
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Algorithmic modeling of decision making over networks

Permalink
https://escholarship.org/uc/item/8mg4244s

Author
Vattani, Andrea

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8mg4244s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Algorithmic Modeling of Decision Making over Networks

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Andrea Vattani

Committee in charge:

Professor Ramamohan Paturi, Chair
Professor Sanjoy Dasgupta
Professor Massimo Franceschetti
Professor Alex Snoeren
Professor Joel Sobel

2012

Copyright

Andrea Vattani, 2012

All rights reserved.

The dissertation of Andrea Vattani is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my family

iv

EPIGRAPH

Don’t be such a hush-hush.

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Algorithms . xii

Acknowledgements . xiii

Vita . xvi

Abstract of the Dissertation . xvii

Chapter 1 Introduction . 1
1.1 Central fields . 4
1.2 Central topics . 7

1.2.1 Part I: Models for Networked Experiments 8
1.2.2 Part II: Models for Other Phenomena 13

I Models for Networked Experiments 16

Chapter 2 Coloring Experiments . 17
2.1 Results . 19
2.2 Related work . 21
2.3 Model . 22
2.4 Ring networks . 24

2.4.1 A natural algorithm 24
2.4.2 An optimal algorithm 29
2.4.3 Slow-down with asymmetric incentives 36

2.5 General bipartite graphs 37
2.5.1 A natural algorithm 37
2.5.2 An optimal algorithm 39

2.6 Discussion: Leader election vs 2-coloring 41
2.7 Preferential attachment graphs 42

2.7.1 Analysis of the algorithm 43
2.8 Conclusions . 46

vi

Chapter 3 Matching Experiments . 48
3.1 Results . 50
3.2 Related work . 54
3.3 The matching games . 55
3.4 The algorithmic model 56
3.5 Analysis . 58
3.6 Prediction and validation of the model 66
3.7 Conclusions . 68
3.8 Appendix: analysis for Theorems 20–21 69

3.8.1 Properties of matchings in M1. 70
3.8.2 The tree T ∗n . 72
3.8.3 Proof of Theorem 20 74
3.8.4 Proof of Theorem 21 76

Chapter 4 Finding Red Balloons . 79
4.1 The query incentive network model 81
4.2 Results . 83
4.3 Additional related work 85
4.4 Preliminaries . 86

4.4.1 Split contracts . 87
4.4.2 Propagation of the payment 88
4.4.3 Difference with respect to previous work 89
4.4.4 Roadmap . 90

4.5 Properties of Nash equilibria 91
4.6 The Nash equilibrium . 95
4.7 Guaranteeing h-consistency 102
4.8 Efficiency . 105
4.9 Discussion: non-uniqueness of the Nash equilibrium . . . 109
4.10 Simulations . 111

II Models for Other Phenomena 114

Chapter 5 Models for Aggregation . 115
5.1 Results . 116
5.2 Related work . 118
5.3 Preliminaries . 120

5.3.1 Notation . 121
5.4 Homogeneous Populations 122

5.4.1 A Population of Followers 122
5.4.2 A Population of Leaders 124
5.4.3 Lower Bounds for Homogeneous Populations . . . 125

5.5 Heterogeneous Populations 127

vii

5.5.1 Achieving Low Price of Anarchy 127
5.5.2 Price of Stability and Relation to Price of Anarchy 130

5.6 Extensions . 132
5.6.1 Generalized β-leaders 133
5.6.2 The effects of information 135

5.7 Conclusions . 138

Chapter 6 The Secretary Problem . 140
6.1 Results . 141
6.2 Related work . 143
6.3 Preliminaries . 144
6.4 Algorithm and Analysis 144

6.4.1 Warmup: Analysis for a single secretary 145
6.4.2 Analysis for general posets 146

6.5 Upper bounds on success 153
6.6 Tightness of the algorithm 157
6.7 Conclusions . 160

Bibliography . 162

viii

LIST OF FIGURES

Figure 3.1: Computer interface. The subject is matched with the node
on the right and is being requested by three unmatched nodes. . 49

Figure 3.2: Approximate and maximum matching. Left: an approxi-
mate maximum matching of size 5 on a network with 12 nodes
(matching edges are represented in bold red, matched nodes
are colored, unmatched nodes are white). Right: a maximum
matching of size 6 on the same network (note that the maximum
matching is also a perfect matching, as all nodes are matched). 50

Figure 3.3: Affinity between humans’ and algorithm’s performance,
16-node networks. The performance of the human subjects
(red points joined by continuous line) and of the algorithm (blue
points) over eight bipartite 16-node networks (triangles) and
eight non-bipartite 16-node networks (circles) are plotted. The
experiment was run multiple times on each network and the
average behavior is reported. The x-axis shows the indexes of
the networks sorted by increasing average time required to reach
a maximum matching. Bipartite networks are labeled from 1 to
8, while non-bipartite networks are labeled from 9 to 16. The
y-axis shows the average time (in seconds) required to reach a
maximum matching for humans, while the average number of
rounds of the algorithm is scaled by a constant factor. 51

Figure 3.4: Affinity between humans’ and algorithm’s performance,
24-node networks. The performance of the human subjects
(red points joined by continuous line) and of the algorithm
(blue points) over different 24-node networks are plotted. In
particular, small-world networks (triangles), a ring network (di-
amonds), and preferential attachment networks (circles) were
tested. The experiment was run multiple times on each network
and the average behavior is reported. The x-axis shows the in-
dexes of the networks sorted by increasing average time required
to reach a maximum matching. The y-axis shows the average
time (in seconds) required to reach a maximum matching for
humans, while the average number of rounds of the algorithm
is scaled by a constant factor. 52

ix

Figure 3.5: Algorithm’s asymptotic performance. Prudence algo-
rithm’s performance with respect to the network’s size for the
“bad” graph Gn (black diamonds), for preferential attachment
model (green squares), small-world model (red triangles). For
each generative model and network size we generated 100 net-
works and run the algorithm 1000 times on each. The average
behavior is reported. The x-axis shows the network size, and
the y-axis shows the average number of rounds required by the
algorithm to converge to a maximum matching. 52

Figure 3.6: Experimental performance, 24-node networks. Perfor-
mance of the experimental subjects on networks of 24 nodes.
The plot shows the time to reach a perfect matching of size 12
(red), an approximate matching of size 11 (a 0.92–approximate
matching, in blue) and a matching of size 6 (a 1/2–approximate
matching, in green). Results for single games are reported. The
x-axis shows the indexes of the games sorted by increasing solv-
ing time, while the y-axis shows the time in seconds. The right-
most four games on the red plot did not converge to a maximum
matching and correspond to three instances of the “bad” graph
Gn and to one instance of the preferential attachment network. 53

Figure 3.7: The bad graph. The “bad” graph Gn for n = 3. One of the
“bad” matchings of Theorem 20 is highlighted in red. 65

Figure 3.8: Tree T ∗n . Tree T ∗n with labels, for n = 6. This is used in the
proof of Theorem 20. 70

Figure 4.1: Investment as a function of the rarity n for b = 1.95 with split-
contracts (in red triangles and circles, for ε = 0.2 and ε =
0.05, respectively) and with fixed-payment contracts (in blue
triangles and circles, for ε = 0.2 and ε = 0.05, respectively). . . 83

Figure 4.2: Investment as a function of the rarity n for b = 4 with split-
contracts (in red triangles and circles, for ε = 0.2 and ε =
0.05, respectively) and with fixed-payment contracts (in blue
triangles and circles, for ε = 0.2 and ε = 0.05, respectively). . . 84

Figure 4.3: As a function of b > 1: investment with split-contracts (in
red circles) and 12logarithm of the investment with fixed-payment
contracts (in blue circles). In green, the function 1

b−1
scaled by

a constant factor. 112

Figure 5.1: 2-stable placement with high price of anarchy. This is used in
Observation 45. 124

Figure 5.2: Graphs for lower bounds. They are used in the proof of Theo-
rem 47. 126

x

Figure 5.3: Graphs for Theorem 52 showing the impossibility of good price
of anarchy given optimal price of stability. 132

Figure 6.1: A visualization of the upper and lower bounds for the poset sec-
retary problem as a function of the number of maximal elements
in the poset. 142

Figure 6.2: Linear program (left) and its dual (right). These are used in
the proof of the upper bound. 154

xi

LIST OF ALGORITHMS

Algorithm 2.1: RingGuess Algorithm . 26
Algorithm 2.2: RingElect Algorithm . 31

Algorithm 3.1: Prudence algorithm for node u 57

Algorithm 6.1: Secretary (π, k). 145

xii

ACKNOWLEDGEMENTS

I would first like to thank my parents who have always supported me in my

long journey as a student from Italy to San Diego.

I wish to thank my advisor Mohan Paturi for his enthusiasm and energy,

which has brought a lot of inspiration into my research. He gave me the freedom

and time to explore research areas even outside my main PhD focus. I would

also like to especially thank Sanjoy Dasgupta for his optimism, assurance and

support. His positivity shined through since my very first year at UCSD, when he

introduced me to the subject of clustering — an area that I still remarkably enjoy.

I am thankful to Amos Israeli who visited UCSD in 2009: my meetings with him

were extremely enjoyable and I had the opportunity to explore the power (and

limitations) of distributed algorithms with an expert of the field.

During my PhD program I had the pleasure to collaborate with several won-

derful people that I consider friends. Starting with my UCSD colleagues whom I’ve

worked closely with: Manuel Cebrian, Lorenzo Coviello, Massimo Franceschetti,

Moshe Hoffman, Daniel Lokshtanov, Petros Mol, Daniel Ricketts, Matus Telgar-

sky, Panos Voulgaris. Needless to say, all the merit is mine and all mistakes are

theirs ... oops, or is it the other way around? It was very rewarding to work with

all of you — as well as lots of fun.

I’ve spent two wonderful summers at Yahoo! Research, where I’ve met

great people as well. First I would like to thank Ravi Kumar for being a great

mentor. You’ve encouraged me to explore different areas of research and thus, have

introduced me to several other researchers. Among them, a special thanks goes

to Sergei Vassilvitskii who I deeply enjoy working with. I am also thankful to my

fellow interns whom I’ve shared many great outings with during my two summers

at Y! Research: Bahman, Ben, Javad, Markus, Silvio, and William.

I would next like to thank Flavio Chierichetti for being my constant contact

for advice and with whom I spent so many hours thinking about problems with, as

well as trying to convince him to eat meat. I am also thankful to Silvio Lattanzi

for the time we spent together while at Yahoo!.

Last but not least – by any means – I would like to thank all of my friends,

xiii

both here and in Italy, who have made my life as enjoyable as it can get. A special

thank you to Petros Mol for your dear friendship and sense of humor throughout

our journey at UCSD. Another special thank you to Lorenzo Coviello who joined

the club later, but fit right in. I’ve appreciated our friendship as well as your

dinners. Finally, I’d like to thank Dan Ricketts for the nice time we’ve spent

together on our shredder challenge and project. The most important thanks goes

to my girlfriend, Jenny, who followed all my years at UCSD closely and supported

me and made me happy more than anybody can ever want.

Chapter 2, in part, is a reprint of the paper “Low memory distributed

protocols for 2-Coloring” co-authored with Amos Israeli, Mathew D. McCubbins

and Ramamohan Paturi, published in the proceedings of the 12th International

Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS

2010 [IMPV10]. The dissertation author was the primary investigator and author

of this paper.

Chapter 3, in full, is a reprint of the paper “Human matching behavior in

social networks: an algorithmic perspective” co-authored with Lorenzo Coviello,

Massimo Franceschetti, Mathew D. McCubbins and Ramamohan Paturi, published

in PLoS ONE, Volume 7, Number 8, August 2012 [CFM+12]. The dissertation

author and Lorenzo Coviello were the primary investigators and authors of this

paper.

Chapter 4, in part, is a reprint of the paper “Finding red balloons with split

contracts: robustness to individuals’ selfishness” co-authored with Manuel Cebrián,

Lorenzo Coviello, and Panagiotis Voulgaris published in the proceedings of the

44th Symposium on Theory of Computing Conference, STOC 2012 [CCVV12].

The dissertation author was the primary investigator and author of this paper.

Chapter 5, in full, is a reprint of the paper “The Effects of Diversity in Ag-

gregation Games” co-authored with Petros Mol and Panagiotis Voulgaris published

in the proceedings of the 2nd Symposium on Innovations in Computer Science, ICS

2011 [MVV11]. The dissertation author was the primary investigator and author

of this paper.

Chapter 6, in full, is a reprint of the paper “Hiring a secretary from a

xiv

poset” co-authored with Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii

in the proceedings of the 12th ACM Conference on Electronic Commerce, EC

2011 [KLVV11]. The dissertation author was the primary investigator and author

of this paper.

xv

VITA

2007 Laurea in Computer Science
Sapienza University of Rome, Italy

2012 Doctor of Philosophy in Computer Science
University of California, San Diego, CA, USA

xvi

ABSTRACT OF THE DISSERTATION

Algorithmic Modeling of Decision Making over Networks

by

Andrea Vattani

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Ramamohan Paturi, Chair

The modeling and prediction of collective human behavior has been one of

the key challenges of social sciences for several decades. In this dissertation, we

use an algorithmic approach to study the behavior of multiple agents that interact

with each other. A typical scenario considers a group of agents driven by both

individual and collective incentives who communicate with each other through a

network whose links represent potential interactions among them. We consider

both coordination tasks, where the incentives of the agents are aligned, and non-

coordination tasks, where their incentives are conflicting. The tasks we consider

include social differentiation, selection of a reciprocating partner, and information

aggregation. One of the key questions is whether the agents can solve these tasks.

To address this question, we model agent behaviors algorithmically and analyze

xvii

both individual and collective outcomes. For each task, we assess which algorith-

mic models will explain observed human behavior and which are more efficient

in accomplishing the task. Finally, we study how the network structure affects

outcomes and performance.

xviii

Chapter 1

Introduction

The modeling and prediction of collective human behavior has been one of

the key challenges of social sciences for several decades. As early as 1947, Herbert

Simon argued that information processing constitutes the core of human decision-

making [SB76]. A corollary of his argument is that human decision-making pro-

cesses can be modeled algorithmically. This also means that human computing

abilities cannot overcome the computational barriers of the problem being solved.

This was the view proposed by Valiant [Val84, Val00], who also argued that, de-

spite the inherent complexity of human decision-making, it is possible to isolate

basic principles and formulate simple mathematical models using an algorithmic

approach. Such simple abstractions of human behavior can then lead to the design

of computing devices and systems.

In this dissertation, we use an algorithmic approach to study the behavior of

multiple agents that interact with each other. A typical scenario considers a group

of agents driven by both individual and collective incentives who communicate with

each other through a network whose links represent potential interactions among

them. We consider both coordination tasks, where the incentives of the agents are

aligned, and non-coordination tasks, where their incentives are conflicting. One of

the key questions is whether the agents can solve these tasks. To address this ques-

tion, we model agent behaviors algorithmically and analyze both individual and

collective outcomes. For each task, we assess which algorithmic models will explain

observed human behavior and which are more efficient in accomplishing the task.

1

2

Finally, we study how the network structure affects outcomes and performance.

Modeling a network of agents is challenging due to its complex nature. The

complexity manifests itself on two different levels: first, the underlying structure of

the network – who is connected to whom; second, the behavior of the agents. Even

if the individual behavior is very simple, the collective behavior can be complex

since the actions of an agent may have consequences for the actions of possibly

every other agent in the network. Furthermore, in deciding his or her own actions,

an agent may take into account that the outcome will depend on the network

topology. As a result, modeling such networks may also involve the study of

strategic behavior and reasoning of the agents.

It is often the case that the agents are unaware of the structure of the

underlying network except for their immediate neighbors and perhaps the “friends

of their friends”. This means that the decision about which action to take often

depends only on the local view of an agent. Nonetheless, the effect of an action can

easily spread throughout the whole network and influence later decisions of agents

faraway in the network. In other cases, the agents may not know the exact structure

of the network but may have, as prior knowledge, a probability distribution over

possible network topologies. In these cases, a strategic agent evaluates his or her

own actions not only with the expectation that the collective behavior will depend

on what he or she decides to do, but also with knowledge of the possible topologies

surrounding him or her.

In analyzing the possible strategies the agents may adopt and the collective

behavior they produce, it is important to distinguish the case where the agents

are trying to coordinate, from the case where the agents have individual incentives

that may conflict with each other. Even coordination may be difficult to achieve

when agents have only a local view of the network. This limited knowledge about

the topology may cause seemingly appropriate agent strategies to fail in achieving

coordination efficiently. We will see an example of this phenomenon in Chapter 3,

where each agent wants to select a mutually reciprocating partner among his or

her neighboring parties.

There are cases in which the network of interest does not represent social

3

or communication ties among the agents, yet it affects the behavior of the agents

by providing, for instance, spatial constraints. A popular example is the problem

of choosing a route through a network of highways. In this example, each agent

wants to minimize the time to get to his or her destination with the expectation

that the traffic congestion arising on a particular route is a result of the choices of

all agents.

The objective of this dissertation is to provide an algorithmic perspective

for networks of agents for the diverse situations and goals mentioned thus far. For

each case, we provide algorithmic abstractions modeling the individual behavior

of the agents. We assess whether their interaction by means of a network leads to

the desired outcomes. Furthermore, we investigate what properties are required

for a successful and efficient completion of the task. In particular, we explore the

roles of the topology and of the incentives, and analyze how performance scales

with the size of the network.

Chapters 2, 3, and 4 consider algorithmic models motivated and inspired

by experiments that have shown the success of human subjects in solving a variety

of tasks over a network. In these chapters, the network represents the social ties

among the agents as well as their communication medium. Chapter 2 provides

algorithmic models for the network coloring problem, which can be viewed as an

abstraction of social differentiation. Our models are inspired by the human sub-

ject experiments reported in [KSM06, JKV10, MPW09, EMPW11]. Chapter 3

considers the matching problem, in which each agent needs to select a mutually

reciprocating partner among the neighboring parties. Chapter 4 provides an algo-

rithmic model of a large-scale experiment conducted in 2009 to assess the power of

social networks in retrieving a rare piece of information. The scenario is competi-

tive as agents have conflicting interests; however, we will show that the competitive

aspect does not hinder the accomplishment of the task. In Chapter 5, the net-

work represents a territory on which the agents move guided by their individual

incentives. We consider the task of aggregation and show how the diversity of the

agents is a necessary requirement to prevent negative effects. Finally, in Chapter 6

we study an instance of sequential decision making; a directed network among the

4

agents defines who is preferred to whom and an external decision-maker needs to

select one of the best agents as defined by the network.

An overview of the models and results is provided in Section 1.2. Before

proceeding we review basic concepts and terminology.

1.1 Central fields

This dissertation uses ideas and concepts spread across different disciplines

including distributed computing, game theory and graph theory. A reader familiar

with such fields can proceed directly to Section 1.2.

Distributed computing

The field of distributed computing considers a network of autonomous

agents that interact with each other to compute a common task. Different models

of distributed computing have been proposed. We will focus on the message-

passing model, where the agents can interchange messages through the links of

the network and share no memory. The goal is for the agents to collaboratively

compute some function of the communication graph. Common examples include

problems such as computing a coloring, an independent set, or a matching of the

communication network. The collaborative aspect of this field makes distributed

algorithms amenable to model scenarios where the agents of the network are trying

to achieve a common goal.

The efficiency of distributed algorithms is quantified in terms of the commu-

nication needed to compute the solution. Specifically, in the synchronous model,

time is discretized into communication rounds, and in each round every agent can

receive messages from the neighbors, perform some local computation, and send

messages to the neighbors. The efficiency of a distributed algorithm is then defined

as the number of rounds required to complete the task.

The number of rounds required by a distributed algorithm is often com-

pared with the diameter D of the underlying network, i.e. the largest distance

between any pair of agents. When no constraints are imposed on the algorithm,

5

the challenge is to complete the desired task within a number of rounds that is

much less than D. This means that the agents have to collectively compute a so-

lution of the given problem with no information from distant parts of the network.

For instance, in Chapter 3 we will demonstrate how a simple distributed algorithm

can compute a maximal matching of any bounded-degree network of n nodes in

only O(log n) communication rounds (regardless of the diameter D of the network,

which could be as large as n).

It is easy to see that when no constraints on the algorithms are imposed,

any computable problem can be solved in at most 2D communication rounds by

gathering the whole topology of the network into a single node which can then

locally compute the solution and broadcast it throughout the network. This ap-

proach however requires the algorithm to exchange large (poly(n) bits) messages

and requires a large amount of memory for the agents (again poly(n) bits). When

the size of the messages or the memory of the agents is restricted (usually to be

either constant or O(log n)), then devising a distributed algorithm that computes

the desired solution in O(D) communication rounds may be a challenge or even

impossible. A famous example is the Ω(D +
√
n/ log n) lower bound on the num-

ber of communication rounds required to compute the minimum spanning tree of

a network of diameter D = Ω(log n) [PR00] when the message size is bounded by

O(log n) bits.

Distributed algorithms and the techniques to analyze them will appear in

many places throughout this dissertation, especially in the ideas and proofs of

the algorithms presented in Chapters 2 and 3. For example, Chapter 2 explores

different distributed algorithms for the network coloring problem. It is possible to

show that Ω(D) communication rounds are necessary for any distributed algorithm

that 2-colors a bipartite network. For this problem, we will provide round-optimal

algorithms for rings and general bipartite networks which use constant andO(log n)

bits respectively, for both memory and messages.

6

Game theory

Game theory provides models to study and predict the behavior of rational

agents when the outcome not only depends on what actions they individually

choose among several options, but also on the choices made by the other agents.

A game models situations where two or more agents (usually called players) must

simultaneously commit to a strategy and will receive a payoff that depends on the

strategies chosen by all other players. The strategy of a player is said to be best

response to a set of strategies if it produces the most favorable outcome for that

player given the strategies of the other players.

A fundamental concept is the notion of Nash equilibrium: a collection of

strategies, one per player, is a Nash equilibrium if no player has incentive to uni-

laterally change his or her own strategy knowing the strategies of all other players.

Another way of expressing the same concept is that the players choose strategies

that are best responses to each other. As we have already mentioned, we will

consider scenarios in which agents are connected through a network but only have

a prior distribution of the actual topology. In this case, the information that the

players have about the game is incomplete. In such games, a collection of strategies

is an equilibrium (more precisely, a Bayesian Nash equilibrium) if no player can in-

crease his or her expected payoff by changing his or her action for any information

— here the expectation is taken over the randomness of their prior distributions.

We will also consider sequential games. A sequential game differs from a

classic game in that the decisions of the players are not taken simultaneously but

sequentially. In this case, the decision of a player may depend on the past actions

of the other players. The best-response dynamics with respect to a predetermined

order of turns for the players is obtained when, for every t ≥ 0, the player at

round t chooses the strategy that would produce the most favorable outcome for

the next round. This dynamics is often called myopic best response, as players do

not consider what consequences choosing a strategy would have on future rounds

in the game.

Finally, we will look into the more recent concepts of price of anarchy and

price of stability. These concepts measure how the efficiency of a system degrades

7

due to selfish behavior of its agents and are related to the notion of (in-)efficiency

of equilibria [DR89, KP99, KP09]. Given a set of strategies, the social welfare

refers to the sum of the payoffs of all agents. The optimum welfare is obtained

when the social welfare is optimized; however, this may not be an equilibrium. The

price of anarchy is then defined as the ratio between the optimum social welfare

and the social welfare obtained in the worst equilibrium (worst with respect to its

social welfare). The price of stability on the other hand is the ratio between the

optimum social welfare and the social welfare obtained in the best equilibrium.

Graph theory

As we have mentioned, the network structure plays a fundamental role in

the outcome of the system. Categorizing networks in terms of how “efficient” they

are is a challenging task and such categorization also depends on the nature of the

problem of the system.

We refer the reader to any graph theory book for basic notions of graphs.

More specific concepts, such as graph generative models, are self-contained in this

dissertation.

1.2 Central topics

This dissertation is divided into two parts. The first includes Chapters 2,

3 and 4, and the second includes Chapters 5 and 6. In the first part we focus on

models inspired and motivated by experiments conducted on human subjects to

solve a specific task. For all systems considered in this part, the network represents

the social and communication ties among the agents. In the second part, we look

at models for other phenomena: aggregation of entities and the decision-making

in hiring a candidate. In the former, the network specifies spatial constraints for

the agents, whereas in the latter the network defines preferences between agents.

8

1.2.1 Part I: Models for Networked Experiments

In the last few decades, there have been numerous experiments involving hu-

man subjects in order to better understand human behavior [Mil63, Mil74, Mil77,

Zim08] as well as collective human capabilities in solving a task when incentivized

to do so [Mil67, TM69, CE78, CEG83, LL96, DMW03, KSM06, JK08, KJTW09,

MPW09, CJKT10, EMPW11, TCG+11, PPR+11].

For instance, the small-world experiment [Mil67, TM69, DMW03] revealed

that individuals who only know the locations of their direct acquaintances can still,

collectively, construct a short chain to a given target. An algorithmic perspective

of such experiment was provided by Kleinberg [Kle00a, Kle00b] and led to new

insights about social networks as well as efficient algorithms for distributed rout-

ing [Kle00b, Kle01, LNNK+05, FG09, FG10, GS11]. Another example is the net-

work bargaining experiments conducted by Cook et al. [CE78, CEG83], for which

an algorithmic model of behavior [KT08a] and subsequent efficient distributed al-

gorithms were developed [ABC+09, Kan10, KBB+11b].

We take a similar approach where we provide algorithmic models for ex-

periments that have shown the success of human subjects in solving a variety of

tasks over a network. This approach has several benefits. First, the proposed

models of human behavior can be validated using the experimental data or by

conducting subsequent experiments. Second, it allows analysis of the scalability of

the proposed algorithmic models: such analysis suggests whether human subjects

are able to solve the task at larger scales; in addition, it suggests which network

topologies hurdle (and which are more amenable to) the accomplishment of the

task. Furthermore, when the behavioral model is not efficient from an algorithmic

perspective, it raises the question whether efficient algorithms exist at all for the

problem under consideration — this question, when answered in the affirmative,

can lead to new methods improving over the current ones.

Chapters 2 and 3 focus on highly controlled human subject experiments for

the problems of network coloring and matching, respectively. Chapter 4 provides an

algorithmic perspective on the DARPA network challenge, a large-scale experiment

conducted in 2009 to assess the power of social networks in retrieving a “rare” piece

9

of information. We proceed with an overview of each of these topics.

Coloring of networks

A coloring of a graph is an assignment of colors to nodes such that no two

neighboring nodes are given the same color. The graph coloring problem can be

viewed as an abstraction of social differentiation in which each agent prefers to

distinguish his or her behavior from that of the neighboring parties. Examples

are numerous and include selecting an expertise different from your nearby peers

in an organization, selecting a phone ring-tone that differs from your friends’ and

colleagues’, choosing rooms for overlapping activities.

The work in Chapter 2 is influenced by the human subject experiments

conducted in [KSM06, JKV10, MPW09, EMPW11] in the context of distributed

network coloring. They report that human subjects connected over a network can

collectively obtain a coloring of the underlying network. In these experiments,

each participant is a node of a virtual network and can interact with his or her

neighbors through a computer interface. The subjects can only view the colors of

their neighbors and change their colors as many times as they want. Subjects are

paid if a coloring of the entire network is reached within an allocated time. The

efficiency in reaching a coloring depends both on the network topology [KSM06,

JKV10, EMPW11] and the incentives for the agents [JKV10, MPW09].

Chapter 2 provides an algorithmic perspective for these experimental re-

sults. We focus on 2-coloring of bipartite networks and coloring of preferential

attachment graphs with minimum number of colors. Such networks encompass all

topologies considered in the experiments of [KSM06, MPW09]. The main property

of the model from a computational point of view a low-memory constraint on the

algorithms. This constraint is justified since the participants of the experiments

could only rely on their individual memorization skills in solving the task. We

consider two algorithms that can be viewed as candidates for modeling human

behavior for even rings and general bipartite networks — similar heuristics were

also considered in [KSM06, JKV10] but no analysis was provided. Our analysis

exhibits quadratic running times for such heuristics in the worst case but also sug-

10

gests that the performance improves as the network is more uniformly connected.

One one side of the spectrum, the ring requires quadratic time. On the other side

of the spectrum, random r-regular graphs requires almost-linear time, for r ≥ 3.

Adversarially chosen dense graphs can lead to performance even poorer than the

ring topology.

The worst-case performance of these algorithms raises the question whether

low-memory efficient algorithms for 2-coloring exist. We answer this question in

the affirmative providing (i) an optimal linear-time constant-memory coloring algo-

rithm for rings that can also elect a leader, improving over previous leader election

algorithms; (ii) a near-optimal algorithm for general bipartite networks. Finally,

we provide a simple low-memory distributed algorithm for coloring preferential at-

tachment graphs on n nodes within Õ(
√
n) many rounds and conjecture its actual

worst-case running time to be only O(poly(log n)).

Matching in networks

A matching in a network is a subset of the edges such that no two edges

share a node. The matching problem is a natural abstraction of many human and

organizational problems in which each agent needs to select a mutually recipro-

cating partner among the neighboring parties. As a specific scenario, consider the

problem faced by faculty members pairing up with graduate students, with each

student having to select exactly one advisor and each faculty member having to se-

lect exactly one student. We can view students and faculty members as the nodes

of a (bipartite) network, with an edge between a faculty member and a student

if such a pair shares research interests. The objective here is to find an assign-

ment from faculty members to students sharing their interests so that number of

matched pairs is maximized, thus a matching problem.

The work in Chapter 3 looks at an extensive series of matching experiments

on human subjects through an algorithmic lens. The major difference with Chap-

ter 2 — in addition to the task being solved, matching rather than coloring — is

the fact that we were able to conduct the experiments ourselves which allowed us

to validate the prediction of our model. We conducted two sets of experiments

11

for a total of over 250 experiments over 80 networks with up to 24 nodes each,

ranging from simple networks to more complex stochastic models including pref-

erential attachment and small-world networks. As in the coloring experiments,

the participants were connected over a virtual network and each participant could

interact only with his or her neighbors through a computer interface that allowed

him or her to repeatedly propose and accept partnerships with one of the neigh-

bors. The participants were given an equal monetary reward for each game where

a maximum matching was reached within the allotted time.

We isolated a simple behavioral property that we call “prudence” from

the data collected in the first set of experiments. This property states that in-

dividuals do not break existing matched pairs unless they receive an alterna-

tive proposal by an unmatched neighbor. We developed an algorithmic model

of human behavior based on this property. A complexity analysis of the pro-

posed distributed algorithm highlights how an approximate maximum matching

is reached quickly whereas reaching a maximum matching can take exponentially

many rounds. Specifically, a 1/2-approximation is reached in only O(log n) rounds

for any bounded-degree graph, while for general graphs a (1 − ε)-approximation

is reached in polynomially many rounds (linearly many rounds are sufficient for

any constant ε > 0 in bounded-degree graphs). This is in agreement with the

experimental data, which shows that human subjects always find a good matching

quickly. We also provide a family of graphs, which we call “bad” graphs, on which

the proposed model takes exponentially many rounds to reach a maximum match-

ing. Computer simulations of our model also show that small-world networks are

easier to solve than preferential attachment networks.

We conducted a second set of experiments to validate our algorithmic model.

In particular, we tested the participants on the bad graphs, small-world networks

and preferential attachment networks. The games on the bad graphs were never

solved, consistent with the prediction of exponentially slow convergence. We re-

mark that the bad graphs would have been solved easily, had the subjects used a

different simple strategy. This further corroborates the thesis that the prudence

property plays a fundamental role in the subject’s decisions. Finally, we observed

12

that the games over preferential attachment were much harder to solve than small-

world networks, which is again consistent with the predictions of our algorithmic

model and also in agreement with the coloring experiments of [KSM06].

Query information networks

Can a social network help retrieving the answer to a difficult query when

given a limited budget? The Defense Advanced Research Projects Agency (aka

DARPA), a research organization of the United States Department of Defense,

designed in 2009 a so called “Network Challenge” that answered this question in

the affirmative. The experiment consisted of locating ten red balloons placed at ten

undisclosed locations in the United States. A $40,000 cash prize was allocated for

the first participant to submit the correct coordinates of all ten balloons within the

contest period. The common strategy was to recruit a team and use an adequate

structure of economic incentives to encourage participation and coordination.

The MIT Media Laboratory team won the competition in less than 9 hours,

adopting a recruitment scheme based on recursive incentives which succeeded in

recruiting more than 4000 people [TCG+11, PPR+11]. Chapter 4 considers a gen-

eralization of such a recruiting scheme which we call “split-contracts”, and analyzes

it from a game-theoretical and computational point of view. The algorithmic and

networking model we consider are an extension of the query incentive model intro-

duced by Kleinberg and Raghavan [KR05] to study strategic games in decentralized

information networks. Kleinberg and Raghavan considered a “fixed-payment” in-

centive scheme, as opposed to a recursive incentive scheme.

The model is specified by a network defined by a branching process, the

rarity of answers to a specific question, and the desired probability of success. We

ask: how much reward, as a function of the rarity of the answers, does the root node

need to invest in order to retrieve an answer with the desired probability, when

all of the nodes are playing strategically? For binomial branching processes and

constant probability of success, Kleinberg and Raghavan showed that the “fixed-

payment” scheme causes the reward function to exhibit a threshold behavior that

depends on the branching factor of the network. In particular the root must invest

13

a reward that is exponentially larger than the optimal one when the branching

factor is too small.

In Chapter 4, we show that split contracts, unlike fixed-payments, are robust

in a strategic environment in the sense that the reward the root must invest at

equilibrium is at most a constant factor of the optimum. In other words, the

price of anarchy of the game with split contracts is constant. Also, unlike the

results in [KR05], our results hold for any branching process, and we are able to

characterize the dependence of the investment with respect to the parameters of

the branching process and the success accuracy.

1.2.2 Part II: Models for Other Phenomena

We now turn our attention to other kinds of decision-making over networks.

In this part of the dissertation the network does not represent the social ties among

the agents. In Chapter 5, the network’s nodes represent locations and the edges

represent vicinity between locations. In this case, the network plays the role of a

shared resource among the agents and the combined actions of the agents populate

such a network. In Chapter 6, we are given a directed network over n candidates

encoding a partial ordering among them and an external decision-maker wants to

hire an optimal candidate by interviewing them on a one-by-one basis.

Spatial-constrained systems

Aggregation of entities is a widely observed phenomenon in sociology, eco-

nomics, biology and other fields, with examples including urban agglomeration,

economies of agglomeration, insect swarms, and bacterial colonies. The Las Vegas

phenomenon is another example of this; the city saw a rapid growth since the late

1940 when a few gaming centers moved there from Texas and Arkansas [DT90].

Chapter 5 provides a game-theoretical model for aggregation phenomena.

Our formalization models a population of t agents inhabiting a world — represented

as a network with n nodes — and measures aggregation by the number of edges

induced by the nodes occupied by the agents. In other words, our model considers

a competitive version of the densest t-subgraph problem. The game we consider

14

is a sequential game with best-response dynamics, where in each round one of the

agent can decide to move to a different location based on his or her payoff function.

We consider natural classes of strategies for the agents. In particular we

consider “leader” agents — who have a tendency to “invest” by moving to high de-

gree nodes in hope that other players will follow — and followers — who are more

prudent and look for immediate rewards. We mainly focus on the price of anarchy

of our games; that is, we compare the efficiency (i.e. aggregation) of the worst

equilibrium to the aggregation provided by the optimum densest t-subgraph. Our

analysis highlights the advantages of populations with diverse strategies (heteroge-

neous populations) over populations where all individuals share the same strategy

(homogeneous populations). In particular, we prove that a simple heterogeneous

population composed of leaders and followers achieves asymptotically lower price

of anarchy compared to any homogeneous population, no matter how elaborate its

strategy is.

Sequential decision-making

The secretary problem is a perfect example of sequential decision-making

under uncertainty that has been studied in the fields of applied probability, statis-

tics, decision theory and auction theory. The classical model considers a decision-

maker willing to hire the best candidate among n rankable applicants for a sec-

retary position. The applicants are interviewed sequentially in uniform random

order and right after an interview, the decision-maker can either hire or reject the

applicant. The decision is irrevocable and can only depends on the relative ranks

of the applicants interviewed so far. The optimal algorithm is to skip the first n/e

applicants and hire the next arriving applicant who is the best seen so far, and

achieves success probability of 1/e.

Implicit in the classical setting is the assumption that there is a total order

on the applicants, but this assumption rarely holds in real life since applicants often

have incomparable attributes. Chapter 6 considers a generalization of the classical

secretary problem in which the total order between the applicants is relaxed to a

partial order among them, and the goal is to select any of the “maximal” applicants.

15

In other words, there is a directed acyclic network among the applicants which is

initially unknown to the decision-maker. The interview of an applicant reveals the

relationships between that applicant and all applicants interviewed so far and again

the decision to hire or reject is irrevocable. We provide an algorithm that can be

seen as an extension of the algorithm for the classical model which improves over

previous work. It recovers a success probability of 1/e for any poset with a single

maximal element while improving to a success probability of at least k−1/(k−1)(1−
O(log2 k

k
)) for posets with k maximal elements. We complement this result by

showing that no algorithm can achieve better than k−1/(k−1) success probability.

Part I

Models for Networked

Experiments

16

Chapter 2

Coloring Experiments

Social situations and tasks often require coordination among the agents. It

is an interesting question how agents, who act rationally based on local consider-

ations, can solve a task collectively. It is not obvious how to achieve coordination

even between two cooperating agents as symmetry makes it difficult to break the

tie. The apparent difficulty of coordination is amplified when we consider net-

works with hundreds, and even thousands of agents. Several experimental stud-

ies [Mil67, TM69, LL96, KSM06, JKV10, KJTW09, MPW09, EMPW11] have been

conducted with human subjects in order to understand how agents can collectively

solve a global task over a network.

In this chapter we will focus on a line of work that shows that human

subjects connected over a network can successfully achieve coordination in the

form of obtaining a coloring of the underlying network [KSM06, JKV10, MPW09,

EMPW11]. Kearns, Suri and Montfort [KSM06] show that subjects in an experi-

mental setting can indeed solve a distributed version of the graph coloring problem

using only local information when they are incentivized to work collectively. Fur-

ther they have clearly demonstrated that greater network connectivity will speed

up the coordination. In these experiments, each subject is a node of the underlying

network and can see the current colors of the neighbors. Each subject can change

his or her own color as many times as he or she wants, and the subjects are paid

a fixed amount if a proper coloring of the entire network is reached within an al-

located time. Additionally progress of the coloring task as the percentage of edges

17

18

properly colored is displayed to all subjects. The network topologies considered

include bipartite (i.e., 2-colorable) graphs (for example, even rings with or without

chords, two-leader graph, two rings connected as a cylinder), and preferential at-

tachment graphs with parameter k ∈ {2, 3} (with 2 or 3 neighbors initially added

to each node).

McCubbins, Paturi and Weller [MPW09] extend the work of Kearns et

al. by considering asymmetric incentives. Specifically, they consider 2-colorable

graphs where one of the two colors is distinguished in that if a proper coloring

is achieved, subjects with the distinguished color are paid an additional bonus.

This setup can be viewed as a networked version of the two-player battle of the

sexes game. The authors show that network connectivity is crucial for achieving

coordination when cooperation (common incentives) is coupled with conflicting

interests (asymmetric incentives). Agents over weakly connected networks were

not able to solve the coloring problem with asymmetric incentives whereas they

could solve the problem with symmetric incentives over the same network.

In a subsequent experimental study, Enemark, McCubbins, Paturi and

Weller [EMPW11] consider 3-colorable graphs and show that the complexity of

the underlying graph instance is an important determinant of the probability of

solving the coloring problem. In particular, they have shown that adding edges

to a 3-colorable graph while maintaining 3-colorability decreases the probability

of solving the coloring game until the point the underlying graph has a unique

coloring (up to isomorphism) and then additional edges increase the probability of

solving the coloring problem.

This line of results is somewhat surprising given that human agents in

the network have limited resources: in terms of memory, they can only rely on

their individual memorization skills; in terms of knowledge of the network and

communication, they just have a local perspective and can only interact with

their immediate neighbors in the network. In this chapter, we seek to provide an

algorithmic perspective for the experimental results. We ask whether there are

“natural” strategies for solving the coordination problem in a feasible amount of

time.

