails, the

sequence is excluded. Otherwise, QIIME performs the last check on the sequence,

which counts the number of ambiguous characters (N) in the trimmed sequence

and checks that it is less than n. If the test fails, the sequence is rejected. QIIME

combines the de-multiplexing, primer removal and quality filtering processes in a

single script, split libraries fastq.py:

s p l i t l i b r a r i e s f a s t q . py

− i $PWD/ IQ Bio 16sV4 L001 sequences . f a s t q . gz \

−b $PWD/ IQ Bio 16sV4 L001 sequences barcodes . f a s t q . gz \

−m $PWD/IQ Bio 16sV4 L001 map . txt −o $PWD/ s l o u t \

−−rev comp mapping barcodes
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In our example dataset, we used the –rev comp mapping barcodes option

in order to indicate that the barcodes present in the mapping file are reverse

complements of Golay 12 barcodes. We used the recommended default parameters

for quality filtering on this dataset. However, to change the values for the r, p, n

and q quality filtering parameters, we can use the −r, −p, −n and −q options to

the script. This command will write a FASTA-formatted file in the slout folder,

called seqs.fna, which contains the demultiplexed sequences that pass the quality

filter. Each sequence contains the information about which sample it came from

encoded in the name of the sequence.

Multiple lanes of Illumina fastq data can be processed together in a single

call to the script, just by passing the sequence files, the barcode files and the

mapping files in the same order to the −i, −b and −m options, respectively. For

example, with two lanes, the command would look like:

s p l i t l i b r a r i e s f a s t q . py

− i s equences1 . fa s tq , sequences2 . f a s t q

−b sequences1 barcodes . f a s tq , s equences2 barcodes . f a s t q

−m mapping1 . txt , mapping2 . txt −o s l o u t

The user can check how many sequences have been demultiplexed and

passed quality-filtering by using the count seqs.py command. This command also

shows the mean and standard deviation of the sequence length:

count seqs . py − i $PWD/ s l o u t / seqs . fna
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12687021 : s l o u t / seqs . fna ( Sequence l eng th s (mean +/− std ) :

150 .9989 +/− 0 .1715)

12687021 : Total

OTU picking. The next step is clustering the preprocessed sequences into

OTU, which in traditional taxonomy represent groups of organisms defined by in-

trinsic phenotypic similarity that constitute candidate taxa [186, 188]. For DNA

sequence data, these clusters, and hence the OTUs, are formed based on sequence

identity. In other words, sequences are clustered together if they are more sim-

ilar than a user-defined identity threshold, presented as a percentage (s). This

level of threshold is traditionally set at 97% of sequence similarity, conventionally

assumed to represent bacterial species [40]; other levels approximately represent

other taxa, although the fit between molecular data and traditional taxonomy

varies for different taxa. QIIME supports three approaches for OTU picking (de

novo, closed-reference and open-reference), and multiple algorithms for each of

these approaches (Table 2.2). The de novo approach (Figure 2.2a) groups se-

quences based on sequence identity. The closed-reference approach (Figure 2.2b)

matches sequences to an existing database of reference sequences. If a sequence

fails to match the database, it is discarded. The open-reference approach (Fig-

ure 2.2c) also starts with an existing database and tries to match the sequences
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against them. However, if a sequence does not match the database, it is added to

the database as a new reference sequence.

Table 2.2: Supported OTU picking methods in QIIME, with a brief description
of the algorithm employed and in which OTU picking approach can be used.

Method Picking approach Description Reference

de closed open

novo reference reference

cd-hit Yes - -
Applies a ”longest-sequence-first list

[112, 111]
removal algorithm” to cluster sequences

Mothur Yes - -

Takes an aligned set of sequences and clusters

[177]them using a nearest-neighbor, furthest-neighbor

or average-neighbor algorithm.

prefix/suffix Yes - -
Clusters sequences which are identical

QIIME team, unpublished
in their first and/or last bases.

Trie Yes - -

Clusters sequences which are identical sequences

QIIME team, unpublishedand sequences which are subsequences

of other sequences.

blast - Yes -
Compares and clusters each sequence against

[3]
a reference database of sequences.

uclust Yes Yes Yes
Creates seed sequences which generate

[43]
clusters based on percent identity.

usearch Yes Yes Yes

Creates seed sequences which generate

[43]
clusters based on percent identity, filters low

abundance clusters and performs de novo and

reference based chimera detection.

The OTU picking strategies shown in Figure 2.2 are built on top of algo-

rithms for de novo clustering. Of the various algorithms available, the furthest-

neighbor, average-neighbor or nearest neighbor in mothur [175, 177] (also named

complete linkage, average linkage, and single linkage respectively) are the most

widely used. Furthest-neighbor requires that each sequence is closer than the

distance threshold to every other sequence already in the OTU (Figure 2.3).

Average-neighbor requires that the average pairwise distance of all sequences in

the OTU is closer than the distance threshold. Nearest-neighbor requires that

each sequence is closer than the distance threshold to any sequence already in the

OTU. Because these three algorithms are variants on hierarchical clustering, they
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Figure 2.2: Cartoon representation of the OTU picking approaches. (a)
de novo, (b) closed-reference and (c) open reference OTU picking respectively.
In the de novo method, sequences are compared to each other and then clusters
are formed. In the closed-reference method, sequences are compared directly to a
reference dataset (e.g. GreenGenes). Sequences that match a reference sequence
are clustered; the remaining sequences are discarded. I both OTU picking methods,
once clusters are formed, a representative sequence is selected and then taxonomy
is assigned to that sequence (and applied to the rest of the sequences that make
up the OTU). Open-reference combines the closed-reference and open-reference
methods. The first step is identical to closed-reference, sequences discarded in the
first step are clustered into OTUs by the de novo method, and both OTU tables
are merged into a single final OTU table. De novo and open-reference cluster
all the sequences, but closed-reference allows better comparisons between studies,
especially those using different primers, because all OTUs occur in a common
reference space.
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require loading the distance matrix (proportional to the square of the number of

dereplicated sequences) into memory, and are therefore challenging to apply to

large datasets (e.g., larger than 105 sequences). The OTUs yield by these three

algorithms also change their memberships at different sequencing depths (i.e. the

number of sequences chosen for clustering), which can be a problem for estimates

of total OTU numbers [171].

Figure 2.3: Cartoon demonstrating different clustering algorithms. Cir-
cles representing sequences linked with lines are within the distance threshold.
The two numbered sequences are the first and second sequences in order in the
file. The reference algorithms only consider the distance between reference (R)
and sequences.

A solution to the distance matrix problem comes from uclust and usearch,

which are greedy algorithms based on using a single centroid in each OTU [43].

The centroid could be either from a reference database (usearch) or identified de

novo from the sequence dataset (both uclust and usearch) (Figure 2.3). Sequences
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are serially compared to centroids in a user-defined order (usually decreasing abun-

dance). If a sequence falls within the distance threshold of more than one centroid,

the new sequence can either be grouped with the first centroid encountered, or the

one with the closest distance. Both uclust and usearch are much more efficient than

the hierarchical methods, and they do not need to load a large distance matrix into

memory (although recent versions of mothur also avoid the constraint of loading

the full distance matrix). usearch is the default de novo OTU picking method in

QIIME. Note that it is essential to note both your OTU picking strategy, and, if

de novo OTU picking is used, which algorithm you used to do it: it is not sufficient

simply to state that you used a 97% threshold.

Because the OTU picking approach selection is a critical point in microbial

community analysis, the QIIME team has produced a detailed document that

describes the OTU picking protocols, their advantages and limitations 8. Table 2.3

compares the different OTU picking approaches and gives guidelines for choosing

an appropriate OTU picking strategy.

The recommended OTU picking approach is open-reference OTU picking,

because this approach provides the best trade-off between the time taken to com-

plete the analysis and the ability to discover novel diversity.

Once the sequences have been clustered into OTUs, a representative se-

quence is picked for each OTU. The entire cluster will thus be represented by a

single sequence, speeding up subsequent steps (because redundant sequences need

8https://github.com/qiime/qiime/blob/master/doc/tutorials/otu_picking.rst
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Table 2.3: OTU picking approaches comparison. The table shows when each of
the OTU picking approaches should be used and when they cannot be applied.
It briefly describes the advantages and disadvantages of using each of the OTU
picking approaches.

de novo closed reference open reference

Must There is no reference Comparing non-overlapping. -
use if sequence collection to amplicons. The reference

cluster against (e.g. set of sequences must span
infrequently used both of the regions

marker gene) being sequenced

Cannot Comparing non-overlapping There is no reference Comparing non-overlapping
use if amplicons (e.g. V2 and sequence collection amplicons (e.g. V2 and V4

V4 regions of 16S rRNA) to cluster against regions of 16S rRNA). There
(e.g. infrequently is no reference sequence
used marker gene) collectionto cluster against (e.g.

infrequently used marker gene)

Pros All reads are clustered Fast, as it is fully parallelizable All reads are clustered.
(useful for extremely large datasets). Fast, as is partially run on parallel.

Better tree and taxonomy quality
since the OTUs are already defined

on the reference set.

Cons Time consuming since it runs in Inability to detect novel There are still some steps
serial respect to the reference diversity with respect to performed in serial. If the

set because the reads that dont the reference set because data set contains a lot of
hit the reference sequence collection the reads that dont hit novel diversity with respect

are discarded, so the analysis the reference sequence to the reference set, this
focus on the already known diversity. collection are discarded, can still be slow.

If the studied environment is not so the analysis focus on
well-characterized, a large fraction the already known diversity.
of the reads can be thrown away If the studied environment is

not well- characterized, a
large fraction of thereads

can be thrown away

not be considered). QIIME allows the representative sequence to be selected using

several techniques: choosing a sequence at random, choosing the longest sequence,

the most abundant sequence or the first sequence. If using uclust or usearch [43],

the cluster seed will be used as the representative sequence. The default behavior

in QIIME is to use the most abundant sequence in each OTU as the represen-

tative sequence, because these sequences are least likely to represent sequencing

errors (for other applications, such as clustering with near-full-length Sanger se-

quences, it may be more desirable to pick the longest sequence instead). In case

of closed-reference OTU picking, sequences from the reference collection should

be used as the representative sequences, which is the default behavior when the

closed-reference approach is selected.
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Identify chimeric sequences. During the PCR amplification process,

some of the amplified sequences can be produced from multiple parent sequences,

generating sequences known as chimeras. Although these sequences are techni-

cal artifacts rather than representing actual members of the community, chimeric

sequences are important for alpha diversity estimates (although they are less im-

portant for cross-sample comparisons, because each chimera is relatively rare and

the same chimera is unlikely to be generated systematically in different samples

[108]. However, the same chimera can sometimes be generated in multiple PCR

reactions: for example, Haas et al. [69] reported that chimeric sequences formed

from Streptococcus and Staphylococcus occurred multiple times independently,

so presence of the same sequence in multiple PCR does not mean that it is not

chimeric.

QIIME currently supports three different methods for detecting chimeras:

blast fragments, a taxonomy-assignment-based approach using BLAST [3];

ChimeraSlayer [69], which uses BLAST to identify potential chimera parents; and

usearch 6.1 [43], which can perform de novo chimera detection based on abun-

dances as well as reference-based chimera detection. The recommended method

for identifying chimeric sequences is uchime [46], which is integrated in the usearch

6.1 [43] pipeline. Uchime is the fastest method for detecting chimeric sequences

and it is executed by default if the usearch method is selected for picking OTU.

Taxonomy assignment. The next step in the QIIME workflow is to as-

sign the taxonomy to each sequence of the representative set. This step connects
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the OTUs to named organism, which is useful for inferring likely functional roles

for members of the community. When using a closed-reference approach for OTU

picking, the taxonomy of the sequences can be pulled out from the reference set.

In case of the open-reference and de novo approaches, because the clusters are

not created from any reference database (as a reminder, in the open-reference ap-

proach, sequences that fail to cluster to the reference database form new clusters),

the taxonomy should be assigned using a reference dataset. We recommend the

GreenGenes database [37, 131] as the default reference data set for assigning tax-

onomy, although the RDP [28] and Silva [158] databases also have strengths and

weaknesses relative to GreenGenes and should be considered for some analyses.

Silva includes microbial eukaryotes and has invested substantial effort in cleaning

up marine taxa; RDP has close links to formally recognized names in taxonomy,

which can be especially useful for medical microbiology. QIIME can assign tax-

onomy against any of the given databases, or against a custom database, using

several methods: BLAST [3], RDP Classifier [213], rtax [187], mothur [177] and

tax2tree [131]. The QIIME team recommends the RDP classifier method [213]

with a confidence value of 0.8. However, if the user has paired-end reads, the best

method to use is the rtax [187], and the user should provide the fasta files with

both the first and second read from the paired-end sequencing. Note that the tax-

onomy assignment method and the reference database must both be described in

order for an analysis to be reproducible, and that these methods can have a larger

effect on taxonomy than the underlying biological sample, so it is important to be
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consistent [115].

Sequence alignment. The next step in the QIIME workflow is to align

the sequences. The sequences must be aligned to infer a phylogenetic tree, which

is used for diversity analyses and to understand the relationships among the se-

quences in the sample. Currently, QIIME supports the following methods for

performing sequence alignment: PyNAST [19], Infernal [144], clustalw [102], mus-

cle [42] and mafft [84]. The recommended (and default) method is PyNAST [19].

This method aligns the sequences against a template sequence alignment, for which

we recommend the GreenGenes core set [37].

When sequences do not align well using PyNAST, the Infernal package

[144] should be used. Like PyNAST, it requires a template alignment, but unlike

PyNAST, it uses stochastic context-free grammars (SCFGs) to align incorporating

secondary structure. Although this method is slow compared to other methods, it

does takes advantage of RNA secondary structure (provided in a Stockholm-format

file) and can be useful for aligning more variable rRNAs. For marker genes other

than rRNA genes, the best strategy for building phylogenetic trees is to align the

protein sequences (if available) using MUSCLE.

Phylogeny construction. This step in the QIIME workflow infers a phy-

logenetic tree from the multiple sequence alignment generated by the previous

step. The phylogenetic tree represents the relationships among sequences in terms

of the amount of sequence evolution from a common ancestor. This phylogenetic

tree is used in many downstream analyses, such as the UniFrac metric [118] for
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beta diversity.

The current methods supported for inferring the phylogenetic tree in QIIME

are FastTree [157], clearcut [47], clustalw [102], raxml [193] and muscle [42]. The

default and recommended method in QIIME is the FastTree [157] method because

it shows the best trade-off between run time and reliability of the inferred tree.

Make OTU table The last part of the upstream stage in QIIME is to

construct the OTU table. The OTU table is a sample by observation matrix that

also includes the taxonomic prediction for each OTU. For the OTU table repre-

sentation, QIIME uses the Genomics Standards Consortium candidate standard

Biological Observation Matrix (BIOM) format [130]. The OTU table, the mapping

file and the phylogenetic tree, are the main files for performing the downstream

analysis.

QIIME can perform all the steps for generating the OTU table and the

phylogenetic tree from the preprocessed data in a single command. There is a

separate command for each OTU picking approach. In the following commands, we

assume that the GreenGenes reference files [37] are located in the current directory.

As a remainder, our seqs.fna has 12.687.021 sequences of length 150.9989 +/-

0.1715:

• For de novo (run time 80 hours on 1 processor (not parallelizable)):

p i ck de novo otus . py − i $PWD/ s l o u t / seqs . fna \

−o $PWD/ denovo otus
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• For closed-reference (run time 2 hours on 20 processors):

p i c k c l o s e d r e f e r e n c e o t u s . py

− i $PWD/ s l o u t / seqs . fna \

−o $PWD/ c l o s e d r e f o t u s \

−r $PWD/ gg 12 10 o tu s / r e p s e t /97 o tus . f a s t a \

−t $PWD/ gg 12 10 o tu s /taxonomy/\

97 otu taxonomy . txt \

−a −O 20

• For open-reference (run time 27 hours on 20 processors):

p i c k o p e n r e f e r e n c e o t u s . py \

−o $PWD/ o p e n r e f o t u s \

− i $PWD/ s l o u t / seqs . fna \

−r $PWD/ gg 12 10 o tu s / r e p s e t /97 o tus . f a s t a \

−a −O 20

Because the closed-reference and open-reference OTU picking approaches

can be run in parallel, we use the −a and −O 20 options in order to run them

using 20 processors.

Downstream analysis steps

Once we have generated the OTU table and the phylogenetic tree, we can

start the downstream analysis. At this point, we strongly recommend performing
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a second level of quality-filtering, based on OTU abundance. The recommended

procedure is to discard those OTUs with a number of sequences less than 0.005%

of the total number of sequences (see Bokulich et al. [14] for a detailed description

of the effect of this parameter in further downstream analyses). QIIME executes

the OTU abundance quality-filtering step through the script filter otus from otu -

table.py:

f i l t e r o t u s f r o m o t u t a b l e . py \

− i $PWD/ o p e n r e f o t u s /\

o t u t a b l e m c 2 w t a x n o p y n a s t f a i l u r e s . biom \

−o $PWD/ o p e n r e f o t u s / o t u t a b l e f i l t e r e d . biom \

−−min count f r a c t i on 0.00005

This step greatly reduces the problem of spurious OTUs, most of which are

present at very low abundance.

QIIME 1.7.0 allows a first-pass view of common diversity analyses using

a single command: core diversity analysis.py. One of the parameters required by

this command is the sampling depth, the number of sequences that should be

included in each sample for diversity analyses. This is required, because many of

the commonly used diversity metrics are very sensitive to the number of sequences

obtained per sample, such that samples that are similar in the number of sequences

that were obtained appear similar to one another. This is bad because the number

of sequences per sample is typically a methodological artifact, not reflective of
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biological reality. The sampling depth defines the size of the random subset of

sequences that will be selected for each sample for all subsequent diversity analyses.

The optimal sampling depth is data-dependent. There is no universal way

of choosing a rarefaction level, although heuristics can be applied. For example, if

most samples have more than 10,000 sequences and the rest range from 500 to 50

sequences per sample, it would be recommended to use 10,000 as the rarefaction

level. Although many studies show marked variation in sequence depth with only

a few bad samples, it is not always easy to choose the rarefaction level. We

strongly recommend rarefying over 1000 sequences/sample for Illumina MiSeq,

because samples below this level often suffer from other quality issues as well.

The information needed to choose the rarefaction level can be obtained from

the script print biom table summary.py, which shows summary information on the

OTU table such as the number of sequences, the number of OTUs, the number of

samples and the number of counts per sample, among others:

pr int biom table summary . py \

− i $PWD/ o p e n r e f o t u s / o t u t a b l e f i l t e r e d . biom

Num samples : 90

Num obse rva t i on s : 783

Total count : 10637688.0

Table dens i ty ( f r a c t i o n o f non−zero va lue s ) : 0 .4289
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Table md5 ( unzipped ) : eb0f1d7fbb50bc31695dade31db1e198

Counts/ sample summary :

M i n : 1 . 0

M a x : 493427.0

M e d i a n : 99111.0

M e a n : 118196.533333

S t d . dev . : 94277.5956531

S a m p l e Metadata Categor i e s : None provided

O b s e r v a t i o n Metadata Categor i e s : taxonomy

Counts/ sample d e t a i l :

BLANK4 .732555 : 1 . 0

BLANK5 .732537 : 1 . 0

J o s h u a . Jose .WTAbd.732533 : 1 . 0

N i c k . Krishna .TG. Fec . 732513 : 2 . 0

T H .CVA.WT. Oral . 7 32491 : 2 . 0

BLANK2 .732552 : 3 . 0

BLANK3 .732479 : 5 . 0

BLANK6 .732470 : 7 . 0

E l i z a b e t h . Chris .WT. Abd.732490 : 10 .0

U r i . Jake .TGAbd.732468 : 10 .0

T H .CVA.WT. Abd.732477 : 13 .0
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BLANK10 .732524 : 812 .0

E l i z a b e t h . Chris .WT. Oral . 7 32520 : 7410 .0

E l i z a b e t h . Chris .WT. Col . 732481 : 21746.0

Jordan . L i s e t t e .TG. I l e . 7 32463 : 27149.0

. . .

T H .CVA.WT. Fec . 732553 : 372327.0

W a n g .TG. Cec . 732527 : 396391.0

T H .CVA.WT. I l e . 7 32517 : 493427.0

In the above output we can see the information contained in the OTU table

resulting from applying the open-reference OTU picking. Some of the relevant

information contained in this output is the total number of samples (90), the total

number of OTUs (783), the number of reads (10637688) and the number of OTUs

per sample. Applying the above heuristic, we could select a subsampling depth

of 7410 sequences. However, because we have run three different OTU picking

approaches and we want to compare them, we must search for the rarefaction level

that best fits the three OTU tables. Below are the summarized information for

the de novo OTU table and the closed reference OTU table, respectively:

pr int biom table summary . py \

− i $PWD/ denovo otus / o t u t a b l e f i l t e r e d . biom

Num samples : 93

Num obse rva t i on s : 600
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Total count : 11122386.0

Table dens i ty ( f r a c t i o n o f non−zero va lue s ) : 0 .4344

Table md5 ( unzipped ) : b002dd85c93fd9d0571ff23b05d21dde

Counts/ sample summary :

M i n : 0 . 0

M a x : 497234.0

M e d i a n : 108322.0

M e a n : 119595.548387

S t d . dev . : 93487.3335598

S a m p l e Metadata Categor i e s : None provided

O b s e r v a t i o n Metadata Categor i e s : taxonomy

Counts/ sample d e t a i l :

BLANK7 .732497 : 0 . 0

BLANK8 .732522 : 0 . 0

J o r d a n . L i s e t t e .TG. Abd. 732467 : 0 . 0

BLANK4 .732555 : 1 . 0

BLANK5 .732537 : 1 . 0

J o s h u a . Jose .WTAbd.732533 : 1 . 0

BLANK2 .732552 : 3 . 0

N i c k . Krishna .TG. Fec . 732513 : 3 . 0

T H .CVA.WT. Oral . 7 32491 : 3 . 0
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BLANK3 .732479 : 5 . 0

BLANK6 .732470 : 9 . 0

E l i z a b e t h . Chris .WT. Abd.732490 : 10 .0

U r i . Jake .TGAbd.732468 : 10 .0

T H .CVA.WT. Abd.732477 : 13 .0

BLANK10 .732524 : 825 .0

E l i z a b e t h . Chris .WT. Oral . 7 32520 : 7376 .0

J o e y . Aaron . Kyle .WT. Abd.732541 : 35655.0

. . .

W a n g .TG. Cec . 732527 : 394351.0

T H .CVA.WT. I l e . 7 32517 : 497234.0

pr int biom table summary . py \

− i $PWD/ c l o s e d r e f o t u s / o t u t a b l e f i l t e r e d . biom

Num samples : 90

Num obse rva t i on s : 673

Total count : 9434459.0

Table dens i ty ( f r a c t i o n o f non−zero va lue s ) : 0 .4250

Table md5 ( unzipped ) : 257 b528478a2700c72f979ce8d9a9a1c

Counts/ sample summary :

M i n : 1 . 0
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M a x : 347785.0

M e d i a n : 90092.0

M e a n : 104827.322222

S t d . dev . : 78560.4683831

S a m p l e Metadata Categor i e s : None provided

O b s e r v a t i o n Metadata Categor i e s : taxonomy

Counts/ sample d e t a i l :

BLANK4 .732555 : 1 . 0

BLANK5 .732537 : 1 . 0

J o s h u a . Jose .WTAbd.732533 : 1 . 0

BLANK3 .732479 : 2 . 0

N i c k . Krishna .TG. Fec . 732513 : 2 . 0

T H .CVA.WT. Oral . 7 32491 : 2 . 0

BLANK2 .732552 : 3 . 0

U r i . Jake .TGAbd.732468 : 5 . 0

BLANK6 .732470 : 7 . 0

E l i z a b e t h . Chris .WT. Abd.732490 : 10 .0

T H .CVA.WT. Abd.732477 : 12 .0

BLANK10 .732524 : 710 .0

E l i z a b e t h . Chris .WT. Oral . 7 32520 : 7205 .0

E l i z a b e t h . Chris .WT. Col . 732481 : 22652.0
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. . .

T H .CVA.WT. Fec . 732553 : 329988.0

T H .CVA.WT. I l e . 7 32517 : 347785.0

From the above output, we see that a reasonable rarefaction level for the

three tables is 7205 counts per sample, derived from the closed reference OTU

picking.

Once the subsampling depth is chosen, we can execute the core diversity -

analyses.py command over the three OTU tables. We provide the subsampling

depth via the −e parameter, the OTU table via the −i parameter, the mapping

file through the −m parameter and the metadata categories to use in categorical

analyses through the −c parameter. The −o parameter is used to provide the

output directory and the −a−O 64 are used to run the command in parallel using

64 processes.

mkdir $PWD/ d i v e r s i t y a n a l y s i s

c o r e d i v e r s i t y a n a l y s e s . py \

− i $PWD/ o p e n r e f o t u s / o t u t a b l e f i l t e r e d . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt \

−t $PWD/ o p e n r e f o t u s / r e p s e t . t r e \

−e 7205 −c GENOTYPE,BODY SITE \

−o $PWD/ d i v e r s i t y a n a l y s i s / open r e f −a −O 64
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c o r e d i v e r s i t y a n a l y s e s . py \

− i $PWD/ denovo otus / o t u t a b l e f i l t e r e d . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt \

−t $PWD/ denovo otus / r e p s e t . t r e −e 7205 \

−c GENOTYPE,BODY SITE \

−o $PWD/ d i v e r s i t y a n a l y s i s /denovo −a −O 64

c o r e d i v e r s i t y a n a l y s e s . py \

− i $PWD/ c l o s e d r e f o t u s / o t u t a b l e f i l t e r e d . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt \

−t $PWD/ gg 12 10 o tu s / t r e e s /97 o tus . t r e e \

−e 7205 −c GENOTYPE,BODY SITE \

−o $PWD/ d i v e r s i t y a n a l y s i s / c l o s e d r e f −a −O 64

The core diversity analyses.py command filters the OTU table before exe-

cuting the diversity analyses. The filter removes samples from the OTU table that

do not have at least the user-defined subsampling depth (7205 in our case). This

filtering removes low-coverage samples from the OTU table, because they are not

informative enough to be included in the study. After these samples have been

filtered, the script performs the rarefaction step at the given subsampling depth.

The output of this script is an HTML file that can be opened in a web
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browser (Figure 2.4). This HTML file gives access to the results of the different

diversity analysis performed (taxa summaries, α-diversity, β-diversity and category

significance) which will be explained in further sections.

For the following downstream analysis we have used the OTU table and

phylogenetic tree resulting from the open-reference OTU picking approach. In

cases where we are performing comparisons between OTU picking approaches, we

will specify which approaches we have used.

Taxa summaries. One way to visualize the OTUs in each sample is

a taxa summary, which summarizes the relative abundance of the taxa present

in a set of samples on multiple taxonomic levels (e.g. phylum, order, etc.) (see

Figure 2.5). This provides a quick way to identify samples that may be drastically

different from others (i.e. outliers), and visually identify expected patterns and

differences between and among samples. For example, this tool can be used to

identify patterns such as differences in the relative abundance of Firmicutes and

Bacteroidetes in the gut microbiomes of lean versus obese mice, e.g. Ley, Backhed,

Turnbaugh, Lozupone, Knight, and Gordon [108]. These patterns can then be

statistically tested using other methods, either within QIIME or elsewhere. QIIME

contains a workflow called summarize taxa through plots.py that generates user-

specified plot types, including bar, pie, and area graphs. These graphs provide a

way to visually compare the composition of each sample, or of groups of samples.

An OTU table with assigned taxonomies is the only required input file, and options

allow the user summarize across categories (using the metadata file), at different
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Figure 2.4: HTML result from core diversity analyses.py. This HTML file
summarizes and gives access to the results of the diversity analyses conducted on
the given OTU table
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taxonomic levels, or only using OTUs that are present at abundances higher or

lower than user-defined thresholds. The web interface allows a scroll-over feature

that identifies the taxonomy of the separate taxa. Additional output files include

image files of the charts and legends, and tab-delimited files of the calculated

abundances, which can then be further filtered and manipulated for downstream

statistical analyses.

Figure 2.5: Taxa summary of the example dataset. Samples have been
grouped and averaged by body site, and taxonomic composition is shown on the
phylum level. Each column in the plot represents a body site, and each color in the
column represents the percentage of the total sample contributed by each taxon
group at phylum level. The taxa summaries plot help us to see which taxon groups
are more prevalent in a sample. For example, the fecal samples are dominated by
Bacteroidetes, while mouth and skin samples are dominated by Proteobacteria.
We can also see that Fusobacteria is only present at appreciable levels in the skin
samples.

Diversity analysis. Microbial ecology studies the diversity of microor-
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ganisms by characterizing bacterial communities in different environments, and

determining the factors that drive diversity in these communities [10]. Whittaker

(1960) and Whittaker (1972) define different types of measurements of diversity

as alpha, beta and gamma diversities. Alpha diversity is defined as the diversity

of organisms in one sample or environment. Beta-diversity is the difference in di-

versities across samples or environments. Finally, gamma-diversity (γ-diversity)

measures the diversity at a broader scale, such as a province or region. Several dif-

ferent metrics of alpha- and beta-diversity are implemented in in QIIME pipeline.

Diversity measurements and their applications in microbial have been discussed in

detail elsewhere [83, 97, 121], and here we focus on examples of their application.

Alpha diversity analysis. QIIME can generate plots showing the results

of alpha diversity, allowing the user to choose the diversity metric and different

rarefaction levels (Figure 2.6). These images are often used to estimate the true

species richness of a community.

QIIME implements dozens of the most widely used alpha diversity indices,

including both phylogenetic indices (which require a phylogenetic tree) and non-

phylogenetic indices. Users can obtain a list of the alpha diversity indices im-

plemented in QIIME by passing the parameter s to the alpha diversity.py script.

Phylogenetic metrics have been especially useful in our experience because they

provide additional power by accounting for the degrees of phylogenetic divergence

between sequences within each sample. Thus, for alpha diversity, we recommend

Phylogenetic Distance (PD) [48] over OTU counts; however, the choice of metric
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Figure 2.6: Alpha diversity curves at different rarefaction depths using
different OTU picking methods. Each line represents the results of the alpha
diversity phylogenetic diversity whole tree metric (PD Whole Tree in QIIME). A,
C and E represent alpha diversity of each sample at a different sequence depth
in each of the OTU picking protocols (closed-, open-reference and de novo). In
closed-reference, the diversity plateaus (reaches an asymptote) because only OTUs
in the reference database already can be considered, greatly reducing the OTU
number over what is possible if the sequences are clustered de novo. Comparing
these curves is difficult because the sequencing depth differs among samples. B,
D and F show differences in alpha diversity between the two mouse genotypes,
wild type (WT - orange) and transgenic (TG - blue), using the different OTU
picking approaches. Both curves show the same rarefaction levels, allowing easier
comparisons between categories. The curves again level off, showing that the
sequencing effort is sufficient to detect most of the OTUs (this saturation can be
confirmed using Good’s coverage, or conditional uncovered probability, or other
formal coverage statistics). The error bars show the standard error of the mean
diversity at each rarefaction level across the multiple iterations.
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will depend on the question. In particular, one might be interested in pure esti-

mates of community richness (such as the observed number of OTUs, or the Chao1

estimator of the total number that would be observed with infinite sampling), in

pure estimates of evenness, or of measures that combine richness and evenness such

as the Shannon entropy (if there is no hypothesis in advance about which richness

measure is appropriate, remember to correct for multiple comparisons if many are

applied to the same dataset). Here is an example of how to compute rarefaction

curves for three different alpha diversity metrics using a QIIME parameters file:

echo a l p h a d i v e r s i t y : met r i c s shannon ,\

PD whole tree , o b s e r v e d s p e c i e s \

> alpha params . txt

a l p h a r a r e f a c t i o n . py \

− i $PWD/ o p e n r e f o t u s / o t u t a b l e f i l t e r e d . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt \

−o $PWD/ d i v e r s i t y a n a l y s i s / a lp h a r a r e o pe n r e f u ne v e n \

−a −O 64 −n 20 −−min rare depth 1000 −e 340000 \

−p $PWD/ alpha params . txt \

−t $PWD/ o p e n r e f o t u s / r e p s e t . t r e

This step generates an interactive HTML document with figures showing the

results for each alpha diversity metric and for each group of samples. Curves reach
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asymptotes when the sequencing effort (sequencing depth) does not contribute

additional OTUs. In this sense, curves would differ in their shape as a function of

the selected OTU picking method.

Comparisons should be adjusted to the same depth of sequencing. Rarefac-

tion curves can be useful for assessing the sequencing effort sufficient for represent-

ing and comparing the microbial communities (Figure 2.6). However, although

rarefaction curves were widely used during the era of Sanger sequencing, when

most communities were undersampled, it is often more useful today to report the

coverage and the estimated and observed numbers of OTUs at one rarefaction

depth rather than to use a figure for rarefaction curves.

