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Abstract 

The solution of the KdV equation with single-minimum initial data has a 
zero-dispersion limit characterized by Lax and Levermore as the solution 
of an infinite-dimensional constrained quadratic minimization problem. An 
adaptive numerical method for computing the weak limit from this charac­
terization is constructed and validated. The method is then used to study 
the weak limit. Initial simple experiments confirm theoretical predictions, 
while experiments with more complicated data display multiphase behavior 
considerably beyond the scope of current theoretical analyses. The method 
computes accurate weak limits with multiphase structures sufficiently com­
plex to provide useful test cases for the calibration of numerical averaging 
algorithms. 
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1 Introduction 

The Korteweg-de Vries equation 

Ue - 6uu~ + CU~_ = 0 

u(z,O) = v(z) 

zER (1.1) 

(1.2) 

appears as an asymptotic model in physical systems ranging from water waves 
to plasma physics. This ubiquity is partly explained by the fact that it is the 
simplest model for dispersive regularization of nonlinear hyperbolic conser­
vation laws. In the absence of the regularizing term (f = 0), equation (1.1) 
reduces to a scalar conservation law, whose solutions steepen and develop 
infinite derivatives in finite time. Regularizing terms, such as e2u~~~, prevent 
the development of such singularities. The most common regularization is 
Burgers' equation 

(1.3) 

in which dissipation is modeled by the fU_ term. This term smooths the 
shock into a transition front of spatial width O(f). In the limit as f-+O, this 
front converges strongly to the discontinuous shock profile which itself is a 
weak solution of the conservation law. 

When the physical situation is dispersive rather than dissipative, the sim­
plest regularization is the KdV equation (1.1), with its third order term 
f2u~~~. This dispersive term also prevents the development of singularities, . 
but in an entirely different manner than the dissipation in Burgers' equation. 
In the KdV situation, the steepening profile is smoothed by the onset of short 
wavelength [O( fl)] finite amplitude [O( fO)] oscillations [GP74, FW78]. The 
front becomes a rapidly oscillating wavetrain, which converges weakly but 
not strongly to a limit u. This limit is not a weak solution of the scalar 
conservation law; rather, u and the local wavenumbers and frequencies of 
the oscillating wavetrain solve a coupled system of several hyperbolic conser­
vation laws. 

To contrast these different regularizations, we have used a numerical 
method described in Section 3.9 to solve both the Burgers and KdV equa­
tions at moderately small values of f. Figure 1 compares the short wave­
length, finite amplitude oscillations of the KdV case to the smooth profile of 
the Burgers solution. Figure 1 also exhibits the weak limit u of KdV as f-+O, 
as computed by the methods of this paper. 
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Figure 1: Weak limit, KdV solution and Burgers profile with f = 0.08. The 
interval is [-2,10] and each plot is scaled to fit the solution. The breaktime 
for this solution is tb = 1/12 = 0.8666 .... 
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Oscillations make KdV difficult to solve numerically when f is small, and 
computing the weak limit il via numerical averaging seems even more difficult. 

This paper is devoted to the numerical study of the structure of il. Our 
basic tool is the characterization of il due to Lax and Levermore [LL83]. They 
used the inverse scattering solution of KdV due to Gardner, Greene, Kruskal 
and Miura [GGKM67] to solve (1.1) almost exactly, then took the limit f-+O 

analytically. This produced an infinite-dimensional constrained quadratic 
minimization problem, for each (x, t), for a function f(kj x, t) which medi­
ates between il(x, t) and the spectral parameter k E [0,1] of the Schrodinger 
operator with potential v. The coefficients and constraints of the minimiza­
tion problem are computable functions of Vj this data fixes the minimization 
problem which has a unique solution j*(kj x, t)j the weak limit il(x, t) is then 
calculated from j*(kj x, t). These results are summarized in Section 2. 

This suggests a natural numerical method for computing il at any point 
(x, t) in spacetime: simply solve the minimization problem numerically. This 
method is attractively direct and parallel. It offers insight into the fold­
ing structure and spectral information associated with il, information which 
would be difficult if not impossible to obtain by computing u and letting 
f-+O. It eliminates the oscillations analytically, rather than averaging over 
them numerically. 

We have designed and implemented such a method, using a finite element 
Rayleigh-Ritz method with an adaptive grid. Singular quadrature methods, 
fast adaptive tabulation, and numerical smoothing and differentiation also 
play roles in our method. It is described in Section 3, where we also describe 
how we construct initial data v and a simple method for computing solutions 
of (1.1) and (1.3) with f> o. 

In Section 4, we validate the numerical method by presenting numerical 
. results which demonstrate its accuracy and efficiency. It turns out to be 
reasonably and controllably accurate, and surprisingly efficient for large-scale 
computation. It would also be an extremely natural candidate for parallel 
computation. 

In Section 5, we present large-scale calculations which probe the struc­
ture of the weak limit. First, with simple cases, our experiments confirm 
analytical predictions of the Lax-Levermore theory. Turning to data with 
several inflection points, we then compute multiphase behavior beyond the 
scope of current theoretical analyses. In particular, several phases separated 
by sharp spacetime boundaries develop and interact in interesting fashion. 
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In these cases, the weak limit has visible macroscopic structure associated 
with the multiphase regions. In these regions, our simulations of KdV with 
small dispersion show wavetrains with oscillatory microstructure, presenting 
a challenge to numerical averaging methods for dispersive limit problems. 

The paper is arranged so that the non-numerical reader need not follow 
Sections 3 and 4 in order to understand Sections 5 and 6, while the reader 
familiar with the Lax-Levermore method need study Section 2 only for the 
notation. 
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2 The Lax-Levermore Method 

We now summarize the results of [LL83], in notation convenient for our 
purposes. A recent survey is provided in [LLV92]. We begin by stating the 
minimization problem which forms the main analytical tool of this paper, 
then discuss its derivation and meaning. 

2.1 The minimization problem 

We consider the KdV equation (1.1) with initial condition (1.2), under the 
following assumptions on Vj 

( a) v is smooth, 

(b) v(x) < 0, 

(c) v has a single strict minimum at x = 0, where v(O) = -1 and v" > 0, 

(d) v has compact support. 

This last requirement eliminates an additional numerical error due to trun­
cating the support of v without ~ignificantly decreasing generality. 

Under these assumptions, Lax and Levermore constructed v~ converging 
strongly to v in L2(R) such that the solution 'U~ of (1.1) with initial data v~ 
has a weak limit u. Furthermore, u is computable from 

(2.1) 

where Q·(x, t) is the minimum value of the quadratic functional 

Q(f; x, t) 
1 

- (a, f) + 2(J, K f) (2.2) 

- 10
1 

a( k; x, t )f( k )dk + ~ 10
1 

10
1 

K( k, k')f( k )f( k')dkdk', 

taken over integrable f subject to the constraints 

o ~ f(k) ~ c,o(k) O~k<1. (2.3) 
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Here K, cp and a are given by 

-1 (k - k')2 
K(k, k') = ;2 log k + k' 

cp(k) = 1z
+(k) k dx 

z_(l:) .j -v( x) - k 2 

a( k; x, t) = ! (xk - 4k3 t -11( k)) 

11( k) = kx+( k) + 100 

k - .j k2 + v( x )dx 
z+(k) 

(2.4) 

(2.5) 

(2.6) 

and the "turning" points x_ < x+ are the solutions of vex) - _k2, de­
fined on the interval 0 < k ~ 1. Note that Q is linear in x and t. This 
infinite-dimensional minimization problem has a unique solution r, because 
K defines a compact positive definite operator and thus Q is convex. The 
minimizer f· satisfies the Euler-Lagrange conditions corresponding to Q. 

