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Abstract 

Understanding the patterns and dynamics of spatial origin-destination flow data has been a long-
standing goal of spatial scientists. In this paper we introduce a density-based cluster detection 
method tailored for disaggregated spatial flow data. The basic idea is to first measure flow 
density considering both endpoint coordinates and flow lengths, and combine it with state-of-art 
density-based clustering methods. We experiment with a carefully designed synthetic dataset. 
The results prove that our method can effectively extract flow clusters from various situations 
encompassing varied flow densities, lengths, hierarchies and, at the same time, avoid issues of 
Modifiable Areal Unit Problem (MAUP) of flows endpoints, loss of spatial information, and 
false positive errors on short flows. 

1. Introduction 
Spatial flows, also known as spatial interactions (SI) between georeferenced places, have been an 
enduring study object in a wide range of research fields. With the widespread adoption of 
location-aware technologies and the global diffusion of geographic information systems (GIS), 
spatial interaction data have been enriched in several respects including volume, type, 
availability, ubiquity, and spatiotemporal granularity (Yan and Thill 2009; Guo et al. 2012). 
While it brings unprecedented opportunities to improve our understanding of SI processes and 
thus enriching SI theories, it also brings the analytical challenge of developing more data-drive 
approaches tailored for SI data (Yan and Thill 2009).  

As a common data mining technique, cluster detection has proved useful in exploratory 
analysis of large sets of spatial flows. One approach measures the spatial relationships among 
origins and destinations, respectively, before combining them, as the basis for clustering flows. 
Here, spatial relationships can be contiguity or proximity of origin or destination regions (Guo 
2009; Zhu and Guo 2014). However these methods are sensitive to uneven distribution and ad 
hoc zoning definition of flow endpoints; besides they are prone to false positive errors on short-
distance interactions. Another type of methods use flow geometry to bundle nearby ones (Cui et 
al. 2008). While the results usually have desirable visual clarity, these methods compromise 
through loss of valuable spatial information. In this paper we introduce a new method that not 
only can extract spatial flow clusters from various situations including varying flow densities, 
lengths, hierarchies, but also avoids problems like MAUP, false positive errors, and loss of 
information.  

2. Methodology 
Of various clustering methods, we choose to design our flow clustering method in the density-
based tradition because of its capability to discover clusters of arbitrary shape and to filter out 
noise. Moreover, density-based methods like OPTICS (Ankerst et al. 1999) can effectively 
reveal hierarchical structures in the data since its byproduct, the reachability plot, is convertible 
to a dendrogram (Sander et al. 2003; Campello et al. 2013). Hereafter, we first introduce the 
proximity metric tailored to spatial flows; then we explain the clustering method step by step.  
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2.1 Flow Proximity Metric 
Cluster analysis critically rests of an appropriate distance metric. Most methods use the 
Euclidean distance by default without further discussion. Regarding spatial flow data, there 
exists no ‘natural’ metric. Tao and Thill (2016) introduced a metric integrating both endpoint 
coordinates and flow length. The distance between two flows 𝐹𝑖 (starting from 𝑂𝑖, ending at 𝐷𝑖) 
and 𝐹𝑗 (from 𝑂𝑗  to 𝐷𝑗 ) is calculated as:   

𝐹𝐷𝑖𝑗 = √(𝑑𝑂𝑖𝑗
2 + 𝑑𝐷𝑖𝑗

2)/(𝐿𝑖 𝐿𝑗 )𝛼            (1) 

Where 𝑑𝑂𝑖𝑗 and 𝑑𝐷𝑖𝑗 refer to the Euclidean distance between origins 𝑂𝑖 and 𝑂𝑗, and between 
destinations 𝐷𝑖  and 𝐷𝑗 , respectively. 𝐿𝑖 and 𝐿𝑗 are flow lengths. The rationale is that this metric 
integrates all the spatial elements of a flow, i.e. a pair of endpoints, length, and direction 
(implicitly). The numerator leverages the accuracy of endpoint coordinates and captures the 
variation of distances continuously and consistently. The denominator assigns advantage on 
longer flows given that under most circumstances spatial interaction between distant locations is 
scarcer due to the “friction of distance” between origin and destination. The exponent α offers 
flexibility to account for this effect and by default it equals to one.  

2.2 Density-based Flow Cluster Detection 
Two classical measures of density-based clustering methods are derived from the metric 
described above. The core distance CoreD (Ester et al. 1996) refers to the distance between an 
object to its kth nearest neighbor (2). It measures local density. A small CoreD suggests tight 
connections to neighbors, thus a likely belongingness to a cluster. Following Ankerst et al. 
(1999), we do not set a search radius threshold for CoreD, like DBSCAN does (Ester et al. 1996), 
as it is usually arbitrary. The minimum cluster size k is the only parameter in this method, which 
is a classic smoothing factor in density estimation. The other measure is the mutual reachability 
distance MReachD (Campello et al. 2013), calculated by (3); it measures the spread between 
pairs of vertices and serves to separate objects that do not belong to the same cluster. 

