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Abstract. We develop a simple theoretical framework for thinking about how geographic
frictions, and in particular travel costs, shape scientists’ collaboration decisions and the
types of projects that are developed locally versus over distance. We then take advantage
of a quasi-experiment—the introduction of new routes by a low-cost airline—to test the
predictions of the theory. Results show that travel costs constitute an important friction to
collaboration: after a low-cost airline enters, the number of collaborations increases be-
tween 0.3 and 1.1 times, a result that is robust to multiple falsification tests and causal in
nature. The reduction in geographic frictions is particularly beneficial for high-quality
scientists that are otherwise embedded in worse local environments. Consistent with the
theory, lower travel costs also endogenously change the types of projects scientists engage
in at different levels of distance. After the shock, we observe an increase in higher-quality
and novel projects, as well as projects that take advantage of complementary knowledge
and skills between subfields, and that rely on specialized equipment. We test the gen-
eralizability of our findings from chemistry to a broader data set of scientific publications
and to a different field where specialized equipment is less likely to be relevant, mathe-
matics. Last, we discuss implications for the formation of collaborative research and de-
velopment teams over distance.
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1. Introduction
The drastic reduction in communication costs brought
by the diffusion of the internet initially led to claims
about a future in which technology could overcome
geographic frictions and facilitate the rapid exchange
of ideas, goods, and services independent of distance
(Cairncross 1997, Friedman 2005). From an empirical
standpoint, this “death of distance” hypothesis has
found limited support, as most evidence points to ag-
glomerationmattering more, not less, than before across
a variety of settings (Leamer and Levinsohn 1995,
Forman et al. 2005, Blum and Goldfarb 2006, Agrawal
et al. 2015). Instead of substituting for colocation,
digital interactions often complement it (Agrawal and
Goldfarb 2008),1 resulting in nonobvious changes in

how teams and organizations structure collaborations
and develop new ideas when communication costs are
low, but teamwork and research and development
(R&D) require specialized expertise and resources
that are geographically dispersed (Adams et al. 2005,
Wuchty et al. 2007, Jones et al. 2008).2

Moreover, not all types of interactions have benefited
in the sameway from improvements in communication
technology. Colocation plays a disproportionate role
in the serendipitous discovery of new collaborators and
ideas (Catalini 2018), and in the absence of offline op-
portunities for interaction, search frictions can pre-
vent individuals from finding ideal collaborators even
within the boundaries of the same institution (Boudreau
et al. 2017). Similarly, exchanges that require the
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transfer of complex information and tacit knowledge
(Polanyi 1958, Von Hippel 1994) still heavily rely on
face-to-face interactions (Gaspar and Glaeser 1998,
Rosenthal and Strange 2001, Storper and Venables
2004). As a result, firms, communities of experts and
teams invest substantial amounts of time, effort and
resources to ensure that the right individuals can be
colocated—even if only temporarily—to discuss ideas,
make progress on projects, and develop the relation-
ships that can later support more effective interactions
over distance. Such temporary forms of colocation have
been shown to foster both idea diffusion and the forma-
tion of new collaborations (Chai and Freeman 2018).3

If face-to-face interactions are instrumental in
finding and evaluating new collaborators, establishing
trust, and advancing joint work, then as communica-
tion costs drop, if they are a complement and not a
substitute to remote interactions, they should become
more valuable. Furthermore, their absence would likely
constitute the key remaining friction in the formation
and operation of geographically distributed teams.
Ironically, by making online communication extremely
efficient, the internet may have enhanced the role that
travel technology plays in the economy.

The objective of this paper is to develop and test a
simple theoretical framework for thinking about how
geographic frictions, and in particular travel costs,
shape collaboration decisions and the types of pro-
jects that are developed locally versus over distance.
The model highlights a key trade-off individuals face
when deciding if they shouldworkwith a local versus
a distant collaborator: whereas the global pool of po-
tential collaborators is often deeper and may therefore
offer an ideal match, collaboration over distance incurs
additional communication and travel costs. We build
on this basic tension in a context where individuals en-
dogenously allocate effort to projects based on their
potential, andwhere a project’s variance in outcomes or
the need for complementary expertise, equipment, or
resources can influence with whom a project is pur-
sued. The simple framework captures an increasingly
relevant challenge: to be able to solve problems of
rising complexity, teams of specialized experts have
to be put together (Jones 2009), but this often involves
collaboration over distance.

We take advantage of a quasi-experiment—the in-
troduction of new routes by amajor low-cost airline—
to test the predictions of the theory within the context
of collaborations between scientific labs. The setting
allows us to observe the full set of scientists at risk
for collaboration in any given year as well as im-
portant characteristics about them such as their age,
career stage, past productivity, area of specializa-
tion, and departmental funding.

The cheaper fares brought by the expansion of the
low-cost airline (Southwest Airlines)4 are part of a

broader, 50% reduction in the cost of air travel that
took place in the United States over the last 30 years
(Perry 2014).5 Furthermore, they provide a source
of plausibly exogenous variation in the cost of
conducting research between scientists at the af-
fected airports.
Using a difference-in-differences empirical strat-

egy, we are able to recover a causal estimate of the
effect of a reduction in travel costs not only on the rate
of collaboration but also, more importantly, on the
types of projects scientists pursue. Results show that
travel costs are an important friction to collaboration:
after Southwest entry, the number of collaborations
increases between 0.3 and 1.1 times, a result that is
robust to multiple falsification tests and causal in
nature. The reduction in geographic frictions is par-
ticularly beneficial for high-quality scientists that are
otherwise embedded in worse local environments,
although women scientists do not seem to benefit.
Consistent with the theory, lower travel costs also
endogenously change the types of projects scientists
engage in locally versus over distance. After the
shock, we observe an increase in higher quality and
more novel projects, as well as projects that take
advantage of complementary knowledge and skills
between subfields or that rely on specialized equip-
ment. We test the generalizability of our findings
within chemistry to a broader data set of scien-
tific publications and to mathematics, a field where
specialized equipment is less likely to be relevant.
Last, we discuss implications for the formation of
collaborative R&D teams in the presence of geo-
graphic frictions.
The rest of the paper is organized as follows: in

Section 2 we provide additional institutional details
about scientific collaboration, on how chemistry differs
from others fields, and the data we use. Section 3 in-
troduces our empirical strategy and main results,
together with a series of robustness tests and exten-
sions targeted at assessing the generalizability of our
findings to different samples. Section 4 develops a
model to guide the interpretation of the findings, as
well as the exploration of more nuanced hypotheses
about the type of projects pursued in response to a
reduction in geographic frictions. Section 5 tests these
additional predictions, and Section 6 concludes.
The reason why we first explore the difference-in-

differences results on the rate of collaboration (in
Section 3) and then present the model and test hy-
potheses about the type of collaborations that emerge
(in Sections 4 and 5) is because we follow the natural
evolution of the project. We started from an empirical
assessment of the presence of an effect on the rate of
collaboration, moved to theory development to form
predictions about the types of projects affected and
to identify additional data to be collected (e.g., on
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novelty, equipment intensity), and then finally brought
these new predictions to the data.

2. Scientific Collaboration
Scientific research is an increasingly collaborative en-
deavor, as reflected in the growing number of authors
perpaper over time (Wuchty et al. 2007). Collaborations
are typically formed to combine skills and knowledge
(Freeman et al. 2014), to access complementary gen-
eralist or specialist talent and resources (Sauermann
and Haeussler 2017, Teodoridis 2018), and to expand
the knowledge frontier when information is tacit and
difficult to transfer or recombine without extensive,
direct interactions (Stephan 2012). Increasing com-
plexity has also been linked to a rising need for interdis-
ciplinary teams (Falk-Krzesinski et al. 2011, Milojević
2014), with Wu et al. (2019) showing that both small
and large teams play an important but different role
in pushing the knowledge frontier. Using a large-scale
data set of papers, patents, and software products de-
veloped over 60 years, the authors show that whereas
smaller teams are associated with more disruptive work
and exploration, larger ones are systematically linked
to advancing existing ideas and execution.

In terms of team formation, empirical evidence shows
that researchers typically source collaborations through
their professional networks (Freeman et al. 2014),
through serendipitous interactions with colocated indi-
viduals (Catalini 2018) and conferences (Boudreau et al.
2017, Campos et al. 2018, Chai and Freeman 2018),
and by relying on the information disclosed in scientific
publications. As Walsh and Lee (2015) highlight, sci-
ence is organized around increasingly complex teams
that resemble the operations of small R&D-intensive
firms, with knowledge as their core output.

Substantial differences, however, exist across sci-
entific disciplines in how collaboration and research
is organized: for example, whereas mathematicians
and theoretical physicists rarely work in labs, most
research in chemistry, life sciences, and experimen-
tal physics—also because of different capital, talent,
and infrastructure requirements—takes place in labs
(Stephan 2012).

Our core analysis is focused on collaborations
within chemistry.Whereas chemistry largely remains
a laboratory-based science, it has also not embraced
the larger-scale, big science projects observed in physics.
Team size in chemistry—as measured by the number
of coauthors—is lower than in biology and physics
though higher than in mathematics (Adams et al.
2005). Chemistry labs are run by a faculty member
(principal investigator) who obtains funding for the
laboratory, directs research projects, appears as a
coauthor on all publications, oversees resource allo-
cation, and effectively decides whether to collaborate
with other labs. In our sample, the median number of

coauthors per paper is four, and many of the authors
are graduate students, postdocs, or technicians. They
perform most of the experiments and day-to-day
work on a project.
Although many research projects involve a single

principal investigator, collaborations between labs
and principal investigators are common as well.
Consistent with the findings from large-scale surveys
of scientists (Freeman et al. 2014), in our conversa-
tions with U.S. principal investigators in chemistry,
complementary expertise, skills, materials, or new
types of experiments are all mentioned as reasons for
collaboration across labs. As in other fields of science,
collaborations in chemistry are sourced through the
principal investigators and junior members’ profes-
sional networks, serendipitous interactions at confer-
ences, email, etc. In the paper, we focus on collabo-
rations between principal investigators, which are
essentially collaborations between different labs.

2.1. Data Sources and Key Outcomes of Interest
To examine the effect of the changes in travel costs
induced by the entry of Southwest Airlines on sci-
entific collaboration, we combine data on scientists
with publication records and air transportation in-
formation. Within the chemistry and mathematics
samples, biographical information on scientists en-
ables us to effectively disambiguate publication data
while also allowing us to separate faculty members
from other types of authors. We now discuss in more
detail the data sources we use and key outcomes we
focus on throughout the paper.

Air Transportation Data. To recover information on
when Southwest operated flights between different
routes, as well as information on prices, passengers,
and miles flown, we use data from the Airline Origin
and Destination Survey (DB1B) of the U.S. Bureau of
Transportation Statistics. The DB1B is a 10% random
sample of airline tickets from reporting carries in
each quarter. For each itinerary, the DB1B records
all connecting airports (including origin and destina-
tion), the itinerary fare, and other information. These
data are publicly available only from 1993; hence we
will focus on Southwest entry decisions that occur af-
ter 1993.