2.2 Inverse scattering and WKB 

This characterization of u is derived by using the exact solution of KdV by 
inverse scattering [GGKM67], which relates the solution u of KdV to the 
spectrum of the Schrodinger equation 

x E R. (2.7) 

The zero-dispersion limit of KdV becomes the semiclassical limit e-.O of the 
Schrodinger equation, in which the WKB theory [Mer70] applies. In the 
WKB limit, the negativity of v makes the reflection coefficient exponentially 
small. Thus Lax and Levermore construct reflectionless potentials v~-'v in 
L2, for which the Kay-Moses explicit solution of the inverse scattering prob­
lem [KM56] applies, and the continuous spectrum can be ignored. Then u" 
becomes a large sum, analogous to a partition function in statistical mechan­
ics, and the leading behavior of the sum as e-.O is dominated by its largest 
term, via a kind of Laplace's method in function space. This largest term 
leads to the minimization problem. 

Lax and Levermore go on to transform the minimization problem into a 
Riemann-Hilbert problem, under further assumptions on the solution, and 
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· solve the Riemann-Hilbert problem in the long-time limit. Thus they find, 
for example, that 

u - 2 1 J cp(:r;14t) 7rt 
as t-.oo (2.8) 

when 0 < :r;lt < 4(minv(:r;))2. This fixes the speed of the leading edge of 
the oscillatory region at 4( min v(:r; ))2. We do not make use of the Riemann­
Hilbert problem, nor any further assumptions on the solution. 

2.3 Structure of the minimizer 

The structure of the minimizer is interesting: Because of the constraint 0 < 
f ~ cp, the interval [0,1] can be divided into two sets: the "active set" A 
where f = 0 or f = cp (a constraint is "active") and the inactive set I where 
o < f < cpo On the inactive set, only Q matters and f satisfies the Euler­
Lagrange equation for Q. On the active set, the gradient of Q points out of 
the admissible region 0 ~ f < cp, and f touches a constraint. The active set 
corresponds to a "gap" in the spectrum of the Schrodinger equation (2.7), or 
to a "phase" in the Whitham or Flaschka-Forrest-McLaughlin(FFM) theories 
[Whi74, FFM80]. 

The structure of the minimizer changes dramatically at the "breaktime" 
1 

tb = 6m~v'(:r;) (2.9) 

where the classical solution of the dispersionless equation 

u, - 6uuz = 0 (2.10) 

becomes multivalued ("breaks"). Before the breaktime, the weak limit is 

actually strong and the active set is a single 1:-interval [J-u(:r;, t), 1]. This 

corresponds to a spectrum [-J-u(:r;, t), +00] in the energy variable E = 
_1:2. After tb, oscillations in u prevent strong convergence and the active 
set splits into two or more intervals. In the FFM theory, the gaps in the 
spectrum are occupied by "phases" which describe the oscillations in u. The 
number of dynamical variables in the FFM theory thus increases at each 
breaking. The number of gaps is the genus of the problem. Weak limits are 
no longer solutions of (2.10) when the genus is nonzerOj Lax and Levermore 
show that as t~oo, the genus becomes unity over large areas of space, so 
single-phase behavior dominates at large times . 
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2.4 Generalizations 

Finally, we remark that the Lax-Levermore theory can be extended to more 
general initial data v. The restriction of nonpositivity has been removed by 
Venakides [Ven85], while Lax and Levermore sketched how to handle v with 
several minima. Instead of a single function I, we get a function!; and a 
constraint C{'; for each potential well in v. Again a minimization problem can 
be found, but now Q is a functional of iI, 12"" In: 

n 1 
Q(ll···,lni x ,t) = I)aj,!;) + 2(I,KI) 

j=1 

with 
n 

I=Llj 
;=1 

and the constraints are 0 < !; < C{'; for j = 1,2, ... , n. Here C{'j is the C{' 

function corresponding to the jth potential well. This seems at first glance 
greatly to increase the complexity of the problem. However, this functional 
is linear in all but one variable, so if we introduce I as a new variable then 
we can compute the minimizing (11, ... ,In) by solving n - 1 very simple 
constrained linear minimization problems, and then only one truly quadratic 
problem. Numerically, this is a straightforward generalization of the numer­
ical method presented in this paper. 
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3 The Numerical Method 

We now develop a numerical method based on Lax-Levermore theory; thus 
we solve the minimization problem to calculate Q. and differentiate numer­
ically to obtain u. This approach to u avoids the difficulty of calculating u 
and letting E-+O; the oscillations have already been eliminated analytically. 
However, many other technical complications arise; singularities, singular 
integrals, numerical differentiation and efficiency are major concerns. We 
describe how to overcome each difficulty in turn. We also discuss the selec­
tion of initial data v and the solution of KdV and Burgers with E > o. 

3.1 A useful example 

First, we try to develop some intuition by writing down a function 

vex) = min(0,x2 -1) 

for which the coefficients and constraints can be evaluated analytically. A 
routine calculation shows that 

(3.1) 

and l( l+k) 17(k)=2 k+(I-k
2
)logVl_k2 ' (3.2) 

with 17(1) = 1/2. Note that rp(O) = 0; thus we must seek our minimum 
among functions I with 1(0) = o. The logarithmic singularity in 17 for this 
example is typical. However, this rp is untypically smooth; later examples 
will involve much more singular rp's. At t = 0, the exact minimizer I can be 
computed analytically; 

(3.3) 

Note that r has a square-root singularity at x = ±Vl - k2. This singular 
behavior occurs whenever k enters or leaves the active set, which in this 
example is A = {k E [0,1] I k > VI - x2 } for Ixl :5 1 and A = [0,1] for 
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Ixl > 1. Thus there can be several moving singularities in f., occurring at 
unpredictable locations in [0,1]. This difficulty must be handled with care 
in designing numerical methods for minimizing Q. 

The weak limit il it~elf is also singular; it develops a jump discontinuity 
at the breaktime. 

3.2 Discretization 

Now we consider our central task, the minimization of Q over the set S of 
functions f E Ll(O, 1) with 0 < f < cp and f(O) = O. This problem is 
infinite-dimensional, so we approximate it by a finite-dimensional problem 
using the Rayleigh-Ritz method; we choose an N-dimensional subset SN-+S 
as N-+oo, and approximate f· by the minimizer fN of Q over SN. This 
approach is particularly effective because we want Q. as well as f·; since fN 
minimizes Q exactly over a subspace, the error Q(r)-Q(fN ) is proportional 
to (f· - fN)2, which is much smaller than r - fN when fN is close to r. 
The choice of S N is made on a balance of computational convenience and 
good approximation properties. Let 

G : 0 = leo < kl < ... < kN = 1 

be a grid and let SN be the space of functions f which are linear between 
grid points and satisfy 0 < 1; < CPi and fo = O. Here 1; = f(ki ) and CPi = 
cp(ki ). (Note that f(O) = 0 since cp(O) = 0.) This choice is computationally 
convenient because (f, K f) can be evaluated exactly for f E S N, and it has 
·excellent approximation properties if the grid is chosen with proper regard 
to the singularities of f·. 

Given this grid, we can compute matrix elements Kii such that 

N N 
(f,Kf) = L:L:Kiifdi = fTKf 

i=1 i=1 

exactly, for every f E S N. Moreover, we can find a ERN such that 
N 

(a,f) = L:adi = aT f, 
i=l 

up to an arbitrarily small error depending on the numerical evaluation of {). 
The computation of (a, f) is discussed further in Section 3.7, since it depends 
on our method for evaluating {). 

12 



3.3 Quadratic programming 

Given a 'grid G and the associated values of K, tp and a, we now have a 
finite-dimensional quadratic program to solve: 

{ 

mlIDIIllZe 

subject to 
(3.4) 

1 ~ i < N. 

