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A framework for the comparison of maximum pseudo-likelihood and maximum
likelihood estimation of exponential family random graph models
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a b s t r a c t

The statistical modeling of social network data is difficult due to the complex dependence structure of the
tie variables. Statistical exponential families of distributions provide a flexible way to model such depen-
dence. They enable the statistical characteristics of the network to be encapsulated within an exponential
family random graph (ERG) model. For a long time, however, likelihood-based estimation was only feasible
for ERG models assuming dyad independence. For more realistic and complex models inference has been
based on the pseudo-likelihood. Recent advances in computational methods have made likelihood-based
inference practical, and comparison of the different estimators possible.

In this paper, we present methodology to enable estimators of ERG model parameters to be compared.
We use this methodology to compare the bias, standard errors, coverage rates and efficiency of maximum
likelihood and maximum pseudo-likelihood estimators. We also propose an improved pseudo-likelihood
estimation method aimed at reducing bias. The comparison is performed using simulated social network
data based on two versions of an empirically realistic network model, the first representing Lazega’s
law firm data and the second a modified version with increased transitivity. The framework considers
estimation of both the natural and the mean-value parameters.
The results clearly show the superiority of the likelihood-based estimators over those based on pseudo-
likelihood, with the bias-reduced pseudo-likelihood out-performing the general pseudo-likelihood. The
use of the mean-value parameterization provides insight into the differences between the estimators and
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. Introduction

Likelihood-based estimation of exponential family random
raph (ERG) models is complicated because the likelihood function

s difficult to compute for models and networks of reasonable size
e.g., networks with 30 or more actors and models of dyad depen-
ence). Until recently inference for ERG models has been almost
xclusively based on a local alternative to the likelihood function
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eferred to as the pseudo-likelihood (Strauss and Ikeda, 1990). This
as originally motivated by (and developed for) spatial models by
esag (1975), and extended as an alternative to maximum likeli-
ood estimation for networks (Frank and Strauss, 1986; Strauss and

keda, 1990; Frank, 1991)(see also Wasserman and Pattison, 1996;
asserman and Robins, 2005; Besag, 2000). The computational

ractability of the pseudo-likelihood function seemed to make it
tempting alternative to the full likelihood function.

In recent years much progress has been made in likelihood-
ased inference for ERG models by the application of Markov Chain
onte Carlo (MCMC) algorithms (Geyer and Thompson, 1992;

rouch et al., 1998; Corander et al., 1998, 2002; Handcock, 2002;
nijders, 2002; Hunter and Handcock, 2006). At the same time we
ave gained a far better understanding of the problem of degener-
cy (Snijders, 2002; Handcock, 2003; Snijders et al., 2006; Robins

t al., 2007), leading to the development of several software pack-
ges for fitting ERG models (Handcock et al., 2003; Boer et al., 2003;
ang et al., 2008).
Since ERG models are within the exponential family class, the

roperties of their maximum likelihood estimator (MLE) have been

http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:m.a.j.van.duijn@rug.nl
mailto:krista.gile@nuffield.ox.ac.uk
mailto:handcock@stat.washington.edu
dx.doi.org/10.1016/j.socnet.2008.10.003
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tudied, although little is available on their application to network
odels. Not much is known about the behavior of the maximum

seudo-likelihood estimator (MPLE), and how it compares to that
f the MLE. Corander et al. (1998) investigate maximum likelihood
stimation of a specific type of exponential family random graph
odel (with the numbers of two-stars and triangles as sufficient

tatistics) and compare them to the MPLE in two ways. First, they
onsider small graphs with fixed sufficient statistics and compare
he actual MLE (determined by full enumeration), an approximated

LE, and the MPLE, and conclude that the MPLE appears to be
iased. They also consider graphs with fixed edge counts generated
y a model with known clustering parameter. They estimate this
nown parameter using the MLE and the MPLE and conclude that
utside the unstable region of the MLE, the MPLE is more biased
han the MLE with this difference being smaller for larger net-
orks (40–100 nodes). Wasserman and Robins (2005) argue that

he MPLE is intrinsically highly dependent on the observed network
nd, consequently, may result in substantial bias in the parameter
stimates for certain networks. In a comparison of the MPLE and
he MLE in 20 networks, Robins et al. (2007) find that the MPLE are
imilar to the MLE for networks with a relatively low dependence
tructure but can be very different for network data with more
ependency.

Lubbers and Snijders (2007) investigated the behavior of the
PLE and the MLE in several specifications of the ERG model.

heir work is not a simulation study but can be characterized as a
eta analysis of a large number of same gender social networks of

dolescents. Although Lubbers and Snijders (2007) conclude that
he results obtained are not seriously affected by the estimation

ethod, the behavior of the MPLE and the MLE were quite divergent
n many cases. The MPLE algorithm did not always converge, pos-
ibly due to infinite estimates, and produced inaccurate standard
rrors.

Approaches to avoid the problem of ERG model degeneracy and
ssociated estimation problems include the use of new network
tatistics (Snijders et al., 2006; Hunter and Handcock, 2006) in
he ERG model specification. Handcock (2003) proposed mean-
alue parameterization as an alternative to the common natural
arameterization to enhance the understanding of the degeneracy
roblem.

Because the pseudo-likelihood can be expected to misrepresent
t least part of the dependence structure of the social network
xpressed in the likelihood, it is generally assumed that infer-
nce based on the pseudo-likelihood is problematic. However, the
aximum likelihood-based methods are not privileged in this set-

ing as the asymptotic arguments that bolster them do not apply.
he underestimation of standard errors based on the pseudo-
ikelihood has been a concern (cf. Wasserman and Robins, 2005).

oreover, the MPLE has the undesirable property of sometimes
esulting in infinite estimates (manifested by reported estimates
hat have numerically large magnitude). Handcock (2003) shows
hat, under certain conditions, if the MPLE is finite, it is also
nique. Corander et al. (1998) however, found considerable vari-
bility and bias in the MPLE of the effects of the number of
wo-stars and the number of triangles in relatively small undi-
ected networks with a fixed number of edges. They also showed
hat the bias and mean-squared error of the MLE are associated
ith the size of the parameter values, as is typical for parameter

onfigurations where model degeneracy may become a prob-
em.
For dyad independence models the likelihood and pseudo-
ikelihood functions coincide (if the pseudo-likelihood function is
efined at the dyad-level). The common assumption then is that
he estimates will diverge as the dependence among the dyads
ncreases. It may also be expected that differences between the
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stimators will be smaller for actor (or dyadic) covariate effects
han for structural network effects, such as the number of transi-
ive triads, representing the dependency in the network. Moreover,
f the dependence in the network is relatively low, the MPLE may
e a reasonable estimate. In analyses of social network data with
any possible (actor) covariates, the easily and quickly obtained
PLE may provide a good starting point for further analyses with

elected covariates.
The two main goals of the paper are to present a framework

o evaluate estimators of ERG model parameters, and to present
case-study comparing traditionally important estimators in this

ontext.
The framework allows researchers to evaluate the properties

f estimators for the network models most relevant to their spe-
ific applications. It also allows different estimators to be compared
gainst each other.

