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Abstract
Boundary contraction and extension are two types of scene transformations that occur in memory. In extension, viewers 
extrapolate information beyond the edges of the image, whereas in contraction, viewers forget information near the edges. 
Recent work suggests that image composition influences the direction and magnitude of boundary transformation. We 
hypothesize that selective attention at encoding is an important driver of boundary transformation effects, selective attention 
to specific objects at encoding leading to boundary contraction. In this study, one group of participants (N = 36) memo-
rized 15 scenes while searching for targets, while a separate group (N = 36) just memorized the scenes. Both groups then 
drew the scenes from memory with as much object and spatial detail as they could remember. We asked online workers to 
provide ratings of boundary transformations in the drawings, as well as how many objects they contained and the precision 
of remembered object size and location. We found that search condition drawings showed significantly greater boundary 
contraction than drawings of the same scenes in the memorize condition. Search drawings were significantly more likely to 
contain target objects, and the likelihood to recall other objects in the scene decreased as a function of their distance from 
the target. These findings suggest that selective attention to a specific object due to a search task at encoding will lead to 
significant boundary contraction.

Keywords Boundary extension · Selective attention · Scene perception · Object affordances

Introduction

More than 30 years ago, Intraub and Richardson (1989) 
reported a consistent pattern of errors in memory for scene 
photographs where people remembered more details than 
were actually present in the original picture. Since then, 
this pattern of errors, dubbed "boundary extension," has 
been replicated in numerous studies (Candel et al., 2004; 
Chadwick et al., 2013; Chapman et al., 2005; Green et al., 
2019; Intraub et al., 2008; Kong et al., 2010; Lin et al., 
2022; Mathews & Mackintosh, 2004; McDunn et al., 2014; 
Munger & Multhaup, 2016; Park et al., 2007; Patel et al., 
2022; Seamon et al., 2002; Wan & Simons, 2004). In a 
subsequent study, Intraub et al. (1992) found a similar, yet 

inverse pattern of errors in memory—participants would 
sometimes remember the boundaries of wide-angle pictures 
as being more constricted than they originally were. Similar 
studies showed that contraction and extension are not fixed 
features of scene images but can be adjusted based on the 
viewing distance of single images or manipulating the image 
set (Chadwick et al., 2013; Intraub et al., 1992; McDunn 
et al., 2016; Ménétrier et al., 2018). Building on these stud-
ies, we test whether the task-induced distribution of attention 
during scene viewing contributes to the type of boundary 
transformation that occurs for an image in memory.

A recent resurgence of research on boundary transfor-
mations has begun to examine how different image proper-
ties influence boundary transformations in memory. Bain-
bridge and Baker (2020) tested more than 1,000 images 
in 2,000 participants and found that pictures of close-up, 
central objects tend to elicit extension, while far-away 
image viewpoints of scenes with distributed objects tend 
to elicit contraction. This suggests that the distance of the 
image viewpoint focusing on a single object or an entire 
scene determines whether scene contraction or extension 
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occurs in memory (Hafri et al., 2022). Going further, Park 
et al. (2021) tested participants on a set of stimuli that 
varied in both the viewpoint distance and the number of 
objects in each environment. They reported that the dis-
tance transition point at which participants reliably expe-
rienced neither contraction nor extension in memory var-
ied by the objects present in the scene. Scenes populated 
with many small and manipulable objects elicited closer 
transition points in memory, indicating a bias towards 
contraction, but scenes that contained only a few, large, 
and space-defining objects, like tables and bookshelves, 
elicited farther transition points in memory. These find-
ings suggest that if participants were focusing on an object 
present in the scene, their memory would be biased to 
the best viewpoint to process the object. Whereas if the 
participants were focusing on the scene as a whole, their 
memory would be biased to the best viewpoint to process 
the scene identity.

Consistent with the notion that object processing impacts 
the degree of boundary extension or contraction, emotional 
and semantic object properties can also drive bound-
ary transformations. For example, scenes with negatively 
valent objects, like weapons or graphic injuries, will limit 
the degree of extension and can even elicit significant con-
traction effects in memory (Christianson, 1984; Christianson 
& Loftus, 1987; Green et al., 2019; Ménétrier et al., 2013; 
Safer et al., 1998, 2002; Takarangi et al., 2016; Wonning, 
1994). This presumably occurs because high valence objects 
capture attention and focus image processing on a single 
object. Similarly, images with heterogenous object semantics 
elicit more contraction in memory, compared with scenes 
that contain the same amount of shared semantic label 
objects (M. Greene & Trivedi, 2022). This effect is most 
likely due to related objects being automatically attended 
together, leading to more distributed attention over the 
scene image (Mack & Eckstein, 2011; Nah & Geng, 2022; 
Nah et al., 2021; Wei et al., 2018). These results suggest 
that the objects participants attend to during perception is 
an important factor in determining the trend and degree of 
transformation.

