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ABSTRACT 

Liquid crystal (LC) phase transition dynamics can be used as a powerful tool to control the assembly of dispersed 
nanoparticles. Tailored mesogenic ligands can both enhance and tune particle dispersion in the liquid crystal phase to 
create liquid crystal nano-composites - a novel type of material. Soft nanocomposites have recently risen to prominence 
for their potential usage in a variety of industrial applications such as photovoltaics, photonic materials, and the liquid 
crystal laser. Our group has developed a novel phase-transition-templating process for the generation of micron-scale, 
vesicle-like nanoparticle shells stabilized by mesogenic ligand-ligand interactions. The mesogenic ligand’s flexible arm 
structure enhances ligand alignment with the local LC director, providing control over the dispersion and stabilization of 
nanoparticles in liquid crystal phases. In this paper we explore the capsule formation process in detail, generating QD-
based capsules over a surprisingly wide range of radii. We demonstrate that the initial nanoparticle concentration and 
cooling rate are important parameters influencing capsule size. By increasing particle concentration of nanoparticles and 
reducing the cooling rate we developed large shells up to 96±19 μm in diameter whereas decreasing concentration and 
increasing the cooling rate produces shells as small as 4±1 μm.  
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1. INTRODUCTION 

Quantum dots, luminescent semiconductor nanocrystals, have proven useful as building blocks for numerous applications 
including optoelectronic devices, drug-delivery systems, and biochemical sensors1-5. These nanocrystalline 
semiconductors are considered to be zero-dimensional materials and are commonly grown in an approximately spherical 
shape, 1-12 nm in diameter. These nanoscale dimensions give quantum dots unique size-tunable photonic properties when 
compared to the characteristics of the same material in bulk. Quantum dots absorb a fairly broad band of optical 
wavelengths, and will emit longer wavelengths in a lower energy but more defined emission band. The emitted 
wavelength range depends on the size of the quantum dot.  This conversion efficiency in the visible spectrum arises from 
quantum confinement effects, a decrease in the size of nanocrystal results in an increase in the spacing between energy 
levels.  
Closely packed assemblies of NPs can exhibit differing electronic, magnetic, and photonic properties6,7 when compared to 
those of isolated single particles. However controling particle spacing well requires a strategy. Van der Waals attractions 
between bare nanoparticles can make it very difficult to control dispersion and so ligands are commonly used to both 
enhance dispersion in different solvents and to tune assembly with a defined inter-particle spacing.  
Liquid crystal materials are ordered fluids characterized by their anisotropic properties and in this paper we focus on a 
strategy for particle assembly using the nematic liquid crystal phase. Molecules in the nematic phase have short-range 
orientational order, defined by a local director, c, and no positional order. Many nematic liquid crystal materials have the 
ability to respond to an applied electric field and switchable electronic displays represent their primary application. 
However, liquid crystal science intersects the boundaries between several fundamental scientific disciplines, and has 
already made some very important contributions to nanoscience and nanotechnology, in particular in field of 
nanocomposites. Surface functionalized nanoparticles can be dispersed in liquid crystal media, creating a hybrid material 
that uses self-assembly to control dispersion8,9. Stable dispersion over long timescales is an important goal for soft tunable 
photonic devices such as the liquid crystal laser. Recently, significant efforts have been devoted to developing hybrid 
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liquid crystal nano-composites10; materials that incorporate nanoparticles into a liquid crystal phase in a controlled 
fashion. By combining the switchable, fluid capabilities of liquid crystal materials with the added functionality of 
nanoparticles there is huge potential to create exciting multifunctional new systems. Recent studies have looked at 
creating stable dispersions of magnetic, metallic, and semiconductor particles in the smectic11,12, nematic13,14, 
columnar15,16 thermotropic phases17. The most promising of these studies include modification of surface ligands on the 
nanoparticle to achieve increased particle stability against precipitation18.  In other work the goal has been not to produce 
a uniform dispersion of isolated particles in liquid crystal, but to design a system in which the particles assemble in 
defined clusters or three-dimensional structures.  
A fundamental challenge for nanoscience is to find a way to organize different type of nanoparticles into defined 
distributions such as well dispersed distributions of particles in a fluid phase, closed-packed assemblies, and dynamic 
clusters of different particles. In a recent study, our lab developed a unique assembly method for mesogen-functionalized 
quantum dots using nematic liquid crystal as a host phase19. Mesogenic ligands can be used to control clustering19, 
dispersion stability21 and particle assembly at the liquid crystal transition22 . In this system a liquid-crystal like ligand was 
attached to the QD surface and these modified particles were dispersed in the isotopic phase of a nematic liquid crystal. 
The resulting composite system produced remarkable vesicle-like microcapsules (micro-shells) when the liquid crystal 
was cooled into the nematic phase. The shells are robust and can tolerate temperatures up to 110 oC, and extraction from 
the liquid crystal medium19.  
In this paper we explore the idea that the dynamic growth of the nematic phase can be used as a lengthscale - tunable 
template for the formation of defined nanoparticle-based structures such as the micro-shells. Typically a particle 
exhibiting homeotropic anchoring conditions (i.e. radially distributed ligands) will induce a local topological defect in the 
nematic phase with some elastic free energy cost.  This means that nanoparticles preferentially locate in the isotropic 
phase under biphasic conditions (i.e. at the nematic/isotropic transition point). In this study, we take advantage of this 
effect to look at the effects of the nematic/isotropic phase transition dynamics on assembled microstructure size.  
 