Match Between Airports and Universities. We com-
pute distances between airports and universities
using Google Maps. The matching between univer-
sities and airports is complicated by the fact that the
same metropolitan area could be served by multiple
airports (e.g., O’Hare andMidway in Chicago) or that
a college town could be halfway between two air-
ports. We chose to match universities to all airports
within a 50-mile radius. We code the year of Southwest
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entry for a pair of universities as the first year in which
Southwest operates a flight on any route whose end-
points (airports) are within 50 miles of the respective
universities. Results are robust to narrowing this defi-
nition further (e.g., 25 miles, 10 miles); see Online Ap-
pendix Table A-1.

Data on Scientists. Our focus is on collaborations
between faculty members (and therefore effectively
across labs) in the discipline of chemistry,6 in part
because of data availability and in part because of the
short publications cycles in this discipline. For bio-
graphical information on scientists, our data source is
the directory of graduate research published by the
AmericanChemical Society (ACS). Intended as a source
of information for prospective graduate students, this
directory provides comprehensive listings of fac-
ulty affiliated with U.S. departments granting PhDs
in chemistry, chemical engineering, and biochemistry.
Besides faculty names and departmental affiliations,
the directory provides information on year of birth,
gender, and education. The directory is published bian-
nually in print and since 1999 on the web.7 We combine
the directories from 1991 to 2013 to build a longitu-
dinal panel of more than 20,000 scientists. We com-
plement this information with department-level
R&D expenditures from the National Science Foun-
dation (NSF) Survey of Research and Development
Expenditures at Universities and Colleges.

Publication Data. We match faculty names to publica-
tion data from Scopus coveringmore than 200 chemistry
journals (including all journals from the American
Chemical Society), multidisciplinary journals, and ma-
jor journals in neighboring disciplines.8 Within chem-
istry, the match between publications and scientists
is facilitated by the fact that we know institutional
affiliations from the American Chemical Society fac-
ulty data. We match publications to faculty based on
last name,first nameand (if nonmissing)middle initials,
department, and university affiliation. From publica-
tion data, we construct for each scientist time-varying
measures of past productivity (with a moving aver-
age over the last three years of publication counts
weighted by journal impact factor). We also infer our
main outcome, copublications, frombibliometric data
combined with faculty data.

A key strength of our data is that we know when
individuals enter and exit the profession and there-
fore are at risk for collaborating with others. If we
were inferring copublications from publication data
only, we could hardly distinguish between active
scholars and individuals who have retired or are
not doing research in the field. Papers are counted
as a copublication between all pairs of faculty
members involved.9

Additional Key Outcomes. For part of the analysis, we
weight copublications by the citations they receive as
a proxy for their impact and quality. Citation counts
originate from Scopus, are at the article level, and are
counted from the year of publication until 2013. We
also construct two distinct groups ofmeasures related
to novelty using author keywords. These are based on
the entire corpus of articles within chemistry journals
and relatedfields. Thefirst group ofmeasures is based
on established approaches from the innovation lit-
erature (Boudreau et al. 2016, Criscuolo et al. 2017),
and it relies on calculating the share of keywords in
any given paper that have not been observed before.
This allows us to capture both novel uses that gain
traction and those that do not. To check the robust-
ness of our results, we also experimented with dif-
ferent definitions of what constitutes a novel use
(e.g., bottom 5%, 10%, or 25% of the keyword use
distribution), as well as with different aggregation
methods (mean share of novelty, max share of nov-
elty, total novelty for the focal papers), finding con-
sistent results. We then replicate this approach for
subfields to see if a specific use might have been con-
sidered novel in aggregate but not within a smaller
community of science.10

The second dimension of novelty we explore is
what we label as “novel trends.” With this measure
we are not focused on making sure we capture both
failed and successful attempts at developing new
concepts (i.e., the variance in outcomes); we instead
prioritize identifying emerging new trends in science.
A drawback of this measure is that it selects on
successful cases where scientists work on concepts
that end up gaining broader adoption afterward. The
reason why we find this measure interesting is be-
cause it proxies for the focal researchers working on
topics that were about to become “hot.” To do this, for
each keyword, we calculate the share of papers in a
given year that contains the keyword—a proxy for
how popular it is at any point in time. We then cal-
culate the first and second derivatives of this measure
relative to the previous year. If both the first and
second derivatives are positive, then the keyword is
classified as part of a novel trend because its use is
quickly accelerating. Additionally, if the first de-
rivative is zero and the second is positive, then we are
at a local minimum right before a keyword takes off,
which we also consider as a novel trend. Aggregating
up at the paper level, a publication is considered part
of a novel trend if it has an above-the-median number
of novel-trend keywords (results are similar if we
impose a higher threshold).
We also constructed proxies for the equipment

intensity of publications by first collecting a large-
scale list of keywords associated with chemistry
equipment11 and then checking this list against the
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keywords used in each paper. Papers with an above-
the-median number of equipment-related keywords
are classified as equipment intensive (similar results
are obtained when using the count of equipment
keywords). To test the robustness of our approach to
a completely different definition, we also classified
areas of chemistry as equipment intensive or not
using the NSF Survey of Federal Funds for Research
andDevelopment. In particular, we first use NSF data
to compute the share of departmental R&D expen-
ditures devoted to capital. We then calculate the
specialization of each department across fields of
chemistry to assess which areas they are specialized
in. Last, we use these measures to run a regression at
the department level, linking department-level cap-
ital intensity to the relative prevalence of different
subfields of chemistry, and we rely on the estimates
to classify collaborations based on the type of de-
partments from which they originated.12

2.2. Descriptive Statistics for the
Main Sample

Our data set covers more than 20,000 scientists and
their collaborations. However, we focus on a specific
subset of pairs of scientists who experience South-
west entry and for whom we have variation in collab-
oration over time. Because all regressions include
scientist-pair fixed effects, pairs that never collaborate
drop out of the sample. In the online appendix, we show
that our main result is robust to replacing scientist-pair
fixed effects with city-pair fixed effects and including a
random sample of noncollaborating pairs. Our results
are also robust to replacing pair fixed effects with in-
dividual researcher fixed effects.

We have 15,244 pairs of scientists who collaborate
at least once.13 Excluding coauthors who are in the
same department, we have 8,311 pairs of scientists
in our sample. Only a minority (1,158) of these pairs
experience Southwest entry during our analysis pe-
riod of 1993–2012, either because for the other 7,153
pairs Southwest is already operating a flight or be-
cause Southwest never flies between the relevant
endpoints. We drop pairs in locations where South-
west enters but then leaves within two years, as well
as pairs where Southwest entry coincides with the
move of a scientist.14 Finally, we also exclude pairs
that are within less than 200 miles of each other, as air
travel is unlikely to be their main travel option.15 Our
final analysis covers 758 pairs of scientists corre-
sponding to 845 individuals.

Table 1 displays descriptive statistics for our chem-
istry sample at different levels of analysis: individual,
individual-pair, and individual-pair-year.16 Most in-
dividuals in the sample are male (90%) with an average
age at the time of Southwest entry of 49.6 years. We
do not observe individual research budgets, but as a

proxy, we use departmental R&D expenses divided
by the number of faculty members in the department.
The average in our sample is $279,880 at the time of
Southwest entry. According to the NSF survey, R&D
expenses include compensation for R&D personnel,
equipment, and indirect costs. In terms of speciali-
zation,17 the largest area is physical chemistry (32%),
followed by biochemistry (22%), inorganic chemis-
try (14%), organic chemistry (13%), and material
science (11%).
We observe the 758 pairs for 17 years on average,18

corresponding to 13,147 observations at the individual-
pair-year level. Southwest entry events map to 413
distinct new routes. The median pair experiences
Southwest entry in 1999, but we observe Southwest
entry from 1994 to 2011. The mean number of copu-
blications over the whole period is 1.9, but the majority
of pairs copublishes once. Only 9% of pairs collabo-
rates both before and after Southwest entry.
It is useful to compare our analysis sample to other

distant pairs that do not experience Southwest entry.

Table 1. Summary Statistics (Main Sample)

Variable Mean Std. dev.

Individual scientist level (n = 845)
Age 49.6 11.0
Female 0.10 0.30
Average R&D budget in dept. (USD 1,000s) 279.88 226.75
Speciality
Physical chemistry 0.32 0.47
Biochemistry 0.22 0.41
Inorganic chemistry 0.14 0.34
Organic chemistry 0.13 0.34
Material science 0.11 0.31
Other 0.08 0.27

Individual-pair level (n = 758)
Year of Southwest entry 2001 4.5
Distance (in miles) 1,232 808.6
Years in sample 17.3 4.6
Total copublications 1.9 3.4
Copub. both before and after 0.09 0.28
Copub. before Southwest entry 0.49 0.50
Copub. after Southwest entry 0.60 0.49

Individual-pair-year level (n = 13,147)
Copublications 0.11 0.41
Local copubs 1.83 2.69
Local copubs with less productive colleagues 0.62 1.42
Different type of chemistry 0.46 0.50
One above average 0.67 0.47
Both above average 0.26 0.44

Individual-pair-year level conditional on
copublication (n = 1,177)
Cites 44.95 71.83
Equipment Intensive 1 0.35 0.58
Equipment Intensive 2 0.48 0.87
Novel trends 0.12 0.36
Mean share novel 0.10 0.24
Max share novel 0.12 0.26
Total share novel 0.13 0.31
Novel in field 0.30 0.40
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We have approximately 6,000 such pairs. These in-
clude pairs where Southwest is already present in the
relevant market prior to 1993 when our sample starts
or has not entered by 2012 when it ends. They also
include cases where one of the pair members is a new
faculty hired after Southwest has already entered. The
comparison is shown in Table 2. The pairs that ex-
perience Southwest are not statistically different from
the others in terms of publications but are slightly
older (51 versus 49 years) and are observed, on av-
erage, for a slightly longer period of time (17 versus
14 years).19 It is important to note that there is no
significant difference in terms of R&D budgets or
propensity to be in different subfields of chemistry.

3. Empirical Strategy and Main Results
Our empirical specification is a straightforward
difference-in-differences framework at the scientist-
pair level where we exploit variation in Southwest
entry across different airport pairs over time. It in-
cludes scientist-pair fixed effects and is estimated
using a Poisson model:

Yijt � βAfterSWijt + μt + γij + εijt,

where Yijt is the number of copublications between
scientist i and scientist j in year t; AfterSWijt is an
indicator variable that takes the value 1 after South-
west entry; μt is a year fixed effect; γij is a pair fixed
effect to control for unobservable, time-invariant
differences between pairs of scientists; and εijt is an
idiosyncratic error term.