19

We are concerned with algorithms to color rings, general bipartite graphs,

and preferential attachment graphs with minimum number of colors. All algo-

rithms use low (often constant) memory and reach a solution in feasible (polyno-

mial rounds) and sometimes optimal time. All the algorithms also have short mes-

sage length and use a broadcast communication strategy. Our contributions include

two simple algorithms RingGuess and GraphCoalescing for rings and general

bipartite graphs, which can be viewed as candidates for natural human strate-

gies. However, the quadratic time bounds for these algorithms call their scalability

into question. We present two other algorithms RingElect and GraphElect

which are optimal or nearly optimal in terms of the number of rounds (propor-

tional to the diameter of the graph) but require somewhat more complex strate-

gies. The question of finding simple algorithms in the style of RingGuess and

GraphCoalescing that run in time proportional to diameter is open. Our al-

gorithms provide a plausible basis for an argument that coordination in large

distributed, social networks is feasible. As we leverage on common distributed

computing strategies such as leader election or token management scheme, low

memory algorithms for these problems arise.

2.1 Results

Our goal is to provide an algorithmic explanation for the success of the

human agents in solving the coordination coloring problem over bipartite networks.

We ask whether there exist algorithms that are natural in the sense of closely

representing the experimental conditions. In particular, we ask whether there

exist algorithms that only rely on local information, use small amount of memory,

have no knowledge of the size of the underlying network, broadcast messages, and

employ simple logic so they can be viewed as candidates for human strategies.

We further ask whether such algorithms converge in feasible or optimal amount

of time. More generally, what are the optimal algorithms for the graph coloring

problem (for bipartite graphs and preferential attachment graphs) that require a

small amount of memory?

20

Our results consist of constant/low memory algorithms to solve the 2-

coloring problem on (even) rings as well as on general bipartite graphs, and to com-

pute optimal colorings of preferential attachment graphs. We remark that these

graphs encompass all the the topologies considered in the experiments of [KSM06,

MPW09, EMPW11]. For the ring, we present two constant-memory algorithms.

The first one RingGuess is extremely simple and converges in time quadratic in

the size of the network. RingGuess can be viewed as a candidate for a natural hu-

man strategy. The second algorithm RingElect achieves optimality in terms of

time (linear number of rounds) while only requiring constant memory. In addition,

this algorithm can elect a leader in optimal time. To the best of our knowledge,

optimal leader election algorithms, both in terms of time and memory, were not

known for our setting1. We also model and investigate the slow-down caused by

the asymmetric incentives in the experiments of [MPW09].

For general bipartite graphs with n nodes and m edges, we present an algo-

rithm GraphCoalescing which can be viewed as a generalization of RingGuess.

Each node u uses O(log δu) bits of memory, where δu denotes the degree of u.

GraphCoalescing is also very simple and is a candidate for a human strategy.

For general graphs GraphCoalescing computes a 2-coloring in O(nm2 log n)

many rounds. For ∆-regular graphs the bound improves to O(∆n2). For ran-

dom ∆-regular graphs the algorithm converges in only O(n log n) many rounds,

suggesting the importance of a “globally connected” network. We then present

the algorithm GraphElect which employs a leader election strategy as a tool to

obtain a 2-coloring of the network. GraphElect requires up to O(log n) mem-

ory without requiring the knowledge of n. We show that GraphElect computes

2-coloring in O(log n + D) (essentially optimal) rounds where D is the diameter

of the graph. Finally, for bipartite graphs, we discuss how asymmetric incentives

can slow down the convergence of the algorithms.

For general graphs it is well-known that the k-coloring problem is NP-

hard [GJ79] for k > 2. It is also hard to approximate [Kho01] even for centralized

algorithms. Therefore, we cannot hope for efficient algorithms to color general

1See Section 6.3 of [San06] for a summary of leader election algorithms in the different settings.
Also see Section 2.3 for details about our setting.

21

graphs for k > 2. However, for a class of graphs (generated by a preferential

attachment rule) which are studied extensively in the context of social networks,

we present an algorithm that converges in O(
√
n log2 n) rounds where each node

u uses O(log δu) bits of memory.

2.2 Related work

The experimental study of human strategic behavior over networks is a

topic of great current interest in the literature. The work by Kearns and others

on network coloring and consensus games [KSM06, KJTW09, MPW09, JKV10,

EMPW11] has been particularly influential. Judd et al. [JKV11] investigated how

subjects choose between playing either a dominant or a submissive role in a network

game, documenting the importance of fairness. Kearns et al. [KJV12] performed

experiments on network formation games when there is a cost for creating links.

Suri and Watts [SW11] conducted experiments in which individuals connected

over networks play local public good games. Wang et al. [WSW12] studied multi-

player prisoner’s dilemma games in which subjects can propose and delete links

to other players, showing that partner selection increases cooperation. Brautbar

and Kearns [BK11] introduced a network formation game in which players need to

maximize their clustering coefficients.

As social interaction naturally induces strategic behavior, our work is also

closely related to game theory. Indeed, several authors proposed game theoreti-

cal models of human interaction over social networks. Topics vary from diffusion

and contagion over networks [MS09, GK12, AOY11] to strategic information re-

trieval [KR05, CCVV12], models of segregation [BIKK12] and bargaining over

networks [KBB+11a], to mention a few. The main element that distinguishes our

work from the game theory literature is that we focus on the algorithmic pro-

cesses involved in strategic thinking and the ensuing collective dynamics rather

than on equilibria. Moreover, our algorithmic model is motivated and supported

by experimental data.

The question of finding low-memory distributed algorithms has not been

22

explored in the field of distributed computing and only very recently has received

some attention [MS10, ESW12].

Recently, Mossel and Schoenebeck [MS10] have presented low memory algo-

rithms for solving the consensus problem and a variation of it called the majority

coordination problem. They analyze the consensus problem in social networks and

parameterize social network computation by the amount of memory allocated to

each node. Although their work is similar in spirit to ours in terms of the focus

on low memory algorithms, their model diverges from ours in several aspects (see

Section 2.3). Our focus on natural strategies calls for simplest possible algorithms.

The work by Chaudhuri, Graham and Jamall [CGJ08] is also motivated by

the coloring experiments in [KSM06], but their setting is entirely different in that

nodes never change their color. They show that a greedy strategy properly colors

a network with high probability if the number of colors is at least ∆ + 2, where ∆

is the maximum degree of the network.

2.3 Model

We consider the classical model of a synchronous message-passing dis-

tributed network. As in the experimental settings of [KSM06, MPW09], we con-

sider anonymous and uniform networks. That is, nodes in the network do not have

distinct identifiers and do not have knowledge of the size of the network (or other

parameters such as diameter). Moreover, they all run the same algorithm. We

note that, on the contrary, the models presented in [MS10] integrate the notion of

advice2, which correspond to some prior knowledge given to the nodes (usually a

network parameter such as size of the network, diameter, their product, etc.).

Given our assumptions of anonymity and uniformity of the network, there

exists no (even randomized) algorithm that computes a coloring of the network and

terminates (this impossibility result about termination is famous for the leader

2In [MS10], advice is presented as a read-only memory, which does not count towards the
memory requirements of the node. Computations involving advice that would typically require
memory proportional to the size of the advice are viewed as constant memory operations (e.g.,
when taking actions with probability 1

a where a is the advice).

23

election problem, e.g. [AW04], and it extends easily to the coloring problem).

However, we observe that the experiments in [KSM06, MPW09] do not require

the human subjects to terminate but only to obtain a proper coloring within the

allocated time. The algorithms in [MS10] are also not concerned with guaranteeing

termination.

The choice of a synchronous network is motivated by the following discus-

sion. The asynchronous setting in distributed computing is usually adversarial

(to model communication delays) and focuses on the number of messages used

by the algorithms rather than their time to converge. The asynchronous models

introduced in [MS10] assign a rate to each edge (or node) of the network which

determines the frequency at which the nodes operate3. While the asynchronous

model in [MS10] is appealing since it embeds a notion of broadcast time, we believe

that these models do not suit our goal of modeling plausible human strategies. A

simple reason is that the frequency at which a node (human subject) operates does

not solely depend on the edge of the network it is adjacent to, but rather on the

execution of the algorithm itself, especially considering that nodes are not aware

of the global structure. For example, a subject whose neighborhood changes is

more likely to take an action than a subject whose neighborhood did not change.

In the synchronous setting, every node is given the opportunity to take an action

at every step, which is a better model for the distributed coloring experiments. In

addition, synchronicity properly models the situation when two adjacent subjects

take actions almost at the same time and need to break the tie.

We recall that for synchronous networks the running time of an algorithm is

given by the number of communication rounds. In each round a processor receives

messages from the neighbors, performs local computation, and sends messages to

the neighbors. Finally, we remark that all our algorithms work in a simple broad-

cast model, where a node sends the same message to all the neighbors. The broad-

cast model is more suitable for capturing the setting of the coloring experiments

in [KSM06, MPW09, EMPW11]. Indeed, in coloring experiments, the subjects

are not allowed to communicate with each other except that they are allowed to

3Specifically, an edge “rings” with a probability that depends on its rate, and when it rings
the nodes incident on it can operate and coordinate via shared randomness.

24

change their color and observe the changes in the color of a neighbor. Thus, a

subject can only communicate with the neighbors by broadcasting a color change.

2.4 Ring networks

Rings are among the most studied topologies in distributed coloring experi-

ments as well as in distributed computing. In this section we analyze two constant-

memory algorithms for the ring topology. The first algorithm, RingGuess, is

natural and is a plausible candidate for subject strategies in rings. A slight variant

of this algorithm is also used in [KSM06] as a comparative tool with respect to hu-

man subject performance 4. We show that RingGuess converges to a 2-coloring

in Θ(n2) rounds (in expectation) in a ring with n nodes. The algorithm does not

involve any explicit message passing except that the each node has access to the

color of its neighbors. Its message complexity defined as the total number of color

changes by all the nodes is bounded by O(n2 log n).

Our analysis of RingGuess raises the question whether there exists a con-

stant memory algorithm that converges in linear number of rounds, which is clearly

optimal for the ring. We present a new algorithm, RingElect, to 2-color a ring

which uses constant memory and converges in O(n) rounds. RingElect employs

a leader election strategy, and also elects a leader within the same resource bounds.

At the end of this section, we discuss how asymmetric incentives will slow

down the algorithms.

2.4.1 A natural algorithm

Consider a situation that frequently occurs in the experiments of [KSM06,

MPW09, EMPW11] when at some point during the game a subject sees a neighbor

choosing the same color as his/hers. In this situation the subject may change color

4In [KSM06] the algorithm bears the name distributed heuristic and works for any number c
of colors. When restricted to the case c = 2 is essentially RingGuess but is used asynchronously.
They simulate this algorithm on the networks used in human subject experiments to compare
the steps required by the algorithm with the time to solve the problem by the subjects. No
algorithmic analysis is provided in [KSM06].

25

or wait for the neighbor to change. One could conceivably use timing strategies

to make the decision. However it is not possible to implement timing strategies

in bounded memory and without the knowledge of the size of the ring. As such,

a natural action is probably to change color with some probability, reverting the

change if a neighbor changed its color as well.

With this motivation in mind, we introduce the RingGuess algorithm.

Any node which has the same color as one of its neighbors repeatedly executes the

following 2-round algorithm:

1. Change color with probability p = 1
2
, while remembering the old color and

the colors of the two neighbors.

2. If any of the neighbors changes its color during the first round, restore the

previous color.

Algorithm 2.1 presents pseudo-code for RingGuess.

Analysis

We now proceed with the analysis of the RingGuess algorithm. Let a

conflict be an edge with nodes of the same color, and the distance between two

conflicts be the minimum number of edges that separates them. We observe that

since a node with no conflicts does not change color, and one with conflicts ends

the 2-round algorithm with a different color only if its neighbors did not change

color, the number of conflicts never increases. The 2-round RingGuess algorithm

‘moves’ the conflicts (clockwise or counterclockwise) with some probability. Also,

when two conflicts have a node in common (i.e., 3 consecutive nodes have the same

color), there is a probability of p3 = 1
8

that the two conflicts vanish – this happens

when the middle node is the only one flipping its color.

The convergence proof of the algorithm will make use of random walks. The

following lemma bounds the number of steps for a random walk to terminate.

Lemma 1. Let Wk = (X0, X1, . . .) be a unidimensional random walk on a path of

nodes 1, 2, . . . , k, . . . starting on the the first node (i.e. X0 = 1) and terminating

26

Algorithm 2.1: RingGuess Algorithm

oldColor, oldColorleft, oldColorright ← ⊥
hasConflict← true

color← random bit . Begin with a random color

Broadcast color to neighbors . Broadcast color at round 0

function RingGuess(p, t, msgl, msgr) . Called at every round t ≥ 1

if hasConflict then

if t is odd then

oldColorleft = msgl

oldColorright = msgr

Flip color with probability p

else

if msgl 6= oldColorleft or msgr 6= oldColorright then

color← oldColor

else

hasConflict← (color ∈ {msgl, msgr})

Broadcast color to neighbors

when the k-th node is reached or surpassed. For δ ∈ {1, 2} and j ≥ 1, consider the

following transition probabilities:

Pj→j−δ =

{
qδ if j − δ > 0

0 if j − δ ≤ 0

Pj→j+δ = qδ

Pj→j = 1−
∑

δ∈{1,2}

(Pj→j−δ + Pj→j+δ)

where Pi→j = Pr[Xt+1 = j|Xt = i], q1, q2 > 0 and 2(q1+q2) ≤ 1. Then the expected

time for Wk to terminate is at most k2

q1+4q2
.

Proof sketch. Let hi be the expected value of the random variable representing the

number of steps to reach (or surpass) state k from state i. Then the following

27

system S∗ of equations holds

h1 = c1 + q1h2 + q2h3 + (1− q1 − q2)h1

h2 = c2 + q1(h1 + h3) + q2h4 + (1− 2q1 − q2)h2

hk = 0

hk+1 = 0

hj = cj + q1(hj−1 + hj+1) + q2(hj−2 + hj+2) + (1− 2q1 − 2q2)hj, 3 ≤ j ≤ k − 1

with cj = 1, for 1 ≤ j ≤ k − 1.

Recall that our goal is to show that h1 ≤ k2

q1+4q2
. Let h1 = x∗1, h2 =

x∗2, . . . , hk+1 = x∗k+1 be the solution of this system S∗, and let h1 = x̃1, h2 =

x̃2, . . . , hk+1 = x̃k+1 be the solution of the system S̃ obtained by setting c1 = 1,

cj = 2, for 2 ≤ j ≤ k − 1, and replacing equation hk = 0 with hk = k2−(k−1)2

q1+4q2
.

We observe that it has to be x̃j ≥ x∗j for any 1 ≤ j ≤ k + 1. Using induc-

tion, we show x̃j = k2−(j−1)2

q1+4q2
for 1 ≤ j ≤ k + 1. From this, we conclude that

h1 = x∗1 ≤ x̃1 = k2

q1+4q2
.

We apply Lemma 1 to bound the number of rounds required for two conflicts

in a ring to come close to each other. This will be the main ingredient to establish

the main theorem.

Lemma 2. Consider any 2-coloring with m conflicts such that no conflicts are at

distance less than 2. Then, the expected number of rounds for two conflicts to be

at a distance less than 2 is at most n2

p2m2 .

Proof. We observe that after an execution of the 2-round algorithm, any conflict

(independently of the others) will move one edge clockwise with probability p2,

one edge counterclockwise with probability p2, and it will not change position with

probability 1− 2p2.

Fix two consecutive conflicts and let D be a random variable representing

the distance between them. After an execution of the 2-round algorithm, D will

(a) increase by 2, as well as decrease by 2, with probability (p2)2 = p4; (b) increase

by 1, as well as decrease by 1 with probability 2p2(1 − 2p2) = 2p2 − 4p4; (c) not

change with probability 1− 2(p4 + (2p2 − 4p4)) = 1− (4p2 − 6p4).

28

As D ≤ n, we have that the expected number of rounds for D to be less

than 2 is no larger than the expected time for the random walkWn from Lemma 1

to terminate when q1 = 2p2−4p4 and q2 = p4. Lemma 1 assures that the expected

number of rounds for D to become less than 2 in at most n2

q1+4q2
= n2

p2 .

To prove the lemma, we will show that the expected number of rounds

for two conflicts among m to be at a distance less than 2 is no larger than the

expected time for a random walkWbn/mc to terminate. Consider the Markov chain

D̄0, D̄1, . . ., with D̄t = (D
(1)
t , D

(2)
t , . . . , D

(m)
t), where D

(i)
t is the random variable

representing the distance between the i-th and (i + 1)-st conflict on the ring at

time t. D
(m)
t represents the distance between the last and the first conflict at time

t. We couple this Markov chain with another one, Mt = miniD
(i)
t , that keeps track

of the distance between the closest pair of conflicts for t ≥ 0. Now observe that

Mt ≤
⌊
n
m

⌋
and that Mt will take on a value less than 2 at least as fast as the

random walk Wbn/mc terminates. This observation along with Lemma 1 concludes

the proof.

We are now ready to prove the main theorem for this section.

Theorem 3 (RingGuess). The expected number of rounds for RingGuess to

compute a 2-coloring of the ring is Θ(n2). Its expected message complexity is

O(n2 log n).

Proof. For i = 1, . . . , n, let Xi be the random variable denoting the number of

rounds between the moment the (i − 1) − th conflict is resolved and the moment

the i− th conflict is resolved.

Lemma 2 along with the observation that there is a constant probability

that two conflicts at distance less than 2 vanish, imply that E[Xi] ≤ c n2

p2(n−(i−1))2 ,

for some constant c > 0.

We are interested in the number of rounds to resolve all conflicts, that is

X =
∑n

m=1Xi. We conclude that the expected number of rounds to resolve all the

conflicts is bounded by

E[X] =
n∑
i=1

E[Xi] ≤
n∑

m=1

c
n2

m2
= O(n2).

29

Analogously the number of messages (or color changes) is bounded by∑n
m=1 2cm n2

m2 = O(n2 log n) since the expected number of color changes in a con-

figuration with m conflicts is 2m.

We remark that the analysis is tight, as the expected number of rounds it

takes for two conflicts initially at distance Ω(n) to get a distance less than 2 is

Θ(n2).

2.4.2 An optimal algorithm

The quadratic time bound obtained for RingGuess calls its scalability into

question. It is natural to ask whether we can even achieve the optimal in both

worlds, that is whether there exists an algorithm that obtains a 2-coloring of a ring

in linearly many rounds using only constant memory.

In this section we answer this question in the affirmative with the algorithm

RingElect. The algorithm elects a leader and a 2-coloring of the ring easily

follows. Hence, we also provide an optimal algorithm to elect a leader in a ring

using constant memory and linearly many rounds.

We now proceed with the description of the algorithm. For simplicity, we

describe RingElect in a more restrictive model, where local orientation is as-

sumed. Specifically, a node is capable of sending a message only to a specific

neighbor, and on reception of a message can distinguish which of its neighbors

sent that message. Later we will explain how this assumption can be removed.

The high-level picture of the algorithm RingElect is the following. We begin

in a configuration where all nodes are leaders. Each leader plays a leader elec-

tion on each of the segments of the ring connecting it to its clockwise-next and

counterclockwise-next leaders. A leader losing in both its segments becomes slave

and sends a message notifying that it is conceding the election to the leaders at

the end of its segments. A concede message has the extra function of aborting all

the election messages encountered whilst traversing the segment.

A detailed description of the algorithm follows. As mentioned before, we

consider two types of messages, concede and contest. Each message msg has a field

msg.type to denote its type. Concede messages are sent by nodes who became

30

slaves. Contest messages are generated by leaders (a) during the first round, (b)

on reception of a concede message, and (c) on reception of a contest message. A

contest message msg carries a bit msg.b indicating the position of the leader who

sent it and a “history” msg.h ∈ {?, 0, 1} indicating what generated it: in cases (a)

and (b) the history is set to ?; in case (c) the history is set to the election bit

contained in the received contest message.

Each node has the following local variables: status∈ {start,leader,slave}
(initialized with start); for i ∈ {l, r}, msgi to remember the latest message received

from direction i; bi to store the random bit used for the election on the segment in

direction i; losingi to remember whether it is “losing” the election on the segment

in direction i. Every node runs the algorithm described by Algorithm 2.2.

Analysis

We say that the portion of the ring between nodes u and v is a segment

at round t if at round t, u and v are leaders and all other nodes between u and

v are slaves. At the beginning we have exactly n segments. As the algorithm

progresses, the number of segments goes down and the segments get larger. When

all segments vanish, only one leader is left.

A message msg is crucial if msg.type = contest, msg.b = 1 and msg.h = 0.

Similarly, a message variable msgi of a leader node is crucial at the end of round t

if it holds a crucial message at the end of round t. For a segment with left-leader

u and right-leader v, the variables of the segment are the variable msgr of u and

the variable msgl of v. By construction of the algorithm, a leader becomes a slave

only if both its variables are crucial.

We will say that a message m is on a segment at the end of round t, if during

round t a node u of that segment sent m to another node v of that segment. The

direction of a message is defined by who sent the message and who received it.

We say that two messages m from u to v and m′ from u′ to v′ on a segment are

converging (resp. diverging) if a path u, v, . . . , v′, u′ (resp. v, u, . . . , u′, v′) is in the

segment. Finally, for a segment of leaders u and v, and for a message m on the

segment directed toward u, any message in between m and v is said to be behind

31

Algorithm 2.2: RingElect Algorithm

status← leader, bl ← ⊥, br ← ⊥, msgl ← ⊥, msgr ← ⊥
for i ∈ {l, r} do . In the first round, start the election

Election(i)

function RingElect(t, newl, newr) . Messages received at round t, may be ⊥
if status = leader then

for i ∈ {l, r} do

if newi 6= ⊥ then

msgi ← newi

losingi ← (msgi.type = contest and msgi.b > bi and msgi.h = 0)

if losingl and losingr then . Election is lost, concede

status← slave

Send concede message to both neighbors

else . Election is still on, reply with new contest messages

for i ∈ {l, r} do

if newi 6= ⊥ then

Election(i)

else if status = slave then . Concede messages abort contest messages

Forward newl to r unless newl.type = contest and newr.type = concede

Forward newr to l unless newr.type = contest and newl.type = concede

function Election(i)

bi ← random bit

if msgi = ⊥ or msgi.type = contest then

h = ?

else

h = msgi.b

Send new msg to i with msg.type := contest, msg.b := bi, msg.h = h

32

m.

We now proceed with a detailed characterization of the behavior of the

algorithm. We start with a couple definition.

Definition 4 (Safe configuration). A segment is in a safe configuration at the end

of round t if the following properties hold at the end of round t.

(i) There are one or two concede messages on the segment.

(ii) No variable of the segment is crucial.

(iii) Every crucial contest message on the segment is converging to a concede

message on the segment.

(iv) If there are two concede messages on the segment then they are diverging and

no other message is in between them. If there is only one concede message

on the segment, then there can be only one message behind it. This message

is non-crucial and is traveling in the same direction as the concede message.

Definition 5 (Contest configuration). A segment is in a contest configuration at

the end of round t if the following properties hold at the end of round t.

(a) There are exactly two contest messages and no concede messages on the seg-

ment.

(b) At most one variable of the segment is crucial.

(c) Crucial messages on the segment travel in the same direction. Also if a

variable of the segment is crucial, crucial messages travel toward the leader

holding that variable.

The following lemma offers a characterization of the behavior of the algo-

rithm.

Lemma 6. At the end of any round t ≥ 1, any segment is either in a safe config-

uration or in a contest configuration.

33

Proof. We prove the lemma by induction on t. During round t = 1 every node

sends a non-crucial contest message per segment, therefore at the end of the round

there will be two non-crucial contest messages (history of messages is set to ?) per

segment, and no leader has crucial variables. Hence, at the end of round t = 1

each segment is in a contest configuration.

By induction suppose that the lemma holds at the end of round t, and

consider any segment. First suppose that the segment is in a safe configuration at

the end of round t. If no concede messages are received by any of the two leaders

at the beginning of round t + 1, there will be a safe configuration at the end of

round t+ 1 as no other messages are sent. Otherwise a leader receiving a concede

message at the beginning of round t + 1, will send a non-crucial contest message

on the segment (the history of the message is set to ?). Therefore at the end of

round t+ 1 the segment will be either in a safe configuration (if at least a concede

message is present) or in a contest configuration (if no concede messages are left).

Now suppose that the segment is in a contest configuration at the end of

round t. Consider first the case when no leader of the segment becomes a slave

during round t + 1. We will show that at the end of round t + 1 there will be

a contest configuration. Note that property (a) holds at the end of round t + 1

because a slave receiving a contest message will forward it, while a leader receiving

a contest message will send another contest message on the segment. Property

(b) holds at the end of round t+ 1 because property (c) guarantees that only one

leader can receive a crucial message at the beginning of round t + 1, and again

by (c) the other leader has no crucial variables. Property (c) holds at the end of

round t + 1 because a leader that receives a crucial message at the beginning of

round t + 1, will send a non-crucial contest message on the segment (the history

of the message will be 1 since the received message is crucial).

Finally, consider the case when a leader of the segment becomes a slave

during round t+ 1. A leader becomes a slave only if both its variables are crucial.

Hence, property (b) implies that only one leader of the segment can become a slave

during round t+ 1. Let u be this node, and let v and w be the other leaders of the

two segments of u. If v = w then we are left with only one leader and no segments.

34

Thus, assume v 6= w. Since u becomes a slave during round t + 1, it must be the

case that both segments of u are in a contest configuration at the beginning of

round t + 1 (if not, one of u’s variable would not be crucial). We will prove that

at the end of round t + 1 the new segment defined by the leaders v and w will

be in a safe configuration. Property (i) and (iv) are trivial since u will send two

concede messages on its two sides. By property (b) both v and w have non-crucial

variables at the end of round t, and since all crucial contest messages are traveling

toward u by (c), properties (ii) and (iii) will hold at the end of round t+ 1.

From Lemma 6, property (ii) of safe configurations and properties (b)-(c)

of contest configurations, we obtain the following corollary.

Corollary 7. There is always at least one leader.

We are now ready to prove our main theorem.

Theorem 8 (RingElect). The algorithm RingElect elects a leader and com-

putes a 2-coloring in O(n) many rounds and O(n log n) bit-complexity, both quan-

tities in expectation.

Proof. Consider any round and let ` ≥ C be the number of leaders, where C is

a sufficiently large constant. For a leader u, let the scope of u be the union of

the two segments of u (notice that scopes are not disjoint and each scope contains

exactly 3 leaders.) Let S be a maximal set of node-disjoint scopes. Then it has to

be |S| ≥ b `
3
c ≥ `

4
, where the last step follows if C is large enough.

Observe that at least |S| − `
8
≥ `

8
scopes of S are short, that is they have

length at most 8n
`

. If not, the remaining scopes of T would contain more than

n distinct nodes. Consider any such short scope. After a phase of 16n
`

rounds

either at least one of the three leaders has become a slave or all the nodes have

drawn new bits for the elections on the two segments of the scope. Also, in each

of these phases there is a constant probability q that one of the leaders of the

scope becomes a slave. Fix any m ≥ 1. For 1 ≤ j ≤ `
8
, let Zj be the indicator

random variable of the event that the j-th short scope has no leader become a

slave after m phases. Let Z be the number of short scopes such that no leader

35

becomes a slave after m phases, and L be the number of leaders left in total after

m phases. As each scope has exactly 3 leaders, we have L ≤ `− (1
3
`
8
− 3Z). Then

E[Zj] = Pr[Zj = 1] = (1 − q)m, and E[
∑

j Zj] =
∑

j E[Zj]
`
8
(1 − q)m ≤ `

8
e−m.

Also, as the scopes are node-disjoint, the random variables Zj are independent.

By Chernoff bound, Pr(Z ≥ (1 + δ)E[Z]) ≤ exp(−δ2E[Z]/3). By choosing m as

a sufficiently large constant and δ as a sufficiently small constant, we have that

L ≤ `
c

with probability at least 1/2, for some constant c > 1.

For 0 ≤ i ≤ logc(n), let Ei be the event that at most n/ci leaders are

left. The above argument shows that given Ei at some round t, the proba-

bility of Ei+1 at round t + m 16n
(n/ci)

= t + 16mci = t + O(ci) is at least 1/2.

Let Xi+1 be the number of phases of length 16mci until Ei+1 happens. Then

E[Xi|Ei] =
∑∞

j=0 j Pr(Xi = j|Ei) ≤
∑∞

j=1 j(1/2)j−1 = O(1). We can conclude

that, in expectation, the number of rounds to reduce the number of leaders down

to a constant is at most E[
∑logc(n)

i=0 (16mci)Xi] = O(
∑logc n

i=0 ci) = O(n). It is easy to

see that in expectation linearly many rounds are sufficient to reduce the number

of leaders from a constant to one, as every O(n) rounds a leader has a constant

probability to become a slave.

A similar analysis shows that the expected number of messages isO(n log n).

Finally, we explain how a 2-coloring can be achieved. In the first round

every node chooses a color for itself. Every time that a leader receives a concede

message, it will start to propagate its coloring. A slave who receives two non-

compatible colorings by its two neighbors will not propagate any of the two. When

only one leader is left, the coloring of this leader will be propagated through the

entire network (in linearly many rounds).

Broadcast model

We will briefly describe how to modify the algorithm RingElect so that

only broadcast is used. We will still assume that when a node receives a message,

it can distinguish which neighbor broadcast it5.

5This is a natural assumption. For example, this assumption holds for the coloring experiments
in [KSM06, MPW09, EMPW11].

36

We will use the key property is the fact that a slave never receives two

messages coming from the same neighbor in two consecutive rounds. (This property

can be shown to hold inductively.) Using this property we can modify the algorithm

as follows. A slave node u will accept (and therefore broadcast) a message m

broadcast from a slave neighbor v iff at least one of these conditions holds: (i) in the

previous round u did not accept m from the other neighbor; (ii) v is broadcasting

two messages (this happens only if in the previous round v accepted the message m

from u and a message m′ from its other neighbor; in this case, if m 6= m′, u knows

what message to ignore, otherwise u will accept any of the two). A slave node u

will accept a message m broadcast from a leader neighbor w iff in the previous

round u broadcast a message received by the other neighbor. Similar rules can be

used for leader nodes. The only major modification is the following: when a leader

accepts two messages in the same round (coming from the two different segments)

and does not become a slave, it will draw only one bit and use (broadcast) it

for both segments. This modification of the election process does not affect the

performance of the algorithm which will still converge in linear time.

2.4.3 Slow-down with asymmetric incentives

As mentioned in the introduction, the experiments in [MPW09] introduces

asymmetric incentives for bipartite graphs in the following way. If a proper col-

oring is achieved, the participants ending with a specific color are paid more than

the participants ending with the other color. The effect during the game is that

participants are reluctant to leave the “special” color for the other one.

We wish to quantify the influence of these asymmetric incentives on our

algorithms. We model “selfish” participants in the following way. We say that

a node is Byzantine if, when supposed to give up the special color or become a

slave, it does so with probability q strictly less than one. Now consider a ring with

(at least) two Byzantine nodes at odd distance Ω(n). (Note that if we place two

Byzantine nodes at random on the ring, this situation will happen with constant

probability.) Then, with proofs similar to the ones presented, it is possible to

show that the convergence time of the algorithms gets slower in the following way:

37

RingGuess will converge in Θ(n
2

q2 + 1
q3) time; and RingElect will converge in

time O(n
q
).

An interesting aspect caused by the requirement on constant memory, is

that detection of Byzantine nodes is impossible for the other nodes.

2.5 General bipartite graphs

We now turn our attention to general bipartite graphs. First we present

a simple algorithm that computes a 2-coloring of any bipartite graph in poly(n)

time. Each node v uses an amount of memory proportional to the logarithm of

its degree. Secondly, we show that using a little more memory per node, namely

O(log n) bits, we can obtain essentially optimal convergence time.

2.5.1 A natural algorithm

Without loss of generality let the color palette be {0, 1}. Consider the

following simple algorithm that we call GraphCoalescing.

In the first round every node chooses a random color b and sends b̄ to a

random neighbor. In every round t ≥ 2, each node u receiving at least one bit

performs the following operations:

(a) chooses at random a bit b among the received bits;

(b) colors itself with b; and

(c) with probability δu
δu+1

sends b̄, the complement of b, to a random neighbor

and with the remaining probability sends b to itself.

Observe that each node u in the algorithm uses O(log δu) bits of memory to select

a random neighbor.

The idea of this algorithm is that every node proposes a coloring. Each

proposal takes a random walk on the graph, and when two (or more) proposals

meet, only one of them will survive (the proposals will coalesce into one) and

continue its random walk. Now suppose that at some point only one proposal is left:

38

then it will walk randomly through the network, and will lead to a proper coloring

once all nodes have been visited. Viewing proposals as tokens, it follows that the

algorithm can also be used to provide a token management scheme (See [IJ90] for

a similar approach).

The following theorem borrows heavily from the literature.

Theorem 9 (GraphCoalescing). The algorithm GraphCoalescing com-

putes a 2-coloring in O(m2n log n) many rounds for general bipartite graph with m

edges, O(∆n2) many rounds for ∆-regular bipartite graphs, and O(n log n) many

rounds for random ∆-regular bipartite graphs.

Proof. In the proof we refer to each proposal as a particle. Let G be a (bipartite)

graph. We observe that part (c) of the algorithm implies that each particle is

performing a random walk on the graph G′ that is obtained from G by adding

self-loops to each node. Therefore, since G′ is not bipartite, the random walk of

each particle is aperiodic. The expected number of rounds required for coloring

the graph is bounded by the expected number Tcoalesce of rounds for the particles

to coalesce to a single particle, plus the cover time Tcover (that is, the expected

number of rounds for a single particle to visit all the nodes). A classic result

in [AKL+79] shows that the cover time of a graph is Tcover = O(mn). By [AF99,

Section 14.3], we have that Tcoalesce = O(∆n2) for ∆-regular graphs, and Tcoalesce =

O(Tcat&mouse log n) for general graphs, where Tcat&mouse is the time required for two

random walks to meet. For non-bipartite graphs it is well-known that Tcat&mouse =

O(m2n). The bound for random ∆-regular bipartite graphs follows from the bound

in [CFR09] for coalescing particles and the bound on the cover time in [CF05].

We observe that the algorithm (as it is) is not suitable for a broadcast model

because nodes must be able to send messages to a specific neighbor. This issue

can be addressed using the isomorphism between the coalescing particles process

and the voter model. In the voter model each node starts with an opinion (a

proposal of a coloring in our case). As time passes, nodes modify their opinions in

the following way. At each step, each node changes its opinion to the opinion of a

random neighbor or stick to its opinion where all the options are equally probable.

39

It is known that the expected time for only one opinion to survive (the number

of opinions can only decrease with time) is the same as the expected time for all

the particles to coalesce (e.g. see [CFR09]). This observation easily leads to a

broadcast algorithm with the same guarantees.

2.5.2 An optimal algorithm

In this section we present GraphElect, an algorithm that uses O(log n)

memory in expectation and computes a 2-coloring of any bipartite graph in O(D+

log n) expected number of rounds, where n andD are size and diameter of the graph

respectively. Any distributed algorithm that 2-colors general bipartite graphs re-

quires Ω(D) rounds: therefore GraphElect is optimal for graphs of diameter at

least Ω(log n).

We now describe the algorithm GraphElect. At any given stage, a pro-

cessor can be either a leader or a slave. At the beginning of the algorithm all proces-

sors are leaders. Each processor presents to its neighbors a variable Leading-Rank

(initial value 0), and its color (initial value either 0 or 1). In addition, each proces-

sor keeps locally a variable Rank (initial value 0). At the beginning of each round,

a processor reads the state variables of all its neighbors and computes the maximal

leading rank among all its neighbors. The processor holding that maximal leading

rank is the processor’s leading neighbor. If there is more than a single processor

holding the maximal leading rank, the leading neighbor is elected arbitrarily from

among the leading processors. If the maximal leading rank is larger than the pro-

cessor’s own rank, the processor adjusts its color to be the opposite color of its

leading neighbor, and becomes a slave (if it was a leader). A slave keeps doing this

simple routine forever and never gets a chance to become a leader again.

In addition to all aforementioned variables, a leader also holds a timer whose

initial value is zero. The nodes counts down from timer value to zero. When the

count goes to 0, if the processor is still a leader, it increments its rank and leading

rank by 1. Then it updates its timer value to be twice the old timer value, plus a

random value in {0, 1}.
We now proceed with the analysis of GraphElect.

40

Lemma 10. Let u and v two nodes in the graph. If, at the beginning of a certain

round, u is still a leader and its rank is greater than the rank of v, then for the

rest of the computation there will be some node (possibly u) with rank greater than

the rank of v.

Proof. Let W
〈u〉
k be the value of the timer of u right after the k-th update. W

〈u〉
k =

2·W 〈u〉
k−1+B

〈u〉
k (as long as u is a leader), where the B

〈u〉
k ’s are i.i.d. random variables

taking values from {0, 1}. We have that W
〈u〉
k =

∑k
i=0 2k−iB

〈u〉
k . Now consider the

first round t∗ when the rank of u is greater than the rank of v. During round

t∗, u must have updated its timer, and let this one be its k-th update. It must

be the case that W
〈u〉
j = W

〈v〉
j (and therefore B

〈u〉
j = B

〈v〉
j) for all j < k − 1, and

W
〈u〉
k−1 < W

〈v〉
k−1 (and therefore B

〈u〉
k−1 < B

〈v〉
k−1). Now consider the k-th update for u

and v. We have that

W
〈u〉
k = 2W

〈u〉
k−1 +B

〈u〉
k ≤ 2W

〈u〉
k−1 + 1 ≤ 2(W

〈v〉
k−1 − 1) + 1 < 2W

〈v〉
k−1 ≤ 2W

〈v〉
k−1 +B

〈v〉
k ,

which equals W
〈v〉
k . Therefore, W

〈u〉
k rounds after t∗, u will increase its rank to k+1,

while the rank of v can only increase it to k + 1 after at least 1 + W
〈v〉
k > W

〈u〉
k

many rounds from t∗.

By induction, as long as u is a leader, u will have a rank greater than the

rank of v. If at some point u loses its leadership status, it must be that another

node u′ has a rank greater than the rank of u, and thus greater than the rank of

v.

Theorem 11 (GraphElect). The algorithm GraphElect elects a leader and

computes a 2-coloring of bipartite graphs of diameter D in O(D+ log n) rounds in

expectation.

Proof. We will compute the expected time to have only one leader left in the

network. Once this event happens, the coloring propagated by the leader will be

adapted by each node eventually producing a 2-coloring. Let t(k) be the minimum

round such that there exists a node that is updating its timer for the k-th time.

In other words t(k) is the round during which one or more nodes achieve the rank

k for the first time and k is the largest rank at round t(k). Also let Lk be the

41

set of nodes with the largest rank k at round t(k). By Lemma 10, we have that

Lk+1 ⊆ Lk for any k. We want to compute the expected k∗ such that |Lk∗| = 1. At

the beginning L0 contains all the nodes in the graph, so |L0| = n. At round t(k) we

have Lk nodes which will select i.i.d. random numbers in {0, 1}: observe that only

the nodes that select 0 will be in Lk+1. Therefore, in expectation, |Lk+1| = 1
2
|Lk|.

We conclude that in O(log n) expected rounds there will be only one node with

the largest rank.

At this point we have only one node of largest rank, call it u∗. However we

can still have multiple leaders: for instance, u∗ might be very far from some other

leader w, and by the time the leading rank is propagated from u∗ to w, w might

have increased its own rank. However, this cannot happen when the timer length

of u∗ (hence, of all the other leaders) is at least D. Since after O(log n) rounds

the u∗’s timer value will be more than 0 with high probability and the timer value

doubles at each update, we have that after at most O(log n+D) rounds from round

t(k∗) the vale of u∗’s timer will be at least D. Thus, after O(log n + D) rounds

there will be only one leader.

2.6 Discussion: Leader election vs 2-coloring

Some of our algorithms are based on a leader election strategy. Observe

that once a leader is elected, a 2-coloring of an entire bipartite network can be

performed easily in D rounds, where D is the diameter of the network – the leader

chooses a color, its neighbors use the other color, and so on. This argument

unfortunately breaks down if the leader cannot be sure of being the only leader

in the network6 – the issue is that multiple leaders might initiate non-compatible

colorings. Even using randomization, we cannot detect the existence of a unique

leader in a model where nodes are not aware of the size (or diameter) of the

network [AW04]. Nonetheless our leader election algorithms can be extended to

compute a 2-coloring of the network in our model.

This discussion suggests the following questions. Is electing a leader always

6This problem is known as “termination detection” in distributed computing.

42

the (asymptotically) optimal choice to compute a 2-coloring of a bipartite graph?