2. METHODS & MATERIALS 

We first synthesized a rod-like mesogenic ligand (Fig. 1c) with flexible attachment arm as previously reported18 and 
exchanged it onto the surface of CdSe/ZnS core/shell Quantum dots (QDs) (NN Labs, 6.2 nm diameter, abs. peak 620 
nm). The mesogenic ligand is expected to exhibit some alignment with the local liquid crystal director, acting as a 
surfactant between liquid crystal host and included nanoparticles and was previously shown to improve particle dispersion 
in the nematic phase at low concentrations18. The aim is to disperse these particles into the nematic liquid crystal (4-
cyano-4’-pentylbiphenyl, 5CB, Sigma Aldrich) (Fig. 1b) at varying concentrations (0.075 to 0.3 wt %). 
 

Figure 1. a) Schematic representation of non-mesogenic ODA ligands and modified surface of QDs with mesogenic and ODA ligands 
(LC-QDs), b) Molecular structure of 5CB (4-cyano-4’-pentylbiphenyl) and c) Molecular structure of the mesogenic ligand. 
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2.1 Ligand exchange 

For surface modification of Octadecylamine (ODA) quantum dots, we exchanged the ODA ligand with a mesogenic 
ligand (to produce LC-QDs). To carry out the exchange we start with 1ml ODA quantum dot (CdSe/ZnS nanocrystal) 
solution in toluene (5mg/ml) and add 1ml of acetone. After mixing free unreacted ligands are removed in a washing step 
by centrifugation at 7000 rpm for 10 mins.  The supernatant is discarded and the centrifuge step repeated to precipitate 
twice, each time resuspending the pellet in 1 mL acetone. After washing, the final precipitate is dissolved in 1ml 
chloroform and mixed with 1ml chloroform solution of mesogenic ligand for the ligand exchange. The mixture is heated 
to 40°C and stirred at 200 rpm for 5 hours. The mixture is then removed from the heating stage and left to cool to room 
temperature. Again we need to remove any free ligand so the washing process is repeated with ethyl acetate. We add 1ml 
ethyl acetate to the exchanged solution, centrifuge for 10min at 7000 rpm, and then wash twice by adding 1ml ethyl 
acetate. Finally, the precipitate is dissolved in 1ml toluene. We used 1H NMR to quantify the ligand exchange process.1H 
NMR was recorded for the purified nanocrystals using the method described in the following section. Data is collected 
before and after ligand exchange to verify the completion of the reaction. Then NMR results for the ODA-QD, and the 
newly ligand-exchanged LC-QDs are used to calculate the ratio of mesogenic ligand to the remaining ODA ligand on the 
particle surface. 