The matrix K is positive definite since it is just the positive operator K 
restricted to SN, so the solution fN of (3.4) is completely determined by the 
feasibility requirement 

and the variational conditions 

/; = 0 

/; = tp; 

0< /; < tp; 

=? 

=? 

=? 

VQ(f) > 0 

VQ(f) < 0 

VQ(f) = o. 

(3.5) 

The "active set method" [Fle80] for solving (3.4) is based on these two 
conditions. If we knew the active set AU B of indices j where f; = 0 (for 
A) or f; = tp; (for B), then f solves the "equality constraint" problem of 
minimizing Q subject to /; = 0 for j E A and f; = tp; for j E B. Since Q is 
quadratic, f can be found by solving a linear system 

and setting 

{

OJ E A 
/; = tp; j E B 

j; otherwise 

(3.6) 

(3.7) 

Here k and a are obtained from K and a by striking out every row and 
column with an index in AU B. 

We don't know the active set, however, so we find it iteratively. Given 
an iterate r and the corresponding A and B, we solve (3.6) for the inactive 
component j of a new iterate f. There are now two cases to consider. First, 
j may be feasible: 0 < /; ~ tp; for j ¢ AU B. If this happens, then we must 
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check whether the active components of VQ have the right signs. IT they do, 
then we are done and (3.7) gives us the minimizer. Otherwise, we remove 
from the active set the index j for which V Q(/); is furthest from feasiblfrom 
feasible, and repeat the iteration. Second, j may not be feasible. In this 
case, we start from the previous iterate r and proceed as far as we can 
in the direction of I until a constraint is reached. Then we add the newly 
active constraint or constraints to the active set and repeat the iteration. 
Eventually, the iteration terminates at the minimizer. It costs O(N3) work 
per step, if we solve (3.6) by the standard technique of LU-decomposition 
[PFT86], and in the worst possible case it takes N steps; thus its worst­
case time requirement is O(N4). However, there exist O(N2) techniques for 
solving (3.6) when only a few indices are added to the active set, and a good 
initial guess can result in a solution after only a few steps. Thus it can 
be as little as O( N2) in general to solve a quadratic program. This is still 
superlinear, so it is clearly a good idea to keep the number of grid points N 
as small as possible by choosing SN appropriately. 

3.4 Grid construction 

We can now compute the minimizer associated to a given grid G. The next 
question is how to determine G. We construct G to fit r iteratively, by 
solving a sequence of approximate problems on finer and finer grids. The 
iteration involves two ideas; first, we speed up the determination of the active 
set by recursively constructing a finer and finer grid, and second, we reduce 
the number of degrees of freedom tremendously by refining the grid only 
selectively where it needs it. 

We begin with the error bound for linear interpolation: 

(3.8) 

Here j is the linear interpolant of I on an interval of length h containing 
both k and k. For our minimizer r, we know that there will be square root 
singularities, so we want to choose h small near the singularities where I" is 
large, to maintain uniformly small error with the smallest possible number 
of grid points. 

We don't know r, so we construct the grid iteratively. Starting with a 
uniform grid of, say, N points, we compute a minimizer IN. Then we can use 
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jN to approximate the error on each grid interval and bisect those intervals 
where the approximate error is large. This gives a finer grid, selectively 
refined near the singularities, on which we solve (3.4) again. The process is 
repeated until the grid is as fine as desired. 

One further step must be added to this process in practice; smoothing the 
mesh between refinements. After intervals are bisected, the mesh size varies 
dramatically from one interval to the next. The computed minimizer jN 
tends to reHect this with numerical kinks and irregularities where the mesh 
size jumps. '1'0 smooth over this difficulty, we smooth the mesh between each 
refinement with several steps of the following process: Take each grid point 
and move it to the midpoint of its two neighbors. This produces a smooth 
mesh, with no extraneous kinks in jN, at the price of slightly increasing the 
refined area of each grid. 

This process is far more efficient than using a fine uniform grid, for two 
reasons. First, the adaptive grid concentrates the N degrees of freedom where 
they do the most good, near the singularities. Second, the iterative structure 
gives us a highly accurate starting point for each new quadratic program, 
and this reduces the cost of solving the quadratic program by a factor of N. 
Numerical results demonstrating a large speedup are given in Section 4.3. 

3.5 Computation of cp and -n 
N ow we can solve the minimization problem; to formulate it, however, we 
need to evaluate the constraint function 

<p(k) = l~+(k) k dx 
~_(k) J-v(x) - k2 

(3.9) 

and the coefficient 

(3.10) 

If v has compact support, then the integral in ~ is actually over a finite 
interval [x+(k), R] and 

~(k) = kR -lR Jp + v(x)dx. 
~+(k) 
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The int.egral defining cp is difficult to evaluate when k is close to 1, because 
:1:- and :z:+ coalesce around a singularity in the integrand. As k--.1, the roots 
:z:±--'O since :z: = 0 is a strict minimum of v and v(O) = -1. Thus we can 
Taylor expand 11 about :z: = o. A routine calculation then gives 

rr-
cp(k) '" V ~ 'Irk as k--.1j 

recall that we assumed v"(O) > O. In particular, cp(l) = ..j27r / Vv"(O). 
For other values of k, we calculate cp and " by numerical quadrature. We 

use bisection [PFT86] to find x± to the desired precision, then integrate using 
adaptive singular quadrature rules from Quadpack [PdKUK83] to handle the 
square-root singularities of the integrands in (3.9) and (3.5). This procedure 
is expensive, but produces excellent and controllable accuracy. 

3.6 Adaptive tabulation 

We need many values of cp and " in the course of a calculationj for example, if 
we use 200 points in :z: and 50 steps in t, and it takes 100 points in k for each 
evaluation of il, then we need well over one million cp and" evaluations. This 
could well be the major expense in a large calculation. cp and " depend only 
on the initial data and not on :z: and t, so it seems unnecessary to re-evaluate 
them constantly, but we need their values at unpredictable k-grid locations 
for each :z: and t, so they cannot simply be evaluated once and for all. 

A standard method [PFT86] for dealing with this situation is tabulation 
and interpolation: we lay down a uniform grid on [0,1], evaluate cp and " 
at the grid points, and store the resulting table of values. When we need 
cp( k), we approximate it by interpolating between tabulated values. In the 
present case, however, it turns out that cp and" have singularities, so uniform 
tabulation fails to work. Millions of points are needed to get uniform three­
digit accuracy. 

We overcome this difficulty by adaptive tabulationj we tabulate cp and " 
on a nonuniform grid of points such that linear interpolation between grid 
points gives their values to any user-specified tolerance fT. Of course, fT 

must be larger than the error in numerical evaluation of cp and " to begin 
with, or we'll just be resolving numerical noise. 

To construct such a grid, say for cp, we begin with a coarse grid of say 
twenty points and cp values at each grid point. We form a stack storing all 
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the intervals of the grid, and process each interval in the stack by comparing 
cp and its linear interpolant at the midpoint. IT the error exceeds fT, we split 
the interval in half and store each of the two new half-intervals at the end 
of the stack. Otherwise, we proceed to the next interval in the stack. When 
we reach the end of the stack, we have a grid on which cp is very likely to be 
approximated within f by linear interpolation. The grid for fJ is constructed 
in precisely the same way. 

This adaptive tabulation scheme reduces the CPU time required for large 
calculations by orders of magnitude, at a very modest expense in storage and 
initialization. Figure 2 shows the tabulation constructed for the example of 
Section 3.1, with the adaptive tabulation points shown as tick marks, with 
tolerance fT = 10-4 • This example is discussed further in Section 4.3. 

u(t=o.OOO) 

Figure 2: Initial data v( x) and spectral functions cp and fJ for Example A, 
with the adaptive tabulation points indicated by tick marks and ft = 10-4 • 

The interval for vex) is [-1,1] and for the others is [0, l]i all plots are scaled 
to the maximum of the function plotted. 