Also, is electing a leader as hard as 2-coloring a network? When considering

specific classes of graphs the answer is negative, because network topology can

play a major role. As a simple example, consider connecting n pendant nodes to

the nodes of a 2n-ring in an alternating fashion. Then an algorithm where a node

colors itself red if it has degree 3 and blue otherwise would compute a 2-coloring

in just one step, while a leader election instead requires Ω(n) rounds. Similarly,

consider connecting exactly one pendant node to an even ring. Then an algorithm

where a node declares to be a leader iff it has degree 3 would elect a leader in one

step (while a 2-coloring requires Ω(n) rounds.)

2.7 Preferential attachment graphs

Preferential attachment graphs (henceforth, PA graphs) were introduced

by Barabási and Albert [BA99] to model complex real-world networks. PA graphs

capture the property that the degree sequence of many real-world networks has

a “scale-free” power law distribution7. PA graphs with parameter m ≥ 1 are

generated by adding one node at a time. When a new node is added, it is connected

to m neighbors chosen randomly with probability proportional to their degree.

This well-known generative model creates the popular “rich-get-richer” effect, as

high-degree nodes are more likely to be chosen as neighbors of new nodes.

The preferential attachment model was later formalized by Bollobás et

al. [BRST01]. Fix any integer m ≥ 1. Then, Gn
m is generated starting with

the graph G1
m consisting of one node and m self-loops, and applying the following

process n− 1 times: Gi+1
m is obtained by Gi

m by adding a new node u and, sequen-

tially, m edges ej = (u; vj), j = 1, 2, . . . ,m, where vj 6= u is chosen with probability
deg(vj)

2(mi+j)−1
, and vi = u is chosen with probability deg(u)+1

2(mi+j)−1
. Here deg(u) and deg(vj)

denote the degrees of u and vj before ej is added (self-loops count twice towards

the degree). Note that the definition of Gn
m allows for multiple edges and self-

loops. When talking about coloring, we will implicitly refer to the graph obtained

7Specifically, the fraction of nodes with degree d is proportional to d−γ , where γ is a constant
independent of the size of the network.

43

by removing self-loops from the generated graph.

In this section we present an algorithm, PAcolor, that computes an (m+

1)-coloring of any PA graph with parameter m. Each node u in the network uses

O(log δu) bits of memory, where δu denotes the number of distinct neighbors v 6= u

of u (note that δu ≤ d(u)). The number of colors used by PAcolor is in general

optimal as, for any fixed m ≥ 1, the first m + 1 nodes of the PA graph will form

a clique with constant probability. We will show that PAcolor computes an

(m+ 1)-coloring of the graph in O(
√
n log2 n) many rounds with high probability.

We now proceed with the description of the algorithm. Every node is ini-

tially uncolored and active. At every round, every active node u whose number

of active neighbors is at most m, proposes to become inactive with some constant

probability 0 < p < 1. If u is the only proposing node in its neighborhood then

it stores the set Au of currently active neighbors in memory and becomes inactive

(as |Au| ≤ m, the memory needed to store such set is O(m log δu)). Otherwise,

the node does nothing in the current round. Every inactive node u waits until all

of its neighbors in Au are colored, and then colors itself with one of the available

colors. We will see that the neighbors of u that are not in Au will not be colored

before u. Hence, as |Au| ≤ m, there is always at least one color available for u.

2.7.1 Analysis of the algorithm

We will now establish the correctness of the algorithm. First we claim that

all nodes will eventually become inactive. By contradiction suppose the algorithm

terminates with some active nodes. Then consider the active node u that was

added last in the sequential process that generated the graph. Since all other

active nodes were already added, u has at most m active neighbors at the time

of termination. This leads to a contradiction. To argue that no node u has to

wait indefinitely on its stored set Au of neighbors before it gets a chance to color

itself, we will consider the order dependencies between nodes and argue that they

form a directed acyclic graph. Specifically consider the directed graph that has

an edge from u to v iff v ∈ Au. Suppose by contradiction that there is a cycle in

this graph. Let u be the node of the cycle that became inactive first, and let v be

44

the predecessor node of u in the cycle. By construction of the algorithms no two

adjacent nodes become inactive in the same round. Therefore, it must be the case

the v ∈ Au and u /∈ Av. However, since v is a predecessor of u in the dependency

graph we have u ∈ Av, which leads to a contradiction. Observe that the coloring

process will start from the sinks of this directed acyclic graph, and will propagate

up to the sources.

Observe that the number of rounds required for the algorithm to converge

is at most twice the time it takes for all the nodes to become inactive. Therefore,

since at each round at least a node will become inactive with constant probability

(for any fixed m), it follows that the expected convergence time is O(n). However

we show the following stronger bound.

Theorem 12 (PAcolor). Fix any integer m ≥ 1 and let Gn
m be an n-node PA

graph generated with parameter m. With high probability with respect to the ran-

domness used for generating Gn
m and the randomness of the algorithm, PAcolor

computes an (m+ 1)-coloring of Gn
m in O(

√
n log2 n) rounds.

Proof. Consider the nodes of Gn
m in the order determined by the PA process that

generated Gn
m. We wish to analyze the number of steps required by the following

process to terminate: in each step, remove the maximum number of consecutive

nodes starting from the last that form an independent set. We claim that this

process terminates in O(
√
n log n) with high probability.

Before proceeding with the proof of this claim, we will show how we can

use it to bound the number of rounds needed by PAcolor to color Gn
m. Consider

the maximum number of consecutive nodes starting from the last that form an

independent set — call S this set. All the nodes in S have degree at most m and

therefore are candidates for becoming inactive. We want to bound the number T

of rounds required by PAcolor to make all the nodes in S inactive. Consider

the subgraph of Gn
m induced by the nodes in S and their neighbors with degree

at most m (the other neighbors are not candidate for becoming inactive). This

subgraph has bounded degree, as each node has degree at most m. Also each node

has a constant probability of becoming inactive, and the probability that u ∈ S
becomes inactive is independent from the probability that v ∈ S becomes inactive

45

if the distance between u and v is more than 2. Given the bounded degree, there

are at least a constant fraction of nodes in S at distance more than 2 each other.

Thus a constant fraction of nodes in S will become inactive in every round with

probability at least 1− exp(Ω(|S|)) by a Chernoff bound argument. Therefore, we

can conclude that T ≤ t for some t = O(log n) with probability at least 1−O(n−c),

for any c > 0. Using the claim, we can conclude that PAcolor converges in at

most O(t
√
n log n) = O(

√
n log2 n) rounds with high probability.

We now proceed with proving the claim. Consider the following variation

of the process. For j = 1, . . . , log
√
n, we define phase j as follows: as long as

there are at least n
2j

nodes left, in each step remove the largest independent S of

consecutive nodes starting from the last. When the last phase is completed remove

the last
√
n nodes one by one.

First observe that the number of steps required for this new process to

terminate is an upper bound for the number of steps required by the original

process. Now consider any phase j. Let s > n
2j

. The probability that the last

t < s− n
2j

nodes of Gs
m do not form an independent set is at most

t−1∑
i=1

2mi

2m(s− t+ i) + 1
<

t−1∑
i=1

i

s− t+ i
≤

t−1∑
i=1

i

s− t
=
t(t− 1)

2(s− t)
≤ 2j−1 t

2

n
,

where for the last step we used the fact that s − t > n
2j

. Therefore, at least√
n/2j nodes will form an independent set with probability at least p = 1/2. Let

Et be the event that the t-th step of the j-th phase is such that |S| >
√
n/2j.

We know that for every step t in the j-th phase, Pr[Et] ≥ 1/2 (no matter what

happened in the previous phases and steps). Therefore the probability that the

j-th phase lasts for more than 8
√
n steps is at most the probability of less than

(n/2j+1)/
√
n/2j = 2

√
n heads in 8

√
n independent tosses of a fair coin, which

can be bounded by exp(−
√
n) using Chernoff bound. Therefore we can conclude

that the process will be completed within (1+ log
√
n)
√
n with probability at least

1− (log n) exp(−
√
n), which proves the claim.

46

2.8 Conclusions

Motivated by the coloring experiments in [KSM06, MPW09, EMPW11],

we have proposed “natural” algorithms to compute a 2-coloring of even rings and

general bipartite graphs. The notion of natural algorithms in our context is closely

coupled with the concept of memory, in the sense that a low-memory constraint

can lead to algorithms that are good candidates for modeling human strategies. As

the existing literature on distributed computing does not focus on low-memory al-

gorithms (except for [MS10, ESW12]), and simple algorithms such as RingGuess

and GraphCoalescing have quadratic (or worse) running time, we faced the

challenge of developing time-optimal algorithms while using low memory. For ring

networks, we achieved the best of both world showing that RingElect computes

a 2-coloring in linear time while using constant memory. The ideas in such algo-

rithms also yield a new optimal algorithm for the leader election problem, improv-

ing over previous leader election algorithms. One drawback of RingElect is that,

unlike RingGuess, is not self-stabilizing. It would be interesting to understand

the limits of self-stabilizing low-memory algorithms.

For general bipartite graphs, we proposed GraphElect that computes a

2-coloring in O(D + log n) many rounds using only O(log n) bits of memory. The

question whether there exists an algorithm that can 2-color a general bipartite

graph in O(D + poly(log n)) many rounds using constant memory is still open.

We conjecture that such algorithm does not exist: specifically, we conjecture that

any algorithm that uses only constant memory requires at least Ω(D1+ε) many

rounds to compute a 2-colorings of bounded-degree bipartite graphs with diameter

polynomial in n.

Finally, we have focused on coloring of preferential attachment graphs as

such topologies were also used in the coloring experiment in [KSM06]. We have pro-

posed a simple algorithm, PAcolor that colors a preferential attachment graph

in Õ(
√
n) many rounds. We believe that the analysis of such algorithm can be im-

proved — simulations suggest that PAcolor terminates in O(poly(log n)) many

rounds but a formal proof of this fact is missing. Preferential attachment graphs

have been shown to be quick networks in terms of spreading of information (see

47

for example [CLP09, Gia11, DFF12] and references therein). We believe their

high conductance and degree distribution properties will suffice even in solving

efficiently the coloring problem. However, an efficient algorithm for such problem

will require some amount of coordination among the nodes of the network. For in-

stance, the natural dynamic suggested and used as a comparative tool in [KSM06]

will most likely require quadratic (or worse) many rounds to compute a coloring of

a preferential attachment graph. Formal proofs of such conjectures would be very

interesting.

Chapter 2, in part, is a reprint of the paper “Low memory distributed

protocols for 2-Coloring” co-authored with Amos Israeli, Mathew D. McCubbins

and Ramamohan Paturi, published in the proceedings of the 12th International

Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS

2010 [IMPV10]. The dissertation author was the primary investigator and author

of this paper.

Chapter 3

Matching Experiments

This chapter argues that despite the inherent complexity of human social

interactions, it is possible to isolate basic behavioral principles, formulate math-

ematical models, and predict collective dynamics, using an algorithmic approach.

As a simple example of this approach, in the context of a distributed coordination

game on networks (i.e., the maximum matching game), we present an algorithmic

model of human behavior that is based on simple principles of local interaction

and that is able to capture complex collective coordination.

Our approach is similar in spirit to the one in physics where particle systems

and cellular automata described by simple rules are known to generate complex

behaviors, such as phase transitions and universal computability [Lig85, Bov06,

VNB66, Coo04]. However, our algorithmic modeling approach embeds individ-

ual interaction behavior as part of a distributed computing system and leads to

computational complexity analysis.

Our work is influenced by the work of Kearns et al. [KSM06] who studied

the effect of network topology on subjects’ ability to color a graph, and by subse-

quent work in the context of distributed coloring and consensus games [KJTW09,

MPW09, JKV10, EMPW11]. However, our focus is on algorithmic modeling and

analysis, rather than on observing the effect of network topology on performance.

We have conducted over 250 experiments with human subjects on a pool of

over 80 networks with up to 24 nodes each, ranging from simple networks to more

complex stochastic models including preferential attachment [BA99, BRST01] and

48

49

Figure 3.1: Computer interface. The subject is matched with the node on the
right and is being requested by three unmatched nodes.

small-world networks [WS98]. Our experimental set-up is simple. Subjects are

represented by nodes of a network with edges representing potential matches. In

our experiments, human subjects are connected over a virtual network and interact

with their neighbors through a computer interface, see Figure 3.1. Subjects can

form and destroy pairs with their neighbors, and each subject can be part of a single

pair at a time. Subjects are given only local information about their immediate

neighbors, and can only interact with them. They are able to propose to match

with a neighbor and accept a proposal from a neighbor. While matched, a subject

can also make a proposal to or accept a proposal from another neighbor; in both

cases, the existing match would automatically be broken. Moreover, a subject

can only have a single outstanding proposal at a time. Therefore, at any time,

a subject can either be part of a matched pair, or not be matched and have at

most a single outstanding proposal. Subjects are equally incentivized to achieve

a maximum matching, namely to form the maximum number of disjoint mutual

pairs, without regard to whom is matched with whom. Specifically, they are given

an equal monetary reward for each game where a maximum matching is found

within the allotted time.

To better understand this setup, consider the following metaphor: imagine

that incoming graduate students are pairing up with faculty members. Further

imagine that every member of the department prefers every graduate student to

50

Figure 3.2: Approximate and maximum matching. Left: an approximate
maximum matching of size 5 on a network with 12 nodes (matching edges are
represented in bold red, matched nodes are colored, unmatched nodes are white).
Right: a maximum matching of size 6 on the same network (note that the maximum
matching is also a perfect matching, as all nodes are matched).

have one adviser and every adviser to have one graduate student, and only certain

faculty and graduate students share interests. Communication is limited so that

individuals can only tell if members with whom they share an interest are already

matched. Each member of the department is now a node, the edges represent

shared interest, and individuals can then propose to work with members with

whom they share an edge.

Our algorithmic model is based on a simple property that we call “pru-

dence” and that emerges from the analysis of a first set of experimental data. This

property states that individuals do not break existing matched pairs unless they

receive an alternative proposal by an unmatched neighbor. Based on this prop-

erty, we propose a simple distributed algorithm, analyze its performance, validate

the model with additional experimental results, and predict outcomes. The pru-

dence property is reminiscent of the notion of risk aversion, a relevant topic in the

economics literature [Pra64, KT79].

3.1 Results

We now briefly summarize our findings. Throughout the paper we use

the graph-theoretic terminology, according to which a matching is a set of edges

without common nodes. The size of a matching is the number of edges in it. A

maximum matching is a matching with the largest size. For 0 < c ≤ 1, a matching

is a c-approximate maximum matching if its size is within a factor of c from that

51

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.3: Affinity between humans’ and algorithm’s performance, 16-
node networks. The performance of the human subjects (red points joined by
continuous line) and of the algorithm (blue points) over eight bipartite 16-node
networks (triangles) and eight non-bipartite 16-node networks (circles) are plotted.
The experiment was run multiple times on each network and the average behavior
is reported. The x-axis shows the indexes of the networks sorted by increasing
average time required to reach a maximum matching. Bipartite networks are
labeled from 1 to 8, while non-bipartite networks are labeled from 9 to 16. The
y-axis shows the average time (in seconds) required to reach a maximum matching
for humans, while the average number of rounds of the algorithm is scaled by a
constant factor.

of a maximum matching. A matching M is maximal if it is not a proper subset

of any other matching, i.e., for any new edge added to it, it is no longer a match-

ing. Figure 3.2 depicts an approximate and a maximum matching of a network.

We show that the convergence time to the maximum matching in computer sim-

ulations of the prudence algorithm fits well the experimental data (after scaling

by a constant factor), see Figures 3.3 and 3.4. By computer simulations we also

predict that convergence to a maximum matching is slower on preferential attach-

ment networks than on small-world networks, see Figure 3.5. This prediction is

validated by our experiments with human subjects. It is also in agreement with

the experimental results by Kearns et al. [KSM06] regarding the coloring prob-

lem, and with the theoretical results by Montanari and Saberi [MS09] regarding

the spread of innovation in networks. On the theoretical side, we analyze the dy-

namics of the prudence algorithm and show that for all graphs of bounded degree

a 1/2-approximate maximum matching is reached quickly, on average in O(log n)

52

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1 2 3 4 5 6 7

Figure 3.4: Affinity between humans’ and algorithm’s performance, 24-
node networks. The performance of the human subjects (red points joined by
continuous line) and of the algorithm (blue points) over different 24-node net-
works are plotted. In particular, small-world networks (triangles), a ring network
(diamonds), and preferential attachment networks (circles) were tested. The ex-
periment was run multiple times on each network and the average behavior is
reported. The x-axis shows the indexes of the networks sorted by increasing av-
erage time required to reach a maximum matching. The y-axis shows the average
time (in seconds) required to reach a maximum matching for humans, while the
average number of rounds of the algorithm is scaled by a constant factor.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 100 200 300 400 500 600

Figure 3.5: Algorithm’s asymptotic performance. Prudence algorithm’s
performance with respect to the network’s size for the “bad” graph Gn (black
diamonds), for preferential attachment model (green squares), small-world model
(red triangles). For each generative model and network size we generated 100
networks and run the algorithm 1000 times on each. The average behavior is
reported. The x-axis shows the network size, and the y-axis shows the average
number of rounds required by the algorithm to converge to a maximum matching.

53

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25

Figure 3.6: Experimental performance, 24-node networks. Performance
of the experimental subjects on networks of 24 nodes. The plot shows the time to
reach a perfect matching of size 12 (red), an approximate matching of size 11 (a
0.92–approximate matching, in blue) and a matching of size 6 (a 1/2–approximate
matching, in green). Results for single games are reported. The x-axis shows the
indexes of the games sorted by increasing solving time, while the y-axis shows the
time in seconds. The right-most four games on the red plot did not converge to a
maximum matching and correspond to three instances of the “bad” graph Gn and
to one instance of the preferential attachment network.

rounds, where n refers to the number of nodes in the network (Theorem 16); and

for all graphs a (1− ε)-approximate maximum matching is reached in polynomially

many rounds with high probability (Theorem 17). We also show that there are

instances (called “bad” graphs) for which reaching a maximum matching requires

exponential time with high probability when starting from a set of configurations

(called “bad” matchings) which constitute almost all possible configurations (The-

orems 20 and 21). These results show that in the worst case there is an exponential

gap between reaching a good matching (i.e., an approximate maximum matching

whose cardinality is close to a maximum matching) versus the best (i.e., perfect)

matching. The experimental data shows (consistently with the theoretical analy-

sis) that human subjects always find a “good” matching quickly, while they can

take much longer to improve the solution to a maximum matching, see Figure 3.6.

In particular, on the bad graph, human subjects could not converge to a maximum

matching in the allotted time.

We point out that our simplified setup constitutes a simplification of the

54

richness and heterogeneity of the ties in real social networks, as the subjects have

no preference over each other, all the ties are equivalent, and interaction has no

cost. However, such a simplified model leads to a tractable analysis and to the

formulation of a general principle of collective behavior.

3.2 Related work

We refer the reader to Section 2.2 for work related to the experimental

study of human strategic behavior over networks.

Matching over networks has been extensively studied from both theoretical

and algorithmic points of view, since the work on marriage markets by Gale and

Shapley in the early sixties [GS62]. An exhaustive game-theoretic formulation

of one-to-one and many-to-one matching can be found in the book by Roth and

Sotomayor [RS92]. Recently, Hatfield and Kominers [HK10] proposed a centralized

algorithm for the general case of bilateral contracts in many-to-many markets.

Several studies have been devoted to the design of parallel and distributed

algorithms for matching. For the parallel setting, it is known that a perfect match-

ing can be found in polylogarithmic time on a PRAM [KUW86, MVV87]. As for

the distributed setting, Lotker et al. [LPSP08] proposed an algorithm that finds a

(1 − ε)-approximate matching in logarithmic time – improving upon the classical

result about distributed maximal matching by Israeli and Itai [II86] – but is not

suitable to model human strategies.

Another problem closely related to matchings is the assignment problem.

In the fifties, Kuhn [Kuh55] presented a centralized algorithm that solves it in

polynomial time, known as the Hungarian algorithm. Bertsekas et al. [BC91]

proposed parallel algorithms for network flow problems, of which the assignment

problem is a special case. Zavlanos et al. [ZSP08] extended the work in [BC91] by

superimposing a communication network over the assignment graph.

Our approach of modeling collective human behavior is related to Markov

chains over matchings. Sasaki and Hajek [SH88] analyzed a Metropolis-like al-

gorithm and proved that it is not guaranteed to find a maximum matching of a

55

general graph in polynomial time.

3.3 The matching games

The experiments included the interaction of the participants through a

computer interface, and were conducted in accordance with the ethical standards

specified in the 1964 declaration of Helsinki. Written consent was granted be-

fore participation in the experiments. Our institutional review boards approved

this study (UCSD IRB approval 111213SX, US Army Human Research Protection

Office ARO-HRPO Log A-17038).

Before formulating our algorithmic model, we conducted four sessions of ex-

periments, each with a different pool of sixteen undergraduate students connected

over a virtual network. Subsequently, to validate our model, we ran an additional

session of experiments with a pool of twenty four subjects on a set of networks that

included small world and preferential attachment networks. In each of the first four

sessions the subjects were asked to solve the matching game on a pool of over 70

networks. All networks admitted a perfect matching, namely a maximum match-

ing with no unmatched nodes. We considered networks classified into four groups:

bipartite networks admitting a unique perfect matching, bipartite networks admit-

ting multiple perfect matchings, non-bipartite networks admitting a unique perfect

matching, non-bipartite networks admitting multiple perfect matchings. Within

each group, networks were randomly generated. As a remark, a bipartite network

is a network whose nodes can be divided into two disjoint sets V1 and V2 such that

every edge connects a vertex in V1 to one in V2. If this property does not hold,

we say that the network is non-bipartite. Subjects sat in front of workstations

for the entire two-hour duration of the session and had no eye-contact with each

other. For each matching game, a network was chosen, subjects were randomly

assigned to its nodes, and each subject interacted with its neighbors by making or

accepting proposals to form matched pairs using the interface shown in Figure 3.1.

Each subject could control the node in the center of the screen and could only see

its neighbors and, among those, distinguish which of them were currently matched

56

(marked in dark green). A subject could make proposals or accept proposals by

selecting a neighbor with a mouse click, and could only have one outstanding pro-

posal at a time to form a matched pair (circled in yellow). While subjects knew

whether a neighbor is matched or unmatched, they did not have direct knowledge

of any outstanding requests to their neighbors other than their own. If two neigh-

bors selected each other, a pair was formed (a bright green link appeared between

them) which could be broken when one of the partners selected another neighbor.

As a remark, since a pair was formed when two subjects selected each other and

each subject could make a single selection at a time, each subject could be part of

a single pair at a time (with one of its neighbors).

If a perfect matching was found within the time limit of five minutes, the

game was declared solved and each participant was rewarded by $.50 or $1 de-

pending on the session, otherwise the game ended with no reward. The number of

games in an experimental session was not fixed, but games were run for the two-

hour duration of the session. Therefore, the number of games and the cumulative

reward in a session depended on the performance of the participants, providing an

additional incentive to coordinate.

The networks used in this first set of experiments can be divided into four

classes: bipartite, non bipartite, unique perfect matching, multiple perfect match-

ings. Two one-tailed Welch’s t-tests confirmed the hypotheses that it is harder

for humans to complete the matching game on non-bipartite than on bipartite

networks (p-value < 0.001); and that non-bipartite networks with unique perfect

matching are more difficult to solve than non-bipartite networks with multiple per-

fect matchings (p-value < 0.001). No statistically significant difference was found

between the completion time of bipartite networks with unique and with multiple

perfect matchings.

3.4 The algorithmic model

One of the main behavioral properties that emerged from the experimental

data is that matched players may break their current matching only if they have

57

Algorithm 3.1: Prudence algorithm for node u

if unmatched then

f(u)← UnmatchedChoose(u)

else if matched and ∃ neighbor v such that f(v) = u then

f(u)←MatchedChoose(u)

been requested by an unmatched neighbor. In particular, in 30% of the games

no player ever violated this rule at any time during the game. In the remaining

games, over 93% percent of the moves were in agreement with this rule. Therefore,

this property led to the following modeling assumption:

Assumption 13 (Prudence). A matched node does not break its current matched

pair if it does not receive any request from other neighbors.

Two remarks are in order. First, note that this behavioral rule is peculiar

to the matching problem since each player needs to choose a partner but also needs

to be chosen. Second, notice that a matched subject with unmatched neighbors

has some incentive to behave non-prudently and break the current match, because

the subject can infer from the status of its neighbors that the perfect matching is

not reached yet. However, experimental data shows that this rarely happens.

For each node u, let f(u) indicate u’s current preference. In other words,

f(u) is the unique node to which u has currently proposed to. f(u) will be null if

u does not have a current proposal. If two neighbors u and v currently prefer each

other (i.e., u = f(v) and v = f(u)), then consider them matched and the edge

e = {u, v} as part of the matching. Assume that each node knows if a neighbor is

matched or unmatched.

Given the prudence property, we model the algorithmic behavior of hu-

mans using the Prudence algorithm (see Algorithm 3.1). The algorithm is spec-

ified by the implementation of two functions, called MatchedChoose(u) and

UnmatchedChoose(u), which are placeholders for the behavior that node u

would follow depending on whether u is matched or unmatched. We consider a

synchronous setting, in which time is divided into rounds, and at the beginning of

each round each node observes its status and the status of its neighborhood and

58

then decides on an action to take.

In the following we provide a canonical implementation of the functions

UnmatchedChoose(u) and MatchedChoose(u) consistent with the prudence

property. UnmatchedChoose(u) does not change the current value of f(u) with

probability p, while with probability 1 − p accepts the proposal from a neighbor

uniformly at random from among the neighbors v with f(v) = u if any; if there

is no neighbor v with f(v) = u, then it proposes to a node uniformly at ran-

dom from among the unmatched neighbors if any; otherwise it proposes to a node

uniformly at random from among all the matched neighbors. In other words, un-

matched nodes prefer neighbors who requested them over other unmatched neigh-

bors, and unmatched neighbors over matched neighbors. As for matched nodes,

MatchedChoose(u) accepts a proposal from a neighbor uniformly at random

from among the neighbors v with f(v) = u (note that u’s current partner is one of

them). We remark that the simulations’ performance and the fit with the exper-

imental data was practically insensitive to the value of p chosen in the run of the

algorithm.

3.5 Analysis

In this section we present our analytical results regarding the convergence

behavior of the Prudence algorithm. In particular, our results describe how well

the algorithm performs in finding a large matching and the time it takes in terms

of the number of rounds required. Due to space constraints, we only present proof

sketches here. Complete details of the proofs are deferred to the SI.

We define a matching at round t as the set of matched edges at the beginning

of round t of the algorithm. We first claim that the prudence property implies that

the size of the matching does not decrease with time. The proof is immediate and

it is omitted.

Claim 14. The size of the matching at round t is non-decreasing as t increases.

We then observe that the behavior of the Prudence algorithm can be

described by a Markov chain over matchings. A transition from a matching M

59

to a matching M ′ is made by selecting an edge e = {u, v} such that at least one

among u and v is unmatched, and setting M ′ = M + e if u, v are both unmatched,

and M ′ = M + e − e′ if exactly one of u and v is matched in M and e′ is the

matching edge. This Markov chain is reversible when restricted to matchings of

the same size. Since the Markov chain is memory-less and has positive probability

of reaching a maximum matching, we conclude that the Prudence algorithm

enjoys self-stabilization.

Claim 15. The Prudence algorithm is a self-stabilizing algorithm.

Our first theorem says that a 1/2-approximate matching will be reached

quickly in networks with bounded degree.

Theorem 16. In any bounded-degree graph on n nodes, the expected number

of rounds for the Prudence algorithm to reach a 1/2-approximate matching is

O(log n).

The key idea of the proof is to show that, in expectation, the “distance” in

terms of number of matched pairs to the smallest maximal matching shrinks by a

constant factor in each round of the Prudence algorithm. Since it is well known

that any maximal matching is a 1/2-approximation of the maximum matching, the

result then follows.

Proof of Theorem 16. For ease of presentation, we assume p = 0, and remark that

this result holds for all choices of 0 ≤ p < 1. Let G be a graph of n nodes

and maximum degree ∆. Let m be the number of matched nodes in the smallest

maximal matching of G. For t ≥ 0, denote by Wt the set of nodes of G which are

unmatched and have at least an unmatched neighbor at the beginning of round t,

and let |Wt| be the cardinality of Wt. Also, let Mt be the matching of G obtained

by the Prudence algorithm at the beginning of round t and Nt be the number of

nodes matched by Mt. For t ≥ 0, define the random variable

Dt = m−Nt.

We devote the rest of the proof to showing that

E[Dt] ≤ (1− (∆ + 1)−3)tE[D0] (3.1)

60

The theorem then follows by the observations that E[D0] ≤ n and that any maxi-

mal matching is at least a 1/2-approximation of the maximum matching.

To prove (3.1), we will first show that E[Bt(Wt)|Wt] ≥ (∆+1)−3|Wt|, where

Bt(Wt) is the number of nodes in Wt that match with nodes in Wt during round t

(here the expectation is taken over the randomness of the algorithm during round

t). For u ∈ Wt, let Zt(u) be the indicator random variable that takes value 1 if

and only if u gets matched with a node in Wt during round t. By linearity of

expectation, we have that

E[Bt(Wt)|Wt] =
∑
u∈Wt

E[Zt(u)] =
∑
u∈Wt

Pr(Zt(u) = 1).

Let At be the set of nodes u ∈ Wt such that (i) u has no incoming or outgoing

request to nodes in Wt, and (ii) all neighbors v ∈ Wt of u have an incoming request.

Let Āt = Wt \ At. For u ∈ At, we have that Pr(Zt(u) = 1) = 0, as unmatched

nodes prefer neighbors who requested them over other unmatched neighbors. On

the other hand, for u ∈ Āt, we have Pr(Zt(u) = 1) ≥ ∆−2. To see this, note

that a pending request involving u (if any) will be honored with probability at

least ∆−2; if no such request exists, the co-occurrence of the event of u requesting

a neighbor with no incoming request and of that neighbor requesting u happens

with probability at least ∆−2. By definition of At, no two nodes in At can be

neighbors. Also, by definition of Wt, every node u ∈ Wt has at least one neighbor

in Wt. These two facts imply that |Āt| ≥ (∆ + 1)−1Wt. We can conclude that

E[Bt(Wt)|Wt] ≥ (∆ + 1)−3|Wt|.
We now relate Dt+1 to Bt(Wt). First, note that Dt+1 ≤ Dt − Bt(Wt). By

itself, this bound is not strong as Wt can be small. However, when Wt is small, the

current matching must be close to a maximal matching. Indeed, by considering the

union of Mt and any maximal matching of Wt, we have that m ≤ Nt + |Wt|. This

implies that Dt = m−Nt ≤ |Wt| and hence Dt+1 ≤ Dt−Bt(Wt) ≤ |Wt| −Bt(Wt).

Therefore, we have

Dt+1 ≤ Dt −Bt(Wt),

Dt+1 ≤ |Wt| −Bt(Wt).

61

By taking the expectations with respect to the randomness of the algorithm during

round t, we get

E[Dt+1|Wt, Dt] ≤ Dt − E[Bt(Wt)|Wt] ≤ Dt − (∆ + 1)−3|Wt|,

E[Dt+1|Wt, Dt] ≤ |Wt| − E[Bt(Wt)|Wt] ≤ |Wt| − (∆ + 1)−3|Wt|

= (1− (∆ + 1)−3)|Wt|.

Now, by taking the expectation with respect to the randomness of the algorithm

during rounds up to t, we obtain

E[Dt+1] ≤ E[Dt]− (∆ + 1)−3E[|Wt|],

E[Dt+1] ≤ (1− (∆ + 1)−3)E[|Wt|].

Letting dt = E[Dt], wt = E[|Wt|], and α = (∆ + 1)−3, the bounds above can be

rewritten as

dt+1 ≤ min {dt − αwt, (1− α)wt} .

To conclude the proof of (3.1), we show by induction that dt ≤ d0(1 − α)t. For

t = 0, as d0 ≤ w0, we have d1 ≤ d0 − αw0 ≤ (1 − α)w0. Now, let us consider any

t ≥ 1 and distinguish between the cases of wt ≤ d0(1 − α)t and wt > d0(1 − α)t.

If wt ≤ d0(1 − α)t, we have dt+1 ≤ (1 − α)wt ≤ d0(1 − α)t+1. Otherwise, if

wt > d0(1− α)t, using the induction hypothesis, we have that

dt+1 ≤ dt − αwt ≤ d0(1− α)t − αwt ≤ d0(1− α)t − d0α(1− α)t = d0(1− α)t+1,

which completes the proof.

We remark that the assumption of having bounded degrees is necessary

as there are unbounded degree graphs in which a polynomial number of rounds

is required with high probability to achieve a 1/2-approximation. However, in

this case, a polynomial number of rounds is also enough to achieve any constant

approximation: indeed, as the next theorem states, the Prudence algorithm pro-

vides a PTAS (polynomial time approximation scheme) for the maximum matching

problem. Given a graph G, ∆ denotes its maximum degree.

62

Theorem 17. For any graph G of n nodes, ε > 0 and c ≥ 1/2, the Prudence

algorithm reaches a (1−ε)-approximate matching in c
ε
n∆2/ε rounds with probability

at least 1− exp(−cε2n/2).

The theorem implies that, for any constant ε > 0, a matching whose size is

within a (1− ε) fraction of the size of the maximum matching is reached in poly-

nomial time. For bounded-degree graphs, this result also holds for ε = Ω(1/ log n),

implying that in this case a maximum matching can be reached in polynomial

time.

To prove the theorem, we track the progress of the algorithm towards an

approximate maximum matching, using the concept of an augmenting path. An

augmenting path is a path of odd length which alternates between matched and

unmatched edges and whose extreme edges are unmatched. It turns out that there

is a close connection between the size of a shortest augmenting path in a matching

and how close the matching size is to the size of a maximum matching. More

specifically, we use the following lemma due to Hopcroft and Karp [HK71].

Lemma 18. Consider any matching M that does not admit augmenting paths of

odd length k or smaller. Then, the size of M is at least a fraction k+1
k+3

of the size

of a maximum matching.

Hence, to prove Theorem 17, we need to show that short augmenting paths

(for a suitably chosen k) are solved in a short amount of time. It is useful to consider

a particle analogy to understand the process that eliminates short augmenting

paths. We consider each unmatched node as a particle. Particles move around

the graph from node to node as nodes change their status between matched and

unmatched states dictated by the random choices in the algorithm. There are

exactly two particles along an augmenting path, situated at the extreme nodes.

To understand how an augmenting path gets shorter and eventually vanishes, we

consider how the two particles move closer to each other along the path.

Let u0, u1, u2, · · · , u` denote a shortest augmenting path. If the extreme un-

matched node u0 proposes to u1 and u1 accepts the proposal breaking the current

match with u2, then the particle moves from u0 to u2. A similar argument applies

63

to the other end of the path. Also, the minimality of the path guarantees that the

internal nodes do not change their current matching as they have no unmatched

neighbor. It follows that the particles become closer to each other and the aug-

menting path gets shorter. Using this approach, we can prove that with suitable

probability the length of the shortest augmenting path shrinks after each round.

When an augmenting path becomes an edge (that is, a path of length one), and if

the extreme unmatched nodes select each other as partners, the particles and the

path vanish, yielding an increment to the size of the matching. Hence, a key step

of our proof is to lower bound the probability that an augmenting path of length

k vanishes, and then to apply Lemma 18 to relate the existing augmenting paths

and the matching size.

Proof of Theorem 17. For ease of presentation, we assume p = 0, and remark that

this result holds for all choices of 0 ≤ p < 1. Let G be a graph of n nodes,

maximum degree ∆, and maximum matching of size OPT. We will consider the

unmatched nodes as particles randomly moving on the nodes of the network as

per the algorithm choices. To see how the particle move, consider the particle

positioned at any unmatched node u. If u requests a matched neighbor v and v

accepts the requests, then the particle will move to v’s old partner (which is left

unmatched). If u requests an unmatched neighbor z and z accepts the request,

then both the particles at u and z will dissolve. Note that when two particles

dissolve the size of the matching increases by one.

An augmenting path is a path of odd length which alternates matched

and unmatched edges and whose extreme edges are unmatched. Observe that by

switching each unmatched edge of an augmenting path into a matched edge, and

viceversa, the size of the matching increases by one.

We split the rounds into epochs of b1/εc rounds each. We claim that if at

the beginning of any epoch the size of the matching is less than a (1 − ε)OPT,

then the size of the matching increases by at least one by the end of that epoch

with probability at least ∆−2/ε. To prove the claim, consider the first round of any

epoch and let u0, u1, . . . , u` be any shortest augmenting path at the beginning of

that round. It must be that ` < 2(ε−1 − 1), otherwise Lemma 1 would imply that

64

the size of the matching is at least a `+1
`+3
≥ 1 − ε fraction of OPT. For ` = 1, u0

and u1 will match with each other during the first round with probability at least

∆−2, hence the claim is true. For ` = 3, u0 and u3 will request respectively u1

and u2 with probability at least ∆−2 during the first round of the epoch, and these

requests will be accepted in the second round with probability at least ∆−2 —

hence, the size of the matching increases by one within 2 rounds with probability

at least ∆−4. Now consider 5 ≤ ` < 2(ε−1− 1). We have that two particles occupy

the nodes u0 and u` at the extremes of the augmenting path. With probability at

least ∆−2, u0 requests to match with u1 during the first round and u1 accepts in the

second round, making the corresponding particle move from u0 to u2. A similar

argument yields that the particle at u` moves to u`−2 within two rounds with

probability at least ∆−2. Moreover, as the augmenting path under consideration

is a shortest augmenting path, nodes u2, . . . , u`−2 have no unmatched neighbors

at the beginning of the first round and hence do not receive any matching request

during that round. Therefore, with probability at least ∆−4, at the end of the

second round the nodes u2 and u`−2 are unmatched whereas nodes u3, . . . , u`−3 did

not change their partner. That is, the length of the shortest path at the beginning

of the third round of the epoch is at most ` − 4 with probability at least ∆−4.

By means of the same argument, we can conclude that with probability at least

(∆−4)`/4 > ∆−2/ε, all nodes in an augmenting path are matched within `/2 ≤ b1/εc
rounds, which proves the claim.

For any epoch i, we now associate a binary random variable Xi which

takes on value 1 with probability p = ∆−2/ε. The claim guarantees that the

size of the matching after T epochs is at least min{(1 − ε)OPT,
∑T

i=1Xi}. Also,

as successive rounds of the algorithm are independent, the Xi’s are independent

random variables. For any 0 < δ ≤ 1, the Chernoff bound states that

Pr

[
T∑
i=1

Xi < (1− δ)Tp

]
< exp(−Tpδ2/2).

For any c ≥ 1/2, by setting T := cn∆−2/ε and δ := ε, the above yields that

the size of the matching after T epochs (i.e., after T b1/εc ≤ c
ε
n∆2/ε rounds)

is at least min{(1 − ε)OPT, (1 − ε)cn} = (1 − ε)OPT with probability at least

65

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

Figure 3.7: The bad graph. The “bad” graph Gn for n = 3. One of the “bad”
matchings of Theorem 20 is highlighted in red.

1− exp(−cε2n/2).

We remark that the random process governing the movement of the particles

in the network is not a classical random walk over the nodes of the graph. Indeed,

if that were the case, a maximum matching would always be reached in polynomial

time by a simple cat-and-mouse argument. Instead, a random move of a particle

depends on the current matching, which in turn changes when the particle moves.

This modest difference can lead to an exponential time gap between convergence

to an approximate matching and convergence to a maximum matching. Indeed,

exploiting the dependence of the particles’ movements on the current matching,

we show that there is a family of graphs for which the Prudence algorithm takes

exponentially many rounds with high probability to reach a maximum matching

starting from a set of configurations that cover almost all possible cases. This

family of “bad” graphs is defined as follows (see also Figure 3.7).

Definition 19 (Bad graph Gn). The bipartite graph Gn = (A∪B,E) has 4n nodes

A = {a1, . . . , a2n} and B = {b1, . . . , b2n}, and its edges are (an+1, bn), (ai, bj) for

all 1 ≤ i ≤ n and 1 ≤ j ≤ i, and (ai, bj) for all n+ 1 ≤ i ≤ 2n and n+ 1 ≤ j ≤ i.

Note that the set of “horizontal” edges (ai, bi), for 1 ≤ i ≤ 2n is the unique

perfect matching for Gn.

66

Theorem 20. The Prudence algorithm requires 2Ω(n/ log2 n) many rounds with

high probability to reach the perfect matching when starting from any (2n − 1)-

matching in which the two unmatched nodes are in opposite sides of Gn.

The main idea of the proof is to track the positions of the unmatched nodes

throughout the course of the algorithm and to lower bound the number of rounds

needed before they meet as an adjacent pair.