Our analysis examines the change in the rate of
collaboration and in the types of papers that emerge
over time for pairs that coauthor at least once. Because
our unit of analysis is the scientist-pair-year, and we
include pair fixed effects, ourmain source of variation
is the change in Southwest status for treated pairs,
where control pairs are constituted by pairs that
never experience entry or will experience it in the
future. The pair fixed effects completely capture pairs
of scientists for which we never see activity, and thus
we remove these from the analysis without empirical
consequences. Robust standard errors are clustered
at the pair level.

3.1. Southwest Entry and Changes in Passengers,
Prices, Miles, and Transfers

Before our main analysis, we check how the arrival of
Southwest affects some of the key passenger and fare
metrics of interest in the air travel industry. In this
exercise, we run regressions at the airport-pair level,
and we compare a number of outcomes before and
after Southwest entry. Regressions include airport-
pair fixed effects and year fixed effects. The co-
efficients in Table 3 reflect the types of changes one
would expect to take place after the arrival of a low-
cost competitor: the increase in the number of pas-
sengers is between 54% and 57%,20 and prices drop by
17%–19%. We do not find any effect on the average
miles flown21 or on direct flights, and the reduction in
the number of transfers is extremely small. Overall,
results are consistent with Southwest lowering the cost
of air travel without drastically changing the types of

Table 3. Effects of Southwest Entry on Price, Passengers, and Routes

(1) (2) (3) (4) (5)

Passengers (log) Mean price (log) Average miles flown (log) Direct flight Number of transfers

Southwest entry 0.4437*** −0.1910*** 0.0007 0.0002 −0.0174***
(0.0050) (0.0024) (0.0006) (0.0004) (0.0017)

Airport-pair fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Mean of dep. variable 4.238 5.454 7.066 0.007 1.239
Number of pairs 55,750 55,750 55,739 55,750 55,750
Number of observations 956,029 956,029 955,983 956,029 956,029

Notes. Robust standard errors are in parentheses. Southwest entry is an indicator variable that takes a value of 1 if Southwest has started operating
a flight between airports. All specifications include airport-pair fixed effects and year fixed effects. Estimation by ordinary least squares.

***p< 0.01.

Table 2. Comparing Pairs in the Analysis Sample to Pairs Not Experiencing Southwest (SW)

Distant pairs not experiencing SW Analysis sample p-value for equality of means

Total copublications 1.78 1.90 0.19
Number of years observed 13.85 17.51 <0.01
Age (average in pair) 49.16 51.23 <0.01
Different type of chemistry 0.46 0.45 0.79
Average R&D budget in dept. 288.9 278.1 0.17
Observations 5,954 758
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routes available or the number of miles passengers
have to fly to connect between two endpoints.

3.2. Changes in Collaboration and Evidence for a
Causal Interpretation

After a reduction in travel costs, the relative attrac-
tiveness of the global pool of potential coauthors
should increase, because working with distant col-
laborators becomes more cost effective. This should
lead to an increase in collaboration between the af-
fected locations. As can be seen in column (1) of Table 4
(which uses our main econometric specification),
after Southwest enters, we observe a large and sig-
nificant increase in collaboration between scientists at
the connected endpoints.22 Relying on a 95% confi-
dence interval, we estimate that scientific collabora-
tion increases between 0.3 and 1.1 times.23 Although
the magnitude of the effect is large, it is off a small
base (the mean of the dependent variable is approx-
imately 0.1) and comparable with previous studies
on the impact of communications, search costs, and
colocation on scientific collaboration: Agrawal and
Goldfarb (2008) find that Bitnet increased the likeli-
hood of collaboration between pairs of universities
by 40%, Boudreau et al. (2017) find that a 90-minute
structured information sharing session led to a 75%
higher probability of coapplying for a grant, and
Catalini (2018) estimates that exogenous colocation
increased the chance of a collaboration between labs
on the Jussieu campus of Paris by 3.5 times.

Onemayworry that Southwest entry is systematically
correlated with time-varying factors such as growth of
the universities (or the regional economies) at both ends
of the routes, and therefore that collaboration would
have increased even in the absence of a reduction in
travel costs. Although our main specification already
controls for aggregate time trends through year fixed
effects, the validity of our results could be threatened by
systematic, time-varying factors that affect the target lo-
cations around the timeof Southwest entry. In column (2),
we mitigate these concerns by controlling for two pos-
sible time-varying confounders: the age of the scientist
pair and the (log of) departmental R&D budget per
faculty member. The first one accounts for changes in
the incentives to collaborate as scientists progress
in their careers; the second, for changes in the local
economies. Whereas the coefficients for the controls
are positive and significant, our main result is un-
affected. In column (3), we additionally control for the
number of years that have passed since both scientists
obtained their PhD, a proxy for their ability to both
decide with whom they want to collaborate. This
estimated coefficient is negative and significant but,
again, does not affect the estimate for Southwest entry.
In column (4), we study the dynamic effects of the
reduction in travel costs by replacing the treatment

indicator for Southwest entry from column (1) with a
set of four dummy variables capturing the years
around the treatment. For example, the indicator
Southwest entry (−1) is equal to 1 if the focal scientist-
pair observation is recorded one year prior to the
treatment. The other indicator variables are defined
analogously with respect to the year of treatment (0),
the first year after treatment (1), and two or more
years after treatment (2+).24 The coefficient for
Southwest entry (−1), which would capture any “ef-
fect” of the new airline routes before their introduc-
tion, is insignificant, suggesting that there is no col-
laboration pretrend in the data; that is, it is only once
travel costs are reduced that the coefficients turn
positive and statistically significant.
A graphical version of a similar exercise with a full set

of coefficient estimates for the five years before and five
years after Southwest entry is displayed in Figure 1.
There is again no collaboration pretrend before South-
west launches a route, and it is only after the new route
is available that the estimated coefficients are positive
and steadily increasing in magnitude.25 It is useful to
highlight that publication lags in chemistry are sub-
stantially shorter than in the social sciences: when
studying the 10 major analytical chemistry journals
(1985–1999), Dióspatonyi et al. (2001) findmedian lags
between submission and publication of 3–10 months,
with some journals publishing papers within 2 months
of first submission.

Figure 1. (Color online) Dynamics of the Effect of
Southwest Entry: Individual-Pair Level

Notes. To generate this graph, we regress individual copublications
on year fixed effects, pair effects, and a set of indicator variables
corresponding to five years before Southwest entry, four years before
Southwest entry, etc., up to four years after Southwest entry, five years
after Southwest entry (one year before Southwest entry is omitted).
We then plot the coefficients associated with these indicator variables
against the time to and from Southwest entry, superimposing a linear
fit line before entry and after entry. The vertical bars represent 95%
confidence intervals. The coefficient for the year immediately before
entry is set to 0 and displayedwithout a confidence interval because it
is our baseline year.
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In column (5) of Table 4, we conduct a placebo test
where we randomly allocate Southwest entry events
to scientist pairs. The coefficient for Fake Southwest entry
is not significant and close to 0, suggesting that it
is not the structure of the panel or changes in the
data over time that are driving the result. In col-
umn (6) of Table 4, we conduct one more falsification
test by looking at entry events (not included in
the other regressions) where Southwest withdraws
from the market within two years. For these cases,
the point estimate of Southwest entry is close to 0
and insignificant.26

Overall, we believe results in Table 4 and Figure 1
provide robust support for a causal interpretation of
our main effect, and reassure us that we are not
simply measuring some underlying, unobservable
process that takes place with each entry event27 and

drives both Southwest decisions and the increase in
scientific collaboration.
While Southwest is the largest U.S. low-cost carrier in

terms of number of passengers transported, there are
other low-cost airlines operatingwithin the samemarket.
In Online Appendix Table A-12, we explore how our
results vary depending on whether a low-cost airline
is already operating on a route, as well as whether they
differ when other airlines (low-cost or not) start oper-
ating a flight in the same year as Southwest. Consistent
with the impact of Southwest on travel costs being
largest when no low-cost alternatives existed on the
same route, estimates are larger when Southwest is
the first low-cost to enter (Table A-12, column (2))28

and are positive but nonsignificant when another
low-cost was already operating between the same
airports (column (3)). Results are instead essentially

Table 4. Effect of Southwest Entry on Copublications at the Individual-Pair Level

(1) (2) (3) (4) (5) (6)

DV = Copublications Baseline Controls Controls Timing Placebo 1 Placebo 2

Southwest entry 0.505*** 0.526*** 0.526*** −0.029
(0.121) (0.121) (0.121) (0.216)

Mean age 0.153*** 0.268***
(0.008) (0.015)

Dept R&D budget per faculty (log) 0.364*** 0.364***
(0.127) (0.127)

Years since both have a PhD −0.230***
(0.022)

Southwest entry (−1) 0.078
(0.152)

Southwest entry (0) 0.485***
(0.150)

Southwest entry (1) 0.518***
(0.166)

Southwest entry (2) 0.582***
(0.181)

Fake Southwest entry (random timing) 0.095
(0.121)

Individual pair FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Number of pairs 758 758 758 758 758 171
Number of obs. 13,147 13,147 13,147 13,147 13,147 2,945

Notes. Robust standard errors are in parentheses. The dependent variable is the number of copublications
between pairs of scientists. Southwest entry is an indicator variable that takes a value of 1 if Southwest
has started operating a flight from airports close to the respective scientists. All specifications include
individual-pair fixed effects and year fixed effects. Column (1) is our baseline specification. Column (2)
adds controls for the age of the pair members and departmental R&D budget per faculty (both variables are
means across the two pairs’members). Column (3) additionally controls for the numbers of years that have
passed since both pairs’ members obtained their PhD’s. Column (4) replaces Southwest entry with a set of
indicator variables corresponding to different times from or since entry: Southwest entry (−1) is an indicator
variable if the observation is in the year preceding Southwest entry; Southwest entry (0), Southwest entry (1),
and Southwest entry (2+) are defined analogously for the year of the Southwest entry, the year after the
Southwest entry, and two years or more after the Southwest entry, respectively. Column (5) is a placebo
where we pretend Southwest entry has occurred in a random year for each pair. Column (6) is a placebo
where we look at the set of pairs (not included in the baseline specification) who experienced a Southwest
entry followed by a Southwest exit event shortly thereafter. Estimation by Poisson quasi-maximum
likelihood. DV, dependent variable; FE, fixed effects.