Beta diversity analysis. Beta diversity can also be calculated from the

rarefied OTU tables, comparing the microbial communities based on their composi-

tional structures. As with alpha diversity, QIIME can compute many phylogenetic

and non-phylogenetic beta diversity metrics (shown by the command beta diver-

sity.py−s).Of these, we have found UniFrac to be most generally useful in revealing

biologically meaningful patterns. Unifrac measures the amount of unique evolu-

tion within each community with respect to another by calculating the fraction

of branch length of the phylogenetic tree that is unique to either one of a pair

of communities [118]. QIIME implements several variants of Unifrac, including

weighted and unweighted Unifrac. The weighted Unifrac metric is weighted by

the difference in probability mass of OTUs from each community for each branch,

whereas unweighted Unifrac only consider the absence/presence of the OTUs [120].
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Weighted Unifrac is thus recommended for detecting community differences that

arise from differences in relative abundance of taxa, rather than in which taxa are

present. Like other metrics considering taxon abundance, weighted Unifrac is sen-

sitive to the bias from DNA extraction efficiency, PCR amplification, etc.; this may

explain why, in our hands at least, unweighted UniFrac has often provided results

that correlate better with clinical or environmental variables than does weighted

UniFrac. The choice of metrics is critical in beta diversity analysis as metrics dif-

fer substantially in their ability to detect clustering or gradient patterns among

microbial communities on the same dataset [9, 166, 176]. See Kuczynski et al. [97]

for a detailed discussion of the performance of different nonphylogenetic metrics.

QIIME calculates the beta diversities between each pairs of input samples,

forming a distance matrix. The distance matrix then can be visualized with meth-

ods such as PCoA and hierarchical clustering, both of which have been widely used

for data visualization for decades. PCoA transforms the original multidimensional

matrix to a new set of orthogonal axes that explain the maximum amount of iner-

tia in the dataset and the current implementation in QIIME scales to thousands

of samples. We are currently evaluating approximate methods that will allow scal-

ing to millions of samples [61]. QIIME allows the PCoA plots to be visualized

interactively in 3-dimensions, currently using the KiNG viewer [27]. To assess the

stability of the PCoA plot, jackknife resampling can be performed on the OTU

table, repeating the PCoA procedure for each resampled table and plotting the

aggregate results as confidence ellipsoids around the sample points (Figure 2.7).
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Jackknifing is recommended because many diversity metrics, including UniFrac,

are sensitive to the number of sequences per sample [119].

Taxonomic information can be displayed on top of the PCoA using biplots

(Figure 2.8) (this analysis requires the output file from previous taxon summary

step). The coordinates of a given taxon are computed as the weighted average of

the coordinates of all samples, where the weights are the relative abundances of the

given taxon in the set of samples. This plot is particularly suited for identifying

taxa that drive the differentiation between groups of microbial communities.

Another popular method for finding relationships among samples is hierar-

chical clustering, which groups samples together into a tree. Although hierarchical

clustering can be effective in some cases, it should be used with caution because

the eye can easily be drawn to incorrect relationships (such as samples that are

adjacent in terms of the order of their labels but are topologically far apart in the

tree). In general, we recommend using PCoA as a method of detecting grouping

in the data, but demonstrate hierarchical clustering here as an example. Here we

analyze the beta diversity distance matrix using UPGMA, which forces the sam-

ples into an ultrametric tree (i.e. a tree in which the distance from the roots to

the tips is the same for every tip) (Figure 2.9). The resulting tree file is in Newick

format, and can be visualized by programs including TopiaryExplorer [154], the R

package ape [152] and the package distory [26]. UPGMA can also be applied to

the jackknifed subsamples to provide an estimate of the statistical confidence in

the clustering, by showing the frequency of each nodes in the original full data set
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Figure 2.7: PCoA plots of unweighted Unifrac beta diversity. Panels A-C
shows jackknifed replicate results for the example data set using de novo OTU
picking, closed-reference OTU picking and open-reference OTU picking, illustrat-
ing different results from the three OTU picking approaches (Table 2.3). Each
dot represents a sample, either from a WT mouse (orange) or TG mouse (blue).
The two groups are not clearly separated, probably because the data set is con-
taminated (recall that this is a class project and different participants varied in
their dissection skills). The size of the ellipsoids show the variation for each sample
calculated from jackknife analysis. These plots are generated by the command jack-
knifed beta diversity.py -i $PWD/denovo otus/otu table filtered.biom -t $PWD/-
denovo otus/rep set.tre -m $PWD/IQ Bio 16sV4 L001 map.txt -o $PWD/diver-
sity analysis/jk denovo -e 7205 -a -O 64 (the input parameters should be adapted
for using the OTU tables from different OTU picking approaches). Panel D shows
the beta diversity PCoA plot of a data set from the keyboard data set [50] which
links individuals to their computer keyboard through microbial community simi-
larity. Each dot represents a microbial community sampled from either fingertips
or keyboard keys from three individuals, annotated by the three colors shown in
the plot. In contrast to panels A-C, Panel D shows the microbial communities
well-separated by individual in the PCoA plot.
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Figure 2.8: Biplot of the example data set. This is the unweighted Unifrac
beta diversity plot, similar to Figure 2.7, with labels for the most 5 abundant
phylum-level taxa added. The size of the sphere for each taxon is proportional to
the mean relative abundance of that taxon across all samples. This plot is cre-
ated by the command make 3d plots.py -i $PWD/diversity analysis/open ref/b-
div even7205/unweighted unifrac pc.txt -m $PWD/IQ Bio 16sV4 L001 map.txt -
t $PWD/diversity analysis/open ref/taxa plots/table mc7205 sorted L3.txt –n -
taxa keep 5 -o $PWD/diversity analysis/3d biplot
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cluster that are supported by the jackknife replicates. We generally recommend

against the use of hierarchical clustering as a method for identifying and visualizing

sample groupings, so have not invested as much effort in enabling this technique

in QIIME as has been invested in other visualizations. However, if you do plan

to use hierarchical clustering, it is important to be aware that substantial work

has been done on more effective visualization methods, e.g. in distory [26], and

performing additional analyses outside QIIME may allow improvements over the

default visualizations.

Statistical significance of differences in alpha and beta diversity.

Which statistical tests should be applied depends on the particular hypotheses and

predictions defined a priori in a given research study. QIIME implements several

scripts that perform a broad range of statistical tests between samples or groups

of samples using both alpha and beta diversity measurements. For alpha diver-

sity, the compare alpha diversity.py script performs comparisons between groups

of samples. The script uses the alpha diversity measurements of samples stan-

dardized to a given number of sequences per sample, and performs nonparametric

two-sample t-tests (i.e. using Monte Carlo permutations to calculate the p-value)

comparing each pair of groups of samples. Rarefaction is a critical step in these

analyses, as noted above, because typically diversity estimates depend on the num-

ber of sequences per sample. At the maximum rarefaction depth, wild type and

transgenic mice did not show differences in alpha diversity as measured by PD

metric (wild type: (mean +/- sd) = 45.19 +/- 10.6; transgenic: 40.01 +/- 9.5; t =
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Figure 2.9: Bootstrapped UPGMA clustering on the example data set.
The tree is shown with the internal nodes colored by bootstrap support (red:
75-100%, yellow: 50-75%, green: 25-50% and blue: < 25%). Although this visu-
alization is popular in the literature, we generally recommend alternatives such as
PCoA.
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-2.17, p = 0.102). We also tested for differences in alpha diversity between body

sites. We found differences between cecum and ileum (cecum (mean +/- s.d.) =

51.1 +/- 3.6; ileum: 36.72 +/- 8.2; t = 5.35, p = 0.028), cecum and mouth (mouth:

29.54 +/- 10.1; t = 6.62, p = 0.028) and feces and mouth (feces: 48.4 +/- 4.0; t

= 5.47, p = 0.028). None of the other pairs of comparisons between body sites

showed significant differences in alpha diversity (colon: 46.0 +/- 9.2; multi-tissue:

46.26 +/- 9.1; skin: 42.13+/- 7.4; all p-values > 0.056).

The appropriate statistical tests of beta diversity also depend on the re-

search question being asked. These tests compare sets of distances between sam-

ples in the distance matrix. Careful attention must be paid both to Type I error

(rejecting the null hypothesis when it is actually true), and to Type II error (ac-

cepting the null hypothesis when it is actually false, i.e. lack of statistical power).

Type I error is more likely when variance is unequal between groups, and when

many comparisons are performed on the same data (although multiple comparisons

corrections correct for the increased Type I error, they often raise the Type II error

rate instead). As always, results should be interpreted with caution and common

sense. A highly statistically significant result stemming from data with a low cor-

relation coefficient may indicate that a relationship has little biological meaning,

and examining the scatterplot to see if the result is driven by a few outliers would

be prudent. Further theoretical validation (especially of the multivariate statisti-

cal tests) is also needed, especially because the distributions underlying microbial

community data have in general not yet been well characterized.
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Comparisons between distance matrices are performed in QIIME using the

compare distance matrices.py script. This script can perform analyses including

the Mantel test, the Partial Mantel test, and the Mantel Correlogram. The Mantel

test is a non-parametric test that compares two distance matrices, and calculates

a correlation coefficient and a significant p-value using permutations that preserve

the rows and columns. For the purpose of showing some examples (because the

mouse data does not include a time series component), we will use the sequence

dataset published by Caporaso et al. [21], where the authors studied variation

in the bacterial community in the human gut over time series. We will compare

the Unifrac distance matrix and a distance matrix as differences in days since the

treatment started. Both distance matrices showed a significant correlation (Mantel

test: p = 0.035), showing that bacterial communities were more similar as they

were close in sampling. The Mantel test measures the overall correlation between

distance matrices, but Mantel Correlograms measure this effect when taking into

account the distances between samples marked by specific metadata variables. Es-

sentially, the second distance matrix (in our case, days since the treatment started)

is divided into classes. The classes into which the second distance matrix (days

after experiment started) is determined by Sturge’s rule, a method for determining

the width of bars in a histogram based on the binomial formula. Then Mantel tests

are run between these distance classes and the beta diversity distance matrix. We

found that none of the distance classes were significantly related to the bacterial

community (Figure 2.10: all comparisons p > 0.120, after Bonferroni correction
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for multiple comparisons). The Mantel test showed us that there is an overall

correlation between bacterial community and days after the experiment started

(samples collected closer in time had more similar bacterial communities), and

Mantel Correlogram showed that there is no significant correlation between the

bacterial community and any of the classes into which the days after the experi-

ment started matrix was divided. In other words, in this case, discretization of the

data into a few timepoint classes led to an undetectable pattern; in contrast, use of

the whole time series yielded an interpretable result. However, in other datasets,

the reverse is often true, especially if the variation is not monotonic (e.g. in the

case of seasonal variation).

Figure 2.10: Mantel Correlogram showing the Mantel correlation statis-
tics between unweighted Unifrac distance matrix and each class in the
days after experiment started distance matrix. Classes in the second dis-
tance matrix are determined by Sturge’s rule. White dots show non-significant
relationship since black dots show significant ones.
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The partial Mantel test is similar to the Mantel test, except that the analy-

sis is controlled by a third variable. When we compare the beta diversity distance

matrix with days after the experiment started by controlling by sampling date,

we find the same trend noted before (Partial Mantel test: p = 0.010). Samples

collected close in time have similar bacterial communities and this effect is inde-

pendent of the date of collection.

Several visual and statistical tests have been implemented in QIIME in or-

der to compare between and within beta-diversity distances. Distance histograms

are an easy way to compare both types of distances graphically (make distance -

histograms.py). The output is an html file that shows as many histograms as

categories. It is very useful to compare all-within category against all-between

category, or the distribution of distances within each group (Figure 2.11). Prob-

ably a more useful tool to compare these beta-diversity distances is by means of

box-plots (make distance boxplots.py, Figure 2.12). The box-plot script gener-

ates a box-plot graph and performs a t-test. Box-plots showed that there were no

differences between the distances within mouse type and between types. However,

the statistical test shows highly significant differences (p < 0.001) when comparing

within and between distances. Once again, we recommend caution and common

sense when the p-values are interpreted. It is likely to get a significant p-value,

although a close inspection of the box-plot reveals that standard error bars overlap.

Basically this result is due to the large number of comparisons: a small Student

t-statistic (obtained when differences between two data set are small) and these
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large degrees of freedom may be highly significant (i.e. the two data set are very

different) even with conservative multiple test corrections (as Bonferroni).

Figure 2.11: Histograms of the example data set. (A) Histogram showing
distribution of distances between (light brown) and within (dark brown) mice gut
microbiota taking into account both wild type and transgenic mouse groups. (B)
Distribution of within distances in gut bacterial community of wild type mice (light
orange) and transgenic ones (blue).

Other multivariate analyses provide additional powerful tools for exploring

significant relationships between the beta diversity distance matrix and factors or

covariates. compare categories.py offer different statistical tests, where ANOSIM

and adonis are usually employed. ANOSIM is a non-parametric statistical test

that compares ranked beta-diversity distances between different groups and cal-

culates a p-value and a correlation coefficient by permutation. Adonis partitions

the variance in a similar way to the ANOVA family of tests, specifically testing

variation within a category is smaller or greater than variation between categories.

It calculates a pseudo F-value, a p-value and a correlation coefficient (R2). Signif-

icant p-values must be interpreted together with their R2 values to infer biological

71



Figure 2.12: Box-plots of the unweighted UniFrac distances for bacterial
gut microbiota in both mouse type (WT: wild type; TG: transgenic).
Within distances represent distances within any of the two groups since between
distances show distances between both groups. TG vs. TG and WT vs. WT rep-
resent within distances in transgenic and wild type groups respectively. Although
averages are different, standard error overlaps in all cases.
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meanings from the results. It is worth to mentioning here that PERMANOVA

and adonis are similar statistical methods, and usually provide equivalent results.

However, PERMANOVA only allows categorical factors, whereas both categori-

cal and continuous variables may be used in adonis. Both ANOSIM and adonis

analyses indicate that bacterial communities in wild-type and transgenic mice sig-

nificantly differ from one another (ANOSIM: r = 0.134, p < 0.001; adonis, r2 =

0.046, p < 0.001). However, the correlation coefficients are low, so the signifi-

cant p-values need to be interpreted cautiously because this result may not be

biologically relevant.

OTU networks. Network-based analysis can sometimes be very useful

for displaying how OTUs are partitioned between samples, and how samples are

related each other, although we have found that this analysis only works well for

datasets in which the samples are not all equally connected. Networks are there-

fore a powerful way for visually displaying certain large and complex datasets to

emphasize similarities and differences among samples. Network analyses are imple-

mented in QIIME through the script make otu network.py. This script generates

the OTU network files to be passed into Cytoscape [180] and statistics for those

networks (specifically, a bipartite graph in which nodes represent either OTUs or

samples, and edges represent a connection between an OTU and a sample (Ley

et al., 2008)). Cytoscape is not wrapped in the QIIME pipeline and it is run

as a separate program. The files used by Cytoscape 2.8.2 are: the real edge table

(real edge table.txt) which contains the columns from, to, eweight and consensus -

73



lin, among others dictated by the headers in the mapping file; and the real node

file (real node table.txt) which contains a node for each OTU and each sample in

the study. It uses the OTU file and the user metadata mapping file.

The visual output of this analysis is a clustering of samples according to

their shared OTUs (i.e. samples that share more OTUs cluster closer together,

as do OTUs shared by more samples): samples and OTUs are represented as

dots in the space (nodes) and connected by lines (edges). The degree to which

samples cluster is based on the number of OTUs shared between samples, and this

is weighted according to the number of sequences within an OTU.

In the network diagram, both types of nodes, OTU nodes and sample nodes,

can be easily modified using Cytoscape’s graphical user interface, with symbols

such as filled circles for OTUs and filled squares for samples. If an OTU is found

within a sample, both nodes are connected with a line (an edge). The nodes and

edges can then be colored to emphasize certain aspects of the data.

This method is not simply used for descriptive visualizations: the connec-

tions within the network can also be analyzed statistically to provide support for

the clustering patterns displayed in the network. A G-test for independence is used

to test whether sample nodes within categories (such as within a genotype, in our

example mouse study) are more connected within than a group than expected by

chance. Each pair of samples is classified according to whether its members shared

at least one OTU, and whether they share a category. Pairs are then tested for

independence in these categories (this asks whether pairs that share a category
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also are equally likely to share an OTU). This statistical test can also provide

support for an apparent lack of clustering when it appears that a parameter is not

contributing to the clustering.

In our example dataset, mouse samples show some degree of clustering in

the space depending on whether the genotype is wild-type or transgenic (Figure

2.13). These clusters in the network were significant different (G-test: p < 0.001).

Surprisingly, bacterial communities of mice did not visually cluster by body site,

although the statistical test shows highly significant differences in samples from

different body sites. These results must be interpreted cautiously. The degrees

of freedom in the statistical test depend on the number of comparisons so, highly

significant results might be obtained even when differences between clusters are

slight. In other cases, these differences are obvious and easy to interpret. In the

first application of this analysis in microbial ecology, the gut bacteria of a variety

of mammals was surveyed, and the network diagrams were colored according to

the diets of the animals, which highlighted the clustering of hosts by diet category

(herbivores, carnivores, omnivores). In a later meta-analysis of bacterial surveys

across habitat types, the networks were colored in such a way that the phylogenetic

classification of the OTUs was highlighted: this analysis revealed the dominance

of shared Firmicutes in vertebrate gut samples versus a much higher diversity of

phyla represented amongst OTUs shared among environmental samples [108].

This OTU-based approach to comparisons between samples provides a coun-

terpoint to the tree-based PCoA graphs derived from the UniFrac analyses. In
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Figure 2.13: OTU-Network bacterial community analysis applied in wild
type and transgenic mice. (A) Network colored by genotype (wild type: blue;
transgenic: red). Control sample (yellow dot) is external in the network and several
OTU are not shared with mice. Although we can see some degree of clustering,
discrimination by genotypes is difficult to assess. (B) Network colored by body
site (mouth: yellow; skin: in red; ileum: in blue; colon: in pink; cecum: in orange;
feces: in brown; and multi-tissue samples: in green). A control sample is colored
in grey. There is no clear sample clustering by body site, suggesting that there is
not a core set of OTUs that differentiates one site from another.
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most studies, the two approaches reveal the same patterns. They can, however,

reveal different aspects of the data. The network analysis can provide taxonomic

connections among samples in a visual manner, whereas PCoA-UniFrac cluster-

ing can reveal sub-clusters that may be obscured in the network. The principal

coordinates can be pulled out individually and regressed against other metadata;

the network analysis can provide a visual display of shared versus unique OTUs.

Thus, together these tools can be used to draw attention to different aspects of a

dataset.

OTU heatmaps. Another method to visualize the relationships between

OTUs and samples is the heatmap, which is widely used for other applications

in molecular biology [219]. This method was initially developed by Loua [117] to

visualize population characteristics of 20 districts of Paris.

In our case, heatmaps can be used for exploratory analysis of microbiomes

by mapping abundance values to a color scale in a condensed, pattern-rich format,

in which each row corresponds to an OTU and each column corresponds to a

sample. A good heatmap graphic can generate hypotheses about sample and/or

OTU clustering in the data, which can then be followed up with additional more

formal analyses. Two key structural aspects of a heatmap graphic greatly affect

whether it will reveal interpretable patterns: (1) the ordering of the axes, and (2)

the color scaling.

QIIME can create OTU heatmaps using two different scripts: make otu -

heatmap.py and make otu heatmap html.py. The first script generates a heatmap
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in which OTUs are represented in rows and samples in columns. OTUs and samples

can be sorted and clustered by the phylogenetic tree and by the UPGMA hierarchi-

cal clustering, respectively. However, the visualizations of both trees (phylogenetic

and hierarchical) in the final heatmap are not currently implemented directly in

QIIME, and these hierarchical displays must be prepared using external software

such as R. QIIME also supports sample clustering by a metadata category if the

user provides a mapping file. The samples will be clustered within each category

level using Euclidean UPGMA. The script sort otu table.py allows sorting the

OTU table by a category in the mapping file, allowing defining the order of the

samples in the heatmap. Figure 2.14 shows the output of make otu heatmap.py.

There we can see a drawback to heatmaps: when the number of samples or OTUs

included in the graphic is too high, the density of the graphic can be overwhelm-

ing. Thus, we recommend that the OTU table be filtered to a smaller number of

samples (or categories) and taxa to identify the most important patterns, as we

will show later in this section.

The second script (make otu heatmap html.py) creates an interactive OTU

heatmap from an OTU table (Figure 2.15). This script parses the OTU count

table and filters the table by counts per OTU (user-specified). It then converts

the table into a javascript array, which can be loaded into a web browser. The

OTU heatmap displays raw OTU counts per sample, where the counts are colored

based on the contribution of each OTU to the total OTU count present in the

sample (blue: contributes low percentage of OTUs to sample; red: contributes
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Figure 2.14: Heatmap of OTUs present in the different samples from
transgenic and wild type mice. The intensity of black shows the abundance
of certain OTU in each sample. Both samples and OTUs are sorted by UPGMA
tree and the OTU phylogenetic tree, respectively.
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high percentage of OTUs). This web application allows the user to filter the OTU

table by number of counts per OTU. The user also has the ability to view the table

based on taxonomy assignment. Additional features include: the ability to drag

rows up and down by clicking and dragging on the row headers; and the ability to

zoom in on parts of the heatmap by clicking on the counts within the heatmap.

Figure 2.15: Interactive heatmap of OTUs present in the different sam-
ples from transgenic and wild type mice. This visualization is a result of an
HTML file that can be opened in any web browser. The advantage of this heatmap
is that it is easy to manipulate the abundance level for coloring, or transpose sam-
ples and OTUs between columns and rows.

Improved OTU heatmap visualizations can be generated using the plot -

heatmap() command in the phyloseq package for R [134]. This package takes a

similar approach to NeatMap [164], in that it uses ordination results rather than

hierarchical clustering to determine the index order of each axis. For plot heatmap,

the default color scaling maps a particular shade of blue to a log transformation of

abundance that generally works well for microbiome data, although the user can

select alternative transformations.
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In this example, a key step was proper filtering of the data. We removed

OTUs that appear in only a few samples. The possible contribution to the graphic

of these infrequent OTUs is limited, more often contributing to noise that causes

the heatmap to look dark, empty, and uninterpretable (see Figure 2.14). We used

a non-metric multidimensional scaling of the Bray-Curtis distance to determine

the order of the OTUs and samples. From this representation, it is possible to

distinguish high-level patterns and simultaneously note the samples and OTUs in-

volved. For instance, all but a few of the mouth samples are in a cluster toward the

middle of the heatmap. One of the key features of this group is an obvious relative

overabundance of three Firmicutes OTUs, which are among the most abundant in

this subset of the data. Similarly, another clear pattern is a distinction between a

group of wild type samples from various body sites on the left of the heatmap that

appear to have higher proportions of a number of different Firmicutes OTUs, as

well as a few specific Bacteroidetes OTUs. This is distinct from the largest cluster

of samples on the right-hand side of the heatmap, in which many of the most-

abundant OTUs are a different subset of Bacteroidetes and Firmicutes OTUs. We

also found it helpful to further pursue these high-level patterns by splitting the

data into Firmicutes-only and Bacteroidetes-only subsets, and then plotting new

heatmaps with finer-scale taxonomic labels. This required essentially the same

commands and limited additional effort, well-tailored for exploratory interactive

analysis, much of which we have documented in Supplemental File 1.

Although heatmaps have been deployed widely in molecular biology, espe-
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cially in protein expression studies, some of the other displays we have discussed

such as principal coordinates plots and taxonomy plots often provide more eas-

ily interpretable results. However, summarizing relations between taxa through

ordination plots or network analyses have been shown to be powerful tools for

highlighting similarities and differences among samples and taxa in our OTU ta-

ble, and a carefully constructed heatmap (though not, in most cases, the default

output) can be a useful guide to understanding and hypothesis generation.

OTU category significance. The experimental design of a microbial

study will often involve comparing two or more groups for differences in the abun-

dance of OTUs; for example, are there taxa that significantly differ between the

control group and the experimental group? One way to assess this question is

to compare the relative abundances of each microbial member between the two

groups. This functionality is built into a script called otu category significance.py.

We can test if there are significant differences in OTU abundance between mouse

genotypes either wild type (WT) or transgenic (TG). We can assess differences

between these groups using the following command:

o t u c a t e g o r y s i g n i f i c a n c e . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f / table mc7205 . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt \

−o $PWD/ o p e n r e f o t u c a t e g s i g o u t p u t −c GENOTYPE \

−s ANOVA
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Here we run an ANOVA to assess the relative abundance of each taxon

in the OTU table between our two genotype groups. The output will be written

to a user-specified file called otu cat sig.txt. This document will list the OTU

ID, the raw p-value, the Bonferonni corrected p-value, the False Discovery Rate

(FDR) p-value, as well as the relative average abundance for each of the groups

in the selected category (genotype in our case), and the OTU taxonomy string (if

provided in the initial OTU table). While many of these taxa may be significantly

different between groups according to the raw p-value, it is extremely important

that only p-values that have been corrected for against multiple comparisons, using

either Bonferroni or FDR, be considered as significant. Many times a user’s OTU

table will contain hundreds or thousands of OTUs, and thus a p-value is likely

to reach significance based solely on the large number of statistical comparisons

being computed (for a probability threshold of 0.05, 1 of 20 comparisons results

significant just by chance). It is often very helpful to open the .txt files produced

by otu category significance.py in a spreadsheet so that columns can be sorted

according to p-values.

The otu category significance.py script also contains several other statis-

tics for comparing groups. The g-test can be used to determine if the presence

or absence of a given taxa is significantly different between groups, and can be

specified by passing the option -s g test in the command. The user can also run

a paired t-test to determine whether there are taxa that significantly differ be-

tween two paired points. For example, imagine the experimental design sampled a
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group of mice before and after a dietary intervention. Using the paired-t statistic

in otu category significance.py would then compare each mouse’s after timepoint

to the before timepoint, and test for differences that were consistent across mice,

rather than grouping all the before and after timepoints together. For continuous

variables, QIIME can calculate the Pearson correlations of OTU abundance with

those variables. QIIME is also capable of longitudinal data analysis, which is suit-

able for the samples tracking the same subjects at multiple points in time, e.g.,

the oral microbiota of 6 persons after meals in a day. Specifically, longitudinal

Pearson correlation can be calculated, accounting for intra-subject correlation of

measurements.

Machine learning. QIIME can also take advantage of several machine

learning algorithms to solve two important issues in high-throughput metagenomic

studies: correction of mislabeling, and quantifying sample contamination.

This mislabeling problem is an increasing issue as the number of processed

and pooled sequences increases [89]. This mislabeling can be addressed using

supervised classifiers, a machine learning technique that is able to fix incorrect

metadata. QIIME uses the random forest [16] supervised classifier implemented in

R [113] to recover the mislabeled samples by training the classifier with the relative

abundance taxa [87]. Knights et al. [89] shows that this approach can even recover

up to 30-40% mislabeled samples when the biological patterns are especially clear.

This same technique can be also applied to find taxa that play a key role in

differentiating groups of samples, as is done in OTU category significance. How-
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ever, the difference between OTU category significance and the machine learning

technique is the type of model the construct. While the OTU category signifi-

cance creates an explanatory model (i.e. it gives a model that best fits the current

dataset), the machine learning technique creates a predictive model [87].That is,

it creates a model that is able to generalize future data, minimizing the expected

prediction error.

Since the supervised learning trains a classifier, it is important to provide

useful predictors (OTUs in our case). Thus, it is highly recommended to filter

the input OTU table to remove those OTUs that are present in few samples (e.g.

< 10 samples). As in previous analyses, a rarified OTU table should be used, so

that artificial diversity induced due to different sampling effort is removed. In our

example dataset, we can use the subsampled OTU table generated for previous

analyses and remove the low-abundance OTUs:

f i l t e r o t u s f r o m o t u t a b l e . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f / table mc7205 . biom \

−o $PWD/ d i v e r s i t y a n a l y s i s / open r e f /\

o t u t a b l e f i l t e r e d 1 0 . biom \

−s 10

Running the following command, will run the supervised learning algorithm

using the GENOTYPE category and 10-fold cross-validation, providing mean and

standard deviation of errors:
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s u p e r v i s e d l e a r n i n g . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f /\

o t u t a b l e f i l t e r e d 1 0 . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt −c GENOTYPE \

−o $PWD/ o p e n r e f s u p e r v i s e d l e a r n i n g o u t p u t −e cv10

This script will store several files on the output folder. The most important

file is summary.txt:

cat $PWD/ o p e n r e f s u p e r v i s e d l e a r n i n g o u t p u t /summary . txt

Model Random Forest

Error type 10− f o l d c r o s s v a l i d a t i o n

Estimated e r r o r (mean +/− s . d . ) 0 .23373 +/− 0.15058

Base l i n e e r r o r ( for random gues s ing ) 0 .42308

Ratio b a s e l i n e e r r o r to observed e r r o r 1 .81011

Number o f t r e e s 500

The important information in this file is the Ratio baseline error to observed

error, which shows the ratio between the expected error of the random forest clas-

sifier and the expected error of a classifier that always guesses the most abundant

class (Baseline error). Our recommendation is that a ratio of at least 2 shows a

good classification. In our example data set, this value is 1.81011, which is close

to 2 but not enough to be considered a good classification.

The contamination quantification problem is addressed in QIIME using
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SourceTracker [88]. Given a list of known source environments and a sink (or

set of sinks) environment(s), SourceTracker uses a Bayesian approach jointly with

Gibbs sampling to predict the quantity of taxa that each source, or an unknown

source, contributes to the taxa that makes up the sink environment. For a more

detailed description of the algorithm, see Knights et al. [88].

The first step to use SourceTracker in QIIME is to modify the mapping file

of our example dataset and add two columns: SourceSink and Env. The SourceSink

column tells SourceTracker which sample is a source and which sample is a sink,

while the Env column provides the environment. In our example, we have defined

samples from mouth, ileum, cecum, colon, fecal pellet and skin as sources and

the whole mouse homogenization as a sink. In the Env column we have defined

the environments as the body site (mouth, ileum, cecum, colon, feces, skin and

homogenization).

As a machine learning algorithm, SourceTracker needs useful OTUs (pre-

dictors) as inputs for training the algorithm. Here, we will use the same OTU table

as used for the supervised learning.py script. However, SourceTracker does not yet

accept BIOM tables, so we have to transform them into to a tab-delimited OTU

table (note that this table can also be opened in Excel or other popular tools):

convert biom . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f /\

o t u t a b l e f i l t e r e d 1 0 . biom \
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−o $PWD/ d i v e r s i t y a n a l y s i s / open r e f /\

o t u t a b l e f i l t e r e d 1 0 . txt −b

Then, we can call SourceTracker using the following command (the

$SOURCETRACKER PATH variable should be defined if you have successfully

install SourceTracker):

R −−s l a v e −−v a n i l l a −−args \

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f /\

o t u t a b l e f i l t e r e d 1 0 . txt \

−m $PWD/IQ Bio 16sV4 L001 map ST . txt \

−o $PWD/ o p e n r e f s o u r c e t r a c k e r o u t p u t \

< $SOURCETRACKER PATH/ s o u r c e t r a c k e r f o r q i i m e . r

The output from the SourceTracker algorithm is a set of pdf files that shows

the mixture of the sources that makes up the sink (see Figure 2.16).

Procrustes analysis. When we want to compare samples in PCoA space

that were processed in different ways, such as: different ribosomal RNA subunits,

primer sets, or algorithmic choices for processing, we can use Procrustes analysis

[66, 140, 208]. Procrustes analysis is a statistical shape algorithm that allows us

to compare different distributions by rescaling and applying a rotation matrix;

this is, if the group of samples we are have the same shape but in different size

or orientation the algorithm will resize and rotate them to make the shapes fit.