Together, the literature suggests that image properties 
and object content both impact scene memory. One pos-
sible explanation for these differences is that the images 
may lead to systematic differences in how attention is dis-
tributed during scene encoding (Intraub et al., 2008). Fol-
lowing along the line of work done by Park et al. (2021), 
we hypothesized that instructing participants to find and 
encode a small object in a wide-angle scene may lead to 
a shift in memory towards boundary contraction because 
the target object is misremembered at a more preferential 
viewpoint for processing its identity (i.e., closer than it 
originally appeared). Likewise, instructing participants to 
process and encode the identity of the “scene” within the 

wide-angle image would lead to participants misremem-
bering the image to a viewpoint that was preferential for 
processing scene identity.

In this current study, we show two groups of participants 
the same scene images but ask them to either engage in 
target search, or simply memorize the image. We hypoth-
esize that those engaged in target search will focus attention 
primarily on the target object (Wu & Wolfe, 2022; Young 
& Hulleman, 2013; Yu et al., 2022), leading to a higher 
degree of boundary contraction in memory; in contrast, 
those engaged in scene memorization only will distribute 
attention more broadly, leading to less boundary contrac-
tion. The influence of image composition is kept constant 
across groups by using the same images, but the goals of 
the viewer are manipulated by task. After encoding, all par-
ticipants are given a surprise drawing task in which they are 
asked to draw as many of the previously seen scenes as pos-
sible. Their drawings were analyzed for the objects recalled, 
their drawn location and size, and the transformation of 
scene boundaries. Results revealed significant boundary 
contraction in drawings from participants who engaged in 
search, while drawings from the memorize condition showed 
equal rates of contraction and extension. Further analyses of 
boundary contracted search drawings revealed diminishing 
memory for objects as a function of distance from the target 
object, whereas the smaller amount of memorize drawings 
that exhibited contraction revealed diminishing memory for 
objects as a function of the distance from the center of the 
image. These findings provide evidence that boundary trans-
formations in memory are due to how attention is distributed 
amongst objects at encoding.

Method

Participants Thirty-six undergraduate students (26 females, 
mean age = 19.44 years, SD = 1.34, range: 18–23 years) 
participated in the search condition, and 36 different stu-
dents participated in the memorize condition (27 females, 
mean age = 19.94 years, SD = 1.67, range: 18–25 years). 
Students were recruited from the University of Califor-
nia, Davis, through the Sona research pool in exchange for 
research credit. Participants were native English speakers 
with normal or corrected vision. We also recruited online 
scorers to judge the drawings on a variety of metrics. Five-
hundred and seventy-nine scorers were collected from Ama-
zon Mechanical Turk and were monetarily compensated. 
One hundred and sixty-four scorers were collected from 
the SONA research pool to complete ratings on Testable 
for course credit. Each participant provided informed writ-
ten consent in accordance with the local ethics clearance as 
approved by the National Institutes of Health.
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Stimuli The 15 scene images used in this study were initially 
constructed for an experiment assessing the role of anchor 
objects on eye movements in visual search (Boettcher et al., 
2018). The stimulus images were created with ArchiCAD 
software version 18 (Graphisoft, Munich, Germany). All 
images were 1,280 wide by 960 pixels tall. Each scene con-
tained a visual search target (e.g., toilet paper). The scenes 
were selected so that there was no overlap in target objects 
across the scenes (Fig. 1), and each scene could be identified 
by a unique categorical identifier (i.e., there was only one 
kitchen in our stimulus set).

Apparatus Stimuli were presented on a ASUS MG279Q 
monitor with a 60-Hz refresh rate and a spatial resolution of 
1,920 × 1,200 pixels. Participants were seated 60 cm away 
from the screen and a computer running PsychoPy (Peirce, 
2007) controlled all stimulus presentations. Eye movements 
were tracked using an EyeLink-1000 desktop mount, sam-
pling from the right eye at 500 Hz (SR Research, Ontario, 
Canada).

