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ABSTRACT OF THE DISSERTATION

Leveraging Computer Vision Face Representation to Understand Human Face
Representation

by

Chaitanya Krishna Ryali

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Angela J. Yu, Chair

Face processing plays a central role in human social life. Humans, including very

young babies, readily perform sophisticated computational tasks based on a brief glimpse

of a face, such as recognizing individuals, identifying emotional states, and assessing

social traits (e.g. attractiveness or trustworthiness). While the accuracy of the last

phenomenon, known as physiognomy, is debated, it is consistent among individuals with

similar demographic and cultural background and has an impact on real-life decisions

such as in dating, employment, education, law enforcement, and criminal justice. A

xii



computational understanding of human face perception is of pressing importance not

only for psychology but also for engineered systems that need to anticipate or generate

faces with the desired percept and for fairness in law enforcement and the criminal

justice system. We leverage ideas and tools from computer vision, metric learning, and

information theory to derive scientific insights on how humans represent and perceive

faces.
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Introduction

Face processing plays a central role in human social life. Humans, including very

young babies, readily perform sophisticated computational tasks based on a brief glimpse

of a face, such as recognizing individuals, identifying emotional states, and assessing

social traits (e.g. attractiveness or trustworthiness). While the accuracy of the last

phenomenon, known as physiognomy, is debated, it is consistent among individuals with

similar demographic and cultural background and has an impact on real-life decisions

such as in dating, employment, education, law enforcement, and criminal justice. A

computational understanding of human face perception is of pressing importance not

only for psychology but also for engineered systems that need to anticipate or generate

faces with the desired percept and for fairness in law enforcement and the criminal

justice system. We leverage ideas and tools from computer vision, metric learning, and

information theory to derive scientific insights on how humans represent and perceive

faces. Below, we provide a brief overview of the chapters.

Chapter 1

Humans readily form social impressions, such as attractiveness and trustworthi-

ness, from a stranger’s facial features. Understanding the provenance of these impressions

has clear scientific importance and societal implications. Motivated by the efficient coding

hypothesis of brain representation, as well as Claude Shannon’s theoretical result that

maximally efficient representational systems assign shorter codes to statistically more

1



typical data (quantified as log likelihood), we suggest that social “liking” of faces increases

with statistical typicality. Combining human behavioral data and computational modeling,

we show that perceived attractiveness, trustworthiness, dominance, and valence of a face

image linearly increase with its statistical typicality (log likelihood). We also show that

statistical typicality can at least partially explain the role of symmetry in attractiveness

perception. Additionally, by assuming that the brain focuses on a task-relevant subset of

facial features, and assessing log likelihood of a face using those features, our model can

explain the “ugliness-in-averageness” effect found in social psychology, whereby other-

wise attractive, inter-category faces diminish in attractiveness during a categorization

task.

Chapter 2

We leverage various computer vision techniques, combined with human assess-

ments of similarity between pairs of faces, to investigate human face representation. We

find that combining a shape- and texture-feature based model (Active Appearance Model)

with a particular form of metric learning, not only achieves the best performance in pre-

dicting human similarity judgments on held-out data (both compared to other algorithms

and to humans), but also performs better or comparable to alternative approaches in

modeling human social trait judgment (e.g. trustworthiness, attractiveness) and affective

assessment (e.g. happy, angry, sad). This analysis yields several scientific findings: (1)

facial similarity judgments rely on a relative small number of facial features (8-12), (2)

race- and gender-informative features play a prominent role in similarity perception, (3)

similarity-relevant features alone are insufficient to capture human face representation,

in particular some affective features missing from similarity judgments are also necessary

for constructing the complete psychological face representation.

2



Chapter 1

From Likely to Likable: the Role of
Statistical Typicality in Human Social
Assessment of Faces

1.1 Introduction

Humans readily form social impressions, such as attractiveness and trustworthi-

ness, from a brief glance of a stranger’s face [2, 133, 26, 119]. Even infants show a looking

preference for faces that are judged by adults to be more attractive [108] or more trust-

worthy [44]. While the accuracy of these social judgments is an area of active research

[126, 119], such social impressions clearly exert a powerful influence on real-life decisions

[75, 119], whether choosing a life partner, assessing eye witness testimony, interviewing

a job candidate, or choosing whom to befriend. One of the most robust and intriguing

findings in the study of social judgment of faces is the so-called “beauty in averageness”

(BiA) effect, whereby blends of two or more face images are generally perceived to be

more attractive than the “parent” face images [25, 54]. A number of qualitative hypotheses

have been put forth to explain the provenance of BiA, such as a human preference for

symmetry [47, 91] or lack of blemishes [55]. However, symmetry and blemishes appear

at most to provide an incomplete explanation of the BiA effect, as controlling for these

3



factors does not eliminate BiA [48]. Alternatively, it has been suggested that humans have

a preference for highly prototypical stimuli over more unusual stimuli [134], possibly

as a cue to mate value or reproductive health [115, 116]. However, humans exhibit BiA

effects not only for strangers’ faces, but also for a variety of natural and artificial object

categories such as dogs, birds, butterflies, fish, automobiles, watches, and even synthetic

dot patterns [36, 37, 134]. Beyond attractiveness, trustworthiness perception has also been

found to be more positive for faces that are more typical [110]. Other recent studies have

shown that attractiveness and trustworthiness perception are culturally dependent [109],

and can be rapidly modified via experimental exposure of specific types of faces [21].

Altogether, these results suggest that there may be a general human social preference

for more typical-looking objects, in particular faces, and this effect depends on rather

general cognitive mechanisms beyond those specific to beauty or mating, or even specific

to facial features.

In this work, we propose a statistically groundedmodel for human “liking” of more

typical-looking faces (and other objects) [34, 110, 41]. We suggest that the brain internally

represents the statistical distribution of faces based on experience, either implicitly or

explicitly. The perceived appeal of a face is, at least in part, monotonically driven by

a measure of “typicality” of the face with respect to the face distribution, specifically

in terms of the logarithm of the likelihood (LL) of the face under the distribution. To

differentiate our statistical definition of typicality from previous non-statistical proposals

of the link between typicality and attractiveness [34, 110, 41], we refer to our measure

as statistical typicality. Intuitively, as long as the face distribution is unimodal (e.g.

approximately Gaussian, as depicted in Figure 1.1A), the blend (average) of two “parent”

faces will generally be closer to the mean and thus have higher LL than the “parent” faces,

resulting in BiA [25, 54, 110].

4
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Figure 1.1. Schematic illustration. (A) In a unimodal distribution, the blend (average) of

two face stimuli tends to have higher statistical typicality than the “parent” stimuli. In a

bimodal distribution, (B) the blend of two “parents” from two different modes tends to

have lower statistical typicality than (C) when the “parents” come from the same mode.

Methodologically, we model faces as points in a vector space (“face space”) [124]

defined by their feature representation in a widely used computer vision model [22, 13,

123], and use a demographically-balanced, publicly available face dataset, Chicago Face

Database (CFD) [60], to model the statistical distribution of faces in this feature space.

As we will show, attractiveness ratings from CFD correlate with LL of these faces under

the estimated density function, and simulations based on CFD faces broadly exhibit

empirically observed BiA effects. Moreover, in a novel experiment, we find that the

model-estimated LL of face stimuli linearly predicts not only perceived attractiveness but

also trustworthiness, dominance, and valence – all traits thought by social psychologists

to be particularly fundamental in face-based social judgments [119]. Additionally, we

demonstrate that even the well-known role of symmetry in attractiveness perception

[47, 91] may be a special case of statistical typicality, as symmetry correlates with LL

among CFD faces, and experimental techniques that increase face symmetrization also

increase LL.

If human liking of a face is indeed related to statistical typicality, then it makes
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a particularly interesting prediction when the data come from a multi-modal mixture

distribution: if two faces are drawn from two different mixture components, then their

blendmaywell have lower LL, and thus attractiveness, than the “parent” faces (Figure 1.1B).

In fact, this dovetails with empirical findings that bi-racial and bi-gender blends are

perceived to be significantly less attractive than same-race or same-gender blends, but

only in the race- [38] or gender-categorization condition [78], respectively (outside

these specific conditions, bi-racial and bi-gender blends still exhibit BiA). Like BiA,

this “ugliness-in-averageness” (UiA) effect has also been observed with non-face stimuli

[127]. Within our framework, we explain UiA as follows. During the categorization

task, attention focuses on a task-relevant subspace of facial features (e.g. the features

that best discriminate gender in the gender categorization task) [17, 138, 12, 31, 101, 16].

Furthermore, attractiveness perception is linked to LL defined within this task-relevant

subspace. Because a cross-category blend tends to live in between categories, it has

relatively low LL and low attractiveness (Figure 1.1B). In contrast, a same-category blend

will live in the same mode as the “parent” faces and thus exhibit BiA (Figure 1.1C). We

will use simulations of the model to show how experimentally observed UiA effects arise

directly from the LL of faces when the distribution is restricted to the categorization-

relevant subspace of facial features. As a stronger test of our model, we will show that

model-predicted LL of individual face images within the categorization-relevant subspace

correlates significantly with subject-reported attractiveness rating of those faces [78].

One may well ask why the there should be an affective signal in the brain related

to statistical typicality, and why statistical typicality should take the form of log likelihood

(LL). For theoretical motivation, we appeal to Claude Shannon’s classical result [103] that

a maximally efficient coding system (minimizing the average amount of code needed

to represent the data) should assign to each data point a code length that is exactly
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proportional to its negative LL, i.e. shorter codes for more frequently encountered data.

For example, Morse code is a fairly efficient code, consisting of short-duration dots and

long-duration dashes, that assigns the shortest code to the most frequently used letter in

English (e.g. E is 1 dot) and much longer codes to infrequently used letters (e.g. Q and

Y are both 3 dashes and 1 dot, arranged in different orders). Analogously, the classical

“efficient coding hypothesis” in neuroscience proposes that information representation

and processing in the brain are highly efficient [3, 59, 61], such that less neuronal response

is allocated to encode more probable stimuli [4, 14, 3, 56, 131, 82]. Supporting efficient

coding of faces in the brain, face-responsive areas (amygdala, fusiform face area, occipital

face area, face-selective regions of the posterior superior temporal sulcus) have been

found to exhibit the lowest fMRI BOLD response to the most average-looking face, and

increasingly higher responses to less typical faces [98, 66].

To attain and maintain coding efficiency in the brain, it is helpful for inefficiently

coded stimuli to be aversive, so as to encourage representational updating that will

minimize long-term coding cost averaged across observed data [140, 24]. Interestingly,

reducing the average negative LL of observed data under the assumed model, known

as cross-entropy minimization, is also a popular and effective tool for data modeling in

modern machine learning and artificial intelligence [8]. In the neuroscience literature,

there is empirical evidence that face stimuli whose representation in the brain requires

greater neural activity is aversive. For example, an EEG event-related potential (ERP)

study found that more attractive and average-looking faces evoke a weaker (posterior

N170) response than unattractive (and atypical) faces, resulting from engaging fewer

neural resources in the former case [122]. There is also evidence that specifically in the

UiA context, there are neural responses whose increase leads to less social “liking” of a

face [114, 49]. For example, a late positive potential (LPP) has been found in EEG studies
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to specifically increase for emotionally ambiguous faces (e.g. happy vs. angry), but only in

an emotion categorization context [114, 49]; moreover, the magnitude of the LPP predicts

how strong the UiA effect is (how untrustworthy the ambiguous face is compared to a

control task) across individual observers [49]. Intriguingly, this LPP has been found to be

localized around the anterior cingulate cortex [114, 49], which we previously found to

encode an unsigned prediction error, highly related to statistical atypicality, in a Bayesian

predictive coding context [42].

In summary, there is a diverse range of empirical and theoretical results that co-

herently support efficient coding as a theoretical motivation for the influence of statistical

typicality on social liking of faces. Efficient coding also provides a theoretical justification

for why typicality should be measured as LL. However, this paper primarily focuses on

the relationship between LL and social liking of faces, and thus its main findings stand

independently of the extent of the explanatory role played by efficient coding.

In the following, we demonstrate how our model assumptions and predictions

are validated by a combination of face data, statistical modeling, human behavioral data,

and model simulations. We begin with an analysis of BiA effects, then proceed to UiA.

