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ABSTRACT
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Just as the derivative of the argument éf the S matrix with respect

to energy gives a time interval for events, i1t is shown that the corresponding

derivative with respect to momentum transfer gives a space interval. This

space interval corresponds to the classical impact parameter in the classical

limit. More generally, it is suggested that these two derivatives may provide

a basis for introducing space-time intervals into physical theory.
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- I. INTRODUCTION

During the past few years there has been considerable interest in the
possibllity of replacing the ordinary dynamical description of physical
systems via a Schroedinger equation by an S-matrix théory. The principal
objection to the conventional theory is that it tells one rather more than
he wants'to know about a physical system; more precisely, it forces discussion
of ﬁhings that do not seem observable. One aspect of this problem that has
been recently discussed is the notion of time interval in an S-matrix theory.l
The idea was proposed that the S matrix, although superficially involving
only information about the state of a system over very long time intervals,
does in fact provide a kind of coarse—grained definition of time interval.
In a complex process; involving a seqpenée of.operations, one can define a
sequence of time intervals only to the extent that the S matrix for the entire
event factors into a product of S matrices. When this is possible, a time
label can be defined that involves only S-matrix (i.e., on energy shell)
quantities. A dynamical principle may then be formulated from the S matrix

for describing the change with time of physical systems.
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It is natural}tp»ask whether any ana;ogous considerations apply for
the definifioﬁ‘of ﬁﬁe'spatial separétion of events in an S-matrix theory.
Such a description would evideﬁtly be "coarse grained," as was that for time
intervals, and'much;ﬁdré'réstriétive,than the}notidh of a space-time continuum
inherent in conventional field theory.

~ We shall see that a spatial separation for two interacting particles
may indeedvbe:defined inkterms of the partial @erivative of S with respect
to the scattering éngle; This quantity reduces to the classical impact
parameter in the limit that a classieal trajectory may be defined, and in
general provides a definitién for the impact parameter. In a manner analogous
~to that used for defining the time intefval for a seqngnce_of evgnts, this
impact_parameter:providgg a means of constructing a trajectory for a_particle
undergqing a sequence qf sgatteringse

~These, and the earlier considerations of time interval,_suggést that
.a:pomplete but cqarsengrained description of_space andvtime iptervals may be
deriyed;in S-matrix theory, rather than postulatedfmas in convgntionallfield

theory.
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IT. WAVEnPACKET DESCRIPTION OF THE SGATTERIRG
For simplicity of discussion we réstricf ourselﬁes.té the scattering
" of a simple spinless pérticle'by a massive scatterer located at the ingih of
a given coordinate system. jﬂore cOmplicated'and physically_inﬁerestiné ihtérf
actions wnul& seem to invelvé“comflieatien of detail rather than of principlé.
The interaction and its observation involve directing a wave packet toward the

scatterer at some initial time t = -T and observing it at some latervtime

0
T, as is iilustrated in Fig. 1. We suppose that at both times ’(eTG) :hﬁd T
the wave packet is,farjfxém the seﬁtterer. In the $pirit'of_s-ma£rix theory
we can assume that we know the wave function for the particle only at suchc
times th@t it is far from the scatterer. |

| The wave function of the incident pa:tie;e prior to interactioﬁ will
be of the form _ )

=3/2  i(pex - €_t)
#(x,t) = (2x) e ¥~ Flalx - xt) (1)

where p , Yo 0 and ep are, respectively, the initial momentum, velocity,
and energy of the particle. The wavespaeket:amplitude
o(z) = o(x,7,2) | (2

is 80 constructed that at t = O the packet is centered on the scatterer at

X=0 . More precisely, we write
| ‘/’daxg fe(x)|® = o. (3

The envelope G is assumed to bave a spatial extent chéracteriZed by a
length W . It is assumed to be "reasonably Smoethﬁ in the sense that 1ts

Fourier transform a(ﬁ)‘, in
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gl e e .
Gﬁ) IBZemfau) T (1)

.;is:éﬁaracéérizea'ﬁfié "yidth" Wl in momentum space, The width W is
”convenlently chosen large enough that spreading of the wave packet is |
xjnegllgible by the time it reaches the de‘l:ector.2 We shall also assume'that
'over the momentum 1nterval W the s matrlx, energy, and scatterlng ampll—
‘tude are very nearly constamt. I