As an example, we present the results of comparing the different OTU picking
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Figure 2.16: SourceTracker output showing a bar plot for each sink
(mouse) present in the dataset. Each bar is a potential source (body site)
and the height of each bar represents the percentage of taxa the source contributes
to the taxa in the sink. The advantage of this visualization over the other two
(area and pie chart) is that it shows error bars that allow to see the variance of
the prediction.
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algorithms, where we can see that even as the number of OTU clusters change the

distribution described is similar with a confidence of MC p-value: 0.00 and M2:

0.097 for closed-reference vs. de novo, and MC p-value: 0.00 and M2: 0.035 for

closed-reference vs. open reference. Both cases used the first three axes (i.e. the

axes displayed in the plot), and 100 repetitions, Figure 2.17. To generate these

plots we ran these commands:

t r a n s f o r m c o o r d i n a t e m a t r i c e s . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / c l o s e d r e f / bdiv even7205 /\

unwe ighted un i f rac pc . txt ,$PWD/ d i v e r s i t y a n a l y s i s /denovo/\

bdiv even7205 / unwe ighted un i f rac pc . txt \

−r 100 −o $PWD/ p r o c r u s t e s / c l o s e d r e f−denovo

compare 3d plots . py \

− i $PWD/ p r o c r u s t e s / c l o s e d r e f−denovo/ pc1 trans formed . txt ,\

$PWD/ p r o c r u s t e s / c l o s e d r e f−denovo/ pc2 trans formed . txt \

−o $PWD/ p r o c r u s t e s / c l o s e d r e f−denovo/ p l o t \

−m $PWD/IQ Bio 16sV4 L001 map . txt

t r a n s f o r m c o o r d i n a t e m a t r i c e s . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / c l o s e d r e f / bdiv even7205 /\

unwe ighted un i f rac pc . txt ,$PWD/ d i v e r s i t y a n a l y s i s /\
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open r e f / bdiv even7205 / unwe ighted un i f rac pc . txt \

−r 100 −o $PWD/ p r o c r u s t e s / c l o s e d r e f−open r e f

compare 3d plots . py \

− i $PWD/ p r o c r u s t e s / c l o s e d r e f−open r e f /\

pc1 trans formed . txt ,\

$PWD/ p r o c r u s t e s / c l o s e d r e f−open r e f /\

pc2 trans formed . txt \

−o $PWD/ p r o c r u s t e s / c l o s e d r e f−open r e f / p l o t \

−m $PWD/IQ Bio 16sV4 L001 map . txt

Figure 2.17: Procrustes analysis of different picking algorithms, where
we can see that different OTU clustering methods yield similar PCoA
distributions. PCoA plots are colored by BODY HABITAT. A) Comparing sam-
ples with clusters picked using the de novo picking protocol against the closed-
reference. B) Comparing samples with clusters picked using the open-reference
picking protocol against the closed-reference.

SitePainter. Spatial data poses unique challenges, and the types of statis-
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tical analyses described above often obscure spatial patterns [56, 76]. SitePainter

[62] is a web-based tool that creates images representing the geographical (spa-

tial) distribution of our samples, and then color them based on taxonomy sum-

maries (defining which taxa occur where), and PCoA axes (defining how similar

the patches are along the principal axes).

To create a new image we suggest using Adobe Illustrator, Inkscape or

SitePainter. This list is in descending order of usability. In any of these tools,

we need to create a Scalable Vector Graphics (SVG) image that has closed paths,

ellipsoids and rectangles for any path that we want to color; and open paths, lines

or text for those that we want SitePainter to ignore. The latter are useful for

static images and give a nice background for the image. Note that SVG images

are text files, so they can be opened in any graphics program in the list above, or

in any text editor. The difference between an open and closed paths is that the

element in has a letter z at the end of the definition of the lines of the path, so,

for example, <path d=M 10 10 L 30 10 L 20 30 z> is a closed path but <path

d=M 10 10 L 30 10 L 20 30> is an open one.

There are two main QIIME-generated inputs that should be loaded into

SitePainter: taxa summaries and Multidimensional Scaling (MDS) technique re-

sults, including NMDS and PCoA. To exemplify the creation and usage of images

in SitePainter, we will filter the OTU table and the beta diversity file to only have

one mouse. Filtering and summarizing the OTU table:

92



f i l t e r s a m p l e s f r o m o t u t a b l e . py

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f / bdiv even7205 \

/ table mc7205 even7205 . biom \

−m $PWD/IQ Bio 16sV4 L001 map . txt \

−o $PWD/ f o r S i t e P a i n t e r / o t u t a b l e G a i l . biom \

−s GROUP : G a i l

summarize taxa . py \

− i $PWD/ f o r S i t e P a i n t e r / o t u t a b l e G a i l . biom \

−o $PWD/ f o r S i t e P a i n t e r / taxa sum −t

Filtering the beta diversity file and then recalculating PCoA is necessary

every time we add or remove samples of our analyses, because PCoA results depend

on the samples included in the analysis. Thus it is not sufficient to simply remove

samples from PCoA results calculated on a larger set of samples:

f i l t e r d i s t a n c e m a t r i x . py \

− i $PWD/ d i v e r s i t y a n a l y s i s / open r e f / bdiv even7205 \

/ unweighted uni frac dm . txt \

−m IQ Bio 16sV4 L001 map . txt \

−o $PWD/ f o r S i t e P a i n t e r / unweighted uni f rac dm . txt \

−s GROUP : G a i l
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p r i n c i p a l c o o r d i n a t e s . py \

− i $PWD/ f o r S i t e P a i n t e r / unweighted uni f rac dm . txt \

−o $PWD/ f o r S i t e P a i n t e r / unwe ighted un i f rac pc . txt

Then we create an image in Adobe Illustrator that represents the mice and

its gastrointestinal tract, Figure 2.18-A. Once this figure is created and saved in

SVG format (this example uses version 1.1 of SVG), we open the image in any text

editor and replace any letter z with nothing; this will destroy all the closed paths

and will facilitate manipulation in SitePainter.

Figure 2.18: Image representing the mouse and its gastrointestinal tract.
A) Raw image without samples. B) Image in SitePainter with samples. C-D) PCoA
axis 1 and 2, in red high values, in blue low values, similar colors represent similar
communities. E-F) Taxonomic distributions of (E) Betaproteobacteria and (F)
Gammaproteobacteria, in red high abundance, in blue low abundance.

Now, we can open this image in SitePainter by clicking on the pencil/flower
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image on the right corner, choosing Open Image, and select our file. Then we

add the places that we want to color using the rectangle or ellipsoid tool, Figure

2.18-B. Now we need to make our samples in the image match the names of the

sample names from our files; for this we need to click on Elem. -> Click to

update on the right menu, this will show us the current sample names in the

image; then, we double click on each one and change the name to make it match

the sample name in the mapping file. Note that SitePainter does not accept sample

names with dots (.), so if the sample name has this character, we need to replace

it with an underscore ( ). We do not need to change the QIIME files, as this will

happen automatically in SitePainter. When we hover over each name, the sample

will change color, facilitating the identification of the image we are selecting. If

different sites have the same name, they will be colored with the same value from

the QIIME output files.

The final step is to load the resulting QIIME files. To do this, we use the

Metadata loader on the top left of the menu. This opens the file. We then move

the right menu to the Meta. tab. Here we can select which column we want to

use for coloring, and then click Color elements, to select more, Figure 2.18-C-F.

For detailed instructions about changing colors and other details visit SitePainter’s

website 9.

9http://sitepainter.sourceforge.net/tutorials/index.html
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2.1.5 Other features

Testing linear gradients, including time series analysis

Recent microbiome surveys have started integrating gradients (commonly

over time) in their study design. We will discuss a first and general approach for

those cases, using the Moving Pictures of the Human Microbiome Dataset [21],

where two subjects were sampled daily for up to 396 days in three different body

sites (sebum, saliva and feces). Note that the mouse dataset that we use as a

primary example lacks a natural temporal ordering in the study design, so we can

not use it as an example for this analysis.

PCoA plots provide a snapshot about the relative communities of many

samples condensed in a single figure. However, coloring the points in PCoA space

according to a color gradient can be very difficult to understand. A first approach

in this case is to connect the samples belonging to the same subject/treatment

subsequently sorted using the values in the gradient, i.e. one timepoint after the

other (see Figure 2.19 b). An interactive plot like this can be generated using the

following command:

make 3d plots . py \

− i $PWD/ moving p ic tures / unwe ighted un i f rac pc . txt \

−m $PWD/ moving p ic tures / merged co lumns mapping f i l e . txt \

−o $PWD/ moving p ic tures / ve c t o r s \

−−add vec tor s=BODY SITEHOST SUBJECT ID,DAYS SINCE EPOCH
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Figure 2.19: Beta diversity plots for the moving pictures dataset using
unweighted UniFrac as the dissimilarity metric. (a) PCoA plot colored by
the body site and subject. (b) PCoA plot colored by the body site and subject
with connecting lines between samples. Note in (b) that these lines allow us to
track the individual body sites with a different approach.

An important thing to note here is that because we want to track each

of the three body-sites (SampleTypes) for the two subjects (Subject), we need a

column in our mapping file that allows us to make that distinction. Hence we need

to concatenate those two columns in our metadata mapping file using an external

spreadsheet editor or another tool. Also note that the gradient used is a category

named DAYS SINCE EPOCH (i.e. the number of days since January 1, 1970).

The idea here is to have a common reference for the collection date of each of the

samples.

Although a visualization like the one created in the previous example is

often sufficient, replacing one of the axes in the PCoA plot with the data explaining
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the gradient provides a different insight into the analyzed data (See Figure 2.20).

Figure 2.20: Three dimensional plots in which two of the axes are PC1
and PC2 and the other is the day when that sample was collected in
reference to the epoch time. Although this is not explicitly a beta diversity
plot, this representation allows differentiation of the individual trajectories over
time.

make 3d plots . py \

− i $PWD/ moving p ic tures / unwe ighted un i f rac pc . txt \

−m $PWD/ moving p ic tures / merged co lumns mapping f i l e . txt \

−o $PWD/ moving p ic tures / ve c t o r s \

−−add vec tor s=BODY SITEHOST SUBJECT ID,DAYS SINCE EPOCH \

−a DAYS SINCE EPOCH

These visual representations can often identify meaningful patterns. To

statistically support these assertions, one-way analysis of variance (ANOVA) can

be used over the values grouped by a category of interest. In a case where user

wants to test for independence between the variation of one group of trajectories

and another, this command could be used:
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make 3d plots . py \

i unwe ighted un i f rac pc . txt \

m mapp ing f i l e . txt o ve c t o r s \

a d d v e c t o r s=SampleTypeAndSubject , day s s in c e epoch \

a days s in c e epoch −−v e c t o r s a l g o r i t h m avg \

−−vec to r s pa th anova s ta t s . txt

Processing 454 data

We have described the recommended workflow for conducting microbial

community analysis on an Illumina MiSeq dataset. However, QIIME can also

perform microbial community analysis on the 454 platform. The main advantage

of 454 over Illumina is that 454 generates longer sequences, which can allow a

better taxonomy assignment. However, the 454 technology produces fewer reads

per dollar, or per sequencing run [96].

The 454 processing workflow differs from the Illumina workflow in the se-

quence preprocessing. In this case, the output file from the sequencing facility is a

fasta file containing the reads, and a quality score file which contains the score for

each base in each sequence included in the FASTA file. In this case, the command

used for the 454 preprocessing is split libraries.py:

s p l i t l i b r a r i e s . py \

−m Fasting map . txt −f Fasting Example . fna \
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−q Fasting Example . qual −o s l o u t

Similarly to the Illumina processing, this script also performs a quality

filtering. In this case, the quality filtering is based on cut-offs for sequence length,

end-trimming or minimum quality score. However, to successfully remove the read

artifacts, a denoising process has to be performed [168] to reduce the impact of

homopolymer runs (runs of the same base). The 454 denoising process is a slow,

computationally intensive problem that does not scale to large datasets, as it is

based on flowgram clustering [161].

Variable length barcodes Variable-length barcodes are used for two rea-

sons: to make the number of flows (rather than the number of bases) constant [51],

or to stagger the reads to reduce bad signal from low complexity at a given position

in the set of amplicons being sequenced. This approach is not recommended today

because such samples are not easily demultiplexed, and there is checksum, like

Hamming or Golay, that allows error-correction and improved sample assignment

[73]. However, the HMP used variable length barcodes to identify their samples

within sequencing runs. Thus, QIIME allows demultiplexing such files by using

the parameter -b in split libraries.py, as follows:

s p l i t l i b r a r i e s . py \

−m m a p f i l e w i t h v a r i a b l e l e n g t h b a r c o d e s . txt \

−f your fna . fna −q your qua l . qual \

−o s p l i t l i b r a r y o u t p u t v a r i a b l e l e n g t h / \
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−b v a r i a b l e l e n g t h

18S rRNA gene sequencing

QIIME can be also used to perform analysis on 18S rRNA gene sequence

data (in eukaryotes), as well as other markers such as Internal Transcribed Spacer

(ITS). The main difference between performing analyses with 18S rRNA gene

data instead of 16S rRNA gene data (or ITS data) is the reference database used

for OTU picking, the taxonomic assignments and the template-based alignment

building, since it must contain eukaryotic sequences.

The recommended database to use as a reference for 18S rRNA sequences is

the Silva database [158]. At the time of writing, the most recent QIIME-compatible

Silva database is the 108 release. Since this database contains the three domains

of life, it can be used as a reference for 18S rRNA data sets.

When conducting studies mixing 18S rRNA data and 16S rRNA data, you

should take into account that picking OTUs against the Silva database will assign

taxa to all three domains of life. In this case, it is recommended to split the OTU

table by domain, generating an OTU for each domain (Archaea, Bacteria and

Eukarya). At this point, each of these tables can be used in downstream analysis

in the same way as performed for 16S rRNA data.
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Shotgun metagenomics

Shotgun metagenomics is also supported in QIIME, although it is still ex-

perimental and it should be used at the user’s own risk. Currently, the QIIME

team recommends the blat method [85] for searching nucleic acid sequence reads

in a reference database, although usearch [43] is also supported. The main reason

for preferring blat against usearch is that protein reference database often require

64-bit applications, and blat is free of charge, while the 64 bit version of usearch

is not.

There are many reference databases (IMG, KEGG, M5nr, among others),

and they all supported by QIIME, since the user only needs to supply a single

fasta file containing the sequence records. The command that QIIME provides for

mapping reads against the reference database is map reads to reference.py, and it

can be performed in parallel using the parallel map reads to reference.py script.

Support for QIIME in R

First published in 1996, R is an integrated software application and pro-

gramming language designed for interactive data analysis (R Core Team). It is

available for Linux, Mac OS, and Windows free of charge under an open-source

license (GPL2). Since its inception, R has found a niche as a tool for interactive

statistical analysis through functional programming. Primary investigation and

inference are performed by writing a series of repeatable commands as scripts that

can be recorded and published. This paradigm lends itself well to reproducible
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research, and is enhanced substantially by R’s integration with tools for literate

programming such as Sweave [53], knitr [222], and R markdown 10, as well as data

graphics. There are thousands of free and open-source extensions to R (packages)

available from the main R repository, CRAN, further organized by volunteer ex-

perts into 31 task views (which are in fact workflow inventories). Among these

are dedicated package lists relevant to microbiome data, including phylogenetics,

clustering, environmetrics, machine learning, multivariate and spatial statistics, as

well as a separate reviewed and curated repository dedicated to biological statistics

called Bioconductor (over 600 packages).

At present, support for QIIME in R is predominantly achieved through

a package called phyloseq [134] dedicated to the reproducible analysis of micro-

biome census data in R. phyloseq defines an object-oriented data class for the

consistent representation of related (heterogenous) microbiome census data that

is independent of the sequencing- or OTU-clustering method (storing OTU abun-

dance, taxonomy classification, phylogenetic relationships, representative biologi-

cal sequences and sample covariates). The package supports QIIME by including

functions for importing data from biom-format files derived from more recent ver-

sions of QIIME (import biom) as well as legacy OTU-taxonomy delimited files

(import qiime and related user accessible subfunctions). Later editions of phy-

loseq (>1.5.15) also include an API for importing data directly from the micro-

bio.me/qiime data repository. In all cases, these API functions return an instance

10http://CRAN.R-project.org/package=markdown
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of the phyloseq class that contains the available heterogenous components in native

R classes. phyloseq includes a number of tools for connecting with other micro-

biome analysis functions available in other R packages, as well as its own functions

for flexible graphics production built using ggplot2 [218], demonstrated in supple-

mental files and online tutorials. For researchers interested in developing or using

methods not directly supported by phyloseq, nor its data infrastructure, the biom-

format specific core functions in phyloseq have been migrated to an official API in

the biom-format project as an installable R package called biom, now released on

CRAN. This also includes some biom-format specific functionality that is beyond

the scope of phyloseq, though support for QIIME is still likely best achieved using

phyloseq.

As with some of the earlier examples of QIIME commands with correspond-

ing output and figures, in this section we have included some key R commands

potentially useful during interactive analysis in the R environment. For simplic-

ity, show only results related to the open-reference OTU data, stored in an object

in our examples named open, and imported into R using the phyloseq command

import biom.

open = import biom ( p a t h −to− f i l e . b i o m , )

Additional input data files can also be provided to import biom, or merged

with open after its instantiation. For clarity, subsets and transformations of the

data in open are stored in objects having names that begin with open. As with the
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remainder of the examples highlighted in this section, the complete code sufficient

for reproducing all results and figures are included in the R Markdown originated

document, Supplemental File 1, which includes several additional examples not

shown here, and is available with supporting files on GitHub11.

Although not always very illuminating, a comparison of OTU-richness be-

tween samples or groups of samples can easily be achieved with the plot richness

command. For the most precise estimates of richness for most samples, this should

be performed before random subsampling or other transformations of the abun-

dance data. Here open contains data that has already been randomly subsampled.

In figure 2.21 we can see that the wild type samples are generally more diverse

(higher richness) and somewhat more variable than the transgenic samples for es-

sentially all body sites, though the differences between the two mice genotypes are

small.

p l o t r i c h n e s s (

open , x= B O D Y S I T E ,

c o l o r = G E N O T Y P E ) + geom boxplot ( )

This plot command also illustrates the use of a function in ggplot2, geom -

boxplot, that instructs the ggplot2 graphics engine to add an additional graphical

element in this case a boxplot for each of the natural groups in the graphic.

These available additional graphical instructions (called layers in the grammar of

graphics nomenclature) are embedded with the returned plot object for subsequent

11https://github.com/joey711/navasetal
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Figure 2.21: Categorically summarized OTU richness estimates using
the plot richness function. Samples are grouped on the horizontal axis accord-
ing to body site, and color shading indicates the mouse genotype. The vertical
axis indicates the richness estimates in number of distinct OTUs, and a separate
boxplot is overlaid on the points for each combination of genotype and body site.
The S.obs, S.chao1, and S.ACE panels show the rarefied observed richness, Chao-1
richness, and ACE richness estimates, respectively
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rendering, inspection, or further modification, allowing for powerfully customized

representations of the data.

Here is an example leveraging the abundance bar plot function from phy-

loseq, plot barr, in order to compare the relative abundances of key phyla between

the wild type and transgenic mice across body sites. The first step was actually

some additional data transformations (not shown, see Supplemental File 1) in or-

der to subset the data to only major expected phyla (subset taxa), merge OTUs

from the same phyla as one entry (merge taxa), and merge samples from the same

body site and mouse genotype (merge samples).

p2 = p l o t b a r (

openphyab , b o d y s i t e ,

f i l l = p h y l a , t i t l e = t i t l e )

p2 + f a c e t g i r d ( GENOTYPE )

From this first bar plot it is clear that all body sites from the average wild

type mouse have Firmicutes as their phylum of largest cumulative proportion,

except for the feces, where it is anyway a close call between Firmicutes and Bac-

teroidetes. By contrast, some of the average transgenic mice samples have a much

higher proportion of Proteobacteria or Bacteroidetes than the corresponding wild

type samples. One drawback to this type of stacked bar representation is that it is

difficult to compare any of the sub-bars except for those at the bottom. If needed,

this can be alleviated by changing the facet grid call such that a separate panel is
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made for each phyla in the dataset, as follows.

p2 + f a c e t g r i d (

phyla GENOTYPE) + ylim (0 , 100)

With essentially the same effort to produce, the 14 panels of this second bar

plot graphic allow an easy and quantitative comparison of the relative abundances

of each phylum across body sites and genotype.

Microbiome datasets can be highly multivariate in nature, and dimensional

reduction (ordination) methods can be a useful form of exploratory analysis to bet-

ter understand some of the largest patterns in the data. Many ordination methods

are wrapped in phyloseq by the ordinate function, and many more are offered

in available R packages. Here we show an example performing multidimensional

scaling (MDS) on the precomputed unweighted UniFrac distance matrix for the

open-reference dataset. The ordination result (openUUFMDS) is first passed to

plot scree in order to explore the scree plot representing the relative proportions

of variability represented by each successive axis. Both the ordination result and

the original data are then passed to plot ordination with sufficient parameters to

shade the sample points by genotype, and create separate panels for each body

site.

openUUFMDS = ord ina te (

open , M D S ,

d i s t ance = UniFrac [ [ u n w e i g h t e d ] ] [ [ o p e n ] ] )
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p l o t s c r e e (openUUFMDS, U n w e i g h t e d Uni f rac M D S )

p l o t o r d i n a t i o n ( open , openUUFMDS, c o l o r = G E N O T Y P E )

+ geom point ( s i z e = 5) + face t wrap ( BODY SITE )

It appears that a subset of the wild-type samples from all but the mouth

and abdomen-skin body sites cluster toward the left of the plot. This appears to

be the major pattern along the axis that also comprises the greatest proportion

of variability in the dataset. At this stage of analysis it seems worthwhile to try

to identify which OTU abundances are most different between these groups, and

then perform some formal validation/testing of these differences.

2.1.6 Recommendations

Here, we highlight some of the main aspects to take into account when

performing microbial community analysis:

• Use the open-reference OTU picking approach if your data allows it. It will

reduce the running time and will recover all the diversity in your samples.

• Perform an OTU quality filtering based on abundance, by removing single-

tons, for instance. See [14] for further discussion on how to tune this quality

filtering and its effects on downstream analysis. Quality filtering is critical

for obtaining reasonable numbers of OTUs from a sample.

• Consider whether you need to remove specific taxa from your study, such
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chloroplast or host DNA sequences when analyzing microbial datasets.

• Remove samples from your study that have low coverage (i.e. low OTU

counts). They are likely uninformative and usually indicate low-quality reads.

• Rarefy your OTU table in order to mitigate the differences on the sequencing

effort, so the downstream diversity analyses wont be biased by the artificial

diversity generated due to the difference in sequencing depth.

2.1.7 Conclusions

QIIME is a powerful tool for the analysis of bacterial community allowing

researchers to recapitulate the necessary steps in the processing of sequences from

the raw data to the visualizations and interpretation of the results. Two advantages

make QIIME very useful: fidelity to the algorithms used, and consistency in the

analysis. Fidelity is obtained because QIIME wraps existing software, preserving

the integrity of the original programs and algorithms designed, created, and tested

by the original authors. Consistency is obtained because QIIME can be applied

to sequences from different platforms, and once the upstream process is done; the

analysis (downstream) process is the same independent of the sequencing platform

used. These characteristics, together with the fact that QIIME is open-source

software with continuous support to users via QIIME forum, have promoted the

rapid increase in the QIIME user community since its publication [20].

Downstream and upstream processes are implemented in QIIME in a way
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that offers several options to perform the analyses. In this review, we discuss and

demonstrate the principles for each step, what the scripts do and how to choose

between options. Independent of the use of QIIME, this review also provides an

overview of many of the typical steps in a microbial community analysis based on

analysis of 16S rRNA sequences produced by high-throughput sequencing. Some

of these tools are well developed with a long history in general ecology, whereas

others are still in rapid development; we encourage microbial ecologists and bioin-

formaticians to work together to create, develop and implement new strategies and

tools that allow further exploration of this fascinating field.

2.1.8 Acknowledgments

We thank William A Walters and Jessica Metcalf for productive discussion

and their useful comments about QIIME. We also acknowledge Manuel Lladser for

helping collect the dataset and allowing us to use it, and the IQBio IGERT grant

for funding data collection. JANM is supported by a graduate scholarship funded

jointly by the Balsells Foundation and by the University of Colorado at Boulder.

SH is partially supported by NIH grant R01 GM086884. This work was partially

supported by the Howard Hughes Medical Institute.

111



2.2 Bottlenecks in large scale microbial studies:

sequence clustering

Section 2.1 described a microbial community analysis pipeline in depth.

In that pipeline, one of the most time-consuming steps is performing sequence

clustering (also known as OTU picking). Sequence clustering is the processing

step that groups sequences into OTUs based on sequence similarity. The OTUs

found in a sample are used as an approximation of the species richness in the

given niche. Sequence similarity is computed using pairwise sequence alignment

[145, 185], an expensive computational task that is quadratic in the length of the

input sequences and the number of input sequences. With datasets containing from

a few hundred thousand reads to a few billion reads [64], performing all pairwise

sequence alginments is too computationally expensive to be performed in a timely

manner. The sequence clustering problem shares characteristics with the biological

sequence database search problem, which has been studied for more than 30 years.

Sections 2.2.1, 2.2.2 and 2.2.3, contain a summary of my contributions to optimize

the sequence clustering step of microbial community datasets analysis.

Section 2.2.1 has been adapted from the original publication in “Subsampled

open-reference clustering creates consistent, comprehensive OTU definitions and

scales to billions of sequences”. J. R. Rideout, Y. He, J. A. Navas-Molina, W.A.

Walters, L. K. Ursell, S. M. Gibbons, J. Chase, D. McDonald, A. Gonzalez, A.

Robbins-Pianka, J. C. Clemente, J. A. Gilbert, S. M. Huse, H. W. Zhou, R. Knight
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and J. G. Caporaso. PeerJ, 2014, DOI: 10.7717/peerj.545.

Section 2.2.2 has been adapted from the original publication in “Open-

source sequence clustering methods improve the State of the Art”. E. Kopylova,

J. A. Navas-Molina, C. Mercier, Z. Z. Xu, F. Mahe, Y. He, H. Zhou, T. Rognes,

J. G. Caporaso, R. Knight mSystems, 2016, DOI: 10.1128/mSystems.00003-15

Section 2.2.3 has been adapted from the original publication in “Deblur

rapidly resolves single-nucleotide community sequence patterns”. A. Amir, D. Mc-

Donald, J. A. Navas-Molina, E. Kopylova, J. T. Morton, Z. Z. Xu, E. P. Kightley,

L. R. Thompson, E. R. Hyde, A. Gonzalez, R. Knight mSystems, 2017, DOI:

10.1128/mSystems.00191-16

2.2.1 Subsampled open-reference clustering creates consis-

tent, comprehensive OTU definitions and scales to

billions of sequences

Section 2.1 described three different OTU picking approaches: closed-

reference, de-novo and open-reference. The open-reference approach was the rec-

ommended approach because it offers benefits over the other two approaches. The

open-reference approach run time is shorter than the de-novo approach because it

includes a parallel closed-reference step. Additionally, the open-reference approach

doesn’t discard any sequences from the input dataset because it contains a de-novo

step. However, if the microbial organisms present in an environment have not been

113



previously characterized and included in the reference database, many sequences

will fail to cluster during the closed-reference step, generating long running times

on the de-novo step. To further reduce the running time of the open-reference

approach, we presented a new approach: the subsampled open-reference approach

[170].

The following text has been adapted from the original publication in PeerJ,

2014. As a contributor to this manuscript, I was involved in the design of the

subsampled open-reference pipeline, contributed to the source code, performed

some of its evaluations, wrote sections of the manuscript and reviewed drafts of

the manuscript.

A detailed description of the workflow is illustrated in Figure 2.22. It is

implemented using UCLUST v1.2.22q [43] for clustering in QIIME-1.6.0 [20] and

later, though any sequence clustering software that provides support for de-novo

and closed-reference clustering could be substituted for UCLUST. The inputs pro-

vided to this method are demultiplexed, quality-filtered sequences, and a reference

sequence collection (for example, the Greengenes 13 8 97% OTU representative se-

quences [37, 131]). First, sequences are clustered in parallel using a closed-reference

OTU picking workflow, where sequences are queried against the reference database

at percent identity s (default 97%). If a read matches a reference sequence at

greater than or equal to s% identity, it is assigned to the OTU defined by that

reference sequence. These are referred to as the reference OTUs. Next, a random

subsample of n% (n should be small, the default value in QIIME 1.8.0-dev and
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earlier is 0.1%) of the sequences that failed to match the reference sequence col-

lection are clustered de-novo, and the cluster centroids for all resulting OTUs are

used to define a new reference sequence collection. Those OTUs are referred to

as the new reference OTUs. The sequences that were not included in the random

subsample that was clustered de-novo then go through an additional round of par-

allel closed-reference OTU picking, this time where they are clustered against the

new reference OTUs based on matching a sequence in the new reference sequence

collection at greater than or equal to s% identity. This creation of a new reference

database allows us to harness the parallelization of our closed-reference OTU pick-

ing pipeline, greatly decreasing the time it takes for sequences that fail to hit the

initial reference database to be clustered into OTUs. In the final clustering step,

sequences that fail to hit a reference sequence during this final closed-reference

OTU picking step are clustered de-novo. These are referred to as the clean-up

OTUs. Finally, the reference OTUs, new reference OTUs, and clean-up OTUs are

combined into a single OTU table (i.e., table of counts of OTUs on a per-sample

basis, as described in [130]), and this table, as well as a filtered table excluding

OTUs with counts less than or equal to a user-defined threshold c, are provided to

the user. By default, c = 2, so each OTU is observed at least twice (i.e., singleton

OTUs are excluded). Because many more of the sequences can be clustered using

closed-reference OTU picking in this workflow, it can run in far less time than

classic open-reference OTU picking.

We validated the subsampled open-reference OTU picking workflow by com-
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Figure 2.22: Schematic of the subsampled open-reference OTU picking
algorithm.
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paring it to the classic (i.e. non subsampled) open-reference clustering methods on

three different datasets: the Lauber “88 Soils” study [103] (referred to as 88-soils

here), the Caporaso “Moving Pictures” study [21] (referred to as moving-pictures

here), and the Costello “Whole Body” study [30] (referred to as whole-body here)

using three metrics. First, we tested the correlation between sample alpha di-

versities (OTU counts, i.e. QIIME’s observed species metric and Phylogenetic

Diversity (PD) [48]) based on subsampled open-reference OTU picking and the

classic open-reference clustering. Next, we tested whether beta diversity patterns

(as determined by weighted and unweighted UniFrac [118] distances between sam-

ples) were consistent across OTU picking protocols, based on Mantel tests [127]

with 1,000 Monte Carlo iterations. Finally, we tested whether the same taxonomic

profiles were obtained on a per-sample basis using each of the OTU picking meth-

ods. It is important to note that we are not trying to assess whether one method

is better than another using these metrics. Instead we are testing whether the

methods give highly correlated results.

Alpha diversity (whole-body PD Pearson r = 0.989 ; 88-soils PD Pearson

r = 0.930 ; moving-pictures PD Pearson r = 0.996 ), beta diversity (whole-body

unweighted UniFrac Mantel r = 0.948 ; 88-soils unweighted UniFrac Mantel r =

0.939 ; moving-pictures unweighted UniFrac Mantel r = 0.991 ) and taxonomic

summaries (whole-body: r = 0.999 at phylum level, 0.999 at species level; 88-

soils r = 0.999 at phylum level, r = 0.999 at species level; moving-pictures r =

0.999 at phylum level, r = 0.999 at species level) were highly correlated between
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classic and subsampled open-reference OTU picking. Minor differences likely arise

from the non-deterministic step of rarefying all samples to even sampling depth

before comparing samples. These results suggest that subsampled open-reference

picking yields the same results as classic open-reference OTU picking, including

identical numbers of sequences failing to hit the reference database, and therefore

is a suitable replacement.

2.2.2 Open-source sequence clustering methods improve

the State of the Art

Section 2.2.1 described a faster approach to perform open-reference OTU

picking. The OTUs quality and the final running time are dependant on the actual

underlying tool being used to perform the OTU picking. In the previous section,

UCLUST v1.2.22q [43] was used, which was developed in 2010, and had become

the default option for researchers performing micorbial community analysis. Since

then, new tools have been published in the literature and a comprehensive bench-

mark of those tools was needed to evaluate if a new, faster, more accurate tool was

available.

The following material has been adapted from the original publication in

mSystems, 2016. As a contributor to this manuscript, I was involved in the integra-

tion of the new tools in QIIME, contributed to the experimental design, provided

input about the compatible OTU definitions, performed some of the benchmarks,
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wrote sections of the manuscript and reviewed drafts of the manuscript.

Between 2012 and 2015, four new sequence-clustering tools have emerged:

OTUCLUST from the Micca package [2], Swarm [124, 125], SUMACLUST (C.

Mercier, F. Boyer, E. Kopylova, P. Taberlet, A. Bonin, and E. Coissac, submitted

for publication), and SortMeRNA [92]. These tools include open-source imple-

mentation, and the latter three implement multilevel parallelization, providing

excellent potential alternatives to UCLUST [43]. In this study, we evaluated these

new open-source tools and compared them against UCLUST and USEARCH, two

commonly used options available in QIIME, UPARSE [44], the latest USEARCH

amplicon analysis pipeline, and the three hierarchical clustering algorithms avail-

able in mothur [177].