We first prove a one-to-one correspondence between the Markov process

of the state evolution between matchings and a classical random walk on a tree

(represented in Figure 3.8) whose size is exponential in n. We show that this

classical random walk takes exponential time to reach the root of the tree starting

at any one of its nodes, thus providing a lower bound on the convergence time of

the Prudence algorithm.

We say that a matching M of Gn of size 2n − 1 is bad if the Prudence

algorithm requires exponentially many rounds with high probability to converge to

the perfect matching when starting from M . Observe that all matchings considered

by Theorem 20 are bad. The following theorem states that almost all matchings

of size 2n− 1 are bad.

Theorem 21. The ratio between the number of “bad” matchings and the number

of all (2n− 1)-matchings of Gn is 1−O(2−n).

Theorems 20 and 21 show that the Prudence algorithm requires exponen-

tially many rounds to converge to the perfect matching of Gn when starting from

a set of configurations (the bad matchings) constituting almost all possible cases

(the matchings of size 2n− 1).

3.6 Prediction and validation of the model

Figure 3.3 compares the performance of the human subjects (red) with that

of simulations (blue) on a set of 16-node networks (8 bipartite networks and 8 non-

bipartite networks) with unique perfect matchings. The networks are sorted by

increasing average completion time, and as a result bipartite networks are labeled

67

from 1 to 8, while non-bipartite networks are labeled from 9 to 16. Each of these

networks was tested at least 6 times over all sessions. The vertical axis represents

the time (in seconds), and the numerical values of the convergence time of the

algorithm are scaled by a constant factor to best match the experimental data.

In an additional experimental session, we tested twenty four subjects con-

nected over small-world, preferential attachment and ring networks as well as over

the “bad” graph Gn. The games on the bad graph were never solved, consistent

with the prediction of exponentially slow convergence. Furthermore, we found

that preferential attachment networks were more difficult to solve than small-world

networks (one-tailed Welch’s t-test, p-value < 0.01). Figure 3.4 shows the affinity

between humans’ (red) and algorithm’s (blue) performance, on this set of 24-node

networks: small-world networks (triangles), ring network (diamonds), preferential

attachment networks (circles). The x-axis shows the indices of the networks sorted

by increasing average time to find the perfect matching, and the y-axis shows the

average time.

Figure 3.5 shows, by simulation, that the algorithm scales linearly in the

size of the network in the case of small-world networks [WS98], while it scales poly-

nomially for preferential attachment networks [BA99, BRST01], and exponentially

on the “bad” graph Gn. These results closely resemble the experimental data of

the coloring games performed by Kearns et al. [KSM06], where preferential attach-

ment networks resulted in the worst performance among all tested networks, while

small-worlds networks appeared to be much easier to solve.

Figure 3.6 shows the performance of the experimental subjects on networks

of 24 nodes, each admitting a perfect matching. In particular, it reports results for

single games, and it compares the time to reach a perfect matching of size 12 (red),

an approximate matching of size 11 (a 0.92-approximate matching, in blue) and

a matching of size 6 (a 1/2-approximate matching, in green) in each game. The

x-axis shows the indexes of the games sorted by increasing solution time, while

the y-axis shows time in seconds. The plot shows (consistent with the theoretical

analysis) that a 1/2-approximate matching is reached almost immediately in all

games, an almost maximum matching is reached quickly, while reaching a perfect

68

matching can take a large amount of time.

3.7 Conclusions

While it is challenging to characterize the strategies used by humans in

performing even simple social tasks, as they may depend on diverse individual

cognitive and psychological attitudes, we argue that it is possible to isolate sim-

ple behavioral invariants of individual behavior, which are useful for algorithmic

modeling, analysis and prediction of collective dynamics of coordination.

To illustrate our approach, we have focused on a simple matching game over

networks and presented a combination of theoretical, experimental, and simulation

results. From the experiments, we identified the prudence property as a common

behavioral invariant of human subjects when they coordinate to find a maximum

matching. We proposed an algorithm as model of human behavior and showed

that it can successfully predict dynamics of coordination.

We have shown that our approach is able to uncover basic behavioral prop-

erties that may not be apparent from off-line surveys. Indeed, when subjects were

asked to report on their strategies in post-experimental surveys, we obtained a

list of diverse strategies, including: choose a partner and never disengage from it,

always accept proposals from neighbors, try to change partner if the game is not

solved for a while. Moreover, our results demonstrate that algorithmic modeling

and the mathematical analysis of algorithms can be useful in systematically pre-

dicting the aggregate behavior and in deriving results that hold for any graph, or

for a large family of graphs. This general conclusions cannot be derived rigorously

form experimental observations and computer simulations.

Our work suggests further research in several directions. A natural question

is whether non-prudent behavior by a subset of the nodes can help. In a preliminary

investigation, we have evaluated the performance of a variant of our algorithm

where a subset of nodes behave non-prudently with a positive probability. In

our simulations, these populations do not offer significant improvement in terms

of finding a maximum matching. Furthermore, populations entirely composed of

69

non-prudent nodes seem to perform poorly. In other words, a group of aggressive

and risk-taking individuals might not achieve coordination easily.

Our Prudence algorithm is memoryless. It is an interesting question as

to what extent human subjects use memory in distributed games, and how mem-

ory could be incorporated in modeling human strategies. In an initial attempt to

study this, we implemented a variant of the Prudence algorithm in which a node

remembers its recent history and gives less preference to neighbors who recently

rejected it. In simulations on preferential attachment and small world networks,

memory did not result in significant improvement over the memoryless case. Fur-

thermore, simulations show that making decisions based on events in a distant past

(that is, tracking events that happened in a distant past) might hurt performance.

A careful investigation of the role of memory in human strategies in distributed

games is of fundamental interest.

Regarding the incentives, in our matching games each subject obtains the

same reward when a maximum matching is reached, regardless of the chosen part-

ner. How does the introduction of preferences affect the overall coordination?

Preferences could be “enforced” for example by rewarding subjects based on the

partners they match with. There is likely to be a trade-off between the collective

task of finding a maximum matching and the individual profit maximization.

As a final remark, the proposed Prudence algorithm constitutes a possible

reasonable explanation of human coordination behavior in the distributed match-

ing game. Apart from the simple variations mentioned above, we did not test how

well other alternative algorithmic models could fit the experimental data.

3.8 Appendix: analysis for Theorems 20–21

We say that the nodes {ai : 1 ≤ i ≤ n} ∪ {bi : 1 ≤ i ≤ n} constitute the

upper half of Gn, and the remaining ones constitute the lower half of Gn. Let

M =M1 ∪M2 be the set of all matchings of Gn of size 2n− 1, where M1 is the

set of matchings of size 2n− 1 in which the two unmatched nodes are in opposite

halves of Gn, and M2 =M\M1 are the remaining ones.

70

6

5

3

21

1

4

21

1

3

21

1

2

1

1

Figure 3.8: Tree T ∗n . Tree T ∗n with labels, for n = 6. This is used in the proof of
Theorem 20.

Our goal is to show that the Prudence algorithm requires 2Ω(n/ log2 n)

rounds with high probability to reach the perfect matching of Gn when start-

ing from any matching inM1. We first prove certain properties for the matchings

inM1. We then establish a correspondence between the Markov chain over match-

ings induced by the Prudence algorithm and a classical random walk on the tree

T ∗n . In particular, we show that the hitting time of the root of T ∗n is a lower bound

on the number of rounds to reach the perfect matching of Gn.

3.8.1 Properties of matchings in M1.

We begin by characterizing the matchings in M1.

Lemma 22. Consider any matching M ∈ M1, and let ak, b` be the unmatched

nodes in the upper and lower half of Gn, respectively. Then, the following properties

hold:

1. For all i < k and i > `, the matching M contains the edges (ai, bi).

2. If k < n, M contains the edge (an, bj) for some 1 ≤ j < n. Similarly, if

` > n+ 1, M contains the edge (ai, bn+1) for some n+ 1 < i ≤ 2n. That is,

the nodes an and bn+1 can be matched only through non-horizontal edges.

71

3. If in its upper half M contains a pair of edges (ai1 , bj1), (ai2 , bj2) with i1 6= j1,

i2 6= j2, and 1 ≤ i1 < i2 ≤ n, then 1 ≤ k ≤ j1 < i1 ≤ j2 < i2 ≤ n. Similarly,

if in its lower half M contains a pair of edges (ai1 , bj1), (ai2 , bj2) with i1 6= j1,

i2 6= j2, and n+ 1 ≤ j1 < j2 ≤ 2n, then n+ 1 ≤ j1 < i1 ≤ j2 < i2 ≤ ` ≤ 2n.

That is, non-horizontal matching edges do not cross.

Proof. To prove the first property, we show that (ai, bi) ∈M for all i < k (the claim

for i > ` can be proven in the same way). We show by induction on 1 ≤ j ≤ k− 1

that (ai, bi) ∈ M for all i ≤ j. For j = 1, we have that a1 must be matched to b1

(its only neighbor), and therefore the claim holds true. Suppose the claim holds

true for some j < k − 1. By the inductive assumption we have that (ai, bi) ∈ M
for all i ≤ j. As (aj+1, bi) ∈ E if and only if i ≤ j + 1, aj+1 must be matched to

bj+1, and therefore the claim holds for j + 1.

The second property follows by observing that M ∈ M1 implies that the

bridge edge (an+1, bn) is in M , and therefore an cannot be matched to bn, and

an+1 cannot be matched to bn+1 in M . To see this, suppose by contradiction

that (an+1, bn) /∈ M . Then, bn must be matched to an (its only neighbor be-

sides an+1), and a node in {a1, . . . , an−1} is unmatched. Then, each of the n − 1

nodes in {b1, . . . , bn+1} must be matched with one of the n − 2 matched nodes in

{a1, . . . , an−1}, generating a contradiction. This implies that (an+1, bn) ∈M .

To prove the third property, assume that, in its upper half, M contains

edges (ai1 , bj1), (ai2 , bj2) with i1 6= j1, i2 6= j2, and 1 ≤ i1 < i2 ≤ n. Then, it must

be that j1 < i1 and j2 < i2. Moreover, Property 1 implies that k ≤ j1. Therefore,

it only remains to show that i1 ≤ j2. Suppose by contradiction that i1 > j2. As

i1 > j1 ≥ k and j1 6= j2, it must be that i1 ≥ k + 2. As bj2 is matched to ai2 and

i2 > i1, we have that each of the i1−k ≥ 2 nodes in {ak+1, . . . , ai1}must be matched

to one of the i1 − k − 1 nodes in {bk, . . . , bi1−1}\{bj2}, generating a contradiction.

This implies that i1 ≤ j2 and therefore 1 ≤ k ≤ j1 < i1 ≤ j2 < i2 ≤ n. The claim

in Property 3 regarding the lower half of M is similarly proved.

It follows from Lemma 22 that a matching M ∈M1 can be uniquely recon-

structed by specifying the two unmatched nodes and the nodes in {a1, . . . , an} ∪
{bn+1, . . . , b2n} whose matching edges are non-horizontal. To see this, consider the

72

upper half of Gn: assume aj0 6= an is the unmatched node and S = {j1, . . . , jm},
with 1 ≤ j0 < j1 < j2 < . . . < jm = n, is the set of indexes of the left nodes

whose matching edges are non-horizontal. (Note that n ∈ S by Lemma 22.) Then,

j0 < j1 and (ai, bi) ∈ M for all i such that i /∈ S ∪ {j0} and 1 ≤ i ≤ n. Hence,

it necessarily holds that (aji , bji−1
) ∈ M for all 1 ≤ i ≤ m. This completes the

construction of the matching in the upper half of Gn. A similar argument can be

applied to the lower half. These two arguments imply the following lemma.

Lemma 23. There exists a bijection ψ between matchings in M1 and elements of

P × P ′, where

P =
{

(x, S) : x ∈ {1, . . . , n− 1}, {n} ⊆ S ⊆ {x+ 1, . . . , n}
}
∪ {(n, ∅)},

P ′ =
{

(y, S ′) : y ∈ {n+ 1, . . . , 2n}, {n+ 1} ⊆ S ′ ⊆ {n+ 1, . . . , y − 1}
}

∪ {(n+ 1, ∅)}.

3.8.2 The tree T ∗n .

Definition 24. Let T1 be a labelled rooted tree with a singleton node with label

1. Inductively, for 2 ≤ i ≤ n − 1, let Ti be the labelled rooted tree whose root is

labelled with i and its children are T1, . . . , Ti−1. We define T ∗n to be the tree with

an unlabelled root whose only child is Tn (also see Figure S1). Let r∗ denote the

root of T ∗n .

We show that the hitting time of r∗ when starting at any node u 6= r∗ is

exponential with high probability. For a node 6= r∗, we call the edge that connects

u to its parent u’s exit edge. For any subtree Ti ⊂ T ∗n , let Zi be the random variable

denoting the number of steps that it takes for a walk starting at the root of Ti to

“exit” Ti. The following lemma provides an exponential lower bound on Zi.

Lemma 25. There exist positive constants α, γ > 0 such that, for all i ≥ 2,

Pr[Zi ≥ γ · 2i/(α log2 i)] ≥ 1− 1

log i
.

Proof. We proceed by induction on i. For convenience, define g(i) = α log2 i and

f(i) = γ · 2i/g(i) for some α, γ > 0. For any constant α > 0, there exists a small

73

enough constant γ > 0 such that f(i) ≤ 1; therefore, as Zi ≥ 1 with probability 1,

the claim holds trivially for any i ≤ i∗, where i∗ is a suitable large constant.

Now consider any i ≥ i∗ and suppose the claim holds up to i − 1. Every

time the walk is on the root of Ti, it exits Ti with probability 1/i. Therefore,

letting Et be the event that the first t times the walk is on the root of Ti it does

not exit Ti, we have Pr[Et] ≥ 1− t/i. Let t = i/(2 log i), and let Dj, 1 ≤ j ≤ t, be

the event that, when it is on the root of Ti for the j-th time, the walk moves to

the root of one of the subtrees Ti−g(i), . . . , Ti−1 and takes at least f(i− g(i)) steps

to exit that subtree. For 1 ≤ j ≤ t, we have

Pr[Dj | Et] ≥
g(i)

i
· Pr[Zi−g(i) ≥ f(i− g(i))]

≥ g(i)

i
·
(

1− 1

log(i− g(i))

)
,

by the induction hypothesis on Zi−g(i). Letting χj be the indicator function of the

event Dj for 1 ≤ j ≤ t, the probability that at least two of the events Dj happen,

given Et, is lower bounded by:

Pr

[
t∑

j=1

χj ≥ 2

∣∣∣∣∣ Et
]
≥ Pr

 t/2∑
j=1

χj ≥ 1,
t∑

j=t/2+1

χj ≥ 1

∣∣∣∣∣ Et


= Pr

 t/2∑
j=1

χj ≥ 1

∣∣∣∣∣ Et
2

.

By union bound, we can write

Pr

 t/2∑
j=1

χj ≥ 1

∣∣∣∣∣ Et
 ≥ 1−

t/2∏
i=1

(1− Pr[Dj|Et])

≥ 1−
(

1− g(i)

i

(
1− 1

log(i− g(i))

))t/2
≥ 1− exp

[
−α log i

4

(
1− 1

log(i− g(i))

)]
≥ 1− 1

iα/8
,

where the last step holds for i sufficiently large so that log(i − g(i)) ≥ 2. This

74

implies that

Pr

[
t∑

j=1

χj ≥ 2

∣∣∣∣∣ Et
]
≥
(

1− 1

iα/8

)2

≥ 1− 2

iα/8
.

Therefore, we conclude that

Pr[Zi ≥ 2 · f(i− g(i))] ≥ Pr

[
t∑

j=1

χj ≥ 2

]

≥ Pr

[
t∑

j=1

χj ≥ 2

∣∣∣∣∣ Et
]

Pr[Et]

≥
(

1− 2

iα/8

)(
1− t

i

)
≥ 1− 1

log i
,

where the last step holds by choosing α sufficiently large. The claim now follows

since 2 · f(i− g(i)) ≥ f(i).

Note that any random walk starting at any node u 6= r∗ has to exit Tn

before hitting r∗. Therefore, an application of Lemma 25 to Tn yields a lower

bound to the hitting time of r∗ when starting at any node u 6= r∗.

Corollary 26. The hitting time of r∗ of a random walk starting at any node u 6= r∗

is 2Ω(n/ log2 n) with high probability.

3.8.3 Proof of Theorem 20

For t ≥ 0, letM(t) be the matching at the beginning of round t and assume

M(0) ∈ M1. To analyze the convergence to a perfect matching, we will consider

on the event that M(t) /∈ M1. Note that in order for this event to happen, the

bridge edge (an+1, bn) of Gn will have to swap out of the matching. Let E(t) be

the event that an requests bn during round t. Similarly, let E ′(t) be the event that

bn+1 requests an+1 during round t. Define the random variables

τn = min{t : E(t) happens},

τ ′n = min{t : E ′(t) happens},

τ ∗n = min{τn, τ ′n}.

75

Then τ ∗n is a lower bound on the number of rounds to reach the perfect matching.

Lemma 27 below states that, for some c > 0,

Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n

]
= o(1) and Pr

[
τ ′n ≤ 2cn/ log2 n

∣∣∣ τ ′n ≤ τn

]
= o(1).

Then the main theorem follows as

Pr
[
τ ∗n ≤ 2cn/ log2 n

]
= Pr

[
τ ∗n ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n

]
Pr [τn ≤ τ ′n]

+ Pr
[
τ ∗n ≤ 2cn/ log2 n

∣∣∣ τ ′n < τn

]
Pr [τ ′n < τn]

= Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n

]
Pr [τn ≤ τ ′n]

+ Pr
[
τ ′n ≤ 2cn/ log2 n

∣∣∣ τ ′n < τn

]
Pr [τ ′n < τn]

= o(1).

Lemma 27.

Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ ′n

]
= o(1) and Pr

[
τ ′n ≤ 2cn/ log2 n

∣∣∣ τ ′n ≤ τn

]
= o(1).

Proof. We will prove the first bound. The second one follows by symmetry. Condi-

tioning on the event that τn ≤ τ ′n, we will analyze the matching in the upper half of

Gn induced byM(t). Since τn ≤ τ ′n,M(t) ∈M1 as long as E(t) does not happen.

By Lemma 23, it is equivalent to study the Markov process {(X(t),S(t)), t ≥ 0}
over P ∪ {(⊥, ∅)}, where (X(t),S(t)) is defined as the first marginal of ψ(M(t)),

and the additional state (⊥, ∅) is reached when the event E(t) happens. That is,

conditioning on the event τn ≤ τ ′n, it follows that

τn = min{t : (X(t),S(t)) = (⊥, ∅)}. (3.2)

If τn ≤ τ ′n and (X(t),S(t)) 6= (⊥, ∅), all the neighbors of the unmatched

node in the upper half of Gn are matched at the beginning of round t, and hence

are equally likely to be requested during round t. Therefore, the Markov process

(X(t),S(t)) has the following transition probabilities.

Pr
[
(X(t+ 1),S(t+ 1)) = (x′, S ′)

∣∣∣ (X(t),S(t)) = (x, S) 6= (⊥, ∅), τn ≤ τ ′n

]
=

1

x
,

76

for any

(x′, S ′) ∈


{

(x′′, S ∪ x) : x′′ < x} ∪
{

(min(S), S\min(S))
}
, if x < n, S 6= ∅

{
(x′′, S ∪ x) : x′′ < x} ∪

{
(⊥, ∅)

}
, if x = n, S = ∅

The case (x′, S ′) ∈ {(x′′, S ∪ x) : x′′ < x} represents the scenario in which the

unmatched node ax requests a node through a non-horizontal edge: in this case,

no progress is made as the unmatched node in the next round will be further away

from an. If the unmatched node ax requests the node on its horizontal edge, the

next unmatched node will be closer to an. In the special case (x, S) = (n, ∅), if

the unmatched node requests the neighbor on its horizontal edge, then the bridge

edge is swapped out of the matching and M(t+ 1) /∈M1.

We will now show that the Markov chain {(X(t),S(t)), t ≥ 0} is equivalent

to the random walk on T ∗n . For a node v of T ∗n , let xv be its label and Sv be the

set of labels of its ancestors. Define the function φ from nodes of T ∗n to states of

the chain as follows:

φ(v) =

{
(⊥, ∅), v = r∗

(xv, Sv), v 6= r∗

It is easy to verify that φ is a bijection. Two nodes u and v are adjacent in T ∗n if

and only if there is a nonzero transition probability between the states φ(u) and

φ(v). To see this, suppose there is a nonzero transition probability from (xu, Su)

to (xv, Sv) in the Markov chain. Let u = φ−1(xu, Su) and v = φ−1(xv, Sv) be the

corresponding nodes in T ∗n . There are two cases: (a) if xv < xu then Sv = Su ∪ xu,
and v is a child of u; (b) if xv > xu then xv = min(Su), Sv = Su\min(Su), and v

is the parent of u. The other direction is analogous. Therefore, conditioning on

τn ≤ τ ′n and (X(0),S(0)) 6= (⊥, ∅), we can conclude that min{t : (X(t),S(t)) =

(⊥, ∅)} equals the hitting time of r∗ for a random walk on T ∗n starting at the node

φ−1(X(0),S(0)) 6= r∗. The lemma follows by equation (3.2) and Corollary 26.

3.8.4 Proof of Theorem 21

As in the proof of Theorem 20, we let M = M1 ∪M2 be the set of all

matchings of Gn of size 2n− 1, whereM1 andM2 contain all matchings in which

77

the two unmatched nodes are in opposite sides of Gn and in the same side of Gn,

respectively. By Theorem 20 we know that starting from any matching in M1

requires exponentially many steps to reach the perfect matching of Gn with high

probability. We will show that these matchings substantially make up for the whole

M. Indeed, we prove that

|M1| = 22n−2, and |M2| = 2n+1 − 2.

To compute the size of M1, using Corollary 23 we have that

|M1| =

(
1 +

n−1∑
i=1

2n−i−1

)2

=

(
1 +

n−2∑
j=0

2j

)2

=
(
1 + (2n−1 − 1)

)2
= 22n−2.

To compute the size of M2, let M′
2 contain the matchings of M2 in which the

two unmatched nodes are in the upper half of Gn. Observe that by symmetry

|M2| = 2 · |M′
2|. To determine the size of M′

2, note first that every matching in

M′
2 is such that the nodes in the lower half of Gn are matched through parallel

edges, i.e. aj is matched with bj for every n + 1 ≤ j ≤ 2n. Now consider all

matchings in M′
2 where ak, b` are the two unmatched nodes, and observe that it

must be that 1 ≤ k ≤ ` ≤ n (if not, we would have at least another unmatched

node at with t < `). Also, note that for every 1 ≤ j ≤ k−1 and every `+1 ≤ j ≤ n,

it must be that aj is matched with bj. Hence, for k = `, there is a single matching.

For k < `, we show that the remaining nodes can be matched in 2`−k−1 ways. To

prove this, first observe that ak+1 can be matched to either bk+1 or bk. Then, given

the choice for ak+1, ak+2 can be matched to either bk+2 or the node in {bk+1, bk}
which is not matched to ak+1. Similarly, for i + 1 ≤ j ≤ ` − 1, there are two

possible choices for aj given the choice for {ak+1, . . . , aj−1}. Finally, given the

choices for {ak+1, . . . , a`−1} there is only one possible match for a`, thus obtaining

78

2`−k−1 matchings with ak, b` unmatched, 1 ≤ k < ` ≤ n. We can conclude that

|M′
2| =

n∑
k=1

(
1 +

n∑
`=k+1

2`−k−1

)

= n+
n−1∑
k=1

2−k
n∑

`=k+1

2`−1

= n+
n−1∑
k=1

2−k(2n − 2k)

= 1 +
n−1∑
k=1

2n−k

= 1 + (2n − 2) = 2n − 1.

Chapter 3, in full, is a reprint of the paper “Human matching behavior in

social networks: an algorithmic perspective” co-authored with Lorenzo Coviello,

Massimo Franceschetti, Mathew D. McCubbins and Ramamohan Paturi, published

in PLoS ONE, Volume 7, Number 8, August 2012 [CFM+12]. The dissertation

author and Lorenzo Coviello were the primary investigators and authors of this

paper.

Chapter 4

Finding Red Balloons

A challenging class of crowdsourcing problems requires an interested party

to provide incentives for large groups of people to contribute to the search and

retrieval of rare information [Sur04, LRSH11, Han10]. The small world problem,

i.e. distributed routing of messages to unknown individuals, is the seminal example

of this class and has illustrated the difficulty of the approach for almost 50 years

[Mil67, TM69, Sch09, DMW03, WDN02]. In this class of problems, individuals in

the social network act as intermediaries to create a channel between the querier and

the answer. Observe that the chief difficulty of this approach is to offer incentives to

the individuals to propagate the query further in the network as well as to return

the answer all the way back to the querier [DMW03]. The goal is therefore to

incentivize participation of the users using some form of (possibly financial) reward.

In this way, a node who does not know the answer but is offered a sufficiently high

reward can act as intermediary and propagate the query by offering the neighbors

a share of its reward. This setting models the social network as a marketplace

of information where the users strategically act in order to maximize their utility,

and raises several questions about the system’s performance and the incentive

propagation, the main one being: can we retrieve the answer to a difficult query

when given a limited budget?

The Defense Advanced Research Projects Agency (DARPA), a research or-

ganization of the United States Department of Defense, designed a so called “Net-

79

80

work Challenge” that conveyed a positive answer to this question.1 The challenge

consisted of locating ten moored red weather balloons placed at ten undisclosed lo-

cations in the continental United States. A single $40,000 cash prize was allocated

for the first participant to submit the correct latitude and longitude (within one

mile error) of all ten balloons within the contest period. In particular, the com-

petition consisted in recruiting a team to achieve the goal. This task posed varied

issues of large-scale, time-critical mobilization. In particular, in order to guaran-

tee the participation and coordination of a large team, an adequate structure of

economic incentives had to be built.

The MIT Media Laboratory team won the competition in less than 9 hours,

adopting a recruitment scheme based on recursive incentives.2 Specifically, using

the $40,000 they could possibly win, they allocated an amount of $4,000 for finding

each balloon. For each balloon, they would distribute the $4,000 up the chain of

participants leading to successful balloon spotting, as described in their website:

“[In the case we win the competition,] we’re giving $2,000 per balloon to the first

person to send us the correct coordinates, but that’s not all – we’re also giving

$1000 to the person who invited them. Then we’re giving $500 whoever invited the

inviter, and $250 to whoever invited them, and so on...”. This is equivalent to say

that a node u who does not have the desired answer, can offer its friends a 1/2-split

contract, stipulating that if the answer is found in the subtree of a child v of u,

then u will get back from v a 1/2 fraction of whatever amount v gets. However, if

u is not the querier, the total amount pocketed by u is less, as u has to give a 1/2

fraction of its reward to its recruiter.

While the success of this strategy has been hailed as an empirical testi-

mony to the power of incentive structures [TCG+11], the theoretical efficiency of

the proven scheme has remained an open question, and motivates this work. In

particular, we analyze this economic structure in the model for query incentive

networks introduced By Kleinberg and Raghavan in [KR05]. This model considers

a competitive environment where every node plays strategically. To fit the split

contracts to this model, we generalize the splits to any fraction 0 < ρ < 1, in

1https://networkchallenge.darpa.mil/
2http://balloon.media.mit.edu/

https://networkchallenge.darpa.mil/
http://balloon.media.mit.edu/

81

the sense that any node u can offer a child v a ρ-split contract stipulating the

following: if v has the answer, then v would pocket a (1− ρ) of the whole reward

while returning a fraction ρ to u; if v does not have the answer, then v can in turn

offer some ρ′-split to its (still unrecruited) friends, and so on. Given the strategic

setting, nodes will choose the splits to offer to their children so to maximize their

expected payoffs; observe that contracts between different nodes can have different

splits — and this is indeed the case in the Nash equilibrium as our results show.

The details of the original model introduced in [KR05] follow.

4.1 The query incentive network model

The scenario of interest is that of a node, the root, that is willing to invest

some amount r∗ to retrieve certain information from a large network in which every

node plays strategically. The main goal is to characterize the tradeoff between the

investment and the rarity of the information. The model, introduced by Kleinberg

and Raghavan [KR05], is as follows: the querier node is the root of an infinite

d-ary tree, where each node possesses independently the desired information with

probability 1/n, where n represents the rarity of the answer. The root offers each

child u a “fixed-payment” contract of r∗, stipulating that the root will pay u that

amount upon u providing the answer. The query propagates down the tree ac-

cording to the following scheme: every node u has an integer-valued function fu

encoding its strategies; if u is offered a reward of r by its parent and does not

possess the answer, then in turn it offers a reward of 1 ≤ fu(r) ≤ r − 1 to its

children. When the answer to the query is found, the root selects for payment one

among the answer-holders using a fixed non-strategic rule. The payment is then

propagated down through the path to that selected node, with each node along the

path pocketing its share. If an intermediate node u on this path was offered r by

its parent, then its overall payoff is r− fu(r)− 1, where the unit cost is associated

with the act of returning the answer3. The game-theoretical aspect of the model is

3As observed in [KR05], if nodes placed no value on this answering effort then the root could
simply invest an arbitrarily small reward ε > 0, and it would retrieve an answer because each
node would have a positive payoff from participating in the game and returning the answer. To

82

that any node u chooses the function fu so to maximize its payoff. To break ties,

it is assumed that a node who is offered a reward of one (and does not possess the

answer) will always forward the query to its children, even if its expected payoff

is zero (since the unit reward would be spent when returning the answer up to its

parent).

As pointed out in [KR05], there is a subtle deficiency with a deterministic

tree: the Nash equilibria of a game played in a deterministic network tacitly assume

that the nodes know the entire network. Indeed, in a Nash equilibrium, each node

chooses its best strategy by knowing the strategies of every other node. However,

this is unrealistic, as we want to model a setting where nodes are only aware

of their neighbors. To deal with this technical issue, Kleinberg and Raghavan

consider a network that can be thought as a branching process from the root. In

particular, the number of children of each node is chosen independently from a

binomial distribution Bin(d, q), where q is a constant probability of a node being

present. The expected number of children of a node — i.e., the branching factor —

is then b = qd. By classical results in the theory of branching processes, if b < 1 the

process dies out almost surely; therefore there is no amount that the root can offer

to obtain an answer with constant probability if the rarity n of the answer is large

enough. Instead, for any b > 1, there is a constant non-zero probability that the

process will generate infinitely many nodes, so that the answer is present within

the first O(log n) levels of the tree with high probability. Nevertheless, Kleinberg

and Raghavan show that in the Nash equilibrium the investment needed at the

root can be much larger than logarithmic in n. Specifically, while an investment

r∗ = O(log n) is sufficient to retrieve the answer with constant probability for

b > 2, an investment of r∗ = nΘ(1) is needed when 1 < b < 2. That is, in the latter

case the root must invest a reward that is exponentially larger than the expected

distance from the closest answer.

Arcaute et al. [AKK+07] generalized the work in [KR05] showing that this

avoid this situation, a unit price is placed on the effort of returning the answer, while the cost
of participating to the game is zero. This is motivated by the fact that the cost of forwarding
requests to a list of friends is typically considered negligible in peer-to-peer and social-network
systems [KSS97, YS03, ZA04] (see [KR05] for additional details on the motivations).

83

 0

 100

 200

 300

 400

 500

 600

 700

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Figure 4.1: Investment as a function of the rarity n for b = 1.95 with split-
contracts (in red triangles and circles, for ε = 0.2 and ε = 0.05, respectively)
and with fixed-payment contracts (in blue triangles and circles, for ε = 0.2 and
ε = 0.05, respectively).

threshold behavior at b = 2 still holds for arbitrary Galton-Watson branching

process. They also proved that in a ray — a deterministic infinite path (b = 1,

but with zero extinction probability) — the reward needed is super-exponential in

the expected depth of the search tree, that is r∗ = Ω(n!). Finally, they observed

that this threshold behavior vanishes if the root desires to find the answer with

probability tending to 1: if the desired probability is 1−1/n, then for any branching

process with b > 1 and no extinction, the needed reward is nΘ(1).

4.2 Results

We present a theoretical study of the multi-level marketing strategies that

were adopted by the winning team of the DARPA Network Challenge. Given

the strong affinity between this challenge and the model of query incentive net-

works introduced in [KR05, AKK+07], we frame these strategies in this model by

considering split contracts as the possible offers between nodes.

Our main result is that split contracts, unlike fixed-payment contracts, are

robust to a strategic environment, where every node selfishly determines the offers

84

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Figure 4.2: Investment as a function of the rarity n for b = 4 with split-contracts
(in red triangles and circles, for ε = 0.2 and ε = 0.05, respectively) and with
fixed-payment contracts (in blue triangles and circles, for ε = 0.2 and ε = 0.05,
respectively).

to its children based on the offer received from its parent. We show that for

any constant ε > 0 and Galton-Watson branching process with b > 1, the Nash

equilibrium with split contracts uses an investment of r∗ = O(log n) to retrieve the

answer with probability at least 1− ζ − ε, where ζ is the extinction probability of

the process. As the expected distance to the closest answer is Θ(log n) and nodes

pay a unit cost to return the answer, this is a constant approximation with respect

to an ideal centralized non-strategic setting. In other words, the price of anarchy

of the game with split contracts is constant (ignoring some pathological equilibria,

see Section 4.6 and Appendix 4.9).

Unlike previous work that assumed the parameters of the branching pro-

cess to be held constant, we are also able to characterize the dependence of the

investment with respect to the branching process and the success accuracy. This

allows us to show additional improvements of split contracts over fixed-payment

contracts: for example, for branching processes with no extinction, an investment

of O(n log n) is enough to retrieve the answer with probability at least 1 − 1/n,

improving upon the nΘ(1) investment provided in [AKK+07]. In fact, our result is

even stronger since it guarantees a success probability of at least 1 − ζ − 1/n in

85

general branching processes. In the case of a ray (where the expected distance from

the closest answer is n), we show that the investment needed to find the answer

with constant probability is O(n2), while Ω(n!) is needed when using fixed-payment

contracts [AKK+07].

We also performed empirical simulations to compare the amount of in-

vestment needed with fixed-payment and split contracts. Our findings show that

split contracts are more efficient than fixed-payment contracts not only for small

branching factors 1 < b < 2 — with an exponential gain, see Figure 4.1 — but also

for large branching factors b > 2 — with a constant-factor gain, see Figure 4.2.

Simulations demonstrate that the improvement is major already for b slightly less

than 2. In addition, finer accuracy ε leads to a larger improvement.

4.3 Additional related work

Pickard et al. [PPR+11] described and analyzed the winning strategy of the

DARPA Network Challenge. However, we distinguish ourselves from [PPR+11] in

both aims and methods. The authors of [PPR+11] are mainly concerned with the

motivation of the exact 1/2-split winning strategy that was implemented by the

MIT Media Laboratory, for which they show that it is in the participants’ interest

to recruit the highest number of friends and back the theory with an empirical

analysis of the diffusion cascades. Our work considers the more general setting of

split contracts in the model of query incentive networks introduced in [KR05] and

analyzes the efficiency, in terms of investment, of the Nash equilibria.

In the context of query incentive networks with fixed-payment contracts,

Kota and Narahari [KN10] applied the results of general branching processes

from [AKK+07] to analyze the reward when the degree distribution follows a

power-law and the desired success probability is at least 1 − 1/n and show a

threshold behavior of the reward with respect to the scaling exponent. Dikshit

and Yadati [DN09] considered the issue of the quality of the answers in query in-

centive networks. In particular, they define a quality conscious model of incentives

and derive the same threshold behavior around the branching factor b = 2 found

86

in [AKK+07, KR05].

It is worth to mention additional related work that is not in the context of

query incentive networks. Emek et al. [EKTZ11] studied strategies of multi-level

marketing, in which each individual is rewarded according to direct and indirect

referrals, and show that geometric reward schemes are the only guarantee to cer-

tain desirable properties. Our setting is substantially different from [EKTZ11],

as the reward is based on referral rather that information retrieval. Douceur and

Moscibroda [DM07] proposed the lottery tree as a mechanism to incentivize the

adoption of a distributed systems and the solicitation of new participants. Influence

in social networks is also related to our work. Kempe et al. [KKT03] considered

the algorithmic question of selecting an influential set of individuals. Jackson and

Yariv [JY07] proposed a game-theoretic framework to model incentives in adoption

processes. Hartline et al. [HMS08] studied influence in social networks from a rev-

enue maximization point of view. Singer [Sin11] developed incentive-compatible

mechanisms for influence maximization in several models.

4.4 Preliminaries

We model the network as a tree generated via a Galton-Watson branching

process with offspring distribution {ck}dk=0, that is, ck is the probability that any

node has exactly k children and
∑d

k=0 ck = 1. We adopt the convention that the

root of the tree is at level 0, its children at level 1, and so on. The probability

generating function of the offspring distribution is given by

Ψ(x) =
d∑

k=1

ckx
k, 0 ≤ x ≤ 1.

The branching factor of the process is defined as

b = Ψ′(1) =
d∑

k=0

kck.

A fundamental result in the theory of Galton-Watson processes states that the

extinction probability ζ of a branching process is the smallest non-negative root

87

of the equation x = Ψ(x). If follows ζ = 1 if and only if b < 1, or b = 1 with

c0 > 0, and 0 ≤ ζ < 1 otherwise. For classical theory on Galton-Watson branching

processes we refer to [AN04].

We assume that each node in the network possesses the answer to the

query independently of the other nodes with probability 1/n, where n represents

the rarity of the answer. Note that n is the expected number of nodes to query

before finding the answer. For i ≥ 0, let φi be the probability that no node at level

j ≤ i has the answer and λi = φi−1−φi be the probability that some node at level i

and no node at a lower level possesses the answer. (These probabilities are over the

randomness of the branching process and of the process assigning the answers.)

Moreover, conditional on the event that the branching process with probability

generating function Ψ does not die out, let hΨ(ε, n) be the minimum integer i such

that φi < ε. For branching factor b > 1, we have that hΨ(ε, n) = O(log n) for any

ε = n−O(1), whereas in the case of b = 1 and c0 = 0 (i.e., a ray), hΨ(ε, n) = n ln 1
ε
.

Assume that r∗ is the investment available at the root, which desires to

retrieve the answer with probability at least 1− ζ − ε, for a given success accuracy

ε > 0. With the notation introduced so far, we will show that for any constants

b > 1 and ε > 0 an investment of r∗ = O(hΨ(ε, n)) suffices to propagate the query

down to level hΨ(ε, n) of the tree, and hence to retrieve the answer with probability

at least 1 − ζ − ε. For ease of analysis, we assume that the root is not willing to

explore the tree below level hΨ(ε, n), that is, we truncate the tree at that height.

4.4.1 Split contracts

We now formalize the notion of split contracts. Every node including the

root can offer a ρ-split contract to its children, for some 0 < ρ < 1, stipulating

the following. If the root offers a ρ-split to a child u who possesses the answer,

then u receives a payment of r∗ but is required to return a ρ fraction to the root,

earning a total of r∗(1− ρ)− 1, where we introduced a unit cost for returning the

answer to the parent, as in [KR05, AKK+07]. If instead u does not possess the

answer then it might decide to propagate the query to its children, according to its

strategy fu(·), that is, offering a fu(ρ)-split contract to its children. If one among

88

u’s children possesses the answer, then u receives an fu(ρ) fraction of the reward

but it gives a ρ fraction back to the root and pays the unit cost to return the

answer, with an overall earning of r∗(1− ρ)fu(ρ)− 1. In general, consider a node

u` which is reached by a query and possesses the answer, and let u0, u1, . . . , u` be

the path connecting the root to u`, where u0 is the root. Then, if the root offered a

ρu0-split to its children, and ρui = fui(ρui−1
) is the split offered by ui to its children

for all i < `, then the root u0 (who need not to pay the unit cost) receives a payoff

of

r∗ · ρu0 · fu1(ρu0) · fu2(fu1(ρu0)) · · · fu`−1
(fu`−2

(· · ·)) = r∗ ·
`−1∏
j=0

ρuj .

Similarly, for 1 ≤ i ≤ `, the payoff of node ui is(
r∗(1− ρui−1

) ·
`−1∏
j=i

ρuj

)
− 1.

Without loss of generality, we assume that nodes never propose useless split-

offers to their children, that is, ρ-split where ρ > ρ1 := 1−1/r∗, since their children

would not have incentive to play even if they possessed the answer themselves.