The wavéffumcéiom {ijfmay,'with the assﬁmétions just madé,'bé mrittén
o : . y : S o i

(o) /2 J[ d ;K :e )

#(x,t) = a(x - p) . (5)
The momertum p is taken to be the mean momentum of the incident packet:
’ 2
p = J(-dzn 3 ]a(ﬁ = E)I;vlo o _ (6)

The complete wave function for the scattering event is then
: +o -}emt . :
Wx,t) = fd:n' v, (%) & a(x - p) » (7

. + - . ) -
Here W& is the steady-state wave function having the asymptotic form
o&°>

N - "A,\' |
v (x) = (2n) Ie + ex £(x, _,>5°'}3)J 5 : - (8)

as x - . The quantity f(k, %o%) is the amplitude ‘for ‘scattering from the
initial direction ﬁ to & final direction § . The relation of f +to the
S matrix is descrlbed by the equatlons

S}Eaﬁ = 5(x" - k) - em-a(en,f sR)Tﬁ,ﬁ ‘(9)

and
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To= - —p— f(x, &%), (10)

where

Pe e Jak (11)

The separation X between the packet and scatterer is certainly
ébservable, to within an accuracy of order W so long as X >> W . The
lower limit obtainable on W is determined from the p;operties of the inter-
action and the requirement of negligible spreading. .The guestion that
concerns us 1ls whether the asymptotic wave functions alone (or the S matrix)
permit one to describe the spatial separation of the particie and scattering
center during the interaction.

To investigate this, we first use Egs. (7) and (8) to write the

asymptotic scattered wave as

_3/2 i(nx-ent)
ﬁfsc(ﬁ)t) = (2n) ‘/'daﬁ ‘?"__'}'{——'— f(K': %°%) a(}i - g) ° (12)

The complex scattering amplitude may evidently be written in the form
£(x, £8) = Rk, 28) explix(s, £:8)] , (13)

where R and X are real.
Now, by our assumption that f varies little over the momentum

interval WT , We may take

€ (14)
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and

£V fn R 1i4-V X
~ 'p (8]

A A

f("‘": 2",@) = f(Py ?‘S'E) e P © e (15)
in the integrsnd in (12). Here

£ = K-2
and

— A A -
Ry = R(p, §°g)
| (16)

Xy = X(p, X-B) -

The factor exp(£~Vb 4n 30) in (15) ;gads to a distortion in the shape of
the scattered wave packet. This 1s not of interest to us now, so we suppose
it to be absorbed into the definition of the amplitude function a in Eq. (12).

The second factor, exp(i Q;V% XO) , leads to a displacement of the packet

and does concern us. Indeed, on inserting the expressions (14) and (15) into

(12), we find

_3/2 i(PX'ept)

— _e—-....___.__. Q‘A 4 - ¥ 5 .
wéc(é’t) B (gn) , X f(p, 2 2) Q[E(x' vOt) * V% XO] °
' ‘ (17)
Hereb Y = 3 Vo = V; € is the velocity of the incident particle.

For the validity of Eq. (17) we require that

2 2
V%v“ep(r + To) < ‘W 5

which are conditions placed on the wave packetoe
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To give Eq. (17) a physical interpretation, we introduce

u =

2?:1)
o>

as a variable, and write

axo_ N man axo
%X " Lo Fe T (G-22P) oon - (18)

It is a natural to call BXO/Bep a "time delay",

- aXO aargf
W S T Toe (19)
P 1Y
and to call
o X
D, = {-%50 —
~) T ~ ~ A A D u

(20)
4 fOana Oarg T .
= (% - %P P p ou.

a "space shift". It may be noted that RO is perpendicular to the incident

direction p .

L4

The wave-packet amplitude in Eq. (17) has then the form
G = G{%[X - volt - )1 + P»o} . (21)

If, for example, the scattering lies in the x - z plane of a rectangular
coordinate system, with ﬁ directed along the z axis, we may write this in

N

the notation of Eq. (2) as

G = G[DO, 0, X = vo(t - 'rd)] o (22)

Equation (22) has a direct physical interpretation. Particles

scattered into the direction % tend to be displaced off the z axis by a
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distance D, . -This is illustrated in Fig. 2, vhere a "classical” trajectory
is drawn. The displacement D. is seen in this case to correspond to the

classical impact parameter.