Experimental design The visual search group was run 
before the memorize group so that scene exposure times 
from the search group could be used to constrain viewing 
time in the memorize group. All saw the same 15 computer-
generated scenes, and both groups completed one practice 
trial with a scene that was not from the main experimen-
tal set (Fig. 2). The search group was instructed to search 
for and click on a specific target. Each trial, first the target 
cue word appeared on the screen for 3 s, followed by a 1-s 

fixation cross, after which the stimulus image appeared on 
the screen. Once the image appeared, they were given up to 
10 seconds to click on the target with the computer mouse. 
They were also instructed to memorize the scene in as much 
detail as possible since their memory for the images would 
later be tested, though specific details of the memory test 
were not provided.

Participants were then asked to complete the Visual Vivid 
Imagery Questionnaire (VVIQ), which contains questions 
regarding their ability to visualize images (Marks, 1973). 
This task was used to limit rehearsal of the scenes and items 
in memory and an average of 4.56 minutes (SD = 1.48 min-
utes) passed from the end of the eye-tracking phase to the 
start of the drawing phase.

After the VVIQ, participants were instructed to draw as 
many scenes as they could recall, in no particular order and 
with no time limit, while their pen movements were tracked 
on a digital drawing pad. They were provided with 15 sheets 
of paper each with a 1,280 × 960 black frame and were 
instructed to draw every detail they could remember about 
the scene within the frame. They were told that the drawings 
would not be scored on the basis of their drawing ability 
but would be scored on how accurately they were as a rep-
resentation of the studied stimulus images. If they felt they 
could not accurately draw an item in the scene, they were 
instructed to try to draw the general shape, and they could 
label anything they felt was unclear. They could use color 
pencils to add any color they remembered.

In the memorize group, participants were instructed to 
memorize each scene in as much detail as possible as their 

Fig. 1  The 15 scene images studied by participants in the search and memorize conditions. In the search condition, participants were instructed 
to find the circled target object
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memory would be tested later on, and they saw each scene 
for the average time that the participants viewed the scene in 
the search experiment (M = 4.15s, SD = 0.96 s, MIN = 3.23 
s, MAX = 6.06 s). They were not instructed to search for 
the target or click the image and did not see the target word 
before each image but instead saw a blank screen for 3 s 
followed by a 1-s fixation cross. An average of 4.22 minutes 
(SD = 1.33 minutes) passed from the end of the eye-tracking 
phase to the start of the drawing phase.

Eye‑tracking analysis Fixations and saccades were defined 
from raw eye-tracking data using the Saccades package in 
R (von der Malsburg, 2015). Fixations could not be deter-
mined for one participant from each condition due to poor 
data quality. We included the drawings from these two par-
ticipants in analyses but discarded their eye movement data. 
We computed the percentage of the scene that was foveated 
by a participant by placing a circular filter with a 1 degree 
of visual angle radius centered on each fixation. We defined 
the percentage of the scene that was foveated in a trial as 
the summed area of pixels occupied by the circular filters 
divided by the total amount of pixels in the image (Castel-
hano et al., 2009).

Online scoring procedures

The 72 in-lab participants drew 601 scenes from mem-
ory. Three scorers, the first author and two undergradu-
ate research assistants, matched each drawing to a scene 

image. A drawing was considered to be matched to an 
image if two out of three scorers agreed. If the scorers 
believed that a participant drew the same stimuli image 
more than once, the first drawing of that scene was con-
sidered a match, and subsequent drawings of the same 
image were not included in analyses. Drawings that were 
not matched to an original image by the experimenters 
were not scored (86 out of 601 drawings, or 13.64% of 
drawings), leaving 515 drawings for analyses. Of the 86 
unmatched drawings, 32 were of the practice trial image. 
Three different measures were collected for each drawing. 
The code for these measures was adapted from Bainbridge 
et al. (2019).

Boundary transformation Forty-four scorers were recruited 
from the SONA research pool to provide ratings of boundary 
transformation for each drawing on Testable. Scorers were 
shown the drawing and the originally viewed stimulus image 
side by side on the screen. Scorers were asked whether the 
drawing was “closer, the same, or farther than the original 
photograph,” and were told to ignore any extra or missing 
objects in the drawing. Scorers responded on a 5-item scale: 
much closer, slightly closer, the same distance, slightly far-
ther, and much farther, with the additional option to indicate 
“can’t tell” if they believed the drawing to be incomprehensi-
ble. Seven scorers provided boundary ratings for each draw-
ing and boundary transformation scores for each drawing 
were calculated by the mean across the ratings normed on a 
scale of −1 (much farther) to +1 (much closer).