***p< 0.01.
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unchanged if we exclude cases where other low-cost
airlines enter at the same time (column (4)), other ma-
jor airlines29 enter at the same time (column (5)), or any
other airline enters at the same time (column (6)). We
conclude that our results are robust to considering
concurrent entry by other airlines.30

Results are also not driven by the fact that our sample
includes only pairs that ever collaborate: when we in-
clude a random sample of noncollaborating pairs and
replace individual-pair fixed effects with university-pair
fixed effects,31 we find comparable effects of Southwest
entry (see Online Appendix Table A-3). In Online Ap-
pendix Table A-14, we decompose the main effect by
pairs of scientists who collaborate both before and after
Southwest entry (intensive margin pairs) versus pairs
of scientists who collaborate either before or after entry,
but not both (extensive margin pairs).32 We find a
stronger effect for intensive margin pairs (column (3)),
although the cheaper fares also seem to enable exper-
imentation in the form of new collaborations over
distance (column (2)).33

In the online appendix, we perform additional ro-
bustness to different econometric approaches, functional
forms, clustering of standard errors, treatment of out-
liers, and inclusion in the sample of noncollaborating
pairs. In brief, we obtain qualitatively and quantitatively
similar results using ordinary least squares instead of
Poisson (see Table A-16, column (2)). We also obtain a
positive and significant coefficient for Southwest entry
(thoughof a somewhat smallermagnitude)whenwerun
a linear probability model with an indicator variable for
any copublication in the focal year as the dependent
variable (see Table A-16, column (3)). Clustering at the
city-pair level, rather than at the individual-pair level,
hardly impacts the standard errors (see column (3) of
Table A-2). The coefficient on Southwest entry remains
significant when we exclude pairs that have more than
two copublications over the entire observation period
or winsorize observations with more than two copu-
blications (see Table A-17).

3.3. Extensions and External Validity in
Different Samples

The analysis and results presented in the previous
section describe the effect of Southwest entry on the
rate of collaboration between chemistry faculty mem-
bers. Although this approach has the advantage of
leveraging rich individual-level data and offers a cleaner
identification strategy, one may also be interested in
replicating the analysis within a field with slightly
different characteristics, as well as testing external
validity within a broader set of fields. To do so, we
first perform a deep-dive withinmathematics (a field
for which we have also collected individual-level
data) and then explore regressions at the region-pair
level for biology, physics, and engineering. Results
show that the effect we have identified within chem-
istry is also present across these samples.

3.3.1. Increases in the Rate of Collaboration Within
Mathematics. The data set we use for mathematics
includes all U.S. faculty members that have advised
at least one PhD student.34 We observe 431 pairs of
individuals that experienced Southwest entry be-
tween 1993 and 2012 and have at least one copu-
blication in that period. We adopt the same empirical
strategy as in the chemistry sample and regress copu-
blications on an indicator variable for Southwest entry,
controlling for pair fixed effects and year fixed effects.
Results show that Southwest entry significantly in-
creases copublications in mathematics too.

3.3.2. Increases in the Rate of Collaboration Across
Regions. To test whether the availability of cheaper
flights had an effect on scientific collaboration across
abroader set offields,wealsousea large-scalepublication
data set covering close to a million papers matched to
U.S. regions (defined in terms of core-based statistical
areas, or CBSAs).35 Specifically, we explore how col-
laboration between any two CBSAs changed after
Southwest starts operating a new route between them.
The unit of analysis is the CBSA-pair-year (48,274
pairs), and we include CBSA-pair fixed effects and
year fixed effects to control for underlying differences
across regions that are consistent over time and for
overall time trend, respectively.36 The regressions also
include linear time trends for the origin and destina-
tion CBSA. For the estimation, we use a Poisson model
with standard errors clustered at the CBSA-pair level.
Results are displayed in Table 6: the point estimates

for Southwest entry at this more aggregated level of
analysis are significant not just in chemistry but also
in biology, physics, and engineering. Although the
estimated coefficients for chemistry, physics, and
engineering are not statistically different from each
other, the difference between chemistry and biology
is significant.

Table 5. Effect of Southwest Entry on Collaboration Among
Mathematicians

DV = Copublications
(1)

Mathematics

Southwest entry 0.247**
(0.123)

Pair fixed effects Yes
Year fixed effects Yes
Number of pairs 431
Number of observations 5,514

Notes. Robust standard errors are in parentheses. These regressions
are based on a data set of U.S. mathematicians constructed using
MathSciNet and the Mathematics Geneaology Project. DV, depen-
dent variable.

**p< 0.05.
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Overall, we conclude that the results from the chem-
istry sample are generalizable to other fields and that
the increase in collaboration is larger within biology.
We now turn to developing a simple model to place
our main finding into the broader context of how geo-
graphic frictions shape collaboration and to guide the
empirical exploration of additional predictions.

4. Theoretical Framework
The objective of this section is to develop a simple the-
oretical framework to highlight key trade-offs scientists
face when deciding whether they should collaborate
with a local or a distant coauthor and how much effort
they should dedicate to a collaboration based on its in-
trinsic potential. The model generates novel predictions
about how travel costs shape collaboration decisions,
which we then test using our data.

We start by assuming that because the global pool
of potential coauthors offers more variety than the
local one, it is, on average, possible to find better
matches when team formation is not constrained by
geographic distance. The quality of a match may
depend on complementary ideas, knowledge, skills,
equipment, and resources that a coauthor brings to a
project. Of course, because of agglomeration forces, as
the size, specialization, and quality of a region’s local
pool increases, scientists will rely less on distant co-
authors. To account for this, in an extension of the
baseline model, we allow for the share of “first-best”
coauthors available locally to vary.37

Our setup is straightforward: ideas are born with
intrinsic quality q but require effort e to be developed
and achieve their full potential v. Because scientists
observe a noisy signal of q before starting a project,
they will allocate more effort, time, and resources to

projects that have higher potential (i.e., in our model,
effort is endogenous to potential). At the same time,
because research constitutes an uncertain endeavor,
even when scientists apply effort, projects are only
successful with probability p, which depends on the
quality of the coauthor match. Thus, the realized
value of a project can be expressed as v � piqe, where pi
(with i � G,B) is higher when a good match between
coauthors is achieved (pG) relative to a badmatch (pB).
Although a two-sidedmatching framework would be
more realistic, in the model, we abstract away from a
setupwhere collaboration decisions are influenced by
both sides. Our approach follows a partial equilib-
rium model in which the pool of potential applicants
always accepts a collaboration when invited and
where proposers invite potential coauthors only if
they know the project is a fit for them and an in-
teresting one for them to pursue.
Whereas the global pool may offer a better match

between coauthors (i.e., pG) and increase the chances
of realizing a project’s full potential v, collaborating
over distance introduces additional costs, as scientists
have to travel for face-to-face interactions andmay be
less effective at communicating complex information
remotely. As a result, scientists face a trade-off be-
tween less choice locally and increased communica-
tion and travel costs over distance.
It is important to highlight that the model is

not focused on the decision to collaborate (see, e.g.,
Bikard et al. 2015) nor on the type of project to pursue
(this is discovered by the scientist at the start) but is
explicitly centered on a situation where a scientist is
looking for the best coauthor for a particular idea.
Because we cannot empirically measure search be-
havior and search frictions, the model also abstracts

Table 6. Southwest Entry and Collaborations Between U.S. Regions (CBSAs)

(1) (2) (3) (4) (5)

DV = Copublications All Chemistry Biology Physics Engineering

Southwest entry 0.503*** 0.159*** 0.494*** 0.141*** 0.238***
(0.020) (0.033) (0.032) (0.031) (0.055)

CBSA pair fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
City trends Yes Yes Yes Yes Yes
Testing H0 (3) = (2) (4) = (2) (5) = (2)
p-value 0.045 0.701 0.216
Number of pairs 48,274 15,303 22,079 15,872 7,635
Number of observations 965,480 306,060 441,580 317,440 152,700

Notes Robust standard errors are in parentheses. These regressions are run at the CBSA-pair level. The
dependent variable is the number of copublications between pairs of CBSAs. Southwest entry is an
indicator variable that takes a value of 1 if Southwest has started operating a flight from airports close to
the respective cities. Column (1) is based on copublications in all journals in our sample. Columns (2),
(3), (4), and (5) are based on chemistry, biology, physics, and engineering journals, respectively. All
specifications include CBSA-pair fixed effects, year fixed effects, an origin-CBSA time trend, and a
destination-CBSA time trend. We also report p-values of statistical tests for the equality of Southwest entry
coefficients across samples. Estimation by Poisson quasi-maximum likelihood. DV, dependent variable.

***p< 0.01.
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away from search costs and assumes that the broader
talent pool a scientist is considering is formed by all
the individuals a focal researcher is already aware of,
has previously met at a conference, has been colo-
catedwith, or has readwork by. Boudreau et al. (2017)
find that search costs constitute a key friction to
collaboration even within the same institution, so we
make the simplifying assumption of these costs being
present both for local and for distant collaboration
decisions. In the model, we also abstract away from
scientists’ budgets: although in the regressions we are
able to use departmental R&D budget data to explore
heterogeneous effects, in the theorywedo not account
for the fact that scientists at better-funded institutions,
or more productive scientists in general, may have
access to larger budgets and may be therefore less
sensitive to changes in travel costs. If that were the
case, then the reduction in travel costs could dispro-
portionately help lower-productivity researchers. We
also do not model endogenous time to project com-
pletion as a function of travel intensity or team dy-
namics beyond two authors. Nevertheless, the stylized
framework allows us to obtain several additional
predictions that we then take to the data.

In the next sections,we perform comparative statics
and explore the main tensions of the model in more
detail.

4.1. Local vs. Distant Collaborations
The scientist’s payoff from developing an idea with a
local coauthor for a given level of effort e is

πL(e) � pBqe − c(e), (1)

where c(e) is the cost of effort, which we assume for
tractability to have the following convex function:
c(e) � α

2 e
2. Thus, Equation (1) can be rewritten as

πL(e) � pBqe − α

2
e2. (2)

The first-order condition yields an optimal effort level
of e∗L � pBq

α , which is increasing both in project quality q
and in the quality of the coauthor match pB. In-
tuitively, scientists are more willing to apply effort to
projects with higher potential and to projects they are
working on with better-matched coauthors. Inserting e∗L
back into (2), we obtain a scientist’s payoff for a local
collaboration given the optimal effort level as

π∗
L �

pBq
( )

2

2α
. (3)

How does this compare with a distant collaboration?
In our setup, over distance, scientists have a higher
chance of securing the ideal coauthor because the
global pool offers more variety. At the same time, this
does not happen all the time, and scientists have to

incur additional communication and travel costs ti
to develop a project over distance. We assume that
with probability z, scientists find a first-best coauthor
and secure pG, andwith probability (1 − z), they land a
coauthor of the exact same level they would have
found in the local pool pB. Thus, the payoff for a
distant collaboration can be written as

πD(e, t) � (1 − z) pBqeB − α
e2B

1 + tB
− βt2B

[ ]

+ z pGqeG − α
e2G

1 + tG
− βt2G

[ ]
, (4)

where ei and ti with i � G,B are the optimally chosen
levels of effort and travel for perfectly matched co-
authors (pG) versus imperfectly matched ones (pB).
Traveling not only enters as a convex cost38 (ti � [0, 1],

scaled by a parameter β),39 but also increases the
chances of success because it improves the ability to
communicate complex information, coordinate work,
and make progress on a project through face-to-face
interactions. This trade-off allows for interesting cases
to emerge where temporary colocation between distant
coauthors is expensive but also helpful, and it can
therefore lead tobothhigherand lowerpayoffs relative to
a collaboration on the same project with a local coauthor.
The basic dynamic wewant to capture is one inwhich

collaboration and communication require less effort
when scientists are colocatedbutwhere travel can also be
strategically used to recreate the same efficiencies ex-
perienced in local collaborations. When communicating
over email or phone, coauthorsmay needmore time and
effort to convey the same concepts and avoid mis-
understanding, and when in-person meetings are in-
frequent, it may take more time for a team to get ev-
eryone up to speed and make progress. In the model,
distant coauthors can either spend more effort and
communicate overdistance or invest in travel and relyon
more effective face-to-face interactions.40