1.2 Results

As discussed in the introduction, we hypothesize BiA arises because the blend of

two faces tends to be closer to the mean of the distribution and have higher LL than the

“parent” faces (Figure 1.1A). To examine the statistical distribution of faces (see Methods

and SI), we utilize a demographically balanced, publicly available dataset (Chicago Face

Database, CFD) of 597 face images [60], and embed them into the latent feature represen-

tation of a well-established computer vision model, the Active Appearance Model (AAM)

[22, 13, 123]. AAM has previously been used to model human face representation [33, 41],
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and AAM feature dimensions (linear axes) appear to be encoded linearly by face-selective

neurons in the primate brain [9].

1.2.1 Simulation: Beauty-in-Averageness

To check whether statistical typicality (LL) of CFD faces and their blends can

reproduce experimentally observed BiA effects, we need a parametric density model

of faces. Due to the relatively small number of CFD faces (597) compared to the large

number of AAM features (90), we fit a multivariate normal distribution to the CFD data,

although we also find that LL is highly correlated whether we fit a single Gaussian or

a mixture of Gaussians corresponding to demographic subgroups (e.g. genders, see SI),

and the two models correlate with CFD attractiveness ratings similarly well (see SI).

Moreover, taking 500 random 1-d projections of the CFD data in the AAM feature space

(see Figure 1.2A for an example projection), we find that normality cannot be rejected

(Anderson Darling test, significance level α = 0.05) in all but 38 dimensions (7.6%), not

much higher than the 5% we would expect if every dimension was truly normal (in

contrast, if we simulate random projections of data sampled from a distribution that was

bimodal in every dimension, then 60% of them reject normality, see SI). In fact, we do

expect a small number of dimensions to be multi-modal due to natural demographic

clustering of data (e.g. due to gender or race), an important point we will return to in the

UiA analysis. In the following, we use the CFD-estimated multivariate Gaussian density

for all the BiA-related analyses.

Our simulations (see SI) indicate that the blend of two randomly sampled CFD

faces has higher LL (thus presumably higher attractiveness) than “parent” face images

(2-sample t-test, p< 0.0001), consistent with experimental findings [54]. Moreover, as the

number of “parent” faces increases in a blend, the blended face increases in LL (and thus

attractiveness) monotonically (ANOVA test, p < 0.0001; t-test comparing 2-face blend to
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Figure 1.2. A. Empirical face distribution projected in a random direction is unimodal

and bell shaped. B. BiA: humans perceive more “evenly” blended faces as more attractive

(data from [38]). C. Simulated statistical typicality captures a similar trend as seen in data

(B). 500 pair of faces were randomly selected from CFD, each pair’s coordinates were

averaged in varying proportions, and LL of each blend was recorded and averaged across

pairs. Error bars: s.e.m.

32-face blend, p < 0.0001), also consistent with experimental findings [54]. Relatedly,

when two faces are blended in different proportions, from 100% of one face to 100% of

the other face, LL has a characteristic inverted U-shape, similar to experimental findings

[38] (Figure 1.2B;C).

1.2.2 Experiment: Social Liking Depends Linearly on Statistical
Typicality

If statistical typicality modulates the affective experience of perceptual stimuli,

then it should not only be restricted to the perception of attractiveness, but also influence

other desirable attributes such as trustworthiness [110]. Here, we report results from an

experiment (see Methods), in which we asked subjects to rate face images (see Figure S2

for example stimuli) for attractiveness, trustworthiness, dominance, and valence (how

“positive” a face appears, see Methods) – traits thought by social psychologists to be the

most fundamental in face-based social trait perception [119]. We find that face image

ratings (averaged across subjects) of all four traits increase monotonically with LL of

the face stimuli under the estimated multivariate normal density model (attractiveness:
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Figure 1.3. Trait rating increases linearly and monotonically against statistical typicality

(LL) for all four traits. Data binning ensures equal number of samples in each bin.

Linear regression line (using binned data) is superimposed for visualization. See text for

correlation coefficients for raw data. Error bars: s.e.m. over samples in each bin.

Pearson r = 0.386, p < 0.0001, trustworthiness: r = 0.268, p < 0.0001, dominance: r =

0.196, p < 0.0001, valence: r = 0.171, p < 0.0001). The correlation coefficients indicate

that the effect is strongest for attractiveness, followed by trustworthiness, dominance, and

finally valence. Figure 1.3 shows that this relationship is highly linear for all four traits

(binned data: Pearson r = 0.96, 0.96, 0.98, and 0.98, respectively). At the individual level,

we also find that statistical typicality correlates with ratings for a significant fraction of

participants for each trait (binomial test, p < 0.0001 for each trait). Analogous to group-

level analysis, more individuals show significant correlation (atα = 0.05 significance level)

for attractiveness (75% of participants) and trustworthiness (55%) than for dominance

(40%) and valence (32.5%) (see Figure S4 for histogram of individually significant c.c. for

each trait ).

1.2.3 Experiment: Linear vs. Quadratic Models of Attractiveness

One corollary of the statistical typicality account of attractiveness is that, if the

distribution of faces is Gaussian over the underlying face feature space, then LL is a

particular parameter-free quadratic function of the underlying face features (see SI for

derivation). This would be consonant with previous work showing that a freely fitted
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quadratic model of human perception of attractiveness improves over a pure linear

model [99, 120]. However, previous work did not set forth a particular hypothesis for

the quadratic component, or analyze it in relation to statistical properties of the face

distribution.

Here, we make a more refined claim that the quadratic component is precisely LL.

Because LL of a multivariate normal distribution falls off monotonically from the mean

face along any particular dimension, it can be thought of as a measure of “averageness”

[51, 77, 99, 21]. In contrast to our finding, previous studies found a very small effect

of “averageness” on facial attractiveness, which may have resulted from having utilized

different distance measures, such as Euclidean distance [41] or standardized Euclidean

distance (normalized by std in each dimension) [99] – in contrast, LL can be viewed

as Mahalanobis distance (differing from Euclidean distance by taking into account the

correlation between shape and texture features, see SI). A larger quadratic effect might also

be present in our study because the face stimuli were designed to vary systematically in

LL (see Methods and SI). More importantly, face stimuli in our experiment vary among all

(90) face feature dimensions, where Euclidean distance, standardized Euclidean distance,

and LL all differ from each other non-trivially, while previous studies [21] used stimuli

that live on a single feature dimension, along which the three distance metrics are all

confounded.

We hardly expect statistical typicality to be the sole contributor to attractiveness.

Previous work provided evidence that human perception of attractiveness, as well as other

traits such as trustworthiness and dominance, has both linear and squared dependence

on the face feature space [99, 120]. Here, we adapt this idea and jointly fit a multiple

linear regression (MLR) model consisting of all the linear terms (x1, . . . ,xk), along with

a LL term pre-multiplied by a coefficient – we dub this the “linear+LL” model (see
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Figure 1.4A for an illustration). For comparison, we also fit a regression model with

only linear predictors (“linear model”), and another with all the linear and squared terms

(“quadratic” model [99, 118]). Because the three models have vastly different numbers

of free parameters (linear: 90 features, 1 offset; linear+LL: 90 features, 1 LL term, 1

offset; quadratic: 90 features, 90 squared features, 1 offset), it is inappropriate to compare

them directly on the training data. Instead, we do 10-fold cross-validation: we train the

model on 90% of the dataset, then compute the correlation coefficient (c.c.) between the

predicted trait rating of held out (10%) test data and the human average ratings on those

faces; we then rotate the partitioning of the data into training data and test data and

repeat the process, until every face has served once as a test data point. Across the ten

folds, Figure 1.4B shows that linear+LL consistently outperforms the quadratic model

for each of attractiveness, trustworthiness, dominance, and valence (paired one-sided

t-test: p = 0.0412, p = 0.0003, p = 0.089, p=0.0003), as well as the linear model (paired

one-sided t-test: p < 0.0001, p < 0.0001, p < 0.0001, p = 0.0003). Alternatively, we find

that linear+LL has the best (lowest) Bayesian information criterion (BIC) scores compared

to the linear and the quadratic models (see Figure S3). These results indicate that by

using a particular parameter-free form of a quadratic function, provided directly by the

probability density of the data, we can account for social perception across a number of

traits better than a more complex model that freely fits all possible squared terms. For

brevity, we refer to the vector of regression coefficients for the linear terms in linear+LL

as the Linear Trait Axis (LTA) for that trait in the remainder of the paper.

A CommonQuadratic Component and Distinct Linear Components

The astute reader might have noticed that the quadratic component (LL) is shared

by all social traits, while the linear component (LTA) is fit to each trait individually. To

investigate this further, we perform the following analysis: using 10-fold cross-validation,
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Figure 1.4. Model illustration and comparison. A. We use a 2-d simplified illustration

to visualize the linear+LL model (in actuality there are 90 dimensions). Oval: equi-LL

contour of an axis-aligned normal density function, with σ1 and σ2 being the standard

deviations (std) along the two feature dimensions x1 and x2 (estimated normal density

may not be axis-aligned). Linear+LL model of attractiveness is a linear combination of

the quadratic component related to negative LL and a linear component indicated by

the “attractiveness LTA” (blue); similarly, linear+LL models trustworthiness as a linear

combination of the negative LL quadratic component and a linear “trustworthiness LTA”

component (red). -LL of a face situated at (x1, x2) is proportional to the sum of the square of

its distance along each coordinate divided by the std of that coordinate – in particular, x2 is

given a greater weight than x1 in this example, because the data is more tightly distributed

for x2 than for x1. The component of “attractiveness LTA” orthogonal to “trustworthiness

LTA” (blue dashed line) is an axis along which attractiveness ratings should look linear,

while trustworthiness ratings should look quadratic, as was found in [110]. However, the

component of “trustworthiness LTA” orthogonal to “attractiveness LTA” (red dashed line)

is an axis along which trustworthiness ratings should look linear, while attractiveness

ratings should look quadratic. B. Correlation coefficient between predicted and actual

ratings on held-out data, averaged over 10 folds. Linear+LL consistently outperforms the

quadratic and linear models. Error bars are s.e.m over folds.
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we find that the LTA for each trait makes better prediction about the same trait on held-

out test data than the LTA for any other trait (paired t-test, p < 0.0001, see Table 1.1),

except for the trait “trustworthiness”, which is slightly better predicted by the LTA

for valence (r = 0.307) than for trustworthiness (r = 0.270), but this is not statistically

significant (p = 0.384). In particular, it is apparent that dominance actually has quite

different linear explanatory factors than the other traits, but nevertheless it shares the

same quadratic, typicality-driven factor as the rest. These results also shed new light on a

recent finding that typicality affects trustworthiness perception, and the suggestion that

BiA may be an indirect phenomenon due to the high correlation between trustworthiness

and attractiveness [110]. What we find is that indeed trustworthiness and attractiveness

are highly related: not only do they have similar linear components (their LTAs predict

each other quite well, though not as well as each trait’s own LTA, see Table 1), but they

also share a common typicality-driven quadratic component (Figure 1.3). In our hands,

trustworthiness and attractiveness are individually driven by statistical typicality: in fact,

statistical typicality (LL) correlates more strongly with attractiveness (r = 0.39) than

trustworthiness (r = 0.27). To further confirm this, we regress out trustworthiness ratings

of faces and find that residual attractiveness is still strongly correlated with statistical

typicality (r = 0.33, p< 0.0001); likewise, residual trustworthiness, once having regressed

out attractiveness, still strongly correlates with statistical typicality (r = 0.18, p< 0.0001).

In other words, attractiveness and trustworthiness do not “inherit” their dependence on

typicality from each other, but are instead each driven directly by statistical typicality.

Given that both traits have both a (shared) quadratic component and a (unique) linear

component component (Figure 1.4), not only should one be able to find an axis along

which trustworthiness looks quadratic while attractiveness looks linear (as found in

[110]), but it should also be possible to find an axis along which attractiveness looks
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Table 1.1. Trait-Specific LTAs. Each trait is generally better predicted by its own LTA

than other LTAs, measured by the correlation coefficient between model predictions on

ratings of held-out faces and predictions by all LTAs, averaged across the 10 folds of the

cross validation.

Trait Predicted

LTA Attractiveness Trustworthiness Dominance Valence

Attractiveness 0.23 0.23 −0.10 0.35
Trustworthiness 0.21 0.27 −0.12 0.49

Dominance −0.10 −0.14 0.20 −0.24
Valence 0.20 0.30 −0.13 0.56

quadratic while trustworthiness looks linear (see Figure 1.4A).