2.2 Liquid crystal/quantum dot mixtures 

After completing and quantifying the surface modification, we proceeded to prepare the nanocomposite by mix the hard 
material (LC-QDs) with the soft liquid crystal host. To achieve a good initial dispersion, we take a small quantity of LC-
QD in toluene and add this to 4’-pentyl’4-biphenylcarbonitrile (5CB) to produce mixtures at different LC-QD weight 
percentages (0.075 - 0.3 wt %). The LC/toluene/QD mixture is placed into a water bath sonicator and heated to 43oC 
(above the clearing point for 5CB). The mixture is sonicated for 3-8 hours to achieve a homogeneous dispersion of QDs in 
the isotropic LC phase and to evaporate excess toluene from the system. For low QD concentrations, below 0.1 wt %, the 
amount of added toluene will evaporate within 2 hours of sonication. If any toluene remains, it will lower the isotropic to 
nematic transition temperature, and if there is excess of toluene present, the nematic phase will no longer be present at 
room temperature. In general, it is important to test the transition temperature of the LC to ensure the solvent has been 
completely removed. Once dispersion is complete the mixture is removed from the sonicator and briefly stored in a 50oC 
oven. 
To prepare microscope slides for observation, glass slides and cover slips are first washed with soap and water then 
sonicated in a progression of acetone, methanol and ethanol for 20 minutes each. Finally, the glass is blown dry with ultra 
high purity nitrogen. Clean glass can be prepared with an alignment layer depending on the desired orientation of the LC. 
For planar alignment (in which LC molecules orient parallel to the glass surface), the glass is coated with a 1wt % 
aqueous PVA solution for 20 minutes, dried under a nitrogen stream and subsequently rubbed uni-directionally with 
velvet to induce an alignment direction for the LC molecules. The material is sandwiched between a standard glass slide 
and we tuned the thickness of cover slip by using a polymer spacer film.  
The composite material is transferred to a microscope slide at 50oC to maintain the isotropic phase then these slides are 
moved to a heated stage, to control the cooling rate of the slide. At 34.3°C, the transition from isotropic to nematic in the 
composites is present, similar to that for pure 5CB. QD dynamics can be observed using a Leica DM2500P upright 
microscope in epi-fluorescence mode, equipped with a Q-image Retiga camera. Luminescence of the QDs enables us to 
follow the movement and distribution of nanoparticles as a function of time. To provide controlled cooling in these 
experiments, we used a Linkham LTS350 hot stage with custom liquid nitrogen cooled-air attachment. This apparatus 
allowed us to observe the phase transition at 7°C/min, 15°C/min, 20°C/min, and 30°C/min.  
 

2.3 Nuclear magnetic resonance (NMR) spectroscopy 

Nuclear magnetic resonance spectroscopy (NMR) has emerged as an important tool for determining the chemical 
structure of organic molecules. NMR can quantitatively analyze a mixture of known compounds. There are varieties of 
NMR techniques that can be used for quantification of samples. For example; 1H NMR is the most common NMR 
experiment that provides information about the number of protons in a sample. We performed 1H NMR studies to 
quantify the ligand exchange process. Data was collected before and after ligand exchange to verify the completion of the 
reaction. NMR spectra for the ODA, the isolated mesogenic ligand, and the newly ligand-exchanged LC-QD were also 
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used to calculate the average ratio of mesogenic ligand to remaining ODA ligand on the particle surface. 
The mesogenic ligand was synthesized following our previous procedure19. NMR spectra were obtained in CDCl3 
solution on Agilent spectrometers, with 1H NMR spectra obtained at 500 MHz and referenced to the residual CDCl3 
singlet at 7.26 ppm. 13C NMR spectra were obtained at 125 MHz and referenced to the centerline of the residual CDCl3 
triplet at 77.1 ppm. Selected spectral data were also collected for commercial ODA–QD: 1H NMR (CDCl3, 500 MHz) δ ; 
13C NMR (CDCl3, 500 MHz) δ.  
As shown in figure 2: we used the triplet (CH2 next to the amine) to obtain the ratio of mesogen:ODA on the particle 
surface. The CH2 next to the amine of the free ligand has a chemical shift at 2.69 ppm in deuterated chloroform (we use 
deuterated solvents to prevent unwanted solvent signals). However, this chemical shift changes to 3.26 ppm when the 
amine is attached to the quantum dot. The CH2 next to the amine of the commercially available ODA-QD has a chemical 
shift of 2.36 ppm in CDCl3. Based on these values, after each ligand exchange, we obtained this ratio by measuring the 
peak height relative to a line drawn through the base of the peak.  

 

Figure 2. Overlaid 1H NMR spectrum (500 MHz in CDCl3) of mesogen functionalized QDs following ligand exchange at 0.4 wt. %. 

One important part of this study was to investigate how the particle ligand ratio (mesogen:ODA on the surface) impacted 
final structure formation. To probe this effect we attempted to create particles with different ligand ratios by carrying out 
the ligand exchange in the presence of different ligand concentrations (0.4 – 0.05 wt%). We calculated the ratios of bound 
ligands by manually integrating the 1H resonances of the triplets corresponding to the two H atoms attached to the amine-
adjacent carbon atom in commercially-obtained ODA–QDs and LC–QDs (after the exchange) (Figure 2). Each ratio 
shown in the table represents the average of four different ligand exchanges. 
Table 1 summarizes the results of this experiment. By increasing mesogen concentration during exchange, the final 
surface-bound ligand ratio decreased within our range of concentrations. Although we were able to coarsely tune the 
ligand ratio, the differences were found to have no measurable effect on the final diameter of the nano-assembled shells. 

