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Abstract

Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids (EpFAs) are short-acting lipids 

involved in resolution of inflammation. Their short half-life, due to its metabolism by soluble 

epoxide hydrolase (sEH), limits their effects. Specialized pro-resolving mediators (SPMs) are 

endogenous regulatory lipids insufficiently synthesized in uncontrolled and chronic inflammation. 

Using an experimental periodontitis model, we pharmacologically inhibited sEH, examining its 

impact on T-cell activation and systemic SPM production. In humans, we analyzed sEH in 

the gingival tissue of periodontitis patients. Mice were treated with sEHi and/or EETs before 

ligature placement and treated for 14 days. Bone parameters were assessed by μCT and methylene 

blue staining. Blood plasma metabololipidomics were carried out to quantify SPM levels. We 

also determined T-cell activation by RT-qPCR and Flow Cytometry in cervical lymph nodes. 

Human gingival samples were collected to analyze sEH using ELISA and Electrophoresis. Data 

reveal that pharmacological sEHi abrogated bone resorption and preserved bone architecture. 

Metabolipidomics revealed that sEHi enhances Lipoxin (LX) A4, LXB4, resolvin (Rv) E2, and 
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RvD6. An increased percentage of regulatory T-cells over Th17 was noted in sEHi-treated mice. 

Lastly, inflamed human gingival tissues presented higher levels and expression of sEH than 

healthy gingivae, being positively correlated with periodontitis severity. Our findings indicate 

that sEHi preserves bone architecture and stimulate SPM production, associated with regulatory 

actions on T-cells favoring resolution of inflammation. Since sEH is enhanced in human gingivae 

from patients with periodontitis and connected with disease severity, inhibition may prove to be an 

attractive target for managing osteolytic inflammatory diseases.

Keywords

Soluble Epoxide Hydrolase; Specialized Pro-Resolving Mediators; Periodontitis; Inflammation; 
Lymphocytes

INTRODUCTION

Periodontitis is one of the most prevalent inflammatory disorders that affects the oral cavity 

(1), induced by interactions between the host immune response and the dysbiotic plaque 

biofilm. Epidemiologically, severe periodontitis has substantially increased over the past 

three decades, reaching 1.1 billion cases worldwide (2). Clinically, it is characterized by 

the progressive destruction of hard and soft tissue, bleeding of the gums, and tooth loss 

(3). Furthermore, as a consequence of the uncontrolled inflammatory process, a shift occurs 

from the innate to the adaptative immune system (4). After the initial influx of circulating 

leukocytes (neutrophils and monocytes) and the expansion of resident macrophages 

(acquiring inflammatory phenotype), CD4+ T-cells become important pathogenic drivers 

of the osteolytic inflammatory milieu, especially by IL-17-producing CD4+ helper T 

cells, named Th17 cells (5). Th17 cells produce IL-17A that triggers the production of 

reactive oxygen species (ROS) and neutrophil extracellular traps (NETs), and mediates bone 

resorption (6; 7). On the other hand, regulatory T-cells (Treg) possess immunomodulatory 

functions, preventing the exaggerated inflammatory reaction. Notably, these regulatory 

actions are due to the impact on effector cells, such as neutrophils, macrophages, and T 

and B cells (8). The imbalance between Th17/Treg is partially responsible for the bone 

resorption induced by periodontitis, which is critical in its pathogenesis (9).

Resolution of inflammation is characterized by a highly orchestrated process that switches 

lipid mediator production from classic inflammatory mediators (e.g., prostaglandins and 

leukotrienes), to gradual enhancement of pro-resolution mediators, such as lipoxins, 

resolvins, and protectins (10; 11; 12). These resolution lipid mediators are called Specialized 

Pro-Resolving Mediators (SPMs). SPMs are bioactive lipid mediators synthesized from 

polyunsaturated fatty acids (e.g., ω-3 and −6 fatty acids) during the resolution phase of 

inflammation and act as stop signals for the acute inflammatory response and assist to 

coordinate the resolution process (13). Furthermore, eicosanoids are lipid mediators from 

the metabolism of arachidonic acid (ARA) by the cyclooxygenases (COX), lipoxygenases 

(LOX), or cytochrome P450 (CYP450) (14; 15). The resulting bioactive lipids (e.g., 

prostanoids, leukotrienes, and epoxyeicosatrienoic acids [EETs]) have a dual role in 

inflammation (16).
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Specifically, the EETs, like other long-chain polyunsaturated fatty acids (EpFA) generated 

by the cytochrome P450 pathway, are bioactive lipids with immunomodulatory functions 

during inflammation (17). However, many of these lipid mediators are short-lived due to 

their quick conversion into inactive diols in the presence of soluble epoxide hydrolase 

(sEH) (18). Additionally, these diols contribute to inflammatory cytokine production and 

prevent the beginning of the resolution phase (19). The sEH enzymes are detected in 

many organs (20; 21; 22; 23), and high sEH expression was observed in chronic stages 

of inflammation. Importantly, the equilibrium between pro-inflammatory and pro-resolving 

mediators is necessary for maintaining coordinated immune responses and the dysregulation 

of SPM production drives chronic inflammation.

Therefore, the current study examined the influence of the modulation of the sEH/EET axis 

on the alveolar bone architecture in experimental periodontitis. Using metabolipidomics, we 

looked at the SPM profile in blood serum and investigated the T-cell profile in cervical 

lymph nodes that drain periodontal areas.