1.2.4 Simulation: Symmetry and Statistical Typicality

Revisiting the role of symmetry in attractiveness perception [47, 91], we suggest

the possibility that symmetry elevates attractiveness perception at least in part through

statistical typicality. Figure 1.5A shows that the statistical typicality (LL) of CFD face

images are negatively correlated (Pearson r = −0.373, p < 0.0001) with shape asym-

metry (Euclidean distance between landmarks and their mirror image). As a whole, a

large majority of CFD faces (98.3%, binomial test, p < 0.0001) increase LL after shape

symmetrization (Figure 1.5B, symmetrization technique similar to [46], see SI), and more

atypical faces benefit more in LL from shape symmetrization (regression coefficient of

LL(symmetrized face) - LL(original face) against -LL(original face) is significantly greater

than 0, p < 0.0001; regression coefficient b = 1.21, 95% CI [1.12,1.30]). As a whole,

shape symmetrization increases LL of CFD faces by 1.01 in units of standard deviation

of the original empirical LL distribution of CFD faces (paired t-test, p < 0.0001; see Fig-

ure 1.5C). If texture features are left-right symmetrized in addition to shape features (not

typically done in experiments), our model predicts an even bigger effect of symmetrization
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Figure 1.5. Symmetry and statistical typicality. (A) LL negatively correlates with shape

asymmetry. (B,C) Shape symmetrization increases LL of most face images. (A) Data

binning ensures equal number of samples in each bin. Linear regression line (using

binned data) is superimposed for visualization. Error bars: s.e.m. over faces in each bin.

on LL (see Figure S8). Moreover, similar to human data [48], our simulations show that

blends of (shape) symmetrized faces still exhibit BiA (larger LL than their “parent faces”),

though the difference is slightly smaller than for blends of original (non-symmetrized)

faces (see Figure S5), indicating that symmetry has a significant but partial contribution

to both experimentally observed attractiveness and model-predicted statistical typicality.

1.2.5 Ugliness-in-Averageness (UiA)

As discussed in the introduction, we hypothesize UiA arises because attentional

mechanisms focus on the task-relevant feature subspace, such that statistical typicality

and subjective liking are both assessed within this subspace instead of the full (original)

face space. If the data distribution projected into this subspace is bimodal, then statistical

typicality and subjective liking of an average between two samples from two different

modes should be lower than if the “parent” faces were within the same mode (Figure 1.1B).

When we project CFD faces into the 1-d subspace that best discriminates race

(Caucasian versus Asian [38, 78], found by regularized linear discriminant analysis, see SI),

we find the face distribution to be indeed bimodal (Figure 1.6C). Likewise, projecting CFD
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Figure 1.6. Simulation: UiA due to bimodality in the race-informative subspace. A.

Data, adapted from [38]: single-race (Asian-Asian, White-White, SR) face blends are

rated as more attractive than mixed-race (Asian-White, MR) face blends, when a race

categorization task precedes attractiveness rating (two sample t-test, p < 0.05). Error
bars: 95% CI. B.Model: statistical typicality of mixed-race blends is lower than single-race

blends in the 1-d race-informative subspace. C. Empirical distribution of white and Asian

faces [60] projected into the race-informative subspace is bimodal. X: mean location

of face images (60 total) for each % of blend, i.e. 1: 100% white and 0% Asian, . . ., 11:
0% white and 100% Asian. D. Model-predicted statistical typicality (LL) for actual face

images (binned by racial blend %) in the full face space. E. Model-predicted LL for face

images (same as in D) in the race-informative subspace. Error bars in B, D, E: s.e.m. over

simulated face stimuli.
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faces into the gender-informative 1-d subspace also exhibits clear bimodality (Figure 1.7B,

see SI). It may seem odd that the face distribution is both approximately Gaussian and a

mixture distribution. The reason is that the mixture components only appear as distinct

components (multi-modal) when viewed from a small number of very particular feature

dimensions (e.g. important for discriminating race or gender), but still Gaussian in the

great majority of dimensions (the components highly overlap).

Simulation: UiA Reproduced by LL in Task-Relevant Subspace

Human subjects have been found to rate single-race face blends more attractive

than mixed-race face blends when they are required to categorize race before rating

attractiveness (Figure 1.6A, [38]). We simulate the effect of this race-categorization task

on statistical typicality as follows. First, we randomly sample face images from CFD [60]

to create 100 single-race (Asian-Asian, White-White) and 100 mixed-race (Asian-White)

blends. Then, we project all face blends into the race-informative 1-d subspace. The

model-predicted statistical typicality for each face blend is its LL under the a posteriori

most probable gender category (see SI), consistent with a body of work showing that

people often use category membership to predict features of and reason about members of

a category [92, 64, 63, 11]. We find that model-predicted statistical typicality reproduces

the empirically observed UiA effects (Figure 1.6B).

We can make more refined predictions by smoothly varying the % of blending

in each pair of faces. We first randomly draw 60 Asian and white face images (with

replacement) from the face dataset [60], and then blended them at 10% increments, from

100% of the white face to 100% of the Asian face, thus producing 11 morphs of each pair

(see Figure 1.6C). We find that average statistical typicality, as a function of % blend, has

an inverted U shape (BiA) relative to % racial blend in the original space (Figures 1.6D) or

a random subspace (see Figure S11), but a U shape (UiA) in the race-informative subspace
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(Figures 1.6E). Analogous simulations corresponding to the case of gender categorization

[78] exhibit a similar pattern (see Figure S9).

Image-Level Comparison: Model vs. Data

As a more stringent test of our model, we investigate the relationship between

individual face’s attractiveness ratings and model-predicted statistical typicality in the at-

tended, task-relevant (LDA) subspace. We re-analyze the stimuli and behavioral data from

the gender categorization study [78], in which subjects rated the attractiveness of blends

from male and female “parent” faces, in different proportions (10% increment), under

either the control condition (no gender categorization), or the experimental condition (fol-

lowing gender categorization). It was found that attractiveness ratings in the experimental

condition, after subtracting out their ratings in the control condition, exhibits UiA: more

even gender blends are relatively more negatively affected by the gender categorization

(Figure 1.7C [78]). When we embed the blended face stimuli into our AAM face space, and

assess statistical typicality in the gender-informative (via LDA) subspace, we also observe

a similar UiA effect (Figure 1.7D), in contrast to the BiA effect when statistical typicality is

assessed in the full face space (Figure 1.7E). In fact, at the individual face level, we find that

the statistical typicality of blended face images significantly correlates with (subtractively

normalized) attractiveness rating in the experimental condition (r = 0.28, p = 0.0026,

see SI Figure S6 for a scatter plot). This relatively high correlation coefficient at the

individual face level is impressive, because there are clearly other determinants of facial

attractiveness besides typicality, such as perceptual and conceptual priming, contrast,

clarity, sexual dimorphism, etc. [134, 99, 46]. Importantly, the entirety of this predictive

power comes from theoretical considerations of the relationship between LL (based on

a density model fit to a different dataset, CFD [60]) and liking - no free parameter was

estimated using the ratings or stimuli from the experiment.
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Figure 1.7. UiA of bi-gender blends induced by gender categorization. A. Example stimuli

used in [78]: blends of varying proportions of male and female “parent” faces. B. The

empirical distribution of male and female faces [60] projected into the gender-informative

subspace is a mixture of two approximately normal distributions. X: mean location of

actual experimental stimuli [78] for each % of blend. C. Data: attractiveness rating in

experimental condition minus control condition, as a function of % blend [78]. D. Model-

predicted statistical typicality assessed within the gender-discriminating subspace, for

the same faces as in C [78]. Model-predicted statistical typicality assessed in the full

(original) space, for the same faces as in C [78]. Error bars in C-E: s.e.m over all stimuli

used in the experiment for each % blend.
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1.3 Discussion

In this paper, we proposed a statistically grounded account of human “liking” of

high-dimensional objects, which, in the case of faces, manifests itself as positive social

evaluation across multiple traits. We showed that human perception of attractiveness

and other positive traits of a face image depends on its statistical typicality, defined

as its log likelihood (LL) relative to an internal representation of the face distribution.

This hypothesis is motivated by statistical and information-theoretic arguments that

a good or efficient representation should maximize the average LL (or equivalently,

minimize the average code lengths or cross entropy) of observed data, and is related

to the “efficient coding hypothesis” of neural representation [3]. While our analysis

is inherently correlational in nature, some existing findings can be re-interpreted to

imply that statistical typicality has a causal effect on subjective liking. For example, in

a neural phenomenon known as “repetition suppression”, repeated presentation of the

same stimulus, such as a face image, has been shown to increase predicted likelihood of

observing the stimulus [113] and thus lead to a robust decrease in evoked neural response

[23, 27, 52, 113]. Relatedly, in the psychological “mere exposure” phenomenon, repeated

exposure to a novel stimulus, such as a face image, leads subjects to report greater liking

[142] and more positive perceived valence associated with the face [7]. Together, it is

clear that empirically increased frequency of a stimulus is sufficient to induce both lower

neural representational cost and greater subjective liking. Whether the increase in liking

is causally mediated by the decrease in neural coding cost is an important direction of

future research.

Additionally, we demonstrated that categorization-induced “Ugliness in Average-

ness” (UiA) effects [38, 78] can be explained as statistical typicality being dynamically,

redefined via attentional modulation [17, 139, 101, 137], as a function of task informational
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needs. Specifically, some facial features are particularly informative for discriminating

gender (or race). The suggestion is that the observer dynamically enhances the processing

of these features (mathematically, by restriction to the relevant featural subspace). The

statistical distribution of faces is redefined within this subspace (appearing bimodal), thus

leading to systematic reassignment of LL to each face. In particular, the faces that straddle

the boundary between two categories (e.g. bi-gender or bi-racial blends) tend to have high

LL in the original, full face space, but low LL in the dynamically restricted representation

– thus resulting in UiA. We showed that this theory can indeed quantitatively capture the

categorization-induced changes in liking on an image-by-image basis. One assumption

of this theory is that the brain can dynamically alter its representation of faces in a

task-dependent manner. Consistent with this, there is evidence that neural receptive

fields for faces are rapidly and dynamically modified by attention and task context [32].

Notably, we expect rapid dynamic modulation of stimulus representation to be primarily

applicable in the case of featural dimensions that are ecologically relevant (such as those

discriminating race and gender). Such dynamic modulation may also be possible for

arbitrary featural dimensions but, as logic would suggest and empirical evidence concurs

[21, 127], would require extensive additional training. It would be interesting to test in

future work whether UiA can also be causally induced by newly learned multi-modal

distributions [21, 127], as would be predicted by our model.

Supporting our suggestion that energy allocation in the brain should be efficient

and thus proportional to negative LL of the face stimulus, human fMRI studies have shown

that energetic expenditure, indexed by BOLD response, across multiple face-responsive

areas in the brain is indeed approximately quadratic (negative LL of a multivariate normal

distribution is quadratic) [98, 66]. Interestingly, while the initial empirical findings

[98, 66, 117] were interpreted to imply that these face-responsive areas explicitly encode
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“typicality” or “distinctiveness” of faces, we suggest that any efficient face representation

must respond in this quadratic manner [103], given the approximately normal distribution

of faces that we found here. This is the case whether or not there is an explicit coding of

“typicality” or “distinctiveness” in a particular brain area exhibiting quadratic responses

to faces. We also note here the important distinction between statistical typicality and

subjective typicality. While statistical typicality, of the kind of quadratic signal found in

face areas [98, 66], might well contribute to subjective typicality, we have evidence [33]

that human judgment of face typicality andmemorability (highly related to distinctiveness

[5, 18]) both have a strong linear component in the face space, just like the four social traits

reported here, and thus cannot only be driven by statistical typicality or the quadratic

signal found in face-responsive areas.

While a detailed neurocomputational theory is outside the scope of this paper, we

briefly discuss one plausible, though obviously greatly simplified, neural implementation

of our computational-level theory [65]. Various studies have shown that familiar and

unfamiliar faces are represented differently in the brain, both in terms of brain regions

[53, 27, 71], and coding scheme [83, 9]. In particular, familiar faces appear to be encoded

by dedicated feature detectors [83], also known as “grandmother cells,” while unfamiliar

faces appear to be encoded by a dimensional scheme [9]. Within our framework, one

may well ask how the brain encodes a distribution over faces, which is necessary to

represent the LL of a new face. One possibility, related to a sampling representation of

distributions [129] and the notion of landmark points for manifold learning in machine

learning [106], is for the brain to represent the face manifold (and distribution) using

a sparsely sampled representation consisting of well-known faces. When a novel face

is encountered, the brain could first identify the closest previously learned prototype

[92, 64, 63, 11] (note the use of “prototype” here differs from social psychology), and then
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use a dimensional coding scheme [9] to encode the discrepancy between the retrieved

prototype and the novel face. This scheme builds on both prototype- and norm-based face

representations [93] and is consistent with the predictive coding hypothesis [84, 143].