The case-study has the goal of deepening our understanding
f the relative performance of the MLE and the two pseudo-
ikelihoods estimators for fitting exponential family random graph

odels to social network data. We do this by presenting a detailed
tudy in one specific case, and thereby illustrating a framework
or comparison which could be used in future studies. The nov-
lty of this approach is that it combines the realism of a complex
odel known to represent a real-world data set with the systematic

nvestigation of a simulation study. Unlike an empirical study, this
pproach allows us to compare properties of the estimators in a set-
ing where the true values generating the data are known. Unlike
simulation study, it allows us to treat a known realistic model.
s part of our detailed study, we include a systematic compari-
on of the natural parameter estimates as well as the mean-value
arameter estimates. The mean-value parameterization is help-
ul in comparing and understanding the differences between the

LE and the pseudo-likelihood methods in terms of the observed
etwork statistics.

We also address three secondary goals. First, we propose and
nalyze the properties of a modified MPLE designed to reduce
ias in generalized linear models (Firth, 1993). Although Firth’s
pproach is motivated heuristically here, we find it produces
maller bias than the MPLE, resulting in greater efficiency with
espect to the MLE, especially in the mean-value parameterization.

Second, we deepen our comparison of the estimators by repeat-
ng the primary study on a model with increased transitivity.
he comparison of the two versions provides insight into the
elationship between the degree of transitivity and the relative
erformance of the estimators. Note that our focus on transitivity

s motivated by the particular form of dependence evident in our
mpirical data. Other applications may require different statistics
o capture the dependence adequately.

Finally, we provide high-level software tools to implement the
ramework in the paper. The software is based on the statnet
Handcock et al., 2003) suite of packages in the R statistical lan-
uage (R Development Core Team, 2007). We provide the code for
he case-study as part of the supplementary materials.

. Exponential family random graph models

Let the random matrix Y represent the adjacency matrix of an
nvalued network on n individuals. We assume that the diagonal
lements of Y are 0—that self-partnerships are disallowed. Suppose
hat Y denotes the set of all possible networks on the given n indi-

iduals. The multivariate distribution of Y can be parameterized in
he form:

�,Y(Y = y) = exp[�T Z(y)]
c(�,Y)

y ∈Y (1)
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here � ∈Rq is the model parameter and Z: Y → R
q are statis-

ics based on the adjacency matrix (Frank and Strauss, 1986;
asserman and Pattison, 1996; Handcock, 2002).
This model is an exponential family of distributions with natu-

al parameter � and sufficient statistics Z(Y). There is an extensive
iterature on descriptive statistics for networks (Wasserman and
aust, 1994; Borgatti et al., 1999). These statistics are often crafted
o capture features of the network (e.g., centrality, mutuality and
etweenness) of primary substantive interest to the researcher. In
any situations the researcher has specified a set of statistics based

n substantive theoretical considerations. The above model then
as the property of maximizing the entropy within the family of
ll distributions with given expectation of Z(Y) (Barndorff-Nielsen,
978). Paired with the flexibility of the choice of Z this prop-
rty provides some justification for the model (1) that will vary
rom application to application. The choice of Z, however, is by no

eans arbitrary, because the thus assumed dependence structure
f the network is related to the possible outcomes of Y under the
odel. The Markov assumption made by Frank and Strauss (1986),
here dyads which do not share an individual are conditionally

ndependent, is elegant but often too simple. The more elaborate
ependence of Robins and Pattison (2005) and Snijders et al. (2006)
nd the recent developments in MCMC estimation (Snijders, 2002;
nijders et al., 2006) have revealed the importance of choosing
ppropriate statistics to represent network dependency structure.

The denominator c(�,Y) is the normalizing function that

nsures the distribution sums to one: c(�,Y) =
∑
y ∈Y

exp
[
�T Z(y)

]
.

his factor varies with both � and the support Y and is the primary
arrier to simulation and inference under this modeling scheme.

ERG models have usually been expressed in their natural param-
terization �. Here we also consider the alternative mean value
arameterization for the model based on the 1–1 mapping: � :
q → C defined by

(�) = E�[Z(Y)] (2)

here C is the relative interior of the convex hull of the sample
pace of Z(Y). The mapping is strictly increasing in the sense that

�a − �b)T (�(�a) − �(�b)) ≥ 0 (3)

ith equality only if P�a,Y(Y = y) = P�b,Y(Y = y) ∀y. It is also injec-
ive in the sense that

(�a) = �(�b) → P�a,Y(Y = y) = P�b,Y(Y = y) ∀y. (4)

or each natural parameter for the model (1) there is a unique
ean-value parameter corresponding to that model (and vice

ersa). In practical terms the value �(�) can be computed by the
verage of Z(Y) for graphs Y simulated from the model with natural
arameter �. The inverse mapping �(�) can be solved by numeri-
ally inverting the process (Geyer and Thompson, 1992).

In the mean-value parameterization, the natural parameter �
s replaced by parameter �(�), which corresponds to the expected
alue of the sufficient statistic Z(Y) under the model with natural
arameter � (Barndorff-Nielsen, 1978).

One advantage of the mean-value parameterization is that from

he researcher’s perspective it is actually more “natural” than the

parameterization because it is defined on the scale of network
tatistics. This means that the MLE parameter estimates coincide
ith the value of the observed corresponding network statistics.

hus, a certain model specification can be evaluated immediately
y its capacity to reproduce the observed network statistics. See
andcock (2003) for details.
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.1. Illustration for the Erdős–Rényi model

In this subsection the difference between the natural and mean-
alue parameterizations is illustrated for the Bernoulli distribution,
s used in the simple homogeneous ERG model with independent
rcs.