These considerations permit us to give a strictly quantum-mechanical

definition of the impact parameter for a collision. In addition, -we can

define a distance of closest approach as the vector

sin2 ), - (23)

= o(% cos & .
B = A3 2 2

D

where i‘ is a unit vector parallel to the x axis, © is the scattering

angle (cos © = %/15), and

X
p = 2 sin s ° 0
2 p du

(24)

no

sin 4
2 darg f

D du

The expression (19) is a direct generalization of the Wigner—Eisenbud5
time delay for scattering in pure elgenstates of the S matrix. The quantity

T, evidently corresponds to a delay in the arrival of the packet at the

d

detector. Its significance for the present considerations was discussed in
reference (1),

We see from Egs. (21) and (22) that a meaning can be given to the
term "spatial separation" of two interacting particles. In the next section

we give a different, and more direct, calculation of this gquantity.
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ITT. DIRECT CAILCUIATION OF POSITION OF THE WAVE PACKET
We discuss once again the same scattering event that was described in
See. II, but now calculate directly the center of mass of the packet.

If there were no scattering, the wave function (5) would describe the

packet motion. Its mean initial position at the time t = _TO -is then

§O° = jrdax X |¢(§,-TO)IE . (25)

In the absence of scattering, and at the time T , the mean position of the

packet is
%7 - J e g I % (26)

When scattering occurs we must use fhe wave function (7) to find the
packet location. At the time t = -To this is
_3 .
X, = de§ I\V(;g,-TO)I . | (e

Since (-TO) .was chosen as a time long before scattering occurred, we will

have
‘l’(g:'To) = v¢(,§?-TO) P)
or - (28)
_ (o]
5 < &

To find the position of the scatféred wave packet at time T for
those particles scattered into the direction g ; we introduce a projection
operator A(%) onto those‘plane-wave states éorresponding ‘to momentum vectors
parallel to 2 and lying in the small increment 63(%) of solid angle. The

required mean coordinate of the wave packet is then
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x( T) Ll % J’ d5x §| A(%) : w(?& T)IE, PR I T S (29)

where

The displacement due to séatterimgiis = & -~ 10T e

il

X [X(T) - %) - X(T) - £,°1

- KT - £() (3
It will be convenient and will involve no serious loss of generality to =~
suppose that x is so directed that the waves scattered to the detector do
znot overlap the nonscattered waves in the inéidént packet°

" The Qhanﬁitfé59(27)‘aﬁdf(ég)“db hot*of:céﬁrséfékhéﬁs£*the"éverages
that may be evaluated for a deséription of the 'Barticles orbit." Foér exanple,
hlgher moments may also be found by the method descrlbed hereo .

To calculate the expressions (?5) and (26), we shall use Eq. (5) for
#(x;ty. For the expression’(29) wé shall rind it convenient to write WV(x,T)

in the formA
i(g"ex ~€, T) =
CWxT = () 5/2f n'f % e S -2, (%)

where 8, ~ 1is the S-matrix element (9).

~e A

Let us first evaluate %o(T) , Eq‘;.‘(‘26)° Using Eq. (5), we obtain

-121)05‘ \ R TR

X (T) (2ﬁ) 3_]’ x x_[— 5& dBK exp

- *‘J Lo . P, . .
Xa _(,*sl - 2) _a(:!gg -p) . - (.35)

SR
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If we define
—_ 1

Ky — 5' t 54
and (34)

. 1

13 K+« 352,
we may write

1

in the integrand of Eq. (33%). Then, after performing a partial integration,

we find

1(k, ~k_)ex ]
?\(.O(T) = fd3x '[dBKl d5R2 li(eﬂ)"B e .K2 R1 5}

-12+9, e T
- [e 4 KK][J(E_

L
ol
ol

4 - p)alK +

X971 Ve

£- .%)]
. ' G
= J(dBR ['a(g - E)I2 T(Vk e&) + % af(ﬁ - 2) v a(x - E)] .
(36)
Here we have used the notation

£V g = £(ve) - &(ve) . (37)

Since V% €, is the velocity of ‘the particle when its momentum is & ,

we may use Eq. (6) to write the first term in Eq. (36) as
T | k(v e) lale - p)|® = y. T (%8)
A R ~ X ~Q 77

vhere Yo is the incident velocity of the packet [see Eq. (1) ]. On trans-

forming the second term to coordinate space, we then have
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£ = gt o+ dexz 19,0 |°
(39)
= X{) LN s

because of the condition (3).