Also, for simplicity we assume discrete domain and range for the strategy fu of

every node u, that is, fu : DM → (DM ∪ ⊥), where fu(ρ) = ⊥ indicates that

u chooses not to propagate the query, and DM = { ρ1

M
, 2ρ1

M
, . . . , (M−1)ρ1

M
, ρ1} is a

discretization of the interval (0, ρ1].

4.4.2 Propagation of the payment

We remark that the above payoffs for the path u0, . . . , u` will turn into

concrete payments only if the root selects u` among the answer-holders. Indeed,

among all answer-holders reached by the query the root, will select only one for

payment. In the fixed-payment model of [KR05, AKK+07], this selection is made

using a fixed arbitrary procedure that does not affect the strategies of the nodes

(e.g., performing a random walk from the root descending down the tree; the first

hit answer-holder will be paid along with its ancestors). In their setting, this

choice is coherent as the root always spends a fixed investment, no matter how

89

deep in the tree the payment is propagated. In our case this peculiarity is missing

as a result of the split contract mechanism. In our model we will assume the

root selects for payment one among the answer-holders (reached by the query) at

smallest depth. This is motivated by different facts. First, if we consider some

notion of time related to propagating the query one level down, then our selection

mechanism better depicts the strategy adopted in the DARPA Network Challenge,

where the payment was given to the first participant reporting the correct location

of a balloon. Second, the actual investment of the root is in general smaller if the

path to the answer is shorter. Finally, a selection mechanism based on smallest

depth alleviates the false-name issue discussed in [PPR+11], but a formal analysis

of this claim is beyond the scope of this work. In case of multiple answer-holders

at smallest depth, we assume that the root breaks ties in a way that does not affect

the strategies of the nodes (e.g., performing a random walk from the root to one of

the leaves of the subtree formed by all shortest paths to the answers, and selecting

the corresponding answer-holder).

4.4.3 Difference with respect to previous work

We would like to spend a few words highlighting some of the main differences

between our analysis and those in [KR05, AKK+07]. One of these differences, the

propagation of payments, has been already discussed above; from the technical

point of view, the smallest depth selection mechanism introduces the hurdle that

the strategy of each node does not only depend on the strategies in its subtree

(as in the case of [KR05, AKK+07]), but potentially on those of all nodes. We

remark that the gap in efficiency of the two models is not related to the different

propagation of payment. In fact, if the answer-holder were to be selected according

to the smallest depth mechanism in the fixed-payment setting, then the investment

needed to retrieve the answer would increase. Roughly speaking, this happens as

a node further down in the tree requires higher reward to forward the query, in

order to compensate for the smaller probability of having a payment candidate in

its subtree.

Another salient difference between the two models concerns the values of

90

the contracts: while the nature of the fixed-payment contracts of [KR05, AKK+07]

implies that a node being offered a reward of r can only offer an amount r′ < r to its

children, we do not enjoy this property on the ρ’s in the case of split contracts. This

unfortunately precludes the inductive arguments adopted in [KR05, AKK+07],

making a more involved analysis necessary.

We conclude this section discussing about the gap in efficiency between

split contracts, for which an investment proportional to the depth of the search

tree suffices for any branching factor b > 1, and the results in [KR05, AKK+07], for

which the investment becomes exponential in the depth of the search tree when the

branching factor drops below 2. In the setting of [KR05], the additional amount of

reward δj that the root needs in order to explore j levels of the tree (rather than

stopping at level j − 1) can be expressed as

δj+1 =
1− φj−1

λj
δj + 1.

When the branching factor drops below 2, the ratio
1−φj−1

λj
is greater than 1, and

the investment needed at the root to propagate the query down to depth hΨ(ε, n)

becomes exponential in log n (hence, poly(n)).

In contrast, the dependency on the ratio
1−φj−1

λj
is softer in our setting. In

the proof of Theorem 39, we show that the ρ-split a node at level ` needs to receive

in order to propagate the query i levels down its subtree is

ρ
〈`〉
i = 1− 1

r∗ − i(1 +O(1−φi−1

λi
))
.

Since we can show that 1−φi−1

λi
is bounded by a constant for any branching process

with b > 1, an investment r∗ = O(hΨ(ε, n)) = O(log n) suffices for the value ρ
〈1〉
hΨ(ε,n)

offered by the root to its children to be well-defined (i.e., in DM), and hence for

the answer to be retrieved cheaply.

4.4.4 Roadmap

The rest of the chapter is structured as follows. In Section 4.5, we derive

properties that hold for any Nash equilibrium. In Section 4.6, we develop a con-

dition that we call h-consistency under which we can show that a set of strategies

91

g for the nodes propagates the query to the desired level and is substantially the

unique Nash equilibrium. In Section 4.7, we derive a bound on the investment r∗,

depending on quantities related to the branching process, for which h-consistency

is guaranteed to hold. Finally, in Section 4.8, we study such quantities of the

branching process to conclude that r∗ = O(hΨ(ε, n)) = O(log n).

4.5 Properties of Nash equilibria

In this section we present the notion of Nash equilibrium that naturally

arises in the context of split-contracts, and we then derive a manageable expression

that any Nash equilibrium has to maximize. Let fv be the function representing

the strategy of node v, and f be the set of strategies of all nodes up to level hΨ(ε, n),

as we assumed that nodes in lower levels do not play.

Definition 28 (Nash equilibrium). Let r∗, Ψ, ε, n be the parameters of the

model, and f be a set of functions for all nodes up to level hΨ(ε, n). For any such

node v, let ρv be the split contract offered to v by its parent under f . Then, f is

a Nash equilibrium if, for each node v, v does not increase its expected payoff by

deviating from fv(ρ
v) when all other nodes play according to f . The expectation is

taken over the randomness of the branching process and of the process assigning

answers to the nodes.

We now give a few definitions that will be useful to derive properties of any

Nash equilibrium. Given a realization of the branching process, we say that a node

v at level ` ≤ hΨ(ε, n) is active if the branching process reaches v. Moreover, given

a set f of strategies and a realization of the branching process, we say that an

active node v is f -reachable if f forwards the query down to v. Given a realization

of the branching process and of the process assigning the answer to nodes, we

say that an f -reachable node v at level ` is an f -candidate if v holds the answer

and no f -reachable node at a level `′ < ` does. Observe that the root selects for

payment one among the f -candidates. For each node v at level ` ≤ hΨ(ε, n), set f

of strategies, and j ≥ 1, let αf
v(j|ρ) be the probability that there is an f -candidate

in v’s subtree at distance j from v, conditional on v being f -reachable and offering

92

a ρ-split to its children. Similarly, for j ≥ 1, let βf
v(j|ρ) be the expected payment

that v receives from its children given that v offers a ρ-split to its children and there

is an f -candidate in v’s subtree at distance j from v to whom the root propagates

the payment.

The following lemma characterizes an expression that must be maximized

by every node up to level hΨ(ε, n) in any Nash Equilibrium.

Lemma 29. Consider any set f of strategies, and let ρv be the split contract offered

to v by its parent under f . Then, f is a Nash equilibrium if and only if, for every

node v up to level hΨ(ε, n), fv(ρ
v) is a value of ρ maximizing the function

χf
v(ρ; ρv) :=

∑
j≥1

αf
v(j|ρ)

(
(1− ρv)βf

v(j|ρ)− 1
)
. (4.1)

Proof. Fix the available investment r∗, a set f of strategies, and a node v at level

` ≤ hΨ(ε, n). We need to define the following events. Let A denote the event

that the root propagates the payment down through v, that is, the root selects

for payment an f -candidate in v’s subtree. For each 0 ≤ j ≤ hΨ(ε, n) − `, let Bj

denote the event that the f -candidates are at level `+ j. Finally let C denote the

event that v is f -reachable and D denote the event that there is an f -candidate

in v’s subtree. Observe that the co-occurrence of B0 and D means that v itself

is an f -candidate. Given r∗ and f , let Y v
f ,r∗ be the random variable denoting the

payment assigned to v.

We have that

E[Y v
f ,r∗] =

∑
j≥0

E[Yf ,r∗|A,Bj, D, C] Pr(A,Bj, D,C)

= Pr(A|D) Pr(C)
∑
j≥0

E[Yf ,r∗|A,Bj, D,C] Pr(Bj, D|C).

The first equality follows from the law of total probability together with the

observation that Pr(A,C) = Pr(A,D) = 0 and E[Y v
f ,r∗|A] = 0. The second equality

follows from the chain rule of probability and the fact that Pr(A|Bj, D,C) =

Pr(A|D) for all j ≥ 0. Observe that the term corresponding to j = 0 (i.e., v is the f -

candidate selected for payment) does not depend on fv since E[Yf ,r∗ |A,B0, D,C] =

(1 − ρv)r∗ − 1 and Pr(B0, D|C) only depends on the strategies of the nodes that

93

are ancestors of v. Similarly, fv affects neither Pr(C), which depends on the

strategies of v’s ancestors only, nor Pr(A|D), which is only based on the root’s

choice of whom to propagate the payment to. Finally, note that if v offers a ρ-

split to its children, then, for j ≥ 1, E[Yf ,r∗|A,Bj, S, C] = (1− ρv)βf
v(j|ρ)− 1 and

Pr(Bj, D|C) = αf
v(j|ρ). Therefore, f is a Nash equilibrium if and only if, for every

node v up to level hΨ(ε, n), fv(ρ
v) is a value ρ maximizing χf

v(ρ; ρv).

To break ties in case of multiple maxima for χf
v(·; ρv), we make the same

assumption as in [KR05, AKK+07] that nodes favor strategies that forward the

query further down in the tree. Observe that every node can efficiently compute

the strategy that maximizes (4.1) given the strategies of the other nodes. The

following two lemmas will lead to a simpler expressions for (4.1). We will start

showing that Nash equilibria are “leveled” (proof in the Appendix).

Lemma 30. Consider any Nash equilibrium f . Then for each active node v at

level `, v is f-reachable if and only if every active node at level ` is.

Proof. Let f be a Nash equilibrium. Fix a node v and let

ρ2 = max{ρ ∈ DM : χf
v(ρ1; ρ) ≥ χf

v(⊥; ρ)}

be the maximum split v’s father can ask v so that v will in turn prefer to offer

a ρ1-split to their children rather than just participating in the game without

propagating the query. We first argue that ρ2 does not depend on the chosen node

v, then show that fv(ρ) = ⊥ for every node v and ρ2 < ρ ≤ ρ1 = 1− 1
r∗

, and finally

use this fact to prove the lemma.

To see that ρ2 does not depend on v, observe that χf
v(⊥; ρ) = 0 as αf

v(j|⊥) =

0 for j ≥ 1, and that

χf
v(ρ1; ρ) = αf

v(1|ρ1)((1− ρ)βf
v(1|ρ1)− 1)

= αf
v(1|ρ1)((1− ρ)r∗ρ1 − 1).

We now show that fv(ρ) = ⊥, for every node v and ρ2 < ρ ≤ ρ1. By contradiction,

suppose fv(ρ) = ρ′, for some v, ρ2 < ρ ≤ ρ1, ρ′ ∈ DM . On the one hand, as f is a

Nash equilibrium, Lemma 29 implies that ρ′ maximizes χf
v(ρ
′; ρ), and thus

χf
v(ρ
′; ρ) ≥ χf

v(⊥; ρ) = 0.

94

On the other hand, we have that

χf
v(ρ
′; ρ) =

∑
j≥1

αf
v(j|ρ′)

(
(1− ρ)βf

v(j|ρ′)− 1
)

≤
∑
j≥1

αf
v(j|ρ′)((1− ρ)r∗ρ1 − 1),

where the last inequality follows from βf
v(j|ρ′) ≤ r∗ρ1 for all j ≥ 1, as ρ′ must be

at most ρ1 for v’s children to participate to the game. By definition of ρ2, it must

be that χf
v(ρ1; ρ) < χf

v(⊥; ρ) = 0, which implies ((1 − ρ)r∗ρ1 − 1) < 0 and thus

χf
v(ρ
′; ρ) < 0, generating a contradiction.

We are now ready to prove the lemma. By contradiction, suppose the

statement of the lemma does not hold. Then there must be two sibling nodes u

and v (at some level ` < hΨ(ε, n)) and a value ρ = ρu = ρv such that fu(ρ) = ρ′ 6= ⊥
and fv(ρ) = ⊥, that is, such that u forwards the query when offered a ρ-split by its

parent while v does not. By the claim above, fu(ρ) = ρ′ implies that ρ ≤ ρ2 and

therefore, by definition of ρ2, v would have incentive to deviate from fv, offering a

ρ1-split to their children than just participating to the game without propagating

the query, contradicting that f is a Nash equilibrium.

By means of Lemma 30, we will say that a Nash equilibrium f is k-tall if

level k is f -reachable and level k + 1 is not. This notion is useful in decoupling

the probabilities αf
v(j|fv(ρ)) from the particular equilibrium f and node v. To see

how, assume f is k-tall, k ≤ hΨ(ε, n). For any node v at level ` ≤ k and any

j ≤ k− `, let γ
〈`〉
j be the probability that there exists an f -candidate in v’s subtree

at distance j from v (and therefore there is no f -candidate in the first ` + j − 1

levels). Then, as f is k-tall, we have that for any node at level `, γ
〈`〉
j depends only

on ` and j (and not on f or the specific node). This observation directly yields the

following result relating the probabilities αf
v(j|fv(ρv)) and γ

〈`〉
j .

Lemma 31. Let f be a k-tall Nash equilibrium, k ≤ hΨ(ε, n). Then, for every

` ≤ k and node v at level `,

αf
v(j|fv(ρv)) =

{
γ
〈`〉
j , for 1 ≤ j ≤ k − `

0, for j > k − `

95

In general, if the query is forwarded j levels down v’s subtree when v offers a ρ-split

to its children, then we have

αf
v(j|ρ) = γ

〈`〉
j .

Lemma 31 implies that, at equilibrium, the payoff of a node v deviating

from its strategy depends only on the strategies of the nodes in the subtree rooted

at v (needed for the computation of the terms βf
v(j|ρ) in χf

v(ρ; ρv)).

4.6 The Nash equilibrium

In this section, we derive conditions for the existence of a Nash equilibrium

that forwards the query down to level hΨ(ε, n), or, equivalently, retrieves the answer

with the desired probability 1− ζ − ε. For ease of notation, let h = hΨ(ε, n). We

proceed as follows. First we define the functions e
〈`〉
i and the thresholds ρ

〈`〉
i , which

intuitively represent expected rewards and contracts for a special set of strategies

g. However, to define g, we will need all ρ
〈`〉
i to exist and be decreasing in i, for all

` ≤ h, property that we will dub h-consistency. Finally, assuming h-consistency,

we will show that g forwards the query to level h and is a Nash equilibrium (in

fact with an extra property, we will say g is a best-interest Nash Equilibrium).

We begin by defining the aforementioned functions and values. We provide

an inductive process which defines, for each 1 ≤ ` ≤ h, a sequence of functions

e
〈`〉
i : [0, 1]→ R, 0 ≤ i ≤ h− `, and values ρ

〈`〉
i ∈ DM , 1 ≤ i ≤ h− `+ 1. For every

0 ≤ ` ≤ h, set e
〈`〉
0 (ρ) = 0 and ρ

〈`〉
1 = ρ1 = 1 − 1/r∗. Suppose that all ρ

〈`′〉
i have

been defined for ` < `′ ≤ h and 1 ≤ i ≤ h− `′+ 1. Then, for all 1 ≤ i ≤ h− `, the

function e
〈`〉
i (ρ) is defined as

e
〈`〉
i (ρ) =

i∑
j=1

γ
〈`〉
j

[
(1− ρ)r∗

(
j−1∏
t=0

ρ
〈`+t+1〉
i−t

)
− 1

]
.

Having defined e
〈`〉
i (ρ), we define

ρ
〈`〉
i+1 = max{ρ ∈ DM : e

〈`〉
i (ρ) ≥ e

〈`〉
i−1(ρ)},

if such value exists, and leave ρ
〈`〉
i+1 undefined otherwise.

96

For a node v at level ` ≤ h, e
〈`〉
i has the intuitive meaning of the expected

reward that v receives from its children when the query is propagated i levels down

v’s subtree (assuming the other nodes play accordingly). The value ρ
〈`〉
i+1 represents

the “cheapest” split to offer a node v at level ` ≤ h so that v prefers to propagate

the query i levels down its subtree rather than i − 1 (recall that, to break ties,

we assumed that nodes prefer to propagate the query further down the tree). To

guarantee the propagation of the query to level h, we will need the values ρ
〈`〉
h−` to

be defined.

Definition 32 (h-consistency). We say that h-consistency holds if, for all 1 ≤
` ≤ h and 2 ≤ i ≤ h− `+ 1, the value ρ

〈`〉
i is defined and ρ

〈`〉
i < ρ

〈`〉
i−1 (note that ρ

〈`〉
1

is always defined).

Intuitively, the ordering of the values ρ
〈`〉
i in the definition of h-consistency

states that if a node v propagates the query i levels down its subtree when offered

a ρ-split by its father, then, in order to propagate the query i + 1 levels down, it

must be that v is offered a split not greater than ρ. This property is at the basis

of the following definition of the set of strategies g, which we will then show to

be a Nash equilibrium. Note how, under g, nodes at the same level play the same

strategy.

Definition 33 (Strategy g). Assume h-consistency. For each 1 ≤ ` ≤ h, con-

sider the function t〈`〉(ρ) : [0, 1] → DM ∪ {⊥} defined by t〈`〉(ρ) = ρ
〈`+1〉
i−1 for the

unique i such that ρ
〈`〉
i+1 < ρ ≤ ρ

〈`〉
i (such i exists under h-consistency), where we

assume ρ
〈`〉
h−`+2 = 0 and ρ

〈`+1〉
0 = ⊥. The set of strategies g is defined by setting

gv(ρ) = t〈`〉(ρ) to every node v at level `, for each 1 ≤ ` ≤ h, and letting the root

play ρ
〈1〉
h .

It follows that, under g, the root (at level zero) offers a ρ
〈1〉
h -split to its

children, who in turn offer ρ
〈2〉
h−1-split contracts to their own children, and so on,

until the nodes at level h, who do not forward the query (they play t〈h〉(ρ
〈h〉
1) = ⊥).

Observe that g is h-tall, as all nodes up to level h are g-reachable. The following

theorem states that g is a Nash equilibrium.

97

Theorem 34 (Nash equilibrium). Assume that h-consistency holds. Then the

set of strategies g is a Nash equilibrium.

The key fact in the proof is to show that, for any node v at level 1 ≤ ` ≤ h

(which under g receives a ρ
〈`〉
h−`+1-split from its parent and in turn offers a ρ

〈`+1〉
h−` -

split to its children), χg
v (ρ
〈`+1〉
j ; ρ) = e

〈`〉
j (ρ) for all j ≤ h− `, and that ρ

〈`+1〉
h−` is the

only maximizer of (4.1) that propagates the query to level h. Then the theorem

follows by Lemma 29.

In the proof of the theorem, we make use of the following claim, that is a

consequence of h-consistency.

Claim 35. Assume h-consistency. Then, for every 1 ≤ ` ≤ h, 1 ≤ i ≤ h− `, and

ρ
〈`〉
i+2 < ρ ≤ ρ

〈`〉
i+1, we have that

e
〈`〉
i (ρ) > e

〈`〉
i+1(ρ) > · · · > e

〈`〉
h−`(ρ),

and

e
〈`〉
i (ρ) ≥ e

〈`〉
i−1(ρ) ≥ · · · ≥ e

〈`〉
0 (ρ),

where we assume ρ
〈1〉
h+1 = 0.

Proof. Consider any i+ 1 ≤ j ≤ h− `, and observe that, by definition,

ρ
〈`〉
j+1 = max{ρ′ ∈ DM : e

〈`〉
j (ρ′) ≥ e

〈`〉
j−1(ρ′)},

and, by h-consistency (as j + 1 ≥ i+ 2), ρ
〈`〉
j+1 ≤ ρ

〈`〉
i+2 < ρ. It follows that e

〈`〉
j (ρ) <

e
〈`〉
j−1(ρ) for all i+ 1 ≤ j ≤ h− `, which implies that

e
〈`〉
h−`(ρ) < e

〈`〉
h−`−1(ρ) < · · · < e

〈`〉
i (ρ),

proving the first chain of inequalities in the lemma. Now consider any 2 ≤ m ≤
i+ 1, and observe that, by definition of ρ

〈`〉
m ,

e
〈`〉
m−1(ρ〈`〉m) ≥ e

〈`〉
m−2(ρ〈`〉m)

and, by h-consistency (as i+1 ≥ m), ρ ≤ ρ
〈`〉
m . This implies that e

〈`〉
m−1(ρ) ≥ e

〈`〉
m−2(ρ)

for all 2 ≤ m ≤ i+ 1. It follows that

e
〈`〉
i (ρ) ≥ e

〈`〉
i−1(ρ) . . . ≥ e

〈`〉
0 (ρ),

which proves the second chain of inequalities in the lemma.

98

We are now ready to prove Theorem 34.

Proof of Theorem 34. Under h-consistency, for all ` ≤ h and 2 ≤ i ≤ h − ` + 1,

ρ
〈`〉
i is defined and ρ

〈`〉
i < ρ

〈`〉
i−1 (recall that ρ

〈`〉
1 is defined for all ` ≤ h).

To show that g is a Nash equilibrium, by Lemma 29, it suffices to prove

that, for every node v at level up to h, gv(ρ
v) is the value that maximizes χg

v (·; ρv),
where ρv is the split offer v receives from its parent. Let 0 ≤ i ≤ h− 1, and fix a

node v at level ` = h − i. Under g, v receives a ρ
〈`〉
i+1-split from its parent and in

turn offers a t〈`〉(ρ
〈`〉
i+1) = ρ

〈`+1〉
i -split to its children. Therefore, it suffices to show

that

ρ
〈`+1〉
i = arg max

ρ′
{χg

v (ρ′; ρ
〈`〉
i+1)}.

We will in fact prove something stronger, that is, for all ρ ∈ DM ,

gv(ρ) = t〈`〉(ρ) = arg max
ρ′
{χg

v (ρ′; ρ)}. (4.2)

Fix any ρ ∈ DM . A few observations allow to prove condition (4.2) for the

chosen ρ. First, by h-consistency, there exists unique k such that ρ
〈`〉
k+2 < ρ ≤ ρ

〈`〉
k+1,

where we assume ρ
〈`〉
h+1 = 0. Second, by definition of g and χg

v (·; ·), node v has an

incentive to play a given ρ′ ∈ DM only if there is no ρ̂ > ρ′ such that v’s children

would play exactly the same split contract if either offered a ρ̂-split or a ρ′-split

(otherwise, the query would propagate the same number of levels down the tree,

but with v earning more if offering a ρ̂-split to its children). This implies that

if ρ′ maximizes χg
v (., ρ), then ρ′ = ρ

〈`+1〉
j for some 0 ≤ j ≤ i (recall that node v

is at level h − i). Third, by definition of g, e
〈`〉
j (·) and χg

v (·; ·), and by Claim 31,

we have that χg
v (ρ
〈`+1〉
j ; ρ) = e

〈`〉
j (ρ) for all 0 ≤ j ≤ h − `. Finally, by Claim 35,

as ρ
〈`〉
k+2 < ρ ≤ ρ

〈`〉
k+1, we have that e

〈`〉
k (ρ) > e

〈`〉
j (ρ) for all k < j < h − ` and

e
〈`〉
k (ρ) ≥ e

〈`〉
j (ρ) for all 0 ≤ j < k. We have that ρ

〈`+1〉
k is the only maximizers of

χg
v (·; ρ) which forwards the query to level h, while any other maximizer forwards

the query to some level `′ < h. Therefore, as we assumed that nodes break ties

preferring to propagate the query further down the tree, ρ
〈`+1〉
k = t〈`〉(ρ) is the

preferred strategy of node v when offered a ρ-split from its parent. Considering all

ρ ∈ DM , condition (4.2) follows and the theorem is proven.

99

Even though g is not the only Nash equilibrium, the proof of Theorem 34

shows that g enjoys the additional property that, for each node v and ρ ∈ DM ,

gv(ρ) = arg max
ρ′
{χg

v (ρ′; ρ)}. (4.3)

We call any equilibrium enjoying such property a best-interest equilibrium, as nodes

choose their best option in any scenario. The following theorem shows that g is

substantially the only best-interest equilibrium, meaning that every other best-

interest equilibrium f coincides with g on all the split-offers that are offered to

nodes under f . As a remark, we observe that even the game with fixed-payment

contracts in [KR05, AKK+07] admits multiple equilibria, although the authors

claim uniqueness (a counter-example is presented in Appendix 4.9). On the positive

side, the equilibrium analyzed in [KR05, AKK+07] is the unique best-interest Nash

equilibrium of their game.

Theorem 36 (Uniqueness). Assume h-consistency. Let f be any `-tall best-

interest Nash equilibrium, for some 1 ≤ ` ≤ h, and, for each node v up to level `,

let ρv be the split contract offered to v by its parent under f . Then, for every node

v up to level `, fv(ρ) = gv(ρ), for all ρv ≤ ρ ≤ ρ1.

Proof. Under h-consistency, for all ` ≤ h, ρ
〈`〉
i is defined and ρ

〈`〉
i < ρ

〈`〉
i−1 for all

2 ≤ i ≤ h− `+ 1. Ler f be a best-interest Nash equilibrium that is `-tall for some

` ≤ h. As f is best-interest, for every node v up to level `,

fv(ρ) = arg max
ρ′
{χf

v(ρ
′; ρ)}, ∀ρ ∈ DM .

We want to prove that, for every node v up to level `,

fv(ρ) = gv(ρ), ∀ρv ≤ ρ ≤ ρ1, (4.4)

where ρv is the split offered to v by its parent under f , ρ1 = 1− 1/r∗ and g is the

best-interest Nash equilibrium from Definition 33.

We proceed by induction on the levels of the tree, starting from level ` and

going backwards. In particular we prove by induction that (4.4) holds for every

node at level `, for every level `′ ≤ `. Consider any node v at level `. As f is `-tall

100

(i.e., level ` is f -reachable, while level `+ 1 is not), node v plays ⊥. Therefore, v’s

parent (at level `− 1) has incentive to offer v a ρ1-split (the maximum split such

that v has incentive to forward the answer to its parent). It follows that ρv = ρ1

and fv(ρ1) = ⊥ = gv(ρ1), and (4.4) holds for level `.

Fix 0 ≤ i < `, and suppose (4.4) holds for every node at level ` − i. Let

`′ = `− i− 1, and consider any node v at level `′. In the proof of Theorem 34, we

showed that, for every ρ ∈ DM and 1 ≤ j ≤ i,

χg
v (ρ
〈`′+1〉
j ; ρ) = e

〈`′〉
j (ρ).

By the inductive hypothesis on level `′ + 1 = `− i and the fact that both f and g

are best-interest, we have that, for every ρ ∈ DM and 1 ≤ j ≤ i,

χf
v(ρ
〈`′+1〉
j ; ρ) = χg

v (ρ
〈`′+1〉
j ; ρ).

The last two observations imply that, for every ρ ∈ DM and 1 ≤ j ≤ i,

χf
v(ρ
〈`′+1〉
j ; ρ) = e

〈`′〉
j (ρ). (4.5)

Lemma 35, togethet with (4.5), implies that

(i) for every j < i and ρ
〈`′〉
j+2 < ρ′ ≤ ρ

〈`′〉
j+1, node v has incentive to play ρ

〈`′+1〉
j

among all ρ
〈`′+1〉
i ≤ ρ ≤ ρ1, and

(ii) for ρ′ = ρ
〈`′〉
i+1, node v has incentive to play ρ

〈`′+1〉
i among all ρ

〈`′+1〉
i ≤ ρ ≤ ρ1.

We need the following technical result in order to proceed with the proof.

Claim 37. Let v be a node at level `′ = `− i− 1. Suppose that v receives a ρ′-split

from its parent, with ρ
〈`′〉
j+2 < ρ′ ≤ ρ

〈`′〉
j+1 for some j ≤ i, and that v forwards the

query exactly to level ˆ̀ ≤ `. Moreover, assume that (4.4) holds for every node

below v. Then, ˆ̀= `′ + j + 1 and fv(ρ
′) = ρ

〈`′+1〉
j .

Proof. Let m = ˆ̀− `′ − 1. First we show that fv(ρ
′) ≤ ρ

〈`′+1〉
m , and then we argue

that equality must hold. To show that fv(ρ
′) ≤ ρ

〈`′+1〉
m , suppose by contradiction

that fv(ρ
′) > ρ

〈`′+1〉
m , that is, there exists k < m such that ρ

〈`′+1〉
k+1 < fv(ρ

′) ≤ ρ
〈`′+1〉
k .

Then, the query would only be forwarded to level `′ + 1 + j < `′ + 1 + m = ˆ̀, as

101

we assumed that (4.4) holds for all nodes below v. This generates a contradiction,

and, therefore, it must be fv(ρ
′) ≤ ρ

〈`′+1〉
m .

We now show that fv(ρ
′) = ρ

〈`′+1〉
m . As fv(ρ

′) ≤ ρ
〈`′+1〉
m , we have that

βf
v(k|fv(ρ′)) ≤ βf

v(k|ρ
〈`′+1〉
m) for all 1 ≤ k ≤ m, with equality if and only if fv(ρ

′) =

ρ
〈`′+1〉
m . This yields χf

v(fv(ρ
′); ρ′) < χf

v(ρ
〈`′+1〉
m ; ρ′), for fv(ρ

′) < ρ
〈`′+1〉
m , which implies

fv(ρ
′) = ρ

〈`′+1〉
m . By (i), it must be m = j, which gives ˆ̀= `′+m+1 = `′+j+1.

We now proceed with the proof. As f is `-tall, fv(ρ
v) must forward the

query exactly to level `. We first show that ρv = ρ
〈`′〉
i+1 and fv(ρ

〈`′〉
i+1) = ρ

〈`′+1〉
i , and

then we show that (4.4) holds for v. Note that the claim above implies that if

v receives a ρ′-split from its parent with ρ′ > ρ
〈`′〉
i+1, then fv(ρ

′) does not forward

the query to level exactly `. Therefore, it suffices to show that fv(ρ
〈`′〉
i+1) = ρ

〈`′+1〉
i .

Indeed, this would imply that ρv = ρ
〈`′〉
i+1, as no better (larger) split forwards the

query to level exactly `. By contradiction, suppose v plays fv(ρ
〈`′〉
i+1) = ρ̂ 6= ρ

〈`′+1〉
i .

As we are assuming v is offered a ρ
〈`′〉
i+1-split, and (ii) implies that v prefers to play

ρ
〈`′+1〉
i among all ρ > ρ

〈`′+1〉
i , it must be ρ̂ < ρ

〈`′+1〉
i . Moreover, it must be the case

that ρ̂ forwards the query below level `, otherwise v would prefer to play ρ
〈`′+1〉
i .

However, if it was the case, v would prefer to play ρ̂ over ρ
〈`′+1〉
i when offered any

ρ′-split with ρ′ < ρ
〈`′〉
i+1. This contradicts the assumption that f is `-tall, for which

there exists ρ′ = ρv such that fv(ρ
′) forwards the query exactly to level `.

We showed that ρv = ρ
〈`′〉
i+1 and fv(ρv) = gv(ρv). To complete the inductive

step, we need to prove that fv(ρ
′) = gv(ρ

′) for all ρv ≤ ρ′ ≤ ρ1. Fix any ρv ≤ ρ′ ≤
ρ1. We already proved that fv(ρ

′) does not forward the query exactly to level `.

Moreover, fv(ρ
′) cannot forward the the query below level `′ > `, as otherwise v

would prefer this strategy even when offered a ρv-split. Thus, fv(ρ
′) must forward

the query to some level ˆ̀< `, and Claim 37 concludes the proof.

Theorem 36 implies that every best-interest equilibrium f in which the root

offers a ρ
〈1〉
h -split to its children has to be h-tall, as f agrees with g on all split-offers

made in g. As h-tall equilibria retrieve the answer with the desired probability, the

root has incentive to play ρ
〈1〉
h as its strategy and would have incentive to deviate to

ρ
〈1〉
h if playing a different strategy. This observation implies the following Corollary.

102

Corollary 38. Under the assumption of h-consistency, every best-interest equilib-

rium retrieve the answer with the desired probability.

Furthermore, Theorem 36 shows that all best-interest equilibria are identical

to g for all the values that matter, i.e. all the values of ρv ≤ ρ ≤ ρ1. (The values

ρ < ρv are uninteresting as, when v is offered ρv, the query will already reach all

nodes in v’s subtree, hence v’s parent has no incentive to offer v a value ρ < ρv.)

This suggests that nodes can easily reach one such equilibrium. In particular, as

shown in the proof of Theorem 36, nodes at level h will participate only when

offered a ρ-split for ρ ≤ ρ1; nodes at level h − 1 can infer this and, by playing

according to (4.3), will offer a ρ1-split to their children when offered a ρ′-split for

ρ′ ≤ ρ
〈2〉
h−1, and will only participate (without propagating the query) if offered a

ρ′-split for ρ
〈2〉
h−1 < ρ′ ≤ ρ1; the argument extends up to the root.

4.7 Guaranteeing h-consistency

Until now, we assumed h-consistency both in the definition of g and in

the proof that g is a Nash equilibrium. It therefore remains to derive conditions

that ensure h-consistency. In the following theorem, we provide a lower bound

on the reward r∗ above which h-consistency is guaranteed. The bound reads in

terms of the probabilities γ
〈`〉
i through the quantities Γ

〈`〉
i = 1

γ
〈`〉
i

∑i−1
j=1 γ

〈`〉
j , which,

for all 1 ≤ ` ≤ h and 1 ≤ i < h − `, intuitively represent the ratio between the

probability that a node at level ` has a candidate at depth j < i in its subtree

versus the probability that it has one at depth i.

Theorem 39. Suppose the discretization parameter M is large enough, say M =

Θ(r∗2), and that

r∗ ≥ 4 · h ·max

{
1, max

1≤`≤h
1≤i<h−`

Γ
〈`〉
i

}
. (4.6)

Then h-consistency holds. In particular, for all 1 ≤ ` ≤ h and 1 ≤ i ≤ h− `, ρ〈`〉i
is defined and satisfies

1− 1

r∗ − i
< ρ

〈`〉
i ≤ 1− 1

r∗ − i+ 1
. (4.7)

103

Proof. Suppose condition (4.6) holds. We show by induction that, if the discretiza-

tion parameter M is large enough, for all 1 ≤ ` ≤ h and 1 ≤ i ≤ h− ` + 1, ρ
〈`〉
i is

defined and satisfies (4.7), that is, h-consistency holds.

By definition we have ρ
〈`〉
1 = ρ1 = 1 − 1/r∗, for all 1 ≤ ` ≤ h. Therefore

(4.7) holds for all 1 ≤ ` ≤ h and i = 1. Fix ` ≤ h and suppose the claim holds for

all ` ≤ `′ ≤ h and 1 ≤ i ≤ h− `′. We recall that ρ
〈`−1〉
i+1 is defined as

ρ
〈`−1〉
i+1 = max{ρ ∈ DM : e

〈`−1〉
i (ρ) ≥ e

〈`−1〉
i−1 (ρ)},

where

e
〈`−1〉
i (ρ) =

i∑
j=1

γ
〈`−1〉
j

[
(1− ρ)r∗

(
j−1∏
t=0

ρ
〈(`−1)+t+1〉
i−t

)
− 1

]
.

By definition of ρ
〈`−1〉
i+1 , it must be that

1− 1

r∗∆i

− 1

M
≤ ρ

〈`−1〉
i+1 ≤ 1− 1

r∗∆i

,

where

∆i =
i−1∏
j=0

ρ
〈`+j〉
i−j −

i−1∑
j=1

γ
〈`〉
j

γ
〈`〉
i

[
j−1∏
t=0

ρ
〈`+t〉
i−t−1 −

j−1∏
t=0

ρ
〈`+t〉
i−t

]
,

and M is the discretization parameter of the domain DM . To see this, compute

the difference e
〈`−1〉
i (ρ

〈`−1〉
i+1)− e〈`−1〉

i−1 (ρ
〈`−1〉
i+1), and argue that 1 ≤ (1− ρ〈`−1〉

i+1)r∗∆i ≤
1 + r∗∆i/M .

We find lower and upper bounds to the term between brackets in the expres-

sion for ∆i. First, by the inductive hypothesis, ρ
〈`+t〉
i−t−1 > ρ

〈`+t〉
i−t for all 0 ≤ t ≤ h− `

and 0 ≤ t ≤ j − 1 (with j < i). Therefore, we have

j−1∏
t=0

ρ
〈`+t〉
i−t−1 −

j−1∏
t=0

ρ
〈`+t〉
i−t > 0.

Also by induction, we have

j−1∏
t=0

ρ
〈`+t〉
i−t−1 −

j−1∏
t=0

ρ
〈`+t〉
i−t <

j−1∏
t=0

r∗ − i+ t+ 1

r∗ − i+ t+ 2
−

j−1∏
t=0

r∗ − i+ t− 1

r∗ − i+ t

=
r∗ − i+ 1

r∗ − i+ j + 1
− r∗ − i− 1

r∗ − i+ j − 1

=
2j

(r − i+ j + 1)(r − i+ j − 1)

<
2i

(r∗)2
,

104

as j < i in the expression of ∆i. Therefore, again by induction, we have

r∗ − i− 1

r∗ − 1
− 2i

(r∗)2
Γ
〈`〉
i < ∆i <

r∗ − i
r∗

.

The upper bound on ρ
〈`−1〉
i+1 follows immediately. For the lower bound, it suffices to

show that r∗ ·∆i > (r∗ − i− 1)(1 + r∗/M). Also, note that this would imply that

∆i > 0, and so that ρ
〈`−1〉
i+1 is defined. Rearranging the terms, it suffices to show

that
2i

r∗(r∗ − i− 1)
Γ
〈`〉
i <

1

r∗ − 1
− r∗

M
. (4.8)

By (4.6), we have that

i ≤ r∗

4
min{1, 1/Γ〈`〉i } − 1.

Then, (4.8) holds if
1/2

1− 1
4

min{1, 1/Γ〈`〉i }
< 1− (r∗)2

M
,

which is satisfied for M large enough.

Recall that ρ
〈`〉
h−`+1 is the split offered to the nodes at level ` in the Nash

equilibrium g. Theorem 39 along with Theorem 36 implies that, in every best-

interest equilibrium, the nodes at level ` receive a split offer close to 1− 1
r∗−(h−`) .

It can also be proven that, for a fixed i, ρ
〈`〉
i is decreasing in ` for 0 ≤ ` ≤

h − i. The intuition for this property is that a node further down in the tree

is willing to give a smaller fraction of its reward back to its parent, in order to

compensate the smaller probability of having a candidate in its subtree. However,

we do not need this property to ensure h-consistency.

Theorem 39 along with Corollary 38 directly yields the following pivotal

result, which relates the quantities Γ
〈`〉
j to the investment that is sufficient at the

root to retrieve the answer with the desired probability.

Corollary 40. Suppose condition (4.6) holds. Then, in any best-interest Nash

equilibrium, the query reaches all nodes at level h = hΨ(ε, n) of the tree. That is,

an answer is retrieved with probability at least 1− ζ − ε.

105

4.8 Efficiency

In the previous section, we derived a lower bound on the investment r∗ as

a function of the values Γ
〈`〉
i , for 1 ≤ ` ≤ h and 1 ≤ i ≤ h − `. In this section,

we show our main result by relating these values to the branching process and the

desired success probability. The following lemma bounds these quantities in terms

of the probabilities λi and φi of the branching process. Recall that, for each i ≥ 0

we defined φi as the probability that no node at level j ≤ i possesses the answer,

and λi = φi−1 − φi as the probability that a node at level i possesses the answer

and no node at level j < i does.

Lemma 41. For every 1 ≤ ` ≤ h and 1 ≤ i ≤ h− `, it holds that

Γ
〈`〉
i ≤

1

φ`+i−1

1− φi−1

λi
.

The key in proving Lemma 41 is to express γ
〈`〉
i in terms of the probabili-

ties φj and λj defined above, and then to bound Γ
〈`〉
i exploiting the memory-less

property of the branching process and of the process assigning the answer to the

nodes.