Within this framework, a statistically atypical face incurs high coding cost because it

tends to be far from the retrieved prototype, and thus the discrepancy will be large

and expensive to represent in a dimensional coding scheme [9]. In the UiA-inducing

categorization setting, attention enhances the neural response to task-relevant features

relative to task-irrelevant features. This has the effect of increasing the overall coding cost

of a category-straddling stimulus, since the featural discrepancy (and thus coding cost)

between the stimulus and the closest retrieved prototype is highest in the task-relevant

dimensions, which are enhanced by attentional modulation. Importantly, this example

also illustrates that attentional modulation and statistical typicality alone are sufficient to

explain UiA at the neural level, regardless of whether the relationship between statistical

typicality and “liking” is due to efficient coding or not.

The above is but one plausible neural coding scheme; however, it illustrates the

general notion that the allocation of long-term representational resources (in the form of

structural changes such as the formation of a feature detector) are separable from short-

term coding cost (in the form of dynamic activity patterns), which is what we hypothesize

drives “liking.” Well-known faces, which are statistically more typical, are given greater

structural representational resources, in order to allow it to incur low dynamic coding cost;

conversely, statistically atypical faces incur high dynamic coding cost as a consequence

of little dedicated structural representation (no dedicated “grandmother” feature detector).

While atypical faces in a stable, well-known environment tend to cancel each other out in

terms of driving learning, since they are inevitably and symmetrically distributed in the

fringes of an approximately normal distribution, a sudden influx of atypical faces (such
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as that induced by immigration) could drive systematic representational plasticity so as

to reduce average long-term coding cost.

Statistical atypicality (negative LL) is related to the theoretical notion of “unex-

pected uncertainty”, which we earlier proposed to reflect a confluence of unexpected

deviations between expectation and observations and signal the need for representational

learning [140]. We proposed that unexpected uncertainty, signaled by the neuromodulator

norepinephrine, acts in concert with expected uncertainty, signaled by the neuromod-

ulator acetylcholine, to assist the neocortex in learning and maintaining appropriate

representations of environmental statistics as well as selecting the appropriate behav-

ioral responses [140]. This theory has received considerable empirical support in the

intervening years [69, 70, 68, 67, 80, 88]. Persistently high statistical atypicality of data is

precisely the kind of signal that should drive unexpected uncertainty [117]. In the original

formulation of expected and unexpected uncertainty [140], we had in mind rather simple

kinds of statistical inference and learning such as those related to associative learning; the

current work suggests that similar mechanisms may also apply to highly complex stimuli

such as faces. Among other implications, this leads to the interesting hypothesis that

atypical faces might lead to an elevation of norepinephrine release. Consistent with this,

there is evidence that an early and rapid pupil constriction predicts high attractiveness

rating for faces, and experimental manipulation of pupil size causally affects perceived

facial attractiveness in the expected direction [57]. Combined with the finding that phasic

increase in pupil size is associated with elevated norepinephrine release in the brain

[88], and that phasic pupil dilation enhances learning (both correlationally and causally)

in a manner consistent with unexpected uncertainty [70, 136], this suggests that facial

atypicality may indeed modulate norepinephrine-mediated control over attractiveness

perception and representational learning in a computationally principled manner.
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Some readers may be puzzled by our assertion that the negative affect induced by

atypical faces leads to increased learning about those faces, instead of encouraging the

observer to pay less attention or physically avoid such faces. However, while negative

affect can lead to physical avoidance [40], approach/avoidance behavior has many other

contributing factors, such as curiosity. In some situations, negative affect does not lead to

physical avoidance [40]. In another classical study, it has been found that there is a strong

negative correlation (r = −0.60) between liking and exploration of face images, such

that those faces perceived as least likable are also those that induce the most exploration

[39]. Relatedly, novelty has been observed to drive learning and exploration in relation

to faces and visual scenes [28, 79].

We do not claim that statistical typicality to be the sole determiner of attractive-

ness or other social trait evaluations. For example, our model does not explain certain

aspects of facial preferences (e.g., sexual dimorphism in face perception [99, 58]), or

systematic differences in preference judgment for faces versus other categories of objects

[79]. Even in our own analysis (consistent with prior findings [118, 33]), we find a separate

linear component, apparently unique to each social trait, for which we do not yet have

a principled explanation. Relatedly, we recently found that the liking “function” over

the stimulus space may be modified by positive/negative encounters with specific exem-

plars, which are then extrapolated to the rest of the space depending on the clustering

(categorical) structure of the data – in particular, the most statistically typical exemplar

of a cluster/category can be most disliked if previous encounters with members of this

category have been negative [128]. Nevertheless, statistical typicality already provides

a parsimonious and unifying account of several previously proposed causal factors of

attractiveness. For example, we found that popular methods for symmetrizing face images

also tend to increase statistical typicality. There is also recent work showing that coding
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cost at low-level image statistics (e.g. related to small image patches) also decreases

attractiveness [89, 41]; notably, coding cost is equivalent to negative LL in an efficient

coding scheme, and low-level statistical typicality is a sub-component of general statistical

typicality and can be expected to play a partial role in determining attractiveness. From

this perspective, it also makes sense that blemishes [55] should decrease attractiveness,

as they are statistically irregular and thus expensive to encode.

Our notion of statistical typicality is related to several previously proposed, quali-

tative explanations of attractiveness perception, in particular in the context of BiA. For

example, averageness [54, 90, 110] or distance to the norm (mean face) [41] have been

suggested to contribute to facial attractiveness. As discussed above, when the face dis-

tribution is approximately multivariate normal and the facial features are uncorrelated,

negative LL is essentially squared Mahalanobis distance, which is correlated with Eu-

clidean distance used in previous work [41]. Mahalanobis differs from Euclidean distance

by normalizing each coordinate by the standard deviation of the data along that axis.

This is a very sensible variation, as it standardizes the distance metric irrespective of the

coordinate system being used. Additionally, Mahalanobis distance accounts for corre-

lations between features. These subtle differences between Mahalanobis distance and

Euclidean distance may partly explain why in our hands LL is a stronger predictor of

attractiveness than in previous work [41]. In addition, our study might find a stronger

effect of “averageness” because of the greater statistical power induced by face stimuli

that range more broadly across the feature space (in units of standard deviation) than

in previous work [41] – although Figure 5 makes it clear that it is not only the most

extreme stimuli that are driving the effect, but the full range of faces. A bigger difference

between our statistical typicality account and an averageness account arises in the case of

multi-modal distributions, since LL and averageness are no longer well correlated. In this
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vein, UiA effects [38, 78] provide a particularly discriminating case for testing statistical

typicality versus averageness in attractiveness perception. Through our analyses, we

found that statistical typicality is the more relevant variable. Another prominent notion

related to statistical typicality is prototypicality. Prototypicality is a measure of “closeness”

of a stimulus to the “prototype” [134, 124], implying there are clear, fixed modes in the

stimulus distribution. Our account differs in two ways: firstly, it does not assume the

“prototypes” to be fixed and pre-defined, but rather task-dependent (e.g. the average male

face can be considered a “prototype” in a gender categorization task but not in a race

categorization task); secondly, statistical typicality is well-defined even for distributions

that have no distinct modes, such as for the fairly flat (close to uniform) distribution of

age, in which case LL is approximately a constant.

Our statistical typicality account is also related to a rather different explanation

of BiA and UiA, known as the fluency account [86, 134, 38, 78]. The fluency account

hypothesizes that stimuli, such as category-specific prototypes, may be processed more

“fluently” than other stimuli, and human liking of faces and other objects decreases in

response to “disfluency” in processing. At a broad level, the fluency account shares with

our statistical typicality hypothesis the concept of a human preference for efficiency.

However, fluency is not mathematically defined, but empirically measured as response

time [38, 78], which surely correlates with coding efficiency, but may also include other

factors, such as computational complexity, motor delay or effort, and attention or motiva-

tional factors unrelated to coding efficiency. Another close relative to statistical typicality

and fluency is “simplicity” [10], in the sense that once a simple explanation/representation

is learned, using it to process new data is generally more efficient than using a complex

explanation/representation, even if learning or discovering the simple explanation itself

may not be trivial. Processing disfluency is also related to effort-based decision making
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[132, 43], for it is likely that processing cost and energy expenditure at the biophysical

level relate to perceived effort at some level. Future empirical work is needed to clarify

whether negative human assessment of atypical face images and other complex stimuli

indeed arises from the same root cause and mechanisms as the aversion to cognitively

effortful tasks [132, 43]. One potential experiment is to ask subjects to first categorize a

face as above or below the median age (say 40), and then rate attractiveness: categoriza-

tion difficulty/effort is still greatest closest to the decision threshold, but the statistical

distribution along the age-relevant dimension is not obviously bimodal and thus does

not increase away from the categorization threshold. Thus, a statistical typicality-based

coding cost would predict a BiA effect, while a processing disfluency account would

predict a UiA effect. In conjunction with this experimental work, future theoretical work

is needed to clarify the formal relationship between computational concepts such as

statistical typicality, coding efficiency [3], processing efficiency, and more qualitative

psychological concepts such as fluency [86], effort [132, 43], and simplicity [10].

In addition to providing a statistically grounded explanation of contextual depen-

dence of human attractiveness judgment, our work also provides some general insight

as to how high-dimensional data can be analyzed and stored efficiently in an intelligent

system. All elements of the model presented here can be easily generalized to non-face

stimuli, such as dogs, birds, butterflies, fish, automobiles, watches, and synthetic dot

patterns [36, 37, 134]. Minimizing the average coding cost of statistically distributed

data is a desirable goal for any efficient representational system, whether natural or

artificial. Another important computational insight is that a system can overcome lim-

itations in its representational and computational capacity by dynamically shifting its

featural representation to focus on task-relevant dimensions according to the behav-

ioral context. As such, our work sheds light on one possible functional role played by
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attentional selection in the brain: it is one way to dynamically construct subspaces that

emphasizes feature dimensions that are most relevant or salient for performing the task

at hand [17, 139, 137, 101]. As the literature on attention is broad and confusing in both

psychology and neuroscience [141, 137, 101], a productive direction of future research

would be to see whether our hypothesized role of attention can help to unify contradicting

parts of that larger literature.

Our line of reasoning sheds light on a broader computational understanding of

how the brain dynamically encodes and processes complex, high-dimensional data. Faces

provide excellent stimuli for investigating such processes, because they are information-

ally rich, ecologically important, and for which we have a computationally tractable and

neurally relevant parametric representation (AAM). We therefore used faces to implement

and test concrete ideas about information representation and its contextual modulation

in this work. The attractiveness literature also provided a convenient empirical test of

our theory. However, we expect that the dynamic representational framework we hy-

pothesize here also affects other cognitive processes, such as working memory, learning,

decision-making, and problem-solving, in the sense that all these cognitive processes can

benefit from attentional enhancement of task-relevant feature dimensions over irrelevant

dimensions. For example, learning to memorize a set of items should be easier if one’s

attention is focused on the features that make these items easier to organize. Another

example is that two stimuli that differ along an attended featural dimension should be

easier to discriminate and later recall; and those that differ along an unattended dimension

(orthogonal to the attended dimension or dimensions) should be harder to discriminate

and later recall. In general, the benefits of cognitive expediency and behavioral accuracy

derived from focusing on task-relevant features are broad and multi-faceted, pointing to

a promising direction for future research.
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1.4 Methods

1.4.1 Formal Model

We assume humans have an internal d-dimensional representation of faces X

[124, 99, 76], in which each face is represented by a vector x = (x1, . . . ,xd) of d real-valued

features. We also assume that this face space is endowed with a probability distribution

pX (x), reflecting an internal statistical representation of faces [21]. In the absence of a

categorization task (e.g. by gender or race), statistical typicality is defined as the log likeli-

hood (LL) of the face under the full distribution log pX (x). When the observer performs a

categorization task, such as gender categorization, we assume the brain projects each face

x into the task-relevant subspace X̃ ⊆ X to obtain x̃ (for example, if θ is a basis vector

for the task-informative 1-d subspace X̃ , the dot product x ·θ yields x̃). It then evaluates

the statistical typicality of x̃ as its log likelihood log pX̃ (x̃|c) under the class conditional

marginal distribution pX̃ (·|c) that marginalizes over all the dimensions orthogonal to

the subspace X̃ , where c is the Bayes-estimated (a posteriorimost probable) category (e.g.