We next simplify Eq. (30) for N . Using Eq. (32), we may write this

N7 = (ex)” ]dx a%k,' | a%k, f Ky exp[l(isl X-€, 'T)]SR 'mla(‘ﬁl-'v
2 2 ‘ T

(40)

Here ./[ @' o+ denotes an integral over k' with the direction k'

restricted to the solid angle 68(%) , as implied by the projection operator

A(gﬁ in Egs. (29) and (30). Because we have assumeéd that waves scattered in
J

the direction ﬁ do not overlap the 1ncldent packet at tlme T [thls implies

that a(nx - p) is negllglbly small], the 8 function terms do not contrlbute,

and N reduces to

" (ef / fan 2, e, LIRS

Xa‘*(ﬁl - E) 8‘(52 S E)° T N (41)
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The assumption that Tn' “and T o are essentially constant over the

packet now permits us to write this as

N o= (2n)? o s2(3) 'Tkp|2 f dBKl d5“2 zs(eKl - e“e);(ﬁl - plalx, - g) )
(42)

where
Kk = &R (43)

is the momentum of the scattered particle and p_ 1is the expression (11), now
evaluated at Kk = p »

Let us next substitute

+00
s(c. - e ) = (20)7t f at expli(e. - e )t] (44)
s €2 k1 2
-00
into Eq. (42) and Use Eq. (10) to obtain
5 , +00
k 2 2
voe R w® e 21 [ e lgonl®. (45)
€ -0
Now,
"N ”n 2 A
dw(p =32 = le(p, 2:B)| 82(R) (46)
is the differential scattering cross section, and
o +00
k 2
-5 [ e lgon) (v7)
¢ o

is the flux of particles (per incident particle) on the scattering center.

Thus, we finally have

N = as(f - BT . ' (48)
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To be strictly consistemt, we should have képfytﬁé:fir§£QOréé£;::’
variation of T and T% with momentum‘[asfiﬁ Eq; (iﬁ)]iiﬁ Eq; (hé). This
would have led to a flux (47) evaluated at -the displaced position D, [Eq. (20)].
éince fhié corréction doés.ﬂét afféct oﬁr résults, we ha?e*éﬁoidéa the éigebraic
‘complication of including it here.

We turn next to the evaluation of the quantity [see Eg. (29)]

| _/ @5xv5 g wenl®

() -
) H 1 . t ;
= a’x x / a7k, /& Ky fd Rl‘:e-}gpml(ﬁl E-€ uT)SFc e a(ﬁl:?)
3 e |
X Jﬁa K, €XP 3.(3502 X - €, VT)S&QVEQ a(ﬁ2 - E) s (49)

2

which of course differs from the first form of Eq. (40) only by the factor X
in the integrand. Thisjexpréssion1may‘be:simplified.by intfoducing the variables

(34) and using Eq. (35) for x . The steps leading to Eq. (36) now give

wl.fm ~D
+ I a*¥(k. = p)S* | V. ls a(k, - p) .
2 1 X77r's k' K'w ~Q
~ ~l 2
i (50)
N .
Were we to set S, =08(x' -k,) and S, = 8(k' - x,) and integrate

over all 5* , this would sgree with Eq. (36)--as it should, because in the

absence of scattering 4% =0 .
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Since BQ(%) is very small, we may factor (Vk, eK,)T =y T,
vhere ¥, = v, % , out of the integrand of the first term in Eq. (50) and
rewrite this as
- i 5. 5 5 * *
NX(T) = L TN + 3 )[drz jdwldnz [a(nl-p)sﬁ,ml]
P
Pure
X v [a(l;e - 2)82,22] . (51)

[Compare Eq. (51) to the final form of Eq. (40).]

The leading term for large T in z(T) is just Xf T , as would be
expected from elementary kinematical considerations. The second term on the
right in Eq. (51) is independent of T and corresponds to a displacement of
the particle trajectory. v

To simplify this term we substitute the expression (9) for the

S matrix and again use the condition that ‘a(pg -p) =0 to write

N [z(T) - XET] = 3 (2n) Aé K d%, 47k, a<(5l 2) 511(1;&2 - p)
b
X [5(€ -e )T ] v [6(6 - € )T ] (52)
1 t 1 t 1 ¢
® k1 KX K B Ky E'&o
Now,
V,{T, 6(6,—6)}:6(6,—6)(?7,1‘,)
k' LTRSS K Ky K £y R TR
KA
+ Ty |- —5 V% 8(65, - € ),
~ a2 A7 2 2

etc., where y'EV , € v. . This permits us to put Eq. (52) into the form

K' ~f
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Yy e 11 e L (pA2 o so(2y [ ade ade i .