Fig. 2  In the search condition, participants (N = 36) were given target 
cues and had up to 10 seconds to find the cued objects in 15 scene 
images. In the memorize condition (N = 36), participants memorized 
each scene for the average amount of time it was viewed by partici-

pants in the search condition. After a delay, both groups of partici-
pants had an unlimited amount of time to draw the scenes from mem-
ory. (Color figure online)
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Object marking One hundred and twenty scorers were 
recruited from the UC Davis SONA research pool to com-
plete an online object marking task on Testable. The purpose 
of this task was to determine if an object from the origi-
nal image was included in the drawing or not. Scorers were 
shown the original image with an object outlined in red 
using the LabelMe annotations presented next to a drawing. 
Scorers were asked to indicate if the outlined object was 
included on the drawing. Scores were collected from three 
participants per object and an object was determined to be 
in the drawing if at least two out of three participants agreed 
that it was present.

All objects in the stimulus images were segmented using 
LabelMe, an online object annotation tool (Russell et al., 
2008). There were 360 objects in the stimulus set and each 
image contained 24 objects on average (SD = 16.99, min = 
8, max = 83). Objects were “nameable, separable, and visu-
ally distinct items” (Bainbridge et al., 2021, p. ). If multiple 
objects of the same type were touching, these objects were 
grouped together and given a plural label (e.g., “shampoos”). 
Object parts (e.g., “tire” on truck) were not segmented, but 
if an object was visually distinct and could be defined as a 
separate semantic label it was segmented separately (i.e.. 
decorative “pillow” on a couch). Background segmenta-
tions (“grass,” “trees,” “floor,” “walls,” “ceiling”) were not 
included in analyses (Bainbridge et al., 2019).

Object location and size Five-hundred and seventy-nine 
scorers were recruited on Amazon Mechanical Turk to com-
plete an online object location task. The purpose of this task 
was to quantify the location and size of drawn objects. Only 
objects that had been determined to be present in the draw-
ing by the object marking task were scored in this task. Scor-
ers were shown an original image with an object outlined in 
red next to a drawing and asked to place and resize an ellipse 
around the same object in the drawing. Three scorers were 
asked to locate each object of interest in a drawing. Object 
location was calculated as the median centroid of the ellip-
ses across the responses. Object size was calculated as the 
median radii of the ellipses across responses.

Results

Object‑based attention elicits more boundary 
contraction

The main question of this study was whether the patterns 
of object-based attention used in search would elicit con-
traction effects in memory above the rate elicited by the 
image alone. To investigate this, we had an experimentally 
naïve group of online scorers rate the degree of boundary 
transformation in the search and memorize drawings. We 

visualized what percentage of drawings from each condition 
showed either boundary contraction or extension (Fig. 3). 
To start, we found that a majority of search drawings had 
contracted scene boundaries. On average, 62.29% of Search 
drawings showed boundary contraction, while only 30.73% 
showed boundary extension. The results from a chi-square 
test of independence confirmed that the difference between 
proportions was significant, χ2(1, N = 283) = 28.0, p < 
.001. Comparatively, only 44.67% of the drawings from the 
Memorize condition showed boundary contraction, with 
47.95% of drawings showing boundary extension, and the 
chi-square test revealed no significant difference between the 
proportions, χ2(1, N = 232) = 0.04, p > .5. The transforma-
tions ratings for the memorize drawings are consistent with 
the findings of Bainbridge and Baker (2021), who revealed 
that scene images have a fairly equal probability of eliciting 
either contraction or extension. To assess the reliability of 
the ratings we conducted a split-half analysis across 1,000 
iterations and applied the Spearman–Brown correction for-
mula (Fig. 3). Boundary transformation ratings were highly 
consistent across raters’ responses for both the search (⍴* 
= 0.64; p < .001) and memorize drawings (⍴* = 0.51; p < 
.001). We then looked at the difference in boundary con-
traction scores averaged by scene image across conditions 
(Fig. 3b). This analysis allows us to directly compare the 
effect of the task on memory, as both groups of participants 
studied the scenes for roughly the same amount of time 
(Fig. 4). Results from a non-parametric Wilcoxon rank-sums 
test (WRST) confirmed that scene images were significantly 
more likely to elicit boundary contraction in memory when 
participants engaged in target search during the encoding 
period (N = 15, Z = 2.32, p = .020). Taken together, these 
findings suggest that object-based attention during scene 
perception can elicit boundary contraction in memory.