For simplicity, we assume that once a local versus
distant coauthor has been chosen for a project, it is too
costly to switch types without starting a completely
new project.41 We also assume that before a sub-
stantial amount of effort and travel is dedicated to a
project, the quality of a coauthor match has been
revealed. The first-order conditions with respect to
effort and traveling are respectively

eD(tD) � piq(1 + tD)
2α

,

α
e2D

(1 + tD)2 − 2βtD � 0,

where i � B,G depends on whether the distant co-
author has led to a first-best or a second-best match.
Combining both first-order conditions, one can show
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that the optimal levels of travel and effort for a distant
collaboration are

t∗i �
piq
( )

2

8αβ
, (5)

e∗i �
piq
2α

1 + t∗i
( ) � piq

2α

(
1 + piq

( )
2

8αβ

)
. (6)

If we plug these back into the payoff function, we obtain

π∗
i �

piq
( )

2

4α

(
1 + 1

2
t∗i

)
� piq
( )

2

4α

(
1 + piq

( )
2

16αβ

)
. (7)

Thus, the overall payoff over distance is

π∗
D � (1 − z)π∗

B + zπ∗
G. (8)

Comparing the payoff equation (3) for local collabora-
tions with Equation (8) for distant ones is informative
independent of travel costs (which we discuss in detail
in the next section). For example, it allows us to explore
how the relative appeal of a local versus a distant col-
laboration changes as the comparative advantage of
the global pool (z) over the local one varies:

∂ π∗
D − π∗

L

[ ]
∂z

� π∗
G − π∗

B > 0. (9)

Intuitively, an increase in the likelihood of finding a
first-best coauthor in the global pool will lead to a rel-
ative increase in the payoff for distant over local col-
laborations. Similarly, if scientists enjoy a high-quality
local environment with good matches (e.g., they are in
an agglomerated research cluster), they will find lim-
ited benefits from collaborating over distance.

Until now,we have assumed that all scientific projects
have the same probability of failure. At the same time,
novel, exploratory, and cross-disciplinary projects are
more likely to fail relative to incremental research or
work that does not attempt to recombine knowledge
across different disciplines (National Academies 2004,
Wang et al. 2017). To account for this, we introduce
γ and link it to the overall probability of success
through pG � (1 + γ)pB. What wewant to capture with
γ is a tension between exploitation (low γ) and ex-
ploration (high γ). Exploratory projects, whether be-
cause they are novel or because they bring together
disciplines that rarely interact with each other, are
more likely to fail, and they benefit disproportion-
ately from finding the right coauthor. The intuition
here is that for cross-disciplinary research, a scientist
needs to find the exact specialist with whom to pursue
the project,42 and similarly, when novelty is high, the
returns from working with a better coauthor are also
higher. Novel projects are very likely to fail to begin
with and may be particularly sensitive to the weakest
member of a team, as discussed in Kremer’s (1993)
O-ring theory. Whereas in the baseline model we

discuss novelty and across-field specialization together—
as they share many similarities and both fit under the
broader framework of exploratory versus exploitative
research—in the extensions we separate the two con-
structs further by incorporating uncertainty and higher
variance about the potential states of the world in
Online Appendix D and by modeling coauthor spe-
cialization directly in Online Appendix E. Because the
implications are similar, in this paper we focus on the
simplified implementation based on γ.
For a given pB, a low γmeans that the quality of the

match between coauthors will have a minor influence
on the chances of realizing a project’s full potential.
Low γ exploitation projects are therefore relatively
more straightforward research where most of the
techniques and ideas are established (or everyone has
access to similar infrastructure to work on them), and
the gap between working with the best possible co-
author versus anyone else is small. When γ is low, the
relative appeal of the global talent pool is more limited.
For high γ exploration projects, instead, scientists will
be more willing to travel to work with the ideal co-
author and increase their chances of success:

∂ π∗
D − π∗

L

[ ]
∂γ

� z
∂ π∗

G

[ ]
∂γ

> 0. (10)

An extreme example of this from a specialization
perspective is a project for which there are only a few
leading experts or key labs with the right equipment
(e.g., CERN (European Organization for Nuclear Re-
search), LIGO (Laser Interferometer Gravitational-Wave
Observatory)), and the difference betweenworkingwith
them relative to workingwith a local alternative is large.
Last, when comparing local versus distant collab-

orations, it is useful to point out that increases in the
underlying, intrinsic project quality (q) have an am-
biguous effect on the choice of coauthor type. As
shown in the online appendix, which type of col-
laborations prevail still depends on the basic trade-off
between the quality of the match between scientists
and travel costs (because a distant collaboration can
still leave a scientist with a match of similar quality to
the local alternative).

4.2. Reductions in Travel Costs and Changes in the
Types of Collaborations

How does a reduction in travel costs affect the types
of collaborations scientists engage in? In this section,
we perform comparative statics to see how cheaper
fares such as the ones brought by a low-cost airline
change the relative attractiveness of local versus
distant collaborations, and how this effect varies for
projects of different types (higher versus lower po-
tential, novelty, interdisciplinarity, etc.). To simplify
the notation and exposition, we define θ � 1

β (which is
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the inverse of travel costs) as the “ease of travel.”One
can think of an improvement in θ as better infrastruc-
ture that allows scientists to meet with their distant
coauthors at a lower cost and with lower frictions.
The derivative of relative returns with respect to θ is

∂ π∗
D − π∗

L

[ ]
∂θ

�
(
q2

8α

)2
(1 − z)p4B + zp4G
[ ]

> 0; (11)

θ does not matter for the returns to local collabora-
tions (π∗

L) as no travel is required, but it makes face-to-
face interactions with distant coauthors less expen-
sive. Therefore, it is intuitive that with better travel
technology the relative attractiveness of the global
talent pool increases,43 as accessing it is now more
cost effective.

But how does this effect vary with the ex ante
relative competitiveness of the local pool? That is,
how does this vary for regions that offer better versus
worse alternatives to begin with? Remember that this
is captured in our framework by the share of first-best
coauthors who are in the global pool z. Taking the
first-order conditionwith respect toθ and z, we obtain

∂ π∗
D − π∗

L

[ ]
∂θ∂z

�
(
q2

8α

)2
p4G − p4B
( )

> 0, (12)

which leads to the following prediction.

Prediction 1. A reduction in travel costs will be especially
beneficial for researchers who have access, ex ante, to a
relatively worse pool of local coauthors.

From an empirical standpoint, if highly productive
researchers embedded in worse local environments
start substituting local collaborations with better-
matched ones over distance, we should see evidence
of crowding-out behavior.

If we take the derivative of relative returns with
respect to quality too,

∂ π∗
D − π∗

L

[ ]
∂θ∂q

� q

(
q2

4α

)2
(1 − z)p4B + zp4G
[ ]

> 0, (13)

we see that after an improvement in the ease of travel,
higher-quality projects are more likely to be under-
taken with better-matched coauthors (which are more
abundant over distance). The intuition here is that as
travel costs fall, scientists are more likely to travel to
matchwith a better coauthor. This is disproportionately
valuable when the returns to travel and effort on a
project are high to begin with (i.e., for ideas of high
potential). This leads us to our second prediction.

Prediction 2. A reduction in travel costs will be espe-
cially beneficial for distant collaborations on higher-quality
projects.

Last, if we do not assume that all projects have
the same probability of failure and separate exploratory
from exploitative projects by introducing γ, we obtain

∂ π∗
D − π∗

L

[ ]
∂θ∂γ

� z

(
q2

4α

)2
(1 + γ)3p4B > 0, (14)

which shows that a reduction in travel costsmakes the
global pool disproportionately more appealing for
exploratory projects (high γ),44 which can be restated
as follows.

Prediction 3. A reduction in travel costs will be especially
beneficial for distant collaboration on novel or cross-
disciplinary projects.

Empirically, to proxy for γ, wewill rely on hownovel
the keywords used by the authors on a focal paper are,
as well as explore results for collaborations that span
different subfields of chemistry versus those that not.
We now return to the data to test these predictions.

5. Testing the Theoretical Framework
5.1. Types of Scientists Affected and Crowding Out
Having shown evidence in Section 3 that Southwest
entry led to a plausibly causal increase in collaboration
between the affected scientists, we now take advantage
of this source of exogenous variation to test the addi-
tional predictions from the theoretical framework.
The first prediction of the model focuses on the

impact travel costs have on scientists embedded within
better versus worse local research environments. Intu-
itively, agglomerated regions with a greater number
of potential collaborators offer, on average, better local
matches to begin with, which makes the global scien-
tist pool relatively less appealing. Because it is diffi-
cult to build accurate proxies for the number of ideal
coauthors a specific scientist may have access to
without traveling, we rely on past productivity to
assess whether a scientist from a given department is
more or less likely to find a good match locally.
As can be seen in panel A of Table 7 (columns (1)– (3)),

the increase in collaboration we observe in chemistry
after the arrival of Southwest is driven by scientist
pairs where at least one member is more productive
than her local peers, and it is even more pronounced
when both scientists are more productive than their
colleagues. In themathematics sample, wherewe only
have a small number of observations in column (1),
the effect is positive and significant only for pairs
that are both more productive than their local peers
(column (3)), possibly because distant collaborations
are more rare and selected in this field to begin with.
Overall, the cheaper fares seem to be particularly

helpful for individuals who are talented but potentially
do not have access to coauthors of comparable qual-
ity within their local environment. They might be in
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peripheral institutions because of imperfections in the
labor market or simply because of their geographic pref-
erences. With lower travel costs, these individuals are
able to find and sustain better matches over distance.

As mentioned in the theoretical framework, a
natural consequence of highly productive scientists
prioritizing distant coauthors in their collaboration
portfolio because of the lower fares is a crowding-out
effect on local collaborations. In Table 8, we explore
whether the cheaper fares have a negative impact on
the local collaboration environment. Whereas local
copublications are slightly increasing (column (1)), this
result is really a composition of two different, counter-
vailing effects. On the one hand, less productive pairs
seem to be working together more with each other
(column (3)). On the other hand, we see a sharp decline
in collaborations between above-average productivity
scientists and their local, below-average productiv-
ity peers (column (2)).45 This makes sense, as higher-
productivity individuals are also the ones who re-
spond the most to Southwest entry to begin with.
Interestingly, we find this crowding-out pattern both
in the chemistry and in the mathematics samples, sug-
gesting that when better options become available over
distance, highly productive scientists substitute local

collaborations with potentially better-matched ones
over distance.
In Online Appendix Table A-19, we present addi-

tional splits of the data beyond those predicted by the
theory. The effect of Southwest is stronger for younger
scientists (panel A) and scientists who are more distant
from each other (panel C). We do not find a statistically
significant difference in effect size by departmental R&D
budget (panel B), even though the estimate for de-
partments with low budgets is almost twice as large
as the other ones. Finally, pairs where one or both
scientists are female do not respond to lower travel
costs, possibly because women may have more con-
strained travel schedules.