N[X(T) .Xf.‘I‘.] =5 (2n) peﬁg(%) fd K:ldK.2 zs(eﬂ em,)_‘

1 2

X a (s )a(x YT, &, +% 89T

BT RMR TR Tee e T AR Th

R A
+ terms that vanish for small % . (53)

(The neglected terms here involve gradients of the a's and thus depend on

wave-packet characteristics.. When .% is small enough that wé can set-

Vo, =y these terms’ vanish.)

15 X
To further simplify Eq. (53),.we use Eq. (10) and 'Egs. (44) and (47)

to obtain
, L 4 A, 4.4 i R,
M g7 = WG R et BH . OY
Now,
N A AN
(% +_’>§ I Vp>‘ arg £(p, 2-p) = " Ta%e *Ep o | (55)
where T, is the time delay (19) and

Eq. (30) as

X(T) = y(T-7,) + Do, (57)
or - |

X o= y(T-7) -3y T + Do o . o (58)
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The interpretation of these expressions is similar to that given in Sec, II

of Eq. (22). The scattered wave packet is delayed by a time T4 and displaced
g distance Ef , Which lies in the plane of the scattering and is perpendicular
to the direction % . This is illustrated in Fig. 3, where Egs. (20) and (57)
are used to define a "trajectory” for the particle.

Referring to Fig. 3, we see that if the scattering had "actually
occurred" at 0 ; the point z(T) would have been at P . Because the
scattering is displaced by the distance p [see Eq. (23)], the point '%(T)
is displaced by a distance Df perpendicular to the line OP , The displace-

ment of the incident orbit is RO [see Eq. (20)]. We see that
o ,
D. = D. = p cos = (59)

and Df is in the direction of the unit vectdr § , 1llustrated in Fig. 3.

Our discussion has been gquite genefal to this point and certainly

consistent with the indeterminacy principle. The "trajectory" drawn in Fig. 3

has been defined in terms of the mean displacements 20 and -gf s Inithe
next section we shall evaluate these quantities in the classical limit and
see that e does indeed then correspond to just the classical distance of
closest approach. |

Before doing this, let us suppose that the scattering interaction

illustrated in Fig. 3 is weak and limited to small angles € , and that the

orbit may be considered as classical. The displacements EO and Rf are
then directly interpretable as displacements of the classical trajectory from

. QOP . The time delay T, requires discussion, however. There are two

d
contributions to Tq - One results from the fact that the trajectory RSX

is shorter than QOP by the lime Gegments. a0: -andc :b$ ;.. Sihee, thisclength
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is 2p sin'g , we have a purely geometrical contribution to 'Td s

T = 28 48, ' , ~ (60)
geom v 2 .
0

The time delay also has a dynamical contribution correspondingvto the
fact that the velocity of the particle is in general different while it is
interacting. To evaluate this in the classical limit, we suppose that the
scattering is due to a potential V(r,z) , where 2z is a‘coordinate along ‘ﬁ P
and r a coordinate along §~, Now, the velocity v , if the particle has a

"o

nonrelativistic energy, at (r,z) is given by the equation

v or 2 V(e = v, (61)
where M 1s the particle mass. Since we have assumed that 6 is small and
that % | v | << vo2 , we obtain from Eq. (61) for an impact parameter o

dt =~ %E [ 1 0+ L 5 V(p,zﬂ s

0 MV :
C
or
+00
Tt T f V(p,2)az (62)
P ¥y Zoo :

for the dynamical contribution to the time delay. The total time deday

T is ﬁhen

a

a Tdyn * Tgeom -(63)
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IV. SCATTERING IN THE NEAR-CIASSICAL LIMIT
Let us evaluate the scattering illustrated in Fig. 3 in the WKBJ, or
eikonal, approximation for the case of a nonrelativistic particle. Then, if
the scattering is due to a potentiali'V(r,z) and.is limited to small angles