A directed Erdős–Rényi network is generated by an ERG model
or n actors with one model term capturing the density D of arcs:

�,Y(Y = y) = exp(�D(y))
c(�,Y)

ith D(y) = (1/N)
∑

i /= jyij , and N = n(n − 1), the number of pos-
ible ties in the social network. It is also referred to as the
omogeneous Bernoulli model.

In this case, the normalizing constant is

(�,Y) =
N∑

s=0

(
N
s

)
exp(�s/N) = (1 + exp(�/N))N

he mean-value parameterization for the model is

≡ �(�) = E�(D(y)) = exp(�)
1 + exp(�)

,

epresenting the probability that a tie exists from a given actor to
nother given actor. It follows that

= log
(

�

1 − �

)
,

s the (common) log-odds that a given directed pair have a tie. So,
or the Erdős–Rényi model, we find that the natural parameter � is
simple function of the mean-value parameter, and vice versa.

The gradient or rate of change in � as a function of � is
�(1 − �)]−1, which is unbounded as the probability approaches

or 1. The rate of change in � as function of � is equal to
xp(�)/(1 + exp(�))2 which can be re-expressed as �(1 − �), the
ariance of the number of arcs under the binomial distribution with
onstant tie probability �. Thus, the rate of change in the mean-
alue parameterization is bounded between zero and one-quarter
nd is a (quadratic) function of the network density.

Although it is only in special cases that such a clear relation
etween the natural and mean-value parameterization exists, it can
e helpful in understanding the differences between them.

For any given model, both parameterizations can be consid-
red simultaneously. The issues raised by each are similar to those
aised by the choice of parameterization for log-linear analysis:
og-linear versus marginal parameterizations. See Agresti (2002),
ection 11.2.5 for details.

It is worth emphasizing that the relationship between natural
nd mean value parameterizations is a function of the model itself,
ot the estimation procedure. Therefore, the same mapping applies
o all three estimation procedures considered in this paper.

.2. Inference for exponential family random graph models

As we have specified the full joint distribution of the network
hrough (1), it is natural to conduct inference within the likelihood
ramework (Besag, 1975; Geyer and Thompson, 1992). Differenti-
ting the log-likelihood function:
(�; y) ≡ log[P�,Y(Y = y)] = �T Z(y) − log[c(�,Y)] (5)

hows that the maximum likelihood estimate �̂ satisfies:

(yobs) = E�̂Z(Y), (6)
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here Z(yobs) is the observed network statistic. This also indicates
hat the maximum likelihood estimate of the mean-value parame-
er �̂ ≡ �(�̂) satisfies:

ˆ = Z(yobs), (7)

result familiar from the binomial and normal distributions.
As can be seen from (5), direct calculation of the log-likelihood

y enumerating Y is infeasible for all but the smallest networks. As
n alternative, we can approximate the likelihood equation (6) by
eplacing the expectations by (weighted) averages over a sample of
etworks generated from a known distribution (typically the MLE
r an approximation to it). This procedure is described in Geyer
nd Thompson (1992). To generate the sample we use a MCMC
lgorithm (Geyer and Thompson, 1992; Snijders, 2002; Handcock,
002).

Computationally, inference under the mean-value parameteri-
ation is similar to inference under the natural parameterization.

hile the point estimator is trivial (see (7)), obtaining high qual-
ty measures of uncertainty of the estimator appears to require a

CMC procedure. Explicitly, from (7):

�[�̂] = V�[Z(Y)], (8)

o the covariance of �̂ can be estimated by a (weighted) variance
ver a sample of networks generated from a known distribution
typically, the MLE). This requires the MLE of the natural parameter
o be known. Hence the same MCMC sample used to estimate �̂
ia the Geyer–Thompson procedure can be used to estimate the
ovariance of �̂. The two procedures are closely related and of about
he same computational complexity. This relationship is familiar
or the binomial distribution (thought of as an exponential family)
here the natural parameter is the log-odds of a success, the mean-

alue parameter is the expected number of successes, the mean-
alue MLE is the observed number of successes and the variance
f the mean-value MLE can be estimated by plugging in the mean-
alue MLE for the mean-value parameter in the known formula of
he variance of the observed data.

Until recently inference for the model (1) has been almost exclu-
ively based on a local alternative to the likelihood function referred
o as the pseudo-likelihood (Besag, 1975; Strauss and Ikeda, 1990).
onsider the conditional formulation of the model (1):

ogit[P�,Y(Yij = 1|Yc
ij = yc

ij)] = �T ı(yc
ij), y ∈Y (9)

here ı(yc
ij
) = Z(y+

ij
) − Z(y−

ij
), the change in Z(y) when yij changes

rom 0 to 1 while the remainder of the network remains yc
ij

(see
trauss and Ikeda, 1990). The pseudo-likelihood for the model (1)
s

P(�; y) ≡ �T
∑

ij

ı(yc
ij)yij −

∑
ij

log[1 + exp(�T ı(yc
ij))]. (10)

This form is algebraically identical to the likelihood for a logis-
ic regression model where each unique element of the adjacency

atrix, yij , is treated as an independent observation with the cor-
esponding row of the design matrix given by ı(yc

ij
). Then the MLE

or this logistic regression model is identical to the MPLE for the
orresponding ERG model, a fact that is exploited in computation.
herefore, algorithms to compute the MPLE for ERG models are typ-
cally deterministic while the algorithms to compute their MLEs are
ypically stochastic. In addition, algorithms to compute the MLE
an be unstable if the model is near degenerate. This can lead to

omputational failure. Practitioners are attracted to the speed and
eterminism of the MPLE and the statistical superiority of the MLE
eeds to be justified.

In the simplest class of ERG models, in which each edge is
ssumed independent of every other edge, the likelihood for the

p
l
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RG model, given in (1) reduces to the form given by (10), and the
LE and the MPLE are identical. In more complicated and real-

stic models involving dependence between edges, however, this
ependence is ignored in the MPLE approximation. For this reason,
stimates and standard errors derived from the MPLE are suspect.
lthough its statistical properties for social networks are poorly
nderstood, the MPLE has been in common usage. While the more
ophisticated packages currently use the MLE (Handcock et al.,
003; Boer et al., 2003; Wang et al., 2008) the MPLE has had strong
istorical usage and continues to be advocated (Saul and Filkov,
007).