5.2. Changes in the Type of Projects
The next set of predictions of the model link the re-
duction in geographic frictions to an increase in the
amount of time and effort allocated to higher quality
(Prediction 2) and more novel or cross-disciplinary
projects with distant coauthors (Prediction 3). As dis-
cussed in Section 2.1, we proxy for the quality of pro-
jects using citations and for high γ projects by looking
both at projects that span different subfields and at
research that uses novel keywords or belongs to an

Table 7. Effect of Southwest Entry on Copublications: Which Pairs Are Most Affected?

DV = Copublications

Panel A: Chemistry

(1) (2) (3) (4) (5)

Both less productive One more productive Both more productive Same type of chemistry Different type of chemistry

Southwest entry 0.228 0.566*** 0.863*** 0.340** 0.668***
(0.292) (0.153) (0.272) (0.164) (0.165)

Pair fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Testing H0 (2) = (1) (3) = (1) (4) = (5)
p-value 0.015 0.003 0.002
Number of pairs 154 403 101 417 341
Number of observations 2,498 6,597 1,630 7,183 5,964

Panel B: Mathematics

(1) (2) (3) (4) (5)
DV = Copublications Both less productive One more productive Both more productive Same type of math Different type of math

Southwest entry 0.196 0.002 0.374** 0.260 0.204
(0.364) (0.192) (0.155) (0.173) (0.158)

Pair fixed effects Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes
Testing H0 (2) = (1) (3) = (1) (4) = (5)
p-value 0.638 0.653 0.900
Number of pairs 61 155 263 180 299
Number of observations 859 2,001 3,318 2,223 3,955

Notes. Robust standard errors are in parentheses. Panel A corresponds to our main chemistry sample. Panel B corresponds to the mathematics
sample. The dependent variable in all specifications is the number of copublications. Different columns correspond to different subsamples in
terms of productivity (columns (1)–(3)) and whether both pair members are specialized in the same subfield (column (4)). Productivity is
measured at the time of Southwest entry. All specifications are estimated by Poisson quasi-maximum likelihood and include year fixed
effects and pair fixed effects. DV, dependent variable.

* p< 0.1; ** p< 0.05; *** p< 0.01.
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emerging novel trend. If exploratory projects (high γ)
are more likely to fail, then our estimate will likely
underestimate the full impact of a reduction in
travel costs on this set of projects, as many will be
abandoned and never turn into a publication to
begin with.

In terms of project quality, in column (1) of Table 9,
we condition on collaboration and weight the de-
pendent variable, copublications, by citations received
(a proxy for scientific impact and quality). Consistent
with Prediction 2 and with the idea that lower travel

costs induce scientists to allocate disproportionately
more effort to distant collaborations as quality
increases, we observe a larger effect of Southwest entry
on right tail projects.
In terms of interdisciplinarity, in panel A, columns (4)

and (5) of Table 7, we see that after Southwest en-
ters, collaborations between scientists specialized in
different subfields of chemistry increase dispropor-
tionately relative to other types of collaborations.46

These interdisciplinary projects may benefit more
from face-to-face interactions because of a greater

Table 9. Effect of Southwest Entry on the Type of Collaborations

(1) (2) (3) (4) (5) (6) (7) (8)

Cites
Novel
trends

Mean share
novel

Max share
novel

Total share
novel

Novel in
field

Equipment
intensive 1

Equipment
intensive 2

Southwest entry 0.420* 1.175* 0.057* 0.069* 0.093* −0.008 0.839*** 0.647*
(0.234) (0.687) (0.034) (0.040) (0.048) (0.085) (0.303) (0.356)

Pair fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes
Number of pairs 189 37 758 758 758 758 74 74
Number of obs. 606 137 1,177 1,177 1,177 1,177 261 261

Notes. Robust standard errors are in parentheses. These regressions are conditional on the pair having collaborated in the focal year. The
dependent variables are the number of cites received (column (1)), various measures of novelty based on keywords (columns (2)–(6)), and the
number of equipment-intensive collaborations based on keywords (columns (7) and (8)). Pairs that never have a nonzero value of the dependent
variable are dropped from the regressions. All specifications include individual-pair fixed effects and year fixed effects. Estimation by Poisson
quasi-maximum likelihood.

*p< 0.1; **p< 0.05; ***p< 0.01.

Table 8. Southwest Entry and Local Copublications

(1) (2) (3)

All local pairs
More productive pairs with

less productive local colleagues
Less productive pairs with

less productive local colleagues

Panel A: Chemistry

Southwest entry 0.092** −0.686*** 0.169**
(0.040) (0.262) (0.070)

Pair fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
No. of pairs 741 126 547
No. of obs. 12,939 2,305 9,533

Panel B: Mathematics

Southwest entry 0.196*** −0.838* 0.471**
(0.064) (0.457) (0.219)

Pair fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
No. of pairs 896 60 186
No. of obs. 11,665 848 2,484

Notes. Robust standard errors are in parentheses. Panel A corresponds to our main chemistry sample. Panel B corresponds to the mathematics
sample. In both samples, we construct the set of local copublications of pairs affected by Southwest entry and use it as the dependent variable in
column (1). We also tag the set of local copublications with local colleagues whose productivity is below departmental average in the years
preceding Southwest entry and use it as the dependent variable in columns (2) and (3). The specification of column (2) is run on the sample of
pairs where both members are above departmental average in productivity. The specification of column (3) is run on the sample of pairs where
one or both members are below departmental average in productivity. Pairs that have all zero outcomes are dropped from the respective
regressions, which results in the number of observations in columns (2) and (3) not summing up to the number of observations in column (1).
All specifications are estimated by Poisson quasi-maximum likelihood and include pair fixed effects and year fixed effects.

*p< 0.1; **p< 0.05; ***p< 0.01.
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need to exchange complex information that may be
new for at least one of the participants or because these
pairs cannot rely on a shared, discipline-specific vo-
cabulary to streamline communications over distance.

Beyond complementarities in ideas and knowl-
edge, cross-disciplinary work between specialized
labs can also be captured through complementarities
in equipment and infrastructure. In columns (7) and (8)
of Table 9, the dependent variables are the number
of equipment-intensive copublications (Equipment 1)
and the count of equipment-related keywords used
in the focal papers (Equipment 2), respectively.47 Al-
though these types of collaborations are more rare,
the effect of Southwest entry is large and significant,
suggesting that, at least within chemistry, speciali-
zation driven by equipment may play a key role in
how scientists select into distant collaborations. In
Online Appendix Table A-20, we perform a similar
regression without relying on equipment-related
keywords but taking advantage of data on capital
intensity by department: results show that the lower
fares have the largest effect on collaborations where
one of the scientists belongs to a capital-intensive
group and the other one does not.

Finally, in columns (2)–(6) of Table 9, we look di-
rectly at different measures of novelty. Results are
consistent across the dependent variables and provide
further support for Prediction 3. After Southwest en-
ters, we see an increase in collaborations that focus on
emerging novel trends and topics that are about to be-
come “hot” (column (2)), as well as an increase in the
use of novel keywords (columns (3)–(5)). Interestingly,
when we define novelty within the more narrow con-
fines of a subdomain (column (6)), the result is insig-
nificant, possibly because some of the novel uses from
columns (2)–(5) may represent ideas that are being
slowly incubated within a subdomain but have not
diffused more broadly yet.

Next, we study how Southwest entry changes the
types of collaborations that are pursued at the regional
level. The analysis of collaborations at the dyadic level
between chemistry faculty members already suggests
that lower travel costs are particularly beneficial for
higher-quality, interdisciplinary, equipment-intensive,
and more novel projects. However, the estimates are
significant but noisy because of the smaller sample size
when looking at these rare outcomes. We therefore
replicate our analysis within a broader set of papers
in chemistry and related fields. The analysis is at the
CBSA-pair-year level and includes CBSA-pair fixed
effects and year fixed effects.
The effects (see Table 10) are consistent with our

previous findings and highlight that lower travel
costs have a disproportionate effect on the right tail
of the quality distribution and on more novel, cross-
disciplinary, and equipment-intensive projects. The
impact of these changes is large, with increases in
aggregate output between 9% and 40% (column (1)).
This corresponds to roughly 300 extra copublications
per year.48 We also find support for the other pre-
dictions. Novel ideas increase between 15% and 80%
(column (4)), but the estimate is noisy (as in Table 9)
when we estimate novelty within subfields, and
equipment-intensive collaborations increase between
5% and 50%.
Our analyses so far have focused on how reduc-

tions in travel costs induced by Southwest entry affect
pair-level outcomes. Our model, however, also pre-
dicts that higher impact projects should mostly result
from distant rather than local collaborations. To test
this implication, we focus on individual researchers
and change the unit of analysis to a paper, which we
flag as local or distant.49 We then regress the num-
ber of citations a paper receives on an indicator var-
iable for whether the paper resulted from a distant
collaboration (the omitted category being a local

Table 10. Effect of Southwest Entry on the Type of Collaborations (CBSA Level)

Quality
Type

(1) (2) (3) (4) (5) (6) (7) (8)

Copubs
Cites-weighted

copubs
Novel
trends

Novel
overall

Novel in
field

Across-field
copubs

Equipment
intensive 1

Equipment
intensive 2

Southwest entry 0.208*** 0.240** 0.235*** 0.365*** 0.125* 0.266** 0.264*** 0.236**
(0.0647) (0.0995) (0.0710) (0.112) (0.0687) (0.116) (0.0871) (0.0939)

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
CBSA-pair FE Yes Yes Yes Yes Yes Yes Yes Yes
Obs. 40,227 39,517 34,847 28,616 36,704 27,379 29,767 29,767

Notes. Robust standard errors are in parentheses. These regressions are run at the CBSA-pair level and are based on a large sample of
publications in chemistry and chemistry-related fields. The dependent variable in column (1) is the number of copublications between pairs of
CBSAs. Column (2) uses citation-weighted copublications as the dependent variable. Columns (3)–(5) use our different specifications of novelty.
Column (6) counts across-field collaborations and columns (7) and (8) equipment-intensive ones, as inferred from the keywords associated with
the papers. FE, fixed effects.

*p< 0.1; **p< 0.05; ***p< 0.01.
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collaboration), controlling for year fixed effects and
scientists fixed effects. We find that long-distance
collaborations get 6%–7% more cites than local ones
in chemistry and 21%–24% more in mathematics
(Table 11). These results are consistent with the often-
reported stylized fact that distant collaborations are
more heavily cited (Jones et al. 2008).