Smaller spread of attention in Search leads 
to less memory for other objects

Participants exhibited strong task-based influences on their 
eye movements during study (Fig. 5). Participants in the 
memorize condition foveated 4.41% of each scene (SD = 
0.47) on average and exhibited a strong bias to fixate the 
center of the image. Participants in the search condition 
foveated significantly less of each scene on average (N = 15, 
Z = 3.3, p < .001), with their fixations covering only 3.22% 
of the scene on average (SD = 0.89). As expected, partici-
pants in the search condition spent significantly more time 
on the target object (Z = 5.78, p < .001), fixating it 18.97% 
(SD = 0.09) of trial time on average, while participants in 
the memorize condition spent only 3.58% (SD = 0.02) of the 
trial time looking at the target (from the search condition).

Given that the target object was more likely to be fixed 
during encoding in the search condition compared with the 
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memorize condition, we next looked to confirm that target 
objects would be more likely to be included in drawings 
from the search group (Fig. 6b). To do so, we showed a 
separate group of online workers each drawing alongside the 
original stimulus image and asked them to make a judgment 
as to whether an outlined object on the image was present in 
the drawing. From these judgments, we found that the target 
object was present in 80.36% (SD = 16.09%) of search draw-
ings. In comparison, drawings from the memorize group, 
contained the target only 19.39% (SD = 18.85%) of the time 
(N = 15, Z = 4.50, p < .001), although they included signifi-
cantly more of the nontarget objects in the scene (memorize: 
M = 29.58%; search: M = 18.21%; WRST: N = 15, Z = 2.76, 
p < .006).

Distance from the search target predicts memory 
for nontarget objects

We next tested whether objects included in drawings from 
each group could be predicted by the location of the target, 
or the center of the image. Finding that objects in the search 
condition are more likely to be drawn if they are close to 
the target would be consistent with a model of memory rep-
resentations contracting around attended objects (Fig. 6c). 
We fit a logistic regression model on the recall data from 
drawings done in the search condition (N = 6,165 objects 
[1,115 objects drawn / 5,050 objects not drawn]). Proxim-
ity to the target was defined as the distance from the center 
of the object segmentation to the center of the target object 

Fig. 3  (Left) Histograms of boundary transformations in the memory 
drawings by condition. On average, 62.3% of drawings in the search 
condition showed boundary contraction, a significantly greater pro-
portion than the 37.7% that showed extension. Only 44.7% of draw-
ings in the memorize condition showed contraction, while 48.0% 
showed extension, and there was no significant difference between the 
proportions. (Right) Results of the split-half consistency analyses for 

each condition. Seven different raters scored the amount of boundary 
transformation in each drawing. Each set of ratings was split in half, 
and we calculated the correlation between the average transformation 
score of each half. The gray line shows the other half of ratings sorted 
randomly. For both conditions, ratings between groups were highly 
similar and significantly correlated. (Color figure online)
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segmentation, z-scored across objects. We found that prox-
imity to the target object significantly predicted whether 
an object would be included in the memory drawing (β0 = 
−1.51, CI [−1.58, −1.45], Z = −45.61, p < .001; target prox-
imity: β = 0.11, CI [0.05, 0.18], Z = 3.33, p = .001). These 
findings suggest that participants from the Search condi-
tion may have maintained a representation of the scene in 
memory that was focused around the target object.

For the memorize drawings (N = 5,782 objects [1,717 
drawn / 4,065 not drawn]), we found that proximity to 
the target was negatively correlated with a likelihood to 
include the object in the drawing (β0 = −0.87, CI [−0.93, 
−0.82], Z = −30.01, p < .001; target proximity: β = −0.18, 
CI [−0.24, 0.12], Z = −6.07, p < .001); proximity to the 
center of the image was positively correlated with the 
object being drawn (center proximity: β = 0.16, CI [0.10, 