Proof. Recall that, for each i ≥ 0 we defined φi as the probability that no node at

level j ≤ i possesses the answer, and λi = φi−1− φi as the probability that a node

at level i possesses the answer while no node at level j < i does. Also, for every

0 ≤ ` ≤ h and 0 ≤ i ≤ `, we defined

Γ
〈`〉
i =

∑i−1
j=1 γ

〈`〉
j

γ
〈`〉
i

,

where γ
〈`〉
i is the probability that, fixed any node v at level `, there is a g-candidate

u in v’s subtree at distance i from v, given that v is active. We recall that a node

u at level `′ is a g-candidate if, under strategy g, u is an active answer-holder and

there is no active answer-holder in the first `′ − 1 levels. Let Lj be the event that

there is an answer holder at level j of the tree, and Fj be the event that no event

Lk happens for all k ≤ j. Observe that Pr(Lj, Fj−1) = λj and Pr(Fj) = φj. Fix

a node v at level ` < h. Let Lvj be the event that there is an answer holder in

106

v’s subtree at distance j from v, and F v
j be the event that no Lvk happens for all

k ≤ j. Also, let Av be the event that v is active. We have

γ
〈`〉
j = Pr(Lvj , F`+j−1|Av)

= Pr(Lvj |Av, F`+j−1) Pr(F`+j−1|Av)

= Pr(Lj|Fj−1) Pr(F`+j−1|Av)

=
Pr(Lj, Fj−1)

Pr(Fj−1)
Pr(F`+j−1|Av),

where the third equality follows by the fact that the branching process is memory-

less. By Bayes’ rule,

γ
〈`〉
j =

Pr(Lj, Fj−1)

Pr(Fj−1)

Pr(Av|F`+j−1) Pr(F`+j−1)

Pr(Av)
.

Observe that the probability that v is active only depends on the existence of

answer-holders on the path from the root to v or in the subtree rooted at v.

Therefore, letting P v be the event that there is no answer-holder in the path from

the root to v, we can write

Pr(Av|F`+j−1) = Pr(Av|P v, F v
j−1)

=
Pr(F v

j−1|Av, P v) Pr(Av|P v)

Pr(F v
j−1|P v)

=
Pr(Fj−1) Pr(Av|P v)

Pr(F v
j−1|P v)

,

where the second equality follows by Bayes’ rule, and the third equality by the

memory-less property of the branching factor. It follows that, for all ` ≤ h and

0 ≤ j ≤ h− `,
γ
〈`〉
j =

Pr(Lj, Fj−1) Pr(F`+j−1) Pr(Av|P v)

Pr(F v
j−1|P v) Pr(Av)

.

Plugging the last expression into the definition of Γ
〈`〉
i , we get

Γ
〈`〉
i =

1

Pr(Li, Fi−1) Pr(F`+i−1)

i−1∑
j=1

Pr(Lj, Fj−1) Pr(F`+j−1)
Pr(F v

i−1|P v)

Pr(F v
j−1|P v)

=
1

λiφ`+i−1

i−1∑
j=1

λjφ`+j−1

Pr(F v
i−1|P v)

Pr(F v
j−1|P v)

.

107

As Pr(F v
i−1|P v) ≤ Pr(F v

j−1|P v) for j ≤ i, and φ`+j−1 ≤ 1, we have that

Γ
〈`〉
i ≤

1

λiφ`+i−1

i−1∑
j=1

λj

<
1

φ`+i−1

1− φi−1

λi
.

The following technical lemma provides an upper bound to 1−φi−1

λi
. In par-

ticular, for any fixed branching process with b > 1, this ratio is bounded by a

constant, as long as φi is bounded away from the extinction probability ζ. The

lemma characterizes the bound with respect to the branching process and the gap

φi−ζ, and its proof builds on the mathematical properties of the probability gener-

ating function of the branching process. Recall that the desired success probability

is 1− ζ − ε.

Lemma 42. Consider any Galton-Watson branching process with branching factor

b > 1. Then, for every i such that ζ + ε ≤ φi ≤ 1, it holds that

1− φi
λi+1

≤ max

{
1

b− 1
,
1

ε
· 1

1−Ψ′(ζ)

}
.

Proof. For all i ≥ 0, let φ̂i = φi/p be the probability that for all levels up to i no

node has the answer given that the root (at level zero) does not. Observe that no

node up to level i+ 1 has the answer given that the root does not if and only if the

root’s children and their subtrees up to depth i do not have the answer. Therefore,

we have that φ̂i+1 = Ψ(p · φ̂i), where Ψ(x), 0 ≤ x ≤ 1 is the probability generating

function of the branching process. It follows that

λi+1 = φi − φi+1

= φi − p · φ̂i+1

= φi − p ·
d∑

k=0

ckφ̂
k
i p
k

= φi − p
d∑

k=0

ckφ
k
i .

108

Therefore we conclude

λi+1 > φi −
d∑

k=0

ckφ
k
i = φi −Ψ(φi). (4.9)

For 0 < ε ≤ 1− ζ and 0 ≤ z < 1− ζ, let

a(ε) = max

{
1

b− 1
,
1

ε

1

1−Ψ′(ζ)

}
,

and

t(z, ε) = a(ε) · (1− z −Ψ(1− z))− z.

We need to show that, for any 0 < ε ≤ 1− ζ,

1− φi
λi+1

≤ a(ε).

Observe that, by inequality (4.9),

1− φi
λi+1

≤ 1− φi
φi −Ψ(φi)

and therefore it suffices to prove that, for every ε > 0,

t(1− φi, ε) = a(ε) (φi −Ψ(φi))− (1− φi) ≥ 0.

First, observe that, for every ε > 0, we have t(0, ε) = 0, since Ψ(1) = 1 (see [AN04]).

Also note that

∂

∂z
t(z, ε)

∣∣∣∣
z=0

= a(ε) · (Ψ′(1)− 1)− 1 = a(ε) · (b− 1)− 1,

which is non-negative since a(ε) ≥ 1/(b − 1). Also, observe that ∂2

∂z2 t(z, ε) < 0

and ∂
∂ε
t(z, ε) > 0, for all z and ε in their respective domains. Therefore, since the

function t(z, ε) is continuous, it suffices to check that limε→0 t(1− ζ − ε, ε) ≥ 0. As

(1− b)−1 ≤ ε−1(1−Ψ′(ζ))−1 for ε small enough, we have that

lim
ε→0

t(1− ζ − ε, ε) > lim
ε→0

[
1

1−Ψ′(ζ)

1

ε
(ζ + ε−Ψ(ζ + ε))

]
− 1.

Since ζ = Ψ(ζ), by l’Hôpital’s rule, limε→0 t(1− ζ − ε, ε) > 0.

109

Our main result directly follows by combining Corollary 40, Lemma 41 and

Lemma 42, along with the observation that φ`+i−1 > ε (as φ`+i−1 ≥ φhΨ(ε,n)−1 > ε).

For the case of a ray, the bound can be obtained observing that φi = (1− 1/n)i and

λi+1 = φi
n

, which implies Γ
〈`〉
i ≤ Γ

〈1〉
h ≤ ε−2n.

Theorem 43 (Efficiency). Consider any Galton-Watson branching process with

b > 1. Then, at equilibrium, the root retrieves the answer with probability at least

σ = 1− ζ − ε provided an investment of

r∗ =
4

ε
·max

{
1

b− 1
,
1

ε
· 1

1−Ψ′(ζ)

}
· hΨ(ε, n).

In the case of a ray, with b = 1 and c0 = ζ = 0, an investment of r∗ = 4 · n
ε2
·

hΨ(ε, n) = 4 · n2

ε2
ln 1

ε
suffices.

Observe that an investment of hΨ(ε, n) is necessary even in a centralized

(non-strategic) setting, where the root decides the strategies of all nodes while

only guaranteeing a non-negative payoff to them (each node pays a unit cost when

returning the answer). In line with intuition, the investment grows as b tends to

1 (in the limit, when the tree becomes a ray, the investment is polynomial in n),

and when the accuracy ε approaches 0. The term 1
1−Ψ′(ζ)

can be crudely bounded

by 1
c0

. However, when c0 tends to zero, so does the extinction probability ζ, which

implies 1
1−Ψ′(ζ)

≈ 1
1−c1 , also suggesting a more expensive investment when the tree

tends to a ray (i.e., when c1 approaches 1).

4.9 Discussion: non-uniqueness of the Nash equi-

librium

In this section, we discuss the existence of multiple Nash equilibria both in

the game with fixed-payment contract of [KR05, AKK+07] and in the game with

split contracts presented in this work.

First we recall the setting of [KR05, AKK+07]. Each node has an integer-

valued function fv; if v is offered a reward of r ≥ 1 by its parent, and v does not

possess the answer to the query, then v offers in turn a reward of fv(r) < r to its

110

children. Also, by definition, fv(1) = 0. Kleinberg and Raghavan [KR05] show

that a set of strategies f is a Nash equilibrium if and only if, for every node v,

fv(r
v) is the value x maximizing the function

hv(x; rv) = (rv − x− 1)pv(f , x).

Here rv is the reward offered to v by its parent under f , and pv(f , x) is the prob-

ability that the subtree below v yields the answer, given that v does not possess

the answer and offers reward x to its children. This characterization of the Nash

equilibria for the game with fixed-payment contract is analogous to our result of

Lemma 29 for split contracts, where the optimization is with respect to the function

χf
v(·, ρv).

Using the functions hv(x; rv), it is possible to construct a set of strategies

gfixed which optimizes hv(x; rv) for every node v and is therefore a Nash equilibrium

of the game with fixed-payment contracts. Theorem 2.2 in [KR05] claims that gfixed

is the unique equilibrium, in the sense that any other Nash equilibrium f in which

fv(2) = 1 is such that for all nodes v and rewards r that are reachable at v with

respect to f , fv(r) = gfixed
v (r). Note that this claim would imply that all equilibria

have the same efficiency, in that the query is forwarded to the same levels in every

equilibrium.

Unfortunately, this claim can be showed to hold true only when restricted

to best-interest equilibria (as in our setting, see Theorem 36), that is, when consid-

ering only equilibria where fv(r
′) is the value x maximizing hv(x; r′), for every r′.

Note that in a best-interest equilibrium, nodes choose their strategies to optimize

their payoff for any possible offer they may receive. This suggests that equilibria

that are not best-interest are somewhat pathological, as contain nodes who do not

consider their payoff globally. It is possible to show that both games admit (non-

best-interest) equilibria that can be very inefficient in the sense that the query

is only forwarded to a constant number of levels in the tree no matter how large

the available investment r∗ is. We present one of these equilibria for the case of

fixed-payment contracts (the case with split contracts is similar). Consider the set

of strategies f in which all nodes at level 1 play f1(r), all nodes at level 2 play

f2(r), and all nodes below play f3(r) (recall that the root is at level zero). For a

111

parameter r′ ≥ 4, the functions are defined as follows.

f1(r) =


0, if r = 1

1, if r = 2

2, if r ≥ 3 and (r−r′−1)(λ1+λ2+λ3)
(r−2−1)(λ1+λ2)

< 1

r′, if r ≥ 3 and (r−r′−1)(λ1+λ2+λ3)
(r−2−1)(λ1+λ2)

≥ 1

f2(r) =


0, if r = 1

1, if 2 ≤ r < r′

2, if r ≥ r′

f3(r) =

{
0, if r = 1

1, if r ≥ 2

It can be verified that f is a Nash equilibrium, which thus forwards the query to

level at most 3, regardless of the reward r∗ offered by the root to the nodes at

level 1. The bottleneck in the equilibrium is created by the nodes at level 3 or

more, who cannot forward the query more than a single level as they never offer

their children more than 1; in light of this, the nodes at level 2 are not going to

offer their children more than 2 (and they do so when receiving at least r′), and

in turn the nodes at level 1 do not offer more than r′. This causes the query not

to be forwarded efficiently. This phenomenon cannot happen in a best-interest

equilibrium as, roughly speaking, the nodes at level 3 (or more) would consider

the scenario in which they get offered an amount larger than 2 and realize that

it is more convenient to offer their children an amount larger than 1 (assuming

the nodes below reason similarly), therefore forwarding the query deeper down the

tree.

4.10 Simulations

In this section, we experimentally compare the amount of investment needed

with fixed-payment and split contracts. Our results show that split contracts are

more efficient than fixed-payment contracts not only for small branching factors

(1 < b < 2), but also for large branching factors. Figures 4.1 and 4.2 show the

investments, as a function of the rarity n, in the case of a binomial offspring

112

 0

 100

 200

 300

 400

 500

 600

 1 1.2 1.4 1.6 1.8 2 2.2

Figure 4.3: As a function of b > 1: investment with split-contracts (in red circles)
and logarithm of the investment with fixed-payment contracts (in blue circles). In
green, the function 1

b−1
scaled by a constant factor.

distribution Bin(5, q) with q = 0.39 (i.e. b = 1.95) and q = 0.8 (i.e., b = 4),

with success accuracy ε ∈ {0.2, 0.05}. Figure 4.1 shows that the improvement is

major (exponential) already for b slightly less than 2, while Figure 4.2 shows a

constant-factor gain for large b. Similar improvements were observed in general

for any b > 1 and ε > 0, with finer accuracy ε leading to more improvement.

The dependence of the investment w.r.t. the accuracy ε (see Theorem 43) is more

pronounced for small b (i.e. in Figure 4.1), but it is still noticeable even for larger

b when employing smaller values of ε.

Also, we consider the investments as a function of b tending to 1. Figure 4.3

shows the case of a binomial branching process Bin(5, q) with q tending to 1/5,

accuracy ε = 0.01, and rarity n = 10−6. As the investment with fixed-payment

is exponentially larger than that with split contracts for small b, we plotted its

logarithm. The figure confirms the 1
b−1

factor from Theorem 43 in the case of split

contracts (note that 1
ε(1−Ψ′(ζ))

instead is bounded by a constant, as c0 = Ω(1)), and

also suggests that the investment with fixed-payment contracts is exponential in

1/(b−1).

Chapter 4, in part, is a reprint of the paper “Finding red balloons with split

contracts: robustness to individuals’ selfishness” co-authored with Manuel Cebrián,

113

Lorenzo Coviello, and Panagiotis Voulgaris published in the proceedings of the

44th Symposium on Theory of Computing Conference, STOC 2012 [CCVV12].

The dissertation author was the primary investigator and author of this paper.

Part II

Models for Other Phenomena

114

Chapter 5

Models for Aggregation

Aggregation of different entities manifests itself in several dynamic systems.

Global population is one example: people are aggregated in a few dense urban areas

rather than being distributed uniformly over the entire planet. Similar aggregation

phenomena are observed in smaller scale as well: concentration of stores inside

malls, abundance of restaurants around the center of a city, high density of students

living near a university, and so on. Many more examples are encountered in the

areas of economics, sociology, biology, and other fields.

Given the large body of evidence of aggregation phenomena, we wish to

provide a theoretical model that explains it. The formalization we use in this

chapter models a population of t individuals inhabiting a world – represented as an

undirected graph1 with n nodes– and measures aggregation by the number of edges

induced by the nodes occupied by the individuals. Since all the aforementioned

examples are dynamic systems, evolving by means of choices taken by a large

number of competitive entities, game theory provides an appropriate framework for

analysis. Note that optimizing aggregation in this form can be seen as an instance

of the densest t-subgraph problem which is known to be NP-hard [FPK01] and

likely to be hard to approximate [GL09, FPK01, BCC+10]. Given the complexity

of the underlying problem it is natural to ask whether competitive entities are

able to achieve high levels of aggregation. Specifically, we can ask: what strategies

drive selfish behavior to form aggregated networks? In this work we consider a

1We assume that each node of the graph accommodates at most one individual.

115

116

natural class of possible behaviors that players can follow, and we analyze the

whole spectrum of games defined by this class. We identify behaviors that define

games yielding high aggregation as well as subclasses of them that inherently incur

low aggregation.

For specific players’ behaviors, we measure the quality of aggregation by

studying the Nash equilibria2 of the corresponding game; i.e., placements of the

population for which no individual has an incentive to move from its current po-

sition. Our main focus is the study of the price of anarchy in our games, which

refers to the ratio of an optimum centralized solution to the worst Nash equilib-

rium [KP09, Pap01]. In addition, we study the price of stability (also known as

“optimistic price of anarchy”), which is defined as the ratio of the optimum to

the best Nash equilibrium [ADK+08, ADTW03]. The price of stability is useful in

applications where a central authority proposes a collective solution so that every

player has no incentive to unilaterally deviate from it. On the other hand, the price

of anarchy captures worst-case situations where no central coordination exists. A

low price of anarchy implies good outcomes of the game even when players act

exclusively in their own interest.

5.1 Results

In this work, we initiate a game-theoretic study of aggregation phenom-

ena3 which can be considered as a competitive version of the k-induced subgraph

problem. Our findings highlight the significance of heterogeneity in achieving high

levels of aggregation. We show that heterogeneous populations (i.e., not all individ-

uals follow the same strategy) composed of individuals following very simple, yet

diverse, strategies, outperform homogeneous populations (i.e., all follow the same

strategy) regardless of how sophisticated the strategy followed by the latter is. In

2In this paper we are only concerned with pure Nash equilibria; i.e., equilibria based on
deterministic strategies. It is an interesting question how the price of anarchy and stability
would change when considering mixed strategies.

3We emphasize that in this work we study aggregation phenomena of populations that occupy
a network. Aggregation in our context has nothing to do with information aggregation which
refers to economics mechanisms designed explicitly for the purpose of collecting and aggregating
information.

117

Table 5.1: Summary of all upper and lower bounds for price of anarchy and price
of stability.

Population
Price of Anarchy

Stab. Reference
LB UB

Homog.
Followers Θ(t) (even for t = Ω(n)) 1 Obs. 44
Leaders ∞ ∞ Obs. 46

Arbitrary Θ(t) (even for t = Ω(n)) Thm. 47
Heterog. Mixed min{Θ(t),Θ(n/t)} 1 + ε Thm. 48,49,51,52
Informed homogeneous Ω(n/t) O(min{t, n/t}) 1 + ε Thm. 57,56,58,52

particular, we show that a population composed of only two types of individuals,

the leaders – who have a tendency to “invest” by moving to high degree nodes (in

hope that other players will follow) – and the followers – who are more prudent

and look for immediate rewards – achieves price of anarchy which is asymptotically

lower than that achieved by any homogeneous population.

Our results suggest that the power of diversity manifests itself more signif-

icantly in large populations (i.e. when the number of players t is comparable with

the number n of nodes), in which case the gap in the price of anarchy between

heterogeneous and homogeneous populations can be as large as Ω(n). Interestingly,

we show that homogeneous strategies cannot outperform the simple heterogeneous

strategy even if they are provided with additional information about the parame-

ters of the game.

For all the games we study the best-response dynamics and prove fast con-

vergence. We also consider the price of stability of our games. In particular, for the

population obtained as a mixture of followers and leaders the price of stability can

be made arbitrarily close to 1 by tuning the mixing parameter (while preserving a

low price of anarchy). We tighten this result by showing that no population (even

heterogeneous) can achieve optimal price of stability and low price of anarchy at

the same time. Our results are summarized in Table 5.1.

Discussion

In order to model heterogeneous populations one can take two possible

views. In one, all players have the same true payoff (number of neighbors in the

118

present context) but adopt different strategies towards optimizing their payoff. In

this case, the global welfare is the sum of the players’ payoffs which corresponds

to the number of induced edges. In the second view, there are two types of players

with two different payoff functions, but the social welfare is not the sum of the

players’ payoffs. The most natural view for this work is the first one: All players

have the same ultimate goal, i.e. maximize their neighbors, and act strategically

towards this goal.

5.2 Related work

The aggregation game we study in this work can be interpreted as a network

formation game, where the subgraph induced by the individuals at equilibrium

represents the created network. Several network creation games of different flavors

have been considered in the literature and most of them are related to network

design [Vet02, FLM+03, ADK+08, ADTW03, CP05] and social networks [BG00,

Jac05]. One of the common settings [BG00, FLM+03, CP05, AEED+06] assumes

that each player is associated to a particular node (during the entire course of the

game) and can buy edges to any other node (i.e., the underlying graph is complete).

The goal of each player is to minimize the distances to all other nodes paying as

little as possible. Most of the work for this game aims to bound the price of

anarchy [FLM+03, CP05, AEED+06]. Another line of work for network formation

can be interpreted as a competitive version of the Steiner tree problem [ADK+08,

ADTW03], and focus on bounding the price of stability of the game, since the

price of anarchy can be Ω(n) in graphs of n nodes.

All the literature we mentioned associates costs with edges of the networks,

so that good solutions try to avoid dense graphs. Instead, in the games we con-

sider, edges are beneficial. A different line of work in social networks that takes

into account this aspect is exchange theory. A vast body of empirical evidence

in this field shows that high-degree nodes represent more powerful positions in

networks [Eme62, Wil99]. In particular, the bargaining problem has received con-

siderable attention and a study of it in general networks is provided in [KT08b].

119

There has also been a lot of attention recently in circumventing high price

of anarchy of certain games. A line of work considers the noisy best-response

dynamics, which reach high-quality states with high probability but only after

exponentially many steps [Blu03, MS12]. In [SW09, BBM09], high price of anar-

chy is circumvented by centrally coordinating some of the players. In particular,

[BBM09] considers a model in which a globally optimal behavior (which brings to

the optimum) is proposed and a fraction of the players follows this advise for a

while but ultimately acts in a way that maximizes their utility. Finally, [BBM10]

considers a model where each player uses an experts learning algorithm to choose

between an optimal (but untrusted) behavior and the best response dynamics.

Observe that in our work we consider games with different classes of players, but

(a) players in each class are not centrally controlled, and (b) none of the classes

follows an optimal behavior (each class separately fails indeed to achieve low price

of anarchy).

Related to our work is also a seminal study of segregation by economist

Thomas Schelling [Sch71, Sch78]. The general formulation of the model proposed

by Schelling assumes a population residing in the cells of a grid. Each cell has eight

adjacent cells (including diagonal contact). Also, each individual of the population

is either of type A or B (the type represents some characteristic such as race,

ethnicity, etc.) and wants to have at least r adjacent individuals of its own type,

where r is a satisfaction threshold common to all individuals. The system evolves

in steps, and at each step an unsatisfied individual is selected and moved to a cell

offering more neighbors of its own kind. Interestingly, experiments simulating this

model display a high level of segregation of the two kind of individuals even with a

mild threshold r (e.g., r = 3). Observe that the incentives of the individuals are in

fact aggregation rules (as opposed to segregation rules), therefore Schelling’s model

can be interpreted as a model of aggregation as well. Throughout the paper we

will point out some relations of our games to the scenario proposed by Schelling.

120

Roadmap

We discuss preliminaries in Section 5.3. Section 5.4 is dedicated to homoge-

neous populations and provides the theorem establishing their inherent high price

of anarchy. In Section 5.5, we consider the population obtained by a mixture of

followers and leaders and show that it yields both low price of anarchy and price of

stability. In Section 5.6 we consider possible extensions. We conclude with future

directions in Section 5.7.

5.3 Preliminaries

Consider an undirected graph G = (V,E) and t players, where t possibly

depends on |V |. For a placement H ⊆ V (with |H| = t) of the players onto the

graph, the global welfare is defined as the number of edges induced by H in G. We

will say that a placement is optimum if it induces the maximum possible number

of edges. For convenience we will often use the term optimum to also indicate

the value of an optimum placement (that is, the number of induced edges). Note

that it is NP-hard to find an optimum placement for general graphs because it is

equivalent to solving the densest t-subgraph problem [FPK01]. Also, this problem

is likely to be hard to approximate since the best known centralized algorithm gives

a O(n1/4+ε) approximation [BCC+10]. To circumvent this computational barrier,

we are mainly interested in the case t = Θ(n) when the t-densest subgraph admits

a constant factor approximation, but we show our results for general t as well.

Given a placement H of players onto a graph G, we let ΓH(u) denote the

degree of the node u in H (that is, the number of adjacent individuals that a

hypothetical player located in u would have under placement H). Similarly, we

let ΓH(u) be the degree of u in the graph obtained by G after removing the edges

in H (that is, the number of empty adjacent positions that a hypothetical player

located in u would have under H). Clearly for all placements H ⊆ V, degG(u) =

ΓH(u) + ΓH(u).

It is easy to see (Section 5.4.1) that if every player plays the most natural

strategy, that of greedily moving to a location with the highest number of neigh-

121

bors, then the equilibria can be very poor compared to an optimum placement.

Therefore, we will consider richer classes of games, where players might make de-

cisions that take into account possible future benefits. In all our games, the way

every player i decides where to move can be described in the following manner:

player i “ranks” every (available) location in the graph through a ranking function

fi(·) that gives a score to each location (i.e. node) u of the graph with respect

to the current configuration, and moves to the location with highest score. The

functions fi(u) we consider are “local” to the location u, in the sense that fi(u)

depends only on the current configuration of the neighborhood of u, i.e. on ΓH(u)

and ΓH(u).

Most of our proofs are obtained analzying configurations reached by a best-

response dynamics. Best-response dynamics studies the game in an evolving fash-

ion. Specifically, the system evolves in steps: at each step a player is chosen and

given the opportunity to move to a new better location with respect to its rank-

ing function. The way players are chosen depends on some (possibly randomized)

scheduling. We note that Schelling’s original work on segregation [Sch71, Sch78]

also uses a best-response dynamics to model evolution.

5.3.1 Notation

We are interested in undirected and connected4 graphs. Given an undirected

graph G = (V,E) and any S1, S2 ⊆ V we denote by ES1,S2 the set of edges with

one endpoint in S1 and the other in S2. When clear from the context, the same

notation will be used for the cardinality of the edges from S1 to S2. Abusing

notation, we will use ES instead of ES,S. Since we only consider undirected graphs,

ES1,S2 = ES2,S1 . Likewise we use d̃S1,S2 to denote the average degree of nodes in

S1 when considering edges only in ES1,S2 (notice that d̃S1,S2 6= d̃S2,S1). It is not

hard to see that d̃S,S = 2ES
|S| while if S ∩ T = ∅, d̃S,T =

ES,T
|S| . Also if T1, ..., Tk form

a partition of T then ES,T =
∑k

i=1ES,Ti and d̃S,T =
∑k

i=1 d̃S,Ti . Finally, we will

use t and n to denote the size of the population and the size of the graph under

4The connectivity requirement can be dropped for most of our results. However, there are
cases for which disconnected graphs give rise to some rare pathologies (e.g., when the graph is
an independent set) that need special care.

122

consideration respectively.

5.4 Homogeneous Populations

In this section we analyze populations where all individuals have the same

ranking function, i.e. fi = fj for all players i, j. We call such populations homoge-

neous. We start by studying two very natural strategies and prove that both fail

in achieving a low price of anarchy. We conclude the section by showing that a

high price of anarchy is inherent in all homogeneous populations regardless of the

ranking function they use.

5.4.1 A Population of Followers

We begin by looking at the most natural ranking function for the individuals

which makes a player move to another (non-occupied) location if it offers more

adjacent players than its current location. Formally, given a placement H of the

players onto the graph, the ranking function of each player is defined by:

f(u) := ΓH(u),

and the player is incentivized to move to another location v if v /∈ H and ΓH′(v) >

ΓH(u), where H ′ = (H \{u})∪{v}. Note that the evolution of this game captures

Schelling’s model provided that the satisfaction threshold r is large (see related

work).

The price of anarchy and stability of this simple game are established in the

following result which also demonstrates a fast convergence of the best-response

dynamics. As such, an equilibrium is easy to find.

Observation 44. Consider the aggregation game with a population of followers.

Then, for any connected graph, the price of stability is exactly 1, the price of

anarchy is O(t), and there are connected graphs of size n with price of anarchy

as high as Ω(t) even for t = Θ(n). Finally, best-response dynamics converges in

polynomial time.

123

Proof. For the polynomial convergence of the best-response dynamics, define the

simple (potential) function R(H) = EH . Every time a player moves from u1 to

u2 then the new configuration is H ′ = H \ {u1} ∪ {u2} with R(H ′) − R(H) =

ΓH\{u1}(u2) − ΓH\{u1}(u1) ≥ 1. Also R(H) = O(t2) for all placements H of size

t and therefore the aggregation game with a population of followers reaches an

equilibrium after at most O(t2) = O(n2) iterations. For the price of stability, let

Gt = (Vt, Et) be a t-densest subgraph of G. Then H = Vt is an equilibrium (since

Gt is a densest subgraph of G) and hence Et
EH

= 1. For the upper bound on the

price of anarchy note that any subgraph of size t has at most O(t2) edges and any

equilibrium has at least Ω(t) edges (since the graph is connected). Finally, for the

lower bound consider the graph shown on the left in Figure 5.2 with N = 0 and

k = t. The configuration shown is an equilibrium with EH = O(t) whereas the

optimum subgraph of size t has Ω(t2) edges. Therefore the price of anarchy can

be as high as Ω(t) = Ω(n) for t = Θ(n).

An optimal price of stability is appealing, however we show that in gen-

eral, these optimal equilibria do not even satisfy some simple requirements. As

explained in the related work section, the model provided by Schelling embeds a

notion of satisfaction for the individuals5. Along the same lines, for any graph,

we can classify Nash equilibria with respect to the minimum satisfaction among

the individuals. Specifically, we say that a Nash equilibrium is r-stable if every

individual has at least r adjacent players. We define the price of r-stability as the

ratio of the optimum to the best r-stable equilibrium. As discussed previously,

the price of stability can be interpreted as a reasonable solution proposed from a

central authority to the players. In light of this, Observation 44 suggests that there

are proposals of optimum value such that no individual has incentive to move. On

the contrary, the following observation implies that if we were to look for proposals

that guarantee even just a small amount of satisfaction for every individual (and

assuming that satisfied individuals do not move), then the overall social welfare

5An individual is satisfied if it has at least r neighbors, for some threshold r common to all
individuals. A satisfied individual has no incentive to move even if there exist available positions
with more neighbors.

124

R
in

g
of
t

n
o
d
es

(t− 1)-clique

Figure 5.1: 2-stable placement with high price of anarchy. This is used in Obser-
vation 45.

can be much worse than the optimum welfare6.

Observation 45. There are connected graphs of size n with price of 2-stability of

Ω(n). In general, for connected graphs, the price of r-stability is Θ(t/r) for r ≥ 2

and is exactly 1 for r ∈ {0, 1}.

Proof. For r = 0 or r = 1 the statement is obvious since for connected graphs, all

players in any optimum placement H are 1-stable (they have at least one adjacent

player). For r = 2 consider the graph shown in Figure 5.1. Clearly the optimal

size-t subgraph has O(t2) edges. However, the only 2-stable placement is the one

where all t players are placed on the ring of size t (notice that the clique can

accommodate at most t−1 players). Hence, the best 2-stable equilibrium has O(t)

edges which implies that the price of 2-stability is Ω(t) = Ω(n). For r > 2 the proof

is identical (we need only replace the ring with an r-regular graph).

Finally, we note that deciding if there exists an r-stable equilibrium is NP-

hard for any r ≥ 3 [APP+12].

5.4.2 A Population of Leaders

The previous game failed in providing a low price of anarchy due to the fact

that the individuals were short-sighted and did not look for long-term rewards. In

6A common measure for the social welfare of an equilibrium is the egalitarian objective func-
tion which is defined as the maximum player’s utility. The argument above instead quantifies
the quality of equilibria by their minimum player’s utility.

125

particular, the followers’ function failed to spot strategic positions in the graph. In

this section we analyze a population of “leader” individuals that tries to overcome

this issue. Specifically, individuals will move to high degree nodes even if they

do not offer many adjacent individuals at the time of the move. In other words,

individuals are investing in empty positions with the hope of gaining many adjacent

players as the system evolves. Given their relation to common measures such as

betweenness, high degree nodes play an important role in the study of power in

social networks [Eme62, Wil99].

In order to account for high-degree nodes we define the following ranking

function:

`(u) := ΓH(u) + ΓH(u).

A player moves to a node v from v if `(v) > `(u). Unfortunately, this population

performs even worse than a population of “followers”.

Observation 46. The best-response dynamics of the game converges in polynomial

time. However, there exist connected graphs for which all Nash equilibria have zero

social welfare.

Proof. For the convergence of best-response dynamics, consider the simple (poten-

tial) function R(H) =
∑

u∈H `(u). Notice that every time a player moves R(H)

increases by at least 1. However R(H) is bounded by t(n − 1) therefore the pop-

ulation achieves an equilibrium after at most t(n − 1) iterations. For the second

part of the proof, consider the graph on the right of Figure 5.2 with k = 5. All

its nodes have degree either 2 or 4. Hence, all individuals will eventually move to

the nodes of degree 4. This placement induces no edges between individuals and

hence the price of stability is infinite.

5.4.3 Lower Bounds for Homogeneous Populations

In the previous sections we analyzed two simple kinds of populations: fol-

lowers and leaders. For different reasons, both populations failed in ensuring a

non-trivial price of anarchy. At this point, one could be tempted to think that

more sophisticated ranking functions might result in lower prices of anarchy. In

126

t/
2

ga
d

ge
ts

w
it

h
p

at
te

rn
:

em
p

ty
,

fu
ll

,
fu

ll
,

em
p

ty
.

N empty nodes.

(k − 1)-regular graph
of size t, with one

edge removed.

|V | = 3t+N .

. . .

. . .

. . .

. . .

. . .

Gadget of size k.

...
...

(k
−

1)
/2

n
o
d
es

on
ea

ch
si

d
e.

. . .

. . .

. . .

. . .

...
...

t gadgets connected in a ring, |V | = kt.

Figure 5.2: Graphs for lower bounds. They are used in the proof of Theorem 47.

this section, we show that this is not the case. On the contrary, the seemingly naive

strategy of followers gives (in asymptotic terms) the lowest possible price of anar-

chy among all homogeneous strategies. More specifically, in Theorem 47, we show

that any homogeneous population cannot yield low price of anarchy. Interestingly,

the graphs used in Observations 44 and 46 entirely capture the hardness of achiev-

ing a low price of anarchy and play a central role in the proof of the aforementioned

lower bound.

Theorem 47. Consider any homogeneous population. Then, there exists an in-

finite increasing sequence of {ti}∞i=1 such that for all ni ≥ 3 · ti there exists a

connected graph on ni nodes on which the homogeneous population of size ti has

price of anarchy at least ti.

Proof. In the case of homogeneous populations, the ranking function of the indi-

viduals can be represented as a table s(i, j), where s(i, j) denotes the value of the

function at a node with i adjacent individuals and j adjacent empty positions.

First, we claim that it must be that s(1, 1) > s(0, d) for every d ≥ 2. Suppose not:

then the placement shown on the right of Figure 5.2 with k = d+1 (a similar graph

can be constructed for odd d as well) is an equilibrium (note that every node in the

graph has either degree d or 2) with zero social welfare and therefore infinite price

of anarchy. So, we may assume that s(1, 1) > s(0, d) for every d ≥ 2. But then, for

any even t (and n ≥ 3t), the placement on the left of Figure 5.2 with k = t is an

equilibrium that induces t/2 edges, while the optimum is obtained by placing the t

individuals in the (t− 1)-regular graph of size t which yields (t− 1)t/2− 1 induced

127

edges. Therefore the price of anarchy in this case is at least t which concludes the

proof.

5.5 Heterogeneous Populations

In Section 5.4, we showed that neither a population of followers nor a pop-

ulation of leaders can achieve a low price of anarchy. Even worse, Theorem 47

suggests that we cannot hope for low price of anarchy when considering homoge-

neous populations. However, it leaves open the door for heterogeneous populations.

It is natural to ask how many different “classes” of individuals are required in order

to reduce the price of anarchy or even how complex the strategies of each class

should be. In this section we settle both questions with a favorable answer that

suggests an extreme separation between homogeneous and heterogeneous popula-

tions: while the naive populations of only leaders or only followers have high price

of anarchy (Ω(t), even for t = Θ(n)) when considered separately, we show that a

simple hetergeneous population composed of a mixture of the two achieves a low

price of anarchy, in particular a constant price of anarchy for t = Θ(n).

We also study the price of stability achieved by the heterogeneous popu-

lation. Namely, in Theorem 51, we prove that the price of stability can be made

arbitrarily close to 1 by tuning the mixing parameter (while maintaining a low

price of anarchy). We conclude the section by proving that this is essentially the

best price of stability one can achieve without increasing the price of anarchy.

More specifically, we provide an impossibility theorem showing that no population

can achieve an optimal price of stability and a low price of anarchy simultaneously

(see Theorem 52).

5.5.1 Achieving Low Price of Anarchy

Consider a λ-heterogeneous population (for some 0 < λ < 1), with λt leaders

(players with ranking function ` from Section 5.4.2) and (1−λ)t followers (players

with ranking function f(u) from Section 5.4.1).

The following theorem shows that the best-response dynamics of such a

128

game converges in polynomial time and provides upper bounds for the price of

anarchy. Interestingly, the price of anarchy of λ-heterogeneous populations with

constant λ, is upper bounded by O(
√
n) and can be as low as constant when

t = Θ(n).

Theorem 48. Fix any 0 < λ < 1 and any connected graph G of n nodes. Then

the λ-heterogeneous population achieves a constant price of anarchy for t = Θ(n).

In general, the price of anarchy is O
(

min
{

1
1−λt,

1
λ(1−λ)

n
t

})
. In addition,

best-response dynamics converges in polynomial time.

Proof. The proof of polynomial time convergence is a simple combination of Obser-

vations 44 and 46. First notice that the number of leaders’ moves cannot exceed

O(λtn) (every time a leader moves the potential function
∑

u:leader degG(u) in-

creases by at least 1 and this sum cannot exceed the value λtn). Now conditioned

on leaders not moving, followers’ moves are also polynomially bounded (Observa-

tion 44). The two bounds together guarantee polynomial time convergence for the

whole population.

Let now H be the set of nodes occupied by the population in any equilib-

rium. We will use F,L ⊆ H to denote the set of nodes occupied (upon convergence)

by followers and leaders respectively. We have |L| = λt, |F | = (1− λ)t. Also let B

the subset of nodes of any t-densest subgraph of the graph. We want to bound the

price of anarchy, i.e. EB/EH . For the upper bound of t/(1 − λ), simply observe

that EB < t2/2 while EH ≥ (1 − λ)t/2 since the followers will have at least one

neighbor because the graph is connected.

For the other bound, we define `0 (resp. f0) to be the minimum value of

the ranking function ` (resp. f) over the positions of the leaders (resp. followers)

in H. That is, `0 = minu∈L `(u) and f0 = minu∈F f(u). We observe that every

node in B \H can not have more than f0 + 1 neighbors in H otherwise H would

not be an equilibrium. Also there are at most t nodes in B \ H and therefore

EB\H,H ≤ (f0 + 1) · t. On the other hand, EH ≥ f0 · (1 − λ)t/2. By combining

these two inequalities with the fact that EB ≤ EH +EB\H,H +EB\H , we conclude

129

that the price of anarchy is

EB
EH

≤ EH
EH

+
EB\H,H
EH

+
EB\H
EH

≤ 1 +
4

1− λ
+
EB\H
EH

.

It remains to bound term EB\H/EH . We start showing a lower bound for EH .

Observe that

`0 · λt ≤
∑
u∈L

`(u) ≤ 2EL,H + EL,V \H . (5.1)

In addition, in any equilibrium H, the average degree EV \H,H/|V \H| from V \H
to H is at most the average degree EF,H/|F | of F to H. Also we have EV \H,H ≥
EV \H,L from which

EF,H
|F | ≥

EV \H,L
|V \H| . This implies that

EF,H
(1−λ)t

≥ EV \H,L
n

which entails

EV \H,L ≤ n
(1−λ)t

EF,H . Combining the last inequality with (5.1) we get

2EL,H +
n

(1− λ)t
EF,H ≥ `0λt ⇒

2
n

(1− λ)t
(EL,H + EF,H) ≥ `0λt

Also we know that 2EH ≥ EL,H + EF,H , therefore the above implies that EH ≥
`0λ(1 − λ)t2/(4n). We now bound EB\H . Note that the nodes in B \ H cannot

have degree more than `0, otherwise H would not be an equilibrium, therefore

EB\H ≤ `0 · t. Combining the bounds on EH and EB\H we obtain
EB\H
EH
≤ 2 n

λ(1−λ)t

from which the theorem follows.

The following Theorem shows that the upper bound for the price of anarchy

of the aforementioned heterogeneous strategy is asymptotically tight.

Theorem 49. For the λ-heterogeneous population, for any λ and t, there exists a

connected graph of size n such that the price of anarchy is Ω
(

min
{

1
1−λt,

1
λ(1−λ)

n
t

})
.

Proof. We present a construction of a disconnected graph for simplicity. It is not

hard to extend it to a connected graph with similar price of anarchy. Consider a

graph G that contains a t-clique (let Vc be the set of the corresponding nodes) and

a bipartite graph (V1, V2) with |V1| = λt and |V2| = n0 = n − λt − t. Each node

of V1 has t − 1 edges with nodes from V2 so that the degree of the nodes in V2 is

130

equally distributed and is at most dλt(t−1)
n0
e ≤ 1 + λt(t−1)

n0
. The densest t-subgraph

is the t-clique which gives t(t − 1)/2 edges. Now notice that if all the leaders are

placed on the nodes of V1 and all the followers on the highest degree nodes of V2

we get an equillibrium (call this placement H). Notice that each follower will have

at most 1 + λt(t−1)
n0

edges, so the total number of edges is (1−λ)t(1 + λt(t−1)
n0

). Now

if 1 < λt(t−1)
n0

, then EVc/EH > n0

2λt(1−λ)
, while if 1 > λt(t−1)

n0
, EVc/EH > t−1

2(1−λ)
.