𝐶𝑜𝑟𝑒𝐷𝑖 = 𝐹𝐷𝑖,𝑘𝑡ℎ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑖       (2) 
𝑀𝑅𝑒𝑎𝑐ℎ𝐷𝑖𝑗 = max (𝐶𝑜𝑟𝑒𝐷𝑖, 𝐶𝑜𝑟𝑒𝐷𝑗, 𝐹𝐷𝑖𝑗)       (3) 

A minimum spanning tree (MST) is built in which vertices are the flow objects, which are 
connected by edges with weight equal to the MReachD between them. In practice, we build this 
tree by sequentially adding the least-weight edge that connects the current tree to a vertex not yet 
in the tree, starting from an arbitrarily selected vertex. Figure 1a illustrates a simple case of MST 
containing eight flow vertices (V1 to V8). Then by sorting the edges of the tree by increasing 
MReachD value, we can convert it to a dendrogram that connects all vertices in a single 
hierarchical structure (Figure 1b). However, this hierarchy contains all flow objects without 
differentiating them. We need a further step to discriminate vertices belonging to a cluster from 
noise. 

We walk through the dendrogram in reverse, from the highest MReachD, and decide at each 
split whether it should be removed. We use the minimum cluster size k as the criterion. If the two 
children sets of a split are both greater than k, we maintain this split as both children sets can be 
stand-alone clusters. On the other hand, if one of the children sets contains fewer than k vertices, 
we remove this split from the dendrogram, drop the small children set, maintain and keep 
processing the larger one. We iterate this process until no more split can be removed. In the 
example of Figure 1, if we set k = 3, only split A is removed along with noise V8, while the 
remaining seven vertices form two clusters; Setting k = 4, there would be only one cluster. After 
processing the whole hierarchy, we end up with a smaller tree with only clusters remaining. We 
can visualize it as a hierarchical cluster tree starting with the whole dataset, then dropping noise 
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vertices or splitting to smaller branches at each distance level. The final result would only show 
the clusters with height and width representing density level and size, respectively.  

 

                         
  (a)                                                                           (b) 

Figure 1. (a) Example of MST and (b) dendrogram 

2.3 Main Steps of Algorithm 
1. Calculate an N by N flow distance matrix with FD (Equation 1);  
2. Calculate CoreD values with a selected k (Equation 2); 
3. Calculate MReachD values (Equation 3); 
4. Build a MST based on MReachD and sort it to obtain a dendrogram; 
5. Iterate through dendrogram from the highest MReachD. If a children set is smaller than k, 

label and drop it as noise, remove the split and keep processing the large set; if both 
children sets meet standard k, keep the split, label and keep processing both sets.    

6. Visualize the final hierarchical cluster tree. 

3. Experiments and Discussions 
To test our approach we designed a synthetic spatial flow dataset (Figure 2a) of 3,000 flows in 
various group configurations, labelled from 1 to 8. Groups 1 and 8 both consist of randomly 
distributed flows, except that the latter is very compact. Groups 2 to 7 are groups of clustered 
flows with similar direction. The legend indicates the color and size of each group of flows.  

Figures 2b, 2c, and 2d are the resulting hierarchical cluster trees with k = 50, 100, and 250, 
respectively. Overall, the correctness is good as 100% of groups 2 to 7 flows are identified as 
clustered, while 96% of groups 1 and 8 are removed as noise. In particular, it avoids false 
positive errors due to short flows like group 8, which was a downside of previous studies using 
endpoint information separately. Meanwhile, it correctly identifies another group of short flows 
(group 7) as cluster. The result is not sensitive to the value of minimum cluster size k. For 
instance the results with k = 50 and 100 are almost identical. However, if a cluster must have at 
least 250 flows, group 4 is no longer a cluster; it is merged with its close neighbor group 3. 

Reporting the inverse MReachD as vertical axis, we can determine at what density level each 
cluster is identified and at which level it splits to smaller clusters or disappears. This is of great 
help to reveal the hierarchical structure. For example groups 2, 3, 4, 5 form a single cluster at a 
lower density level, then split as individual clusters at higher densities. In the real world, this 
could correspond to clustered flows between two metropolitan areas, within which there are 
several small flow clusters between districts of each metropolitan area. The cluster size is 
visualized by width and gradient color. Unlike other clustering methods providing a single flat 
participation cluster result, we believe it is better to provide the full information and let users 
decide, since the scale or resolution of “cluster” may be elusive. Some may think group 6 is a 
cluster given its large size, while others may think only those dense enough (groups 3, 4, 5) are 
clusters.   
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Figure 2. (a) Synthetic flow data (b) hierarchical cluster tree, k=50  

(c) hierarchical cluster tree, k=100 (d) hierarchical cluster tree, k=250 

4. Conclusions 
We developed a density-based clustering approach for disaggregated spatial flows. With a spatial 
proximity metric tailored for flow data, we extend the state-of-the-art density-based clustering 
method to the spatial flow context. Our approach effectively identifies clusters of flows of 
varying lengths and densities and reveals hierarchical structures. It overcomes drawbacks such as 
loss of information, false positive errors on short flows, MAUP of flow’s endpoints.   
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