In addition, we propose an alternative pseudo-likelihood esti-
ator. This method was originally proposed by Firth (1993) as a

eneral approach to reducing the asymptotic bias of maximum
ikelihood estimates by penalizing the likelihood function. The
enalized pseudo-likelihood for the model (1) is then defined
s

BP(�; y) ≡ �P(�; y) + 1
2

log |I(�)| (11)

here I(�) denotes the expected Fisher information matrix for
he formal logistic model underlying the pseudo-likelihood eval-
ated at �. We refer to the estimator that maximizes �BP(�; yobs) as
he maximum bias-corrected pseudo-likelihood estimator (MBLE).
einze and Schemper (2002) showed that Firth’s method is par-

icularly useful in rare-events logistic regression where infinite
arameter estimates may result because of so called (quasi-)-
eparation, the situation where successes and failures are perfectly
eparated by one covariate or by a linear combination of covariates.
andcock (2003) identifies a similar phenomenon in ERG models.
e finds computational degeneracy resulting from observed sam-
le statistics near the boundary of the convex hull. We propose the
BLE here in hopes that its performance advantage near the bound-

ry of the sample space in logistic regression will be retained in the
RG model setting. We note that this motivation for the MBLE is
euristic and any bias-correction properties need to be empirically
scertained.

. Study design

.1. Framework and goals

We aim to consider many characteristics of the procedures
n depth for a specific model, rather than directly compare the
oint estimates over many data sets. While the latter approach has
alue, as demonstrated by Lubbers and Snijders (2007), fixing on a
odel used to represent a realistic data set enables the study to

ocus on the many characteristics of the procedures themselves
rather than just their point estimates). This limits the general-
zability of this study in terms of range of models, but increases
he generalizability in terms of the range of characteristics of the
rocedures.

The general structure of the simulation study is as follows:

Begin with the MLE model fit of interest for a given network.
Simulate networks from this model fit.
Fit the model to each sampled network using each method under
comparison.
Evaluate the performance of each estimation procedure in recov-
ering the known true parameter values, along with appropriate

measures of uncertainty.

The main interest of this simulation study is to compare the
erformance of the maximum likelihood (MLE), maximum pseudo-

ikelihood (MPLE), and maximum pseudo-likelihood with Firth’s
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Table 1
Natural and mean-value model parameters for original model for Lazega data, and
for model with increased transitivity.

Parameter Natural parameterization Mean-value parameterization

Original Increased transitivity Original Increased transitivity

Structural
edges −6.506 −6.962 115.00 115.00
GWESP 0.897 1.210 190.31 203.79

Nodal
seniority 0.853 0.779 130.19 130.19
practice 0.410 0.346 129.00 129.00
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ias-correction penalty (MBLE) estimators. There are two key fea-
ures of this comparison: the accuracy of point estimation, and the
ccuracy of estimators of uncertainty.

The accuracy of point estimation is compared using relative effi-
iency, computed as the ratio of mean squared errors. Because the
rue parameters of the generating model are known for both param-
terizations, the computation of mean squared errors is straight
orward. The MLE is then treated as the reference and the rel-
tive efficiency of a pseudo-likelihood estimate is computed as
he ratio of its mean squared error to that of the MLE. This is
one separately for each parameter, and under both parameteri-
ations.

For each estimator, a standard error estimate is derived from
he estimated curvature of the corresponding log-likelihood or
og-pseudo-likelihood ((5), (10) and (11)). We refer to these as
perceived” standard errors because these are the values formally
erived as the standard approximations to the true standard errors
rom asymptotic arguments that have not been justified for these

odels. These are the values typically provided by standard soft-
are (Handcock et al., 2003; Boer et al., 2003; Wang et al., 2008).

imilarly, perceived confidence intervals are computed using the
erceived standard error estimates and assuming a t-distribution
ith 35 × 36 × 0.5 − 7 = 623 degrees of freedom. In the natural
arameter space, these intervals correspond to the standard Wald-
ased significance tests for each parameter. Throughout we will
pecify a nominal coverage of 95%.

The accuracy of estimators of uncertainty is assessed by com-
aring the actual coverage rates of perceived confidence intervals
o their nominal coverage.

.2. Technical considerations

The sampling distributions of the estimators include infinite
alues if the graph space Y includes networks on the boundary
f the convex hull C. Hence we focus on the sampling distribu-
ions conditional on the observed network being on the interior
f the convex hull. In this case the bias and MSE of the natu-
al parameter estimates are finite (Barndorff-Nielsen, 1978). The
onditional sampling distributions are chosen to reflect the fact
hat practitioners faced with infinite parameter estimates will treat
he inference distinctly from analysis with finite estimates: the
e facto practice effectively focuses on the conditional sample
pace.

The mean-value parameters are a function of the natural param-
ters. Their values are estimated by simulating networks from
he natural parameter estimates and computing the mean suffi-
ient statistics over those samples. For the MLE this is just the
nown parameter value. The bias of each procedure is the differ-
nce between the mean parameter estimate over samples and the
rue parameter values from which the networks were sampled.
imilarly, the standard deviation of each procedure is simply the
tandard deviation of the parameter values over all samples. The
ean squared error, used to compute relative efficiency, is the mean

f the squared difference between the parameter estimates and the
rue parameters.

Based on the geometry of the likelihood of the exponential fam-
ly models, the covariance of the mean-value parameter estimates
an also be computed as the inverse of the covariance of the natu-
al parameters estimates (Barndorff-Nielsen, 1978). The perceived
onfidence intervals are then computed assuming a t-distribution

ith 623 degrees of freedom. The bias and MSE of mean-value
arameter estimates are always finite, but for comparability we
se the sampling distribution conditional on the observed network
eing on the interior of the convex hull. (The results are robust to
his choice).

t
t
G
m
i

practice 0.759 0.756 72.00 72.00
gender 0.702 0.662 99.00 99.00
office 1.145 1.081 85.00 85.00

.3. Case-study original model

The Lazega (2001) undirected collaboration network of 36 law
rm partners is used as the basis for the study. The first step is to
onsider a well fitting model for the data. We focus on one with
even parameters. Typical for the ERG model are the structural
arameters, related to network statistics, here the number of edges
essentially the density) and the geometrically weighted edgewise
hared partner statistic (denoted by GWESP), a measure of the tran-
itivity structure in the network. Two nodal attributes are used:
eniority (ranknumber/36) and practice (corporate or litigation).
hree dyadic homophily attributes are used: practice, gender (3 of
he 36 lawyers are female) and office (3 different locations of dif-
erent size). This is model 2 in Hunter and Handcock (2006). The

odel has been slightly reparameterized by replacing the alternat-
ng k-triangle term with the GWESP statistic. The scale parameter
or the GWESP term was fixed at its MLE (0.7781) (see Hunter and
andcock, 2006, for details). A summary of the MLE parameters
sed is given in the first numerical column of Table 1. Note that we
re taking these parameters as “truth” and considering networks
roduced by this model.