6. Conclusions
The paper explores how geographic frictions, and in
particular travel costs, shape the rate and direction of
scientific research. Whereas previous work has mostly
focused on communication costs and their impact on
the rate of collaboration, our paper emphasizes other
effects distance-related frictions can have on innova-
tive outcomes, including the type of projects that are
pursued with local versus distant teams.

Whereas both Gaspar and Glaeser (1998) and Kim
et al. (2009) have suggested that the secular decline in
air travel costs might have led to an increase in sci-
entific collaborations, they do not take their pre-
diction to the data, making this the first study to do so
to our knowledge. We build on a vibrant literature
that has looked at how scientists respond to reductions
in communication costs and how changes in the in-
frastructure of collaboration can counterbalance pre-
existing geographic frictions (Agrawal and Goldfarb
2008, Ding et al. 2010). In particular, our finding that
highly productive scientists who are embedded in
worse local environments disproportionately benefit
from reductions in travel costs is complementary to
the Agrawal and Goldfarb (2008) result that re-
ductions in communication costs allow for better

matches between top-tier andmiddle-tier institutions
from the same region. It is also consistent with the
Ding et al. (2010) finding that lower communication
costs help scientists from non-elite institutions. Relative
to reductions in communication costs, which Ding et al.
(2010) show have a positive effect on female scien-
tists, in our setting, lower travel costs only help
men—possibly because female scientists have more
constraints on their travel schedules.50

The paper also extends work that studies the effect
of geographic frictions at a much smaller scale, as it
provides insights on how easier access to better, distant
collaborators influences local collaboration decisions.
Whereas studies at the microgeographic level have
shown that colocation influences the probability and
quality of collaboration (Catalini 2018), we show that
additional, and at times opposing forces may be at
work at a larger scale through travel costs. Our find-
ings also call for more research on the exact form search
costs take when scientists explore collaborations
with local versus distant coauthors: whereas our model
abstracts away from these frictions, Boudreau et al.
(2017) show that they are a major obstacle even for
colocated individuals.
Our theoretical framework builds on the tension be-

tween lower collaboration costs when colocated and the
availability of a broader set of potential collaborators
over distance.We start from this basic trade-off and then
explore some of the key choices scientists face when
deciding whether they should collaborate locally versus
over distance, how much effort to allocate to projects
of different potential, and with whom they should
pursue amore novel or interdisciplinary project.We test
the predictions from this framework by taking ad-
vantage of a source of plausibly exogenous varia-
tion in travel costs: the differential timing of entry by
a low-cost carrier across multiple U.S. airports. Our
difference-in-differences empirical strategy, com-
bined with a series of robustness and falsification
tests, supports the idea that the availability of lower
fares has a causal effect on the probability and in-
tensity of collaboration between scientists.51 The effect
is particularly pronounced for scientists who are less
likely to find coauthors of the same qualitywithin their
local environment; is present across multiple fields of
science (chemistry, physics, biology, engineering,
mathematics); and is robust to controlling for idio-
syncratic scientist-pair characteristics, trends in col-
laboration over time, and department R&D budgets.
Moreover, we do not observe a pretrend in collabo-
ration between scientist pairs who are going to ex-
perience lower air travel costs in the future.
Consistent with the theory presented, the reduction

in geographic frictions also transforms the types of
projects that emerge, influencing the direction of in-
novation:52 our estimates suggest a sizable increase

Table 11. Quality of Distant and Local Collaborations at the
Scientist Level

(1) (2)

Cites Cites

Chemistry Math

Distant collaboration 0.0674*** 0.2277***
(local collaboration omitted) (0.0026) (0.0069)
Individual fixed effects Yes Yes
Year fixed effects Yes Yes
Number of pairs 4,737 2,104
Number of observations 46,060 12,187

Notes. Robust standard errors in parentheses. The data underlying
these regressions are the same as in the main analyses but are now
structured at the individual scientist level. An observation is a paper
that we tag as either a distant or a local collaboration; papers not
involving a collaboration with another faculty member are excluded.
The dependent variable is the number of cites received, and the
variable of interest is whether the paper is a distant collaboration,
with local collaborations as the omitted category. All specifications
are estimated by Poisson quasi-maximum likelihood and include
individual scientist fixed effects and year fixed effects.

***p< 0.01.
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in higher-quality papers and in projects that span
different subdisciplines, are more intensive in their
use of specialized equipment, and are more novel.
Comparisons between our findings in chemistry and
mathematics suggest that complementarities in spe-
cialized equipment—although important for collab-
oration decisions between distant labs—are not the
only driver behind the observed increase in joint
projects over distance. Scientists also launch more
experimental projects and projects that seem to take
advantage of the complementary skills, ideas, and
knowledge that a distant laboratory may contribute
to a collaboration.

Beyond the lower fares introduced by the low-cost
airline we study in the paper, the cost per mile in the
United States has dropped by over 50% in the
last 30 years (Perry 2014),53 and convenience and
routes have greatly improved. Our results should be
therefore interpreted within this broader context of
improvements in our ability to travel and work with
distant collaborators. Whereas we cleanly estimate
the impact of only part of these changes, improve-
ments in air travel are likely to affect a much larger
population of individuals. This includes inventors
and researchers working within firms or public or-
ganizations that have multiple sites and face a similar
trade-off between the ability to form ideal teams
when not constraining their search for participants to
one location and the additional communication, co-
ordination, and travel costs geographically dispersed
teams entail.54 As advancements in communication
technology make online interactions increasingly
closer in latency and fidelity to offline ones, more
research is needed to understand why face-to-face
exchanges still appear to be a complement rather than
a substitute to remote ones. In particular, whereas
online exchanges seem to work well for executing on
existing ideas, offline ones may still offer greater
serendipity (Catalini 2018). Moreover, trust between
participants—often a prerequisite for collaboration
when uncertainty makes it difficult to precisely
evaluate individual contributions and effort—seems
to still depend on individuals having spent enough
unstructured time together in the same location.

Overall, relative to location decisions, which are
extremely expensive for organizations to shape in the
short run, this paper shows that investments targeted
at facilitating travel and incentivizing face-to-face
interactions may have higher returns than previ-
ously expected. This is because they affect not only the
intensity of collaboration but also the quality and
impact of the resulting work. By facilitating better
matches and more productive teams, they also sup-
port novel recombinations of ideas. Although it may
be tempting for firms and public funding agencies to
assume that they can rely on technology to reduce costs

and replace travel, our results support the view that—at
least in the case of innovative outcomes—this is un-
likely to be the case. The findings also show that this
constitutes an opportunity for these organizations, as
support for travel is a flexible policy lever that can be
adjusted over time to shape R&D trajectories.
Whereas geographic distance acts as a sizable dis-

incentive to collaboration and idea recombination, or-
ganizations can institutionalize and encourage travel
to offset its effect. From a policy perspective, support
for travel and better infrastructure can also be used to
offer better opportunities to individuals and organi-
zations located away from key economic and innova-
tion hubs, to influence the strategic location decisions
of firms, and to ultimately support economic growth.
Firms with a geographically dispersed customer base
rely on air travel (both for cargo and for employees) to
remain competitive, and there have beenmultiple cases
in recent years of headquarters being moved, among
other reasons, for better access to flights: for example,
in 2017, Illinois-based Caterpillar Inc. decided to move
from Peoria to Chicago to better serve its customers,
the vast majority of whom are international.55 Further
exploring the trade-offs geographic frictions introduce
for individuals and firms in these different contexts is
a fruitful area for subsequent research.
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École Polytechnique Fédérale de Lausanne, Harvard Busi-
ness School, Imperial College London, the London School of
Economics, the Stockholm School of Economics, the Acad-
emy of Management, Universidad Carlos III, the National
University of Singapore, and Warwick Business School. All
errors are the authors’ own.

Endnotes
1Agrawal and Goldfarb’s (2008) study of Bitnet, an internet pre-
decessor, finds that as more academic institutions joined the network,
collaboration among affected scientists increased. Interestingly, their
results hint at the technology being a complement to offline interactions,
as coauthorship increases disproportionately amonguniversity pairs that
are colocated. Other studies have found an effect of Bitnet on collabo-
rations in the academic life sciences (Ding et al. 2010) and of the internet
on cooperative R&D between firms (Forman and Zeebroeck 2012).
2By 2000, less than 20% of papers in science and engineering were
single-authored. Similar patterns—and in particular, the rise of
coauthorship and distant coauthorship—have been documented in
economics. See Gaspar and Glaeser (1998), Hamermesh and Oster
(2002), and Rosenblatt and Mobius (2004).
3Chai and Freeman (2018) compare collaboration patterns among at-
tendees of a Gordon conference before and after the event in a difference-
in-differences framework using a carefully constructed control group of
qualitatively similar nonparticipants. They find that attendees are more
likely to be cited by and collaborate with other participants, especially if
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they were new to this community of experts. In a related paper, Campos
et al. (2018) document that a conference cancellation led to a decrease in
individuals’ likelihood of coauthoring together.
4 Southwest has been described as the most significant develop-
ment in the market structure of the U.S. airline industry by the
Transportation Research Board (1999) and by industrial economists
(Morrison 2001, Borenstein and Rose 2007, Goolsbee and Syverson
2008).
5Kim et al. (2009) and Freeman et al. (2014) note that secular declines
in both communication costs and air travel costs may have facilitated
long-distance collaborations.
6Chemistry, which focuses on the composition, structure, transfor-
mations, and properties of matter, is a large discipline, with chem-
istry PhD graduates accounting for about 15% of U.S. PhD life and
physical science graduates (NSF 2015).
7The American Chemical Society also produced a CD-ROM for the
years 1991–1993.
8 Scopus is one of the twomajor bibliometric databases (alongwith ISI
Web of Science). Our set of chemistry journals includes all journals
from the American Chemical Society, as well as any chemistry journal
with an impact factor above 2. Our set of multidisciplinary journals
includesNature, Science,Cell, and the Proceedings of theNational Academy
of Sciences of the United States of America. Our set of major journals in
neighboring disciplines includes all journals with an impact factor
above 6 in physics, biology, material science, and nanotechnology.
9Themajority (75%) of papersmatched to a facultymember have exactly
one faculty author, 21% have two, and less than 4% havemore than two
authors. Both papers with one faculty author and papers with multiple
faculty authors typically have several nonfaculty authors. We focus on
faculty authors because they are the ones usually making the decision to
collaborate. Papers in chemistry journals that are not matched to any of
our U.S. faculty authors are likely to be from foreign scientists, scientists
working in corporate environments, and federal labs.
10We are interested in the tension between aggregate and subfield-
specific novelty because our theoretical framework predicts that
across-field collaborations should disproportionately benefit from
reductions in travel costs, and we want to test whether some of these
represent arbitrage of ideas between subfields of science.
11This was built by scraping and compiling an inventory of equip-
ment for sale in online catalogues and stores targeted at a wide range
of chemistry labs.
12The regression yields the following classification: physical chem-
istry, analytical chemistry, and biochemistry as capital-intensive
fields; and organic chemistry, inorganic chemistry, and material
science as not capital intensive. Discussions with domain experts and
anecdotal evidence support this classification.
13Our dyadic data are not directed and thus are symmetric: the pair
between i and j is the mirror image of the pair between j and i. The
15,244 figure is obtained after dropping an equal number of sym-
metric observations.
14 Scientists in our samplemaymove from one department to another,
in some cases leading to a change in whether they are connected by
Southwest or not. We want changes in Southwest status to be driven
by Southwest entry decisions rather than by scientist location de-
cisions, and thus we exclude pairs who happen to move in the same
year as Southwest enters, the year before or the year after.
15Results are robust to decreasing this threshold to 100 or 50 miles.
16Correlation tables, as well as summary statistics for all samples, are
in the online appendix.
17 Specialization is inferred from the journals in which a scientist
publishes. For instance, a faculty member who often publishes in the
Journal of Biological Chemistry is assumed to be specialized in bio-
chemistry. See Online Appendix Table A-4.