5.5.2 Price of Stability and Relation to Price of Anarchy

We now investigate the price of stability for the heterogeneous population.

We need the following technical lemma to establish our main result.

Lemma 50. Let G = (V,E) be a graph and Gt = (Vt, Et) a densest t-size subgraph

of G. Then ∀k with 2 ≤ k ≤ t there exists a subgraph Gk = (Vk, Ek) of size k such

that EVk ≥
k(k−1)
t(t−1)

EVt.

Proof. In fact we will prove that there exists a subgraph Gk of Gt which has at

least a k(k−1)
t(t−1)

fraction of Gt’s edges. Let Sk(Gt) be the set of all possible subgraphs

of Gt that have size exactly k (clearly |Sk(Gt)| =
(
t
k

)
) and E∗Vk be the number of

edges of the optimum size-k subgraph of Vt. Each edge e of EVt belongs to exactly(
t−2
k−2

)
size-k subgraphs of Gt. Therefore, we can write

∑
H∈Sk(Gt)

EH =
(
t−2
k−2

)
EVt

which in turn implies
(
t
k

)
E∗Vk ≥

(
t−2
k−2

)
EVt . The theorem follows by rearranging and

simplifying the terms.

The following theorem shows that an almost optimal price of stability can

be achieved while preserving a low price of anarchy.

Theorem 51. For every constant ε > 0, there exists a constant λ = λ(ε) > 0 such

that the mixed population with parameter λ achieves price of stability of at most

1 + ε.

Proof. Set λ = λ(ε) = 1
2

(
1− 1√

1+ε

)
∈ (0, 1). and let α = α(ε) = 1 − λ =

1
2

(
1 + 1√

1+ε

)
. Let H ′ be a αt-densest subgraph of G and D the subset of λt

highest degree nodes in G. Consider a placement where the λt leaders are placed

in D and the followers are placed in H ′ \D. If |H ′ \D| < (1− λ)t = αt then the

131

remaining followers are placed in arbitrary positions in the graph. Let H0 be this

initial placement. First notice that H ′ ⊆ H0 since αt = (1−λ)t = |H ′| ≥ |H ′ \D|.
Allow the individuals move according to the best-response dynamics until they

reach an equilibrium H. Note that, throughout the game, leaders won’t move since

they have initially been placed in the highest degree nodes. This means that only

followers move and hence the total number of edges among individual can only

increase (EH ≥ EH0 ≥ EH′). Let now B be a t-densest subgraph of G. We then

have

EH
EB

≥ EH′

EB

Lemma 50

≥ αt(αt− 1)

t(t− 1)

=
α2(t− 1/α)

t− 1
= α2

(
1− 1/α− 1

t− 1

)
t≥2

≥ α2 (2− 1/α) ≥ 1

1 + ε

where in the last inequality we used the fact that by definition α ≥ 1√
1+ε

and

2α− 1 = 1√
1+ε

.

Theorem 51 guarantees an arbitrarily good price of stability for the hetero-

geneous population. The following question arises: Can we achieve an optimum

or quasi-optimum price of stability (that is, approaching 1) without increasing the

price of anarchy? The following theorem provides a negative answer stating that

any population (homogeneous or heterogeneous) that achieves a quasi-optimum

price of stability must have a high price of anarchy. We emphasize that the follow-

ing theorem holds for any kind of heterogeneous population: specifically, it holds

true even if every individual has a different strategy.

Theorem 52. Consider any (even heterogeneous) population of t individuals. Sup-

pose that for any connected graph the price of stability is at most 1 + 1/n. Then,

there exist connected graphs for which the price of anarchy is Ω(n).

Proof. We consider the two graphs in Fig. 5.3. We will show that quasi-optimum

stability on the left graph implies Ω(n) price of anarchy on the right graph. Clearly

132

Star with t nodes,
(degree of center: t− 1)

R
in

g
of
t

n
o
d

es

R
in

g
of
t

n
o
d
es

t-clique with
one edge removed.

Figure 5.3: Graphs for Theorem 52 showing the impossibility of good price of
anarchy given optimal price of stability.

the optimal arrangement H for the left graph is obtained by placing all the players

on the ring which yields EH = t. Also, any other arrangement gives at most

t − 1 edges. Therefore if the price of stability is less than 1 + 1/n < t/(t − 1), it

should be the case that the players on the ring do not have incentive to move to

the center of the star, or the bridge. Now consider the graph on the right where

the star is replaced by a t-clique with one node removed (the t-densest subgraph

has t(t− 1)/2− 1 edges). Notice that the nodes of the clique have the same value

(degree) as the central node for the star7. So for any population with stability less

than 1 + 1/n, the ring is an equilibrium and therefore the price of anarchy can be

as high as (t− 1)/2− 1/t = Ω(t) = Ω(n).

5.6 Extensions

Under our model, we proved that any homogeneous strategy is bound to

have high price of anarchy (i.e. Ω(t) even for t = Θ(n)), while a mixture of lead-

ers and followers achieves a low price of anarchy, in particular a constant price of

anarchy for t = Θ(n). In this section we provide a less strict notion of leaders

and show how it affects the price of anarchy (when mixed with followers). More-

over, we connect this new concept to a new, more powerful kind of homogeneous

7Notice the existence of this extra node of degree 1 that is present in both graphs of Figure 5.3.
Since we want the clique to connect with the ring, we need the bridge node but then have to
remove one edge from the clique in order to maintain degree t − 1 for the nodes in the clique.
However, removing this edge leaves the node shown on the bottom of the clique in the right
graph with degree t − 2. The extra node added (which is adjacent to only this bottom node in
the clique) is there to ensure degree t− 1 for the bottom node too.

133

populations.

5.6.1 Generalized β-leaders

In this section we consider a generalized definition for a population of lead-

ers. Leaders as defined in section 5.4.2 make decisions based solely on the to-

tal number of adjacent nodes regardless of how many of them are occupied. In

other words leaders actions are somewhat indifferent towards aggregation8. We

can obtain a more natural behavior considering a ranking function of the kind

`β(u) := ΓH(u) + βΓH(u), where 0 ≤ β ≤ 1. We call β-leaders individuals with

this ranking function. The parameter β is the relative weight of an adjacent empty

position to an adjacent individual. As such, it quantifies how much players are will-

ing to invest in empty positions. Notice that for β = 0, `β(u) falls back to the

ranking function of a follower, while for β = 1 we obtain a (pure) leader.

The convergence of the best-response dynamics in this game is not imme-

diate. Define

Rβ(H) =
1

2

∑
u∈H

Γ(u) +
β

1 + β

∑
u∈H

Γ(u)

= EH +
β

1 + β
EH,V \H ,

where H is some placement of the individuals onto the graph. By definition of Rβ

and `β, ∑
u∈H

`β(u) ≥ Rβ(H) ≥ 1

2

∑
u∈H

`β(u) (5.2)

The following lemma establishes that Rβ is a potential function, that is, all

equilibria of the game are local optima of Rβ and viceversa.

Lemma 53. The function Rβ(H) strictly increases at each step of the best-response

dynamics. Moreover, best-response dynamics converges in polynomial time.

8To be more precise, leaders do seek aggregation even though they do so in a more indirect
way (and not on a per step basis) by creating the conditions for better aggregation in the future.
In fact this strategy turns out to be quite succesful when leaders are mixed with followers.

134

Proof. Let H1 be the subgraph induced by any placement of the individuals, H2 =

H1 ∪ {u2} \ {u1} be the induced subgraph after one step of the best-response

dynamics (where an individual moved from u1 to u2) and H ′ = H1 ∩ H2. Then

we have: ∆R = Rβ(H2)− Rβ(H1) = EH2 − EH1 + β
1+β

(EH2,V \H2 − EH1,V \H1). We

will show that this quantity is strictly positive. First we observe that EH1,V \H1 =

EH′,V \H′ − Eu1,H′ + Eu1,V \H′ , which implies EH2,V \H2 − EH1,V \H1 = −Eu2,H′ +

Eu2,V \H′+Eu1,H′−Eu1,V \H′ . Also we have EH2−EH1 = Eu2,H′−Eu1,H′ . Therefore,

∆R = Eu2,H′ − Eu1,H′

+
1

1 + β
(−Eu2,H′ + Eu2,V \H′

+Eu1,H′ − Eu1,V \H′)

=
1

1 + β
[
(
Eu2,H′ + βEu2,V \H′

)
−
(
Eu1,H′ + βEu1,V \H′

)
]

=
1

1 + β
[`β(u2)− `β(u1)] > 0.

Note that Theorem 47 implies that, for any constant 0 ≤ β ≤ 1, a pop-

ulation composed excusively of β-leaders has high price of anarchy. Analogously

to the λ-heterogeneous population, we can consider a λ-mixture of β-leaders and

followers. For this game we were not able to show convergence of the best-response

dynamics. We leave as an open question if this game is a potential game and if it

admits convergence for every 0 ≤ λ, β ≤ 1. As for the quality of the equilibria the

following theorem holds. The proof is similar in spirit to the proof of Theorem 48

and is omitted.

Theorem 54. Consider any 0 < λ < 1, 0 ≤ β ≤ 1, and any connected graph G of

n nodes. Then for any equilibrium H, and t-densest subgraph B,

EB
EH

=


O(t

1−λ), 0 ≤ β < 1
t
,

O(min{ t
1−λ ,

1
βλ(1−λ)

}), 1
t
≤ β ≤ 1

2(1−λ)
t
n
,

O(min{ t
1−λ ,

1
λ(1−λ)

n
t
}), 1

2(1−λ)
t
n
< β ≤ 1,

135

5.6.2 The effects of information

Theorem 47 implies that, for any fixed 0 ≤ β ≤ 1, there exists a graph where

a population of β-leaders behaves poorly. This raises a dual question: is it possible

that for any graph there exists a β for which the β-leader population achieves high

levels of aggregation? Note that this yields a new (somewhat less realistic9) model

under which individuals are given more information about the game and they are

allowed to adapt their strategies based on it. We show that if we let β depend on

two additional quantities, the size n of the graph and the size t of the population,

then there are (homogeneous) β-leader populations that achieve lower price of

anarchy10. However, we observe that the ranking functions need fine tuning and

still cannot do better than the simple heterogeneous population we described. In

particular, we can show (Theorem 56) that an “informed” homogeneous population

of β(n, t)-leaders with β(n, t) = λn
t

, for 0 < λ < 1/4, achieves price of anarchy

O(min
{

t
1−4λ

, 1
λ(1−4λ)

n
t

}
). Moreover, this is (asymptotically) the best possible for

any homogeneous population that is informed with t and n (Theorem 57). Finally,

in Theorem 58, we study the price of stability for this informed population.

Lemma 55. Consider the aggregation game with the above β(n, t)-leaders popula-

tion with parameter λ. For any connected graph G = (V,E) of n nodes and any

equilibrium H, it holds that EH ≥ (1− 4λ)Rn,t(H).

Proof. Let `0 be the minimum value of the ranking function over the individuals

in H (i.e. `0 = minu∈H `β(u)), and let u0 be a node in H that has `β(u0) = `0. We

note that for connected graphs `0 ≥ 1. Since we are at equilibrium, the individual

placed in u0 does not have any incentive to move, so the rankings of all the nodes

in V \ H after the player is removed must be at most `0. This shows that every

node in V \H has at most `0 adjacent individuals in H \ {u0}, and at most `0 + 1

neighbors in H. We conclude that EH,V \H ≤ (`0 + 1)(n − t) ≤ 2`0(n − t). Also,

9In this section we consider ranking functions that can depend on information such as the
graph size n and the size t of the population. The ranking functions we considered so far were
not allowed to use this information. This is a valid constraint especially in dynamic situations
where these quantities might change over time.

10When the ranking function of an homogeneous population depends on only one of n and t,
it is possible to extend the proof of Theorem 47 to show that the price of anarchy can be as high
as Ω(n).

136

inequality (5.2) implies that Rβ(H) ≥ `0t/2. Combining the above inequalities we

get EH,V \H ≤ 4(n− t)Rβ(H)/t. Now write

EH = Rβ(H)− λ t

n+ λt
EH,V \H

≥ Rβ(H)− λ4(n− t)
n+ λt

Rβ(H)

≥ (1− 4λ)Rβ(H),

which concludes the proof.

The following theorem provides the desired bound on the price of anarchy.

Theorem 56. Consider the aggregation game with the informed population above

with parameter λ. For any connected graph G = (V,E) of n nodes, the price of

anarchy is at most

min

{
1

1− 4λ
t, 1 +

2

λ(1− 4λ)

n

t

}
.

Proof. Let H be the set of nodes occupied by the population in any equilibrium

and `0 be the minimum value of ranking function `β achieved over all individuals

in H. Recall that for a connected graph `0 ≥ 1, and inequality (5.2) implies that

Rβ(H) ≥ `0t/2. First we show that EH cannot be too small. By Lemma 55 we get

EH ≥ (1− 4λ)Rβ(H) ≥ (1− 4λ)`0t/2. (5.3)

The first part of the bound on the price of anarchy now is immediate since every

optimal solution has at most t2/2 edges. For the second part of the bound, let B

be a densest subgraph of size t of G. All the nodes in B \H have degree at most

`0n/(λt), or else H is not an equilibrium. As a result EB\H,V ≤ |B \H|`0n/(λt) ≤
`0n/λ. Therefore the price of anarchy is given by:

EB
EH
≤
EH + EB\H,V

EH
≤ 1 +

`0n

λEH

≤ 1 +
2n

λ(1− 4λ)t
.

137

Theorem 56 shows that the informed population achieves a price of anarchy

ofO(n/t) for any t = Ω(
√
n). The following theorem tightens this result by showing

that this is the best possible for homogeneous informed populations.

Theorem 57. For any homogeneous informed population, there exist connected

graphs of n nodes for which the price of anarchy is Ω(n/t) for any t such that
√
n ≤ t ≤ n/4 and n mod t = 0.

Proof. Consider a homogeneous informed population of t individuals with some

informed ranking function. Without loss of generality we can assume that for each

n and t this function is represented as a table sn,t(i, j), where the value sn,t(i, j)

is the value of the ranking function in a location with i adjacent individuals and

j adjacent empty positions. We will show that for any assignment of the values

sn,t(0, 2), sn,t(1, 1) and sn,t(0, (n/t)− 1), there are graphs of n nodes for which the

price of anarchy is Ω(n/t).

We proceed by cases. First suppose that sn,t(0, 2) ≥ sn,t(1, 1). Then, plac-

ing the individuals on a ring of n nodes such that they are at distance at least 2

each other yields an equilibrium of zero social welfare (i.e., the price of anarchy is

infinite).

Therefore we can assume that sn,t(1, 1) > sn,t(0, 2). Suppose sn,t(0, (n/t)−
1) ≥ sn,t(1, 1) > sn,t(0, 2). Then, consider the graph on the right of Fig. 5.2 with

k = n/t. Note that every node in the graph has either degree (n/t)−1 or 2. Thus,

placing the individuals onto the nodes of degree (n/t) − 1 is an equilibrium with

infinite price of anarchy.

The remaining case is sn,t(1, 1) > max(sn,t(0, 2), sn,t(0, (n/t)−1)). Consider

the graph on the left of Fig. 5.2 with11 N = n− 3t and k = n/t. Now if we place

the t individuals on the ring in groups of two at distance two each other (as shown

in the figure) we obtain an equilibrium. The value of this placement is t/2, while

the optimum is obtained by placing the individuals in the (n/t)− 1 regular graph

which yields a value of (n− t)/2− 1. Therefore the price of anarchy in this case is

(n− t− 2)/t = Ω(n/t).

11For t ≥
√
n it is always possible to construct a (k − 1)-regular graph with size t and degree

n/t− 1.

138

We close this section by analyzing the price of stability for the informed

population of parameter λ. For any 0 < λ < 1/4, the price of stability is a

constant. Moreover, by tuning the parameter λ, we can make the price arbitrarily

close to one.

Theorem 58. For every constant ε > 0, there exists a constant λ = λ(ε) > 0 such

that, for any connected graph G = (V,E), the homogeneous informed population

with parameter λ achieves price of stability of at most 1 + ε.

Proof. Set λ = ε
4(1+ε)

< 1
4

and consider any connected graph G of n nodes. Let

B be a densest t-size subgraph of G. Place the individuals on the nodes in B

and let them move according to the best-response dynamics until they achieve an

equilibrium. Let H ⊆ V be the set of nodes occupied by the population in this

equilibrium. Lemma 53 shows that the ranking function Rβ strictly increases after

each step of the best response dynamics, therefore Rβ(H) ≥ Rβ(B). Now we have:

EH ≥ (1− 4λ)Rβ(H) ≥ (1− 4λ)Rβ(B)

≥ (1− 4λ)EB.

As such, the price of stability is EB/EH ≤ 1/(1− 4λ) = 1 + ε.

The proof of Theorem 58 shows that λ = Θ(ε). This observation and

Theorem 56 imply that, for any ε = εnω(1/n), the informed population achieves

price of stability at most 1 + εn and price of anarchy o(n). This result is tightly

complemented by Theorem 52 in section 5.5.2.

5.7 Conclusions

We have proved that in aggregation games, populations with diverse strate-

gies achieve more efficient equilibria than homogeneous populations. Somewhat

similarly, a number of recent results [SW09, BBM09, BBM10] circumvent high

price of anarchy by considering mixtures of strategies, in the sense that some play-

ers might follow a “globally optimal” behavior. These results together with ours

open new avenues for future research: how does the number of different strategies

139

affects the price of anarchy? Is there a connection between diverse strategies and

the quality of equilibria for more general classes of games? Do mixed strategies

improve significantly the price of anarchy?

Our work also suggests that game theory can be a useful tool in analyzing a

wider class of dynamic systems relevant to aggregation. Extending our analysis to

segregation might lead to a better theoretical understanding of the seminal work

of Schelling [Sch71, Sch78]. Finally, there are a number of possible extensions to

aggregation games. For example one can consider aggregation of individuals of

varying popularity or aggregation games over weighted graphs.

Chapter 5, in full, is a reprint of the paper “The Effects of Diversity in Ag-

gregation Games” co-authored with Petros Mol and Panagiotis Voulgaris published

in the proceedings of the 2nd Symposium on Innovations in Computer Science, ICS

2011 [MVV11]. The dissertation author was the primary investigator and author

of this paper.

Chapter 6

The Secretary Problem

The secretary problem [Dyn63, Fer89] is a perfect example of online decision-

making under uncertainty. The setting is humble: candidates for a secretary posi-

tion arrive online in a random order and the goal is to choose the best candidate,

with the constraint that no past decision can be reverted. The optimal algorithm

is to skip the first 1/e fraction of the candidates and to choose the next arriving

candidate who is the best seen so far; this algorithm yields a success probability of

1/e. The secretary problem has a rich history dating back at least a century, and

is a frequent object of study even to this day. See the survey article by Ferguson

[Fer89] for an excellent historical perspective of the secretary problem.

Implicit in the classical setting is the assumption that there is a total order

on the candidates, but this assumption rarely holds in real life since candidates

often have incomparable attributes. This leads to the natural poset secretary prob-

lem: if the elements of the permutation (candidates) are only partially ordered,

how to maximize the probability of returning a maximal element in the poset?

Note that the incomparable elements present the main challenge: many simple

modifications of the total order algorithm to handle the incomparable elements

can be shown to have vanishing success probabilities.

Secretary problems have recently been shown to lie at the core of online auc-

tion and mechanism design problems [BIKK08]. For instance, Hajiaghayi, Klein-

berg, and Parkes [HKP04] showed how to convert the classic secretary problem

into a group strategy-proof mechanism for the online single item auction. The

140

141

algorithm we present can be adapted in a similar fashion to a setting where the

seller has a multidimensional utility function that does not lead to a total ordering

on the bidders. The bidders arrive with potentially incomparable bids and the goal

is to sell the item at a no-regret price, i.e., to select a bidder who is not dominated

by any of the others.

The poset secretary problem was first studied by Preater [Pre99], who pro-

posed an algorithm with a success probability of 1/8. Recently, Georgiou et al.

[GKMN08] improved this bound to 1/4; they also showed that this bound is tight

for Preater’s algorithm. These algorithms suffer from two major drawbacks. First,

the success probability does not match the classical bound when the poset is a

total order. Second, these bounds do not improve with the number of maximal

elements in the poset, which is undesirable since the problem should only become

easier as the number of solutions grows.

6.1 Results

In this chapter we study the secretary problem in the partial order setting.

We assume that we know k, the number of maximal elements in the poset. Our

algorithms take on the standard form with one subtle difference. As before, we

examine all of the elements up to a threshold and then consider the first undomi-

nated element. We select this element only if the poset at the time has at most k

maximal elements. The latter condition may make us pass on a maximal element

early in the sequence, but we will never pass on the last maximal element. We

show that for a judicious choice of the threshold (that depends on k) our algorithm

succeeds with probability roughly k−
k
k−1

((
1 + log k1/(k−1)

)k − 1
)

; see Theorem 61

for a precise statement. This quantity recovers the 1/e bound in the limit as k → 1,

but quickly surpasses it, reaching 0.47 at k = 2 and 0.52 at k = 3. We show

an almost matching upper bound of k−1/(k−1) + o(1) (Theorem 67), showing that

no algorithm succeeds with probability better than 0.5 for k = 2 and better than

0.57 for k = 3. Figure 6.1 shows these bounds. Closing the gap between the two

remains an interesting open problem.

142

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

W
in

ni
ng

 p
ro

ba
bi

lit
y

k

Bounds on the competitive ratio

Asymptotic behavior of the algorithm
Upper bound on success probability

Figure 6.1: A visualization of the upper and lower bounds for the poset secretary
problem as a function of the number of maximal elements in the poset.

On the technical side, we proceed as follows. To analyze the algorithm, we

concentrate on the probability of the algorithm reaching the last maximal element.

We introduce the concept of a blocking set and show that if the blocking set occurs

early in a random permutation of elements, then the second condition on accepting

an element (requiring that the number of maximal elements in the induced poset be

at most k) prevents the algorithm from returning a suboptimal element. We then

proceed to construct such permutations by starting from the end and increasing

the suffix so as to keep the blocking sets early in the sequence.

For an upper bound on the success probability of any algorithm, we use

a linear programming approach introduced in the work of Buchbinder, Jain, and

Singh [BJS10]. We use this approach to consider the very specific poset of k

disjoint total orders, each on n/k elements, and show that no algorithm has a good

competitive ratio on this poset. To that end, we construct a linear program whose

value upper bounds the probability of success of any algorithm on this poset.

We then present a feasible solution to the corresponding dual, thus establishing a

bound on the success probability of any algorithm for this problem. It is worth

to note that this bound holds even if the algorithm knows that the poset under

143

consideration consists of k disjoint total orders.

6.2 Related work

Independently and concurrently with our work, Freij and Wästlund [FW10]

recently proposed an algorithm for the partially ordered secretary problem and

claimed a bound of 1/e on its success probability. Their algorithm works as follows.

Assign a score uniformly at random in [0, 1] as elements arrive, skip the first 1/e

fraction of elements, and pick the first element which is the greedy maximum of

the poset seen so far including this element. Here, the greedy maximum of a poset

with weighted elements is defined inductively: it is the lowest weight element if

it is the maximal or it is the greedy maximum of the sub-poset induced by the

elements that are bigger than the lowest weight element. Their algorithm has the

same downside as that of [GKMN08, Pre99], namely, the competitive ratio does

not increase with the number of maximal elements and remains bounded by 1/e.

The poset secretary problem has been previously considered for specific

cases of posets. For example, Morayne [Mor98] and Kubicki et al. [KLM02] present

an optimal stopping time for the case of the complete binary tree. Gnedin [Gne92]

explored other specific poset structures. Generally, Bruss [Bru00] defined a way

(known as the Odds algorithm) to compute optimal stopping rules for any last-

success problem, which applies to the classical version of the secretary problem as

well as to the case of any known poset with a single maximal element. For poset-

oblivious algorithms, very recently, Kozik [Koz10] proposed a dynamic threshold

algorithm that selects a maximal element of any poset with probability at least

1/4 + ε (for some small ε > 0), therefore beating the 1/4 bound of Georgiou et al.

[GKMN08].

Other variants of secretary problems have been previously applied to the

online auction setting. For example, designing mechanisms to maximize some func-

tion of the top k elements [AMW01, BDG+09, Kle05] or some function on the ac-

cepted set of elements, such as online submodular function maximization [GRST10,

MHB10], finding the heaviest weight independent set of a matroid [BIK07, Sot11],

144

etc. See [BIKK08] for a survey of some of these results.

6.3 Preliminaries

Let U be a universe of n elements. A poset P ⊆ U2 is a binary relation that

is reflexive, anti-symmetric, and transitive. We use a ≺P b to denote (a, b) ∈ P and

use a‖Pb to denote (a, b) /∈ P ∧ (b, a) /∈ P , i.e., a and b are incomparable. A linear

extension of P is a permutation π on U such that a ≺P b =⇒ π−1(a) < π−1(b).

An element a is maximal (aka a secretary) if there is no element b such

that a ≺P b. Let maxP be the set of all secretaries of P and let k = |maxP|, the

number of secretaries.

We denote by Si =
⋃
j<i{π(j)} the set of elements preceding i in the per-

mutation.

Given S ⊆ U , let P|S = P ∩ S2, the poset obtained from P by using the

elements only in S.

Definition 59 (Pareto frontier). Given a poset P and a subset S ⊆ U , the Pareto

frontier FP(S) is defined to be maxP|S.

6.4 Algorithm and Analysis

Let P be the given poset. We assume that the algorithm is given k =

|maxP|, the number of secretaries. Our algorithm proceeds in a way similar to

the algorithm in the total order setting. It examines all of the elements before a

threshold τ . An element a arriving after the threshold is returned if two conditions

are met. First, the element must be undominated, i.e., a ∈ FP(S), where S is

the set of all of elements seen thus far; since any dominated element cannot be

maximal, this is without loss of generality. Second, the total size of FP(S) is at

most k. While the second condition may lead the algorithm to pass on a maximal

element, it will never pass on the last maximal element in the permutation.

We will denote by π the order in which the elements arrive. To describe

145

Algorithm 6.1: Secretary (π, k).

1: S = {π(1), . . . , π(τk)}
2: for i = τk + 1 . . . n do

3: a = π(i)

4: S ← S ∪ {a}
5: if a ∈ FP(S) ∧ |FP(S)| ≤ k then return a

the algorithm, let τk be the stopping threshold :

τk =

{
n/e, k = 1,

n/k
1

k−1 , k > 1.

Note that limk→1+ τk = n/e.

6.4.1 Warmup: Analysis for a single secretary

Theorem 60. For any poset P with k = 1, Algorithm 6.1 succeeds with probability

at least 1/e.

Proof. Let PL be an arbitrary linear extension of P ; by definition, if a ≺PL b,

then either a ≺P b or a‖Pb. Now, we compare the performance of Algorithm 6.1

on P and PL. Consider any permutation π such that the algorithm outputs the

secretary when run on PL. We claim that the algorithm outputs the secretary

when run on P as well. This will complete the proof since Algorithm 6.1 on a

linear order (i.e., PL) is the optimal algorithm for the classical secretary problem,

and therefore succeeds with probability at least 1/e.

To prove the claim, we only need to show that the algorithm does not

output any element before encountering the secretary. Let i∗ be the position in π

where the secretary occurs and consider any position i ∈ (τ1, i
∗). It must be the

case that π(j) �PL π(i) for some j < i, since otherwise the algorithm would have

output π(i) when run on PL. Therefore, either π(j) �P π(i) or π(j)‖Pπ(i). In

both cases, the element π(i) is not output when the algorithm runs on P : indeed,

in the former case, π(i) /∈ FP(Si) and in the latter |FP(Si)| ≥ 2 > k, where

Si =
⋃
j≤i{π(j)}.

146

6.4.2 Analysis for general posets

In this section we show that the algorithm succeeds with increasing proba-

bility as k increases.

Theorem 61. For any poset P with k maximal elements, Algorithm 6.1 succeeds

with probability at least (
τk
k

)(
n
k

) ·((1 + log
n− k
τk

)k
− 1

)
.

Before proceeding further, let us briefly interpret the above bound. Let

k = εn, and consider a slightly different threshold τ ′k = (1− ε)τk = (1− ε)nk−
1

k−1 .

Note that holding k fixed and letting n→∞, we have ε→ 0.

Then, we can bound
(
τ ′k
k

)
/
(
n
k

)
as:

∏k
i=0(1− ε)nk−

1
k−1∏k

i=0(n− i)
>

(
(1− ε)k−

1
k−1 − ε

(1− ε)

)k

≥ k−
k
k−1 −O(ε).

And, (
1 + log

n− k
τ ′k

)k
=

(
1 + log

(1− ε)nk
1

k−1

(1− ε)n

)k

=

(
1 +

1

k − 1
log k

)k
≥ k

(
1− 2 log2 k

k

)
≥ k(1− ok(1)).

Combining the two, we obtain that the probability of winning is at least(
k−

k
k−1 −O(ε)

)
k(1− ok(1)) = (1− ok(1))k−

1
k−1 −O(ε).

As we will show in Section 6.5, the term k−
1

k−1 is tight and thus the maximum

difference between the lower bound and the upper bound approaches 0 for large k

(Figure 6.1).

147

Proof of Theorem 61

To prove the theorem, we will describe the set of permutations on which the

algorithm is guaranteed to succeed. In particular, we focus on the probability that

the algorithm does not return an element before reaching the last secretary in the

permutation. Observe that the algorithm will never pass on the last secretary: it

will surely be in FP(S), and at that point FP(S) = k. Obviously, the algorithm will

fail if all of the secretaries come before the threshold. A harder to analyze failure

mode is that of returning a faux -secretary: an element that looks like a maximal

element before reaching the actual secretary that dominates it. A way to avoid it is

to insist that either FP is of size at least k + 1 before the last secretary is reached

or that the maximal element comes before any of the potential faux-secretaries

(the latter is exactly the analysis in the k = 1 case).

We begin by describing the permutations on which Algorithm 6.1 will suc-

ceed. We first give few definitions that we use in the proof.

Let τ = τk. Fix any k + 1 special positions in the permutation 1 ≤ `0 ≤
· · · ≤ `k ≤ n, such that for some 0 ≤ i∗ < k we have `i∗ = τ , and the other

positions are all distinct from each other. We define the set P = P`0,...,`k of all

permutations such that the positions `i with i 6= i∗ are occupied by the secretaries

in any order.

For a suffix ti of elements from position `i to n, we define P (ti) be the set

of all permutations in P that have ti as a suffix. For a set of suffixes T , we let

P (T) =
⋃
t∈T P (t).

We will now inductively define a set Ti∗ of suffixes such that Algorithm

6.1 returns a maximal element in all permutations in P (Ti∗). To begin, let Tk

be the set of all suffixes from `k to n; thus we have that P (Tk) contains all the

permutations in P . Inductively, define Ti, for i = k − 1, . . . , i∗, in the following

way. Let the FP (U \ ti+1) be Pareto frontier of the elements that are not in ti+1,

and define G(ti+1) to be the set of non-secretary elements of FP (U \ ti+1).

Now let B(ti+1) be any subset of G(ti+1) of min{k − i, |G(ti+1)|} elements;

we call the set B(ti+1) a blocking set. Note that in a permutation π where all of

the elements in B(ti+1) come before `i, Algorithm 6.1 cannot terminate with any

148

element between `i and `i+1. In this case, we say that B(ti+1) is a good blocking

set in π. In order to find a lower bound on the number of winning permutation for

a fixed position of i∗, we can bound the number of permutations where B(tj+1) is

a good blocking set for every i∗ ≤ j < k. To this end, let A(ti+1) be the set of all

suffixes from `i to n that agree with ti+1 and that do not contain elements from

B(ti+1). Let Ti =
⋃
ti+1∈Ti+1

A(ti+1).

Lemma 62. Algorithm 6.1 returns a maximal element on all permutations in

P (Ti∗).

Proof. Suppose not and consider any permutation in P (Ti∗) where the algorithm

fails. Suppose the returned element is in the interval between `i and `i+1 for some

i∗ ≤ i ≤ k−1. Then, this permutation has to be in P (Ti) (since P (Ti) ⊆ P (Ti+1)).

But by definition of Ti, if G is the Pareto frontier of the elements before `i+1, either

all of G or a subset of at least k − i elements of G comes before `i. Either way, in

the positions ti, . . . , ti+1, the Pareto frontier is composed of at least i secretaries

and the good blocking set Bi+1. Thus the if statement in step 5 of Algorithm 6.1

avoids that an element is returned in the interval between `i and `i+1. So we have

a contradiction.

Suppose there were j secretaries that came after the threshold. In this case,

we can look at the fraction of the permutations whose suffix agrees with Tk−j. Let

γ(j) =
|P (Tk−j)|
|P |

.

Note that γ is implicitly a function of `k, . . . , `i∗ . We begin by bounding γ(j) from

below. Let

γ′(j) =
k−1∏
i=k−j

(
k−i−1∏
w=0

(
`i − i− w

`i+1 − (i+ 1)− w

))
.

Lemma 63. γ(j) ≥ γ′(j).

149

Proof. By definition, P (Ti) ⊆ P (Ti+1) and hence

|P (Ti)| = |P (Ti+1)| ·
(
fraction of permutation in P (Ti+1) with good Bti+1

)
≥ |P (Ti+1)| ·

(
fraction of permutation in P (Ti+1) with k elements of

G(ti+1) before k − i− 1
)

≥ |P (Ti+1)|
k−i−1∏
w=0

(
`i − i− w

`i+1 − (i+ 1)− w

)
.

Therefore, we can conclude that

|P (Ti∗)| ≥ |P |
k−1∏
i=i∗

(
k−i−1∏
w=0

(
`i − i− w

`i+1 − (i+ 1)− w

))
.

And,

γ(k − i∗) =
|P (Ti∗)|
|P |

≥
k−1∏
i=i∗

(
k−i−1∏
w=0

(
`i − i− w

`i+1 − (i+ 1)− w

))
= γ′(k − i∗).

We first show that γ′(r) can be rewritten in a more convenient way.

Lemma 64.

γ′(r) =
(`k−r − (k − r))!

(`k−r − k)!

r−1∏
s=0

1

`k−s − k
.

Proof. We prove the statement by induction. By inspection, the equality holds for

150

r = 1. Now suppose it holds up to a certain 1 ≤ r < k. Then, we have

γ′(r + 1) =
k−1∏
i=k−r

(
k−i−1∏
w=0

(
`i − i− w

`i+1 − (i+ 1)− w

))

= γ′(r) ·
r∏

w=0

(
`k−(r+1) − (k − (r + 1))− w

`k−r − (k − r)− w

)

=
(`k−r − (k − r))!

(`k−r − k)!

(
r−1∏
s=0

1

`k−s − k

)

·(`k−r − (k − r)− (r + 1))!

(`k−r − (k − r))!

·
(`k−(r+1) − (k − (r + 1)))!

(`k−r+1 − (k − (r + 1))− (r + 1))!

=
(`k−(r+1) − (k − (r + 1)))!

(`k−r+1 − k)!
· 1

`k−r − k

(
r−1∏
s=0

1

`k−s − k

)
,

which concludes the proof.

Next, we obtain an analytical bound that will be useful later.

Lemma 65. ∑
`k,...,`k−j+1:

n≥`k>···>`k−j=τ

j−1∏
s=0

s+ 1

`k−s − k
≥ logj

n− k
`k−j − (k − j)

.

Proof. For convenience, define φ as follows,

φ(r) =


1, r = k + 1
n−(k−r)∑

`r:`r=`r−1+1

k − r + 1

`r − k
φ(r + 1), r ≤ k.

It is easy to see that

∑
`k,...,`k−j+1:

n≥`k>···>`k−j=τ

j−1∏
s=0

s+ 1

`k−s − k
= φ(k − (j − 1)).

We now provide a lower bound on φ(r).

φ(r) ≥ logk−r+1 n− k
`r−1 − (r − 1)

.

151

We proceed by backward induction on r. For r = k + 1, the claim holds trivially.

Suppose the claim holds down to a certain r + 1. Then,

φ(r) =

n−(k−r)∑
`r=`r−1+1

k − r + 1

`r − k
φ(r + 1)

=

n−(k−r)∑
`r=`r−1+1

k − r + 1

`r − k
logk−r

n− k
`r − r

≥
n−(k−r)∑
`r=`r−1+1

k − r + 1

`r − r
logk−r

n− k
`r − r

≥
∫ n−(k−r)

`r−1+1

k − r + 1

x− r
logk−r

n− k
x− r

= − logk−r+1 n− k
x− r

∣∣∣∣n−(k−r)

x=`r−1+1

= logk−r+1 n− k
`r−1 − (r − 1)

.

Now we are ready to put all of the pieces together. To count the total

number of permutations on which the algorithm succeeds, we begin by conditioning

on the number of secretaries that come after the specified threshold, τ . Let Ej be

the event such that there are exactly j ≥ 1 fixed secretaries after the threshold

`k−j = τ and let win be the event of the algorithm returning a maximal element.

Lemma 66.

Pr[win|Ej] ≥
(τ − (k − j))!

(τ − k)!

(n− τ − j)!
(n− τ)!

logj
(

n− k
τ − (k − j)

)
.

Proof. We enumerate over all permutations that have j maximal elements after

the threshold. Since γ(j) depends only on the position and not on the order of

these elements, we have:

Pr[win|Ej] = j!
∑

`k,...,`k−j+1:

n≥`k>···>`k−j=τ

(
1

n− τ
· · · 1

n− τ − (j − 1)

)
γ(j).

152

Since `k−j = τ , applying Lemma 63, Lemma 64, and Lemma 65 completes the

proof.

Pr[win|Ej] ≥
(τ − (k − j))!

(τ − k)!

(n− τ − j)!
(n− τ)!

j!
∑

`k,...,`k−j+1:

n≥`k>···>`k−j=τ

j−1∏
s=0

1

`k−s − k

=
(τ − (k − j))!

(τ − k)!

(n− τ − j)!
(n− τ)!

∑
`k,··· ,`k−j+1:

n≥`k>···>`k−j=τ

j−1∏
s=0

s+ 1

`k−s − k

≥ (τ − (k − j))!
(τ − k)!

(n− τ − j)!
(n− τ)!

logj
(

n− k
τ − (k − j)

)
.

Proof of Theorem 61. Finally, we can remove the conditioning in Lemma 66 to

prove an overall bound on the success probability of the algorithm.

Pr[Ej] =

(
k

j

)(
τ

n
· · · τ − (k − j − 1)

n− (k − j − 1)

)
·
(

n− τ
n− (k − j)

· · · n− τ − (j − 1)

n− (k − 1)

)
=

(
k

j

)
τ !

(τ − (k − j))!
· (n− τ)!

(n− τ − j)!
· (n− k)!

n!
.

Now, using Lemma 66, we have that

Pr[win] =
k∑
j=1

Pr[win|Ej] Pr[Ej]

=
τ !

(τ − k)!
· (n− k)!

n!
·

k∑
j=1

(
k

j

)
logj

n− k
τ − (k − j)

≥ τ !

(τ − k)!
· (n− k)!

n!
·

k∑
j=1

(
k

j

)
logj

n− k
τ

=
τ !

(τ − k)!
· (n− k)!

n!
·

((
1 + log

n− k
τ

)k
− 1

)
.

153

6.5 Upper bounds on success

In this section we prove an upper bound on the success probability of any

algorithm for the poset secretary problem. For k = 1, it is well-known that no

algorithm can succeed with probability more than 1/e. Here we explore how the

bound grows with k. Our main result is the following:

Theorem 67. Let 2 ≤ k = o(
√
n). For any poset P with k maximal elements,

every algorithm has success probability at most k−
1

k−1 + o(1).

To prove this result we will analyze the performance of any algorithm on a

specific poset Pk. Let L be a total order on n/k elements; we will call such a poset a

line. We define Pk to be the poset consisting of k disjoint lines: Pk = {L1, . . . ,Lk}.
Our strategy is to write down a linear program whose value is an upper

bound on the success probability of any algorithm. We will then analyze the dual

formulation and derive a feasible solution for it, which will serve as the bound in

Theorem 67.