.4. Procedure

In the second step 1000 networks are simulated from this choice
f the parameters. For these networks, the MLE, the MPLE and the
BLE are obtained using statnet (Handcock et al., 2003), both for

he natural parameterization and for the mean-value parameteri-
ation (see Handcock, 2003). One sampled network has observed
tatistics residing on the edge of the convex hull of the sample
pace. This network is computationally degenerate in the sense of
andcock (2003). For such networks the natural parameter MLEs
nd MPLEs are known to be infinite and, as noted above, their values
ere not included in the numerical summaries.

To investigate the change in relative performance with higher
ransitivity, another set of networks with higher transitivity is con-
idered. Transitivity is conceptualized in terms of the observed
WESP statistic, as compared to its expected value in the dyad

ndependent graph with a GWESP natural parameter of 0. The orig-
nal network has GWESP statistic 190.3. The MLE of the mean-value
arameter for GWESP for the model with the natural parameter of
WESP fixed at zero is 136.4. (This can be computed simply by fit-

ing the model to the network omitting the GWESP and computing

he mean GWESP for networks generated from that model.) Thus
he observed network has increased transitivity by 53.9 units of
WESP above what is expected for a random network with the same
ean-values for the other terms. From this perspective, increas-

ng transitivity by 100 × ˛ percent can be represented by a model
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Table 2
Relative efficiency of the MPLE, and the MBLE with respect to the MLE.

Parameter Natural parameterization Mean-value parameterization

Original Increased transitivity Original Increased transitivity

MLE MPLE MBLE MLE MPLE MBLE MLE MPLE MBLE MLE MPLE MBLE

Structural
edges 1 0.80 0.94 1 0.66 0.80 1 0.21 0.29 1 0.15 0.20
GWESP 1 0.64 0.68 1 0.50 0.55 1 0.28 0.37 1 0.19 0.24

Nodal
seniority 1 0.87 0.92 1 0.78 0.83 1 0.22 0.30 1 0.17 0.22
practice 1 0.91 0.96 1 0.72 0.77 1 0.19 0.27 1 0.12 0.16
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omophily
practice 1 0.91 0.96 1 0.94 1.0
gender 1 0.81 0.91 1 0.78 0.8
office 1 0.92 1.00 1 0.79 0.8

ith mean-value GWESP parameter 190.3 + ˛53.9 with the mean-
alue parameters of the other terms unchanged. The natural and
ean-value parameters corresponding to this increased transitivity
odel are also displayed in Table 1.
Increasing the transitivity in the network also increases the

roblem of degeneracy. Doubling the transitivity (˛ = 1), and even
dding half of the transitivity (˛ = 0.5) both result in degenerate
odels with an unacceptable proportion of probability mass on

ery high density and very low density graphs. Therefore, the higher
ransitivity model considered adds one quarter of the transitivity in
he original (˛ = 0.25). An additional 1000 networks are sampled
rom this model, and fit with each of the three methods considered.
n this case, two sampled networks were computationally degen-
rate and were not included in the numerical summaries due to
nfinite MLEs and MPLEs.

. Results

.1. Relative efficiency of estimators

The relative efficiency of each set of estimators is presented in
able 2. For each parameter, the MLE is treated as the reference
ategory, and the efficiency is calculated as the ratio of mean-
quared errors. Relative efficiencies are computed separately for
ach parameter and estimation method, in both the natural and
ean-value parameterizations.
The MLE is substantially more efficient than the MPLE or the

BLE.
For nearly every term in either parameterizations and both

odels, the MLE has lower mean squared error than the MPLE or
he MBLE. (In the only three exceptions to this pattern, the MLE
nd MBLE have nearly identical mean-squared error.) Furthermore,
he MBLE out-performs the MPLE for every parameter estimate of
oth models in both parameterizations. The best pseudo-likelihood
elative performance is exhibited by the MBLE in the natural param-
terization of the original model, with relative efficiencies above 0.9
or all terms except the GWESP term. In the natural parameteriza-
ion, the relative performance of the pseudo-likelihood methods is
eakest for the GWESP term, with relative efficiencies of 0.64 and
.68 for the MPLE and the MBLE in the original model, and 0.50 and
.55 in the increased transitivity model. The natural parameteriza-
ion pseudo-likelihood relative performance is also weaker in the
ncreased transitivity model for the edges and nodal effect terms,

lthough there is no consistent pattern of performance across mod-
ls for the homophily terms.

In the mean-value parameterization, the relative efficiency of
he pseudo-likelihood methods is far less than in the natural param-
terization. The best pseudo-likelihood performance here is again

e
g
i

c

1 0.23 0.32 1 0.15 0.19
1 0.23 0.31 1 0.17 0.22
1 0.23 0.32 1 0.15 0.20

ttained by the MBLE, which continues to out-perform the MPLE,
nd in the original model, which is again fitted by pseudo-likelihood
ith greater relative efficiency than the increased transitivity
odel. In this case, the best efficiency is only 37%, this time for

he GWESP term. The other relative efficiencies for the MBLE of the
ean-value parameterization of the original model hover around

0%. The MPLE fares worse with relative efficiencies closer to 20%.
n the increased transitivity model, the MBLE drops to around 20%,

hile the MPLE drops below 20%.
These results are illuminated by additional information on the

istributions of estimators. We provide this information in box-
lots of the estimators for several key model parameters (see Fig. 1).
hese are arranged for ease of comparison as follows:

For each parameter, natural parameter estimates are shown on
the left sub-figure, and mean-value parameters on the right sub-
figure.
Each box is labeled according to the estimation method: MLE,
MPLE, or MBLE.
In each subfigure, the three distributions corresponding to the
original model are presented together, followed by the three dis-
tributions corresponding to the model with increased transitivity.
The horizontal line through each section represents the true
parameter value. Note that these values are different for the nat-
ural parameters of the original and increased transitivity models,
as well as for the mean-value parameter of the GWESP term.
The boxplots give the quartiles and tails of each estimator distri-
bution. The dots correspond to the means of those distributions.