A variety of datasets were chosen to evaluate the performance of these open-

source OTU clustering approaches relative to QIIMEs UCLUST/USEARCH-based

OTU clustering approaches as well as UPARSE. Two 16S rRNA gene simulated

datasets were generated as FASTQ files. The first one (sim even) represents an

even distribution of 1,076 species, randomly subsampled from the Greengenes 97%

[37, 131] database and computationally amplified at the same depth (100 read-

s/amplicon) and length (150 base pairs (bp)) using PrimerProspector [211] for ex-

tracting the V4 region and the ART [79] simulator for amplification and sequencing

simulation. The second data set (sim staggered) represents the same 1,076 species

as the sim even data set but amplified at different (random) species abundance

levels. We used four different previously published mock community data sets:
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three 16S rRNA gene mock community data sets (Bokulich 2, Bokulich 3, and

Bokulich 6 ) from Bokulich et al. [14] and an 18S gene (mock nematodes) data

set from Porazinska et al. [155]. Finally, we also used three previously published

natural data sets: a 16S rRNA gene soil data set (canadian soil) from Neufeld et

al. [147], a 16S rRNA gene human data set (body sites) from Costello et al. [30],

and an 18S rRNA gene soil data set (global soil) from Ramirez et al. [165].

Performance was evaluated using a variety of metrics, including the accu-

racy of OTU and taxonomic assignments, alpha diversity (within-sample diver-

sity), beta diversity (between-sample diversity), and taxonomic correlation. All

tools showed increased precision after the removal of singleton OTUs (OTUs con-

sisting of only one sequence), so all results presented here have had singleton OTUs

removed. Table 2.4 summarizes basic performance results for all software.

We found that Swarm, SUMACLUST, UCLUST, and UPARSE (with re-

laxed parameters) performed equally well on simulated datasets where the ground

truth was well established, with mothur average and OTUCLUST closely behind.

Despite this controlled chimera-free environment, UPARSE with recommended

parameters reported the lowest accuracy for the sim staggered data set, implying

that stringent quality filtering can cause a significant underestimation of species

abundance and diversity and lead to incorrect biological results. For the mock

communities, most tools were able to correctly detect the expected number and

identity of genera, but only UPARSE reported significantly fewer false-positive

taxa (followed by OTUCLUST and USEARCH). For UPARSE, this was expected,
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as a large proportion of reads was filtered out prior to clustering, leaving evi-

dence of only the most abundant taxa (OTUs comprised of hundreds of thousands

of reads). The majority of false-positive taxa reported by other tools were low-

abundance OTUs that could be mapped to Basic Local Alignment Search Tool

(BLAST)s NT database with very high similarity (E value, < 1e50). If the users

primary goal is to focus on the most abundant microbial profiles, low-abundance

OTUs may be filtered out postclustering, but care should be taken, because such

low-abundance OTUs can be important members of communities [179].

Although most open-source tools report an increased run time in compar-

ison to UCLUST and USEARCH 2.23, they provide the benefit of finding sig-

nificantly fewer OTUs. In the case of SortMeRNA, longer reads ( 150 bp) are

quicker to align than the same number of shorter reads ( 100 bp) due to many

fewer high-scoring candidate reference sequences to analyze. Moreover, all of these

tools support multilevel multithreading and can easily scale to modern big-data

processing demands. An alternative to reducing run time is to filter out a substan-

tial number of reads, as done by UPARSE; unfortunately, the filtering parameters

are sensitive to different data, and choosing them manually by trial and error can

be a time-consuming task with unpredictable outcomes in diversity.
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Figure 2.23: Runtime performance of all benchmarked software. All
tests were performed using 1 to 32 coers on Intel Xeon CPU E5-2640 v3 at 2.60
GHz. Input files contained reads subsampled from the Global Gut [224]. For serial
performance, some tools do not show results for 108 reads due to exceeding wall
time limit (230 hours) or failed memory allocation. For parallel performance, a
single file containing 1 million Illumina sequences was used over multiple threads

123



2.2.3 Deblur rapidly resolves single-nucleotide community

sequence patterns

Sections 2.2.1 and 2.2.2 were focused on improving the performance of the

OTU picking process for analyzing microbial community datasets. OTUs are de-

fined to approximate the species richness of a sample, and reduce the effects of the

sequencing error from Next Generation Sequencing (NGS) technologies. However,

OTUs are based on an arbitrary sequence identity threshold (typically 97%), which

reduces the phylogenetic resolution, because two sequences that are more similar

than the identity threshold can’t be differentiated. To assess this problem, we

presented a new method, Deblur, that instead of grouping sequences based on an

arbitrary sequence identy threshold, uses statistical methods to find the underlying

true sequence and remove erroneus sequences [6].

The following material has been adapted from the original publication in

mSystems, 2016. As a contributor to this manuscript, I was involved in the dis-

cussions of the Deblur pipeline, contributed to the source code, generated figures

for the manuscript and reviewed drafts of the manuscript.

Similar in concept to AmpliconNoise [161], a denoising method for py-

rosequencing, Deblur, like DADA2 [18] and UNOISE2 [45], attempts to obtain

single-nucleotide resolution from Illumina data with statistical methods to infer

the putative true sequences within a sample that give rise to the distribution of

observed error-prone sequences. Unlike DADA2 and UNOISE2, Deblur operates on
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each sample independently. It compares sequence-to-sequence Hamming distances

within a sample to an upper-bound error profile combined with a greedy algorithm

to obtain single-nucleotide resolution. The Deblur algorithm is implemented as

follows (see Figure 2.24). First, sequences are sorted by abundance. Second, from

the most to least abundant sequence, the number of predicted error-derived reads

is subtracted from neighboring reads based on their Hamming distance, using an

upper bound on the error probability. A parameterized maximal probability for

indels (defaulting to 0.01) and a parameterized mean read error rate for normal-

ization (defaulting to 0.5%) are included. Finally, any sequence whose abundance

drops to 0 after a subtraction is removed from the list of valid sequences. Sequences

not considered to be valid (i.e., noise) are removed. After applying Deblur, only

reads likely to have been presented to the sequencer are retained. However, it is

possible that the reads would still contain chimeras originating from PCR. Reads

are filtered for de novo chimeras using UCHIME [46] as implemented by VSEARCH

[172] using modified parameters.

Stability (i.e., obtaining the same sOTU across different samples) is becom-

ing critical as more study designs exploit existing samples from resources like the

Earth Microbiome Project [58] or require integration of sequence data collected

over time such as the American Gut Project 12. We compared the levels of stabil-

ity of Deblur and DADA2 using technical replicates from a data set consisting of

40 individuals, each with one fecal sample sequenced twice on two separate MiSeq

12http://americangut.org
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Figure 2.24: The deblur pipeline. A demultiplexed and quality filtered fasta/-
fastq file (or a directory of per-sample fasta/fastq files) is used as the input to the
pipeline. Following initial splitting to per-sample fasta files, all processing is done
independently on each sample. Sequences are trimmed and dereplicated with sin-
gletons removed. Reads are then depleted from sequencing artifacts either using a
set of known sequencing artifacts (such as PhiX) (negative filtering) or using a set
of known 16S sequences (positive filtering). Resulting nonartifact reads are then
aligned for easy indel detection. This multiple sequence alignment is then used as
the input for the Deblur algorithm. Each Deblurred sample is then checked for
de novo chimeras, and the resulting sOTUs from all samples are combined into a
single BIOM [130] table (with sequences labeled as the sOTU IDs)
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runs [77]. sOTUs for each run were assessed separately, and we compared the

fractions of sOTUs from one run to those present in the second run, as a function

of the minimal sOTU frequency. Deblur showed greater stability than DADA2

at a higher frequency cutoff (Figure 2.25-A), indicating that a larger fraction of

sOTUs from the first run were also identified in the second run.

Next, we compared DADA2 and Deblur using a complex natural commu-

nity and a previously published data set of fecal samples from two species of

howler monkeys [4]. Deblur and DADA2 detected 1,938 and 1,636 sOTUs, respec-

tively, after removal of sOTUs with fewer than 10 total reads from each method.

Following filtering, about 70% of the sOTUs were identical between the meth-

ods. As expected, both methods identified differential sOTUs (permutation-based

rank mean test; 0.1 false-discovery rateBenjamini-Hochberg method [FDR-BH]

control value) with 61% of Deblur sOTUs differentiating between primate species

(1,193/1,938), compared to 55% of DADA2 sOTUs (891/1,636). To assess whether

the sOTUs unique to either method were from increased numbers of artifacts, we

used BLAST [3] to compare each unique sequence against nt/nr and plotted the

fraction of sOTUs with zero, one, or two mismatches. We observed that sOTUs

unique to Deblur showed fewer mismatches than those unique to DADA2 (Fig-

ure 2.25-B). The distribution of sOTUs over the monkey samples suggests that

the sOTUs unique to Deblur are more plausible because they show a pattern sim-

ilar to those identified by both methods, whereas the sOTUs unique to DADA2

have markedly different patterns of clusters of unique sOTUs within single samples
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(Figure 2.25-C).

Finally, to explore performance characteristics, we used a MiSeq run from

the stability analysis in order to assess computational space and time demands

of DADA2, Deblur, and UNOISE2 (where possible) over an increasing number of

samples. UNOISE2 was an order of magnitude faster than Deblur, while Deblur

was an order of magnitude faster than DADA2 (Figure 2.25-D).
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Figure 2.25: Benchmarks of OTU picking tools on natural communities.
(A) Stability analysis on experimental technical repeats. Data indicate fractions
of overlapping sOTUs from two technical replicates in all OTUs as a function
of the minimal frequency threshold present in one of the repeats. (B and C)
Application of Deblur in the howler monkey data set. (B) Fraction of sequences
matching entries in the NCBI nr/nt database (as of 1 December 2016) with 0.1 or 2
mismatches (red, green, or blue, respectively) from sOTUs unique to Deblur or to
DADA2 or present in both (left to right). (C) Heat maps showing sOTUs (rows) in
common with Deblur and DADA2, as well as those unique to Deblur and DADA2
(bottom, middle, and top rows, respectively). Samples (columns) are sorted by
species and habitat. A total of 200 sOTUs per group (i.e., common, unique to
Deblur, or unique to DADA2) were randomly selected for visualization purposes.
(D) Single-threaded runtime comparison of Deblur, DADA2, and UNOISE2 against
one of the stability MiSeq runs at increasing numbers of samples.
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2.3 Applying these tools to advance microbiome

science

Sections 2.1 and 2.2 presented my work on standardizing and improving

the pipelines to analyze microbial community data. Sections 2.3.1, 2.3.2, 2.3.3

and 2.3.4 provide examples of manuscripts that I have been involved in that have

taken advantage of my work presented so far.

Section 2.3.1 has been adapted from the original publication in “The oral

and skin microbiomes of captive Komodo dragons are significantly shared with

their habitat”. E.R. Hyde, J. A. Navas-Molina, S. J. Song, J. G. Kueneman,

G. Ackermann, C. Cardona, G. Humphrey, D. Boyer, T. Weaver, J. R. Mendel-

son, V. J. McKenzie, J. A. Gilbert, R. Knight mSystems, 2016. DOI: 10.1128/

mSystems.00046-16

Section 2.3.2 has been adapted from the original publication in “A commu-

nal catalogue reveals Earth’s multiscale microbial diversity”. Nature L. R. Thomp-

son, J. G. Sanders, D. McDonald, A. Amir, J. Ladau, K. J. Locey, R. J. Prill, A.

Tripathi, S. M. Gibbons, G. Ackermann, J. A. Navas-Molina, S. Janssen, E. Kopy-

lova, Y. Vazquez-Baeza, A. Gonzalez, J. T. Morton, S. Mirarab, Z. Z. Xu, L.

Jiang, M. F. Haroon, J. Kanbar, Q. Zhu, S. J. Song, T. Kosciolek, N. A. Bokulich,

J. Lefler, C. J. Brislawn, G. Humphrey, S. M. Owens, J. Hampton-Marcell, D.

Berg-Lyons, V. McKenzie, N. Fierer, J. A. Fuhrman, A. Clauset, R. L. Stevens,

A. Shade, K. S. Pollard, K. D. Goodwin, J. K. Jansson, J. A. Gilbert, R. Knight,
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The Earth Microbiome Project Consortium, 2017. DOI: 10.0.4.14/nature24621

Section 2.3.3, in part, has been submitted for publication of the material

as it may appear in Science, 2018, D. McDonald, E. R. Hyde, J. W. Debelius, J.

T. Morton, A. Gonzalez, G. Ackermann, A. A. Aksenov, B. Behsaz, C. Brennan,

Y. Chen, L. DeRight Goldasich, P. C. Dorrestein, R. R. Dunn, A. K. Fahimipour,

J. Gaffney, J. A Gilbert, G. Gogul, J. L. Green, P. Hugenholtz, G. Humphrey, C.

Huttenhower, M. A. Jackson, S. Janssen, D. V. Jeste, L. Jiang, S. T. Kelley, D.

Knights, T. Kosciolek, J. Ladau, J. Leach, C. Marotz, D. Meleshko, A. V. Melnik,

J. L. Metcalf, H. Mohimani, E. Montassier, J. A. Navas-Molina, T. T. Nguyen,

S. Peddada, P. Pevzner, K. S. Pollard, G. Rahnavard, A. Robbins-Pianka, N.

Sangwan, J. Shorenstein, L. Smarr, S. J. Song, T. Spector, A. D. Swafford, V. G.

Thackray, L. R. Thompson, Y. Vazquez-Baeza, A. Vrbanac, P. Wischmeyer, E.

Wolfe, Q. Zhu, The American Gut Consortium, R. Knight.

Section 2.3.4 has been adapted from the original publication in “Correcting

for microbial blooms in fecal samples during room-temperature shipping”. mSys-

tems A. Amir, D. McDonald, J. A. Navas-Molina, J. Debelius, J. T. Morton, E.

R. Hyde, A. Robbins-Pianka, R. Knight 2017. DOI: 10.1128/mSystems.00199-16
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2.3.1 The oral and skin microbiomes of captive Komodo

dragons are significantly shared with their habitat

The following text has been adapted from the original publication in mSys-

tems, 16. As a contributor to this manuscript, I performed the data analysis

included in the manuscript, wrote the IPython notebok [153] attached to the pub-

lication, generated figures and reviewed drafts of the manuscript.

The evidence for both vertebrate animals and humans indicates that closed

environments not only limit exposure to complex microbial diversity but also pro-

mote microbial transfer from the host to the environment, rather than from the

environment to the host. Fully characterizing the effects of captivity on host-

environment microbial sharing will be key for future studies of vertebrate micro-

bial ecology and may prove instrumental in improving animal husbandry practices.

To more thoroughly describe the effects of captivity on host-environment micro-

biome sharing and how this may affect vertebrate ecology studies, there is a need

to examine the microbial ecology of the host-environment interaction in a number

of vertebrate species, both in the wild and in captivity. Here we use as a model

the captive Komodo dragon (Varanus komodoensis), applying 16S rRNA amplicon

sequencing to characterize the oral, fecal, skin, and environment-associated mi-

crobiomes to answer two main questions: first, is the extent of host-environment

microbiome sharing observed for captive Komodo dragons typical of that observed

among other vertebrates living in closed environments, and second, is the host-
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environment microbiome sharing observed among captive Komodo dragons char-

acteristically different from that observed among wild vertebrates? To answer these

questions, we explored whether host-environment microbiome sharing in captive

Komodo dragons was similar to the pattern observed for humans and pets living

in homes [106] and dissimilar to the pattern observed among wild amphibians liv-

ing in open ecosystems [98]. Together with existing studies, the data suggest that

living in closed environments is associated with extensive host-environment mi-

crobial sharing. This sharing is likely to be circular in naturethe host contributes

microbes to its environment and then, in the absence of significant exposure to

microbes from external sources, reacquires those microbes from its environment,

only to share them with the environment once again (or vice versa). This may be a

radical departure from the microbial communities and exposures which vertebrates

cohabitate with and have evolved alongside in the wild, and could have significant

effects on health and disease [105].

To determine how much of the Komodo dragon’s microbiome is shared with

its environment (or vice versa) and whether and how specific the environment is

to the dragon, we obtained matched dragon-environment samples from the Denver

and Honolulu zoos. In terms of taxonomic composition and abundance, environ-

mental microbiomes appeared most similar to salivary and skin microbiomes from

the phylum down to the genus level in both the Denver and Honolulu zoo cohorts

(see Figure 2.26 A).

We applied SourceTracker [88] to samples from the Denver Zoo Komodo
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dragons to determine which dragon microbiome sources (saliva, feces, and skin)

contributed to the dragon environment. The microbiomes of items in the Denver

Komodo dragons enclosures were largely sourced from Komodo dragon salivary,

skin, and fecal samples (Figure 2.26 B), with unknown sources comprising less

than 50% of the microbial communities of most environmental sample types. Ad-

ditionally, skin, saliva, and fecal communities were distinct from one another in a

SourceTracker independence test (Figure 2.26 B), suggesting that any skin, saliva,

or fecal communities detected on environmental materials actually came from the

dragons skin, mouth, or feces. Further supporting this pointat least in the context

of salivaseveral bacterial taxa found in the mouths of the Komodo dragons studied

here, including Staphylococcus, Corynebacterium, Pseudomonas, and Bacteroides,

have previously been reported in the mouths of captive Komodo dragons [137, 60].

This suggests that environmental microbes designated as sourced from the Ko-

modo dragons oral cavity likely actually do come from the mouth and not any

other source. The nature and extent of host-microbiome transfer to environmental

objects varied with sample type; for example, Komodo dragon saliva was the main

source of the microbial communities detected in soil and on rock and glass, while

Komodo dragon skin was the main source of the microbial communities detected

on metal (Figure 2.26 B). Performing SourceTracker analyses with Komodo dragon

samples designated as sinks and environmental samples designated as sources re-

vealed that the microbial communities of Komodo dragon fecal, saliva, and skin

samples are sourced from a variety of environmental materials, each contributing
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30% or less of the microbial community (Figure 2.26 C and D). There is no one

environmental material that contributes more than any other material to Komodo

dragon feces or saliva; however, Komodo skin microbial communities are sourced

majorly from glass and unknown sources (each 40%).

To further assess host-environment microbiome sharing, in both closed/-

captive and open/wild environments, we additionally performed SourceTracker

analyses on two previously published data setsa wild amphibian skin-environment

microbiome data set [98] and a human-pet-house microbiome data set [106]and

compared them to the Komodo dragon data set. As previously shown, humans and

their pets contribute a large amount of their microbiomes to their living environ-

ments [106], similarly to the patterns we observed with captive Komodo dragons.

However, while Komodo dragon microbiome sources (skin, saliva, and feces) were

found to be distinct sources, we did not observe this level of source independence

when applying the SourceTracker independence test to the human/pet data set.

Host-environment microbiome sharing between amphibians and their living

environment was not as extensive as that observed among captive Komodo dragons

and their enclosures or humans and pets and their homes. More than 75% of soil

and sediment microbial communities were obtained from unknown microbiome

sources; however, the identified source for 75% of water microbial communities

was amphibian skin (Figure 2.27 A). Each source (here defined as individual

amphibian species) was highly independent from each other source (Figure 2.27

B). Defining amphibian skin as a sink and environmental samples as sources, water
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Figure 2.26: Taxonomy and SourceTracker results for the Komodo
dataset. (A) Heat maps illustrate the percent abundances of the most abundant
genera (all OTUs taxonomically classified to the same genus were collapsed into
a single genus summary) present in saliva, skin, feces, and environmental (Env)
samples collected from the Denver and Honolulu zoos. The deepest taxonomic clas-
sification achieved is listed for each genus. The heat map colors indicate percent
abundance (red [high abundance] to blue [low abundance]). (B) Komodo dragon
SourceTracker analysis reveals that the microbial communities of many environ-
mental sample types are sourced from skin, saliva, and feces rather than unknown
sources (i.e., not from Komodo dragon skin, saliva, or feces). Data are plotted as
the means ± standard errors of the means (error bars) of samples from Denver and
Honolulu zoo Komodo dragons. (C) SourceTracker analyses with Komodo dragon
fecal, salivary, and skin samples designated as sinks and environmental samples
designated as sources reveals that a variety of environmental sources, rather than
a single environmental source, contribute to the microbial communities of Komodo
dragon feces, saliva, and skin. Unknown sources (i.e., not the environments sam-
pled from the Komodo dragon enclosures) also contribute about 40% or more of
the microbial community of saliva and skin samples (only 20% of fecal samples).
(D) Independence tests reveal that about half of the environmental samples are not
independent from other environmental samples. Data are the means ± standard
errors of the means of Denver and Honolulu Komodo dragon and environmental
samples.
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was identified as a major source of the microbes on the skin of most species;

nevertheless, at least 20% of the microbial community on the skin of all species

was contributed by unknown sources (Figure 2.27 C). Soil, sediment, and water

were all confirmed to be independent sources (Figure 2.27 D).
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Figure 2.27: SourceTracker results for the amphibians dataset. (A) Am-
phibian SourceTracker analysis reveals that water is the only sample type that
obtains a notable amount of its microbial community from amphibian skin; un-
known sources (i.e., not amphibian skin) are the main microbiome contributors to
soil and sediment. (B) Independence tests reveal that amphibian skin is indepen-
dently specific to species. (C) Designating environment the source and amphibian
skin the sink reveals that water is the only environmental type that contributes
largely to the microbial communities on amphibian skin, with unknown sources
also largely contributing to the amphibian skin microbiome. (D) Independence
tests reveal that each environment type is also independent from each other envi-
ronment type. Data are the means ± standard errors of the means.
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2.3.2 A communal catalogue reveals Earth’s multiscale mi-

crobial diversity

The following material has been adapted from the original publication in

Nature, 2017. As a contributor to this manuscript, I quality filtered the 97 inde-

pendent studies included in the manuscript, generated the OTU-based closed and

open reference tables and the open reference phylogenetic tree and provided scripts

to reproduce those steps.

The EMP was founded in 2010 to sample the Earth’s microbial communities

at an unprecedented scale in order to advance our understanding of the organizing

biogeographic principles that govern microbial community structure [59, 58, 197].

The EMP asked the global scientific community for environmental samples and as-

sociated metadata spanning diverse environments and capturing spatial, temporal,

and/or physicochemical covariation. The first 27,751 samples from 97 independent

studies represent diverse environment types (Figure 2.28 A), geographies (Figure

2.28 B), and chemistries. The EMP encompasses studies of bacterial, archaeal,

and eukaryotic microbial diversity. The analysis here focuses exclusively on the

bacterial and archaeal components of the overall database (for concision, use of

microbial will hereafter refer to bacteria and archaea only). Associated metadata

included environment type, location information, host taxonomy (if relevant), and

physicochemical measurements. Physicochemical measurements were made in situ

at the time of sampling. Investigators were encouraged to measure temperature
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and pH at minimum. Salinity, oxygen, and inorganic nutrients were measured

when possible, and investigators collected additional metadata pertinent to their

particular investigations.

Figure 2.28: Environment type and provenance of samples. (A) The
EMPO classifies microbial environments (level 3) as free-living or host-associated
(level 1) and saline or non-saline (if free-living) or animal or plant (if host-
associated) (level 2). The number out of 23,828 samples in the QC-filtered
subset in each environment is provided. EMPO is described with examples
at http://www.earthmicrobiome.org/protocols-and-standards/empo. (B) Global
scope of sample provenance: samples come from 7 continents, 43 countries,
21 biomes (ENVO), 92 environmental features (ENVO), and 17 environments
(EMPO).

Beyond measured physical covariates, the breadth of environments in the

EMP catalogue allows a detailed exploration of how microbial diversity is dis-

tributed across environments. Diversity among communities (beta-diversity) is

driven by turnover (replacement of taxa) and nestedness (gain or loss of taxa

resulting in differences in richness) [24]. If turnover dominates, then disparate

communities will harbour unique taxa. If nestedness dominates, then communities
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with fewer taxa will be subsets of communities with more taxa. We tested for

nestedness using a 2,000-sample subset with even representation across environ-

ments and studies. Given the contrasting environments and geographic separation

among the many studies in the EMP, we expected different environments to con-

tain unique sets of taxa and to show little nestedness. However, we found that

communities across environments were significantly nested (Figure 2.29 A, B;

P¡0.05) in comparison to null models (Figure 2.29 C), accounting for the observed

patterns of richness. At coarse taxonomic levels, an average of 84% of phyla, 73%

of classes, and 58% of orders that occurred in less diverse samples also occurred

in more diverse samples. These patterns could have resulted from several mecha-

nisms, including ordered extinctions [190] and the filtering of complex communities

over time [11], differential dispersal abilities [116] and cascading sourcesink colo-

nization processes that assemble nested subsets from more complex communities,

or by the tendency of larger habitat patches to support more rare taxa with lower

prevalence [55]. Notably, finer taxonomic groupings showed less nestedness (Figure

2.29 C), indicating that the processes that underlie nested patterns of turnover are

likely to reflect conserved aspects of microbial biology, and not to result from the

interplay of diversification and dispersal on short timescales.
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Figure 2.29: Nestedness of community composition. (A) Presenceabsence
of phyla across samples, with phyla (rows) sorted by prevalence and samples
(columns) sorted by richness. Shown is a subset of the EMP consisting of n=2,000
biologically independent samples with even representation across environments and
studies. With increasing sample richness (left to right), phyla tended to be gained
but not lost (P¡0.0001 versus null model; NODF (nestedness measure based on
overlap and decreasing fills) statistic and 95% confidence interval=0.841±0.018).
(B) As in A but separated into non-saline, saline, animal, and plant environ-
ments (P¡0.0001, respective NODF=0.811 ±0.013, 0.787±0.015, 0.788±0.018 and
0.860±0.021). (C) Nestedness as a function of taxonomic level, from phylum to
tag sequence, across all samples and within environment types. Also shown are
median null model NODF scores (± s.d.). NODF measures the average fraction
of taxa from less diverse communities that occur in more diverse communities. All
environments at all taxonomic levels were more nested than expected randomly,
with nestedness higher at higher taxonomic levels (for example, phyla).
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2.3.3 American Gut: An open platform for citizen-science

microbiome research

The following material has been adapted from the original publication sub-

mitted in Science, 2018. As a contributor to this manuscript, I generated the per

participant results, provided support maintaining the software and reviewed drafts

of the manuscript.

We therefore launched the American Gut Project (AGP) 13, now the largest

crowdfunded and crowdsourced microbiome citizen-science project to date, with

the goal to discover the kinds of microbes and microbiomes ”in the wild. Our

project informs participants about their own microbiomes by providing them with

a standard report that places them in context of the full AGP and Human Micro-

biome Project (HMP) datasets, and provides a broad set of resources to support

research about the human microbiome, including an online course. Unlike many

other large microbiome studies, the AGP deposits all de-identified data into the

public domain on an ongoing basis without access restrictions. This reference

database has allowed us to characterize the diversity of the industrialized human

gut microbiome at an unprecedented scale, to explore novel relationships with

health, lifestyle, and dietary factors, and to establish the AGP resource and infras-

tructure as a living platform for discovery (e.g., through targeted sub-populations

and through the application of multi-omics techniques).

13http://americangut.org
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Key variables that we found to have the greatest effects on the composition

of gut microbes - plant consumption, antibiotic use, and even age - are in flux in

the global population. Our lifespans are increasing, we are traveling more, our

diets are becoming homogenized, and we are consuming more antibiotics. In each

case, these trends are likely to favor more homogenization and less diverse gut

microbes. Ongoing efforts, such as the AGP, will allow researchers to document

and potentially mitigate the effects of such change. They will also afford insights

into our past through collections from more diverse subpopulations, which will

allow us to better understand the context of our choices in the future.

A unique aspect of the AGP is the open community process of assembling

the Research Network and analyzing these data. Because participants fund the

project, no funding agency mandates restrictions on data analysis to a specific

group of investigators. Thus, these data are released into the International Nu-

cleotide Sequence Database Collaboration (INSDC) (and GNPS for metabolomics

data) as soon as initial quality control and anonymization steps have been ap-

plied. Analysis details are shared through a public forum 14. Scientific contribu-

tions to the project were made through a geographically diverse Research Network

represented herein as the American Gut Consortium (including explicitly named

authors). This network was established prior to project launch and has contin-

ued to grow over time. The analyses described were performed through an open

contribution model in which pre-computed forms of these data were publicly pro-

14GitHub, https://github.com/knightlab-analyses/american-gut-analyses
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vided with encouragement to the American Gut Consortium to explore the dataset.

This model allows the project to use a living analysis approach, embracing new

researchers and analytical tools on an ongoing basis (e.g., Qiita and Global Natural

Products Social Molecular Networking (GNPS)). Additionally, because the AGP

is a subproject of the Earth Microbiome Project (EMP) [197]), all samples were

processed using the publicly available and widely used EMP 16S rRNA gene am-

plification, sequencing, and data analysis protocols to facilitate meta-analyses. For

example, we combined the AGP with fecal samples collected from a fecal trans-

plant study and an infant microbiome time series, the latter using different DNA

sequencing technology, to highlight how this context can provide insight.

2.3.4 Correcting for microbial blooms in fecal samples dur-

ing room-temperature shipping

The following material has been adapted from the original publication in

mSystems, 2016. As a contributor to this manuscript, I was involved in the dis-

cussion for establishing the criteria to choose blooming bacteria, provided input

on the figures design and reviewed drafts of the manuscript.

The use of sterile swabs is a convenient way to collect samples for micro-

biome studies, but in some cases, it is not feasible to immediately freeze or utilize a

preservative. For example, the AGP allows members of the general public to send

samples for 16S rRNA gene amplicon sequencing through domestic post without
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a preservative. This is because proven preservation methods can be cumbersome,

dangerous, expensive, or sample type specific, complicating participation in micro-

biome citizen science. Although some studies have demonstrated that the effects of

room-temperature storage are secondary to physiologically relevant differences be-

tween comparison groups [189, 183, 104], certain bacterial taxa, particularly those

in the class Gammaproteobacteria, grow well at room temperature. This is prob-

lematic, as some Gammaproteobacteria species have been associated with disease,

such as Inflamatory Bowel Disease (IBD) [57]. Therefore, to identify meaningful

patterns in microbiome studies that do not utilize sample preservation, it is cru-

cial to remove at high specificity the taxa that thrive at room temperature (i.e.,

blooming bacteria).

Without filtering candidate blooms, there were notable differences (as ob-

served using Bray-Curtis PCoA) between AGP fecal samples and the fresh-frozen

fecal samples; filtering the bloom sequences from all samples removed these dif-

ferences (Figure 2.30 A versus B). In the PCoA space corresponding to the data

determined without filtering, the primary separation is explained by the pres-

ence of a large percentage of bloom sequences (Figure 2.30 A); the sizes of the

spheres are scaled by the percentage of bloom sequences in the respective sam-

ple. Following the removal of the blooms, this dominant effect was abolished and

samples with high levels of blooms clustered with samples from the other studies

(Figure 2.30 B). Similar results were observed in assessing class-level taxonomy

abundances (Figure 2.30 C versus D): prior to filtering, a high relative abundance
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of Gammaproteobacteria (27%) was present in the AGP samples compared to the

fresh-frozen samples (1.5% to 3.5%), while the AGP profile seen after filtering

more closely resembled that of the fresh-frozen samples. Importantly, applying

the filter minimally changed the taxonomic profiles of fresh-frozen samples (Fig-

ure 2.30 D). The filtering procedure is available in a Jupyter Notebook [153] at

https://github.com/knightlab-analyses/bloom-analyses.