MATERIAL AND METHODS

Drugs

TPPU was used as the sEH inhibitor. 1-(1-propanoylpiperidin-4-yl)-3-[4-

(trifluoromethoxy)phenyl]urea (TPPU) was synthesized at the Department of Entomology 

and Nematology, University of California-Davis (USA) as previously published (24). sEH 

was dissolved in polyethylene glycol 400 (PEG400; Sigma) in the respective working 

dosages. Sonification was used for the total dissolution of sEHi. Likewise, the mixture of 

EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) was synthesized at the 

Department of Entomology and Nematology, University of California-Davis (USA), using 

procedures published elsewhere (25). The EET stock solution (10 mM diluted in DMSO) 

was maintained at −80°C. EETs were thawed and dissolved in PEG400 at a 1 μg/kg dose for 

each experiment.

Animals Approval and Care

Male C57BL/6 mice (25–30 grams) were used in this study. Animals were purchased 

from Jackson Laboratory and randomly allocated in plastic cages (n = 5/per cage) in a 

temperature-controlled room (23 ± 1°C) in a pathogen-free environment, 12:12 light cycle, 

with access to water and food ad libitum. All animal experimentation was authorized by 

the Institutional Animal Care and Use Committee of the Forsyth Institute (#17-020) and 

is reported in compliance with the ARRIVE guidelines (26). All efforts were made to 

minimize animal suffering and to reduce the number of animals used. Each experimental 

group had 5 animals per experiment.

Experimental Periodontitis Protocol and Treatment Regimens

For the induction of experimental periodontitis, animals were initially anesthetized with 

ketamine (10ml/kg) and xylazine (0.86 mg/ml) intraperitoneally. Animals were positioned 

in an animal-holding structure with a cold-light source system. Experimental periodontitis 
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was induced by applying 5.0 silk ligatures around the second maxillary molars using micro-

Castroviejo forceps (Fine Science Tools). Ligatures were maintained for 14 days.

Oral treatment was started two hours before ligature placement and continued daily until the 

protocol finished. Based on a recent report (23), we fixed the dosage at 10mg/kg for the sEH 

inhibitor (TPPU), and the EET-mixture was fixed at 1 μg/kg. The combination group utilizes 

the dosages cited above, concomitantly. On day 14, mice were euthanized, and the presence 

of ligature was confirmed before sample collection (lymph nodes, blood, and maxillae). 

Figure 1a represents a flowchart summarizing the experimental design.

Bone Parameter Assessment

Bone parameters were determined after methylene blue staining of defleshed jaws and 

Micro-CT. Dermestid beetles eliminated the soft tissue from the maxilla samples. The 

maxilla samples were then submerged in 10% H2O2 overnight and rinsed with distilled 

water the day after. Samples dried for 6 hours and then stained with methylene blue using a 

microbrush (KG Sorensen) to avoid excessive dye. Images were taken under a microscope 

(0.63 X10 magnification; Axio observer A1, ZEISS) using AxioVision 4.8 software. The 

areas between the alveolar bone crest and cementoenamel junction (CEJ) on the palatal side 

of each maxillary molar were measured using Fiji software (ImageJ).

Maxillae were scanned with a μCT40.Scanco (Medical AG, Bassersdorf, Switzerland) 

using the parameters: 70kV, 114 μA, and 8.0μm3 voxel size. Images were reconstructed 

and exported as Digital Imaging and Communications in Medicine (DICOM) files for 

analysis. The three-dimensional morphometric examination was conducted in CT-Analyzer 

software® (Bruker, Belgium). A volume of interest (VOI), including the entire alveolar bone 

surrounding the roots of the second molar, was individually selected for all samples. The 

bone within the VOI was segmented using an automatic thresholding algorithm (Figure 2a 

and b). Bone morphometric indices were calculated in 3D to compare the quantity and 

structural properties of the trabecular network of the groups. The parameters assessed were 

bone volume fraction (BV/TV in %), total porosity percentage (Po[tot] in %), bone surface 

density (BS/TV in %) and trabecular thickness (Tb.Th in mm), trabecular number (Tb.N in 

1/mm), trabecular separation (Tb.Sp in mm).

Lipidomic (LM-SPM metabolipidomics)

For blood collection, animals were euthanized by terminal anesthesia, followed by cervical 

dislocation as a confirmation method. Blood samples were obtained from the left ventricle 

by performing a thoracotomy. Blood samples were centrifuged at 2000g for 10 minutes 

at −4C. The serum was collected and stored in a −80 °C freezer until metabolipidomic 

analysis. LM-SPM metabololipidomics was conducted at the Lipidomics Core Facility, 

Wayne State University (Detroit, MI, USA), for quantitative analysis of SPM levels and 

other LMs (27; for detailed information). BCA Assay determined protein concentration to 

normalize the LM data.
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Gene expression quantification

Cervical lymph nodes that drain periodontal tissues were extracted and conditioned in 

RNAlater solution (Life Technologies). Glassware was used to grind and homogenize the 

samples in 1 ml of Trizol (Invitrogen). Subsequently, the soluble fraction was incubated 

for 10 min at 4°C, and 200 μl of chloroform was pipette and incubated for an additional 

10 min at 4°C. Samples were then centrifuged at 12,000 g for 20 min, the aqueous phase 

was collected, and the total RNA was precipitated in 500 μl of isopropyl alcohol for 30 

min. At the end of 30 minutes, all samples were centrifuged at 12,000 g for 20 min at 

4°C, and the RNA precipitate was washed once with 1 ml 75% ethanol. The purified RNA 

samples were resuspended in 30 μl of RNase-free water. A total of 1 μg of RNA was 

used for cDNA synthesis using the reverse transcription kit (SuperScript III, Invitrogen). 

The cDNA amplification (50 ng) was performed using TaqMan™ Fast Advanced Master 

Mix (Thermo Fisher). All TaqMan probes of genes quantified and investigated in this study 

were purchased from Thermo Fisher (Supplementary Table 1). The data are presented as 

a fold-change of relative quantity using the 2−ΔΔCt method, and β-actin was used as the 

reference gene.