Wt% Mesogen 0.4 0.2 0.1 0.05 

Mesogen : ODA 65:35 65:35 90:10 90:10 

 
Table 1. Different average ratios of mesogen:ODA ligand bound to the QD surface for ligand exchanges performed in the presence of 

varying mesogen concentrations as determined by manually integrated 1H NMR. 

 

3. RESULTS & DISCUSSION 

In the previous sections we described the synthesis of QDs functionalized with a mesogenic ligand (LC-QDs). These 
particles have been recently demonstrated to assemble into unique micro-capsules, or shells22, in which the rigid capsule 
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walls are composed of closely packed, ligand-stabilized QDs. The essential part of this process relies on the use of a 
nematic liquid crystal host phase. Particle assembly takes place by a Frank elasticity-induced sorting process at the 
isotropic to nematic phase transition19 when the system temperature falls below 34°C (Figure 3). As the initially well-
dispersed composite system starts to go through the isotropic to nematic phase transition, nucleation and growth of 
ordered nematic domains occurs. During the transition, QDs tend to remain in the isotropic phase, expelled by growing 
nematic domains. These QDs are eventually pushed together at the shrinking domain interface and under the right 
conditions will stabilize into spherical shells. 
 
 

 
 

Figure 3. Diagram representing the process of nanoparticle shell formation. Particles are pushed together as they sort into shrinking 
nematic domains at the phase transition. The mesogenic ligands induce a short range attraction between particles, stabilizing large-scale 

QD structures templated by the phase interface. 
 

In this paper we report that the size of the formed capsules can be controlled monotonically by changing two different 
factors, although the process seems relatively insensitive to the QD ligand ratio (Table 1).  First, we increased the 
concentration of QDs in the host liquid crystal phase and we observed a significant increase in capsule diameter when 
the system was cooled through the phase transition at 200°C/min. Figure 4 shows characteristic fluorescence microscopy 
images of microshells formed at different QD concentrations demonstrating the size dependance, we measured shell 
sizes using ImageJ and found that higher concentrations of QD lead to larger shells on average. This result may be due to 
a jamming effect, in which the shrinking isotropic domains arrest at a certain size where the ligands can interact and 
form a reversible bond. Such a process should be sensitive to particle concentration at the shrinking phase interface. 
 
 

 

Figure 4. Fluorescence microscopy images of QD shells formed at a cooling rate of 200°C/min and three different initial QD 
concentrations, (a) 0.075 wt%, (b) 0.15 wt%, (c) 0.3 wt %. 

Figure 5 shows representative images of microshells formed at different cooling rates, this time at a fixed particle 
concentration (0.3 wt%) (Figure 5). In this experiment, we observed that reducing the cooling rate through the liquid 

QDs 

LC (5CB) 

ISOTROPIC NEMATIC 
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crystal phase transition resulted in a significant size increase and we were able to form shells of very large size, up to 96 μm in diameter, as shown in Figure 5a. We observed the smallest capsules to form at fast cooling rates studied 
(200°C/min) and the largest structures at the slowest cooling rate of 7°C/min. Our qualitative observations of nematic 
phase nucleation and growth at the transition point indicate that the relationship between capsule length-scale and system 
cooling rate is closely related to phase transition dynamics, but this hypothesis requires further investigation.  

 

 
 
Figure 5. Fluorescence microscopy images of QD shells formed at 0.3wt% at 5 different cooling rates, (a) 7°C/min, (b) 15°C/min, (c) 

20°C/min, (d) 30°C/min and (e) 200°C/min. 
 

4. CONCLUSION 

In previous work our group presented a new method to control the micro-scale assembly of nanoparticles using nematic 
liquid crystal as a host phase. For this purpose, we needed to modify the surface of the quantum dots with a mesogenic 
ligand. This step increased dispersion stabilization in the liquid crystal, while providing an attractive short-range 
interaction between particles. In this study, we explored the capsule formation process in more detail, including the effect 
of surface ligand ratios on microstructure formation.  We formed QD shells over a surprisingly wide range of radii and 
demonstrated that initial nanoparticle concentration and cooling rate are key parameters affecting microstructure 
morphology. Since the particle assembly on the nanoscale can be stabilized by ligand-ligand interactions we can also 
hypothesize that interparticle packing with the microstructures can be controlled by varying ligand design. In future we 
plan to investigate the effect of different ligand designs on shell size and are also interested in using different phase 
transitions to generate more complex 2D and 3D liquid crystal nano-assemblies. 
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