“male” or “female” for gender categorization). This formulation of attentional focusing

corresponds to completely eliminating task-irrelevant feature information while leaving

attended dimensions untouched, which is likely an exaggeration of brain mechanisms

[17, 139], but a “softer” attentional mechanism, that partially suppresses information

transmission in the irrelevant dimensions relative to the relevant dimensions, should

produce similar results.

1.4.2 AAM

We model faces using the Active Appearance Model (AAM), which we choose

for its multiple advantages: neural relevance [9], previous success in modeling human
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face space and predicting social judgments compared to alternatives [33, 41, 97], ability

to output feature coordinates for novel faces and generate realistic-looking synthetic

faces for any coordinate setting, and high transparency and customizability in contrast to

commercial software (e.g. FaceGen). We train AAM (see SI) using CFD, a public dataset of

597 demographically balanced face images [60], obtaining for each face 30 shape features

related to the geometric layout of invariant elements of faces (e.g. eyes, eye brows, nose,

mouth, contour of the face) and 60 texture features related to pixel variations within and

among these elements (results are insensitive to exact number of features, see SI).

1.4.3 Experiment

Participants. 41 (mean age 20.6 years, 24 female) UC San Diego undergraduate

students participated in the study in exchange for course credit. Participants gave in-

formed consent before taking part in the study. Approval for the study was given by UC

San Diego Human Research Protection Program.

1.4.4 Stimuli

We used AAM to generate a total of 2520 synthetic face images (see Figure S2 for

example stimuli). Procedure. Participants rated faces “intuitively” on a Likert scale (1-5)

for how “attractive”, “trustworthy”, “dominant”, and “positive” (valence) faces appeared.

Each image received on average 2.35 ratings per trait.
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1.A Active Appearance Model

1.A.1 Model Training

We train our own version of the Active Appearance Model (AAM) [22, 13, 123],

to construct the face feature space (see Figure 1.8 for a schematic illustration of AAM).

The training data are 597 grayscale face images from a publicly available dataset [60],

balanced for race and gender, with neutral facial expression taken in the laboratory. First,

we use the free software Face++
1
to automatically label 83 landmarks (e.g. contour

points of the mouth, nose, eyes) on each face image. Because the face images may be

differentially scaled, shifted, or rotated (in the 2D plane of the image), we use Procrustes

(as in [123]) to align the landmarks of each image to the average landmarks (obtained

from averaging all raw image landmarks across the dataset). But due to this alignment,

the average landmarks have to be recalculated, and Procrustes applied again. After doing

so for 50 iterations to ensure convergence, the final landmark coordinates are flattened,

centered (subtract the average shape) and subject to PCA to obtain the shape features. To

obtain texture features, the pixel values contained within the landmarks of each image are

warped (via triangulation) to the “shape” of the average landmarks, thereby obtaining

“shape-normalized” texture, which is flattened, centered (subtract the average texture)

and subject to PCA. The coordinates in the face space are the concatenation of the

shape features and the texture features. We will sometimes use features and coordinates

interchangeably.

1.A.2 Obtaining Coordinates of Novel Faces

Once AAM is trained, to obtain the face space coordinates of a new face image,

we follow the same procedure as for getting the features of the original training images

1
https://www.faceplusplus.com
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Face Image

Shape

PCA

"Shape-Normalized"

Texture

Figure 1.8. AAM-based face representation. A face image is “decomposed” into

shape ((x,y) coordinates of Procrustes-aligned landmarks) and shape-normalized texture

(grayscale pixel values warped to the “shape” of average aligned landmarks across the

dataset). PCA is then conducted over each for dimensionality reduction, and then con-

catenated to yield a face space.

(without re-training the model).

1.A.3 Generating Synthetic Images

Given a set of features in AAM, we can generate a synthetic image (including

stimuli used in the main experiment) by inverting the procedure used to generate the

features for a face image. The shape and texture principal components are used to

“reconstruct” the shape and shape-normalized texture given the features. The shape-

normalized texture is then warped to the generated “shape” to produce a synthetic image.
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1.A.4 Creating Face Blends

To create a blend of two (or more) faces, we first obtain the AAM features of the

“parent” faces, then average them, and use the averaged features to generate a synthetic

image.

1.A.5 Modeling Statistical Typicality (LL)

To model the statistical distribution of faces, we obtain features of CFD faces using

the learned AAM representation, and then fit a multivariate Gaussian distribution. Note

that we use the CFD dataset twice, once to train the AAM shape and texture features (see

Section 1A), and a second time to estimate a density of faces over that feature space.

Statistical typicality (LL) of a stimulus is defined as log p(x), where p(x) is the

CFD-estimated multivariate normal density. Note that because the shape features and

texture features are uncorrelated within themselves (but may correlate with each other),

LL is a specific quadratic function of the shape features {xi} and the texture features {x j}:

− log p(x) =− log
1√

(2π)d|Σ|
exp

(
− 1

2
(x−µ)⊺Σ

−1(x−µ)
)

(1.1)

= ∑
i

x̃2
i

σ2
i
+∑

j

x̃2
j

σ2
j
+2∑

i j

x̃ix̃ j

σ2
i j
+C, (1.2)

where x̃i = xi −µi are centered coordinates, and C is a normalization constant that does

not depend on x. Here, µi is the mean along dimension i; σ2
i and σi j are the diagonal

(variance) and off-diagonal (covariance) terms in Σ. Since we do not know the veridical

µ,Σ, we use maximum likelihood estimates. Note that this expression (ignoring C) is the

square of Mahalanobis distance; the further away the face is from the mean face (origin),

the lower LL is.

Since race and gender correspond to potentially multiple modes, modeling the
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distribution of the population faces as a unimodal multivariate Gaussian distribution is

an approximation. We quantify the quality of this approximation as follows. We consider

two models, a unimodal multivariate Gaussian pG(x) and a mixture of 2 Gaussians,

pMoG(x)= 1
2 p

male
(x)+ 1

2 p
female

(x), where themixture components correspond to genders.

Each mixture component is fit by maximum likelihood estimation, but the component

label of each face is given by its known gender label in CFD. The Pearson correlation

between the LL generated by the two models for each of the CFD faces is very high:

r = 0.95, p < 0.0001; it is also very high for the synthetic stimuli used in the experiment:

r = 0.985, p < 0.0001. Moreover, the correlation between attractiveness ratings (provided

in CFD) and the LL of pG(x): r = 0.16, p < 0.0001 and pMoG(x): r = 0.19, p < 0.0001

are very similar. In other words, despite the apparent multi-modality due to gender, a

single multivariate Gaussian is a very good approximation for the whole data set. This

is because gender (and race) induces multi-modality only in a small number of gender-

(and race-) discriminating feature dimensions, and genders (or races) are statistically

indistinguishable in the great majority of feature dimensions. One way to see this is

by using random projections, as noted in the main text, where we see that normality is

rejected in only a relatively small fraction (7.6% of the 500 random projections of CFD

data). To give an intuitive perspective to this analysis, consider a synthetic mixture of

Gaussians that is bi-modal in every dimension i, p(xi) =
1
2N (xi|µ = −1.5,σ2 = 1)+

1
2N (xi|µ =+1.5,σ2 = 1). We generate 600 samples (300 from each mixture component)

and take 500 random projections (a random projection vector w ∈ R90
generated by i.i.d

sampling of each wi from N (µ = 0,σ2 = 1). We find that normality is rejected in 60%

of the random projections, implying that a unimodal multivariate Gaussian would not

be a good approximation in this case, as expected. This indicates that the small fraction

of normality rejection found for the CFD data is not a trivial result, despite central limit
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theorem-like arguments related to random projections [20, 87].

1.B Simulation: Beauty-in-Averageness

Similar to the experiment in [54], we create 2-, 4-, 8-, 16-, 32-face blends usingmale

and female faces separately. To create a k-face blend, k distinct faces of the appropriate

gender are randomly select from the CFD dataset and their coordinates in the parametric

AAM face space are averaged; the averaged coordinates are used to generate a synthetic

image.

Similar to the experiment in [38], to produce Figure 2B, a pair of faces are randomly

selected from CFD and their coordinates are averaged in varying proportions, from 100%

of one face to 100% of the other, and statistical typicality of each blend so produced is

evaluated. This procedure is repeated 500 times and the average is plotted in Figure 2B.

1.C Experiment: Social Liking Depends Linearly on
Statistical Typicality

1.C.1 Stimuli

Since previous work indicated that BiA depends more strongly on shape than

texture features [99], we randomly picked 4 shape PC’s and generated face images with

21 pre-set values along these 4 dimensions, {−5,−4.5,−4, . . . ,+4,+4.5,+5}, in units

of CFD sample standard deviation along these axes. Coordinates for the remaining shape

features and all texture features were randomly drawn from the multivariate normal

density fit to CFD. We generated 10 images per step to produce 210 images for the set

of four axes. We then repeated this procedure 10 times, plus two additional sets with 6

randomly chosen, yoked shape features (instead of 4), to produce a total of 2520 images.

Example stimuli corresponding to a random axis used in the experiment are shown in
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Figure 1.9. Note that even the central face has relatively negative log likelihood because

this is a probability density function of high dimensionality, and it takes on statistically

sampled values along all orthogonal axes, some of which may be rather atypical. Since

orthogonal coordinates are statistically sampled, it is possible for the LL of individual

face images to be non-monotonic relative to the axis of interest. In this example, the

central face has a slightly lower LL than the +2.5σ face due to random contributions

of orthogonal axes. Relatedly, while some of the synthetic stimuli have rather “extreme”

values (e.g. located at 4 or 5 standard deviations), as was also the case in previous studies

(e.g. [21]), these synthetic faces may still appear visually not as extreme as one might

expect, because only a small number of dimensions (4-6) have “extreme” values, while

the remaining (84-86) features tend to have statistically typical values.

-383.74 -343.77 -335.15 -323.99 -402.78

Figure 1.9. Example stimuli used in the experiment. These are five example stimuli

corresponding to a particular randomly chosen axis in the AAM face space. The label

above each face indicates the feature value of the face along this particular axis, in units

of standard deviation of the training data [60] projected along this axis, while taking

randomly sampled values on all orthogonal axes. The label below each face indicates its

statistical typicality (LL under the multivariate normal distribution fit to CFD [60]).

1.C.2 Rating Standardization and Averaging

We standardize ratings within each participant by removing the mean and dividing

by the standard deviation (as was done in [99, 33, 111]) for each trait: attractiveness,

trustworthiness, dominance, and valence. We then average the ratings across participants

for each image to produce an average rating for a trait on each image.
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1.C.3 Model Comparison: BIC Scores

Figure 4B in the main text shows that linear+LL outperforms linear and quadratic

models in terms of correlation coefficient between model predicted and subject-reported

trait ratings in held-out test face images. Here, we show that linear+LL is also superior in

terms of BIC scores (Figure 1.10).
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Figure 1.10. Model comparison. BIC for Linear+LL is lowest across traits, consistent

with the results using 10-fold CV in Figure 4B.

1.C.4 Individual-Level Correlation Analysis of Social Ratings
and LL

Figure 1.11 shows the histogram of Pearson correlation coefficients for subjects

who have significant correlations between ratings and statistical typicality: the great

majority have positive c.c.