Flow Cytometry

Cervical lymph nodes were extracted and placed in a falcon tube containing RPMI-1640 

(Gibco) + 1% penicillin-streptomycin (Sigma). Single-cell suspensions were obtained by 

dissociating the samples against 70 μm cell strainers (Sigma-Aldrich) and rinsing them with 

phosphate-buffered saline (PBS) containing 5% fetal bovine serum (FBS). For cytokine 

staining, 2x106 cells were incubated for 4h in RPMI −1640 supplemented with 10% 

FBS, 1% penicillin–streptomycin, Brefeldin A (eBioscience), 50 ng/ml PMA (Sigma), 

and 1 μg/ml Ionomycin (Sigma). Cells were washed with PBS and stained with the 

Zombie UV™ Fixable Viability Kit (BioLegend) for 30 min without light. The extracellular 

staining was conducted in PBS containing 5% FBS, using anti-CD4 (GK1.5, Biolegend) 

for 30 min at 4°C without light. The intracellular staining was accomplished using a 

Fixation/Permeabilization staining kit following the manufacturer instructions (eBioscience) 

and using the following antibodies: anti-Foxp3 (MF-14, Biolegend), Rorγt (Q21-559, 

eBioscience), and IL-17A (9B10, Biolegend). Cells were analyzed on a BD FACSCanto 

cytometer (BD Biosciences) using a sequential gating strategy according to the FSC/SSC 

and SSC/SSC parameters, live/dead staining, and CD4 marker. Data analysis was completed 

using the FlowJo software (version 10.6.2).

Observational clinical study approval, sample size estimation, and clinical examination.

This study was approved by the Ethics Committee of São Leopoldo Mandic, 

Campinas, Brazil (CAAE: 50077821.0.0000.5374). Sixteen subjects were selected from the 

Periodontology Clinic of Faculdade São Leopoldo Mandic, Campinas, Brazil. All admitted 

subjects signed informed consent. It was an observational clinical study to estimate the 

expression and levels of sEH in human gingival tissue in healthy and inflamed tissues. 

A sample of gingival tissue was biopsied. The sample size estimation was established as 

n=8 per group, totaling 16 subjects, in accordance with previous publications that had the 

identical purpose of evaluating the expression of different markers in periodontal tissue (28).
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Systemically healthy subjects without periodontitis (healthy; n=8) and systemically healthy 

subjects with periodontitis (inflamed; n=8) were picked from the population referred to 

the Periodontology Clinic of Faculdade São Leopoldo Mandic (Campinas, Brazil). The 

inclusion criteria for the healthy group included individuals aged 18 years or older with 

at least 15 teeth, excluding third molars. Subjects who underwent periodontal surgery for 

aesthetic purposes were selected (gingivoplasty, for instance). Pregnant or breastfeeding 

women were excluded, as were smokers and those with a history of subgingival periodontal 

treatment in the 6 months before the study began. Likewise, individuals continually using 

mouth rinses containing antimicrobials in the previous 2 months, usage of antibiotics in 

the preceding 6 months, and long-term use of anti-inflammatory, immunosuppressive, or 

antiresorptive agents, hormone replacement therapy, and orthodontic treatment were also 

excluded.

Inclusion criteria for the periodontitis group include subjects with generalized stage 3 or 4, 

grade C (29), meaning more than 30% of sites presenting probing depth (PD) and clinical 

attachment level (CAL) ≥ 4 mm with bleeding on probing (BoP), ≥ 6 teeth with ≥1 sites with 

PD and CAL ≥ 5 mm and BoP, ≥ 1 tooth indicated for extraction due to severe periodontitis. 

To guarantee areas of periodontitis or inflamed tissue, gingival samples were biopsied from 

a tooth indicated for extraction due to severe periodontitis (PD and CAL ≥ 7 mm, BoP, 

mobility and/or bone loss compromising more than 50% of the root).

In clinical examination, the plaque index (PI), PD (mm), BoP, and CAL (mm) were 

examined at six sites per tooth using a manual periodontal probe (UNC15; Hu-Friedy, 

Chicago, USA) by the same calibrated examinator (30). All samples biopsied contained 

junctional and sulcular epithelium and connective tissue. Immediately after gingival 

collection, samples were stored at −80°C until further processing.

Protein extraction and sEH expression

Gingival samples were prepared in 500μl of Ripa Lysis Buffer (Thermo Scientific), 

containing protease inhibitor (1:1000; Sigma-Aldrich) and homogenized using a FastPrep-24 

Homogenizer (BenchMark Scientific, Sayreville, NJ, USA). Samples were centrifuged for 

10 min at 10,000g at 4°C and the supernatants collected and stored at −20 °C. Total protein 

was measured with the Micro BCA Protein Assay Kit (Thermo Scientific).

A total amount of 30 μg of protein per sample was resolved in a 10% polyacrylamide gel 

and sequentially transferred onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). 

Membranes were blocked in TBST 5% non-fat milk for 2 hours. Then, the membranes 

were washed six times in TBST and incubated overnight at 4°C with specific primary 

antibodies against sEH (a kind gift from Dr. Hammock at the University of California 

Davis). The membranes were then washed and incubated with specific secondary IgG 

peroxidase-conjugated antibody (Vector Laboratories, Burlingame, CA, USA) for 1 hour. 

The membranes were washed, and the protein bands were visualized using ECL solution 

for 3 minutes (enhanced chemiluminescence; Pierce) and the digital image was acquired 

using a CCD camera imaging for chemiluminescence (Image Quant LAS 4000 mini, GE 

Healthcare Life Sciences, Pittsburgh, PA). The Image J software (National Institutes of 
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Health, Bethesda, MD) was used to measure the bands' optical density (OD). Data are 

normalized against those of the corresponding GAPDH.