There is a balance between type 1 and type 2 errors that must be considered

in applying this filter. The cost of removing a sequence is that it becomes invisible

in the analysis, and it is possible that real sequences are lost. Conversely, retain-

ing a bloom sequence increases noise caused by shipment conditions, which can

artificially alter biological conclusions. Therefore, a balance between loss of data

and inaccurate, noisy data must be obtained. To select an appropriate number of

blooming bacterial sequences to subtract from the AGP data set to maximize the

amount of data retained while reducing inaccuracies caused by blooms, we tested

the effect of nested filtering levels on the ability to detect the well-known effect of

age on alpha diversity [224, 90]. As can be seen in Figure 2.30 E and F, this effect

was undetected by a Kruskal-Wallis test when none of the candidate blooms were

removed. However, filtering the top four candidate blooms restored the ability to

detect a significant difference in diversity by age. Critically, the identification of

the bloom sOTUs was done independently of this positive control. For analysis of

the AGP cohort, we recommend removal of the sequences of the top 10 candidate

blooming bacterial taxa, as this maximizes the expected age effect (Figure 2.30
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E). Different studies may need to remove a different subset of bloom sequences,

as retaining some of these sequences might be critical, depending on the study

characteristics. With meta-analysis, if this filter is applied, it must be applied

identically to all samples represented to avoid introduction of a systematic bias.
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Figure 2.30: Effect of bloom filtering on American Gut data. (A and
B) PCoA of Bray-Curtis distances from a random subset of 200 American Gut
Project samples (colored pink) compared to 3 studies containing fresh-frozen fecal
samples: Personal Genome Project (colored green); whole-grain feces [209] (colored
orange); and UK Twins [63] (colored purple), respectively. The PCoA data shown
represent results obtained before (A) and after (B) applying the filter for blooms
to all samples. The size of a sphere is scaled by the amount of candidate bloom
bacteria in a sample prior to filtering. (C and D) Mean taxonomy distribution for
the same studies before (C) and after (D) filtering for blooms. (E and F) The well-
known effect of age on alpha diversity and how the effect is observed only after the
removal of bloom reads. The Kruskal-Wallis test statistic (E) and corresponding
log(P value) (F) are shown for different numbers of bacteria used for the filtering
before applying the test. A value of 0 on the x axis indicates no filtering. The x
axis is ordered by decreasing severity score of the bloom where bloom 1 represents
greater severity than bloom 2, and each point on the x axis includes the prior
blooms (e.g., position 5 includes bloom sOTUs 1 through 5).
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Chapter 3

Better memory management in

the cloud

Chapter 2 described the first gold standard for analyzing microbial com-

munity datasets, exposed and alleviated some of the computational bottlenecks in

the pipeline and showed some examples of the application of such pipeline. Some

of the steps of the presented pipeline are too computationally expensive to be run

in a personal laptop, and access to a supercomputer is needed to complete those

steps. However, microbiologists do not necessarily have access to supercomput-

ers and they have to rely on cloud computing. Tools such Quantitative Insights

into Microbial Ecology (QIIME) [20] and IPython [153] provide Amazon Machine

Image (AMI)s that enable biologists to run their analysis in Amazon’s Elastic

Compute Cloud (EC2) infrastructure [163]. This facilitates microbial biologists’

work by avoiding the often complex task of installing the required software to run
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their analyses as well as providing an environment suitable to support the large

datasets that then currently face. But running these analyses in the cloud presents

new challenges to microbiologists. One of the first decisions that microbial biolo-

gists face when running these analyses in the cloud is choosing the resources that

their virtual machine in the cloud should contain. Usually microbiologists are un-

aware of the resources required by the analysis tools that they are going to use,

and often the requirements of these tools is highly dependant on the nature of the

data. In these cases, the biologists are left with a trial and error procedure until

they have enough resources for their analysis or they have to choose a virtual ma-

chine with more resources than needed that they go underutilized. In both of these

cases, the microbiologists end up spending more money (and time) than needed,

which can be critical for those scientists running on a budget.

Sections 3.1 and 3.2 expose that the most critical resource on Amazon’s EC2

is memory, and they describe and implement a solution that mitigates the impact

of the trial and error procedure, by allowing the user’s task to be completed at a

small expense on running time. The material in sections 3.1 and 3.2 was published

in the 43rd Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, 2013 and the International Conference on Cloud and Autonomic

Computing, 2014, respectivelly. As the first author of these publications, I con-

ceived the idea, designed and implemented the software, designed and executed

the benchmarks and wrote the text.

Section 3.1, in full, reproduces the material as it appears in “Addressing
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memory exhaustion failures in Virtual Machines in a cloud environment”. J. A.

Navas-Molina, S. Mishra. 43rd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), 2013, DOI: 10.1109/DSN.2013.6575330.

Section 3.2, in full, reproduces the material as it appears in “CUDSwap:

Tolerating Memory exhaustion failures in cloud computing”. J. A. Navas-Molina,

S. Mishra. International Conference on Cloud and Autonomic Computing (IC-

CAC), 2014, DOI: 10.1109/ICCAC.2014.12.

151



3.1 Addressing memory exhaustion failures in

Virtual Machines in a cloud environment

With the expansion of the cloud computing usage over a wide range of

areas and different kinds of users, the cloud providers are taking full advantage of

all their resources as much as they can. Memory is the most expensive resource

in terms of oversubscribing and this has resulted in high price to the end user.

Furthermore, performing swapping in Virtual Machines (VM) is expensive, so the

cloud provider usually do not offer any swapping space for its systems. As a

consequence, when a VM runs out of memory, user processes are killed. This

scenario in the cloud environment is especially critical, since the user loses all of

his/her execution time and, by extension, the money invested in this computation.

This paper addresses this critical problem by providing a kernel extension that

monitors the memory requirements of a VM and prevents the out of memory

state by creating swapping space dynamically. The paper describes the design and

implementation of a preliminary prototype of this kernel extensions and evaluates

its performance.

3.1.1 Introduction

Cloud computing is increasingly being used for a wide range of applications

and services mainly due to its elasticity and new application opportunities [8].

Because of this expansion, cloud providers are facing a lot of pressure to make their
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physical resources handle high user demands. This has resulted in oversubscribing

resources by the cloud providers. The most problematic resource to oversubscribe

is memory, and indeed a cloud user is charged significantly for memory. Memory

unit cost is higher than any other cloud resource ($0.028/GB versus $0.012/CPU).

Cloud providers usually dont provide any swap space in their instances due to high

impact on the performance of their systems. As a result, when a users VM doesnt

have enough memory to execute all the running applications, user processes are

killed in order to keep the VM alive. This memory exhaustion failure results in a

large financial loss for the user, since all the work done by the killed processes is lost

and all the money invested in these processes is wasted. Furthermore, the user has

to start a new, larger VM, increasing the total cost for the user. In Linux systems,

processes are killed using the Out-Of-Memory (OOM) Killer, a kernel module that

prevents the Out Of Memory machine state in the VM. In this paper, we address

this memory exhaustion problem by introducing a kernel module called CUDSwap.

This module is designed to avoid the OOM Killer calls by adding more virtual

memory to the system, i.e. adding more swapping space, when needed. CUDSwap

is a dynamic kernel module that monitors the amount of free system memory, and

adds swap space when the amount of free memory falls below a threshold. We

have implemented a prototype of this kernel module. Through some preliminary

evaluation, we show that CUDSwap prevents memory exhaustion failures. The

paper describes the design, implementation and preliminary evaluation of this

prototype. In addition, we provide a cost benefit analysis of using CUDSwap.
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By using a dynamic approach, CUDSwap uses the storage space only when it is

strictly needed. Furthermore, a lot of cloud users do not have enough computer

knowledge to create the swap space before running their program, so CUDSwap

creates the swap space for them. Another advantage of CUDSwap is in the case

where a user unable to accurately predict her program memory requirement. In

some applications, it is hard to predict the amount of memory they will need and

the user may make an incorrect approximation that may result in provisioning

insufficient memory to its processes. CUDSwap enables such processes to complete

their execution. The remainder of this paper is organized as follows. Section 3.1.2

provides a brief review of some important related work. Section 3.1.3 describes the

details of how OOM Killer management with respect to how it is invoked. Section

3.1.4 describes the design approach of the system. Section 3.1.4 describes the Linux

implementation details of CUDSwap. Section 3.1.5 discusses the performance

results. Section 3.1.6 provides a cost benefit analysis. Finally, Section 3.1.7

discusses future directions and concludes the paper.

3.1.2 Related Work

Memory oversubscription has been extensively studied from the cloud

provider point of view, i.e. the impact on the physical machine as a result of

running several VMs on it. A wide range of systems has been developed to face

this challenge. In general, these systems fall into two large categories depending

on their approach: VM migration or Network Memory. Systems using the VM

154



migration approach are tailored to support sustained periods of memory oversub-

scription. These systems provides support for reconfiguring a VM in a new physical

machine with enough resources to fulfill VMs requirements. The main disadvantage

of this approach is the VM downtime. In order to be able to migrate the VM from

one physical machine to another, it has to be suspended in the old machine and

resumed in the new one. Although live migration techniques allow VM migration

with minimal downtime, they still have to face the network link saturation. Some

examples of these systems are Xen [13], VMWares VMotion [146] or SnowFlock

[99]. On the other hand, systems using the Network Memory approach are de-

signed to support short memory overloads. These systems create a new memory

hierarchy by adding a new level of memory cache between the main memory and

the disk, locating it across the network. A large number of these systems use the

concept of cooperative memory, which consists of performing memory swapping

across the network. The swapped out pages are stored in remote page repositories.

Earlier research has shown that cooperative memory has better performance that

disk swap [7]. However, the performance of these systems degrades significantly

when the duration of the overload increases due to network bottleneck. Exam-

ples of such systems are Cellular Disco [65], Cooperative Caching [33] or Nswap

[148]. Recently, hybrid systems have been proposed in order to take advantage of

the VM migration and Network Memory benefits. One such system is Overdriver

[220], which monitors the memory overload and creates adaptive thresholds. Based

on these thresholds, the system decides between performing Cooperative Swap or
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VM migration. Our CUDSwap work differs from these earlier approaches from

the memory overload point of view. While earlier approaches try to overcome the

challenge of memory exhaustion failure by managing the physical memory of the

host machine, we analyze the problem from the guest VM point of view. This

way, we are giving the opportunity to the end user to choose between different VM

configurations knowing that her applications will be completed and she can decide

based on the performance-costs tradeoffs.

3.1.3 Out-Of-Memory Linux Management

The OOM machine state is an undesired state where the Kernel is not able

to allocate more memory because there isnt sufficient virtual memory available,

i.e. the main memory space and the swap space (in case of its existence) are full.

In this scenario, the Linux kernel tries to free up memory using the OOM Killer 1.

The OOM Killer is a kernel system tailored to free up memory by killing processes.

The OOM Killer is the last resource used by the kernel to free up memory, since

the kernel always tries to maintain all the user processes alive. Killing processes

is a critical operation, so the OOM Killer has to decide which process is the most

appropriate to be killed. The OOM Killer is designed in a way that it tries to

free up as much memory as possible by killing as few processes as possible (only

one if it is possible), and lose as little work done (by killed processes) as possible.

In order to do so, the OOM Killer assigns a rank for each process following a set

1http://linux-mm.org/OOM_Killer
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of rules. The rank for each process is computed in a cumulative manner. Each

process is continuously assigned points and the process that has more points is

more likely to be a candidate for termination. The process rank is initialized

with the amount of resident memory allocated by the process. The independent

allocated memory of each child process (excluding kernel threads) is then added

to the parent rank. After this, the process rank is decreased regularly by the CPU

and run times. This way, processes running for a long time are more likely to be

kept alive, fulfilling the premise of losing the minimum amount of work done. The

rank of niced processes is doubled because they are likely less important. Next,

processes with the CAP SYS ADMIN or CAP SYS RAWIO capabilities have their

ranks reduced, since these processes have rights to perform system administration

operations and input/output operations, respectively. They may leave the system

in an inconsistent state if killed. Finally, the process rank is shifted by the value

in /proc/<pid>/oom adj, which is a user-defined value and set to its parent value

by default. The final result of following this procedure to determine which process

to kill when needed is that the processes that are killed are less important (niced),

use lots of memory, have not so far executed for long, and are not performing any

input/output operations.

OOM Checklist

Before calling the OOM Killer, the out of memory manager should go

through a checklist in order to ensure that the OOM Killer is called if and only if
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it is necessary. This checklist performs the following steps:

1. Is there enough swap space left? If yes, do not call OOM.

2. Has it been more than five seconds since last failure? If yes, do not call

OOM.

3. Have we failed within the last second? If no, do not call OOM.

4. Has it been ten failures at least in the last five seconds? If no, do not call

OOM.

5. Has a process been killed within the last five seconds? If yes, do not call

OOM.

This checklist ensures that the system is really out of memory and it is not,

for example, waiting for I/O to complete for pages swapped to disk.

3.1.4 Preventing Out-Of-Memory State

Design Overview

CUDSwaps main goal is to avoid the calls to the OOM Killer by adding

virtual memory dynamically. In order to do that, CUDSwap is divided into three

blocks. The first block (mod hack brk module) is tailored to monitor the free

memory of the system and suspend the current process when there is a likelihood of

memory exhaustion failure. The second block (swap creator process) is responsible
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for creating a file, format it as a swap space and activate it in order to allow the

kernel to use it. Finally, the third block (wake up module) is tailored to wake up

the suspended processes. Figure 3.1 shows the overall behavior of the CUDSwap

system. Each time a process requests more memory to the kernel, the mod hack -

brk module intercepts the requests and checks if the amount of free memory is

below a system-dependent threshold. If it is below the threshold, the module

suspends the current process, stores the process identifier in a file and notifies to

the swap creator module that a new swap space is needed. This module creates

a new swap space and, when it finishes, reads the process identifiers from the file

created by the mod hack brk and sends them to the wake up module, which wakes

up those processes and allows them to continue their execution. This division in

three modules is convenient because it matches the three different steps carried

out during the VM checking and creation:

1) mod hack brk Module: The mod hack brk module is a kernel module

that checks the amount of free memory present in the system and checks if it

is below a system-dependent threshold. By default, the kernel sets a threshold in

order to know if the machine is in the out of memory state. This threshold is placed

at 3% of the total amount of virtual memory present in the system. This way, the

kernel has enough memory to run the OOM Killer, if needed. The mod hack brk is

more conservative and places the threshold at 7% of the total amount of systems

virtual memory. Hence, the swap creator process will have enough memory to

avoid the OOM Killer and create the swap space. In order to check the amount
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Figure 3.1: Design overview.

160



of free memory we had to decide between two main directions: perform a periodic

poll or check each time a process requests more memory. The former has the main

problem that it will introduce an overhead in the system even if the system is idle.

Another important drawback of this solution is that we have to manage a trade-off

between the time between polls and the introduced overhead: if the polls are not

sufficiently frequent, we may miss an out of memory state and a user process will

be killed. On the other hand, if the polls are too frequent, the introduced overhead

will be prohibitive. Thus, we decided to check the amount of free memory each

time a process requests more memory. When a process requests more memory

to the kernel, the the mod hack brk module intercepts this requests and, before

any kernel function is executed, checks the available memory in the system. This

solution has the main drawback that it introduces and overhead each time a process

requests memory, but it avoids the trade-off described above regarding the polling

solution. In case the amount of free memory is below the threshold, the mod -

hack brk module suspends the current process in order to prevent it from trying to

allocate more memory. Then, the module stores the process id in a configuration

file and notifies to the swap creator process that more swap space (i.e. virtual

memory) is needed.

2) swap creator Process: The swap creator process is a process that runs

with root privileges in user space and its main function is to create a new swap

space whenever needed. During most of its lifetime, this process is sleeping and it

is woken up only when a new swap space is needed. The main reason why this is a
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process and this functionality is not integrated within the mod hack brk module is

that it is a bad idea in general to open files from the kernel space. I/O operations

are the source of a large number of errors, and one of these errors in kernel space

will cause the entire system to crash. Hence, having all these operations in user

space makes CUDSwap more robust. Once this process is woken up, it performs

four important steps. First, it creates a 2GB file with no holes (i.e. it is not a sparse

file and it is zeroed). Second, it creates a child process that formats the created file

as a swap space. Third, the swap creator process mounts the created file as a swap

space, increasing the amount of virtual memory. Finally, this process reads the

configuration file where the mod hack brk module had stored the sleeping process

ids and sends them to the wake up module.

3) wake up Module: The wake up module is a kernel module tailored to

receive process ids of sleeping processes and wake them up. The reason why this

is a kernel module is because the processes have been changed to sleeping mode in

kernel space and, in order to wake them up in a reliable manner, they should be

woken up in kernel space.

Implementation

1) Intercepting memory requests: In the Linux kernel, there are two main

system calls that can be used by a process in order to modify its data segment:

do mmap and do brk. The most common system call used is do brk. In order to

intercept the do brk calls, we take advantage of Kprobes [94]. Kprobes is a kernel
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debugger system that allows the module programmer to add functions before and

after a certain system call is executed. This way, we can introduce a function before

the do brk system call is executed and the mod hack brk module can perform the

needed checks to ensure the minimum free virtual memory to avoid the OOM Killer

calls.

2) Getting Memory Information: The easiest way to get the memory in-

formation is by reading the /proc/meminfo file. Although reading a file from

kernel space is not recommended, the fact that this is a well-known file reduces

the probabilities of an I/O failure. However, there isnt any easy way to manage

files from the kernel space because the standard libraries for manage files are not

exported in kernel space. Furthermore, in the newer kernel versions, the system

calls to manage files (sys open/read/write/close) are not exported. Hence, the

only way to manage file in kernel space is to go one step below and use low-level

kernel functions, using linux/fs.h. Since it is hard to manage files directly using

this API, we have created a simple library on top of this API that simplifies its

usage and it is as similar as possible to the standard C library API. This library is

a bit hackish because the functions defined in linux/fs.h expect that the buffer

address passed as parameter belongs to the user space. The addresses that we are

using are from kernel space, so these functions will fail. Our library fixes this issue

by marking our addresses as safe. This hack is done using the set fs function, as

shown below.
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o l d f s = g e t f s ( ) ;

s e t f s (KERNEL DS) ;

/∗ F i l e o p e r a t i o n s ∗/

s e t f s ( o l d f s ) ;

Once we get our library for file management, we can parse the

/proc/meminfo file and get all the needed information. We have created a struc-

ture, mem info struct, which stores all the relevant memory information and facil-

itates the out of memory state detection. The contents of this structure are shown

below.

typedef struct{

unsigned long ram ;

unsigned long swap ;

unsigned long ram free ;

unsigned long swap f r ee ;

unsigned long cached ;

unsigned long b u f f e r s ;

unsigned long tota l vm ;

unsigned long f ree vm ;

unsigned long s y s t h r e s h o l d ;

unsigned long committed vm ;

unsigned int o c r a t i o ;
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} mem info s t ruct ;

3) mod hack brk - swap creator Communication: The mod hack brk-swap -

creator communication is challenging because we have to perform communication

from the kernel space to the user space (on the other direction, it is straightforward:

system calls). Furthermore, the swap creator process is a root process and the

active process during the execution of mod hack brk may be a non-root process

without privileges to send a signal to a root process. However, both problems are

solved because we have access to the signal primitives. Using the signal primitives,

we can provide the entire task struct of the receiving process, and our signals do

not pass the privileges checks.

4) swap creator - wake up Communication: The swap creator-wake up com-

munication is easier since the sender is in user space and the receiver in kernel space.

In this case, we have decided to use the procfs API in order to send each process

id to the wake up module. The wake up module creates a new entry in the /proc

filesystem, and the swap creator process simply opens it and writes the process

identifier of the sleeping process.

3.1.5 Performance

CUDSwap is a set of modules that is always running in the system, so it

will be interesting to see how it affects the overall performance of the system.

Since CUDSwap mainly affects the performance of the do brk call, we have coded
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a simple benchmark that stresses this situation.

Our benchmark consists of a program that allocates a large amount of

memory 2GB in our tests in chunks of 1KB. It then randomizes the character

present in this memory and counts the number of characters between 0 and 9.

Finally, it frees the allocated memory. These operations are performed 20 times.

This simple benchmark executes a bunch of do brk, so we can notice the overhead

introduced by CUDSwap. It also accesses to all the positions in the array multiple

times, so we can also notice the performance degradation due to swapping.

We performed our evaluation in Amazon EC2 2. We have selected an

M1 Medium instance with the following characteristics: 2ECU, 3.75GB memory,

410GB storage, and Linux kernel v3.0.14. Then, we ran our test, first without

CUDSwap and next with CUDSwap running on it. The total time to run our

benchmark without CUDSwap was 1183.24 seconds, and with CUDSwap, it was

1223.27 seconds. Thus the overhead introduced by CUDSwap is quite low, only

about 1.03X slower.

The second interesting performance comparison is running our benchmark

in a smaller instance with not enough memory, creating a new swapping space

and allowing it to finish. We chose an M1 Small instance with the following

characteristics: 1ECU, 1.7GB memory, 160GB storage, and Linux kernel v3.0.14.

The total run time in the small instance that included adding swap space through

CUDSwap was 8845.32 seconds. If a medium instance is chosen instead, the run

2http://www.amazon.com/ec2
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time is 1223.27 seconds. Thus, the benchmark in the smaller instance is 7.23X

slower due to low performance of swapping.

Finally, we also measured the time spent to create the swap space. This time

was 418.43 seconds, which is much larger than we expected. This low performance

is induced by the fact that the storage in Amazon EC2 is in EBS volumes 3, which

are attached to an instance through the network.

3.1.6 Cost Analysis

Since CUDSwap is tailored for the cloud environment, its evaluation has to

be based on its derived costs too. First of all, we should derive the cost per resource

unit (ECU per hour, GB of memory per hour and GB of storage per hour). In

order to do that, we will solve systems of three equations of the type:

CcpuPcpu + CmemPmem + CdiskPdisk = Pinstance

Here Ci and Pi are the configuration and price for the resource i and Pinstance

is the price of the instance.

Instead of picking only three instance types and solving only one system

of equations, we pick a subset of available instances in Amazon EC2 and solve

all systems of three equations resulting from all possible permutations. Table 3.1

shows the selected configurations and their price. We used a simple Python script

to generate all systems, their solutions and average them.

3http://www.amazon.com/ebs
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Table 3.1: Selected instance configurations.

Name Ccpu Cmem Cdisk Cinstance

M1 Medium 2 3.75 410 0.139

M1 Large 4 7.5 850 0.260

M1 Extra-large 8 15 1690 0.520

M3 Extra-large 13 15 0 0.580

M3 Double extra-large 26 30 0 1.160

Our calculations show that the cost for each ECU per hour is $0.012, for

each GB of memory per hour is $0.028 and for each GB of storage per hour is

$0. We can see that the user is charged more for memory usage than for the CPU

usage. Hence, one possible way to save users money is to use a smaller instance

with swap space enabled.

If we pick as an example the test run from the previous section, where the

benchmark took 8845.32 seconds (2-3 hours) in the small instance and 1223.27

seconds (<1 hour) in the medium instance, we can see that the user is charged

$0.195 (3 * 0.065) in the small instance case and $0.130 in the medium instance.

Hence, if the user knows in advance that his memory requirements will exceed that

of small instance, it is cheaper to run the code in the medium instance than in the

smaller one with swap space.

However, the common case is one where the user doesnt know in advance
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the total memory requirements. In this case, the user typically runs his code in

the smaller instance and, when it gets killed, it terminates the small instance and

runs his code in the medium instance. Using the same example as above, we note

that the user would have spent a total amount of $0.195 (1 hour for the small

instance $0.065 and 1 hour for the medium one $0.130). Then, we can see that the

user would have spent the same amount of money as running the code on a small

instance with swap space. In such a case, it is better for the user to use the small

instance with swap space as that avoids the hassle of moving the application from

one instance to another. Although in this case CUDSwap dont save users money,

it improves the users experience because she doesnt feel that she is wasting the

money on the small instance when it gets killed.

3.1.7 Conclusion

In this paper we have described CUDSwap, a set of kernel modules that

prevents the memory exhaustion failure in virtual machines in cloud computing

environment. We demonstrated that the memory oversubscription is the most ex-

pensive resource in a cloud environment and this cost is shifted to end user. Finally,

we showed how CUDSwap could improve users experience in a cloud environment.

The current prototype of CUDSwap is only a preliminary prototype and has

a large scope for improvement. The first source of improvement will be to obtain

the memory information directly from the kernel routines instead of reading the

/proc/info file. This will improve the out of memory state detection. With the
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current implementation, we may miss an out of memory state if a process tries to

allocate more than 4% of total memory with a single call. This is because we check

for memory threshold before a memory allocation takes place, but we do not take

into account how much memory the process is going to allocate.

The second source of improvement will be the way process identifiers are

shared between the mod hack brk and the swap creator process. Currently, this is

done through a configuration file, but one possible approach will be using the procfs

as in the wake up module case. This change will completely avoid the necessity

to open files in kernel space, making CUDSwap more robust and compliant with

Linux kernel development standards.

Finally, our current performance testing of CUDSwap is quite preliminary

and limited. We need to perform an extensive evaluation of CUDSwap with a wide

variety of applications having varied memory requirements. In particular, we need

to test UDSwap with standard memory benchmarks, and perform a cost benefit

analysis. This future tests can show cases where a smaller instance with swap

space is cheaper than a bigger instance with enough memory, as well as they will

allow to characterize the situations where CUDSwap is highly useful.
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3.2 CUDSwap: Tolerating Memory exhaustion

failures in cloud computing

Cloud computing is now being used by a wide variety of users, ranging from

expert programmers and system administrators to scientists and laymen. Cloud

providers are taking full advantage of all their resources as much as they can.

Memory is the most expensive resource in terms of oversubscription and this has

resulted in high price to the end user. Furthermore, performing swapping in Virtual

Machines (VM) is expensive, so the cloud providers usually do not offer any swap-

ping space for their systems. As a consequence, when a VM runs out of memory,

user processes are killed. This scenario in cloud environment is especially critical,

since the user loses all of his/her execution time and, by extension, the money

invested in this computation. For cloud users such as life scientists with varying

memory requirements, this is a critical problem. This paper presents CUDSwap, a

kernel extension module designed to detect memory exhaustion in cloud instances,

add more swap space, and thus prevent process failures. CUDSwap has been im-

plemented in Linux kernel and has been evaluated over a variety of workloads as

well as real-world life science applications. The paper describes CUDSwap design

and implementation details, and reports performance details from the evaluation.
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3.2.1 Introduction

Cloud computing is being used in a wide variety of fields, including web

hosting, media content, scientific computing, and many more. This wide range

implies that the cloud users are not necessarily computing experts, especially in

the world of scientific computing that includes biologists, physicists, chemists,

etc. From our past experience working with scientists, we have found that their

experience with the cloud is often quite poor, and sometimes they feel that they

are wasting money using the cloud. Usually, scientists do not have an a priori

idea of the amount of various computing resources they will need to complete their

computing tasks. Typically, they perform a rough estimation of the resources they

will need and launch the cloud instance that they think will be enough to run

their applications. An incorrect estimation of required resources can lead to poor

performance and even complete failure. In the case of an incorrect CPU estimation,

the application will simply take longer to finish, but the work is not lost. In the

case of incorrect storage estimation, the user can dynamically add more storage to

the instance, so that the application can continue working without any problem.

However, the most critical resource is memory, because when it is exhausted,

the application is aborted and all the work done by the application is lost. This

is because cloud providers usually don’t provide any swap space in their instances

due to high impact on the performance of their systems. As a result, when a user’s

virtual machine (VM) doesn’t have enough memory to execute all the running
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applications, user processes are killed in order to keep the VM alive. In Linux

systems, processes are killed using the Out Of Memory Killer (OOM Killer), a

kernel module that prevents the Out Of Memory machine state in the VM. This

memory exhaustion failure not only results in poor user experience, but also results

in a large financial loss for the user. All the work done before a process is killed

is lost and all the money invested in these processes is wasted. Furthermore, the

user has to start a new, larger VM, increasing the total cost for the user.

In this paper, we address this memory exhaustion failure problem in VM in-

stances by introducing CUDSwap, an elegant kernel module that requires minimal

changes to the current Linux kernel. This module is designed to avoid the OOM

Killer calls by increasing the amount of virtual memory on the fly. CUDSwap is

a dynamic kernel module that monitors the amount of free system memory, and

adds swap space whenever needed, so that the application process is not killed.

We have implemented a prototype of CUDSwap for Linux kernel and evaluated it

extensively for a variety of applications ranging from artificial workloads to real-

world, life science applications on Amazon EC2. This evaluation demonstrates

that CUDSwap prevents memory exhaustion failures of applications running on

cloud. In addition, CUDSwap improves user experience and even reduces the total

cost of running applications on cloud. We provide a detailed cost benefit analysis

of using CUDSwap.

By using a dynamic approach, CUDSwap uses the storage space only when

it is strictly needed. Furthermore, with increasing use of cloud in areas beyond
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computer science, a large number of users do not have enough computing back-

ground to create swap space before running their program. CUDSwap creates swap

space for them. Another advantage of CUDSwap is in the case where a user is un-

able to accurately predict her program memory requirement. In some applications,

it is hard to predict the amount of memory they will need and the user may make

an incorrect approximation that may result in provisioning insufficient memory to

its processes. CUDSwap enables such processes to complete their execution.

The remainder of this paper is organized as follows. Section 3.2.2 provides a

brief review of some important related work. Section 3.2.3 describes the details of

how VMs manage memory exhaustion at present. Section 3.2.4 describes the design

approach of the system. Section 3.2.5 describes the Linux implementation details

of CUDSwap. Section 3.2.6 discusses the performance results, as well as a cost

benefit analysis. Finally, Section 3.2.7 discusses future directions and concludes

the paper.

3.2.2 Related Work

Earlier work on memory exhaustion failures in the cloud has not been fo-

cused on the users point of view. They are targeted to provide solutions to the

memory oversubscription problem from the provider’s point of view, i.e. the im-

pact on the physical machine as a result of running several VMs on it. There are

mainly two approaches to this problem: VM migration and Network Memory.

Systems that provide VM migration are Xen [13], VMWare’s VMotion [146]
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and SnowFlock [99], among others. These systems move a VM that is hosted in

a machine with not enough memory and re-deploys it in a new machine. They

provide support for reconfiguring a VM in a new physical machine with enough

resources to fulfill VM’s requirements. They are tailored to support sustained

periods of memory oversubscription. The main disadvantage of this approach is

the VM downtime. In order to be able to migrate the VM from one physical

machine to another, it has to be suspended in the old machine and resumed in the

new one. Although live migration techniques allow VM migration with minimal

downtime, they still have to face the problem of network link saturation.

Systems using the Network Memory approach include Cellular Disco [65],

Cooperative Caching [33] and Nswap [148], among others. These systems are de-

signed to support short memory overloads. They create a new level on memory

hierarchy by adding a new level of memory cache between the main memory and

the disk, located across the network. A large number of these systems use the

concept of cooperative memory, which consists of performing memory swapping

across the network. The swapped out pages are stored in remote page repositories.

Earlier research has shown that cooperative memory has better performance that

disk swap [7]. However, these systems do not support long periods of memory

oversubscription and are tailored for short bursts of memory overloads. The per-

formance of these systems degrades significantly when the duration of the overload

increases due to network bottleneck.

Recently, hybrid systems have been proposed in order to take advantage of
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the VM migration and Network Memory benefits. One such system is Overdriver

[220], which monitors the memory overload and creates adaptive thresholds. Based

on these thresholds, the system decides between performing Cooperative Swap or

VM migration.

However, all the above-described systems do not solve the problem of the

memory exhaustion on the client VM instance. CUDSwap differs from these earlier

approaches from the memory overload point of view. While earlier approaches tried

to overcome the challenge of memory exhaustion failure by managing the physical

memory of the host machine, we address the problem from the guest VM’s point of

view. This way, we are giving the opportunity to the end user to choose between

different VM configurations knowing that her applications will be completed and

she can decide based on performance-cost tradeoffs. In [136], we provided an

analysis of this problem and proposed a preliminary solution for it. However, that

solution relies on a heuristic that can potentially miss an Out Of Memory state,

resulting in the OOM Killer being called. The heuristic is based on the default

memory threshold (3% of the total memory) that Linux uses to kill a process if

the system is hitting the OOM state. Specifically, CUDSwap uses a 7% threshold,

which is checked at the time a process requests more memory. However, it does

not take into account the amount of memory requested by the process, so if it

requests more than 7% − 3% = 4% of the total amount of memory, CUDSwap

will miss the OOM state and the process will be killed. Here, we will describe the

improvements we have made in the design and implementation of CUDSwap based
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on our experience in [136].

3.2.3 Memory Exhaustion in VMs

The Out Of Memory (OOM) machine state is an undesired state where the

kernel is not able to allocate more memory because there isn’t sufficient virtual

memory available, i.e. the main memory space and the swap space (in case of its

existence) are full. In this scenario, the Linux kernel tries to free up memory using

the OOM Killer 4. The OOM Killer is a kernel system tailored to free up memory

by killing processes.

The OOM Killer is the last resource used by the kernel to free up memory,

since the kernel always tries to keep all the user processes alive. Killing processes

is a critical operation, so the OOM Killer has to decide which process is the most

appropriate to be killed. The OOM Killer is designed in a way that it tries to free

up as much memory as possible by killing as few processes as possible (only one if it

is possible), and lose as little work done (by killed processes) as possible. In order

to do so, the OOM Killer assigns a rank for each process following a set of rules.

The rank for each process is computed in a cumulative manner. Each process is

continuously assigned points and the process that has more points is more likely

to be a candidate for termination. The process rank is initialized with the amount

of resident memory allocated by the process. The independent allocated memory

of each child process (excluding kernel threads) is then added to the parent rank.

4http://linux-mm.org/OOM_Killer

177

http://linux-mm.org/OOM_Killer


After this, the process rank is decreased regularly by the CPU and run times. This

way, processes running for a long time are more likely to be kept alive, fulfilling

the premise of losing the minimum amount of work done.

The rank of niced processes is doubled because they are likely less impor-

tant. Next, processes with the CAP SYS ADMIN or CAP SYS RAWIO capabili-

ties have their ranks reduced, since these processes have rights to perform system

administration operations and input/output operations, respectively. They may

leave the system in an inconsistent state if killed. Finally, the process rank is

shifted by the value in /proc/<pid>/oom adj, which is a user-defined value and

set to its parent value by default.

The final result of following this procedure to determine which process to

kill when needed is that the processes that are killed are less important (niced),

use lots of memory, have not so far executed for long, and are not performing any

input/output operations.