41



Attractive (0.75)

0 0.4
0

5

10

#
 o

f 
p
a
rt

ic
ip

a
n

ts

Trustworthy (0.55)

0.2 0.4
0

2

4

6

Dominant (0.4)

0 0.4

c.c: typicality vs rating

0

2

4

6

#
 o

f 
p
a
rt

ic
ip

a
n

ts

c.c:

Attractiveness (75%)

0 0.4
0

5

10

#
 o

f 
p
a
rt

ic
ip

a
n

ts

Trustworthiness (55%)

0.2 0.4
0

2

4

6

Dominance (40%)

0 0.4
0

2

4

6

Valence  (32.5%)

0.2 0.4

c.c: statistical 

typicality vs rating

0

2

4

6

A B

C D

c.c: statistical 

typicality vs rating
c.c: statistical 

typicality vs rating

c.c: statistical 

typicality vs rating

#
 o

f 
p
a
rt

ic
ip

a
n

ts

#
 o

f 
p
a
rt

ic
ip

a
n

ts
#

 o
f 

p
a
rt

ic
ip

a
n

ts

Figure 1.11. Histograms of correlation coefficients between statistical typicality (LL)

and standardized ratings of individually significant (p < 0.05) participants. Number in

parentheses in each panel’s title indicates the % of significant subjects for each trait.

1.C.5 Sensitivity of Results to Number of Features

Our findings in the main text are not specific to the choice of 30 shape and

60 texture features used in the analyses. To illustrate this, in this section, we show

the same key findings using 25 shape and 25 texture features. First, we report the

correlation coefficients between trait ratings and LL of the face stimuli: attractiveness:

r = 0.383, p< 0.0001, trustworthiness: r = 0.263, p< 0.0001, dominance: r = 0.194, p<

0.0001, valence: r = 0.173, p < 0.0001. As in the main text, residual attractiveness (r =

0.33, p < 0.0001) and trustworthiness (r = 0.178, p < 0.0001) are significantly correlated
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A B

Figure 1.12. Blends of (shape) symmetrized faces still show increase in LL (A), but to a

smaller degree than blends of the original (unsymmetrized) faces (B).

with LL.

Model comparison (see Figure 1.14): Linear+LL consistently performs compara-

bly or better than the quadratic model (paired one-sided t-test: pattractiveness = 0.1800,

p
trustworthiness

= 0.0140, p
dominance

= 0.0309, p
valence

= 0.0279), as well as the linear

model (paired one-sided t-test: pattractiveness < 0.0001, p
trustworthiness

< 0.0001,

p
dominance

< 0.0001, p
valence

= 0.0002).

Uniqueness of LTAs (see Table 1.2): the LTA for each trait makes better prediction

about the same trait on held-out test data than the LTA for any other trait (paired t-test,

p < 0.0001), except for the trait “trustworthiness”, which is slightly better predicted

by the LTA for valence (r = 0.270) than for trustworthiness (r = 0.289), but this is not

statistically significant (p = 0.191).
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Figure 1.13. Binned scatter plot between (subtractive normalized) attractiveness ratings

and statistical typicality in the gender informative subspace for experimental stimuli.

Data binning ensures equal number of samples in each bin. Linear regression line (using

binned data) is superimposed for visualization. Error bars: s.e.m over stimuli in each bin.

1.D Simulation: Symmetry and Statistical Typicality

1.D.1 Shape Symmetrization

As experimental face symmetrization techniques [46, 100] tend to manipulate

only the shape features, Figure 5 in the main text are simulation results based on only

symmetrizing the shape features as done in experiments, i.e. for each image, the landmarks

and their mirror image are Procrustes aligned to the average landmarks (to remove

variation due to translation, scaling, and roll or rotation in the image plane) and averaged

to produce symmetrized shape. The pixel values of the original face image are then warped

to the symmetrized shape to produce a shape symmetrized face image. Note that this

procedure only changes the shape features and not the texture features of the face.
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Figure 1.14. Model comparison (Features: 25 shape, 25 texture). A. Correlation coefficient

between predicted and actual ratings on held-out data, averaged over 10 folds. Linear+LL

consistently performs comparably or better than the quadratic and linear models. Error

bars are s.e.m over folds. B. BIC for Linear+LL is lowest. Notation: n.s.=not significant, ⋆:
p < 0.05, ⋆⋆: p < 0.01, ⋆⋆⋆ p < 0.001.

1.D.2 Symmetrized Faces still exhibit BiA

It is interesting to note that, blends of pairs of (shape) symmetrized faces still

show an increase in LL (Figure 1.12A), though less than the increase in LL for blends of

pairs of original (unsymmetrized) faces (Figure 1.12B). This finding is consistent with

human behavioral data showing [48] BiA persists after symmetrizing faces, but the effect

is smaller than for corresponding unsymmetrized faces.

1.D.3 Symmetrizing Shape and Texture

If in addition to symmetrizing shape features, the texture features are also sym-

metrized (pixel values of the original and mirror image are warped to the symmetrized

shape and averaged), then our model predicts that the increase in statistical typicality

(see Figure 1.15) would be even larger (∆LL=3.4σ ), an interesting prediction for future

experiments to verify.
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Table 1.2. Trait-Specific LTAs (Features: 25 shape, 25 texture). Each trait is generally

better predicted by its own LTA than other LTAs, measured by the correlation coefficient

between model predictions on ratings of held-out faces and predictions by all LTAs,

averaged across the 10 folds of the cross validation.

Trait Predicted

LTA Attractiveness Trustworthiness Dominance Valence

Attractiveness 0.23 0.23 −0.10 0.35
Trustworthiness 0.20 0.27 −0.15 0.50

Dominance −0.11 −0.17 0.22 −0.27
Valence 0.18 0.29 −0.13 0.55

1.D.4 Additional Information

Statistical typicality in Figure 5 refers to LL evaluated using only the shape features,

since texture features remain unchanged. Consequently, ∆LL in Figure 5 is reported in

units of standard deviation of LL of the shape features of original faces. We report ∆LL in

Figures 5, 1.12, 1.15 in the same units for consistency.

Shape Asymmetry [41] refers to the Euclidean distance between landmarks and

their mirror-image after each are Procrustes aligned to the average landmarks.

1.E Ugliness-in-Averageness (UiA)

1.E.1 Gaussian Mixture Modeling of Demographic Subgroups

We model the class (e.g. gender) conditional probability distributions p(x|y =

male) and p(x|y= female) as multivariate normal distributionsN (x|µy,Σy), based on the

true gender labels of each face (given in CFD). To estimate the class conditional covariance

matrices Σy, due to the high dimensionality of the estimation problem (our AAM has 90

dimensions, so each covariance matrix has O(902) parameters) and the risk of overfitting,

we use cross-validation to select a parameterization of the covariance matrix that can
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Figure 1.15. Symmetrization of shape and texture of a face increases its statistical

typicality more than symmetrizing only shape.

best perform gender categorization using MAP estimation based on the resulting model.

Concretely, we use 10-fold cross validation to select the structure of the covariance

matrices (via the Matlab function fitcdiscr) from a) Σ̂
male

= Σ̂
female

, both diagonal, b)

Σ̂
male

̸= Σ̂
female

, both diagonal, c) Σ̂
male

̸= Σ̂
female

, non-diagonal d) Σ̂
male

= Σ̂
female

, non-

diagonal, regularized (Σ̂γ = (1− γ)Σ̂+ γdiag(Σ̂)), where the regularization parameter

γ ∈ [0,1] is found using Bayesian optimization and Σ̂ is the empirical, pooled covariance

matrix. In addition, due to concerns with overfitting, we consider lower-dimensional

versions of a-d (denoted by a’-d’), by including only the first 30 texture features (in

addition to all 30 shape features). Since 10-fold cross-validation shows d’ to be the best

parameterization for both gender (male-female) and race (White-Asian) categorization,

we use this covariance structure to evaluate statistical typicality in UiA analyses.
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1.E.2 Evaluating Statistical Typicality under Attentional
Modulation

Attentional modulation is modeled as a projection into a task-relevant subspace.

Given the estimated covariance structure d’ (see above), the basis vector spanning the

1-d subspace that best discriminates e.g. gender, is θ̂
gender

= Σ̂−1
γ (µ̂

female
− µ̂

male
), where

µ̂
female

and µ̂
male

are means of the male and female distributions in the full space. The

projected value of a face image x in the 1-d subspace spanned by θ̂
gender

is just x̃
gender

=

x · θ̂
gender

. The mean of each category i in the projected space is just µ̂i · θ̂gender, and its

variance is just the sample variance of the category members projected into this subspace.

The prior probability P(y = male) is set to the empirical proportion from CFD [60]

(although setting this probability to be uniform, 0.5, produces similar results). Combining

the prior with the task-relevant class-conditional likelihood, we can compute the Bayesian

a posteriori most probable class y∗ = argmaxy p(y|x). We then assign statistical typicality

in the task-informative (e.g. gender) subspace as log pX̃
gender

(x̃
gender

|y∗).

In order to demonstrate the importance of attentional modulation, we also evaluate

statistical typicality in the full face space, i.e. using all features instead of only the gender-

informative features. This quantity is evaluated in a manner similar to how statistical

typicality in the gender-informative space is evaluated - using the a posteriori class

conditional, but in the original face space, log pX (x|y∗), where y∗ = argmaxy p(y|x).

While we use covariance structure d to evaluate this quantity in the main text (to keep

this quantity on the same scale as measures of statistical typicality in full face space

featuring in other analyses), similar behaviour (BiA) is observed if one uses covariance

structure d’ for this computation instead of d (see Figure 1.17). Figure 1.18 shows that BiA

is also apparent if LL is evaluated not in the full face space but in a randomly projected

1-d subspace.
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Statistical typicality modeling in the race-informative subspace is analogous.

1.E.3 UiA: Simulation Details

Figure 5B: Similar to the behavioral experiment [38], we generate single-race

(Asian-Asian, White-White) blends and mixed-race (Asian-White) blends using female

face images. We randomly sample from CFD to generate 100 Asian-Asian, 100 White-

White and 100 Asian-White blends. Results similar to Figure 5B may also be obtained

using male face images.

Figure 5C;D;E: We randomly sample 60 pairs of Asian and White female faces

images from CFD and blend them in increments of 10%. Similar results to Figure 5C;D;E

may also be obtained using male face images.

Gender UiA Simulation: Analogous to how mixed-race blends are generated, we

randomly sample 60 pairs of male and female face images from CFD and blend them in

increments of 10%. Analogous to Figure 6 in the main text, the simulation of gender

categorization induced UiA can be seen in Figure 1.16.

1.F Re-analysis of Gender Categorization Data

See [78] for experimental details.

1.F.1 Rating Standardization and Averaging

Ratings are preprocessed by standardizing and averaging in the same manner as

previously described in Section 21.C.2.

1.F.2 Evaluating Statistical Typicality

Statistical typicality is evaluated as described in Section 1.E, except actual experi-

mental stimuli [78] are used instead of CFD face images [60].
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Figure 1.16. Simulation: UiA due to bimodality in the gender-informative subspace.

A. The empirical distribution of male and female faces [60] projected into the gender-

informative subspace is a mixture of two approximately normal distributions. Crosses

(x): mean locations of face images (60 total) for each % of blend, i.e. 1: 100% male and

0% female, . . ., 11: 0% male and 100% female. B. Model-predicted statistical typicality

for face images as a function of % female blend in the original/full face space. C. Model-

predicted statistical typicality for face images in the gender-informative subspace. D.

Model-predicted statistical typicality for face images as a function of % female blend in a

random 1-d subspace. Error bars in B, C, D are s.e.m over simulated samples.
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Figure 1.17. Model-predicted statistical typicality for face images as a function of %

female blend in the original/full face space using covariance structure d′
instead of d also

shows BiA, though the scale is different from the otherwise analogous Figure 1.16B. Error

bars: s.e.m over simulated samples.

1.G UiA: Familiar Faces

A UiA effect has also been observed [35] when two familiar faces are blended.

Here, we discuss how this effect can be captured within the framework proposed. We

use a simple abstract model that captures important features of the face distribution. We

state the model below.

1.G.1 Generative Model

We assume that humans internally represent each face x = (x1, . . . ,xd) ∈ Rd
as

generated from a mixture of Gaussians, whereby the components can either correspond

to well-known faces { fi} (assume K of these) or demographic subgroups {hr} (assume G
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Figure 1.18. Statistical typicality evaluated in a random 1-d subspace shows BiA (as in

the full space). Error bars: s.e.m over simulated samples.

of these, e.g. gender, race),

X ∼
|K|

∑
k=1

pk fk(x)+(1−
|K|

∑
k=1

pk)g(x), (1.3)

g(x) =
|G|

∑
r=1

qrhr(x), (1.4)

where hr(x) = N (x; µr,Σr), fk(x) = N (x; µk,Σk) and ∑
|K|
k=1 pk << 1 as the number of

known faces should be much fewer than unknown faces. We assume that the distributions

of the mixture components hr differ only in a small number of dimensions, 1, . . . ,drace

and are identical on the other d
other

:= d − drace dimensions. Specifically, we assume

µr,drace+1:d = 0 ∈ Rd
other and

Σr =

σ2
r 1drace×drace 0

0 σ2
01d

other
×d

other

 , (1.5)
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where 1n×n is an identity matrix of dimensions n×n. For simplicity, we assume |G|= 2

and set µ1 =−µ2 = µ , where µ1:drace = [µ, . . . ,µ] ∈ Rdrace
. We also set the prior/mixture

probability distribution q to be uniform.