Fig. 4  a Figure showing how the spread of attention at encoding can 
influence boundary transformations. The orange box is the spread 
of attention, and the black box is what the participant remembers of 
the scene. When the spread of attention is narrow, boundaries could 
extend beyond the target region in memory, but because the target is 
a relatively small proportion of the image, a majority of the scene is 
forgotten. b Plot of the average boundary transformation rating across 
drawings by image. Each gray line represents one of the 15 scene 
images. Error bars represent the standard error of the mean. Draw-

ings of scenes done in the search condition showed significantly more 
boundary contraction on average. c Example drawings of the scenes 
that elicited the most boundary contraction and boundary extension 
for the search (left) and memorize (right) conditions. For drawings 
with the most contraction (top), the colored outlines on the images 
show how much of the scene the participant recalled. For drawings 
with the most extension, the colored outlines on the drawings show 
the boundaries of the studied image. Area outside of the boundaries is 
what was extended in memory. (Color figure online)
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0.22], Z = 5.46, p < .001). These results likely reflect the 
fact that participants in the Memorize condition were more 
likely to fixate and remember information near the center 
of the image (Fig. 6d). Target objects were placed around 
the periphery of the scene images, which could explain the 
negative relationship between target proximity and likeli-
hood of being drawn.

Additionally, drawings from both conditions showed a 
tendency to include large, space-defining objects. Results 
of a logistic regression further confirmed that object 
memory was significantly predicted by both object size (n 
= 12,230 objects [3,055 drawn / 9,175 not drawn]; β0 = 
−0.87, CI [−0.93, −0.81], Z = −29.60, p < .001; size: β = 
0.41, CI [0.35,0.47], Z = 12.90, p < .001) and the search 
condition (β = −0.52, CI [−0.61, −0.44], Z = −12.05, p 
< .001). The interaction between size and condition was 
also significant in the model (β = 0.10, CI [0.01, 0.19], Z = 
2.28, p = .022). Looking at a plot of the model fit (Fig. 6e) 
we see that memorize drawings show a stronger likelihood 
of including objects that fall within the first five standard 
deviations of mean object size. The interaction between 
object size and condition occurs as object size becomes 
greater than five standards above the mean, when search 
drawings start to show a greater likelihood of drawing the 
object from memory.

Contraction increases the size that target 
and non‑target objects are drawn

The drawings also provided some insight into how par-
ticipants in the search represented the targets’ size and 
location in memory. We asked a group of online workers 
to provide judgements as to an object's height and width by 
asking them to draw an ellipse around each object in each 
drawing. We then defined the height and width of a drawn 
object as the median radii from a set of three judgements. 
From these judgments, we found that participants in the 
search condition consistently drew the target objects from 
memory as wider (M = 4.55% wider, SD = 2.18% wider) 
and taller (M = 5.87% taller, SD = 1.76% taller) than they 
originally appeared. A paired-sample signed-rank test of 
the ellipse size between target objects of the images and 
target objects in the search drawings confirmed that target 
objects were drawn significantly larger than portrayed in 
the stimuli images (N = 15, Z = 3.30, p = .001). Nontarget 
objects in search drawings were drawn 3.84% wider (SD = 
1.97%) and 4.94% taller (SD = 2.36%), a smaller increase 
in size than that shown for target objects. However, the dif-
ferences in drawn width or height between target and non-
target were not significant (width: Z = 0.5, p > .5; width: 

Fig. 5  Heatmaps of the average fixation density across participants in 
the search and memorize conditions. Heatmaps are scaled to a range 
of 0 to 1. Examples for 3 of the 15 scenes are shown here, with the 
target object circled in white and labeled by the target cue. Heatmaps 

show the general tendency for participants in the Search condition to 
spend more of the trial fixating the target object, while participants in 
the Memorize condition tended to show a strong center bias in their 
eye movements. (Color figure online)
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Z = 1.14, p > .5), suggesting that the increase in target 
object size may be mostly due to the contraction effect.

Memorize drawings that included the target object also 
showed a significant tendency to overestimate the target’s 
size (wider: M = 2.14%, SD = 1.94%; taller: M = 2.84%, 
SD = 2.02%). However, results from paired sample signed-
rank tests of the average increase in target height and width 
between conditions confirmed that targets were drawn as sig-
nificantly taller and wider in memory representations from 
the Search condition compared with those from the memo-
rize condition (taller: N = 14, Z = 2.44, p = .015; wider: 
N = 14, Z = 3.63, p < .001 [we excluded one scene from 
this analysis as no drawings from the memorize condition 
of this scene included the target object]). This result points 
to the idea that when memory representations for a scene 
are contracted, objects tend to be remembered as larger (or 

closer) than they originally appeared (Kirsch et al., 2018). 
The finding that target objects were drawn as even larger in 
search drawings compared with memorize drawings lends 
support to the idea that these drawings represent memories 
where the boundaries were significantly contracted around 
the target object.