OOM Checklist

Before calling the OOM Killer, the out of memory manager should go

through a checklist in order to ensure that the OOM Killer is called if and only if

it is necessary. This checklist performs the following steps:

1. Is there enough swap space left? If yes, do not call OOM.

2. Has it been more than five seconds since last failure? If yes, do not call
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OOM.

3. Have we failed within the last second? If no, do not call OOM.

4. Has it been ten failures at least in the last five seconds? If no, do not call

OOM.

5. Has a process been killed within the last five seconds? If yes, do not call

OOM.

This checklist ensures that the system is really out of memory and it is not,

for example, waiting for I/O to complete for pages swapped to disk.

3.2.4 CUDSwap Design

In order to prevent calls to the OOM killer, CUDSwap needs to perform

three important functions. First, it needs to monitor the available free space in

memory. Second, it needs to suspend a process requesting new memory whenever

the available free space goes below some threshold and create additional swap

space. Finally, it needs to wake the suspended process after additional swap space

has been created. CUDSwap consists of two main modules: mod hack brk and

swap creator (See Figure 3.2).

mod hack brk Module

The mod hack brk module is tailored to monitor the free memory of the

system and suspend the current process if its current memory request will produce
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Figure 3.2: Design Overview.
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a memory exhaustion failure.. By default, the Linux kernel sets a threshold in

order to know if the machine is in the out of memory state. This threshold is

placed at 3% of the total amount of virtual memory present in the system. This

way, the kernel has enough memory to run the OOM Killer, if needed. The mod -

hack brk module essentially checks if the free memory will go below this threshold

if more memory is allocated to a process.

A key question is when should the mod hack brk module check whether the

amount of free memory has fallen below the threshold at 3% of the total amount

of system’s virtual memory. There are two options: perform a periodic poll or

check each time a process requests more memory. The former has the problem

that it will introduce an overhead in the system even if the system is idle. Another

important drawback of this solution is that we have to manage a trade-off between

the polling time period and the overhead introduced due to polling: if the polls are

not sufficiently frequent, we may miss an out of memory state, which may result

in a process being killed. On the other hand, if the polls are too frequent, the

introduced polling overhead will be prohibitive.

For these reasons, we decided to check the amount of free memory each

time a process requests more memory. Each time a process requests more memory

from the kernel, the mod hack brk module intercepts the requests and checks if the

amount of free memory in the system minus the amount of memory requested by

the process is below the system threshold. If so, it puts the requester process to

sleep, saves the process id of that process, and then wakes up the swap creator
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module (described below) to create new swap space. After new swap space has

been created, the swap creator process notifies the mod hack brk module, which

wakes up all the processes that were put to sleep. This solution ensures that only

processes that have requested more memory than available in the system are put

in sleep mode, while memory requests of processes requesting smaller amounts of

memory are satisfied.

There are two main system calls that can be used by a process to modify its

data segment: do mmap and do brk. The mod hack brk module intercepts these

system calls and, before they are executed, checks the available memory in the

system. The main drawback of this solution is that it introduces an overhead each

time the do brk or do mmap system call is executed, but it avoids the trade-off

described above regarding the polling solution.

swap creator Module

The swap creator module is a process that runs with root privileges in user

space and its main function is to create new swap space whenever needed. During

most of its lifetime, this process is sleeping and it is woken up by the mod hack brk

module only when new swap space is needed.

Once this process is woken up, it performs three important steps. First,

it creates a 2GB file with no holes (i.e. it is not a sparse file and it is zeroed).

Second, it creates a child process that executes the mkswap command on the

created file. Finally, the swap creator process mounts the created file as a swap
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space, increasing the amount of virtual memory. After this final step, this process

notifies the mod hack brk module, and goes back to sleep.

Design Discussion

The functionality of creating new swap space is implemented as a separate

module (swap creator module) running in the user space. The main reason why

this functionality is not integrated within the mod hack brk module is that it is

a bad idea in general to open files from the kernel space. I/O operations are the

source of a large number of errors, and one of these errors in the kernel space will

cause the entire system to crash. Hence, having these operations in user space

makes CUDSwap more robust.

We highlight the fact that in this design, new swap space is created strictly

if it is needed, i.e. if the amount of free memory in the system minus the amount

of memory requested by the process is below the system threshold. This is differ-

ent from our earlier design [136] where new swap space was created if there was a

likelihood of memory exhaustion. After performing several experiments, we con-

cluded that this higher threshold is too conservative. We observed that it resulted

in wasting system resources most of the time, i.e. new swap space was created

when the available free memory would not have fallen below 3% and hence OOM

Killer process wouldn’t have been invoked.

In addition, the system design has been simplified from our earlier design.

The wake up module from the earlier implementation has been removed and its
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functionality has been included in the mod hack brk module. The main reason for

this change was to improve security and reliability of the system. The process

identifiers are no longer stored in a configuration file, they are stored in memory in

the mod hack brk module. This way, the process identifiers are no longer exposed

to the file system, which can be targeted by third party applications that can

modify it, adding or removing process ids, resulting in an undesired behavior in the

system. This change also simplifies the functionality of the swap creator module.

It no longer needs to manage the process ids of the processes that need to be woken

up.

3.2.5 CUDSwap Implementation

Intercepting do brk and do mmap

We need to not only intercept do brk or do mmap calls, but also have access

to the amount of memory that the process is requesting. This information can be

obtained using Jprobes [129], another flavor of Kprobes [94] that gives access to

the function call parameters. Jprobes is a kernel debugger system that allows

the module programmers to add functions before and after a certain system call

is executed. This way, we can introduce a function before the do brk system

call is executed, and the mod hack brk module can perform the needed checks to

ensure the minimum free virtual memory to avoid the OOM Killer calls. Using the

parameters of the system call, we can compute the amount of memory that the
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process is requesting, so we can deterministically decide whether the system has

enough memory to handle the request.

Getting Memory Information

We obtain memory information directly from kernel routines. The Linux

kernel provides two different routines for getting the memory information: si -

meminfo and si swapinfo. The former provides the information of the RAM usage,

while the latter provides the information of the swap space. However, the si -

swapinfo routine is not exported to the Loadable Kernel Module (LKM) space. We

address this problem by recognizing that the two routines have the same signature

and their usage in the LKM does not incur any security issue. Thus, we have

modified the Linux kernel source to export the si swapinfo routine and then use it

in our mod hack brk module. We should highlight that this is the the only change

needed in the current Linux kernel.

This process of obtaining memory information directly from the kernel rou-

tines is a significant change from our earlier implementation that read memory

information from the /proc/meminfo file. This change completely removes the in-

teraction of the kernel with the file system, removing any source of kernel failure

due to this interaction.
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mod hack brk - swap creator Communication

The mod hack brk and swap creator modules have to communicate in both

directions. The mod hack brk module needs to wake up the swap creator mod-

ule whenever new swap space is needed, and the swap creator module needs to

communicate with the mod hack brk module after the new swap space has been

created. The former communication is challenging because we have to perform

communication from the kernel space to the user space. Furthermore, the swap -

creator process is a root process and the active process during the execution of

mod hack brk may be a non-root process without privileges to send a signal to a

root process. However, both problems are solved because we have access to the

signal primitives. Using the signal primitives, we can provide the entire task struct

of the receiving process, and our signals do not go through the privilege checks.

For communication from the swap creator process to the mod hack brk mod-

ule, the mod hack brk module creates a new entry on the /proc virtual file system

and the swap creator process only writes a single value to notify that the swap space

has been successfully created. This implementation is much more secure than our

earlier implementation, since the process ids are no longer provided through the

/proc file system and the mod hack brk module can ensure that the process ids

that it has are correct and secure to use.
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3.2.6 CUDSwap Evaluation

To evaluate the performance of CUDSwap, we have used four different work-

loads:

1. Workload 1: An artificial application that executes ten times a large chunk of

memory allocation and performs a sequential write followed by a sequential

read on it.

2. Workload 2: An artificial application that allocates a large chunk of memory

and performs a random write followed by a random read on the entire chunk

of memory.

3. Workload 3: An artificial application that executes Workload 1, and in par-

allel also executes a process that continuously writes a large file to disk, in

order to stress the I/O system.

4. Workload 4: A real-world, bioinformatics application. We have used the

sequence clustering step on the QIIME pipeline [20] using the UCLUST al-

gorithm [43]. This step takes a sequence file with the input sequence and a

reference file with the cluster sequence seeds. It then parses the input file

and tries to group the input sequence with reference seeds such that they are

similar above some user-defined threshold.

In order to conduct our experiments, we have used three different instances

of Amazon EC2 5: Micro, Small and Medium instances. Table 3.2 shows the

5http://www.amazon.com/ec2
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characteristics of these instances. We decided to use a real cloud to conduct our

experiments in order to remove the potential infrastructure differences present in a

controlled lab environment. Instead, our controlled set of applications that exhibits

different memory behaviors (including a real-world scientific application) provides

much more realistic performance measures.

Table 3.2: Selected instance configurations.

Instance CPU Memory Storage Price

Micro 1 or 2 ECU 615 MB EBS only $0.02 per hr

Small 1 ECU 1.7 GB 160 GB $0.06 per hr

Medium 2 ECU 3.75 GB 410 GB $0.12 per hr

Micro vs Small Instance

In our first experiment, we compare the performance of running the four

workloads on Micro instance versus running them on Small instance. For the

Workloads 1, 2 and 3, we have used 1 GB of memory, which is considerably larger

than the amount of memory available on the Micro instance. For the Workload

4, we have used a subset of 1,000,000 input sequences from Yatsunenko human

gut microbiome study [224] and the 94% representative sequence set from the

GreenGenes database [37]. With these parameters, Workload 4 uses about 0.7 GB

of memory, which is again larger than the amount of memory available on the
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Micro instance. First, we ran all four workloads on the Micro instance running

standard VM without the CUDSwap kernel extension. In all four cases, our jobs

were killed after a few minutes of execution.

Figure 3.3: Comparison of the different workload performance between
the Micro instance and the Small instance.

Next, we ran the four workloads on the Micro instance and the Small in-

stance, in which the Micro instance VM incorporates the CUDSwap kernel exten-

sion. Figure 3.3 shows the results obtained for different workloads. The results of

the Workload 2 are not shown in the figure for clarity. While it took only about 8

minutes for Workload 2 to be executed on the small instance, it did not finish even

after 20 hours in the micro instance. This huge difference is caused by the fact
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that Workload 2 is designed to remove memory locality completely. As a result,

each time the process tries to access a memory location, it is almost always located

on the swap space, causing the system to swap pages in and out aggressively.

Our first observation is that none of our jobs on Micro instance were killed,

indicating that CUDSwap successfully created new swap space and prevented calls

to OOM killer. Of course, in each case, the execution time on the Micro instance is

considerably larger than the execution time on the Small instance. Nevertheless,

it is important to note that CUDSwap enables completion of a job despite an

incorrect estimation of memory requirements.

Performance on the Micro instance was slower than the performance on the

Small instance by 6.73X for Workload 1, 10.14X for Workload 3, and 4.32X for

Workload 4. However, since Amazon EC2 works as a pay-as-you-go service, we

should take into account the cost of instances in our evaluation too, in addition

to the performance. From the cost information in Table 3.2, we notice that the

execution times of Workloads 1 and 4 are less than two hours, and so, using a

Micro instance with CUDSwap will be cheaper than using a Small instance ($0.02

versus $0.06 for Workload 1, and $0.04 versus $0.06 for Workload 4). For Workload

3, however, there is no benefit of using a Micro instance with CUDSwap instead

of using a Small instance. Most of the time they will have the same cost ($0.06),

and sometimes the Micro instance may be more expensive if ends up taking more

than 3 hours to complete the job ($0.08).

So, based on these workloads, we notice that CUDSwap may result in re-
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ducing the cost to a user in some cases, but will result in higher execution times.

However, it is important to note that CUDSwap is designed for situations where a

user makes an incorrect estimation of his/her memory requirements. In such cases,

the user will start his/her job on a Micro instance, incur the cost of Micro instance,

notice that the job has been killed, and then start the job again on a Small in-

stance and thus incur the cost of Small instance in addition. In this situation,

the cost of running Workload 3 on Micro instance is also cheaper than the cost of

running it first on Micro instance and then later on the Small instance ($0.06 in

the first case versus $0.08 in the second case). Furthermore, while considering the

performance in the second case, we should also take into account the time lost due

to first running the job partially on Micro instance and then setting up a Small

instance and restarting the job. This time could be several minutes or even more

depending on when the job on the Micro instance is killed. So, even in terms of

performance, CUDSwap may result in saving time. Finally, CUDSwap provides

a better user experience. Users (especially non-computer scientists) will typically

get annoyed or frustrated when they see their jobs being killed and losing all the

work after running for some amount time. CUDSwap avoids this situation.

Small vs Medium Instance

In order to compare the Small instance versus the Medium instance we

have changed the parameters of our workloads. In this case, for Workloads 1

and 3, we have used a chunk of memory of 2GB. Due to the results obtained in
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our previous test, we have not used Workload 2 here, as it will have very poor

performance on the Small instance and we are not going to get any benefit. For

Workload 4, we have used the same subset of 1,000,000 input sequences, but we

have used the 99% representative sequence set from the GreenGenes database.

With these parameters, Workload 4 uses about 2.28 GB of memory. Again, we

first ran all three workloads on the Small instance running standard VM without

the CUDSwap kernel extension. In all three cases, our jobs were killed after a few

minutes of execution.

Figure 3.4: Comparison of the different workload performance between
the Small instance and the Medium instance.

Next, we ran the three workloads on the Small instance and the Medium

192



instance, in which the Small instance VM incorporates the CUDSwap kernel ex-

tension. Figure 3.4 shows the results obtained for the three different workloads.

Again, our first observation is that none of our jobs on Small instance were killed,

indicating that CUDSwap successfully created new swap space and prevented calls

to OOM killer. Of course, in each case, the execution time on the Small instance

is considerably larger than the execution time on the Medium instance.

Performance degradation on the Small instance in comparison to the Medium

instance is 10.01X for Workload 1, 8.14X for Workload 3 and 2.20X for Workload

4. In terms of cost incrurred in using a Small instance with CUDSwap versus using

a Medium instance, we see that there is no advantage of using CUDSwap. The cost

is same for Workloads 1 and 4 ($0.12) and more expensive for workload 3 ($0.18

for Small instance versus $0.12 for Medium instance). However, considering the

scenario where a user first starts his/her job on a Small instance, notices that the

job is killed, and then restarts the job on Medium instance, we see a cost advan-

tage of using the Small instance with CUDSwap. The cost is $0.12 for Workloads

1 and 4 running on Small instance with CUDSwap versus $0.18 or $0.24 for the

Small/Medium instance scenario outlined above. Similarly, for Workload 3, the

cost is $0.18 for Small instance and $0.18, $0.24 or $0.30 for the Small/Medium

instance scenario.

In addition, the last two observations we made in Subsection 3.2.6 are rel-

evant here as well. When we take into account the time lost due to first running

the job partially on Small instance and then setting up a Medium instance and
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restarting the job, CUDSwap may result in saving time as well. Finally, CUDSwap

provides a better user experience by preventing calls to OOM killer and ensuring

that the user job is not killed even when the user incorrectly estimates his/her

memory requirements.

Performance Overhead of CUDSwap

Since CUDSwap is a monitoring module that is always running on the sys-

tem, an application incurs the monitoring overhead even if it never needs additional

swap space. Thus, it is important to evaluate the performance overhead incurred

due to CUDSwap usage. Monitoring overhead of CUDSwap comes from the incep-

tion of every do brk and do mmap calls that the application makes. These calls

are made whenever the application requests new memory.

To estimate this overhead, we ran Workload 1 and Workload 4 on a Medium

instance under two different configurations, on a standard Linux kernel without

CUDSwap kernel extensions and on a Linux Kernel with CUDSwap kernel exten-

sion. For Workload 1, we used 2GB of memory, and for Workload 4, we used the

same configuration as the one we used in our Small versus Medium experiment.

Workloads 2 and 3 have the same memory allocation (memory request) patterns

as Workload 1 and since CUDSwap only interferes during the allocation process,

their overhead will be same as that in Workload 1.

Figure 3.5 shows the results of the experiment. As we can see in the plot,

performance overhead incurred by CUDSwap is negligible (less than 1%). This
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means there is no downside to using CUDSwap continuously in the system even

when the memory requirements of the jobs have been correctly estimated by the

user and no new swap space is needed.

Figure 3.5: Comparison of Workloads 1 and 4 performance on a Medium
instance with and without CUDSwap.

3.2.7 Conclusion

We have presented and evaluated CUDSwap, a memory monitor for guest

operating systems that automatically adds virtual memory to the system creating a

swap space when the VM is running out of memory. Memory is the most expensive

resource in a cloud environment and any memory oversubscription cost is shifted to
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the end user. Our evaluation demonstrates that CUDSwap prevents calls to OOM

killer when the VM is short on memory by detecting this situation and adding

more swap space. Furthermore, overhead of CUDSwap is negligible under normal

circumstances when the VM has sufficient memory.

CUDSwap enables completion of a job despite an incorrect estimation of

memory requirements. This is an important functionality because it is difficult for

most cloud users to estimate accurately their application’s memory requirements.

In such circumstances, users may either oversubscribe by renting larger instances

than needed, or undersubscribe by renting a smaller instance than needed and

incurring job failure. In both cases, users end up spending more money. CUDSwap

enables users to save money in situations where users may undersubscribe. In fact,

our evaluation shows that CUDSwap also enables overall time saving for the user

in case of undersubscription, if we consider the entire duration of staring a job

on smaller instance, incurring job failure after some partial execution and then

subscribing a larger instance. So, overall CUDSwap is very useful in terms of

saving both time and money for a user who undersubscribes due to an incorrect

estimation of his/her memory requirements.

While computing with the cloud, multiple evaluation criteria should be

taken into account. Specifically, Cloud computing costs incurred by the user are

as important as the running time of the computing job. Actual tradeoff should be

left to the user. A user may choose to incur high runtime cost on a lower budget,

while another user may choose to incur low runtime cost on a high budget. Thus,
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although applications may be running up to 10X slower due to process thrashing,

the results presented on section 3.2.6 show that a user can save money. Thus, a

user may choose to undersubscribe his/her instance in favor of reducing the costs

of using the cloud.

There is another subtle advantage of using CUDSwap in the form of better

user experience. In a scenario where a user encounters a failure and restarts his/her

job on a larger instance, he/she may get annoyed or frustrated feeling that he/she

has wasted time and money. CUDSwap avoids this scenario.

In general, CUDSwap is useful only when there is difficulty in estimating the

memory requirements of a job. If a user can accurately predict his/her memory re-

quirements, he/she should certainly subscribe the instance that provides sufficient

memory for job completion, and not undersubscribe and depend on CUDSwap.

CUDSwap is being used by several graduate students in the BioFrontiers

Institute at our university. Jose Antonio Navas-Molina is a graduate student of

the BioFrontiers Institute and started working on CUDSwap after encountering the

memory undersubscription problem. Our current implementation of CUDSwap is

quite stable. Nevertheless, there are some additional future directions that we are

addressing. At present, CUDSwap intercepts do brk and do mmap systems calls.

Another way of consuming memory in the system is by a forking new process,

which creates a new process and a new chunk of memory needs to be allocated for

the new process. This situation can also be detected using the Jprobes system and

we plan to incorporate it in CUDSwap in the future.
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Another area that we plan to investigate is the utility of CUDSwap for

applications that have widely varying memory requirements with very short periods

of peak requirements. In the absence of CUDSwap, a user will have to subscribe

a larger instance to satisfy these peak requirements. With CUDSwap, it may be

more optimal to subscribe a smaller instance, since the time in actual swapping

will be short.
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Chapter 4

Meta-analyses: importance,

challenges and solutions

A unifying theme in the work presented in section 2.3 is that it takes ad-

vantage of previously published datasets to increase the power of the findings. The

Komodo Dragon paper [81] compared new findings on captive Komodo dragons

with wild amphibians [98] and humans and pets living in homes [106] to hypothesize

that the lack of interactions with an open environment can negatively affect human

and animal health. The Earth Microbiome Project (EMP) [59, 58, 197] combined

samples from 97 independent studies to answer spatial, temporal and evolution-

ary microbial community questions at a global scale. The American Gut Project

(AGP) used previous studies to show that the findings resulted from citizen-science

microbiome research can replicate previous results and, move research forward by

creating a massive dataset of human samples that can be used to generate new
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hypotheses. Finally, the manuscript about correcting microbial blooms [5] used

previously published datasets to describe a new technique used to reduce technical

differences caused by sample shipping at room temperature.

This technique of using multiple datasets (published or not) to improve

the findings of a study is known as a meta-analyses. As shown by the previous

examples, meta-analyses is a powerful tool that is becoming increasingly common

on microbiome research [120, 108, 182]. However, this extra power comes with its

own set of challenges that can delay the publication of the results from months (as

in the Komodo Draogn manuscript) to years (as in the EMP manuscript). Namely,

this challenges can be grouped in three topics: (1) technical differences, (2) data

availability, and (3) data standardization.

Technical differences are a result of differences on handling the samples,

and they can originate in any step of the proces: from decisions about sample col-

lection and preservation [189], the Polymerase Chain Reaction (PCR) primers or

sequencing platform of choice [96, 198], or even the laboratory in which the sam-

ples are processed [182]. These technical differences can overpower the underlying

biological differences, making meta-analyses almost impossible. Thus, it is critical

that this information is captured and made available at publication time, so other

researchers can reproduce the results and/or decide if they can use the published

data in a meta-analyses with their own samples.

The second challenge presented to a researcher wanting to perform a meta-

analysis is collecting the data of the previously published results. Although current
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publishers usually require the data to be deposited in a long-term repository such

as the European Bioinformatics Institute’s European Nucleotide

Archive (EBI ENA), there are no mechanisms that ensure that the data deposited

is valid or complete. Besides the DNA sequence data, the researcher must also

track down the metadata describing the samples. Even when the metadata are

publicly available, it may be incomplete and/or the specific encoding may not be

clear for other users, requiring communication with the original authors to decode

the information.

Finally, the researcher wanting to perform meta-analyses needs to combine

and normalize his/her data with the previously published data to perform such

meta-analyses. Although standards exist to represent sample metadata, such as

the Minimum information about a marker gene sequence (MIMARKs) standard

[225], they are not enforced or validated by the long-term repositories. This process

of normalizing metadata is tedious and hard to automate, increasing the risk of

introducing errors in the metadata which can alter the results of the meta-analyses.

Apart from the metadata, the DNA sequence data itself may not be normalized.

Sequence data available in the long-term repositories is not ensured to be the

raw data. Preprocessing performed on those sequences, such as quality control,

can introduce technical differences that affect the results of the meta-analyses and

reduce ability to find biological differences.

Section 4.1 presents Qiita, a web-based service designed to alleviate the

meta-analysis challenges by enforcing standards, requiring sample handling in-
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formation, normalizing raw data representation and processing, and hosting over

150,000 samples publicly available from around the world. The material in sec-

tion 4.1 is submitted for publication in Nature Methods. As co-first author of

this publication, I have been involved in the design and implementation of the

database, graphical user interface and plugin system of Qiita and contributed to

writing the text.

Section 4.1, in part, has been submitted for publication of the material

as it may appear in Nature Methods, 2018, A. Gonzalez, J. A. Navas-Molina,

T. Kosciolek, D. McDonald, Y. Vazquez-Baeza, S. Janssen, A. D. Swafford, S. B.

Orchanian, J. G. Sanders, J. Shorenstein, H. Holste, S. Petrus, A. Robbins-Pianka,

C. J. Brislawn, M. Wang, J. R. Rideout, E. Bolyen, M. Dillon, J. G. Caporaso, P.

C. Dorrestein, R. Knight.
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4.1 Qiitas web-enabled platform accelerates mi-

crobiome meta-analyses from months to min-

utes

Multi-omic advances provide new insights into the function and composition

of the microbial world one study at a time. However, to understand relationships

across studies we must aggregate them into meta-analyses to identify features

reproducible across biospecimens and data layers, and generate new hypothesis.

Qiita dramatically accelerates such integration tasks in a web-based platform for

the analysis and comparison of microbiome studies, demonstrated using the Human

Microbiome Project and iHMP.

Recent years have seen exponential growth in studies that generate large

quantities of microbiome and metabolome data, enabled by advances in high-

throughput techniques [22]. Further advances in bioinformatics tools allow us to

put these samples in the context of other studies, revolutionizing our picture of mi-

crobial diversity [197], and enabling useful insight into dysbiotic states relevant to

human health [71]. In principle, the vast increase in available data should enable

broader and more accurate insights into the diversity and functional impacts of

the microbial world. However, these tools require increasing investments of time

and effort by highly trained individuals: we now generate data faster than the

few skilled experts can process it. Furthermore, the often idiosyncratic methods
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employed by trained analysts can create new confounding variables that limit the

power of meta-analyses, which would have ideally gained insight and statistical

power by combining samples from many studies. Despite these challenges, meta-

analyses of microbiomes have a rich history of success, identifying the major global

drivers of diversity in microbial communities [120], characterizing the evolution of

the vertebrate gut microbiome [109], and surveying specialized fields such as the

built environment [1]. Meta-analyses also enable scientists to identify important

biases such as DNA extraction, primers, or analytical pipelines [36, 122], which

need to be controlled to generate biological discoveries.

To address these challenges, we developed Qiita, an open-source web-based

platform that enables non-bioinformaticians to perform their own analyses and

meta-analyses easily using standardized pipelines such as such as QIIME2 [20]

and GNPS [212], accessed within a simple graphical user interface, starting with

primary data and ending with statistical analyses and publication-quality figures.

Not only does Qiita make curated high-quality data processing accessible to vastly

more researchers, it ensures that the resulting information can be directly queried

and compared, enabling rapid meta-analysis at otherwise impossible scales.

Meta-analyses typically involve tremendous effort, primarily due to three

common issues. First, raw data (e.g., sequence data, spectra, study covariates, etc.)

are frequently not open or completely accessible. In practice, a researcher must

typically expend months of effort tracking down the data and covariates necessary

for a meta-analysis [101]. Second, while there are common standards for sample
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metadata (i.e., study covariates), such as Minimum Information about any (x)

Sequence (MIxS) standards [225], the major sequence repositories do not enforce

them, leading to varying degrees of use. Third, when authors of an existing work

do make processed data (e.g., quality filtered sequence data, BIOM files, etc.)

available, the files rarely contain details about the processing itself. Differences

in sample or data processing can lead to technical differences that outweigh and

obscure the biological differences in the data [36, 182]. Practically, this creates a

high barrier to entry for novice and skilled researchers alike to analyze information

that is ostensibly publically available.

Qiita alleviates these issues using the following strategies. First, users create

studies that contain a description of the work; relevant publications; detailed meta-

data describing the collection and processing parameters for each sample; and rel-

evant covariates, based on the MIxS standards [225], ensuring only administrator-

reviewed standards-compliant metadata are loaded as public into the system. Users

can thus keep data organized into discrete packages for comprehension and access

by other users once they make their study public. Second, users must upload the

rawest form of the data possible, typically multiplexed or demultiplexed FASTQ

files generated from common sequencing platforms. Qiita can thus store and re-

access the raw data as new pipelines and databases are adopted. Third, users select

from a constrained set of processing parameters, which are subsequently retained

with the data. This tracking and standardization ensures that newly processed

data can be immediately compared to hundreds of thousands of samples already
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in the database, and enables streamlined data deposition into ENA-EBI by au-

tomatically generating and submitting the necessary files (as has been performed

now for 102,292 samples; Figure 4.1A). Finally, relevant samples for comparison

in a meta-analysis can be quickly discovered via search of study title, metadata

values, or even sequence data through the redbiom plugin 1, and quickly combined

for analysis using a Qiime 2-based analysis plugin. When more specialized analy-

ses are required, combined feature tables, metadata, and analytical artifacts (e.g.

distance matrices, filtered subsets of samples, etc.) can be downloaded for use in

other pipelines.

Figure 4.1: Data loaded in Qiita and uploaded to EBI. A. Monthly studies
and sample depositions to EBI-ENA via Qiita. B. Geographical distribution of the
samples present in Qiita.

To exemplify Qiitas meta-analysis utility, we tested the reproducibility of

a study of how microbiomes of Inflamatory Bowel Disease (IBD) subtypes relate

to those of healthy individuals [71]. We combined the 16S data from three stud-

1https://github.com/biocore/redbiom
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ies of IBD-affected cohorts [71, 57] and iHMP, with the HMP1 study of healthy

individuals [29] and another study samples of Clostridium difficile-affected pa-

tients that underwent a Fecal Matter Transplant (FMT) [216]. Using the web

interface, we computed Unweighted UniFrac [118] and performed Principal Co-

ordinates Analysis (PCoA). The plot shows the expected clustering via the body

site of the sample (Figure 4.2A). However, when we examine only fecal samples

(UBERON:feces category), we observe a pattern explained by sequencing platform

as previously observed [122], Figure 4.2B. Restricting analysis to samples using

the same sequencing platform (all but the HMP1 study), we observe clustering of

the different IBD subtypes as previously reported [71, 57], Figure 4.2C. Using

the feces-only distance matrix generated via the Qiita interface, we used QIIME2

to calculate the distance from each sample to a healthy plane [71], replicating the

PCoA result across these independent studies. The samples from the C. difficile

patients are also further from the healthy plane than those from the IBD subtypes,

yet are much closer to the healthy plane after restoration of the microbiome via

FMT, Figure 4.2D. This entire analysis took less than 5 minutes of person-time

to perform, and did not require manual intervention once the processing pipeline

was initiated until the use of the files offline in a Jupyter Notebook 2. As this

example demonstrates, Qiita is a powerful tool to combine and compare studies

for meta-analyses and represents a significant advance for promoting facile data

analysis within the microbiome research community.

2https://github.com/knightlab-analyses/qiita-paper
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Figure 4.2: Example Meta-Analysis in Qiita. A. Unweighted UniFrac PCoA
Meta-Analysis of three studies examining different IBD sub-types, C. difficile pa-
tients that underwent FMT, and the HMP1 and iHMP target gene data, where we
can see strong clustering by body habitat. B. Only fecal samples from the same
studies, showing separation due to wet-lab processing; in purple, yellow and orange
HMP1 and iHMP samples. C. Removal of samples with different processing repro-
duces the PCoA resembling published results on the distribution of IBD sub-types
(healthy samples as dark green diamonds). D. Calculating distances from a healthy
plane [71], we can reproduce the results (which took several months to compile and
compute originally), and even see how the distances from the patients with a C.
difficile infection have larger distances before FMT and smaller afterwards.
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By establishing an accessible path from annotated data to consistent and

interoperable results, Qiita provides a practical way to harness the growth of se-

quence data for continuing value beyond its initial use by applying the living data

concept [212] of ongoing reprocessing and annotation. Centralizing data stor-

age and computation alleviates the substantial burden of independently maintain-

ing compute resources. The web-based interface for Qiita allows users to avoid

operating-system restrictions and obviates the need to train users to install, con-

figure, and troubleshoot software via the command-line. To date, this resource

hosts over 50TB of omics data from over 460,000 samples originating from studies

that span the world, Figure 4.1B. More than 168,000 of these samples, including

the entire recently released Earth Microbiome Project (EMP) [197] are public and

immediately available for meta-analyses. As this collection grows, it will become

increasingly important to improve the quality of associated metadata. Currently,

Qiita requires MIxS-compliant metadata prior to making sequences public, ensur-

ing that samples available for meta-analysis meet a minimum standard; addition-

ally, expert-curated Gold studies with exceptional metadata are highlighted both

as common references and to promote better practices in the community.

The power of this configuration has already been demonstrated through

publications during the developmental stage of the platform and in our Qiita

workshops, carried out regularly since early 2017 at UC San Diego Center for

Microbiome Innovation 3. Though not yet officially released, Qiita has already re-

3http://cmi-workshop.readthedocs.io/en/latest/
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ceived over 100 citations in Google Scholar, and numerous publications have used

samples from multiple studies in Qiita to perform meta-analyses. Additionally,

custom instances of Qiita can be easily set up on virtual or physical machines to

host specific datasets, as we have exemplified for the IBDMDB in the iHMP at

http://ihmp.ucsd.edu/.

Qiita thus provides a unique resource allowing researchers to contextualize

their data, perform meta-analyses across hundreds of studies and thousands of

samples, and seamlessly deposit data into standards-compliant databases. Criti-

cally, a model of easy input, consistent output assures that time and effort spent

analyzing each new study incrementally and usefully adds to the total resource.

Qiita will thus revolutionize the pace of microbiome analyses and meta-analyses.

4.1.1 Online methods

Code design and availability

Qiita is designed using a three layer pattern: storage, logic, and interface.

We describe each layer individually.