Approximation

Note that since the statistics of hr differ only in a small number of dimensions

drace << d, the mixture g(x) =∑
|G|
r=1 qrhr(x) is well approximated by g̃(x) =N (x; µ0,Σ0),

where µ0 = 0 ∈Rd
and Σ0 = σ2

01n×n and can be assumed to be used to perform inference

except when demographic features bear relevance, thus simplifying computations and

representation.

Salient feature representation

The mixture components { fk} represent known / recognizable faces, where the

variance in each component corresponds to natural variability in a face, such as variations

in pose or expressions. For each face k, we assume subjects encode/represent only s

distinctive features (relative to the assumed generative distribution) as described in the

previous section, denoted by ik1, . . . , i
k
s (the variance along these dimensions is denoted

as σ2
sal
) and assume the same statistics along other dimensions as g̃(x), the approximate,

assumed generative distribution for a generic, unfamiliar face.

1.G.2 Results

In [35], participants from Netherlands and New-Zealand rated blends of local

celebrities (people famous in one country but not the other). Blends of unknown celebrities

were rated as more attractive than the “parent” face images (classic BiA), while blends of

local celebrities were rated as less attractive relative to the constituent images: a reversal

of BiA. An example image (from [35]) depicting a morph of two recognizable faces can
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Figure 1.19. UiA in celebrity morphs. (left) Illustrative example image (from [35], not

actual stimuli) depicting a morph of two recognizable faces (here, Bush and Obama).

(middle) Blends of recognizable individuals are rated by human subjects as less attractive

than individual recognizable faces, while blends of stranger faces are rated as more

attractive (adapted from [35]). (right) Simulated statistical typicality has similar pattern

as data (middle). A constant offset of 6 was added to produce positive values. Simulation

parameters: d = 60, drace = 1, s = 2, σ0 = 1,σr = 0.5 and µ = 1, |K| = 50, σ
sal

= 0.2,
∑
|K|
k=1 pk = 0.05, all simulations in 2-d subspace, corresponding to a random subspace or a

distinctive feature subspace.

be seen in Figure 1.19 (left), while Figure 1.19 (middle) shows BiA and its reversal in data

from the study. Low statistical typicality of the blend in the distinctive feature subspace

(here 1-d) results in UiA. Simulations qualitatively capture this effect in Figure 1.19 (right).
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Chapter 2

Bringing Computer Vision Represen-
tations Closer to Human Psychologi-
cal Representations

2.1 Introduction

Face processing is essential to human social cognition, whether recognizing

individuals, identifying emotional states, or assessing social traits such as attractiveness

and trustworthiness. Having a computational account of how humans psychologically

represent faces is essential for developing and testing scientific hypotheses about human

face processing, and for developing machine learning and artificial intelligence systems

that either socially interact with humans (e.g. social robots) or mediate social interactions

among humans (e.g. dating apps and professional network websites)

An implicit assumption in the psychological study of human face processing is

the existence of a “face space” [124], a multidimensional vector space consisting of faces

whose vector coordinates correspond to perceived facial properties or features, and the

distance between faces determines their perceived similarity. Tools like Multidimensional

Scaling (MDS) [104] have been commonly used to leverage similarity judgments to map

(embed) faces into a common vector space representation; such representations have
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been used to infer mental representations so as to examine perceptual categorization

of race [62], to examine the differences in representation between adults and children

[74], and to show that faces rated more typical are located closer to the origin while

distinctive faces are farther from the origin [45]. Despite its broad use [15, 72, 74, 104, 121],

MDS suffers from several limitations. Notably, the mapping of faces into this embedding

space is abstract, making it difficult to interpret the features; it is non-invertible, offering

no easy way to visualize the face corresponding to an arbitrary point in the space; it

is non-generalizable, such that novel faces not used in the learning of the embedding

itself cannot be later projected into the space; it is impractical for assessing the true

dimensionality of the psychological face space, since training MDS-type algorithms are

extremely data-intense.

Separately, computer vision and machine learning techniques have been used to

learn to predict (or even manipulate) human judgment of different face attributes, e.g.

memorability [135, 50], trustworthiness, attractiveness, and other social impressions [111,

33, 96, 95]. However, these work typically do not relate the algorithmic representation of

faces to the human face representation, in particular making no attempt to relate distance

in the latent representation to human-reported dissimilarity between faces.

Here, we adopt a novel approach, by initializing the face vector space using

the latent coordinates of faces generated by different computer vision algorithms, then

linearly transforming that vector space such that Euclidean distance in that transformed

space recovers human-reported pairwise dissimilarity rating as well as possible – we

also include a regularization term that explicitly encourages efficient representation. The

computer vision algorithms we consider include the Active Appearance Model (AAM)

[13], VGG16 [107], and an abstract representation obtained through MDS. As we will

show, the AAM-based representation not only predicts human similarity judgements on
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Figure 2.1. A. Schematic of a trial from data collection. B, C: Low-similarity examples. D,

E: High-similarity examples. F. Histogram of empirical dissimilarity scores.

held-out data better than the other models as well as other humans who have assessed

similarity of the same face pairs, but also performs best in predicting human social trait

(e.g. trustworthiness, attractiveness) and affective judgments (e.g. happy, sad, angry).

Using the AAM-based representation, we then investigate several scientific ques-

tions, such as how many facial features are actually involved in human perception of how

faces differ from one another, whether features that differentiate demographic groups, in

particular race and gender, play an especially prominent role in dissimilarity judgments,

and whether similarity judgments utilize features that span the entire psychological

face space (or whether there are residual features that cannot be excavated using only

similarity judgments).

2.2 Results

We collected human similarity judgments on pairs of face images through Amazon

Mechanical Turk (restricted to participants based in the US). The data set [60] consists

of 595 neutral-expression face images that are gender- and race-balanced (see Methods).

Figure 2.1 shows example image pairs with high and low similarity scores. We find
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that low-similarity image pairs often differ in race or gender categories, as seen in both

low-similarity examples (B, C), while high-similarity pairs can agree on race and gender

(D), or not (E). This suggests that human similarity judgments both depend on facial

features distinguishing demographic categories and other more subtle structural features.

To model human face representation, we use computer vision models to specify

the initial vector space. We first consider AAM [13, 33, 123], which computes “shape

features”, (x,y) coordinates of landmarks that denote invariant parts of faces such as

contours of the eyes, eyebrows, nose, mouths, and “texture features”, which are (grayscale)

pixel values of each face image warped to have the shape (landmark locations) align with

those of the average face in the training dataset. We perform joint principal component

analysis (PCA) on the shape and texture features, and retain the first 70 components – as

shorthand, we refer to this original AAM space as X . We then linearly transform X so

that Euclidean distances between face images are as close to human dissimilarity scores

as possible – formally, this is known as metric learning (see Methods).

A simple way of doing metric learning is to linearly re-scale the importance of

each feature (basis vector) in X , i.e. humans may weigh different features differently

than the computer vision algorithm. However, it may be that humans actually utilize

a different set of features altogether. Formally, we enrich our model by allowing the

possibility that psychologically relevant features (basis vectors) are linear transformations

of the machine vision features (basis vectors), equivalent to first rotating the original

feature axes, followed by rescaling according to psychological importance in similarity

judgment – we denote this linear transformation W.

Additionally, we consider the possibility that humans are efficient in the number of

features used to represent faces, which we implement through a regularization term in the

objective function, by explicitly suppressing the number of basis vectors that significantly
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A B

Figure 2.2. A. Effect of regularization on AAM representation. B. Evaluation of various

representations; here VGG16 representations correspond to their trace regularized trans-

formed representations. A, B evaluated on validation data (train:validation:test=8:1:1).

contribute to perceptual dissimilarity. Specifically, we penalize the trace of W, or the sum

of the squared values of the scaling factors (see Methods). In addition, we also consider

two more common forms of regularization, based on penalizing the element-wise ℓ1 and

ℓ2 norms of the transformation matrix (see Methods), which have the undesirable effect of

penalizing not only the scaling factors but the amount of rotation allowed before scaling,

and not being especially effective at penalizing the scaling factors.

To compare how well different models can capture/predict human similarity

perception, we compute the correlation coefficient (c.c.) between model predicted ratings

and human dissimilarity scores on held-out face pairs. As a baseline comparison, the

average c.c. between one rater’s rating of an image pair and the average rating of the

remaining participants on the same image is 0.416. The original AAM representation

captures human similarity judgment reasonably well (rtest = 0.43), and is significantly

improved by the linear transformation without regularization (rtest = 0.532). Further

prediction improvement is obtained via all three forms of regularization (rtest = 0.543 in

all cases) on W, all of which prevent overfitting to training data.

In addition to AAM, we also use deep neural networks to initialize the face space
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(see Methods). We use VGG16 [107] trained on ImageNet (general object categorization),

the best known deep neural network representation for supporting a linear model of

human social trait judgement of faces [111]; we also include VGG16 trained on VGGFace2

(face recognition) [6]. Both of these neural networks achieve much worse performance

(untransformed: rVGG16: Imagenet

test = 0.1,rVGG16: VGGFace2test = 0.31;

transformed: rVGG16: Imagenet

test = 0.46,rVGG16: VGGFace2test = 0.53) than transformed AAM,

when only a dozen or so features are included, though they are substantially improved

from their untransformed representations; asymptotically, VGG16 trained on VGGFace2

does a comparable job to transformed AAM (Figure 2.2B) – it is interesting to note this

model cannot efficiently capture similarity judgments even under trace regularization.

We also include a version of MDS (see Methods) for comparison. MDS is comparable to

human c.c. with two features, though much worse than computer vision-based algorithms,

but its performance steadily deteriorates with more features, reflecting data insufficiency

in the absence of an image model.

It is notable that the regularized methods do much better than the c.c. between

human ratings on the same image. Human c.c. might have been expected to be a cap

on performance, but because human ratings both suffer from within-subject noise, and

inter-subject inconsistency, as well as other possible violations of a metric space (e.g.

violation of the triangle inequality), one person’s rating can be a rather poor predictor

of how others will rate the similarity of a face pair; our algorithm can outperform this

measure on a novel face because it knows where each face “lives” in the face space relative

to other faces, and thus extrapolate from neighboring faces’ data to estimate the distance

between two new data points.
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2.2.1 Dimensionality of Human Similarity Judgment Space.

Among the three types of regularization, we anticipate that trace regularization

should be particularly effective in finding a small set of features. Figure 2.2A shows that

this is indeed the case. Trace-regularized AAM achieves near-asymptotic performance

with many fewer features (most important features first, as indexed by the scaling factor

in the transformed space) than ℓ1- and ℓ2-regularized AAM. Using only the first 8 features

achieves nearly as good of dissimilarity prediction performance (r = 0.557) as using all

features (r = 0.561), while using the first 12 features (r = 0.561) is indistinguishable from

using all features. Due to the overall superiority of the trace-regularized AAM method in

capturing human similarity judgments, we primarily focus on this model in the remainder

of the paper (we also sometimes refer to it simply as transformed AAM).

2.2.2 Race- and Gender-Related Features in Human Similarity
Judgment.

Figure 2.3A shows synthetic faces generated along each of the first 8 features

of the transformed AAM space (ordered by descending value of their scaling factors).