The ellipse judgements provided by the online raters also 
provided a metric for measuring whether participants had 
accurate memory for the objects’ locations throughout the 
scene (Fig. 7). For this analysis we defined object location 
as the median centroid from a set of three ellipse judgments. 
Participants in the search condition drew the target objects 
close to where they appeared in the stimulus image, with 
target objects centroids displaced on average by 10.74% 
(SD = 4.28%) of the scene overall in the x-direction, and by 
12.40% (SD = 4.73%) in the y-direction. A paired-sample 

Fig. 6  a. Plot of the proportion of trial time spent fixating the tar-
get object. Participants in the search condition spent a significantly 
greater proportion of trial time fixating the target. b. Plot of the pro-
portion of drawings that included the target object. A significantly 
greater proportion of search drawings contained the target object. 
Each gray line represents one of the 15 scene images. Error bars rep-
resent the standard error of the mean. c. Regression line indicating 

the probability of recalling an object in the Search condition by its 
proximity to the target object. d. Regression line indicating the proba-
bility of recalling an object in the Memorize condition by its proxim-
ity to the image center. e. Regression lines indicating the probability 
of recalling an object by its size and condition. Shaded error bars are 
the confidence interval bootstrapped across 1,000 iterations. (Color 
figure online)
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signed-rank test found that there was no significant differ-
ence in where the object centroid was located on the x-axis 
compared with where it was drawn (N = 15, Z = 0.97, p > 
.1). A paired-sample signed-rank test of the drawn and real 
target centroid location on the y-axis revealed that there was 
some significant displacement along that axis (N = 15, Z = 
2.22, p = .03). Target objects were displaced slightly more in 
the memorize drawings (x-axis: M = 12.51%, SD = 8.71%, 
y-axis: M = 16.05%, SD = 9.03%), although results from 
paired-sample signed-rank tests found that this difference 
in x- and y-axes displacement between conditions was not 
significant (x-axis: N = 14, Z = 0.46, p >.1; y-axis: N = 14, z 
= 1.10, p > .1). The significant degree of displacement along 
the y-axis for target object in the Search condition and the 
lack of significant displacement along the x-axis is likely due 
to there being more pixels along the x-axis in the stimulus 
images (the stimuli 1,280 pixels wide × 960 pixels tall). 
Therefore, we should not rule out that participants in the 

search condition had some displacement overall for where 
the target object was located. However, the changes in loca-
tion could be seen as slight compared with the magnitude of 
increase in size in memory for target objects.

Discussion

This study sought to provide insight into how scene mem-
ory is shaped by selective attention at encoding. Specifi-
cally, we looked to see if instructing viewers to constrain 
spatial attention to target objects through visual search 
would impact the magnitude and trend of transformation 
effects. We hypothesized that the tightly constrained focus 
of attention needed to efficiently select and recognize tar-
gets would lead to significant boundary contraction in 
memory. Consistent with our hypothesis, we found a high 
rate of boundary contraction in drawings from participants 

Fig. 7  (Top left) The mean height and width difference between 
objects of the different conditions and objects in the original image. 
(Top right) The mean x-axis and y-axis distance between object cen-
troids of the different conditions and object centroids in the original 

image. Each gray line represents one of the 15 scene images. Error 
bars represent the standard error of the mean. (Bottom) Example 
maps of the average ellipse encompassing the target objects by condi-
tion. Target objects are noted above the scenes. (Color figure online)
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who engaged in search, above the rate reported in pre-
vious studies (Bainbridge & Baker, 2020; M. Greene & 
Trivedi, 2022; Hafri et al., 2022; Lin et al., 2022; Park 
et al., 2021). Further, we found that a group of participants 
who viewed the same scenes for roughly the same amount 
of time but only to memorize the scenes, had significantly 
less boundary contraction in their drawings, and in fact 
showed roughly equal rates of contraction and extension. 
Taken together these results suggest that focused attention 
on target objects during encoding can lead to those objects 
having an exaggerated role in memory, with boundaries 
contracting around them.

Many studies on boundary transformations manipulate 
the properties of the image stimuli, but rarely give explicit 
instructions on where to look. In this study, we instructed 
participants to look for specific targets in the search con-
dition and found an increased rate of contraction. Target 
objects were included in four-fifths of all search drawings 
and the likelihood of any other object being included was 
commensurate with their distance from the target. This sug-
gests that participants in the search condition centered their 
memories for the scene around the target object leading to 
scene contraction around the target object. However, with-
out specific features to guide looking behaviors, as in our 
memorize condition, viewers tend to show a center bias in 
their fixations on an image (Bindemann, 2010; Tatler, 2007). 
Although there was overall less contraction in the memo-
rize condition, contracted drawings showed diminishing 
memory for objects with increasing distance from the center 
of the image. This suggests that memory for the scene was 
constructed around information in the center of the image, 
although looking was likely highly idiosyncratic. Neverthe-
less, this overall explanation for our data are consistent with 
the earliest findings on boundary contraction which showed 
a loss of peripheral information near the image boundaries 
(Intraub et al., 1992).