Enzyme-Linked Immunosorbent Assay (ELISA) for sEH

The gingival levels of sEH were assessed using an ultrasensitive PolyHRP-based 

immunoassay, designed in-house (kindly provided by Dr. Hammock's lab) and described 

and validated elsewhere (31). A high-binding microplate was coated with anti-human sEH 

rabbit serum (1:2000 dilution) in carbonate-bicarbonate buffer (100 μL/well) overnight at 

4°C on a plate shaker. On the day after, the wells were washed with PBS-0.05%Tween 

(PBST) and blocked with 3% skim milk in PBS (300μL/well) for 1 hour. During this time, 

serial concentrations of human sEH standards were prepared in PBS containing 0.1 mg/mL 

bovine serum albumin. Samples were diluted in a 1:10 ratio. After washing, samples and 

standards were pipette (100 μL/well) and incubated for 2 hours at room temperature on a 

plate shaker. Subsequently, biotinylated nanobodies selected for reaction with the human 

sEH (1 μg/mL, 100 μL/well) in PBS were added to each well after the washing step and 

incubated for 2 hours. After washing, SA-PolyHRP in PBS (25 ng/mL, 100 μL/well) was 

added and incubated for another 30 min. After the last washing, the TMB substrate (BD 

OptEIA™) was pipette (100 μL/well), and the microplate was incubated for 15 minutes, and 

then stop solution (2 M of sulfuric acid; 100 μL/well) was added. The optical density was 

reading at 450 nm.

Data analysis

Data were analyzed using Graph Pad Prism software (version 9.5.0). The metabolomic 

analysis was conducted using the integrated web-based platform MetaboAnalyst (32). 

The normality of data distribution was determined using the Shapiro–Wilk test. Unpaired 

-Student t-test was used to determine differences between two experimental groups. One-

way analysis of variance (ANOVA) was used when more than two groups were compared, 

followed by Tukey's post hoc test for multiple comparisons. All data are presented as mean ± 

SEM. A P-value lower than 0.05 was considered significant.

RESULTS

Modulation of sEH/EET axis restrains alveolar bone resorption during experimental 
periodontitis in mice.

Initially, we attempted to explore the bone loss prevention capability of the sEHi in the 

periodontal disease context in mice. We first analyzed the bone loss area in a macroscopic 

view, using methylene blue stain (Fig. 1b). We demonstrate that pharmacological sEHi 

(TPPU; 10 mg/kg) prevented alveolar bone loss induced by experimental periodontitis 

(Fig. 1c). The EET-mix (1 μg/kg) treatments did not restrain bone resorption, which was 

equivalent to the periodontal disease group (Fig. 1c). Despite inhibiting alveolar bone 

resorption (Fig. 1c), the combined treatment (sEHi + EET-mix) did not exhibit synergistic 

actions.

Inasmuch as soluble epoxy hydrolase inhibition prevented bone loss in periodontitis, we 

sought to investigate the bone microstructure in greater detail. Computed microtomography 
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(μCT) analyses were performed to assess the quality of the maxillae bone microstructure 

(Fig. 2). Our data reveal that the experimental periodontitis (PD) group exhibited a 

noteworthy reduction in bone volume (BV/TV) (Fig. 2c), a decrease in structure complexity 

(lower BS/TV; Fig. 2d), with a decrease in trabecular thickness (Tb. Th; Fig. 2f) and 

larger medullary spaces (larger Tb. SP and Tot. Po; Fig. 2g and e) in comparison with 

the naïve group. No differences were found in the number of bone trabeculae (Tb.N). In 

control animals (no PD), sEHi maintained bone density (BV/TV) (Fig. 2c), porosity (Tot. 

Po; Fig. 2e), bone structure complexity (BS/TV; Fig. 2d), and trabecular thickness (Tb. 

Th; Fig. 2f), whereas there was a significant increase in medullary spaces (Tb.Sp) in the 

sEHi to the control group (Tb. Sp; Fig. 2g). In periodontal disease animals, the sEHi group 

exhibited higher bone density and trabecular thickness (Fig. 2b and f), accompanied by 

lowered porosity (Tot.Po) and smaller medullary spaces (Tb.Sp) (Fig. 2e and g). There were 

no changes in the trabecular number and bone structure complexity (BS/TV) (Fig. 2h and 

d). Likewise, the combination treatment (sEHi + EET-mix) demonstrated similar results to 

sEHi solely in the evaluated parameters. Likened to the control group, the combination 

group exhibited no changes in bone density (Fig. 2c) and structural complexity (BS/TV) 

(Fig. 2d). Moreover, there was preservation of trabecular number and thickness (Fig. 2f 

and h); however, a significant increase in trabecular separation was noted (Fig. 2g), with 

significantly augmented bone volume (Fig. 2c), greater complexity (BS/TV) (Fig. 2d), and 

trabecular thickness (Fig. 2f) than periodontal disease, with a lessening in medullary spaces 

(Tb. Sp and Tot. Po; Fig. 2g and e). Ultimately, EET-mix treatment showed similar bone 

volume (BV/TV), structure complexity (BS/TV), trabecular number (Tb.N) and thickness 

(Tb.Th), and porosity to periodontal disease. However, there was a significant increase in 

trabecular separation. Overall, the inhibition of the sEH enzyme maintained bone parameters 

comparable to the control group, indicating that sEH inhibition is a potential target for 

osteolytic inflammatory disorders.

sEHi restrains the impairment of systemic SPMs levels.

It was recently reported that inhibition of sEH augments SPMs levels in mouse saliva (23). 

Nevertheless, it is now established that periodontal disease is not merely a local condition 

but rather changes inflammatory parameters systemically (33; 34). In addition, local 

periodontal inflammation also impacts other conditions, such as diabetes (35), rheumatoid 

arthritis and osteoarthritis (36; 37; 38), Alzheimer's (39), diseases of the digestive tract (40), 

and increases the risk of cardiovascular diseases (41; 42).