Note that with this piecewise linear approximation for fJ, we can compute 
( a, J) with error < fT by piecewise Gaussian quadrature. In other words, we 
interleave the grids where a (given by (2.5)) and f are piecewise polynomial 
functions of Ie (within ET) to get a single grid on [0, 1] on which af is a 
piecewise quartic function of Ie (within fT)i on each interval of this grid, 
three-point Gauss-Legendre quadrature integrates af exactly since q-point 
Gauss-Legendre quadrature is exact for polynomials up to degree 2q - 1. 
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3.7 Numerical differentiation 

We can now evaluate Q·(x, t) at any point with user-specified accuracy. The 
final challenge is now to compute 

(3.11) 

by numerically differentiating Q. twice. This is difficult for two reasons; ii. 
is not smooth in general, so neither is Q., and also the values of Q·(x, t) 
are computed independently at different spacetime points and therefore have 
uncorrelated errors. Hence a standard difference formula like 

!; = f(jh) (3.12) 

will produce noisy results; the numerical errors effectively get divided by 
h2 • We experimented with many methods, and eventually have settled, at 
least for the time being, on removal of noise with cosine smoothing (see 
below) in real space and then differencing with either widely-spaced centered 
differencing or EN 0 methods. 

Cosine smoothing filters noise by computing averaged values 

- 1 
f; = 4 (f;+1 + 2f; + 1;-1) 2 ::; j < N -1, (3.13) 

on an N-point uniform mesh. The process can be repeated several times if 
necessary; it can be carried out with the FFT, but works better in real space 
when the data are not periodic. After smoothing, the standard centered 
difference formula (3.12) works well if h = liN is not too small. Otherwise, 
we use ENO differencing [HOEC87]. The idea of ENO (an acronym for 
"essentially non-oscillatory") is to approximate f"(X) by PIl(X), where P is a 
dth-degree polynomial interpolating f at a stencil of d + 1 uniformly spaced 
grid points containing x in its interior. The distinguishing feature of ENO is 
that it slides the stencil left or right based on higher differences of f, in order 
to avoid the catastrophic loss of accuracy that goes with differencing across 
discontinuities. Thus it produces better results than centered differencing 
when jumps are present. 

We found that d passes of cosine smoothing combined well with dth-degree 
ENO differencing, presumably because the stencils match. 

18 



Another promising method which we have not yet implemented is LSEN 0, 
for "Least-squares ENO." Here, we adopt the ENO sliding stencil but rather 
than interpolating, we fit a least-squares polynomial through the stencil. This 
smooths and differentiates simultaneously. 

Remark: The Lax-Levermore theory offers an alternative formula for ii, 
namely 

ii(:Z:, t) = 10
1 

kf:(k;:z:, t)dk 

where f; is the derivative of r with respect to:z:. Given the active set, f; can 
be computed directly without iteration and ii can be evaluated by integration, 
so this seems more attractive than (3.11) at first glance. However, f; is more 
singular than r, as (3.3) shows, hence harder to compute to high accuracy. 
The minimum value Q. is much easier to compute accurately, because it is 
a minimum value. Hence the first variation of Q vanishes, so r computed 
with error E in L1 gives Q. with error O(~), much smaller than O(E). This 
helps overcome the noise introduced by numerical differentiation. 

3.8 Initial data 

Our algorithm as formulated above and as coded works for essentially ar­
bitrary single-well initial data 11(:Z:). We want 11 negative, vanishing outside 
a compact set, with a single strict minimum at :z: = 0, where v(O) = -1 
and 11"(0) > O. For purposes of exploring this infinite-dimensional space of 
experimental inputs, we must construct control parameters for a fairly broad 
class of initial data. The formula (2.9) for the breaktime suggests that we 
can produce interesting and complicated weak limits if we can control the 
inflection points of the solution; we can produce more interesting weak limits 
by adding more inflection points. 

We adopt the following strategy for controlling 11. We take v to be a 
quintic polynomial on each of a succession of intervals [:Z:;, :Z:;+1], for j = 
1,2, ... , M - 1. At each breakpoint :Z:;, we specify v(:Z:;) = 11;, v'(:Z:;) = vi, 
and v"(:Z:;) = 11'1, with VI = 11M = 0 for continuity. Then we set 11 = 0 for 
:z: ::; :Z:l and:z: 2: :Z:M. This structure is easy to control and gives a 0 2 function, 
except possibly at the ends where we may allow v to be merely continuous. 
Furthermore, any continuous function can be uniformly well approximated 
by a function of this class. (The special data v(:z:) = min(O,:z:2 - 1) of 
Example A falls conveniently into this class as well.) It is easy to evaluate 
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1J and its derivatives since it is locally a polynomial. The integrals of v, 
which we need to measure the error in Q. at t = 0, can be computed exactly 
using q-point Gauss-Legendre quadrature on each interval [x;, X;+1]. We 
need q = 3 for the first integral, since q-point Gauss-Legendre quadrature 
integrates polynomials of degree 2q - 1 exactly, and q = 4 for the second 
integral. 

3.9 An algorithm for KdV with E > O. 

At several points in this paper, we display the solutions of KdV and Burgers 
with f > 0, computed numerically. We now describe the algorithm we use 
for integrating the initial value problem 

xER 

u(x,O) = v(x) 

(3.14) 

(3.15) 

with given f and a moderate to small dispersion coefficient f. Other meth­
ods for solving this problem are described, for example, in [BDK86, CK85, 
FW78]. Our basic approach is to integrate out the linear constant-coefficient 
third order term by variation of parameters, then solve the remaining first­
order hyperbolic problem numerically by a pseudospectral method. This 
approach allows us to use an explicit time-stepping method without an un­
necessarily restrictive Courant condition. 

This method is most conveniently implemented for periodic data Vj since 
our data is compactly supported, we extend it to periodic data with a period 
sufficiently large that the imposed periodicity doesn't affect the results. 

To integrate out the third-order term, we let A be the operator -~a;, 
with periodic boundary conditions. We introduce a new variable w by 

u(·, t) = etAw(·, t). 

Then w satisfies the integrodifferential equation 

To discretize the w equation, we used Fourier collocation in space and 
fourth-order Runge-Kutta in time. (A Fourier method is natural since etA is 
most naturally computed by Fourier series. We experimented with several 
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other explicit time-stepping methods, and settled on fourth-order Runge­
Kutta because of its accuracy and stability properties.) 

We validated our computations by testing the method on the soliton 
solution given in (5.6) with k = 1 and E = 0.08. These parameter values 
were chosen to make the soliton width comparable to the microscale in our 
numerical experiments in Section 5. Using 512 grid points on the interval 
[-2,2] and 5000 time steps, we achieved pointwise four-digit accuracy at 
t = 1, when the soliton has moved through a full period, indicating that our 
calculations are reliable. The L2 norm and the energy 

H = f ~ u 2 + u 3 dx 2 z 

of u (which are conserved for exact solutions), were conserved to at least four 
digits. The computation required about fifty minutes on a Sparcstation l. 
A convergence study was carried out for each of the calculations presented 
in Section 5, and the solutions shown have converged to at least graphical 
accuracy. The L2 norm and energy were conserved to several digits. 

An exactly similar approach allows us to solve the Burgers equation (1.3), 
by defining the operator A differently. This is an easier calculation, because 
diffusion smoothes the solution where dispersion produces oscillations. 
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4 -Validation 

We now describe the numerical parameters of the method and demonstrate 
its accuracy and efficiency. Thus we validate the extensive computations 
presented in Section 5. 