Our work is not the first to reveal a significant relationship 
between attentional spread and boundary transformations 
in memory (Intraub et al., 2008). For example, manipulat-
ing participants to attend to image edges lessens boundary 
extension (Gagnier et al., 2013; McDunn et al., 2016). Simi-
larly, perceptual object grouping due to semantic relatedness 
spreads attention and leads to increased rates of extension 
in memory (M. Greene & Trivedi, 2022). Inversely, scenes 
with especially valent objects that capture and hold atten-
tion, elicit more boundary contraction (S. A. Christianson, 
1984; S.-Å. Christianson & Loftus, 1987; D. M. Green et al., 
2019; Ménétrier et al., 2018; Safer et al., 1998, 2002; Taka-
rangi et al., 2016; Wonning, 1994). These findings show that 
constraining attention to specific objects at encoding leads 
to increased rates of contraction, whereas distributing atten-
tion tends to lead towards greater extension. Our findings are 
consistent with these studies and provide further evidence 

that attention plays a pivotal role in eliciting boundary trans-
formations, even when attention is guided by task demands 
rather than image properties.

Our results also complement work showing that view-
ers have different rates of transformation in memory as a 
consequence of whether they attend to scene or object infor-
mation. For example, boundary extension does not occur 
without tangible (McDunn et al., 2014) or implied (Intraub 
et al., 1998) scene background information, and boundary 
contraction is more likely to occur for images of objects 
on blank backgrounds (Gottesman & Intraub, 2002; Intraub 
et al., 1998). Other work on memory for images of indi-
vidual objects show a pattern of conversion where remem-
bered objects are transformed towards their real-world size 
(Konkle & Oliva, 2007; Lin et al., 2022), possibly reflecting 
a closer preferred viewing distance for processing object 
information (Bainbridge & Baker, 2020; Chen et al., 2022; 
Park et al., 2021). Visual processing of objects and scenes 
operates through different functional pathways (Doshi & 
Konkle, 2023; Park et al., 2023) and this appears to deter-
mine the directionality of boundary transformation.

More work is needed to determine if attention contrib-
utes to other sources of memory transformation or not. For 
example, natural statistics of scene depth are strongly cor-
related with the trend and magnitude of transformation (Lin 
et al., 2022), with images with unnaturally deep depth of 
field having a higher likelihood of eliciting boundary con-
traction (Gandolfo et al., 2023). Likewise, judgements of 
perspective distance have been shown to be highly reliant 
on patterns of spatial frequency (Barron et al., 2022; Brady 
& Oliva, 2012; Lescroart et al., 2015; Oliva & Torralba, 
2001; Oliva et al., 2006). These results may be related to 
attentional effects, such as a strong central fixation bias, or 
they may be due solely to perceptual processes. A better 
understanding of the multiple possible mechanisms underly-
ing boundary transformations in memory will require further 
work on how the brain processes peripheral versus foveal, 
eccentric, object and scene information, such as that being 
done by Konkle and colleagues (Doshi & Konkle, 2023; 
Julian et al., 2016; Park et al., 2023). Discovering how the 
neurobiological properties of the visual system contribute 
to memory transforms will likely relate to the multisource 
account of boundary extension as a “filling-in” of expected 
information (Gottesman & Intraub, 2002; Intraub, 1997, 
2002, 2010; Intraub et al., 1992; Intraub & Berkowits, 1996; 
Maguire et al., 2016; Mullally et al., 2012; Park et al., 2007).

In summary, we believe that our results set-up an inter-
esting account for how selective attention in visual process-
ing can drive transformation effects. We found that requir-
ing the participants to focus attention in order to identify 
objects during encoding led memory drawings to show a 
higher rate of boundary contraction than found in those of 
participants not required to constrain attention. We propose 
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that attentional guidance in part determines the trend and 
magnitude of boundary transformation effects in memory, 
along with other competing factors, such as the distance and 
image contents. Together these findings contribute to the 
evolving discovery of what factors influence transformation 
effects in memory.
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