Considering these findings, we hypothesized that blocking sEH activity would enhance the 

metabolization of SPMs and other EpFAs from ω-3 and ω-6, boosting their synthesis and 

bioavailability in the blood serum (Fig. 3). Overall, the data revealed that inhibiting sEH 

induces the production of SPMs and other intermediary lipid mediators of the SPM cascade 

(Fig. 3c and d). Interestingly, in the Partial Least Square Discriminant Analysis (PLS-DA), 

we observed that the lipid profile of SPMs in the sEHi-group tends to be identical to the 

control group (without disease) (Fig. 3a and b). Furthermore, the sEHi-group differs from 

the periodontitis group (Fig. 3a and b), portraying the ability of the sEH inhibitors to 

restrain the development and progression of experimental periodontitis via the production of 

SPMs. In the Variable Importance in Projection (VIP) score, we can highlight that LXB4, 

Abdalla et al. Page 8

J Immunol. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RvD6, and 11-HETE exhibit high scores in the sEHi-group (Fig. 3c), and in the heatmap 

with clustering analysis, an exclusive cluster is formed with sham and sEHi-group (Fig. 

3d), endorsing the PLS-DA findings. Lastly, we totaled the SPMs per group (Fig. 3e) and 

found that sEHi treatment restrained the impairment of SPM production in experimental 

periodontitis.

Univariate analysis was carried out (Figs. 4 and 5), according to the polyunsaturated fatty 

acids (PUFAs) pathway involved. Notably, in the lipoxin formation pathway derived from 

ω6 arachidonic acid (Fig. 4), pharmacological sEHi increases serum levels of 11-HETE 

(Fig. 4a), 12(S)-HHTrE (Fig. 4b), 5(S), 12(S)-DiHETE (Fig. 4c), LXA4 (Fig. 4e), and LXB4 

(Fig. 4f). These findings demonstrate that sEHi favors the synthesis of SPMs (e.g., LXA4 

and LXB4) and their intermediate metabolites, overseeing the resolution of the inflammatory 

process. As for the classic mediators of inflammation, sEHi augmented the systemic levels 

of PGE2 (Fig. 4h) and PGF2α (Fig. 4i).

Regarding eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and 

docosapentaenoic acid (DPA) derivatives from ω3 (Fig. 5), sEHi amplified the levels of 

5(S),15(S)-DiHEPE (Fig. 5b), RvE2 and RvD6 (Fig. 5c and g). Nonetheless, maresin1 and 

RvD1 exhibited lower values in the sEHi and combination groups (Fig. 5d and e). In both 

cases, it is plausible to suggest that sEH inhibition stimulates the synthesis of lipid mediators 

through 5-LOX and 12-LOX in different PUFAs as substrates, which are associated 

pathways with the SPMs and other mediator synthesis, which feature high resolving 

capacity. Furthermore, the metabolites generated by the 5-LOX and 12-LOX regulate the 

classical mediators of inflammation through an antagonistic function (decreasing their 

production) or acting synergistically and altering their immune system response pattern. 

Overall, the pharmacological inhibition of sEH induces the lipid mediator class switch 

promoting SPM production, like LXA4, LXB4, RvE2, and RvD6, at bioactive levels (43).

The sEH/EETs axis affects Treg/Th17 ratio in experimental periodontitis.

Although distinct T-cell phenotypes have already been identified (Th1, Th2, Th9, Th17, 

Th22, and Treg) (44), Th17 and Treg balance is essential in the pathogenesis of periodontal 

disease. They can be divided simply into two axes: a) inflammatory and osteoclastogenic 

axis, where the Th17 lymphocyte dominates, and b) healing axis that mechanistically 

prevents the disease and its progression, comprising Treg lymphocytes (45). Considering 

that the inhibition of sEH augments the SPM levels systemically and assuming the critical 

role that T-cells play in the pathogenesis of periodontitis, we decided to scrutinize the 

balance between Th17/Treg in the cervical lymph nodes through Flow Cytometry (Fig. 6), 

transcription factors and target genes (Fig.7).

To effectively identify the distinct subpopulations of lymphocytes, the following workflow 

was applied: 1) data was cleaned by manually excluding doublets, debris, and dead cells; 

2) The gating strategy for CD4+ cells was applied; 3) Then, intracellular labeling was 

performed for FOXP3+, or IL17+, or RORγt+ cells; 4) distinct cell populations were 

analyzed, and phenotypes identified (4). Total cell counting from the cervical lymph node 

exhibited increased cells in the experimental periodontitis. Treatment with EETs reduced 

these cell counts, while sEHi and the combination treatment did not (Fig. 6b). Regarding the 
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percentage of CD4+ cells, there was no difference among the groups (Fig. 6c). On the other 

hand, sEH inhibition and the combination raised the percentage of CD4+FOXP3+ cells and 

decreased the percentage of CD4+IL17+ cells (Fig. 6d and e). The Treg/Th17 ratio confirms 

that the modulation of the sEH/EET axis impacts the T-cell profile, favoring Treg subtypes 

(Fig. 6g).

Similarly, we examined key cytokines and transcription factors for Th17 and Treg profiles 

by mRNA expression. Corroborating the FC data, we showed that the sEHi augments the 

gene expression of Foxp3, Ctl4, and Tgfβ1 (Fig. 7b - d), exhibiting the polarization of these 

lymphocytes towards the Treg profile. Furthermore, Rorγt, Il17a, and Il23a gene expression 

were reduced with sEHi and combination (Fig. 7e - g), indicating fewer Th17 cells in 

cervical lymph nodes. Therefore, we demonstrate that the pharmacological inhibition of sEH 

and its association with EETs favors a positive balance between Treg/Th17, indicating less 

activation of inflammatory profiles and hindering the progression of periodontal disease.