4.1 Parameters 

The method requires several numerical parameters. First, there are the tol­
erances which control the accuracy of the 'P and ." evaluation: 

€,-: the tolerance for rootfinding in the evaluation of x±, 

Ei: the tolerance for numerical quadrature of 'P and "', 

ET: the tolerance for tabulation of 'P and .". 

These parameters cannot be varied independently. The tabulation tolerance 
must be substantially larger than the quadrature error, or else we are making 
an accurate table of the quadrature error rather than the function. Thus we 
set ET = lOEi once and for all. The singularity in the integrand means that 
the roots x± must be found to much higher accuracy than Ei, and must be 
inside rather than outside the singularity. Thus we fixed €,- = 10-12 • This 
tiny tolerance does not cost too much, for two reasons. Bisection costs log f 
work to get accuracy E, so a few more digits cost only a little bit more CPU 
time, and also we evaluate 'P and ." by root finding and quadrature only when 
we construct the initial tabulation. 

Thus the error in 'P and ." is controlled by the single parameter ET, the 
tabulation tolerance. We were able to achieve up to seven-digit accuracy with 
reasonable table sizes and running times. It turns out that cp and ." need to 
be evaluated to several more digits than r, or else r develops kinks. Thus 
our runs were mostly made with ET between 10-4 and 10-8 • 

Next there are the parameters which control the k-grid on which r is 
computed: 

N the number of points in the initial k-grid for each point (x, t), 

Elc the refinement tolerance for the k-grid, 
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nL the number of levels of refinement permitted in the k-grid, 

n. the number of smoothings between k-grid refinements. 

Clearly we will achieve at best error fA: in r. This will lead, however, to 
error in Q. which is on the order of ~ + fT, much smaller than fA:, because 
Q. is a minimum so the first variation vanishes. (The constraints contribute 
an additional fT because f· is accurate at best of order fT where it touches 
cp.) The error in r can be reduced by increasing N or nL, or by decreasing 
fA: or fT. 

Finally, there is the grid spacing h~ in the :z: variable, which controls the 
accuracy of u given Q.. We also need to specify the type of differencing 
(ENO or centered) and the number of smoothing passes. 

We study the performance of the method on two examples with different 
initial data v(:z:): 

A has v(:z:) = min(:z:2 -1, 0), so we know exact analytical formulas (Equa­
tions (3.1), (3.2) and (3.3)) for f·(k;:z:, 0), cp(k) and 11(k), in addition 
to Q·(:z:,O) and u(:z:,O) = v(:z:), which we know for any v(:z:). Figure 2 
shows v, cp and 11, with the tabulation points shown as tick marks for 
fT = 10-4 • 

B has a more complicated piecewise quintic v(:z:), for which we do not 
know f·, cp and 11, and we study only Q. and u at t = O. Figure 3 
shows v and the corresponding functions cp and 11; note the spike in 
cp and the clustering of the tick marks at the spike. The breakpoints, 
values and first two derivatives of v(:z:) are given in Table 1. 

4.2 Accuracy 

We now discuss the errors in cp, 11, and f· for Example A at t = 0, and the 
errors in Q. and u for both examples A and B at t = O. 

The errors in cp and 11, measured in the max-norm 

lel oo = m~ le(kj)1 
J 

over the set of midpoints kj of intervals in the tabulation, are less than the 
tolerance fT by construction. Errors measured at random points typically 
are no larger than 3fT even near a singularity. 
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u(t=o.OOO) 

Figure 3: Initial data vex) and spectral functions 'P and f} for Example B, 
with the adaptive tabulation points indicated by tick marks and €t = 10-4 • 

J x· , vex;) v'(x;) v"( X;) 
1 -1 0 -2 2 
2 0 -1 0 2 
3 0.1 -0.99 0.2 2 
4 0.7 -0.2 0.3 1 
5 1 0 2 2 

Table 1: Breakpoints, values and derivatives for the piecewise quintic v( x) 
of Example B. 

For Example A, we show the errors in r in the norms 

and 
j. max; Ij*(k;jXi,O) - jN(k;jXi,O)1 

00,00 = mF max; Ij*(k;j Xi, 0)1 ' 

and the maximum errors in Q* defined by 

Qoo = m~ IQ*(Xi, 0) - QN(Xi, 0)1. 
m~ IQ*(Xi, 0)1 
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Here kj are the points of the adaptive k-grid, Xi are the points of the uniform 
x-grid, r is the exact minimizer and fN is the computed approximation to 
r. Similarly Q. is the exact minimum and QN the computed minimum. Ta­
ble 3 gives results from several refinement strategies. Case a) shows the result 
of uniform refinement with N = 5,10,20, ... ,320 points. The maximum L1 
errors f 00,1 show a rough first-order convergence, while f 00,00 is more erratic, 
as we would expect. By contrast, the error in Q. is clearly second-order, in 
accordance with the variational structure of the problem. Cases b) through 
e) show similar errors, and will be discussed in the next section. In these 
examples, we took ET = 10-8 and h~ = 0.1 on the interval -1 < x < l. 

Figure 4 shows the computed and exact minimizers for an adaptive grid 
solution, the fifth line of Case c), from x = -1 to x = 1 in steps of 0.2. 
The grid points are indicated by tick marks along the lower edge, and the 
constraint I{J is shown dashed. To graphical accuracy, the errors are almost 
invisible. 

Next we study the results of various differencing techniques; centered 
and END with and without smoothing. Table 4 shows the errors in u(x,O) 
computed by various methods for Example A, and Table 5 does the same for 
Example B. Here we used enough points in the adaptive k-grid to get six­
figure accuracy in Q., so we are looking almost entirely at differencing error. 
The subscripts denote relative L1 and LOO errors in u. As the number n~ of 
grid points increases, the errors decrease at first, then the noise in the Q. 
values takes over and the errors increase again. Thus there is an optimum 
grid size for a given accuracy in Q.. (The END results for Example A 
are anomalous because the exact solution is quadratic so third-order END is 
exact. Hence the error is entirely due to noise in this case.) This is illustrated 
by Figure 5, which shows three types of differencing on Example A and the 
exact solution for comparison. Figure 6 shows similar results for Example B. 

4.3 Efficiency 

There are three areas in which our method attempts to be more efficient than 
a straightforward implementation. These are adaptive tabulation, recursive 
grid construction and selective refinement. The latter two are the main 
elements of our adaptive grid strategy. 

First, we consider the efficiency of adaptive tabulation. Table 2 shows 
the number of points n, the mesh ratio m (largest grid interval divided by 
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smallest) and the construction time t in seconds for cp and -0 for Examples A 
and B. 

IT cp and -0 were smooth functions, the error in linear interpolation on a 
uniform n-point grid would be O(n-2), so error ET could be achieved with 
n = O( fTl/2) points. The purpose of adaptive tabulation is to maintain this 
relationship even for nonsmooth functions. Table 2 shows that decreasing 
ET by a factor of 10 increases ncp and n-o by a factor of roughly v'iO ~ 3.2, 
even though cp and -0 are both singular. (The first column for Example A 
is anomalous because cp is actually linear, so linear interpolation is exact.) 
The CPU time increases slightly faster than this, because we are evaluating 
the functions to greater precision as well as at more points. The large mesh 
ratios mcp and m-o show that millions of points would be needed to achieve 
the same accuracy with a uniform mesh. 