The storage layer design is a combination of a PostgreSQL 9.3.17 database

and a structured filesystem. This approach allows Qiita to maintain referential

integrity within and between studies, sample metadata, the analysis pipeline(s),

and the commands executed over the different data types. However, the data vol-

ume is such that it can encumber a relational database, so the data (e.g., sequence
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files, contingency tables etc.) are stored in standard formats (e.g FASTA, FASTQ,

BIOM). The database maintains file path locations using indirection to allow files

to reside on any number of filesystems. Additionally, this layer also stores the

covariates (metadata) of each sample split in two main tables: a sample and a

preparation information. The sample information are the covariates pertinent to

the sample, while the preparation is how the sample was processed in the wet-lab

and data generation (target gene sequencing, shotgun, metabolomic, etc).

The Qiita logic layer is written in Python using Object Oriented Program-

ming, defining an object for each important element of the system. All data in

Qiita are represented by an artifact object. An artifact represents a collection of

files which reside on the filesystem, the logical types associated with each file, and

a logical type of the artifact itself. Commands can specify which type of artifacts

they accept as input and which type of artifacts they generate as output. The

type of artifacts and the commands used to analyze artifacts are defined by Qiita

plugins, which encapsulate the compute logic. Qiita defines two types of plugins:

Qiita Type Plugins and Qiita Plugins. The Qiita Type Plugins define new artifact

types, and is how data are imported into Qiita. A Qiita Type Plugin must de-

fine only two operations: Validate and Generate HTML summary. The Validate

operation receives as input the set of files, and user associated types, for a new

artifact and the preparation information and determines if the set of files defines

a valid artifact for the given preparation. For example, in the case of a set of per-

sample FASTQ files, the validator checks that each of the samples has a unique
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file, and that the names of these files match those in the run prefix column in the

preparation information. The Generate HTML summary obtains the contents of

an artifact and generates an HTML file summarizing the contents of such artifact.

This summary provides a user-interpretable overview of the artifact, usually helpful

enough to determine if something went wrong with the processing of the artifact.

In contrast, the Qiita Plugin represents a collection of logically related commands

(e.g., methods for constructing distance matrices). Each command within a Qiita

Plugin accepts one or more artifacts as input, runtime parameters, and produces

one or more artifacts as output. Each command execution is logged in the Qiita

relational database, specifically, Qiita stores the plugin used, the command exe-

cuted within the plugin, the artifacts provided as inputs, the parameters specified,

and the artifacts generated.

The motivation for a modular plugin system is separation of concerns and

encapsulation as each plugin runs in its own discrete environment and communi-

cates with Qiita through an internal communication layer. This approach allows

the plugins to be written in any programming language, with plugin specific de-

pendencies, without introducing dependency conflicts with other plugins in the

system. These environments are managed using plugin-specific conda environ-

ments. To facilitate the development of new Qiita plugins by external developers,

we have created a Qiita client library 4 and two Cookiecutter (Qiita Type Plugin 5

4https://github.com/qiita-spots/qiita_client
5https://github.com/qiita-spots/qtp-template-cookiecutter
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and Qiita Plugin 6) templates that set up the boilerplate code needed for an initial

plugin repository and communication with Qiita.

The interface layer is a web-based interface accessible via Google Chrome,

and that is powered from the server side via Tornado 3.1.1 7. The interface design

and implementation has gone through multiple rounds of review, utilizing feedback

kindly provided by users attending Qiita workshops.

The source code, and comprehensive test suite, for the Qiita package can

be found in https://github.com/biocore/qiita. The source code for the officially

supported Qiita plugins can be found under the qiita-spots GitHub organization at

https://github.com/qiita-spots. All source code in the qiita repository and qiita-

spots organization are BSD-licensed.

Data analysis

One of the most important items for a successful meta-analysis is consis-

tency during the data processing. To achieve this consistency, Qiita processes

all raw data with one of several standard parameter sets, based on the recom-

mendations published in the literature. The parameters for demultiplexing and

quality control the 16S rRNA gene sequences are based on the assessment per-

formed Bokulich et al. [14], while the parameters for OTU picking are based on

the recommendations provided in Navas-Molina et al [143]. In addition to OTU

picking, Qiita also permits sub-OTU sequence clustering with Deblur [6]. In the

6https://github.com/qiita-spots/qp-template-cookiecutter
7http://www.tornadoweb.org/
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deblur manuscript, the authors used more stringent quality control parameters

from those outlined by Bokulich et al. [14].

Data availability

All data used is available via Qiita and EBI (where applicable). The Human

Microbiome Project (HMP) and Integrative Human Microbiome Project (iHMP)

data is available via the HMP Data Analysis and Coordination Center (DACC) 8.

Analytical steps for this paper can be found in 9. Additionally, the Qiita Analysis

can be found here 10, you must be log in to Qiita to access it.

8https://hmpdacc.org/
9https://github.com/knightlab-analyses/qiita-paper

10https://qiita.ucsd.edu/analysis/description/15093/
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Chapter 5

Making meta-analysis accessible

to the clinician

Section 1.1 introduced one of the most important challenges in microbiome

research: translating the research results from the laboratory to everyday life, and

in particular to human health. The human body is a complex ecosystem, hosting

a wide variety of microorganisms that play key roles in our well-being. However,

this aspect of the human body is generally ignored during routine doctor’s visits.

One of the reasons why microbiome analyses are not routinely used in the

clinic is because microbiome research is still in its infancy, and additional better

designed studies on clinical cohorts are needed to identify microbiome-host in-

teractions that can directly be applied to human health. Reproduction of these

results, integration of multiple datasets and standardization of the data are key to

achieving the quality results needed for clinical applications. Sections 2.1 and 4
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presented techniques that address these challenges.

Another challenge for bringing microbiome analysis to the clinic is the time

that it takes to perform a microbial community analysis. Typical microbiome

analyses take from months to years to complete. However, the time to perform

these analyses can be reduced by following Standard Operating Procedures (SOP)

for sample handling and processing, using a standard analysis framework, opti-

mizing analysis bottlenecks and employing an interdisciplinary team of experts to

analyze the data. Section 5.1 shows how, using the work presented so far in this

dissertation and the interaction of an interdisciplinary team of analysis experts,

microbial community analyses can be performed in under 48 hours, a time frame

short enough to provide useful information in a clinical setting.

The material in section 5.1 was published in mSystems, 2013. As a co-first

author of this publication, I performed the fast initial 16S analysis, generated the

first pass analysis for more in-depth analyses of the 16S data, directed the 16S

analysis team, generated figures for the publication, and contributed to writing

the text.

Section 5.1, in full, reproduces the material as it appears in “From sample

to multi-omics conclusions in under 48 hours”. R. A. Quinn, J. A. Navas-Molina,

E. R. Hyde, S. J. Song, Y. Vazquez-Baeza, G. Humphrey, J. Gaffney, J. J. Minich,

A. V. Melnik, J. Herschend, J. DeReus, A. Durant, R. J. Dutton, M. Khosrohei-

dari, C. Green, R. da Silva, P. C. Dorrestein, R. Knight mSystems, 2016, DOI:

10.1128/mSystems.00038-16
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5.1 From sample to multi-omics conclusions in

under 48 hours

Multi-omics methods have greatly advanced our understanding of the bio-

logical organism and its microbial associates. However, they are not routinely used

in clinical or industrial applications, due to the length of time required to generate

and analyze omics data. Here, we applied a novel integrated omics pipeline for

the analysis of human and environmental samples in under 48 h. Human subjects

that ferment their own foods provided swab samples from skin, feces, oral cav-

ity, fermented foods, and household surfaces to assess the impact of home food

fermentation on their microbial and chemical ecology. These samples were ana-

lyzed with 16S rRNA gene sequencing, inferred gene function profiles, and liquid

chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics through

the Qiita, PICRUSt, and GNPS pipelines, respectively. The human sample mi-

crobiomes clustered with the corresponding sample types in the American Gut

Project 1, and the fermented food samples produced a separate cluster. The mi-

crobial communities of the household surfaces were primarily sourced from the

fermented foods, and their consumption was associated with increased gut micro-

bial diversity. Untargeted metabolomics revealed that human skin and fermented

food samples had separate chemical ecologies and that stool was more similar to

fermented foods than to other sample types. Metabolites from the fermented foods,

1http://www.americangut.org
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including plant products such as procyanidin and pheophytin, were present in the

skin and stool samples of the individuals consuming the foods. Some food metabo-

lites were modified during digestion, and others were detected in stool intact. This

study represents a first-of-its-kind analysis of multi-omics data that achieved time

intervals matching those of classic microbiological culturing.

Importance Polymicrobial infections are difficult to diagnose due to the

challenge in comprehensively cultivating the microbes present. Omics methods,

such as 16S rRNA sequencing, metagenomics, and metabolomics, can provide a

more complete picture of a microbial community and its metabolite production,

without the biases and selectivity of microbial culture. However, these advanced

methods have not been applied to clinical or industrial microbiology or other areas

where complex microbial dysbioses require immediate intervention. The reason for

this is the length of time required to generate and analyze omics data. Here, we

describe the development and application of a pipeline for multi-omics data anal-

ysis in time frames matching those of the culture-based approaches often used for

these applications. This study applied multi-omics methods effectively in clinically

relevant time frames and sets a precedent toward their implementation in clinical

medicine and industrial microbiology.

5.1.1 Introduction

The omics field is expanding rapidly, driven by the plummeting cost of DNA

sequencing, the widespread availability of DNA sequencers and mass spectrome-
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ters, and the seemingly unlimited breadth of its applications. However, generating,

processing, analyzing, and interpreting the data typically takes months and re-

quires substantial technical expertise in large multidisciplinary teams, in part, due

to the rapidly evolving nature of the component techniques. The speed of mass

spectrometry and nucleic acid sequencing (the tools required to generate omics

data) has increased rapidly in the last decade, and they have separately been ap-

plied to clinical diagnostics in a targeted fashion. For example, high-throughput

sequencing for the detection and typing of single pathogens in complex samples has

achieved turnaround times of hours to days [167, 135, 142, 67, 159], and mass spec-

trometry analysis of metabolites has been performed in the clinic and laboratory in

essentially real-time [12, 78]. However, the integration of multi-omics technologies

and their application to the microbiome field have not yet achieved time frames

compatible with clinical needs in human health, industrial microbiology, or routine

laboratory experiments.

Multi-omics studies of the human microbiome can have enormous impact,

providing a more comprehensive picture of a microbial community than a single

omics approach on its own [54, 52]. These studies have led to an understanding

of how microbial communities in our bodies produce metabolites that affect our

health and transform the drugs we consume [214, 91, 70, 128]. One of the first

integrated omics analysis related to the human microbiome was by Li et al. [110],

who revealed an association between the gut microbiota and host metabolites in a

cohort of Chinese subjects by using clone library sequencing and nuclear magnetic

219



resonance. This, and more recent multi-omics studies [184, 169], had multiyear

gestation times. Today, when considering the time between receipt of samples

with informed consent and statistical conclusions from integrated omics data, these

studies still require months to years to complete.

In order to develop rapid multi-omics pipelines with broad applicability,

they must first be tested using subjects and samples that are strongly influenced

by their exposure to microbes and microbial chemical products. The subjects in

this study are tightly linked to their microbial partners through their active in-

volvement with fermented foods. This mutualistic relationship is believed to have

existed since the Paleolithic era [132] and continues around the globe today. Mod-

ern human evolution is intertwined with the influence of microbial fermentation

processes in the foods we eat and within our own bodies. Depending on the type

of food and conditions used during fermentation, different types of microbial com-

munities form, composed of various bacterial and fungal species [221], and the

metabolic products of these communities can impact human health [203]. Previ-

ous studies found that species originating from microbially diverse fermented foods,

such as cheese and salami, are able to colonize the gastrointestinal tract [203]. Fur-

thermore, with the significant effects of antibiotics and a processed food-based diet

on our microbiomes [128, 34, 202], there is an interest in the health benefits of fer-

mented foods as alternatives. Here, we present the results from a simple, robust

multi-omics platform integrating analyses of human, environmental, and animal

samples in the clinically relevant time frame of less than 48 h. This pipeline is now
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possible because of rapid advances in the development of software for the analysis

and integration of omics data and standardized protocols that allow streamlined

insertion of matched samples into multi-omics pipelines. We demonstrate how in-

dividuals commonly exposed to fermented foods show influences of these microbes

on and in their bodies.

5.1.2 Results and Discussion

General description of the 48-h analysis and multi-omics pipeline.

Samples were collected by seven volunteers (two families and two individuals, des-

ignated households 1 to 4) who regularly prepare and eat fermented foods and who

were recruited to the American Gut Project (AGP) 2 via word-of-mouth through

the Second Annual San Diego Fermentation Festival in San Diego, CA. The AGP is

an IRB-approved citizen science project comprising more than 7,000 samples from

more than 6,500 individuals. Consenting participants received an AGP sampling

kit after they gave consent and took a survey online, and the data were stored in

a secure database. The deidentified metadata were then immediately downloaded

into a file formatted for use in Qiita 3. Due to the infrastructure surrounding

the process, participant consent and sample-associated metadata were obtained

before the samples arrived in the laboratory, facilitating immediate preparation

for sample processing upon arrival. Notably, the metadata can be used for both

2http://www.americangut.org
3https://qiita.ucsd.edu/
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16S rRNA gene sequencing and metabolomics analyses, further streamlining the

multi-omics approach. Samples were collected by cotton swab and subjected to

DNA and metabolite extraction to describe the composition and activity of the

corresponding microbial communities. Samples were subjected to a streamlined,

high-throughput process involving preparation for 16S rRNA gene (variable region

4 [V4]) sequencing via the Earth Microbiome Project protocols [22, 86] and for

liquid chromatography-tandem mass spectrometry (LC-MS/MS) [15]. The first

description of both the microbial communities and molecules, including alpha and

beta diversity, and specific effects of fermented foods on the microbial and chemical

ecology of the subjects, occurred within 48 h after samples were delivered to the

laboratory (Figure 5.1). Computational resources, including the Barnacle cluster

available through the UCSD center for microbiome innovation connected to the

Comet supercomputer located at the San Diego Supercomputer Center, allowed

>50 central processing unit (CPU) h of processing in <11 h of wall time (note

that some of the component steps are not parallelized), giving results back to the

researchers fast enough to interpret the data in a timely manner.

There are four main components that enabled the development of this rapid

multi-omics pipeline and its implementation in less than 48 h (Figure 5.1). First,

subjects easily and efficiently enrolled themselves as part of an already existing,

IRB-approved project (the AGP), enabling the use of on-the-spot informed consent

and standardized metadata collection. Second, the protocols used to collect meta-
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Figure 5.1: Timeline of the multi-omics analysis of samples from four
households and their fermented food products.
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data and process samples have been extensively benchmarked and standardized 4,

allowing rapid assimilation with existing datasets and facilitating meaningful com-

parisons with other cohorts. Third, community analysis infrastructures, including

Qiita, the microbial analysis infrastructure that houses microbiome analysis tools,

and GNPS 5, a crowdsourced analysis infrastructure and public metabolomics

knowledge repository, allowed rapid data processing and interpretation. And

fourth, the servers that host Qiita and GNPS are linked, enabling normalization,

processing, and cross-platform analysis of multi-omics data in an integrated fash-

ion. Both these analysis platforms enable rapid comparisons to existing data in the

public domain and are publicly available, facilitating data upload and analysis from

any sequencer or tandem mass spectrometer, so long as the file formats are com-

patible. Linking the two platforms limits the need to move gigabytes or terabytes

of data, making local analysis on ones own computer and integration with existing

knowledge possible, rather than needing to download public data and new data to

a personal computer first (e.g., the AGP data repository contains over 216 million

reads). Tools available through this pipeline and utilized in this study include

operational taxonomic unit (OTU) clustering of reads and generation of tables

for multivariate statistical analysis of microbiome data, including alpha diversity,

principle component analysis (PCoA) visualization through EMPeror, cluster sig-

nificance testing with analysis of similarity (ANOSIM), and others. This pipeline

4http://www.earthmicrobiome.org/emp-standard-protocols/
5http://gnps.ucsd.edu
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also allows immediate integration of data with the data in the AGP repository

to visualize the relationships of samples with a large reference data set, which

can provide context to the microbiome data generated. Metabolomics tools in-

clude library searching of the GNPS libraries (the largest currently available in the

mass spectrometry field) [207], molecular network visualization to allow metabolite

tracking, and metabolome abundance matrix generation to allow similar multivari-

ate statistical analysis, including PCoA and EMPeror-based visualization of sample

relationships.

Microbiome relationships Bacterial marker gene sequencing revealed

rich microbial communities in most fermented food samples as judged by Faiths

phylogenetic diversity (PD) metric [48], a biodiversity measure incorporating phy-

logenetic differences between the taxa present in a sample. The three most diverse

samples were pickles, beet kvass, and port wine (PD values of 23.0, 16.6, and

16.2, respectively), while dairy kefir and symbiotic colony of bacteria and yeast

(SCOBY) samples were the least diverse (average PD values of 2.21 and 1.91, re-

spectively). The average PD of all fermented foods in the data set was 9.89, com-

pared to 21.6, 11.9, and 18.5 for human skin, oral, and fecal samples, respectively.

Surface microbiomes were also rich, with an average PD of 11.5. The unweighted

UniFrac matrix [118] visualized via principle component analysis (PCoA) using

EMPeror clustered the samples closely by type (ANOSIM R statistic = 0.477, P

= 0.001), and the human sample types matched their corresponding AGP sample

types (Figure 5.2a). While mouth, stool, and right and left hand samples each
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formed relatively tight clusters, as expected [29], fermented food and indoor sur-

face samples formed a looser cluster together, largely distinct from human sample

clusters, although a few food and surface samples clustered near hand and fecal

samples (Figure 5.2a). Combining these samples with a subset of the AGP cohort

revealed that there was an increase in gut bacterial diversity that correlated with an

increase in fermented food consumption (R2 = 0.034, P = 0.02373) (Figure 5.2b).

Nonparametric Kruskal-Wallis tests corrected for multiple comparisons (false dis-

covery rate [FDR]) identified 219 OTUs differing significantly in relative abundance

across sample types. No OTU was significantly higher in fermented food samples

than in any other sample type, though several were higher (FDR corrected P <

0.05) in stool (including OTUs classified as Blautia, Varibaculum, Bacteroides,

Peptoniphilus, and Corynebacterium), hand (Corynebacterium, Staphylococcus,

Neisseria, Haemophilus, and Rothia), and mouth (Prevotella, Neisseria, Lautropia,

and Leptotrichia) samples. SourceTracker [88] analysis revealed that the microbial

communities of items on or in which fermented foods were prepared (i.e., from

surfaces, such as cutting boards, to containers, such as fermenters) were largely

sourced from the foods and specific to the location in which the foods were pre-

pared. Except for one household, where small percentages (9 to 30%) of hand

microbial communities were sourced from food, no obvious patterns linked mi-

crobial source communities to human skin, mouth, or fecal microbiomes (Figure

5.2c).

PICRUSt metagenome predictions revealed a slightly dissimilar clustering
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Figure 5.2: Marker Gene results. (a) PCoA of the abundance of unique OTUs
per sample from the 16S marker gene sequencing data from the AGP data repos-
itory (small spheres) and the San Diego Fermentation Festival volunteer samples
collected for this study (large spheres). (b) Alpha diversity as measured using
16S rRNA marker gene sequencing counts of OTUs in a subset of the Ameri-
can Gut Project data for which consumption of fermented foods is reported. (c)
SourceTracker analysis of surface samples from households 3 and 4. SourceTracker
measures the proportions of OTUs sourced from the fermented foods on the house-
hold surfaces where they were prepared. (d) PCoA clustering of microbiome data
after metagenomic prediction with the PICRUSt algorithm.
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pattern to that observed with 16S marker gene sequencing data based on sample

type when the Bray-Curtis distance metric was applied to the BIOM table con-

taining KEGG pathways. While fermented food and surface samples still formed

a loose cluster, with body types more tightly clustered, oral samples clustered

close to fecal samples based on KEGG pathways but not 16S marker gene data

(Figure 5.2d). Nonparametric Kruskal-Wallis tests corrected for multiple compar-

isons (FDR) identified 119 KEGG pathways differing significantly across sample

types. KEGG pathways that were significantly higher (FDR-corrected P value of

<0.05) in fermented foods than on surfaces included aminosugar and nucleotide

sugar metabolism, starch and sucrose metabolism, galactose metabolism, RNA

transport, glycolysis/gluconeogenesis, and methane metabolism; KEGG pathways

that were significantly higher on surface samples than in food samples included

bacterial secretion systems, phenylalanine metabolism, fluorobenzoate degrada-

tion, aminobenzoate degradation, glycan biosynthesis and metabolism, tryptophan

metabolism, and caprolactam degradation. Several KEGG pathways were also dif-

ferentially abundant between fermented foods and stool or mouth samples. For

example, aminobenzoate degradation, retinol metabolism, naphthalene degrada-

tion, ethylbenzene degradation, tyrosine metabolism, and butanoate metabolism

pathways were all significantly higher (FDR-corrected P value of <0.05) in fer-

mented food samples than in stool samples, while glycosaminoglycan degradation,

other glycan degradation, methane metabolism, transcription machinery, sporula-

tion, sphingolipid metabolism, and sporulation pathways were significantly higher
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in stool samples than in fermented food samples. In mouth samples, n-glycan

biosynthesis, translation factors and proteins, amino acid-related proteins, and

lipopolysaccharide biosynthesis and biosynthesis proteins were significantly (FDR-

corrected P value of ¡0.05) higher than in fermented food samples. Conversely,

chloroalkane degradation, ethylbenzene degradation, aminobenzoate degradation,

tyrosine metabolism, bisphenol degradation, naphthalene degradation, benzoate

degradation, xylene degradation, butanoate metabolism, and several other path-

ways were significantly higher in fermented food samples than in mouth samples.

Metabolome relationships. PCoA of Bray-Curtis distances for the pres-

ence/absence of metabolites by sample showed that skin and mouth samples were

distinct from other sample types and that fermented food samples clustered with

biofilm samples from their containers (Figure 5.3). Stool samples, however, were

mixed with other sample types, unlike the tight clustering seen using the 16S

rRNA sequencing data (Figure 5.3). These clustering relationships showed that

the chemistry of fermented foods and their associated human and environmental

samples was more variable than the microbial profiles among sample types, likely

due to the dynamic nature of metabolite production from microbial communities

and the direct input of the foods themselves in stool chemistry.

Of the 7,425 unique MS/MS spectra detected, 100 were matched to refer-

ence libraries using GNPS molecular networking [215, 223]. This 1.3% match rate

is similar to the 1.8% match rates for all metabolomics data in GNPS [32]. Most

spectral matches were plant natural products associated with the fermented foods,
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Figure 5.3: PCoA of the metabolomics data from a presence/absence
matrix of unique MS/MS spectra in all samples using the Bray-Curtis
distance metric.
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including flavonoids, lipids, and plant sterols. Other, non-plant-related molecules

were observed, including cholesterol and its derivatives on skin and avobenzone,

an active ingredient in sunscreen. Gingerol, the spicy flavorant in the ginger root

Zingiber officinale), was found in samples of fermented foods and the indoor sur-

faces of two households. Similarly, the spicy pepper plant (Piper nigrum) alkaloid

piperine was found in fermented food, stool, indoor surface, and skin samples.

The metabolite polanrazine B, isolated from Leptosphaeria maculans, a fungal

pathogen of canola and rapeseed plants (Brassica spp.) [192], was prevalent in

two of the four households sampled, including in food and stool samples. Spectral

matching also identified the flavonoid procyanidin B2 (m/z 579.149), an antiox-

idant associated with many plants, such as apples, beans, grapes, and tea, and

molecular networking detected an altered form with an additional pentose sugar

(neutral loss of m/z 132.04 [156] [Figure 5.4a]). Procyanidin B2 was present

in the biofilm, fermented food, indoor surface, human skin, and stool samples.

This metabolite was present in all sample types from a single subject, includ-

ing the foods the person ate, surfaces in the household, the persons body, and

stool (Figure 5.4b). Although fermented foods from all four households contained

procyanidin B2, only two of them had this molecule in their stool, indicating dif-

ferential metabolism in different individuals. The modified form of procyanidin

(m/z 711.189) was found in the same sample types except stool, suggesting that

consumption of this metabolite from a fermented food resulted in removal of the

sugar or the absorption of the molecule as it passed the digestive tract. Pheo-
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phytin A, chlorophyll a without its metal ion, was only detected in samples of

fermented foods of vegetable origin (except beer), their containers, and stool, indi-

cating that this molecule remained intact through digestion (Figure 5.4a and b).

Related metabolites, including bacteriopheophytin and pyropheophytin, were de-

tected only in kimchi (Figure 5.4a). In sum, analysis of metabolites from human

samples revealed molecules from fermented foods modified by human or micro-

bial enzymes, molecules produced by organisms pathogenic for components of the

fermented food, molecules from fermented food that passed completely through

the volunteers digestive tracts without alteration, and differential metabolism of

fermented food metabolites in different people.

Figure 5.4: Metabolomics results. (a) Molecular network clusters of pheo-
phytin and procyanidin and their related metabolites. (b) Metabolite tracking for
the presence of those metabolites in the human and environmental samples from
the four separate households sampled. Metabolites from network clusters, colored
as in panel a, are shown next to the household samples they were detected in,
and colored lines are used to visualize tracking of metabolites through the specific
households as shown in the key.
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Microbiome and metabolome integration. Using Procrustes analysis

[206] to get an integrated look at metabolome and microbiome relationships, we

mapped the principal coordinate analysis matrices of the 16S rRNA data to the

metabolomics data. The overall patterns matched, except that two samples (kom-

bucha and pickles) clustered with fecal microbiome samples in the microbiome

space but with other fermented foods in the metabolomics space (Figure 5.5).

These results underscore that microbial communities and their activities are envi-

ronment specific and that the metabolite output of the sample type is consistent

with the microbial community that produced it.

Conclusions. Rather than multi-omics analysis being an arduous and

highly technical procedure, this study demonstrates that it can be performed on

a rapid time scale with a small team of people (six authors of the manuscript

contributed to data analysis). A major advantage to this pipeline is the ability to

compare data to large data repositories, such as the AGP and GNPS, for sample

relationships and metabolite identification. This more easily facilitates the iden-

tification of microbiome dysbiosis or metabolome changes that indicate disease.

Context is required in any clinical or industrial application of multi-omics data,

to better determine how the current structure of a microbial community compares

to previous states or sample types, enabling diagnosis of an active dysbiosis. The

present study focused on fermented foods and their effects on the people who pre-

pared and consumed them. These foods are of enormous medical importance given

that yogurt, a fermented food, is the single food most correlated epidemiologically
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Figure 5.5: Procrustes analysis of microbiome and metabolome data.
Spheres represent individual samples, and they are shown to be either metabolome
or microbiome samples by being connected to a grey line or black line, respectively.
Connections between the spheres represent microbiomes and metabolomes from the
same sample and the distance between them.
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with weight loss in the U.S. population [139], and they are of economic impor-

tance due to the billions of dollars per year that fermented foods contribute to the

economy. Although this sample cohort did not require rapid data analysis, such

as that required in a medical emergency or the potential loss of a large industrial

fermentation, this study shows that consent could be obtained, samples collected,

and data generated on microbiome-related samples collected from people located

up to 100 miles away from the laboratory in a time frame matching that of clas-

sic microbiological culturing of common pathogens (approximately 2 days). The

ability to do rapid-response multi-omics analysis and systems biology will have

far reaching implications, from monitoring industrial fermentation processes, to

guiding oil and gas drilling and fracking decisions, to providing rapid molecular

analysis for patient care in infectious diseases and guiding the use of microbiome-

based therapies, such as fecal microbiota transplant (FMT) [173] and probiotics.

The combination of standardized protocols for subject recruitment and consent,

sample collection, metadata capture, DNA sequencing, mass spectrometry, molec-

ular networking, and data analysis and visualization now puts this technology in

the hands of a broad spectrum of users. Broader and more rapid use of multi-omics

methods will begin a sea change towards their implementation in clinical medicine.

5.1.3 Materials and methods

Participant recruitment and sample collection. For the first appli-

cation of the pipeline, we chose a situation that, while time sensitive, was not

235



necessary for clinical decisions. All participants are members of a local fermenters

club and ferment at home or operate a fermented food business; they learned about

the study through the fermenters club. Participants willing to sample their own

bodies, their fermented foods, and the surfaces that their foods are prepared on or

in (i.e., kitchen counters, cutting boards, and fermenters) consented to be a part of

the American Gut Project (AGP), the largest crowd-sourced, crowd-funded citizen

science project in existence today. A total of seven people (two families and two

individuals, designated households 1 to 4) received barcoded, dual-headed ster-

ile cotton sampling swabs (BD Swube; Becton, Dickinson and Company, Franklin

Lakes, NJ) and were instructed to sample their skin (right and left hands), mouths,

stool, their fermented foods, and the surfaces touched by those foods. Some partic-

ipants chose to sample alternative body sites (i.e., vagina and forehead), and one

participant sampled the mouth of a pet cat. The food samples collected included

beer, port wine, pickled cucumbers, pickled jalapenos, cottage cheese, curtido,

kefir, kimchi, sauerkraut, miso, beet kvass, and fermented soda. The surface sam-

ples collected included cutting boards, countertops, refrigerator surfaces, skillets,

kegerator parts, and fermentor parts. Samples were collected by subjects on 25,

26, and 27 January 2016, with the first sample in the data set collected at 8:05

a.m. on 25 January and the last sample in the data set collected at 12:05 p.m. on

27 January, for a total of 61 samples. Samples from six participants were deliv-

ered by hand to the laboratory, while one participant mailed their samples to the

laboratory via overnight priority mail (FedEx). All samples were received in the
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laboratory by 1:07 p.m. on 27 January 2016 (Figure 5.1). Upon arrival, one swab

head from each dual-headed swab was immediately placed into a MoBio PowerSoil

DNA extraction kit bead plate (MoBio, Inc., Carlsbad, CA) for bacterial DNA ex-

traction. The second swab head was stored overnight at 20◦C before preparation

for metabolomics analysis using mass spectrometry.

Bacterial DNA extraction and generation of 16S rRNA V4 ampli-

cons. Bacterial genomic DNA extraction, 16S rRNA gene variable region 4 (V4)

amplicon generation, and amplicon preparation for sequencing were performed ac-

cording to protocols benchmarked for the Earth Microbiome Project (EMP) that

can be found on the EMP website 6. Briefly, bacterial genomic DNA was extracted

from samples using the PowerMag DNA isolation kit optimized for KingFisher (Mo

Bio Laboratories, Carlsbad, CA), and then the V4 region of the 16S rRNA gene

was amplified in triplicate from each sample and combined as follows. The PCR

mixtures contained 13 µl Mo Bio PCR water, 10 µl 5 Prime HotMasterMix, 0.5

µl each of the barcoded forward and reverse primers (515f and 806rB; 10 µM fi-

nal concentration), and 1.0 µl genomic DNA. The reaction mixtures were held

at 94◦C for 3 min (denaturation), with amplification proceeding for 35 cycles at

94◦C for 45 s, 50◦C for 60 s, and 72◦C for 90 s, followed by a final extension for

10 min at 72◦C. After amplification, the DNA concentration was quantified using

PicoGreen double-stranded DNA (dsDNA) reagent in 10 mM Tris buffer (pH 8.0).

A composite sample for sequencing was created by combining equimolar ratios of

6http://www.earthmicrobiome.org/emp-standard-protocols/
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amplicons from the individual samples, followed by ethanol precipitation to remove

any remaining contaminants and PCR artifacts.

16S rRNA marker gene sequencing. Pooled amplicons were sequenced

at the Institute for Genomic Medicine at the University of California, San Diego,

using the Illumina MiSeq platform. The library concentration was measured using

the HiSens Qubit dsDNA HS assay kit (Thermo Fisher Scientific). A total of 6 pM

of 16S library combined with 0.9 pM (15%) PhiX sequencing control version 3 was

sequenced with 150-bp paired-end (PE) reads on an Illumina MiSeq sequencing

system using a MiSeq reagent kit version 2 (300 cycle). Fastq files for reads 1

and 2 and the index read were generated using the BCL-to-FASTQ file converter

bcl2fastq version 2.17.1.14 (Illumina, Inc.).

16S rRNA marker gene data analysis. Sequencing data were prepared

and analyzed using the online tool Qiita 7 and the QIIME pipeline [20] version

1.9. Illumina read 1 was quality filtered and demultiplexed according to the QI-

IME default parameters, as follows: no ambiguous bases allowed, only one bar

code mismatch allowed, and a minimum required Phred quality score of 3. Qual-

ity filtering resulted in 6,830,655 high-quality reads, with the average number of

sequences per sample being 84,329. Quality-filtered sequences were clustered us-

ing the closed-reference OTU picking workflow against the August 2013 release of

the Greengenes database [37], with a sequence identity of 97% and sortmeRNA

[92] as the underlying clustering algorithm. After OTU picking, 5 samples (fore-

7https://qiita.microbio.me
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head, water, vaginal, fermented grape soda, and fermenter inner wall samples)

were removed from the data set because they had sequence counts lower than the

rarefaction cutoff (2,053 sequences per sample); thus, a total of 54 microbiome

samples were included in downstream analyses.