Inflamed gingival tissue presents higher sEH expression and levels.

Finally, looking toward future clinical applicability and translation, we collected samples 

of healthy gingiva (patients with indication for gingivoplasty) and inflamed tissues from 

patients classified in grade C, stages III and IV (gingival tissues removed from exodontia 

procedure), and measured the protein levels and expression of the sEH enzyme (Fig. 8a). 

The demographic features and periodontal parameters of the participants are included in 

Table 1. Patients with inflamed gingival tissue showed increased expression and protein 

levels of sEH when compared to healthy patients (Fig. 8b and c). Additionally, we found a 

positive correlation with higher levels of sEH and clinical parameters of periodontitis, such 

as probing depth and clinical attachment loss (Fig. 8d). Therefore, these findings indicate the 

presence of sEH is associated with periodontal disease severity.

DISCUSSION

In the present study, we report that pharmacological inhibition of sEH prevents the 

development of experimental periodontitis and maintains bone architecture and density. 

Overall, the pharmacological inhibition of sEH prevents bone resorption and maintains 

bone quality. Additionally, sEHi restrains the impairment in SPM production induced by 

experimental periodontitis, mainly by stimulating the synthesis of LXA4, LXB4, RvE2, and 

RvD6. Immunologically, we found a higher percentage of regulatory T-cells than Th17 

in the sEHi-group, associated with augmented mRNA expression of Treg markers, like 

Foxp3, Ctla4, and Tgfb1. Finally, in patients with periodontitis grade C, stages III and IV, 

higher levels and expression of sEH were found and are correlated with increased probing 

depth and clinical attachment loss. Thus, the modulation of sEH/EETs favors the resolution 

pathways of inflammation through SPM production, avoiding exaggerated immune response 

and destruction of hard tissue. A positive correlation between sEH and periodontal clinical 

parameters indicates involvement in disease severity.

These actions are somewhat justified by the association between pharmacological sEH 

inhibition and higher SPMs systemically, mainly LXA4, LXB4, RvE2, and RvD6. When 

total SPMs are analyzed, sEH inhibition restrains the impairment evoked by experimental 

Abdalla et al. Page 10

J Immunol. Author manuscript; available in PMC 2025 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



periodontitis and re-establishes physiological levels of SPMs protecting the periodontium 

from destruction. In cervical lymph nodes, we found that modulating the sEH/EET axis 

directly impacts the T-cell profile and Th17/Treg balance, favoring Treg subtypes. Last 

but not least, we uncover for the first time in human gingival tissue increased levels and 

expression of sEH in patients with periodontitis (grade C and stages III and IV). In addition, 

these levels correlate with worse clinical parameters of periodontal disease, such as probing 

depth and clinical attachment loss, suggesting an association with sEH in the gingival tissue 

and periodontal disease pathology and severity.

Using the ligature-induced model of experimental periodontitis, we reported here that 

pharmacological inhibition of sEH prevented bone resorption. Looking more deeply 

into bone parameters with micro-CT assessed bone morphology and microarchitecture 

revealed that sEHi maintains bone volume and density, trabecular thickness, and separation. 

Furthermore, sEHi reduces porosity and trabecular separation, implying that the bone 

preserved kept its structure and functionality. It has been previously documented that 

sEHi blocked bone loss in A. actinomycetemcomitans-induced periodontal disease (46; 

47) and ligature-induced (23; 48) periodontal disease. Likewise, targeting sEH protects 

bone morphology in a model of osteonecrosis of the femoral head induced by exposure 

to tobacco smoke (49). From a regenerative perspective, it was recently shown that TPPU 

reversed the release of inflammatory cytokines by human dental pulp stem cells under 

inflammatory conditions (LPS-induced). It also stimulated osteogenic differentiation by 

osteogenesis-related genes alkaline phosphatase (Alp), osteocalcin (Ocn), and runt-related 

transcription factor 2 (Runx2). The researchers have also shown that TPPU decreases 

alveolar ridge resorption after tooth extraction (50).

Periodontitis is a chronic inflammatory disease that reflects a deficiency in the resolution 

phase of the acute inflammation, especially by dysregulating the production of resolution 

lipid mediators, such as specialized pro-resolving mediators (SPMs) (51). For instance, in 

the gingival tissue of periodontitis patients, elevated levels of SPM biosynthetic pathway 

markers were found; however, their respective receptors were deficiently expressed (e.g., 

Leukotriene B4 receptor 1 (BLT1), associated with resolvin from E-series), compromising 

the resolution initiation, leading to an exaggerated and destructive inflammatory response 

in the periodontium (52). Further, the subgingival microbiome correlates with SPMs, SPM 

pathway markers, and SPM gene receptors (53). Specifically, four Selenomonas species and 

A. geminatus (which are not described as periodontopathogens) were highly correlated with 

several lipid mediators, such as 5(S),12(S)-dihydroxy-6E,8Z,11E,14Z-eicosatetraenoic acid 

(5(S)12(S)-DiHETE), RvD1, MaR1, and leukotriene B4 (LTB4). Additionally, these bacteria 

are reported to possess enzymes that metabolize linoleic and ALA-derived lipids, which are 

known to produce resolution bioactive lipids (54). These data suggest that the profile of 

lipids directly impacts bacterial composition, indicating an interaction among inflammation, 

lipids, and microbiota.