Example ET ncp mcp tcp n,9 m,9 t,9 
10° 20 1 0.26 20 1 0.16 

10-1 20 1 0.28 20 1 0.18 
10-2 20 1 0.31 21 2 0.24 

A 10-3 20 1 0.28 33 16 0.44 
10-4 20 1 0.31 97 256 1.66 
10-5 20 1 0.29 303 1024 5.63 
10-6 20 1 0.28 955 4096 18.69 
10° 20 1 0.26 20 1 0.16 

10-1 20 1 0.30 20 1 0.19 
10-2 31 32 0.68 22 4 0.23 

B 10-3 74 128 2.50 34 32 0.54 
10-4 216 512 11.12 105 256 2.37 
10-5 683 1024 51.35 323 2048 9.27 
10-6 2165 1024 200.47 1031 8192 34.83 

Table 2: Number of grid points n, mesh ratio m = maxhf min h, and CPU 
time t required for the adaptive tabulation of singular functions cp and -0 to 
accuracy fT. 

Adaptive tabulation requires some initial investment of time to form the 
table of values for each function, but pays off in dramatically reducing the 
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cost of each later evaluation. With six-figure accuracy, for example, we have 
to spend three minutes of CPU time to form the cp table for Example B, but 
each evaluation by table lookup instead of by numerical integration costs 
0.000011 seconds instead of 0.046 seconds, a speedup of order 4000. In a 
large calculation with say a million evaluations, this would save eleven hours 
of CPU time. 

Next, we demonstrate the savings in CPU time produced by recursive 
grid construction. For this, we compare case a) of Table 3 to case b). In 
case a), f· is computed with a single uniform grid, and the time required 
grows like O(N3) or worse for large N. In case b), we use the same grid, but 
we construct it recursively starting with a 5-point grid and bisecting each 
interval. This is much faster for large N, because we use each active set to 
start the next iteration. Hence we need only a few solves of the linear system 
(3.6) to solve the quadratic program. The time required now increases only 
like O( N2) for large N, and the code runs about twenty times faster for 
N = 320, obtaining six-figure accuracy in fifteen minutes rather than five 
hours per space-time point. 

The other half of our grid refinement strategy, selective refinement, is 
demonstrated in case c) of Table 3. With selective refinement, only intervals 
where the error estimate is larger than fA: are bisected. Now the CPU time 
required to attain error fA: is a more reasonable measure of efficiency than 
the time versus N, since N varies from one point to another. The combined 
effect is to produce six-figure accuracy in ninety seconds rather than five 
hours, a speedup of more than two orders of magnitude. 

The combined effect of these three speedups is a factor of several thousand 
for six-figure accuracy in Q., reducing the time required for evaluating Q. at 
many points from months to hours. 
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Case N €k nL foo,1 foo,oo Qoo t 
5 O.OOE+OO 1 0.51E+00 0.37E+00 0.43E-03 11.88 

10 O.OOE+OO 1 0.15E+00 0.27E+00 0.12E-03 12.51 
20 O.OOE+OO 1 0.54E-01 0.24E+00 0.24E-04 14.64 

a 40 O.OOE+OO 1 0.22E-01 0.25E+00 0.93E-05 26.49 
80 O.OOE+OO 1 0.59E-02 0.13E+00 0.1lE-05 122.65 
160 O.OOE+OO 1 0.47E-02 0.21E+00 0.62E-06 1238.18 
320 O.OOE+OO 1 0.1lE-02 0.10E+00 0.80E-07 17179.04 

5 O.OOE+OO 1 0.51E+00 0.37E+00 0.43E-03 11.85 
5 O.OOE+OO 2 0.15E+00 0.27E+00 0.12E-03 23.68 
5 O.OOE+OO 3 0.54E-0l 0.24E+00 0.24E-04 37.02 

b 5 O.OOE+OO 4 0.22E-01 0.25E+00 0.93E-05 55.89 
5 O.OOE+OO 5 0.59E-02 0.13E+00 0.1lE-05 97.65 
5 O.OOE+OO 6 0.47E-02 0.21E+00 0.62E-06 247.05 
5 O.OOE+OO 7 0.1lE-02 0.10E+00 0.79E-07 879.71 
5 0.10E-01 1 0.51E+OO 0.37E+00 0.43E-03 11.83 
5 0.10E-0l 2 0.15E+00 0.27E+00 0.14E-03 22.36 
5 0.1OE-0l 3 0.54E-01 0.24E+00 0.24E-04 33.53 

c 5 0.10E-01 4 0.41E-01 0.25E+00 0.93E-05 45.67 
5 0.10E-01 5 0.19E-01 0.16E+00 0.1lE-05 58.96 
5 0.10E-0l 6 0.91E-02 0.21E+00 0.68E-06 73.71 
5 0.10E-01 7 0.47E-02 0.91E-01 0.74E-07 89.24 

Table 3: Scaled errors in f· and Q. in discrete Ll and Loo norms, as functions 
of the initial grid size N, refinement tolerance €k, and maximum level of 
refinement nL. 
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Figure 4: Exact and computed minimizers f· for Example A at t - 0, 
computed with -1 ~ :z; ~ 1, N = 5, nL = 6 and fA: = 10-3

• 
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Method Order n~ iit Uoo 

2 10 0.31E - 01 0.74E - 01 
2 20 0.51E - 02 O.lSE - 01 

Centered 2 40 0.95E - 03 0.46E - 02 
2 SO 0.20E - 03 O.llE - 02 
2 160 O.77E - 04 0.46E - 03 
2 320 0.16E - 03 0.92E - 03 
3 10 0.25E - 06 0.52E - 06 
3 20 0.53E - 06 0.13E - 05 

ENO 3 40 0.7SE - 05 0.54E - 04 
3 SO 0.12E - 04 0.95E - 04 
3 160 0.52E - 04 0.57E - 03 
3 320 0.19E - 03 0.25E - 02 
2 10 0.54E - 01 0.5SE - 01 
2 20 0.12E - 01 0.14E - 01 

Smoothed 2 40 0.27E - 02 0.35E - 02 
centered 2 SO 0.65E - 03 0.S9E - 03 

2 160 0.16E - 03 0.22E - 03 
2 320 0.72E - 04 0.46E - 03 
3 10 0.90E - 01 0.65E - 01 
3 20 0.22E - 01 0.15E - 01 

Smoothed 3 40 0.55E - 02 0.3SE - 02 
ENO 3 SO 0.14E - 02 0.95E - 03 

3 160 0.35E - 03 0.27E - 03 
3 320 0.96E - 04 0.35E - 03 

Table 4: Errors in il for Example A at t = 0, with various differencing 
methods and step sizes. The maximum error in any computed value of Q. 
was less than 10-6 • 
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u(t=o.OOO) u(t=o.OOO) u(t=o.OOO) 

u(t=o.OOO) u(t=o.OOO) u(t=o.OOO) 

u(t=o.OOO) u(t=o.OOO) u(t=o.OOO) 

Figure 5: Exact and computed values of u for Example A at t = 0, with 
(from left to right) 20, 80 and 320 grid points and (from top to bottom) 
centered, smoothed centered, and smoothed third-order ENO differencing on 
[-1,1]. 
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Method Order n: UI Uoo 

2 10 OA2E - 01 0.77E - 01 
2 20 0.15E - 01 0.97E - 01 

Centered 2 40 0.2SE - 02 0.29E - 01 
2 SO 0.53E - 03 0.56E - 02 
2 160 0.31E - 03 0.16E - 02 
2 320 0.66E - 03 0.42E - 02 
3 10 0.60E - 01 0.27E + 00 
3 20 0.17E - 01 0.77E - 01 

ENO 3 40 0.14E - 02 0.S3E - 02 
3 SO 0.36E - 03 0.24E - 02 
3 160 0.2SE - 03 O.lSE - 02 
3 320 0.73E - 03 0.35E - 02 
2 10 0.73E - 01 0.93E - 01 
2 20 0.26E - 01 0.54E - 01 

Smoothed 2 40 0.67E - 02 0.23E - 01 
centered 2 SO 0.15E - 02 0.49E - 02 

2 160 0.3SE - 03 0.S4E - 03 
2 320 0.29E - 03 0.13E - 02 
3 10 0.12E + 00 0.17E + 00, 
3 20 OAOE - 01 0.60E - 01 

Smoothed 3 40 0.12E - 01 0.22E - 01 
ENO 3 SO 0.31E - 02 0.6SE - 02 

3 160 0.76E - 03 0.17E - 02 
3 320 0.2SE - 03 0.79E - 03 

Table 5: Errors in U for Example B at t = 0, with various differencing 
methods and step sizes. The maximum error in any computed value of Q* 
was less than 2 x 10-6 • 
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u{t=o.OOO) u{t=o.OOO) u{t=o.OOO) 

u(t=o.OOO) u{t=o.OOO) u{t=o.OOO) 

Figure 6: Exact and computed values of 11 for Example Bat t = 0, with (from 
left to right) 20, 80 and 320 grid points and (from top to bottom) centered, 
smoothed centered, and smoothed third-order ENO differencing on [-1,1]. 
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5 Structure of the Weak Limit 

We now present large-scale computations which probe the detailed structure 
of the weak limit u. 