The AGP team has identified a group of bacterial bloom sequences that

increase during sample transit back to the laboratory, and in order to avoid a

study bias, those sequences were filtered out of the data (code available at 8). To

facilitate direct comparisons and reduce study bias between data obtained from

the fermentation cohort and the AGP cohort, fermentation cohort stool sample

data were also filtered for blooms.

Five of the seven fecal samples from the fermentation cohort passed quality

and sequencing depth filtering. The bacterial diversity levels observed in these

five samples were compared to those in a subset of 122 randomly selected fecal

samples from other AGP participants of a similar age group for whom data on the

frequency of fermented food intake were available. Alpha diversity (measured as

Faiths phylogenetic diversity [48]) was calculated for each sample from a rarefied

OTU table of 2,053 sequences per sample. Barplots were generated in R 9 to

visualize the distribution of diversity values across the various groups, and a linear

regression model was fitted to the AGP portion of the data.

We used SourceTracker [88], a tool that uses a Bayesian model jointly with

8https://github.com/biocore/American-Gut/blob/master/ipynb/

primary-processing/02-filter_sequences_for_blooms.md
9https://www.r-project.org/
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Gibbs sampling to quantify the amount of taxa that a set of source environments

contributes to a sink environment, to determine the proportions of human and

surface microbes that were sourced from fermented food microbiomes. Fermented

food samples were designated sources, while human and surface samples were des-

ignated sinks.

Statistical analyses were applied to determine the significance of groups

by sample type on the PCoA plot (ANOSIM, 999 Monte Carlo permutations)

and to identify OTUs with significantly different relative abundances (Kruskal-

Wallis, 999 Monte Carlo permutations) across sample groups. Nonparametric tests

were used to appropriately deal with microbiome data, which were not normally

distributed. The significance cutoff for P values (ANOSIM) and FDR-corrected P

values (Kruskal-Wallis) was set at 0.05.

PICRUSt metagenome predictions were performed using the Galaxy im-

plementation of PICRUSt 1.0.0 [100]. The resulting BIOM table was then cat-

egorized by KEGG pathways (i.e., KEGG Orthology groups [KOs] were placed

into functional categories). All eukaryote-specific pathways were removed from

the table, and the table was rarefied to 572,338. The Bray-Curtis distance metric

was then applied and visualized using EMPeror [206]. A Kruskall-Wallis test with

999 Monte Carlo permutations was applied to determine significant differences in

KEGG pathway abundances between groups of samples.

Metabolomics data analysis. The metabolomics data for this project
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are available under MassIVE data set ID MSV000079485 at GNPS 10. To generate

metabolomes, the swabs were added to a solution of 70% methanol in water and

allowed to extract for 2 h at room temperature. The methanol extract was then

dried down in a centrifugal evaporator and redissolved in 100% methanol. Sam-

ples were transferred into 2-ml vials with inserts and diluted 1:2. MS analysis was

performed on a QExactive (Thermo Scientific) mass spectrometer with a heated

electrospray ionization (HESI-II) probe source, controlled by Xcalibur 3.0 software.

MS spectra were acquired in positive ion mode over a mass range of 100 to 1,500

m/z. An external calibration with Pierce LTQ Velos electrospray ionization (ESI)

positive ion calibration solution (Thermo Scientific) was performed prior to data

acquisition, with an error rate of less than 1 ppm. The following probe settings

were used for flow aspiration and ionization: spray voltage of 3,500 V, sheath gas

(N2) pressure of 53 lb/in2, auxiliary gas (N2) pressure of 14 lb/in2, ion source tem-

perature of 270◦C, S-lens radio frequency (RF) level of 50 Hz, and auxiliary gas

heater temperature at 440◦C. Data acquisition parameters were as follows. Minutes

0 to 0.5 were sent to waste. Minutes 0.5 to 12 were recorded with data-dependent

MS/MS acquisition mode. Full scan at MS1 level was performed with resolution

of 35,000 in profile mode. The 10 most intense ions with 1 m/z isolation window

per MS1 scan were selected and subjected to normalized collision-induced dissoci-

ation with 30 eV. MS2 scans were performed at 17,500 resolution with maximum

injection time of 60 ms in profile mode. The MS/MS active exclusion parame-

10http://gnps.ucsd.edu
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ter was set to 5.0 s. The injected samples were chromatographically separated

using a Vanquish ultrahigh-performance liquid chromatography (UHPLC) instru-

ment (Thermo Scientific) controlled by Thermo SII for Xcalibur software (Thermo

Scientific), with a 30- by 2.1-mm, 2.6 µM, C18, 100-A Kinetex chromatography

column (Phenomenex) with 40◦C column temperature, 0.5 ml/min flow rate, mo-

bile phase A consisting of 99.9% water (LC-MS grade; J.T. Baker)0.1% formic

acid (Fisher Scientific, Optima LC/MS), and mobile phase B consisting of 99.9%

acetonitrile (LC-MS grade; J.T. Baker)0.1% formic acid (Fisher Scientific, Optima

LC/MS), using the following gradient: 0 to 1 min, 5% B; 1 to 8 min, 100% B; 8

to 10.9 min, 100% B; 10.9 to 11 min, 5% A; and 11 to 12 min, 5% B. Raw data

files were converted to the .mzXML format using ProteoWizard 11 and uploaded

to the GNPS-MassIVE mass spectrometry database. The list of annotations from

the search can be found at 12.

Molecular networking was performed to identify spectra shared between dif-

ferent sample types and to identify known molecules in the data set. All annota-

tions are at level 2 according to the proposed minimum standards in metabolomics

[194]. The molecular networking parameters were as follows: a minimum matched-

peak threshold of 4, a cosine similarity score cutoff of 0.65, a minimum cluster size

of 2, and a parent and ion tolerance of 0.5 Da. GNPS library search parameters

were the same except that a cosine threshold of 0.7 was used. A feature table of

11http://proteowizard.sourceforge.net/
12http://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=efc4f1031f73471cbdfddcde0cc\

181a6&view=view_all_annotations_DB
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metabolite presence and absence in each sample was generated from GNPS spectral

alignments and downloaded. Similarity of metabolomes was determined using the

Bray-Curtis distance metric, projected with principal coordinate analysis and vi-

sualized with EMPeror through the in-house tool ClusterApp. Molecular networks

were visualized and mined using the Cytoscape software [180].

16S-metabolomics multivariate comparisons. Using the OTU table

and the metabolite table, we generated a distance matrix for each, using un-

weighted UniFrac for 16S and Bray-Curtis for the metabolomics. We performed

principal coordinate analysis on the two matrices separately and used Procrustes

analysis as implemented in QIIME 1.9.1 to rotate, translate, and scale the matrices.

The resulting transformed matrices were plotted using EMPeror [206].

Microarray data accession numbers. Mapping files and preprocessed

data for human samples are available at https://qiita.ucsd.edu under Qiita study

identification number (ID) 10317 (AGP), and sequences are publicly available in

EMBL-EBI (accession number ERP012803) under accession numbers ERS1048817,

ERS1048818, ERS1048819, ERS1048820, ERS1048821, ERS1048822, ERS1048823,

ERS1048824, ERS1048825, ERS1048826, ERS1048827, ERS1048828, ERS1048829,

ERS1048832, ERS1048833, ERS1048834, ERS1048835, ERS1048836, ERS1048837,

ERS1048838, ERS1048839, ERS1048840, ERS1048841, ERS1048842, ERS1048843,

ERS1048844, and ERS1048845. Mapping files and preprocessed data for food, en-

vironment, and cat samples are available at https://qiita.ucsd.edu under Qiita

study ID 10395, and sequences are publicly available in EMBL-EBI (accession
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number ERP015077). The 16S amplicon analyses outlined in this paper were

conducted using the Knight laboratorys supercomputer Barnacle, using 26 CPU

hours.
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Chapter 6

Conclusions

As I described in Chapter 1, improvements in current technology are push-

ing microbiome science to become a ”Big Data“ field. Big Data is being generated

in multiple ways. First, advances in sequencing technologies can generate four

orders of magnitude more data than 10 years ago. Second, the need for different

’omics technologies to study different aspects of the system requires aggregation of

even more data per sample than ever before. Finally, the complex interactions of

the microbes with their niche require an accurate description of their niche, rep-

resented in the form of sample metadata. This rapid increase of data volume and

heterogeneity presents a wide range of challenges to investigators, many of whom,

due to the various conditions and system for which the microbiome is important,

are not microbiologists by training or do not have extensive background in micro-

bial ecology, or in the tools that can be used to analyze the data. Some of these

tools can prove intimidating to those with no background in computer science.
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This thesis provides solutions to some of these challenges, specifically by improv-

ing usability of analysis tools and access to resources required to run those tools,

and by providing solutions to standardize data handling, storage, and analysis.

6.1 Improving usability of analysis tools

Of the tools available to perform microbiome analyses, Quantitative Insights

into Microbial Ecology (QIIME) is a choice popular in the community. QIIME is a

collection of command line scripts that can be challenging to use for investigators

who are not familiar with the Command Line Interface (CLI). Section 2.1 described

the first gold standard approach for microbiome data analysis, starting from sample

preparation and going through to publication-quality figures. This section is a

step-by-step guide, so even researchers who lack CLI familiarity can successfully

perform their analyses.

A CLI is prone to user error. A simple typographical error can make the

script fail or generate undesired results. To assess this issue (among many others),

Qiita (Section 4.1) was presented as a web-based solution that allows command

execution with a Graphical User Interface (GUI), minimizing the amount of input

provided by the user and removing typographical errors.

Tool developers typically focus on solving a complex problem and making

their tool available to the community as soon as possible. Developing a GUI dou-

bles the development time [141], a cost that developers do not want to incur in
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a fast changing field like microbiome research. Qiita builds a bridge between the

developers and biologists, freeing up the developers from building a GUI, but still

providing an intuitive GUI for non command line-savvy researchers. Tool develop-

ers just provide information about the inputs and outputs of their commands and

Qiita automatically generates a web-based GUI.

This ability to make new command line tools rapidly available to non com-

mand line savvy researchers will push microbiome research forward faster than ever

before. The usual steep learning curve for a new tool gets completely removed,

because all tools in Qiita are based on the same GUI, and the researcher can focus

on the science of their results rather than on the specifics of a new CLI. This will

enable researchers to perform all their multi-omics analyses in a single platform,

with a common user interface, facilitating advances in multi-omics analyses likely

to be critical for making the microbiome an integral part of precision medicine.

For example, mass spectrometry analyses have historically been able to be done

only by those with specific training. Leveraging the Qiita plugin system will bring

this type of specialized data analysis to the researcher, who can then combine mass

spectrometry data with other data types, such as microbiome sequence data (both

marker gene and whole genome shotgun), host genome sequence data, and pro-

teomics data, among others. The potential for providing a more complete picture

than ever before possible places Qiita at the forefront of techniques that facilitate

the future of microbiome multi-omics research.
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6.2 Improving resource utilization of analysis

tools

Section 2.2 identified one of the common bottlenecks when analyzing target

gene sequencing data: sequence clustering. The microbiome field has been gaining

interest from computational biologists, constantly presenting in the literature new

tools that increase the quality of the results and reduce the time to solution.

Section 2.2.1 presented a benchmark of available sequence clustering tools, and

provided a comparative framework that can be used to compare new tools as they

become available. This framework can objectively assess the quality and speed of

new tools, enabling users to critically assess the best tool they want to use. This

empowers users with the ability to choose a tool not based on the promises made

in a specific publication, but rather on the actual results in well-described datasets

with a different range of characteristics.

As the microbiome field keeps generating more and more data, analyzing

the data using modern laptops or personal computers is becoming an impossible

task. However, microbiologists do not necessarily have access to supercomputers,

and they often rely on cloud services such as Amazon Elastic Compute Cloud

(EC2) to perform their analysis. Being an Infrastructure as a Service (IaaS) cloud

solution, microbiologists are presented with the challenge of choosing adequate

resources to run their analysis tools. In Chapter 3, I showed that memory is the

most critical cloud resource because it is the most expensive cloud resource, and a
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shortage of memory translates into termination of the user’s analysis and a loss of

all work performed until that point. In Section 3.1, I describe a potential solution

to this problem: CUDSwap, a Loadable Kernel Module (LKM) that monitors the

system memory and dynamically adds swap space if the system memory falls below

a given threshold. Section 3.2 presented an implementation of the previous design,

removing the necessity to use an arbitrary user-defined threshold, and evaluated

the performance of CUDSwap using a memory bounded step of the microbial

analysis pipeline: sequence clustering. The sequence clustering step follows a semi-

sequential memory access pattern that makes it suitable to use swap space under

memory oversubscription situations, allowing the process to finish at the expense

of a small increase of running time. CUDSwap is a system that improves user

experience and increases the value of the resources by providing useful results

from all computations. However, CUDSwap should not be used all the time, but

rather as a safeguard when a mis-prediction occurs.

Historically, many tools for analyzing microbiome data have been devel-

oped by biologists who acquired programming knowledge later in their careers. As

the field moves towards big data, more and more computer scientists have been

involved in the development of these tools, applying techniques and optimizations

that allow tools to operate on modern data scales. However, few developers ac-

knowledge the big data nature of the field, and as a result, many tools are limited

to small datasets, and do not scale well to large scale initiatives like the Earth

Microbiome Project (EMP) (Section 2.3.2) or the American Gut Project (AGP)
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(Section 2.3.3). To achieve the levels of scalability needed by these initiatives, ap-

plying just pure computer science optimization techniques or just domain specific

optimizations is not enough. A multidisciplinary team of developers is needed, in

which computer scientists can contribute algorithmic, user interface, and software

engineering optimizations and domain experts can provide a better understanding

of the nature of the data to find new ways of approaching the computational prob-

lems. This approach, as shown in sections 2.2.1 and 2.2.3, can generate analysis

tools that scale to dataset sizes never before thought possible, enabling researches

to push microbiome research forward to a whole new level.

6.3 Standardization of metadata and analysis

Accurately describing the environment that a sample comes from is key

to characterize the microbiome of the sample and its interactions with its envi-

ronment. Using a standard to represent this information, such as the Minimum

information about a marker gene sequence (MIMARKs) standard [225], allows

researches to perform comparative analyses across multiple datasets, improving

their ability to find new relationships between the microbiome and its niche. In

Chapter 4, I described how meta-analyses move microbiome research forward by

increasing the power of the findings. However, a researcher performing a meta-

analysis should ensure that the samples have been handled, processed and analyzed

in the same way, to reduce the impact of technical differences. In Section 4.1, I
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presented Qiita, a system designed to facilitate meta-analyses by normalizing sam-

ple metadata and minimizing processing differences. Qiita simplifies the complex

process of creating a meta-analysis to a few mouse clicks, cutting down the time

and effort spent by researchers from months to few minutes. This ability to easily

contextualize samples with massive initiatives like the Human Microbiome Project

(HMP), EMP and AGP opens the door to a whole new world of possibilities, em-

powering researchers with new ways of looking at their data and finding new links

between the microbiome and their niche. For example, researchers can find new

links between the microbiome and diseases, develop new microbiome-based treat-

ments, or engineer new biofuels. With the microbiome being important in so many

fields, the possibilities are endless.

Work still needs to be done to help researchers to provide their sample

metadata. A new system that guides the researchers through the MIMARKs

standard and allows them to efficiently use the existing ontologies to encode their

information would greatly increase the efficiency of microbiome research. This

way, the tedious problem of formatting the sample metadata can be reduced from

weeks of effort to hours, and ideally would be performed at the same time that the

samples are collected. With such a system working jointly with Qiita, researchers

could focus on the science and biological questions, rather than spending months

of their time on basic data formatting.
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6.4 Bringing microbiome research to the clinic

The standardization of sample handling, processing, analysis, and meta-

data curation, as well as improvements in the efficiency of data processing not

only provide a common platform for microbiome research, but also increases effi-

ciency and allows researchers to generate results at speeds never achieved before.

In Section 5.1, I show how combining the improvements in the tools with a group of

experts can generate multi-omics results in as little as 48 hours. These speeds pro-

vide the opportunity for microbiome analysis to be used in areas in which time is

critical. One such area is human health, in which a multi-omics, microbiome-based

analysis can provide new relevant information to the clinicians, enabling them to

generate new hypothesis that guide the ordering of clinical tests to diagnose dif-

ficult cases. For example, sequencing can be used to understand Mycobacterium

tuberculosis outbreaks [68], enabling researchers to identify specific mutations and

even the origin of the outbreak. Current diagnostic techniques to find the best

treatment are culture-based and can take up to 8 weeks to provide a definitive

answer. Empowering clinicians with sequencing information that generates results

in less than 8 weeks while identifying possible drug resistance genes present in

the Mycobacterium tuberculosis strain infecting the patient will be an invaluable

resource that can save lives. This is just one example, but with the microbiome

being linked to other conditions like diabetes, Parkinson’s, Autism, depression,

and many others, the potential of improving the current health care would reach

252



a completely new level. Furthermore, with antibiotic resistance becoming an in-

creasing problem, being able to treat patients with targeted antibiotics rather than

broad-spectrum antibiotics will combat this pressing problem.

This thesis provides an efficient and extensible framework for multi-omics

analyses. As new microbiome studies are being designed targeting specific links

between the microbiome and disease, this framework becomes an invaluable re-

source for human health. With an increasing pool of samples available in Qiita,

techniques such as neural networks or other machine learning approaches could be

applied to find new biomarkers that facilitate patient diagnosis. New, non-invasive

approaches could be used to diagnose diseases. The microbiome is becoming a key

component of precision medicine, and providing a framework that enables faster

advances in microbiome research will help to accelerate the use of the microbiome

in the clinic.
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[12] Júlia Balog, László Sasi-Szabó, James Kinross, Matthew R. Lewis, Laura J.
Muirhead, Kirill Veselkov, Reza Mirnezami, Balázs Dezso, László Dam-
janovich, Ara Darzi, Jeremy K. Nicholson, and Zoltán Takáts. Intraoperative
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[54] Joëlle V. Fritz, Mahesh S. Desai, Pranjul Shah, Jochen G. Schneider, and
Paul Wilmes. From meta-omics to causality: Experimental models for human
microbiome research, 2013.

[55] Kevin Gaston and Tim Blackburn. Pattern and Process in Macroecology.
Wiley-Blackwell, 2000.

259



[56] Dirk Gevers, Rob Knight, Joseph F Petrosino, Katherine Huang, Amy L
McGuire, Bruce W Birren, Karen E Nelson, Owen White, Barbara A Methé,
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Parfrey, José C Clemente, Dirk Gevers, and Rob Knight. Experimental
and analytical tools for studying the human microbiome. Nature reviews.
Genetics, 13(1):47–58, dec 2011.

[97] Justin Kuczynski, Zongzhi Liu, Catherine Lozupone, Daniel McDonald,
Noah Fierer, and Rob Knight. Microbial community resemblance methods
differ in their ability to detect biologically relevant patterns. Nature Methods,
7(10):813–819, 2010.

[98] Jordan G. Kueneman, Laura Wegener Parfrey, Douglas C. Woodhams,
Holly M. Archer, Rob Knight, and Valerie J. McKenzie. The amphibian skin-
associated microbiome across species, space and life history stages. Molecular
Ecology, 23(6):1238–1250, mar 2014.

[99] H Andrés Lagar-Cavilla, Joseph A Whitney, Adin Scannell, Philip Patchin,
Stephen M Rumble, Eyal De Lara, Michael Brudno, and M Satyanarayanan.
SnowFlock: Rapid Virtual Machine Cloning for Cloud Computing. Proceed-
ings of the 4th ACM European conference on Computer systems, pages 1–12,
2009.

[100] Mgi Langille, Jesse Zaneveld, J Gregory Caporaso, Daniel McDonald, Dan
Knights, Ja Reyes, Jc Clemente, De Burkepile, Rl Vega Thurber, Rob
Knight, Rg Beiko, and Curtis Huttenhower. Predictive functional profiling

264



of microbial communities using 16S rRNA marker gene sequences. Nature
biotechnology, 31(9):814–21, 2013.

[101] Morgan G. I. Langille, Jacques Ravel, and W. Florian Fricke. “available
upon request”: not good enough for microbiome data! Microbiome, 6(1):8,
Jan 2018.

[102] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. Mcgettigan,
H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thomp-
son, T. J. Gibson, and D. G. Higgins. Clustal W and Clustal X version 2.0.
Bioinformatics, 23(21):2947–2948, 2007.

[103] Christian L Lauber, Micah Hamady, Rob Knight, and Noah Fierer.
Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial
community structure at the continental scale. Applied and environmental
microbiology, 75(15):5111–20, aug 2009.

[104] Christian L Lauber, Nicholas Zhou, Jeffrey I Gordon, Rob Knight, and Noah
Fierer. Effect of storage conditions on the assessment of bacterial community
structure in soil and human-associated samples. FEMS Microbiology Letters,
307(1):80–86, jun 2010.

[105] Simon Lax, Cathryn R Nagler, and Jack A Gilbert. Our interface with
the built environment: immunity and the indoor microbiota. Trends in
Immunology, 36(3):121–123, nov 2015.

[106] Simon Lax, Daniel P Smith, Jarrad Hampton-Marcell, Sarah M Owens,
Kim M Handley, Nicole M Scott, Sean M Gibbons, Peter Larsen, Benjamin D
Shogan, Sophie Weiss, Jessica L Metcalf, Luke K Ursell, Yoshiki Vázquez-
Baeza, Will Van Treuren, Nur A Hasan, Molly K Gibson, Rita Colwell,
Gautam Dantas, Rob Knight, and Jack A Gilbert. Longitudinal analysis of
microbial interaction between humans and the indoor environment. Science,
345(6200):1048 LP – 1052, aug 2014.

[107] Joshua Lederberg and A T McCray. ’Ome Sweet ’Omics - a genealogical
treasury of words. Scientist, 15(8), 2001.

[108] Ruth E Ley, Micah Hamady, Catherine Lozupone, Peter Turnbaugh,
Rob Roy Ramey, J Stephen Bircher, Michael L Schlegel, Tammy A Tucker,
Mark D Schrenzel, Rob Knight, and Jeffrey I Gordon. Evolution of mammals
and their gut microbes. Science (New York, N.Y.), 320(5883):1647–1651, jun
2008.

[109] Ruth E Ley, Catherine A Lozupone, Micah Hamady, Rob Knight, and Jef-
frey I Gordon. Worlds within worlds: evolution of the vertebrate gut micro-
biota. Nature reviews. Microbiology, 6(10):776–788, oct 2008.

265



[110] M. Li, B. Wang, M. Zhang, M. Rantalainen, S. Wang, H. Zhou, Y. Zhang,
J. Shen, X. Pang, M. Zhang, H. Wei, Y. Chen, H. Lu, J. Zuo, M. Su, Y. Qiu,
W. Jia, C. Xiao, L. M. Smith, S. Yang, E. Holmes, H. Tang, G. Zhao, J. K.
Nicholson, L. Li, and L. Zhao. Symbiotic gut microbes modulate human
metabolic phenotypes. Proceedings of the National Academy of Sciences,
105(6):2117–2122, 2008.

[111] W Li, L Jaroszewski, and A Godzik. Clustering of highly homologous se-
quences to reduce the size of large protein databases. Bioinformatics (Oxford,
England), 17(3):282–283, 2001.

[112] Weizhong Li and Adam Godzik. Cd-hit: A fast program for clustering and
comparing large sets of protein or nucleotide sequences. Bioinformatics,
22(13):1658–1659, 2006.

[113] a Liaw and M Wiener. Classification and Regression by randomForest. R
news, 2(December):18–22, 2002.

[114] Losee L Ling, Tanja Schneider, Aaron J Peoples, Amy L Spoering, Ina Engels,
Brian P Conlon, Anna Mueller, Till F Schaberle, Dallas E Hughes, Slava
Epstein, Michael Jones, Linos Lazarides, Victoria A Steadman, Douglas R
Cohen, Cintia R Felix, K Ashley Fetterman, William P Millett, Anthony G
Nitti, Ashley M Zullo, Chao Chen, and Kim Lewis. A new antibiotic kills
pathogens without detectable resistance. Nature, 517(7535):455–459, jan
2015.

[115] Zongzhi Liu, Todd Z. Desantis, Gary L. Andersen, and Rob Knight. Accurate
taxonomy assignments from 16S rRNA sequences produced by highly parallel
pyrosequencers. Nucleic Acids Research, 36(18), 2008.

[116] Mark V. Lomolino. Investigating causality of nestedness of insular com-
munities: selective immigrations or extinctions? Journal of Biogeography,
23(5):699–703, sep 1996.

[117] T Loua. Atlas statistique de la population de Paris. J. Dejey & cie, Paris,
1873.

[118] Catherine Lozupone and Rob Knight. UniFrac: A new phylogenetic method
for comparing microbial communities. Applied and Environmental Microbi-
ology, 71(12):8228–8235, 2005.

[119] Catherine Lozupone, Manuel E Lladser, Dan Knights, Jesse Stombaugh, and
Rob Knight. UniFrac: an effective distance metric for microbial community
comparison. The ISME journal, 5(2):169–172, 2011.

266



[120] Catherine A Lozupone and Rob Knight. Global patterns in bacterial diver-
sity. Proceedings of the National Academy of Sciences, 104(27):11436–11440,
jul 2007.

[121] Catherine A. Lozupone and Rob Knight. Species divergence and the mea-
surement of microbial diversity, 2008.

[122] Catherine A Lozupone, Jesse Stombaugh, Antonio Gonzalez, Gail Acker-
mann, Doug Wendel, Yoshiki Vázquez-Baeza, Janet K Jansson, Jeffrey I
Gordon, and Rob Knight. Meta-analyses of studies of the human micro-
biota. Genome Research, 23(10):1704–1714, oct 2013.

[123] Wolfgang Ludwig, Oliver Strunk, Ralf Westram, Lothar Richter, Harald
Meier, A. Yadhukumar, Arno Buchner, Tina Lai, Susanne Steppi, Gangolf
Jacob, Wolfram Förster, Igor Brettske, Stefan Gerber, Anton W. Ginhart,
Oliver Gross, Silke Grumann, Stefan Hermann, Ralf Jost, Andreas König,
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RNA gene database project: improved data processing and web-based tools.
Nucleic Acids Research, 41(Database issue):D590–D596, jan 2013.

[159] Joshua Quick, Nicholas J Loman, Sophie Duraffour, Jared T Simpson,
Ettore Severi, Lauren Cowley, Joseph Akoi Bore, Raymond Koundouno,
Gytis Dudas, Amy Mikhail, Nobila Ouédraogo, Babak Afrough, Amadou
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rarab, Zhenjiang Zech Xu, Lingjing Jiang, Mohamed F Haroon, Jad Kan-
bar, Qiyun Zhu, Se Jin Song, Tomasz Kosciolek, Nicholas A Bokulich,
Joshua Lefler, Colin J Brislawn, Gregory Humphrey, Sarah M Owens, Jarrad
Hampton-Marcell, Donna Berg-Lyons, Valerie McKenzie, Noah Fierer, Jed A

275



Fuhrman, Aaron Clauset, Rick L Stevens, Ashley Shade, Katherine S Pol-
lard, Kelly D Goodwin, Janet K Jansson, Jack A Gilbert, Rob Knight, and
The Earth Microbiome Project Consortium. A communal catalogue reveals
Earth’s multiscale microbial diversity. Nature, advance on, nov 2017.

[198] Julien Tremblay, Kanwar Singh, Alison Fern, Edward S Kirton, Shaomei
He, Tanja Woyke, Janey Lee, Feng Chen, Jeffery L Dangl, and Susannah G
Tringe. Primer and platform effects on 16S rRNA tag sequencing. Frontiers
in Microbiology, 6:771, aug 2015.

[199] Peter J Turnbaugh, Micah Hamady, Tanya Yatsunenko, Brandi L Cantarel,
Alexis Duncan, Ruth E Ley, Mitchell L Sogin, William J Jones, Bruce A Roe,
Jason P Affourtit, Michael Egholm, Bernard Henrissat, Andrew C Heath,
Rob Knight, and Jeffrey I Gordon. A core gut microbiome in obese and lean
twins. Nature, 457(7228):480–484, 2009.

[200] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire Fraser-Liggett, Rob
Knight, and Jeffrey I Gordon. The human microbiome project: exploring the
microbial part of ourselves in a changing world. Nature, 449(7164):804–810,
oct 2007.

[201] Peter J Turnbaugh, Ruth E Ley, Michael A Mahowald, Vincent Magrini,
Elaine R Mardis, and Jeffrey I Gordon. An obesity-associated gut micro-
biome with increased capacity for energy harvest. Nature, 444(7122):1027–
1131, dec 2006.

[202] Peter J Turnbaugh, Vanessa K Ridaura, Jeremiah J Faith, Federico E Rey,
Rob Knight, and Jeffrey I Gordon. The Effect of Diet on the Human Gut Mi-
crobiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science
Translational Medicine, 1(6):6ra14 LP – 6ra14, nov 2009.

[203] Johan E.T. van Hylckama Vlieg, Patrick Veiga, Chenhong Zhang, Muriel
Derrien, and Liping Zhao. Impact of microbial transformation of food on
health-from fermented foods to fermentation in the gastro-intestinal tract,
2011.

[204] Els van Nood, Anne Vrieze, Max Nieuwdorp, Susana Fuentes, Erwin G Zoe-
tendal, Willem M de Vos, Caroline E Visser, Ed J Kuijper, Joep F W M
Bartelsman, Jan G P Tijssen, Peter Speelman, Marcel G W Dijkgraaf, and
Josbert J Keller. Duodenal Infusion of Donor Feces for Recurrent Clostrid-
ium difficile. New England Journal of Medicine, 368(5):407–415, jan 2013.

[205] Yoshiki Vázquez-Baeza, Embriette R Hyde, Jan S Suchodolski, and Rob
Knight. Dog and human inflammatory bowel disease rely on overlapping yet
distinct dysbiosis networks. 1:16177, oct 2016.

276



[206] Yoshiki Vázquez-Baeza, Meg Pirrung, Antonio Gonzalez, and Rob Knight.
EMPeror: a tool for visualizing high-throughput microbial community data.
GigaScience, 2(1):16, 2013.

[207] Maria Vinaixa, Emma L. Schymanski, Steffen Neumann, Miriam Navarro,
Reza M. Salek, and Oscar Yanes. Mass spectral databases for LC/MS- and
GC/MS-based metabolomics: State of the field and future prospects, 2016.

[208] A. J A Vinten, R. R E Artz, N. Thomas, J. M. Potts, L. Avery, S. J.
Langan, H. Watson, Y. Cook, C. Taylor, C. Abel, E. Reid, and B. K. Singh.
Comparison of microbial community assays for the assessment of stream
biofilm ecology. Journal of Microbiological Methods, 85(3):190–198, 2011.

[209] Paola Vitaglione, Ilario Mennella, Rosalia Ferracane, Angela A Rivellese,
Rosalba Giacco, Danilo Ercolini, Sean M Gibbons, Antonietta La Storia,
Jack A Gilbert, Satya Jonnalagadda, Frank Thielecke, Maria A Gallo, Luca
Scalfi, and Vincenzo Fogliano. Whole-grain wheat consumption reduces in-
flammation in a randomized controlled trial on overweight and obese subjects
with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to
cereal dietary fiber. The American journal of clinical nutrition, 101(2):251–
61, feb 2015.

[210] Antonina A Votintseva, Phelim Bradley, Louise Pankhurst, Carlos del Ojo
Elias, Matthew Loose, Kayzad Nilgiriwala, Anirvan Chatterjee, E Grace
Smith, Nicolas Sanderson, Timothy M Walker, Marcus R Morgan, David H
Wyllie, A Sarah Walker, Tim E A Peto, Derrick W Crook, and Zamin Iqbal.
Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-
Genome Sequencing of Direct Respiratory Samples. Journal of Clinical Mi-
crobiology, 55(5):1285–1298, may 2017.

[211] William A. Walters, J. Gregory Caporaso, Christian L. Lauber, Donna Berg-
Lyons, Noah Fierer, and Rob Knight. PrimerProspector: De novo design and
taxonomic analysis of barcoded polymerase chain reaction primers. Bioin-
formatics, 27(8):1159–1161, 2011.

[212] Mingxun Wang, Jeremy J. Carver, Vanessa V. Phelan, Laura M. Sanchez,
Neha Garg, Yao Peng, Don Duy Nguyen, Jeramie Watrous, Clifford A.
Kapono, Tal Luzzatto-Knaan, Carla Porto, Amina Bouslimani, Alexey V.
Melnik, Michael J. Meehan, Wei Ting Liu, Max Crüsemann, Paul D.
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