Here, our data revealed that pharmacological sEHi treated animals exhibits comparable 

SPM profiles to baseline animals, which differ from the other groups. In addition, sEHi 

restrains the impairment of SPM levels caused by experimental periodontitis. Notably, 

LXA4 and LXB4 were upregulated, as well as RvE2 and RvD6. It is interesting that 
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increased levels of LXA4 and RvE2 were found in the saliva of animals treated with 

sEHi in experimental periodontitis, as well as their respective receptors in gingival tissue, 

N-formyl peptide receptor 2 (ALX/FPR2) and Chemerin Receptor 23 (ChemR23/ERV1), 

respectively (23). Lipoxins were the first SPMs isolated and described by Serhan and 

colleagues (Serhan et al., 1984) and fostered the resolution phase of inflammation by 

counteracting excessive leukocyte infiltration, stimulating an increase in efferocytosis 

activity, and facilitating non-phlogistic recruitment of macrophages (56; 57). In addition, 

RvE2 and RvD6 were also found to increase systemically. Resolvins from E-series and 

D-series displayed substantial actions to alleviate inflammation by orchestrating the immune 

system response, blocking inflammasome and NF-κB signaling and downstream cytokine 

production, enhancing the clearance of cellular debris, and stimulating phagocytosis (13; 

58). Higher levels of prostaglandin E2, a potent and well-known inflammatory lipid from 

AA metabolism, were found. Although much is described regarding its inflammatory role, 

PGE2 also presents an anti-inflammatory function, depending on where and when it is 

produced (59; 60). Specifically, PGE2 is essential for neutrophil inflammation resolution, 

inducing cell reprogramming to switch from 5-LOX products towards 15-LOX, to produce 

LXA4 (61). Thus, pharmacological sEHi stimulates the synthesis of SPMs in blood serum, 

restraining excessive inflammatory reactions and guiding immune resolution activities.

In chronic inflammatory diseases, such as arthritis and periodontal disease, Th17 cells 

display destructive features, producing a wide range of pro-inflammatory cytokines, 

including IL-17, IL-23, IL-22, IL-6, IL-1β, and TNFα (62). In our study, pharmacological 

sEHi impacts Th17 activation in the cervical lymph nodes. In the arthritis model, sEHi 

similarly decreased Th17 gene marker expression (Il17 and Roryt) in the knee joint (21). In 

addition, SPMs like lipoxins and resolvins also prevent Th17 activation and proliferation in 

murine and rabbit models of periodontitis (4; 63; 64; 65; 66). On the other hand, regulatory 

T cells (Treg) were boosted in cervical lymph nodes with sEHi therapy. Higher expression 

of Foxp3, Ctla4, and Tfgb1 was seen compared to periodontitis group. Additionally, the 

Treg/Th17 ratio favors the regulatory profile, leading to the resolution of inflammation. 

Interestingly, n-3 polyunsaturated acid (PUFA) supplementation (~1053 mg/per day), i.e., 

α-linolenic (~230 mg), eicosapentaenoic (~15 mg), and docosahexaenoic acid (~105 mg) 

changes the immune response profile, improving regulatory T-cell profile (67). However, 

as we know that SPMs can directly impact T-cell differentiation (68), we cannot infer that 

these findings were due to sEHi effects. These could be an indirect effect mediated by SPMs 

induced by sEH inhibition. Nonetheless, by controlling Th17 activation and stimulating the 

regulatory T-cells, bone loss was preserved.

Last, we collected gingival samples from Stages III-IV grade C periodontitis and healthy 

subjects to investigate the expression and levels of sEH and associate it with the progression 

of periodontal disease. We are the first to examine the presence of sEH in human gingival 

tissue. Previously, we showed that a ligature-induced periodontitis model enhanced sEH 

(Epxh2) gene expression (23). In the present study, higher expression, and levels of sEH 

were found in inflamed gingival tissues compared to non-inflamed tissues. Further, a 

positive correlation was observed when probing depth, and clinical attachment loss of the 

sampled teeth was correlated with sEH levels. These data suggest that sEH is associated with 

periodontal disease and is associated with the severity of periodontitis.
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Taken together, the present study demonstrated that sEHi blocked alveolar bone loss 

and maintained bone density and architecture. Considering that periodontitis induces a 

systemic low-grade inflammatory response that is a risk factor for several comorbidities, 

sEHi restrains the impairment of SPM production, and increases levels of LXA4, LXB4, 

RvE2, and RvD6 in serum. In addition, the Th17/Treg ratio favors the regulatory T-cell 

phenotype in cervical lymph nodes, essential for periodontium integrity and preservation. 

Remarkably, we showed that sEH levels are associated with the worst cases of periodontal 

disease, positively correlated with deep periodontal pockets and loss of clinical attachment. 

Therefore, these data highlight the critical role of sEH in periodontal disease, as in other 

chronic inflammatory osteolytic diseases.
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Key Points:

- sEH inhibition boosts systemic SPM production.

- TPPU regulates the Th17/Treg imbalance and maintains bone structure.

- Patients with periodontitis exhibit higher levels of sEH in gingivae.
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Figure 1. 
Evaluation of the impact of sEH inhibition on alveolar bone loss in mice with experimental 

periodontitis. (A) Experimental design. (B) Representative images of the palatal view of 

the jaws stained with 10% methylene blue. (C) Quantification of the bone loss (mm2) area 

refers to the region of the cementoenamel junction and the alveolar bone. Data are expressed 

as mean ± SD; n = 5 animals per group. Data are pooled from two independent repeat 

experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 2. 
Pharmacological inhibition of sEH impairs bone parameters. (A) Selection and 

quantification of bone architecture parameters between the evaluated groups. Initially, the 

images were manually registered. The volume of interest (VOI) between second molar roots 

was selected considering all samples (dashed in yellow; volume in orange). The bone within 

the VOI was segmented using a “global threshold” algorithm, and the three-dimensional 

(3D) morphometric parameters were calculated using the CT-Analyzer software (Bruker, 