5.1 Parameters 

We experimented with various combinations of the numerical parameters, 
seeking maximum accuracy in Q* for a given time investment. We tried 
various tolerances for the computation of cp and .,J, and eventually settled on 
on €yo = 10-12 , f, = 10-1 and fT = 10€& as compromises between accuracy and 
speed. Values of €I much larger than this tended to produce spurious kinks 
in f*, while smaller tolerances resulted in excessive CPU time requirements 
without improving accuracy. 

We took N = 20 points equispaced on [0, 1] as an initial grid for r, and 
set a refinement tolerance of fie = 10-3 • Thus we expect to get at best one 
part in one thousand accuracy in r and at best one part in a million in Q*. 
We found that four or five levels of grid refinement, with an equal number 
of grid smoothings between each refinement, produce sufficiently accurate 
results. The k-grid mesh ratio m for the more complex cases ranged as high 
as 20, indicating that the adaptive mesh strategy speeds up the calculation 
by several orders of magnitude for a fixed accuracy. 

These computations were carried out on a Cray X-MP, more because of 
the larg~ data files generated than because of the modest increase in speed 
obtainable with this not very vectorizable code. However, we emphasize 
again that the method is completely natural for massively parallel comput­
ing, because each value of Q* solves a completely independent minimization 
problem. 

Data for the first two examples A and B were described in Section 4.1, 
while Example C is somewhat more complicated. 

5.2 Example A: Single-phase data 

In Example A we consider extremely simple initial data: 

v(x) = min(0,x2 ~ 1). (5.1 ) 
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The corresponding spectral fundions <p and fJ are given in (3.1) and (3.2), 
and shown, for convenience, in Figure 7. 

u(t=o.OOO) 

Figure 7: Initial data v(:z:) and spectral functions <p and fJ for Example A, 
with the adaptive tabulation points indicated by tick marks and ft = 10-4 • 

5.2.1 Orientation 

For purposes of orientation, we first summarize some features of the zero dis­
persion limit which are known theoretically - emphasizing properties which 
are directly related to the quadratic data (5.1). Before the "breaktime" given 
by (2.9), the solution of KdV converges strongly to the classical solution u 
of the conservation law: 

Ut - 6uu~ = 0 

U(:z:,O) = v(:z:). 

(5.2) 

(5.3) 

Thus initially u steepens to the right until it "breaks" by developing an 
infinite derivative. Prior to breaking, all of the features of u can be deduced 
directly from the method of characteristics: 

u(e(:z:,t),t) = v(:z:) 

e(:z:, t) = :z: - 6tv(:z:). 

(5.4) 

(5.5) 

In particular, the minimum value of u moves to the right at speed 6; break­
time and position are given by (tb = 1/12,:Z:b = 1). The point of first breaking 
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can be traced back to :t = 1, the location at which the quadratic initial data 
abruptly changes concavity. 

Breaking occurs when a tall, fast moving trailing wave in the left of the 
profile overtakes a shorter, slower moving component to the right. The man­
ner in which the third order derivative in the KdV equation prevents the 
onset of a singularity in this conservative dispersive model is very different 
from a dissipative situation in which a small diffusive term eventually sat­
urates steepening and produces a shock discontinuity in the zero-diffusion 
limit (see Figure 1). Here the third order dispersive term generates rapid 
oscillations, with O(e) wavelengths and 0(1) amplitudes. These oscillations 
prevent the existence of a strong limit; after breaktime, the limit is only 
weak. This weak limit is described by a multisheeted surface over the :t - t, 
plane which arises because, at and beyond breaktime, the overtaking process 
causes the function ii to "fold," initially into a three sheeted surface. The 
projection of the folds onto the :t - t plane defines two curves which emanate 
from the breakpoint (:tb, tb) and which separate that region of the :t - t plane 
in which the solution of KdV is oscillatory from that region in which oscilla­
tions are absent. These curves in the :t - t plane are analogous to caustics in 
the theory of linear dispersive waves [JLM91]. In that theory a three sheeted 
surface also arises in the description of the weak limit, which, in the linear 
case, can be viewed as a multivalued solution of the conservation law (5.2). 
Here, in the nonlinear case, the evolving three sheeted surface does not solve 
the conservation law (5.2); rather, it solves a coupled system of three con­
servation laws known as "Whitham's equations" [Whi74, Whi65]. The three 
state variables for this hyperbolic system are the three heights of the three 
sheeted surface, or equivalently, and more physically, the amplitude, local 
wave number, and local frequency of the oscillatory wave train. Formulas 
exist" which map this three sheeted surface to the weak limit ii. 

Lax and Levermore prove that, after breaktime, the weak limit is indeed 
described by a three sheeted surface which evolves according to Whitham's 
equations. For quadratic data (5.1), the :t - t plane splits into one region 
supporting rapid oscillations of the field, and a region of quiescent behavior. 
The space-time curve (caustic) which separates these two regions emanates 
from a "cusp" at (:tb, tb). Asymptotically for large time, Lax and Levermore 
show that the leading caustic travels at speed 4. More detailed informa­
tion about behavior near these caustic curves has recently been obtained 
by Tsarev [Tsa85], Tian [Tia92b], and Wright [Wri91]. Detailed surveys de-
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scribing this general situation may be found in [LLV92] and in the conference 
proceedings [ELS91]. 

The speed 4 of the leading edge of the oscillatory region can be understood 
intuitively as follows: The oscillatory region is composed of densely packed 
solitons, and the leading edge is moving with the speed of the fastest moving 
soliton in the wave packet. Each of these solitons is of the form 

() k2 ch2 (k;(X - x; - 4k}t)) 
'U; x, t = -2 ;se 

E 
(5.6) 

where k; is one of the bound state eigenvalues of the Schrodinger equation 
with potentiall1( x), 

(5.7) 

The largest eigenvalue is associated with the fastest moving soliton, and, for 
the data we study here and f small, _ this largest eigenvalue will lie at the 
bottom of the potential l1(X) with value k = 1 = V-l1(O). Thus, the speed 
of the leading edge of the oscillatory region is expected to be 4k2 = 4, as the 
Lax-Levermore theory predicts and our numerical results confirm. 

5.2.2 Results 

We now compute the minimizer f·, the minimum value Q., and the weak 
limit u. In the calculation of the minimizer r, we keep track of the number 
of intervals in the active set, and thus count the number of phases at each 
space-time point. In this manner, we can depict the caustics bordering the 
oscillatory region. This information for the quadratic data (5.1) of Example 
A is depicted in the space-time diagram of Figure 8. Here the numerals at 
each point indicate the number of free endpoints of the active set, a slightly 
more informative quantity than the number of phases. The numerics clearly 
confirm the break point at (Xb = 1, tb = 1/12), the single phase nature of the 
oscillatory region, and the asymptotic speed of 4 for the leading edge of the 
oscillatory region. 