5
® , the scattering amplitude6 is

. > 2i8(r,p) ,
f(p, xp) = —ip.j[ r dr Jo(pre) e -1}, (64)
where JO is the Bessel function of zeré order and
+o ' .
1 , .
S(r,p) = - Ef— / dz V(I‘,Z) ° (65)
0
-0

In the near-classical limit we may replace JO by its asymptotic form to

write

o -in\[=E=

o i[pre - (x/4)] -i[pre - (x/4)1] [ 218
570 -j[ rl/2 dr {e B “/ + e vpr n/ e : - 1

0 (66)

which may easily be evaluated by a saddle-point integration. To do this, we

must consider the two integrals

i
- Jf RV o, (67)
e

where

Bop) = D) £ (oo -F) . (68)

The stationary phase point at r = is determined from the equations

o)

2'(p,p) * PO = 0, | (69)
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where 5'5_%—M
Now,
' ' +00 '
' 11 V(r,z
8'(r,p) = / dz [- —%—’;-)-J , | ('70)
0 =00
so
8'(r,p) > O for a repulsive force (case R) ,
5'"(r,p) < © for an attractive force (case A).

We see then that in the present approximation

1/2 £

f = -i (p/2xe) s | (71)

where the plus sign corresponds to case A and the minus sign to case R.

+
Evaluation of I~ gives

| Jo ti % ig "
£ = -ifp pO/'QO"I e 4 e © , case R
| (72)
N2 £ gt
f = -i(p p0/|¢0 | .e e » case A ,
+ . + " " : ’
where ¢O =¢ (po,p) and ¢ = (¢ (po,p,) . The plus sign in Egs. (72)

) : i "
is to be used when @, > 1, the minus sign for ¢O <1.

Using Egs. (24) and (72), we find the impact parameter p to be

P = Py case R’
| (73)

= =Py ‘ case A,
in agrever-rien'b with our antiecipations.

The time delay (17) is evaluated from Egs. (72) as
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-0]1-
1 358 Poe
T, = — 2 + —
d vO §,P VO
+00 0 5 : '
S —— f az V(p ,z) * —=>=— ()
My 0 Yo .
0 -0

by using Eq. (65). For case R and small © (minus sign), this is seen to

agree precisely with Egs. (60), (62), and (65).
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V. AN ALTERNATIVE REPRESENTATION

We have considered the scattering amplitude to be a function of ¢

and u = %oﬁ , and have shown that the derivatives (19) and (24) of: arg f

with respect to these variables have & simple geometrical interpretation. If

one conslders f to be a functdon of the variables7

5 —— oM ep
(75)
t = =-2s(1 - u) ,

rather than of €  and wu , the partial derivatives of arg f(s,t) may be

‘given a dynamical interpretation.

To see this, let.us first generalize the definition (62) for Tayn ’
writing A

Tayn — *a ~ Tgeom ’

(76)

where 7, is defined by Eq. (19) and T geom by Eq. (60). An €lementary
calculation then gives

‘ P
os)/? 2emgflet) | 5 (7
2 sin 5

where p is defined by Eq. (24), and

- Q0 arg f(s,t) —_ i
2M as, :Tc—’r

iy (78)

Here Tayn 18 defined by Eq. (76).

We call the quantity To the "causal time delay." Equation (62)
suggests that this has a more direct dynamical significance than does

Td°
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VI. CONSTRUCTION OF A TRAJECTORY
In reference 1 it was observed that for a sequence of scatterings, or
in the guasi-classical limit, for which the S matrix factors into a product

of S matrices, the time delay =« permits one to attach a coarse-grained

d
time label to points on the trajectory. In & similar manner we can use
Egs. (23) and (24) to construct an "orbit" in coordinate space for the

scattered particle. That is, when

where Si is an S matrix for the ith scattering, we may define a sequence
lgi of displacement parameters. A path formed by line segments betﬁeen this
sequence of vectors provides the required "orbit." It is evident thet in the
classical limit this orbit will coincide with the classical trajectory.

We have seen that the S matrix may provide a basis for defining
spacé»time intervals for eventso. The extent to which it may provide a
general and satisfactory définition of space-time intervals is not presently

clear.
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. have been distorted to the form
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See reference 2, Eq. (6-505), for example.

A relativistic generalization is evidently straightforward.
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FIGURE CAPTIONS

Illustration of wave-packet scattering.

I1llustration of the vectors p and EO

Construction of "classical" trajectory.
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