For reasons of space, boxplots are only included for three of the
odel parameters: GWESP, differential activity by practice, and

omophily on practice. These are chosen to represent the three
ain classes of parameters in the model: structural, nodal, and

omophily. The results for other model parameters are similar to
he examples presented from their respective classes.

The ML estimators display the largest bias among the natural
arameter estimates, but with much smaller variance, as exempli-
ed in particular by Fig. 1(a) and (c). The exception to this pattern

s displayed in the plot 1(e) for the term representing homophily
n practice. In this case, the variance of the MLE is comparable to
hat of the MBLE, while the MLE still retains more bias, resulting in
lightly greater efficiency of the MBLE.

Although it is difficult to discern from these plots, the MBLE

xhibits less bias than the MPLE for most parameters. The MBLE also
enerally exhibits slightly lower variance than the MPLE, resulting
n the superior overall efficiency of the MBLE.

The MLE is biased in the natural parameter space because by
onstruction it is unbiased in the space of mean-value parame-
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ig. 1. Boxplots of the distribution of the MLE, the MPLE and the MBLE of the geometr
tatistic (Nodal), and homophily on practice statistic (Homophily) under the natura
000 samples of the Lazega network with increased transitivity. (a) Natural paramete
ode practice; (d) mean-value parameterization, node practice; (e) natural parame
ers. Fig. 1(b), (d) and (f) demonstrate that with negligible bias and
ubstantially smaller variance, the MLE clearly out-performs the
seudo-likelihood methods in the mean-value parameter space.

There is a pronounced left skew to the mean-value parameter
stimates for the pseudo-likelihood methods. The bivariate scatter

p
m
a
M
s

eighted edgewise shared partner statistic (GWESP), differential activity by practice
mean value parameterization for 1000 samples of the original Lazega network and
n, GWESP; (b) mean-value parameterization, GWESP; (c) natural parameterization,

tion, homoph practice; (f) mean value parameterization, homoph practice.
lots in Fig. 2 suggest that it is this set of samples with very low
ean-value parameter estimates that account for much of the bias,

nd therefore efficiency loss of the pseudo-likelihood methods. The
BLE performs better than the MPLE because its estimates are less

kewed than those of the MPLE.
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Fig. 2. Comparison of error in mean-value parameter estimates

.2. Coverage rates of nominal 95% confidence intervals

Table 3 presents the observed coverage rates of nominal 95%
onfidence intervals based on the perceived standard errors and
-approximation.

In the natural parameterization, the perceived confidence inter-
als perform well for the MLE, with coverage rates quite close
o the nominal 95% for both the original and increased transi-
ivity models. Both pseudo-likelihood methods perform less well,
ith coverage rates which are too high for all parameters except

he GWESP term, whose coverage percentage is too small. The
WESP coverage rates are less than 75% and 79%, for the nomi-
al 95% intervals for the original and increased transitivity models
espectively. The coverage rates for the other terms are all 97.5%
r above, again for nominal 95% intervals. Both the MPLE and the

BLE have higher natural parameter coverage rates for the model
ith increased dependence, which is detrimental to the perfor-
ance of the already-too-high coverage rates for most terms, and

lightly improves the performance of the too high coverage rates for

s
c
e
i

able 3
overage rates of nominal 95% confidence intervals for the MLE, the MPLE, and the MBLE

arameter Natural parameterization

Original Increased transitivity

MLE MPLE MBLE MLE MPLE MBLE

tructural
edges 94.9 97.5 98.0 96.4 98.2 98.2
GWESP 92.7 74.6 74.1 94.2 78.8 77.6

odal
seniority 94.4 97.8 98.0 95.4 98.4 98.7
practice 94.0 98.1 98.6 95.5 98.4 98.8

omophily
practice 94.8 98.1 98.1 94.6 97.9 98.0
gender 95.8 98.7 98.8 95.3 98.1 98.8
office 94.2 98.1 98.4 95.1 98.2 98.4

ominal confidence intervals are based on the estimated curvature of the model and the
ges in original (top) and increased transitivity (bottom) models.

he GWESP term. This suggests that the pseudo-likelihood-based
tandard error estimates for the structural transitivity term are
nderestimated while they are overestimated for the nodal and
yadic attribute terms.

In the mean-value parameterization, again, the coverage rates
or the MLE are far closer to the nominal 95% than either of the
seudo-likelihood methods. In this parameterization, all the cover-
ge rates are low. The MLEs of the original parameters achieve the
est performance, with coverage rates as high as 93.2% for the nodal
ffect of practice, and dipping only as low as 91.4% for the GWESP
erm. In the increased transitivity model, the MLE coverage rates
re substantially lower, ranging from 89.9% for the nodal practice
erm to 84.4% for the nodal seniority term.

Although these rates are quite low, the mean-value parame-
erization coverage-rate performance of the MLE is remarkably

uperior to that of the pseudo-likelihood methods. The highest
overage rate recovered by these methods is 62.7%, for the MBLE
stimate of the GWESP parameter in the original model, for a nom-
nal 95% interval. The MBLE coverage rates are all higher than,

of model parameters for original and increased transitivity models.

Mean-value parameterization

Original Increased transitivity

MLE MPLE MBLE MLE MPLE MBLE

93.1 44.9 49.4 85.5 23.8 28.5
91.4 56.7 62.7 85.9 31.3 36.6

91.6 45.5 49.0 84.4 22.8 27.6
93.2 51.0 57.9 89.9 35.9 39.3

92.6 52.0 57.1 89.7 31.1 37.3
92.0 46.5 51.6 84.8 22.7 28.5
92.5 50.2 54.4 87.8 27.0 32.3

t distribution approximation.
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nd therefore out-perform those of the MPLE, with coverage rang-
ng from 49.0% to 62.7% for the original model, and 28.5–39.3%
or the increased transitivity model, as compared to the original

odel range of 44.9–56.7% and increased transitivity model range
2.7–35.9% for the MPLE. Comparison of the standard deviations of
he sampling distributions to the perceived standard errors reveals
hat the latter are far too small for the pseudo-likelihood methods,
t around one-third of the sampling standard deviations.