Note that the scaling factor of a dimension is indicative of its perceptual importance

– Figure 2.3B shows that the average perceptual dissimilarity projected along each di-

mension (quantifying the average importance of this dimension relative to the overall

dissimilarity score) is monotonically related to the scaling factor. All the features appear

to be holistic rather than parts-based, and demographic information such as race and gen-

der is clearly present in the first few coordinates, although other more subtle, structural

features are also apparent among these featural dimensions. To assess the importance

of race- and gender-related features, we consider the average perceptual dissimilarity

between subgroups. We note the average model-predicted dissimilarity score between the

average male and female faces (0.50), between black and white faces (0.63), between Asian
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and black faces (0.57), between Asian and Hispanic faces (0.50), and between Asian and

white faces (0.57) are all quite substantial, given that the empirical dissimilarity scores

are normalized to have a maximal value of 1 and a minimal value of 0 (see Figure 2.1F for

histogram). To quantify this more precisely, we consider the 4D subspace of X spanned

by the axis that differentiates male and female faces (using linear-discriminant analysis,

or LDA), and the 3D LDA subspace that best linearly discriminates among the four racial

groups. We fit a linear transformation W within only this subspace – we find that the c.c.

between this model-predicted dissimilarity and human-reported dissimilarity on held-out

face pairs is r = 0.44, or 81% of the performance of using the full model. This indicates

race- and gender-informative features figure prominently but not exclusively in human

dissimilarity judgments. However, we note that this measure may be somewhat inflated,

as the trace regularization suppresses the importance of other features that might also be

good at differentiating individual faces but do not add much extra value – in the absence

of these race- and gender-informative features, those other features may be able to at

least partly make up for the lost capacity and thus achieve c.c. much higher than 19% of

the full model.

2.2.3 Face Space: Beyond Similarity Judgments

. Implicit in the concept of a similarity-based “face space” is that features important

for similarity judgments also support all other kinds of face-related processing [124, 125],

such as race and gender categorization, social trait perception, and affective judgments

[33]. Using linear modeling (LDA on categorical discrimination and linear regression on

continuous predictions), we can compare how well using only the similarity-relevant

features (first 8 dimensions of the transformed AAM, denoted as Z ) compares to the

original AAM space X , in performing other kinds of tasks. For comparison, we also

include VGG16 (trained on either ImageNet or VGGFace2), and MDS. We find that X is
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better or comparable to both deep neural nets and MDS on all tasks (Figure 2.4A: social

trait perception, Figure 2.4B: race and gender classification, Figure 2.4C: affect judgements).

Compared to X , Z does slightly worse on social trait perception, similarly on race and

slightly worse on gender, and considerably worse on all affective judgments except for

“surprise.” The general tendency of X doing slightly better than Z indicates that certain

features unimportant for similarity judgment play a significant role in supporting the

other face-based tasks, in particular affective judgments. These results suggest that, in

general, it is inadequate to use only similarity judgments to reconstruct the psychological

face space, if the goal is to study also other aspects of human face processing.

2.3 Methods

2.3.1 Data Collection

We collected human similarity judgments on pairs of face images through Amazon

Mechanical Turk. The stimuli were 595 neutral-expression face images from the Chicago

Face Database (CFD) [60], comprising 109 (East) Asian (57 female), 197 black (104 female),

108 Hispanic (56 female), and 181 white (90 female) faces. We randomly sampled pairs

of images to produce 23,400 unique pairs, which were rated by 682 raters to produce

138,533 ratings in total. Participants rated the similarity of a pair of face images on a

Likert scale from 1 (maximally dissimilar) to 9 (maximally similar); image presentation

order was randomized, and subjects rated each image pair twice to counter within-subject

variability [130, 112]. To identify non-attentive participants, we included a catch question,

where subjects had to indicate if two identical images were the same or not.
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2.3.2 Participant Inclusion/Exclusion Criteria

86 raters who failed the catch question were excluded. 4 participants who rated

far fewer pairs (< 30) than the other participants (> 200 pairs) were excluded. We

also excluded (15) participants whose c.c. of ratings versus other raters on the same

images were at least two standard deviations below population mean. We also excluded

(32) participants whose response entropy was at least two standard deviations below

population mean. Included in the analysis are 111,893 ratings from 551 participants on

22,500 unique pairs of images (comprising 12.73% of the total possible pairs).

2.3.3 Conversion of Similarity to Dissimilarity Measures

To relate similarity ratings to distances in the face space, we first convert similarity

into dissimilarity scores. Let sr
(i, j) denote the similarity rating for images i and j from

participant r; we convert it to dissimilarity as dr
(i, j) = 10− sr

(i, j). We then normalize it for

each participant r, d̃r
(i, j) =

dr
(i, j)−mini, j dr

(i, j)
maxi, j dr

(i, j)−mini, j dr
(i, j)

. For each image pair (i, j), we average the

normalized dissimilarity ratings to produce an average score d̄(i, j) = ∑r d̃r
(i, j). In the main

text, we simply refer to the average dissimilarity score as the dissimilarity score.

2.3.4 Computer Vision Representation: AAM

AAM is a well-established machine vision technique that reconstructs images

well, generates realistic synthetic faces [22], and appears to have neural relevance [9].

AAM consists of shape features, or the (x,y) coordinates of a set of consistently defined

landmarks (e.g. contours of eyes, noise, lips), and texture features, or the grayscale pixel

values of a warped version of the image after aligning the landmarks to the average

landmark locations across the data set. We train AAM using faces from both CFD and

2222 US adult face images from Google Images [1]. We use the free software Face++
1
to

1
https://www.faceplusplus.com
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Figure 2.3. Transformed AAM features. A. Synthetic faces along each of the first 8

features (largest eigenvalues of W). The stepsize in each direction, ∆, is constant, so that

every left/right face compared to the middle face evokes the same amount of perceptual

dissimilarity as predicted by the model. B. Scaling factors vs average model predicted

perceptual dissimilarities in trAAM along each dimension. C. Scaling factors vs c.c

between model predicted and actual dissimilarity scores on test data.
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labels 83 landmarks on each face. We apply combined PCA to all the shape and texture

features, yielding a 70-dimensional representation that captures 98% of the variance.

2.3.5 Computer Vision Representation: VGG16

VGG16 is a deep Convolution Neural Network (CNN) used for general object

recognition [107]. It has been trained using the Imagenet dataset containing 1000 cat-

egories of objects, totalling 1.3 million images [94, 19]. Once a face image used in our

similarity judgment task is fed into this network, we use the response in the penultimate

layer as the image’s initial representation. We also use the same architecture trained on

VGGFace2 [6] (face recognition). We then perform PCA on extracted features to reduce

dimensionality: we retain features capturing 98% of the variance in the CFD dataset

(Imagnet-100 PC’s, VGGFace2-66 PC’s).

2.3.6 Metric Learning

We assume human dissimilarity scores are noisy versions of f (xi,x j), where

f (xi,x j) = (xi −x j)
⊺W(xi −x j)+b, where W is constrained to be positive semidefinite

(PSD; i.e. non-negative eigenvalues) and b ≥ 0 is a constant offset (b has a fitted value of

0.47 in our main model, trace-regularized AAM). Since W is PSD, it can be diagonalized as

W = U⊺ΛU, where U is an orthogonal transformation and Λ = diag(λ1, . . . ,λn), where

λi ≥ 0 are the eigenvalues of W 2
. Constraining W to be a diagonal matrix means that

the new coordinate system consists of rescaling the original axes, but no rotations are

allowed. Allowing W to be any PSD matrix means the original basis vectors can be

rotated and reflected (U consists of the eigenvectors of W and specifies the directions of

the new basis vectors), and then multiplicatively scaled by the square root of the entries

2
Note that we’re actually modeling the Euclidean distance squared as the the dissimilarity score, as

we found this to be empirically better. We may interpret this as modeling a fixed transformation or ”link”

function of the dissimilarity score (specifically, (d̄(i, j)−b)0.5
) as the Euclidean distance. We experimented

with many other monotonic link functions but did not obtain better results, and will not discuss them here.
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of Λ (the eigenvalues of W) to arrive at the new basis vectors. Allowing W to have 0 as

an eigenvalue means that some featural dimensions in the transformed space are allowed

to shrink to nothing and thus play no role in perceived dissimilarities.

We then aim to minimize prediction error while regularizing the ℓ1 or ℓ2 norm of

W. To implement ℓ1 and ℓ2 regularization, we minimize the following objective function,

denoting x(i, j) = (xi −x j) and subject to W ⪰ 0, b ≥ 0,

min
W,b

∑
i, j
(d̄(i, j)−x⊺

(i, j)Wx(i, j)−b)2 +α ∥W∥p

where p = 1 corresponds to ℓ1 norm, and p = 2 corresponds to ℓ2 norm. No

regularization can be considered a special case (α = 0). This is a convex optimization

problem, and can be solved via semi-definite programming (we use CVX [30, 29]). We set

the value of the regularization coefficient α using line search and evaluation on held-out

validation data (choose α that gives the best dissimilarity prediction on the validation

set).

To find a small set of interpretable features, we need to suppress the dimensionality

of W (non-zero eigenvalues). ℓ1 and ℓ2 regularization are inappropriate because in the

former case, both the rotation (U) and the scaling (Λ) components are restricted, while in

the latter, the regularization term is not effective at encouraging the eigenvalues to go to

zero, ∥W∥2 =
√

tr(W⊺W) =
√

tr

(
(U⊺ΛU)(U⊺ΛU)

)
=
√

∑i λ 2
i . To reduce the number of

basis vectors (non-zero eigenvalues), we penalize the sum of the eigenvalues, or trace(Λ)

= trace(W), resulting in another convex optimization problem (subject to W ⪰ 0, b ≥ 0):

min
W,b

∑
i, j
(d̄(i, j)−x⊺

(i, j)Wx(i, j)−b)2 +λ trace(W) .

67



2.3.7 Multidimensional Scaling

We utilize a version of MDS known as classical MDS [121], which attempts to find

coordinates of points in an abstract multidimensional space, such that the inter-point

dissimilarities are well-preserved when modeled as Euclidean distances in this space.

Consider a graph G with faces images as nodes, and an edge exists between nodes i and j

with length d̄(i, j), if the training dataset contains the dissimilarity score for this pair. Since

MDS requires dissimilarities between every pair of images to learn a representation, we

estimate the missing distances (edges) as the shortest path (sum of edge lengths) between

two nodes in G [102]. Once all pairwise distances have been specified (or estimated), we

then run classical MDS to obtain coordinates for all the data points. We also implemented

alternative ways to estimate the missing pairwise distances, as well as variants of MDS,

but as they achieved poorer similarity prediction performance on held-out data, we will

not discuss them further.

2.4 Discussion

In this paper, we presented a novel way of modeling the psychological face space,

by first initializing it with a computer vision representation, then linearly transforming it

to reproduce human dissimilarity ratings of faces as well as possible. Methodologically,

while our broad approach is related to transfer learning [85, 81], we also presented a

novel regularization method, that allowed us to make a rather surprising scientific finding:

only the 8-12 most important facial features of our model are sufficient to achieve nearly

the capacity of the full model to model human face processing, suggesting that the

psychological face space may be rather low-dimensional.

By construction, our approach overcomes many of the critical limitations of a com-

mon approach in this field [15, 72, 74, 104, 121], namely MDS, by being more interpretable,
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Figure 2.4. A. Social trait prediction. B. Race and gender classification error. C. Emotion

ratings prediction. All error bars are SEM over 10-fold CV. Race and gender labels,

human ratings of social and emotion traits are from CFD [60]. n.s.: not significant at

α = 0.05,∗ : p < 0.05,∗∗ : p < 0.01,∗∗∗ : p < 0.001; one-sided, paired two-sample t-test.
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invertible, generalizable, and data efficient. In addition, we showed that while this method

is far better at modeling both dissimilarity judgments and human performance on other

face-based tasks (categorizing gender and race, assessing social traits, rating emotional

expressions), compared to MDS. However, using only the similarity-relevant features

does not work as well as also including the orthogonal features, especially for affective

judgments. This scientific finding is at odds with an implicit assumption about human face

representation in the psychology literature [124], which, by attempting to reconstructing

the full psychological face space using only pairwise similarity judgments, assumes that

features important for these judgments are also sufficient for all other face-based tasks.

Another interesting finding is that AAM provides a better initial representation

than convolutional deep neural networks trained on both object recognition and face

recognition, both for similarity judgments and for other human face-based tasks. We

find that VGG16 trained on face recognition (VGGFace2) comes the closest, but is highly

inefficient in terms of the number of features it needs to capture similarity judgments

(despite having the same trace regularization applied to both). An interesting line of future

research would be to consider various unsupervised learning variants of deep neural

nets, which may not only learn psychologically relevant features, but also incorporate a

decoder model that can generate synthetic images to help visualize/interpret the latent

feature space. In particular, adopting techniques that explicitly incorporate inductive

biases about shape and texture into the architecture seem promising [105, 73].
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