We begin by restricting the class of algorithms and the class of permutations

we consider. A τ -threshold algorithm is one that never returns any of the first τ

elements. Recall that Si = ∪j<i{π(j)} denotes the set of elements preceding i in the

permutation and F(Si) denotes the set of maximal elements of Si. We insist that

the algorithms we consider are sane, i.e., they never knowingly return a dominated

element; formally, if the element at position i is returned by the algorithm, then

π(i) ∈ F(Si+1).

We also restrict the permutations under consideration. A permutation π is

called τ -covering if the following two conditions hold:

1. F(Sτ)∩FP = ∅, i.e., π has no maximal elements in the first τ positions; and

2. for any 1 ≤ j ≤ k, F(Sτ) ∩ Lj 6= ∅, i.e., at least one descendant of each

maximal element occurs among the first τ elements.

These restrictions on the algorithm and the permutations do not change

the success probability substantially.

154

max
q1,...,qn

k

n

n∑
i=1

qi

qi +
i−1∑
j=1

k

j
qj ≤ 1, 1 ≤ i ≤ n

qi ≥ 0, 1 ≤ i ≤ n

min
x1,...,xn

n∑
i=1

xi

xi +
k

i

n∑
j=i+1

xj ≥
k

n
, 1 ≤ i ≤ n

xi ≥ 0, 1 ≤ i ≤ n

Figure 6.2: Linear program (left) and its dual (right). These are used in the
proof of the upper bound.

Lemma 68. Consider any algorithm A that succeeds with probability ρ. Then

A succeeds with probability at least ρ − o(1) on all (2k log n)-covering permuta-

tions. Furthermore, when run on (2k log n)-covering permutations, A is a sane

and (2k log n)-threshold algorithm without loss of generality.

Proof. To prove the first claim, observe that (2k log n)-covering permutations con-

stitute an

O

((
1− 1

k

)2k logn

+

(
1− 2k log n

n

)k)
= o(1)

fraction of all of the permutations, when k = o(
√
n). Moreover, on these permu-

tations, any algorithm returning one of the first 2k log n elements is guaranteed to

fail, therefore we can assume that the algorithm is a (2k log n)-threshold algorithm

without loss of generality.

For the remainder of the proof we therefore assume that the algorithms

under consideration are sane and (2k log n)-threshold. We proceed by writing

down a linear program that encodes the success probability of any algorithm on

Pk.

Lemma 69. Consider any optimal solution of the linear program in Fig. 6.2 and

let v be its value. Then, any sane (2k log n)-threshold algorithm A, has success

probability at most v on the poset Pk.

Proof. Let pi = Pr[A returns π(i)] denote the probability that A returns the ith

element of the permutation1. Similarly, let qi = Pr[A returns π(i)|π(i) ∈ F(Si+1)].

1The probability is over both the permutations and the coins of the algorithm.

155

Note that since A is sane, A never returns π(i) if π(i) /∈ F(Si+1). Therefore we

can write pi = qi Pr[π(i) ∈ F(Si+1)]. Moreover, A returns an element π(i) only if

it discards all of the elements in positions j < i. Thus we can write:

qi ≤ 1−
∑
j<i

pj = 1−
∑
j<i

fjqi, (6.1)

where fj = Pr[π(j) ∈ F(Sj+1)].

We can express the probability that A returns a maximal element as

Pr[A wins] =
k∑
j=1

n∑
i=1

Pr[A returns π(i)|π(i) ∈ F(Lj)] Pr[π(i) ∈ F(Lj)]

=
k

n

n∑
i=1

Pr[A returns π(i)|π(i) ∈ F(Si+1)]

=
k

n

n∑
i=1

qi,

where the second step follows because the algorithm cannot determine whether a

maximal element of the poset induced from the first i elements in π is a maximal

element of the whole poset or not, and hence the contributions are equal. More

formally, we observe that, for every 1 ≤ j ≤ k, Pr[A returns π(i)|π(i) ∈ F(Pk) ∩
Lj] = Pr[A returns π(i)| π(i) ∈ F(Si+1) ∩ Lj]. This follows because for any two

permutations π, π′ identical up to i− 1, and with π(i) ∈ Fπ(Pk) ∩ Lj and π′(i) ∈
Fπ′(Si+1) ∩ Lj, we have that the poset induced by the first i elements is exactly

the same. Hence, the algorithm’s behavior is unchanged (here the subscript on F
denotes the permutation of the elements under consideration).

Finally we show that we correctly captured the constraints on q. Assume

that i > 2k log n, and denote by Sτ the set of elements appearing before the

threshold. Since for all j, Sτ ∩ Lj 6= ∅, the size of the Pareto set at i is exactly k.

Therefore fi = k/i. For i > 2k log n, inequality (6.1) implies that qi +
∑

j<i
k
j
qj ≤

1.The same inequality trivially holds when i ≤ 2k log n since qi = 0 for these

elements.

Next, we focus on the feasible solution to the dual program.

Lemma 70. There exists a feasible solution to the dual program in Figure 6.2 that

has value k−
1

k−1 + o(1).

156

Proof. We define the following feasible solution to the dual program in Figure 6.2:

inductively, xn = k
n

and xi = max{0, k
n
− k

i

∑n
j=i+1 xj}. Note that the value of

the objective function for this solution is
∑n

i=1 xi =
∑n

i=T+1 xi, where T is the

maximum index such that xT = 0. Consider the sequence ai inductively defined

by an = k
n

and ai = ai+1 +
(
k
n
− k

i
ai+1

)
. We observe that for any j ≥ T + 1, it

holds that aj =
∑n

i=j xi and that k
n
− k

j
aT+1 ≤ 0. Specifically, either aT < aT+1

and aT+1 > · · · > an, or aT−1 < aT = aT+1 and aT+1 > · · · > an.

Note that the problem of computing
∑n

i=1 xi now reduces to the problem

of finding the last local maximum of the sequence {ai}ni=1.

We proceed as follows. First, we introduce the function s(z) defined over

the real domain [1, n] by

s(z) =
k

n

n−z∑
`=0

∏̀
t=1

(
1− k

z + t− 1

)
.

Note that s(i) = ai for every i ∈ {1, . . . , n}. We study s(z) in [g(n), n] with

g(n) = ω(1) and show that it has only one stationary point (a maximum) in this

interval at z∗ = (1 ± o(1))n/k1/(k−1). Finally, since s(z) is continuous, we can

conclude that T + 1 = max{bz∗c, dz∗e}.
We have

s(z) =
k

n

n−z∑
`=0

∏̀
t=1

(
1− k

z + t− 1

)

=
k

n

n−z∑
`=0

exp

[∑̀
t=1

log

(
1− k

z + t− 1

)]

≥ k

n

n−z∑
`=0

exp

[∫ `

t=1

log

(
1− k

z + t− 1

)
dt

]

=
k

n

n−z∑
`=0

exp

[
(z + t− 1) log

(
1− k

z + t− 1

)

−k log(z − 1− k + t)

∣∣∣∣`
t=1

]

=
k

n

n−z∑
`=0

(
1− k

z+`−1

)z+`−1
(z − k)k(

1− k
z

)z
(z + `− 1− k)k

.

157

One can similarly show that

s(z) ≤ k

n

n−z∑
`=0

(
1− k

z+`

)z+`
(z − k)k(

1− k
z

)z
(z + `− k)k

.

For z ≥ k log n, we have that
(
1− k

z+l−1

)z+l−1
= (1 − o(1))e−k and also(

1− k
z

)z
= (1− o(1))e−k, where the o(1) term hides factors going to 0 as n→∞.

So we can write s(z) as

s(z) ≥ (1− o(1))
k

n
(z − k)k

n−z∑
`=0

1

(z + `− 1− k)k

≥ (1− o(1))
k

n
(z − k)k

∫ n−z

`=0

1

(z + `− 1− k)k
d`

= (1− o(1))
k

n

1

k − 1
(z − k)k(

1

(z − k − 1)k−1
− 1

(n− k − 1)k−1

)
≥ (1− o(1))

k

n

1

k − 1

(
(z − k)− (z − k)k

(n− k − 1)k−1

)
.

One can similarly show that

s(z) ≤ (1 + o(1))
k

n

1

k − 1

(
(z − k)− (z − k)k

(n− k − 1)k−1

)
.

Taking the derivative and setting it to zero gives a maximum at z∗ at

n
k1/(k−1) (1 ± o(1)). Define i∗ = max{bz∗c, dz∗e}. By definition of ai and the maxi-

mality of i∗, it must be that k
n
− k

i∗
ai∗+1 ≥ 0, which implies

ai∗+1 ≤
i∗

n
≤ k−1/(k−1)(1 + o(1)).

Finally,
n∑
i=1

xi = ai∗ ≤ ai∗+1 +
k

n
≤ k−1/(k−1) + o(1).

This gives a feasible solution to the dual and a bound on its value.

6.6 Tightness of the algorithm

In Section 6.5 we showed that no algorithm can succeed with probability

more than k−
1

k−1 − o(1) on the poset Pk consisting of k disjoint total orders. In

158

this section we use a different analysis to show that Algorithm 6.1 achieves this

bound on a large family of posets including Pk.
The main idea is to define an event of the algorithm passing on a maximal

element after the threshold τk and then returning a non-maximal element; call

this event pass. For any τk < i ≤ n, we define Ai as the event that the first

secretary after the threshold occurs at position i and Di as the event that the

algorithm discards the element π(i); let Di1:i2 = Di1 ∧ · · · ∧ Di2 . Now, if win

denotes the event that the algorithm returns a secretary, then pass =
⋃
i>τk

passi,

where passi = Dτk+1:i ∧ Ai ∧win.

We begin by showing that the disjoint events win and pass together account

for the vast majority of the outcomes of the algorithms. We then show how to

upper bound the probability of pass on particular posets, leading to a bound on

the success probability of the algorithm.

Lemma 71. It holds that

Pr[win] + Pr[pass] ≥ k

n

n∑
i=τk+1

(
τk
k

)(
i−1
k

) .
Proof. Suppose the first secretary after the threshold is at i. Then the algorithm

can win by returning π(i) or discarding π(i) and then winning later on. In the

first case, it must be that F(Si+1) ≤ k while in the other, F(Si+1) ≥ k+ 1. Let Fi

denote the event that |F(Si+1)| ≥ k + 1. Then, we have

Pr[win] =
∑
i>τk

(
Pr[Dτk+1:i−1 ∧ Ai ∧ Fi] + Pr[Dτk:i−1 ∧ Ai ∧ Fi ∧win]

)
.

The second term can be rewritten as

Pr[Drk:i−1 ∧ Ai ∧ Fi ∧win] = (1− Pr[win|Drk:i−1 ∧ Ai ∧ Fi])

·Pr[Drk:i−1 ∧ Ai ∧ Fi]

= Pr[Drk:i−1 ∧ Ai ∧ Fi]− Pr[passi].

Since the events passi are disjoint, we have that

Pr[win] + Pr[pass] =
n∑

i=τk+1

Pr[Dτk:i−1 ∧ Ai].

159

We proceed to bound Pr[Dτk:i−1 ∧ Ai]. Note that the probability of π(i) being a

secretary is k/n. Consider any subset B of F(Si) that contains all secretaries in

F(Si) and is of size min{|F(Si)|, k}. B is a blocking subset: if all elements in B

appear before the threshold, no element between τk + 1 and i − 1 (inclusive) will

be accepted. Moreover, this implies that there are no maximal elements between

τk + 1 and i− 1. The lemma follows observing that the probability of this event is

at least
(τk`)
(i−1
k)

.

We can now prove a concrete bound on the winning probability that closely

resembles the bound in Section 6.5.

Theorem 72. For any k ≥ 2,

Pr[win] ≥ k−
1

k−1 − Pr[pass]−O(k/n).

Proof. By Lemma 71,

Pr[win] + Pr[pass] ≥ k

n

n∑
i=rk+1

τk · · · (τk − k + 1))

(i− 1) · · · (i− k)

≥ k

n
(τk − k + 1)k ·

n∑
i=τk+1

1

(i− k)k

≥ k

n
(τk − k + 1)k ·

∫ n+1

i=τk+1

1

(i− k)k

=
k

n
(τk − k + 1)k

1

k − 1(
1

(τk − k + 1)k−1
− 1

(n− k + 1)k−1

)
=

τk − k + 1

n

k

k − 1

(
1−

(
τk − k + 1

n− k + 1

)k−1
)

≥ τk − k + 1

n

k

k − 1

(
1−

(τk
n

)k−1
)
.

Now, by definition, we have τk = n/k
1

k−1 . Therefore,

Pr[win] + Pr[pass] ≥ τk − k + 1

n
= k−

1
k−1 − k + 1

n
,

which concludes the proof.

160

Note that the only way for the algorithm to discard a secretary π(i) with

i > τk is if |F(Si+1)| > k. This event has zero probability in the poset Pk consisting

of k disjoint total orders.

Corollary 73. Algorithm 6.1 succeeds with probability at least k−
1

k−1 −O(k/n) on

any poset of width at most k. In particular, this holds true for the poset Pk.

Corollary 73 shows that the algorithm performs well when the poset is

“thin”. However, the algorithm benefits of “large” posets as well. For example,

the algorithm performs well on trees or lattices, or even collections of them.

Say that a tree is m-heavy if the root has at least two children whose

subtrees have size m. Let τ be the threshold used by the algorithm, and consider

a ω(n/τ)-heavy tree. Then, we observe that conditioning on the secretary (the

root) being after the threshold, the pareto set F(Sτ) will be of size at least 2

(with probability approaching 1), and will be so until reaching the secretary. A

similar argument applies for a d-dimensional lattice, that is a set of elements Λ` =

{
∑d

i=1 aiei | ai ∈ {0, 1, . . . , `i}} with PΛ` = {(v,v′) ∈ Λ2
` | ∃j vj > v′j and ∀i vi ≥

v′i}, that is the secretary is the origin. We say that Λ` is m-heavy if `i ≥ m for

all 1 ≤ i ≤ d.

Observation 74. Algorithm 6.1 with threshold τ succeeds with probability 1 −
(τ/n)k−o(1) on a poset consisting of k disjoint ω((n/τ) log(1 +k))-heavy trees, as

well as on a poset consisting of k disjoint ω((n/τ) log(1+kd))-heavy d-dimensional

lattices.

6.7 Conclusions

We have presented an algorithm for the poset secretary that achieves success

probability of k−1/(k−1)(1 − ok(1)) for a poset with k maximal elements. We also

showed that no algorithm can obtain success probability better than k−1/(k−1).

Closing the gap between the two bounds is an open problem and we indeed believe

that the proposed algorithm achieves success probability k−1/(k−1)(1 − on(1)) —

which would substantially close the gap.

161

A drawback of our algorithm is that it takes in input the number k of

maximal elements in the poset. It is a very interesting question whether similar

bounds can be achieved with an algorithm that is completely oblivious of the poset.

A possible algorithm (for which an analysis is missing) skips the first τ1 candidates

and modifies the check at line 5 of Algorithm 6.1 to a ∈ FP(S) ∧ |FP(S)| ≤ m(i),

where m(i) = arg maxk≥1{τk ≤ i} is the index of the largest threshold before i.

Chapter 6, in full, is a reprint of the paper “Hiring a secretary from a

poset” co-authored with Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii

in the proceedings of the 12th ACM Conference on Electronic Commerce, EC

2011 [KLVV11]. The dissertation author was the primary investigator and author

of this paper.

Bibliography

[ABC+09] Yossi Azar, Benjamin E. Birnbaum, L. Elisa Celis, Nikhil R. Devanur,
and Yuval Peres. Convergence of local dynamics to balanced outcomes
in exchange networks. In FOCS, pages 293–302, 2009.

[ADK+08] Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Éva Tardos,
Tom Wexler, and Tim Roughgarden. The price of stability for network
design with fair cost allocation. SIAM J. Comput., 38(4):1602–1623,
2008.

[ADTW03] Elliot Anshelevich, Anirban Dasgupta, Éva Tardos, and Tom Wexler.
Near-optimal network design with selfish agents. In STOC, pages
511–520, 2003.

[AEED+06] Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and
Liam Roditty. On nash equilibria for a network creation game. In
SODA, pages 89–98, 2006.

[AF99] David J. Aldous and James A. Fill. Reversible Markov Chains and
Random Walks on Graphs. 1999. Book in preparation.

[AKK+07] Esteban Arcaute, Adam Kirsch, Ravi Kumar, David Liben-Nowell,
and Sergei Vassilvitskii. On threshold behavior in query incentive
networks. In ACM Conference on Electronic Commerce, pages 66–74,
2007.

[AKL+79] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász,
and Charles Rackoff. Random walks, universal traversal sequences,
and the complexity of maze problems. In FOCS, pages 218–223, 1979.

[AMW01] Miklós Ajtai, Nimrod Megiddo, and Orli Waarts. Improved algorithms
and analysis for secretary problems and generalizations. SIAM J.
Discrete Math., 14(1):1–27, 2001.

[AN04] Krishna B. Athreya and Peter Ney. Branching processes. Springer-
Verlag, New York, 2004.

162

163

[AOY11] Daron Acemoglu, Asuman E. Ozdaglar, and Mehmet Ercan Yildiz.
Diffusion of innovations in social networks. In IEEE Conference on
Decision and Control, pages 2329–2334, 2011.

[APP+12] Omid Amini, David Peleg, Stéphane Pérennes, Ignasi Sau, and Saket
Saurabh. On the approximability of some degree-constrained sub-
graph problems. Discrete Applied Mathematics, 160(12):1661–1679,
2012.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wiley
Interscience, March 2004.

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[BBM09] Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Improved
equilibria via public service advertising. In SODA, pages 728–737,
2009.

[BBM10] Maria-Florina Balcan, Avrim Blum, and Yishay Mansour. Circum-
venting the price of anarchy: Leading dynamics to good behavior. In
ICS, pages 200–213, 2010.

[BC91] Dimitri P. Bertsekas and David A. Castañon. Parallel synchronous
and asynchronous implementations of the auction algorithm. Parallel
Computing, 17(6-7):707–732, 1991.

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and

Aravindan Vijayaraghavan. Detecting high log-densities: an o(n1/4)
approximation for densest k-subgraph. In STOC, pages 201–210, 2010.

[BDG+09] Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica,
and Kunal Talwar. Secretary problems: weights and discounts. In
SODA, pages 1245–1254, 2009.

[BG00] Venkatesh Bala and Sanjeev Goyal. A noncooperative model of net-
work formation. Econometrica, 68(5):1181–1230, September 2000.

[BIK07] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids,
secretary problems, and online mechanisms. In SODA, pages 434–443,
2007.

[BIKK08] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Klein-
berg. Online auctions and generalized secretary problems. SIGecom
Exchanges, 7(2), 2008.

164

[BIKK12] Christina Brandt, Nicole Immorlica, Gautam Kamath, and Robert
Kleinberg. An analysis of one-dimensional schelling segregation. In
STOC, pages 789–804, 2012.

[BJS10] Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems
via linear programming. In IPCO, pages 163–176, 2010.

[BK11] Michael Brautbar and Michael Kearns. A clustering coefficient net-
work formation game. In SAGT, pages 224–235, 2011.

[Blu03] Lawrence E. Blume. How noise matters. Games and Economic Be-
havior, 44(2):251–271, 2003.

[Bov06] Anton Bovier. Statistical mechanics of disordered systems: a mathe-
matical perspective, volume 18. Cambridge University Press, 2006.

[BRST01] Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusanády.
The degree sequence of a scale-free random graph process. Random
Structures and Algorithms, 18:279–290, 2001.

[Bru00] F. Thomas Bruss. Sum the odds to one and stop. Annals of Proba-
bility, 28:1384–1391, 2000.

[CCVV12] Manuel Cebrián, Lorenzo Coviello, Andrea Vattani, and Panagiotis
Voulgaris. Finding red balloons with split contracts: robustness to
individuals’ selfishness. In STOC, pages 775–788, 2012.

[CE78] Karen S. Cook and Richard M. Emerson. Power, Equity and
Commitment in Exchange Networks. American Sociological Review,
43(5):721–739, 1978.

[CEG83] Karen S. Cook, Richard M. Emerson, and Mary R. Gillmore. The Dis-
tribution of Power in Exchange Networks: Theory and Experimental
Results. The American Journal of Sociology, 89(2):275–305, 1983.

[CF05] Colin Cooper and Alan M. Frieze. The cover time of random regular
graphs. SIAM J. Discrete Math., 18(4):728–740, 2005.

[CFM+12] Lorenzo Coviello, Massimo Franceschetti, Mathew D. McCubbins,
Ramamohan Paturi, and Andrea Vattani. Human matching behav-
ior in social networks: An algorithmic perspective. PLoS ONE,
7(8):e41900, 08 2012.

[CFR09] Colin Cooper, Alan M. Frieze, and Tomasz Radzik. Multiple random
walks in random regular graphs. SIAM J. Discrete Math., 23(4):1738–
1761, 2009.

165

[CGJ08] Kamalika Chaudhuri, Fan Chung Graham, and Mohammad Shoaib
Jamall. A network coloring game. In WINE, pages 522–530, 2008.

[CJKT10] Tanmoy Chakraborty, J. Stephen Judd, Michael Kearns, and Jinsong
Tan. A behavioral study of bargaining in social networks. In ACM
Conference on Electronic Commerce, pages 243–252, 2010.

[CLP09] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Ru-
mor spreading in social networks. In ICALP (2), pages 375–386, 2009.

[Coo04] Matthew Cook. Universality in elementary cellular automata. Com-
plex Systems, 15(1):1–40, 2004.

[CP05] Jacomo Corbo and David C. Parkes. The price of selfish behavior in
bilateral network formation. In PODC, pages 99–107, 2005.

[DFF12] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Asynchronous
rumor spreading in preferential attachment graphs. In SWAT, pages
307–315, 2012.

[DM07] John R. Douceur and Thomas Moscibroda. Lottery trees: motiva-
tional deployment of networked systems. In SIGCOMM, pages 121–
132, 2007.

[DMW03] Peter S. Dodds, Roby Muhamad, and Duncan J. Watts. An ex-
perimental study of search in global social networks. Science,
301(5634):827, 2003.

[DN09] Devansh Dikshit and Yadati Narahari. Truthful and quality conscious
query incentive networks. In WINE, pages 386–397, 2009.

[DR89] Pradeep Dubey and Jonathan D. Rogawski. Inefficiency of Nash Equi-
libria. Cowles foundation discussion paper. Yale University, Cowles
Foundation for Research in Economics, 1989.

[DT90] John Dombrink and William N. Thompson. The Last Resort: Success
And Failure In Campaigns For Casinos. Nevada Studies in History
and Political Science. University of Nevada Press, 1990.

[Dyn63] Eugene B. Dynkin. The optimum choice of the instant for stopping a
Markov process. Sov. Math. Dokl., 4:627–629, 1963.

[EKTZ11] Yuval Emek, Ron Karidi, Moshe Tennenholtz, and Aviv Zohar. Mech-
anisms for multi-level marketing. In ACM Conference on Electronic
Commerce, pages 209–218, 2011.

[Eme62] Richard M. Emerson. Power-Dependence Relations. American Soci-
ological Review, 27(1):31–41, 1962.

166

[EMPW11] Daniel P. Enemark, Mathew D. McCubbins, Ramamohan Paturi, and
Nicholas Weller. Does more connectivity help groups to solve social
problems. In ACM Conference on Electronic Commerce, pages 21–26,
2011.

[ESW12] Yuval Emek, Jasmin Smula, and Roger Wattenhofer. Stone Age Dis-
tributed Computing. In TIK Report Number 344, Zuerich, November
2012.

[Fer89] Thomas Ferguson. Who solved the secretary problem. Statistical
Science, 4:282–296, 1989.

[FG09] Pierre Fraigniaud and George Giakkoupis. The effect of power-law
degrees on the navigability of small worlds. In PODC, pages 240–249,
2009.

[FG10] Pierre Fraigniaud and George Giakkoupis. On the searchability of
small-world networks with arbitrary underlying structure. In STOC,
pages 389–398, 2010.

[FLM+03] Alex Fabrikant, Ankur Luthra, Elitza N. Maneva, Christos H. Pa-
padimitriou, and Scott Shenker. On a network creation game. In
PODC, pages 347–351, 2003.

[FPK01] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph
problem. Algorithmica, 29(3):410–421, 2001.

[FW10] Ragnar Freij and Johan Wästlund. Partially ordered secretaries. Elec-
tronic Communication in Probability, 15:504–507, 2010.

[Gia11] George Giakkoupis. Tight bounds for rumor spreading in graphs of a
given conductance. In STACS, pages 57–68, 2011.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[GK12] Sanjeev Goyal and Michael Kearns. Competitive contagion in net-
works. In STOC, pages 759–774, 2012.

[GKMN08] Nicholas Georgiou, Malgorzata Kuchta, Michal Morayne, and
Jaroslaw Niemiec. On a universal best choice algorithm for partially
ordered sets. Random Struct. Algorithms, 32(3):263–273, 2008.

[GL09] Doron Goldstein and Michael Langberg. The dense k subgraph prob-
lem. CoRR, abs/0912.5327, 2009.

167

[Gne92] A. V. Gnedin. Multicriteria extensions of the best choice problem:
Sequential selection without linear order. Contemp. Math, 125:153–
172, 1992.

[GRST10] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained
non-monotone submodular maximization: Offline and secretary algo-
rithms. In Proc. 6th WINE, pages 246–257, 2010.

[GS62] D. Gale and L.S. Shapley. College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9–15, 1962.

[GS11] George Giakkoupis and Nicolas Schabanel. Optimal path search in
small worlds: dimension matters. In STOC, pages 393–402, 2011.

[Han10] Eric Hand. Citizen science: People power. Nature, 466(7307):685,
2010.

[HK71] J.E. Hopcroft and R.M. Karp. A n5/2 algorithm for maximum match-
ings in bipartite. In Switching and Automata Theory, 1971., 12th
Annual Symposium on, pages 122–125. IEEE, 1971.

[HK10] J.W. Hatfield and S.D. Kominers. Matching in networks with bilateral
contracts. In Proceedings of the 11th ACM conference on Electronic
commerce, pages 119–120. ACM, 2010.

[HKP04] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes. Adaptive limited-
supply online auctions. In Proc. 5th EC, pages 71–80, 2004.

[HMS08] Jason D. Hartline, Vahab S. Mirrokni, and Mukund Sundararajan.
Optimal marketing strategies over social networks. In WWW, pages
189–198, 2008.

[II86] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm
for maximal matching. Information Processing Letters, 22(2):77–80,
1986.

[IJ90] Amos Israeli and Marc Jalfon. Token management schemes and ran-
dom walks yield self-stabilizing mutual exclusion. In Proceedings of
the ninth annual ACM symposium on Principles of distributed com-
puting, PODC ’90, pages 119–131, New York, NY, USA, 1990. ACM.

[IMPV10] Amos Israeli, Mathew D. McCubbins, Ramamohan Paturi, and An-
drea Vattani. Low memory distributed protocols for 2-coloring. In
SSS, pages 303–318, 2010.

[Jac05] M. Jackson. Group Formation in Economics: Networks, Clubs and
Coalitions. G. Demange and M. Wooders, 2005.

168

[JK08] J. Stephen Judd and Michael Kearns. Behavioral experiments in net-
worked trade. In ACM Conference on Electronic Commerce, pages
150–159, 2008.

[JKV10] S. Judd, M. Kearns, and Y. Vorobeychik. Behavioral dynamics and
influence in networked coloring and consensus. Proceedings of the
National Academy of Sciences, 107(34):14978–14982, 2010.

[JKV11] S. Judd, M. Kearns, and Y. Vorobeychik. Behavioral conflict and
fairness in social networks. Internet and Network Economics, pages
242–253, 2011.

[JY07] Matthew O. Jackson and Leeat Yariv. Diffusion of behavior and equi-
librium properties in network games. American Economic Review,
97(2):92–98, 2007.

[Kan10] Yashodhan Kanoria. An fptas for bargaining networks with unequal
bargaining powers. In WINE, pages 282–293, 2010.

[KBB+11a] Y. Kanoria, M. Bayati, C. Borgs, J. Chayes, and A. Montanari. Fast
convergence of natural bargaining dynamics in exchange networks.
In ACM-SIAM Symposium on Discrete Algorithms, pages 1518–1537,
2011.

[KBB+11b] Yashodhan Kanoria, Mohsen Bayati, Christian Borgs, Jennifer T.
Chayes, and Andrea Montanari. Fast convergence of natural bar-
gaining dynamics in exchange networks. In SODA, pages 1518–1537,
2011.

[Kho01] Subhash Khot. Improved inaproximability results for maxclique, chro-
matic number and approximate graph coloring. In FOCS, pages 600–
609, 2001.

[KJTW09] Michael Kearns, Stephen Judd, Jinsong Tan, and Jennifer Wortman.
Behavioral experiments on biased voting in networks. Proceedings of
the National Academy of Sciences, January 2009.

[KJV12] M. Kearns, S. Judd, and Y. Vorobeychik. Behavioral experiments on
a network formation game. In Proceedings of the ACM Conference of
Electronic Commerce, 2012.

[KKT03] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In KDD, pages 137–146,
2003.

[Kle00a] Jon M. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.

169

[Kle00b] Jon M. Kleinberg. The small-world phenomenon: an algorithm per-
spective. In STOC, pages 163–170, 2000.

[Kle01] Jon M. Kleinberg. Small-world phenomena and the dynamics of in-
formation. In NIPS, pages 431–438, 2001.

[Kle05] R. Kleinberg. A multiple-choice secretary problem with applications
to online auctions. In Proc. 16th SODA, pages 630–631, 2005.

[KLM02] G. Kubicki, J. Lehel, and M. Morayne. A ratio inequality for binary
trees and the best secretary. Combinatorics, Probability, and Com-
puting, 11:146–161, 2002.

[KLVV11] Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani.
Hiring a secretary from a poset. In ACM Conference on Electronic
Commerce, pages 39–48, 2011.

[KN10] Nagaraj Kota and Y. Narahari. Threshold behavior of incentives in
social networks. In ACM international conference on Information and
knowledge management, pages 1461–1464, 2010.

[Koz10] Jakub Kozik. Dynamic threshold strategy for universal best choice
problem. In Proc. 21st International Meeting on Probabilistic, Com-
binatorial, and Asymptotic Methods in the Analysis of Algorithms,
pages 439–452, 2010.

[KP99] Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equi-
libria. In STACS, pages 404–413, 1999.

[KP09] Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equi-
libria. Computer Science Review, 3(2):65–69, 2009.

[KR05] Jon M. Kleinberg and Prabhakar Raghavan. Query incentive net-
works. In FOCS, pages 132–141, 2005.

[KSM06] Michael Kearns, Siddharth Suri, and Nick Montfort. A behavioral
study of the coloring problem on human subject networks. Science,
313:2006, 2006.

[KSS97] Henry Kautz, Bart Selman, and Mehul Shah. Referral web: combining
social networks and collaborative filtering. Communications of the
ACM, 40:63–65, March 1997.

[KT79] D. Kahneman and A. Tversky. Prospect theory: An analysis of deci-
sion under risk. Econometrica: Journal of the Econometric Society,
pages 263–291, 1979.

170

[KT08a] Jon M. Kleinberg and Éva Tardos. Balanced outcomes in social ex-
change networks. In STOC, pages 295–304, 2008.

[KT08b] Jon M. Kleinberg and Éva Tardos. Balanced outcomes in social ex-
change networks. In STOC, pages 295–304, 2008.

[Kuh55] Harold W. Kuhn. The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–97, 1955.

[KUW86] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect
matching is in random nc. Combinatorica, 6(1):35–48, 1986.

[Lig85] T.M. Liggett. Interacting particle systems, volume 276. Springer
Verlag, 1985.

[LL96] Bibb Latané and Todd L’Herrou. Spatial clustering in the confor-
mity game: Dynamic social impact in electronic groups. Journal of
Personality and Social Psychology, 70:1218–1230, 1996.

[LNNK+05] David Liben-Nowell, Jasmine Novak, Ravi Kumar, Prabhakar Ragha-
van, and Andrew Tomkins. Geographic routing in social networks.
Proceedings of the National Academy of Sciences of the United States
of America, 102(33):11623–11628, August 2005.

[LPSP08] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed ap-
proximate matching. In Proceedings of the ACM symposium on Par-
allelism in algorithms and architectures, pages 129–136, 2008.

[LRSH11] Jan Lorenz, Heiko Rauhut, Frank Schweitzer, and Dirk Helbing. How
social influence can undermine the wisdom of crowd effect. Proceedings
of the National Academy of Sciences, 108(22):9020, 2011.

[MHB10] M. Zadimoghaddam M. H. Bateni, M. T. Hajiaghayi. Submodular
secretary problem and extensions. In Proc. 6th WINE, pages 39–52,
2010.

[Mil63] Stanley Milgram. Behavioral study of obedience. Journal of Abnormal
and Social Psychology, 67(4):371–378, 1963.

[Mil67] Stanley Milgram. The small world problem. Psychology today,
2(1):60–67, 1967.

[Mil74] Stanley Milgram. Obedience to authority: an experimental view.
Harper & Row, 1974.

[Mil77] Stanley Milgram. The Individual in a Social World: Essays and Ex-
periments. Addison Wesley Publishing Company, 1977.

171

[Mor98] Michal Morayne. Partial-order analogue of the secretary problem; the
binary tree case. Discrete Math, 184:165–181, 1998.

[MPW09] Mathew D. McCubbins, Ramamohan Paturi, and Nicholas Weller.
Connected Coordination: Network Structure and Group Coordina-
tion. American Politics Research, 37:899–920, 2009.

[MS09] A. Montanari and A. Saberi. Convergence to equilibrium in local
interaction games. In IEEE Symposium on Foundations of Computer
Science, pages 303–312. IEEE, 2009.

[MS10] Elchanan Mossel and Grant Schoenebeck. Reaching consensus on
social networks. In ICS, pages 214–229, 2010.

[MS12] Jason R. Marden and Jeff S. Shamma. Revisiting log-linear learning:
Asynchrony, completeness and payoff-based implementation. Games
and Economic Behavior, 75(2):788–808, 2012.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Match-
ing is as easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

[MVV11] Petros Mol, Andrea Vattani, and Panagiotis Voulgaris. The effects of
diversity in aggregation games. In ICS, pages 509–521, 2011.

[Pap01] Christos H. Papadimitriou. Algorithms, games, and the internet. In
STOC, pages 749–753, 2001.

[PPR+11] Galen Pickard, Wei Pan, Iyad Rahwan, Manuel Cebrián, Riley Crane,
Anmol Madan, and Alex Pentland. Time critical social mobilization.
Science, 334(6055):509–512, 2011.

[PR00] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the
time complexity of distributed minimum-weight spanning tree con-
struction. SIAM J. Comput., 30(5):1427–1442, 2000.

[Pra64] J.W. Pratt. Risk aversion in the small and in the large. Econometrica:
Journal of the Econometric Society, pages 122–136, 1964.

[Pre99] John Preater. The best-choice problem for partially ordered objects.
Operation Research Letter, 25:187–190, 1999.

[RS92] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: A study in
game-theoretic modeling and analysis, volume 18. Cambridge Univer-
sity Press, 1992.

[San06] Nicola Santoro. Design and Analysis of Distributed Algorithms. Wiley
Series on Parallel And Distributed Computing. Wiley, 2006.

172

[SB76] H.A. Simon and C.I. Barnard. Administrative behavior, volume 3.
Cambridge University Press, 1976.

[Sch71] T. C. Schelling. Dynamic models of segregation. Journal of Mathe-
matical Sociology, 1(2):143–186, 1971.

[Sch78] Thomas C. Schelling. Micromotives and Macrobehavior. W. W. Nor-
ton & Company, October 1978.

[Sch09] Sebastian Schnettler. A structured overview of 50 years of small-world
research. Social Networks, 31(3):165–178, 2009.

[SH88] Galen H. Sasaki and Bruce Hajek. The time complexity of maximum
matching by simulated annealing. J. ACM, 35(2):387–403, 1988.

[Sin11] Yaron Singer. How to win friends and influence people, truthfully:
Influence maximization mechanisms for social networks. In WSDM,
2011.

[Sot11] J. A. Soto. Matroid secretary problem in the random assignment
model. In Proc. 22nd SODA, pages 1275–1284, 2011.

[Sur04] James Surowiecki. The wisdom of crowds: Why the many are smarter
than the few and how collective wisdom shapes business, economies,
societies, and nations. Doubleday Books, 2004.

[SW09] Yogeshwer Sharma and David P. Williamson. Stackelberg thresholds
in network routing games or the value of altruism. Games and Eco-
nomic Behavior, 67(1):174–190, 2009.

[SW11] S. Suri and D.J. Watts. Cooperation and contagion in web-based,
networked public goods experiments. PLoS One, 6(3):e16836, 2011.

[TCG+11] John C. Tang, Manuel Cebrián, Nicklaus A. Giacobe, Hyun-Woo Kim,
Taemie Kim, and Douglas ”Beaker” Wickert. Reflecting on the darpa
red balloon challenge. Commun. ACM, 54(4):78–85, 2011.

[TM69] Jeffrey Travers and Stanley Milgram. An experimental study of the
small world problem. Sociometry, 32(4):425–443, 1969.

[Val84] Leslie G. Valiant. A theory of the learnable. In STOC, pages 436–445,
1984.

[Val00] Leslie G. Valiant. Circuits of the Mind. Oxford University Press,
USA, 2000.

173

[Vet02] Adrian Vetta. Nash equilibria in competitive societies, with applica-
tions to facility location, traffic routing and auctions. In FOCS, pages
416–, 2002.

[VNB66] J. Von Neumann and A.W. Burks. Theory of self-reproducing au-
tomata. 1966.

[WDN02] Duncan J. Watts, Peter S. Dodds, and M. E. J. Newman. Identity
and search in social networks. Science, 296(5571):1302, 2002.

[Wil99] D. Willer. Network Exchange Theory. Praeger, 1999.

[WS98] D.J. Watts and S.H. Strogatz. Collective dynamics of small-
worldnetworks. Nature, 393(6684):440–442, 1998.

[WSW12] J. Wang, S. Suri, and D.J. Watts. Cooperation and assortativity with
endogenous partner selection. In Proceedings of the ACM Conference
of Electronic Commerce, 2012.

[YS03] Bin Yu and Munindar P. Singh. Searching social networks. In AA-
MAS, pages 65–72, 2003.

[ZA04] Zhang, Jun and Van Alstyne, Marshall. SWIM: fostering social net-
work based information search. In Proceedings of ACM CHI 2004
Conference on Human Factors in Computing Systems, volume 2, page
1568, 2004.

[Zim08] Philip Zimbardo. The Lucifer Effect: Understanding How Good Peo-
ple Turn Evil. Random House Publishing Group, 2008.

[ZSP08] Michael M. Zavlanos, Leonid Spesivtsev, and George J. Pappas. A
distributed auction algorithm for the assignment problem. In Confer-
ence on Decision and Control, pages 1212–1217, 2008.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Central fields
	Central topics
	Part I: Models for Networked Experiments
	Part II: Models for Other Phenomena

	I Models for Networked Experiments
	Coloring Experiments
	Results
	Related work
	Model
	Ring networks
	A natural algorithm
	An optimal algorithm
	Slow-down with asymmetric incentives

	General bipartite graphs
	A natural algorithm
	An optimal algorithm

	Discussion: Leader election vs 2-coloring
	Preferential attachment graphs
	Analysis of the algorithm

	Conclusions

	Matching Experiments
	Results
	Related work
	The matching games
	The algorithmic model
	Analysis
	Prediction and validation of the model
	Conclusions
	Appendix: analysis for Theorems 20–21
	Properties of matchings in M1.
	The tree T*n.
	Proof of Theorem 20
	Proof of Theorem 21

	Finding Red Balloons
	The query incentive network model
	Results
	Additional related work
	Preliminaries
	Split contracts
	Propagation of the payment
	Difference with respect to previous work
	Roadmap

	Properties of Nash equilibria
	The Nash equilibrium
	Guaranteeing h-consistency
	Efficiency
	Discussion: non-uniqueness of the Nash equilibrium
	Simulations

	II Models for Other Phenomena
	Models for Aggregation
	Results
	Related work
	Preliminaries
	Notation

	Homogeneous Populations
	A Population of Followers
	A Population of Leaders
	Lower Bounds for Homogeneous Populations

	Heterogeneous Populations
	Achieving Low Price of Anarchy
	Price of Stability and Relation to Price of Anarchy

	Extensions
	Generalized -leaders
	The effects of information

	Conclusions

	The Secretary Problem
	Results
	Related work
	Preliminaries
	Algorithm and Analysis
	Warmup: Analysis for a single secretary
	Analysis for general posets

	Upper bounds on success
	Tightness of the algorithm
	Conclusions

	Bibliography