. Discussion

We have presented a framework to assess estimators for ERG
odels. This framework has the following key features:

The use of the mean-value parameterization space as an alternate
metric space to assess model fit.
The adaptation of a simulation study to the specific circumstances
of interest to the researcher: e.g. network size, composition,
dependency structure.
It assesses the efficiency of point estimation via mean-squared
error in the different parameter spaces.
It assesses the performance of measures of uncertainty and
hypothesis testing via actual and nominal interval coverage rates.
It provides methodology to modify the dependence structure of
a model in a known way, for example, changing one aspect while
holding the other aspects fixed.
It enables the assessment of performance of estimators to be to
alternative specifications of the underlying model.

The second contribution is a case-study comparing the qual-
ty of maximum likelihood and two maximum pseudo-likelihood
stimators. This supports the superior performance of maximum
ikelihood estimation over maximum pseudo-likelihood estima-
ion on a number of measures, for structural and covariate effects.

In a dyad independent model, such as the one in this study with
he GWESP parameter removed, the MLE and the MPLE would be
dentical, while the MBLE would be a slight modification of these
o reduce the bias of the natural parameter estimates. In the full
yad dependent model considered here, the MLE is able to appro-
riately accommodate the dependence induced by the transitivity
erm, while the MPLE and the MBLE can only approximate the
ransitivity pattern. Therefore, it is not surprising that in the natu-
al parameterization, the MLE out-performs the pseudo-likelihood
ethods to the greatest degree in the estimation of the GWESP

arameter, in terms of both efficiency and coverage rates. The infe-
ior performance of the MPLE and the MBLE natural parameters for
he nodal and dyadic attribute terms results from the dependence
etween the GWESP estimates and the estimates for other model
erms. Greater variability in the GWESP results in greater variability
n other parameters. This uncertainty also leads to inflated vari-
nce estimates for the other parameters, contributing to inflated
overage rates of nominal confidence intervals. Meanwhile, the
WESP perceived standard errors are underestimated, resulting in

oo low coverage rates. Therefore, the notion that inference based
n the pseudo-likelihood is problematic are supported. In this case,
seudo-likelihood based tests for the structural parameters tend to
e liberal, and for the nodal and dyadic attributes conservative. A
imilar pattern appears to hold for the Lubbers and Snijders (2007)
tudy (see their Fig. 2).
As a transformation of the full set of natural parameters, the
ean value parameterization is even more conducive to uncer-

ainty in the natural parameter for the transitivity term decreasing
erformance on all terms. In addition, the MLE is constructed to be
nbiased in the mean-value parameters. Together, these two effects

c
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c

t

tworks 31 (2009) 52–62

ontribute to the drastically superior performance of the MLE on
he mean-value scale. The pseudo-likelihood methods show about
hree times the mean squared error of the MLE, and the perceived
overage rates of nominal 95% confidence intervals hover around
0%. In the model with increased transitivity, these effects are even
tronger, with relative efficiency below 0.25 and coverage rates
elow 40%.

The MBLE is constructed to correct for the bias of the MPLE
n the natural parameter scale. It does, in fact, show the smallest
ias for the natural parameter estimates. In the case of the practice
omophily term, this correction is helpful enough to give the MBLE
mean squared error at least as good as that of the MLE.

Although the main focus of this case-study is the comparison of
he MLE to the pseudo-likelihood methods, it is worth noting that
he MBLE consistently out-performs the MPLE in these analyses.
he original intent of the method was to reduce the bias of the
atural parameter estimates, and it is successful here. However the
BLE also reduces the bias of the mean-value parameter estimates

elative to the MPLE. Intuitively this is because of the large bias in
he mean-value parameterizations of the MPLE, and the impact of
he penalty term jointly on all parameters.

As an illustration, in Fig. 2 the MLE, the MPLE and the MBLE mean
alues for the edges are plotted (in deviation from the number of
dges in the original network), for the networks sampled using the
arameter estimates obtained for the original network (top two
anels) and for the sampled networks with increased transitivity
the two panels at the bottom). Given that the MLE is unbiased
apart from sampling error), the top left panel demonstrates that
lthough the MPLE and MLE are close for many sampled networks,
he MPLE underestimates the edge parameter for many other net-
orks, and that it has a larger variance than the MLE with a far less

ymmetric distribution. The line in the panel indicates the 75% den-
ity region, around the line of equality. The remaining points seem
o clutter at the bottom of the panel, indicating that the MPLE may
esult in networks with (extremely) low edges, for non-extreme
LE values. From the top right panel, where the MPLE is plotted

gainst the MBLE, it is clear that the bias correction of the MBLE
orrects for some, but not all, of this underestimation. Most of the
orrection occurs for networks with (extremely) low edge MPLE.
he degree of underestimation and of correction are greater in the
ncreased transitivity model, shown in the bottom two panels. The
ensity lines in the left panel show a substantively larger cluttering
f extremely low MPLE edge parameters. Plots for the MBLE vs. the
LE (not shown) are very similar to those for the MPLE vs. the MLE.
The case-study results are slightly conservative in favor of the

PLE and the MBLE as the MLE results include the additional com-
utational uncertainty of the MCMC algorithm to estimate the MLE.

n the case of the bias of mean-value parameter MLEs, which are
nown to be 0, computational biases are intentionally left in place to
epresent the performance of the estimators as they might be used
n practice. The one deviation from this principle is the exclusion
f three “degenerate” sample networks (with observed sufficient
tatistics at the edges of their possible range), one from the original
odel and two from the increased transitivity model, from the final

nalysis.
It is worthwhile noting that computational complexity provides

nother potential difference between pseudo- and maximum like-
ihood estimation. In fact, this is one reason the MPLE has been
sed for so long. Recent advances in computing power and in
lgorithms has made the MLE a feasible alternative for most appli-

ations (Geyer and Thompson, 1992; Snijders, 2002; Hunter and
andcock, 2006). More details about computing time and other
omputational aspects can be found in the Appendix A.

To further investigate differences in the effect of the estima-
ion method on structural and covariate parameters, it would have
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Table A.1
Arguments to the statnet function ergm used to compute the MLE.