Kontich, Belgium). (B) Region of interest. (C) Bone density (BV/TV). (D) Complexity 

of bone structure (BS/TV). (E) Porosity (Tot.Po). (F) Trabecular thickness (Tb.Th). (G) 

Greater medullary spaces (Tb.SP). (H) Trabecular bone number. (I) Trabecular bone pattern 
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factor. Data are expressed as mean ± SD; n = 5 animals per group. Data are pooled from two 

independent repeat experiments. *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure 3. 
Inhibition of the sEH enzyme re-established SPM synthesis in blood plasma. (A and B) 

Partial least squares discriminant analysis graph in (A) two dimensions and (B) three 

dimensions for profiles of specialized proresolving lipid mediators (SPMs) and lipid 

mediators (LMs) in mouse blood plasma. Each point represents a sample in each group. This 

graph demonstrates groups of samples based on their similarity in LM levels. White circles 

represent the baseline group, red circles the experimental periodontitis group, gray circles 

the EETs group, blue circles the sEH inhibitor group (TPPU), and green circles represent the 

combination group. (C) Variable importance in projection (VIP) score and (D) heatmap and 

clustering of SPMs and LMs. (E) Total amount of SPMs. Data normalization is shown in 
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Supplemental Fig. 1. n = 5 animals per group. Data are pooled from two independent repeat 

experiments. *p < 0.05, ** p < 0.01, ****p < 0.0001.
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Figure 4. 
TPPU influences the synthesis of arachidonic acid cascade mediators and derivatives from 

ω-6. (A–I) Univariate one-way ANOVA analysis of (A) 11-HETE, (B) 12-HETE, (C) 12(S)-

HHTrE, (D) 5(S),12(S)-DiHETE, (E) LXA4, (F) LXB4, (G) leukotriene B4 (LTB4), (H) 

PGE, and (I) PGF2α levels. (J) Scheme of metabolic pathways affected by sEH inhibition. 

Data are expressed as mean ± SD; n = 5 animals per group. Data are pooled from two 

independent repeat experiments. *p < 0.05, ** p < 0.01, ***p < 0.001.
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Figure 5. 
TPPU influences the synthesis of ω-3–derived eicosapentaenoic acid, docosahexaenoic acid, 

and docosapentaenoic acid cascade mediators. (A–H) Univariate one-way ANOVA analysis 

of levels of (A) 11-HEPE, (B) 5(S),15(S)-DiHEPE, (C) RvE2 (D) Maresin1, (E) RvD1, (F) 

RvD5, (G) RvD6, and (H) 14-HDoHE. (I) Diagram of metabolic pathways affected by sEH 

inhibition. Data are expressed as mean ± SD; n = 5 animals per group. Data are pooled from 

two independent repeat experiments. *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001. 

DHA, docosahexaenoic acid; DPA, docosapentaenoic acid; EPA, eicosapentaenoic acid.
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Figure 6. 
Regulation of Th17/Treg balance induced by sEH inhibition in cervical lymph nodes. Gate 

strategy for analyzing the impact of pharmacological inhibition of sEH on the Th17 and 

Treg profile in cervical lymph nodes. (A) Representative plots demonstrating the gating 

strategy and the percentage of cells. (B) Total number of cells in cervical lymph nodes. 

(C–F) Percentage of CD4+ (C), CD4+Foxp3+ (D), CD4+IL-17+ (E), and CD4+IFN-γ+ cells 

(F). (G) Treg/Th17 ratio. Data are expressed as mean ± SD; n = 5 animals per group. Data 

are pooled from two independent repeat experiments. *p < 0.05, ** p < 0.01.
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Figure 7. 
sEH inhibition induces positive Treg/Th17 balance in cervical lymph nodes. (A) Heatmap 

plotted in log2 fold change of marker mRNA expression in cervical lymph nodes. (B–G) 

mRNA expression of (B) Foxp3, (C) CTLA4, (D) TGF-β1, (E) RORγt, (F) IL-17A, and (G) 

IL-23a in cervical lymph nodes. Data are expressed as mean ± SD; n = 5 animals per group. 

Data are pooled from two independent repeat experiments. *p < 0.05, ** p < 0.01, ***p < 

0.001, ****p < 0.0001.
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Figure 8. 
Increased sEH enzyme expression in inflamed human gingival tissues. (A) Experimental 

design of the collected samples. (A) sEH levels and (B) protein expression in healthy and 

inflamed gingival tissues (periodontitis patients). (C and D) Correlation with the sEH levels 

and (C) probing depth and (D) clinical attachment loss. Uncropped Western blotting images 

are shown in Supplemental Fig. 2. Data are expressed as mean ± SD; n = 8 samples per 

group for ELISA, and n = 4 samples per group for Western blotting. *p < 0.05, ***p < 

0.001.
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Table 1.
Demographic features and periodontal parameters (mean ± SD)

Different letters indicate differences among the groups. BoP, bleeding on probing; CAL, clinical attachment 

level; FM, full mouth; PD, probing depth.

Variable Healthy Inflamed p Value

Sex (male/female) 2/6 5/3 –

Age (y) 40.25 ± 16.19 a 52 ± 15.81 a 0.1641

FM (% of site with plaque) 16.71 ± 13.31 a 69.24 ± 19.86 b <0.0001

FM (% of site with BoP) 4.5 ± 4.7 a 56.53 ± 17.26 b 0.0010

FM PD (mm) 1.77 ± 0.16 a 3.28 ± 1.02 b <0.0001

FM CAL (mm) 1.9 ± 0.18 a 4.14 ± 0.92 b <0.0001

Sampled teeth PD (mm) 1,75 ± 0.46 a 6.25 ± 2.12 b <0.0001

Sampled teeth CAL (mm) 2.25 ± 0.46 a 7.37 ± 2.06 b <0.0001
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