18A pair lasts in our sample for a maximum of 21 years (from 1991 to
2011). We observe some pairs for less than 22 years because of pair
members starting their first faculty appointment after 1991, retiring
before 2011, or otherwise no longer being listed in the ACS faculty
directory (e.g., because theymoved to industry or to a foreign country).
19This makes sense because a longer observation periodmechanically
increases the chances of experiencing Southwest entry.
20The 95% confidence interval for the number of passengers expressed
in percentage change is [exp(0.4437 − 1.96× 0.005) − 1; exp(0.4437−
1.96× 0.005) + 1] or [0.543; 0.574].
21The data from the Bureau of Public Transportation include the
number of miles flown for each itinerary. Differences in miles flown
arise from the number of connections an itinerary involves. We
compute the average miles flown as the average across all passengers
travelling between two airports in a given year.
22Collaboration between scientists is increasing over time. In our
regressions, this trend is captured by the inclusion of year fixed ef-
fects. Therefore, one can interpret our estimates as the relative per-
centage increase in collaboration because of Southwest entry once the
underlying increasing trend in collaboration has been accounted for.
23The point estimate is β̂ � 0.505, and the standard error 0.121. So the
lower bound of the 95% confidence interval expressed in percentages
is (exp(0.505 − 1.96× 0.121) − 1)/100 = 30.6%, and the upper bound is
(exp(0.505 + 1.96× 0.121) − 1)/100 = 110.2%.
24We adopt this particular specification because it is the same used by
Bernstein et al. (2016) in their study of venture capital monitoring and
air travel costs, but we show robustness to specifications with ad-
ditional years in Figure 1.
25We repeat the same graphwithin the large sample at the CBSA-pair
level in Online Appendix Figure A-1.
26Although it may seem counterintuitive that early withdrawals are
not associated with an effect, but that we also obtain a positive es-
timate for Southwest entry (0) in column (4) of Table 4, it is important to
highlight that (a) 98% of early withdraws occur in the year of entry;
(b) whenwe separate entry events by quarter of the year, we find only
a positive effect for the year of entry when Southwest starts serving a
route in the first or second quarter of the year; and (c) the confidence
interval for Southwest entry (0) in column (4) and for early with-
drawals in column (6) overlap—so in a statistical sense, we cannot
rule out the possibility of a positive effect for these short spells as-
sociated with a withdrawal, even if the estimate is noisy.
27We observe Southwest entry across multiple locations and years,
whichmakes it unlikely that some other simultaneous event is always
co-occurring with the shocks we use.
28Our list of low-cost airlines includes AirTran Airways Corporation,
JetBlue, Frontier Airlines, Spirit Air Lines, ATA Airlines, Allegiant Air,
Virgin America, Sun Country Airlines, ValuJet Airlines, and Vanguard
Airlines.
29We classify as major airlines the following: Delta, American Air-
lines, United Airlines, US Airways, Northwest Airlines, Continental,
America West Airlines, Alaska Airlines, Trans World Airlines, and
Envoy Air. These correspond to the 10 companies with the largest
numbers of passengers carried between 1993 and 2012.
30One might also wonder about additional modes of transportation.
As shown in Online Appendix Table A-13, we find no effect of
Southwest entry in the Northeast corridor, where train travel has
been a consistent alternative to flying.
31 If we were to run this regression with individual-pair fixed effects,
the noncollaborating pairs would be dropped from the estimation.
32 It is useful to highlight that because our unit of analysis is a pair-
year, andwe observe the extensivemargin pairs both before and after
entry, the Southwest entry variable is not absorbed by the pair fixed
effects and does have variation within these pairs. Some of these
extensive margin pairs do not collaborate before the event, and others
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do not collaborate after, so the estimated effect is a composition of the
behavior of both types of pairs. Because the estimate is positive and
significant, we infer that, on average, Southwest entry is associated
with more non–previously collaborating pairs engaging in collabo-
ration than the other way around.
33We also investigate whether the stronger effect for the intensive
margin pairs is driven by continued collaboration between former
doctoral students or postdocs and their advisors and sponsoring
principal investigators. To code these advisor-advisee pairs, we take
advantage of the ordering convention for author names in the field
(juniors are typically listed first and principal investigators last).
Results are reported in Online Appendix Table A-15 and are sug-
gestive of stronger effects among these special pairs, but the sample
size is too small to reach a conclusion.
34This database is based onMathSciNet, an abstracting service run by
the American Mathematical Project and the Mathematics Genealogy
Project, which is targeted at tracking PhD theses in mathematics. We
construct a sample of U.S.-based mathematicians who advise at least
one PhD student, and we deduce their location from the institution
their students graduate from.
35The starting point for the construction of this sample is the pop-
ulation of scientific articles published in the top 477 scientific journals
in biology, chemistry, physics, and engineering between 1991 and
2012. We have a total of 2,773,560 papers, of which 1,169,458 have
at least one author with a U.S. address. Of all papers with U.S. ad-
dresses, we are able to successfully map 994,672 (85%) to a U.S. CBSA
using a combination of three different geocoding services (Google
Maps API, BingMaps API, and the Data Science Toolkit). This allows
us to link the vast majority of U.S. papers to the geographic regions
involved in their production.
36Although this approach has the advantage of considering different
fields of science, it also has important limitations. We can no longer
include scientist-pair fixed effects and account for idiosyncratic,
unobservable, and time-invariant reasons that may drive collabora-
tion between any two scientists. CBSAsmay also be too large as a unit
of analysis for correctly measuring the effects of interest. Finally, our
ability to test the full set of predictions of the model is limited.
37The fraction of first-best coauthors in the global pool is assumed to
be z. Because the global pool can be seen as an average over all
possible local pools, the fraction of first-best coauthors in a given local
poolw can be either higher, lower, or equal to z. Ifw> z, then scientists
will never collaborate over distance, as they would incur additional
costs but would not be more likely to find an ideal coauthor over that
distance. Therefore, the range of values ofw that provides ameaningful
trade-off is 0 ≤ w< z. To simplify the exposition, in this paper we will
assumew � 0.More general cases are discussed in the online appendix.
38Longer air travel incurs additional costs, including a longer time in
the air, additional transfers, the inability to perform the trip within a
day, accommodation costs, time zones, and fatigue. In the data, fare
prices also increasemore than proportionallywith distance (i.e., when
we estimate TicketPrice � β0 + β1 ×Distance + β2 ×Distance2, we
systematically obtain a coefficient β2 > 0).
39 If ti � 1, face-to-face communication is always available (as with a
local collaborator), and the cost of effort would be the same under
both scenarios. Advancements in communication technology and
virtual reality can be therefore thought of as changes in ti.
40 Furthermore, because coauthors invest more in travel and in-person
meetings, one could imagine that the two effort functions should look
more similar; in our model, as t converges to its upper bound (t � 1),
e2i /(1 + ti) converges to the cost local coauthors face, e2i /2. That is, one
can think of the effort cost under colocation to be a particular case of a
distant collaboration facing the minimum possible cost of effort.
41One intuitive way to think about changing a coauthor within our
simple framework is to imagine the original project failing and a new
one being launched with a different team.

42For example, one that is able to understand and interpret the
contributions and language from another discipline.
43Notice that this holds for the general case of 0 ≤ w< z, and it is not
limited to cases where w � 0.
44 Intuitively, in our model, this is a result of the complementarity
between γ and the quality of a coauthor match.
45Additionally, when we consider the quality of the local collabo-
rations of these above–average-productivity scientists and their local,
below-average-productivity peers, we find that it goes down fol-
lowing Southwest entry (Online Appendix Table A-18, column (1)),
although the effect on novelty is insignificant (column (2)).
46A result that we do not find in mathematics, possibly because some
of the cross-disciplinary collaborations within chemistry may be
driven by access to specialized equipment.
47 See Section 2.1 for additional details.
48The sample mean for copublications at the CBSA-pair-year level is
about 2.1, leading to an increase of 0.42 per CBSA-pair-year. We have
about 2,100 pairs per year, of which around one-third are in treatment
status. So a back–of-the-envelope estimate is 0.42× 2,100× 0.33 = 294.
49Papers not involving a collaboration with another faculty member
are excluded.
50Policies targeted at reducing geographic frictions through lower
travel costs may therefore need to account for the total cost of travel
(including the opportunity cost of time) different types of individuals
actually face.
51A back-of-the-envelope calculation suggests that Southwest entry
induced close to 400 copublications among chemistry faculty pairs.
The sample mean of 0.1 copublications per year increases by 50% to
0.15 copublications per year after Southwest entry. We have 750
pairs and 10 postentry years on average, leading to a back-of–the-
envelope estimate of 0.05 × 750 × 10 = 375 copublications. Although
this number is sizeable, it is small relative to the total number of
copublications among chemistry faculty members in this period.
However, Southwest entry corresponds to a 20% price reduction,
affecting only a fraction of faculty pairs (a large fraction of pairs are
served by Southwest or other low-cost carriers before our obser-
vation period). Over the last 30 years, the cost per mile for air travel
across all routes within the U.S. dropped by 50% (Perry 2014). This
suggests that reductions in air transportation costs overall could
have had a substantial aggregate effect on collaboration, above and
beyond the particular source of variation in air travel cost we use in
this paper.
52For additional work focused on changes in the direction of research,
see Furman and Teodoridis (2017) and Catalini (2018).
53We would expect similar effects in Europe, where low-cost airlines
had even more of an effect on market structure and competition, as
well as on uniting different economies.
54There is an interesting parallel here with the literature on com-
munications costs and collaboration: whereas Agrawal and Goldfarb
(2008) focused on academic collaborations, Forman and Zeebroeck
(2012) subsequently found that the internet fostered R&D collabo-
rations within firms. In principle, one could make progress on this
related question using patenting and coinvention data together with
our empirical strategy.
55 See https://www.vox.com/the-goods/2018/11/12/18080806/air
-service-small-cities-crucial (accessed December 1, 2018).
56The goal of the constant B is to ensure that this ratio increases with
the project’s degree of specialization θ.
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