Argument First round Second round Third round

theta0 0.9 truth + 0.1 MPLE Prior fit Prior fit
interval 2000 3000 3000
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een good to study a simple triangle model (as Corander et al., 1998,
002). Unfortunately, this model is degenerate for the Lazega data,
roviding further evidence that the triangle model may often be too
rude to be useful in realistic settings. Corander et al. (1998, 2002)
void the problem of degeneracy by considering only graphs with
fixed number of edges. The GWESP term has a similar motivation
nd fits well on the same data. In future research using this frame-
ork, a similar comparison could be based on any other measure

f dependence.
We have used standard error estimates from the inverse of the

essian to compute confidence intervals and coverage rates. We
ake this approach because these standard error estimates are often
sed to compute Wald-type confidence intervals and for testing
urposes. It is important to remember, however, that we have no
symptotic justification for this approach for models with struc-
ural transitivity. It might well be the case that this approach leads
o worse results in networks with increased transitivity, as was
ound in underestimated perceived standard errors for all mean-
alue parameters. Lack of normality could be another (partial)
xplanation, in view of the deteriorated coverage rates.

Note that exact testing is an alternative to the Wald approxima-
ion (Besag, 2000). To determine an exact p-value for a coefficient,
or example, simulate from the model conditional on the observed
alues of the statistics in the model and omitting the target statistic.
he p-value is then based on the quantile of the observed tar-
et statistic among those from the sampled networks. While this
pproach is feasible, it is usually prohibitively expensive computa-
ionally.

Summarizing the main findings of our case-study, we can make
hree practical recommendations, in addition to the overall con-
lusion that it is always better to use the MLE than the MBLE
r the MPLE. First, if the MLE is not feasible, the MBLE is to be
referred over the MPLE. Second, if one’s main interest is in inves-
igating nodal and dyadic attribute effects, the MBLE/MPLE can
e useful as a first selection criterion, especially in the natural
arameterization, where the bias is reasonably low. The MPLE
erforms worst for structural effects representing the transitivity

n the network. Third, it can be worthwhile to also consider the
ean-value parameterization to obtain more insight into directly

bservable and interpretable network characteristics and statis-
ics.

In view of the specificity of the models investigated in the case
tudy, we realize that these conclusions will have limited generaliz-
bility. Therefore, as a final recommendation, we encourage further
omparison of maximum likelihood estimation to (bias-corrected)
seudo-likelihood estimation in other applications. To this purpose,
e have made available the code used to implement the framework

n this study. See the Appendix A for further technical details.

ppendix A. Computational details

All computations were done using the statnet (Handcock et al.,
003) suite of packages in the R statistical language (R Development
ore Team, 2007). The statnet packages are free and open-source
nd are available from the Comprehensive R Archive Network
CRAN) website http://www.R-project.org. In addition, more infor-

ation about the statnet packages is available on the web at
ttp://statnet.org. All estimates are based on the ergm function,
ith various optional arguments. The arguments used are listed

n Table A.1, and their function is described. Unless otherwise

oted, the program used the ergm defaults for the options. Much
f this description can be found in the internal documentation
f Handcock et al. (2003). For details on this computations see
andcock et al. (2008), Hunter et al. (2008), Morris et al. (2008),
utts (2008) and Goodreau et al. (2008).

e

e
T
m

urnin 500000 500000 500000
CMCsamplesize 5000 10000 5000
axit 2 2 4

teplength 0.7 0.7 0.5

The estimation of the MLE in either the natural or mean-value
arameterization relies heavily on the generation of sampled net-
orks from a model specified by a given set of natural parameters.
e do this via MCMC using a Metropolis–Hastings algorithm to

roduce a Markov Chain of networks starting from the observed
etwork (Hunter et al., 2008). We now provide details of the param-
ters of the algorithm used. The theta0 argument specifies the
tarting parameter values. Hunter and Handcock (2006) discuss the
mportant role played by starting parameter values in fitting com-
lex ERG models. The e rgm default is to use the MPLE fit to begin
he MLE fit. This approach was used for the samples from the origi-
al model. The increased transitivity samples, however, were more
ifficult to fit, so the MPLE estimate proved to be too far from the
LE to lead consistently to converged estimates over large num-

ers of sampled networks. Two modifications were introduced to
ddress this problem. First, the initial parameter estimates were
omputed by adding 90% of the MPLE estimate to 10% of the model
arameters from the original model. This had the effect of provid-

ng some correction in cases where the MPLE estimates were very
ar from the MLE. Second, the model fit was accomplished using
wo ergm calls. The first was less precise and with smaller sample
ize, and aimed at producing a rough initial set of parameter esti-
ates closer to the MLE than its original values. The second ergm

all was started at the estimate produced by the first, and involved
larger sample size in the interest of producing a more precise final
et of parameter estimates. Note that these sophistications robus-
ify the estimation of the MLE for the purposes of automation over
he 1000 networks, but do not effect the ultimate MLE itself. Based
n the results of this study we will use the MBLE estimate as the
efault in ergm.

The interval argument determines the number of Markov
hain steps between successive samples. The burnin argument
etermines the number of initial samples discarded to avoid any
ossible bias of the original network. And the MCMCsamplesize
rgument determines the total number of samples taken.

Once the sample is completed, the curvature of the MCMC
pproximation to the log-likelihood is evaluated and an
CMC–MLE estimate is produced. This estimate was obtained,

owever, based on a sample from parameter values potentially
uite far from the true MLE, so it was potentially inefficient. With
new, improved MLE estimate in hand, it is possible to produce

n additional sample based on this estimate to greatly refine the
stimate. The ergm argument maxit does just this: it specifies
he number of times an estimate should be produced, with each
uccessive estimate based on a sample from the previous estimate.

The final argument steplength modifies the Newton–Raphson
ptimization of the Monte Carlo approximation to the log-
ikelihood to account for the uncertainty in the approximation to
he actual log-likelihood. The value is between 0 and 1 and indicates
ow much of the step toward the estimated optimum is taken at

ach iteration.

Sample networks were fit with two or more successive calls to
rgm, with arguments listed in the first column of arguments in

able A.1. The first two rounds of model-fitting were used for all
odels. Then, a check for convergence was performed: if the mean-

http://www.R-project.org
http://statnet.org
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alue parameter estimate for the edgesterm had error greater than
ve edges, the fit was deemed not sufficiently converged and the
hird round of model-fitting was repeated until the mean-value
dgesterm was accurate within five edges.
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