Figure 9 shows the spatial profiles of the minimizer Q. and the weak limit 
u(x, t) for times before, shortly after, and long after breaking. Notice that it 
is difficult to detect the effects of oscillatory microstructure in the wave itself 
directly from the weak limit, as the profile of u appears rather insensitive to 
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these underlying microscopic oscillations. (Of course, this oscillatory struc­
ture does affect the temporal evolution of u through the Whitham equations.) 
While continuous, u does lose smoothness at the location of the caustics, as 
Figure 9 shows. 

For purposes of comparison, we have solved the KdV equation itself with 
E = 0.16, 0.08 and 0.04, using the method described in Section 3.9. In Figure 
10 we show profiles of u.~ at the three times shown in Figure 9. Note in 
particular the regular structure in the oscillatory region, and the leading 
solitary wave at its front. This leading solitary wave has height 2, as is 
consistent with the soliton formula (5.6). On the other hand, this tall soliton 
is very narrow. In the weak limit, the height of u drops to 1 as is clear from 
the maximum principle for the weak limit [LL83]. Note also that before the 
breaktime, the oscillations vanish as E-+O, while after tb they remain 0(1) in 
amplitude, independent of E. Also, Figure 1 displays a numerical solution of 
Burgers' equation 

(5.8) 

with the same quadratic initial data and E = 0.08, in order to illustrate 
the striking differences between conservative and dissipative regularizations. 
Note that E in Burgers' equation corresponds to ~ in KdV. 

The pde space-time information contained in u is calculated from the 
minimizer j* of the quadratic variational problem, which depends primarily 
upon spectral information. To understand the behavior of the minimizer and 
its connection to the weak limit, one must learn to interpret this spectral 
information. In Figure 11 we display the minimizer as a function of k at 
various space- time locations. In the figures, the "active" set of k values where 
j* touches the constraints is the set of "gaps" in the spectrum of the local 
Schrodinger operator used for modulation theory [FFM80]. Prior to breaking, 
this local spectrum contains no gaps, and consists of one band of spectrum 
filling the k-interval [0, J-u(x, t)]. Clearly, the right hand endpoint of this 
interval moves as a function of x and t. (In this picture, the continuous 
spectrum extends from k = -00 to k = 0 and a gap running from k > 0 to 
+00 doesn't count.) 

After breaktime, in the oscillatory region, a gap [0, ko] opens in this local 
spectrum. This gap consists of the leftmost interval of the "active set" of k 
values, for which the constraint is activej thus, over the gap, the minimizer 
is locked to one of the two constraints r = 0 or r = cpo (One additional 
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feature, for this data with compact support, is that one of the endpoints 
of the gap remains locked to 0, as is predicted in [LL83]. In essence, this 
means that only two of the three sheets of the surface are free to evolve.) 
For large times, in the oscillatory region, the gap gets very large and pinches 
the band of spectrum to become very narrow. This narrow band of spectrum 
indicates the presence of spatially localized solitons in the wave. As one 
moves toward the leading edge of the oscillatory region, this narrow band of 
spectrum moves toward Ie = 1, which indicates the presence of a soliton at 
the leading edge which moves at speed 4 in spacetime. 

5.2.3 Summary of Example A 

In this first example, the Lax-Levermore predictions are certainly confirmed 
for simple quadratic data. At the leading edge of the oscillatory region, 
numerics and theory agree very well. The example also shows interesting 
algebraic behavior in the location of the trailing caustic. This algebraic 
behavior has been confirmed theoretically [Tia92a]. Finally, from this first 
example, one learns to interpret the spectral representation of the minimizer. 
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Figure 8: Space-time diagram for Example A. The domain is [-2,10] x [0,2]. 
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Q" (t=O.075) Q" (t=O.100) Q" (t=l.OOO) 

u(t=O.075) u(t=O.100) u(t=1.000) 
~ , 

\ \ 
Figure 9: The minimum value Q. and the weak limit 11 of Example A for se­
lected values of t. The top row shows Q., while the second row is 11 computed 
with centered differencing on a 300-point grid on [-2,10]. 
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Figure 10: Solutions of KdV equation for Example A, with f = 0.16, 0.08 
and 0.04 (from top to bottom). The domain of each plot is [-2,10]. 
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Figure 11: The minimizer r for Example A, shown for t < tb = 1/12, t > tb 
and t > > tb on the interval 0 < k < 1. 
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5.3 Example B:. two-phase data 

In this second example, we initialize data with several inflection points, a 
piecewise quintic function with breakpoints and values given in Table 1. Fig­
ure 3 shows v, 'P and ." for this example. This data was chosen to generate 
a second breaking, with its associated two-phase behavior. In the two-phase 
regime, the weak limit u is analytically described with by a five-sheeted sur­
face. 

First, we display the spacetime diagram (Figure 12). Here we have printed 
the number of free end points of the active set at each point in spacetime; 
blank (0) is no phases, 1 is one phase and 2 and 3 correspond to two-phase 
regions. Note that asymptotically in time, the oscillations relax to single 
phase behavior, with the leading edge of the oscillatory region traveling to 
the right at speed 4. Each of these features confirms theoretical results 
in [LL83]. Also, note the extremely sharp phase bou.ndaries, even in the 
transitions between one and two phase behavior. The "island" of 3's toward 
the top is probably connected to the rest, but the connector is skipped over 
by our uniform grid. For even longer time periods, it vanishes entirely as 
predicted. 

Next, we display in Figure 13 the minimizer r. The "gaps" in the 
spectrum of the local Schrodinger operator corresponds to the active set 
of k E [0,1] where f· is touching a constraint. Note that in the single phase 
regions the active set sometimes arises because of the constraint r = 0, and 
sometimes because f· = 'P. Also note that in some cases the endpoints of 
the gaps in the local spectrum (i.e., the heights of the surface) are locked 
to either 0 or 1. In these cases, the surface is more rigid than it is usually, 
with one or more of its heights locked and not free to move as a function 
of :z; and t. Also, note the minimizer associated with the 5-sheeted, 2-phase 
behavior, as displayed in the last row of Figure 13. Finally, for large time, 
the asymptotic behavior reduces to the single phase case, with a minimizer 
as in the preceding example A. 

This example nicely illustrates an interesting feature connecting the struc­
ture of the minimizer f·( k) with inflection points in the initial data, a feature 
which may be viewed as a generalization to the multi phase case of a well 
known fact about breaking of a scalar conservation law. For the scalar case, 
breakpoints may be traced directly back to inflection points in the initial 
data. Here, inflection points in the initial data generate very sharp peaks 
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in its Abel transform, that is, in its WKB constraints. These sharp peaks 
are clearly visible in the data of Figure 3; their existence can be confirmed 
analytically by Taylor-expanding v about the inflection point and integrating 
the Abel transform (2.4) analytically. As the minimizer evolves, the presence 
of these sharp peaks in the constraints forces gaps to form (see Figure 13). 

Next, we turn to the weak limit u itself, as displayed in Figure 14. In 
this figure, the profile u(t) is shown at several times. Comparison with Fig­
ure 12 shows that an initial breaking occurs at the front of the wave and 
generates single phase behavior. For this data, a two phase component later 
emerges, surrounded by two single phase components. As time increases, 
these oscillatory components slide toward the back of the wave. As it slides, 
the two phase component diminishes in spatial extent and finally disappears, 
leaving only a single phase component. While there is change in smoothness 
at the transition boundary curves, these changes are difficult to detect from 
observations of u(:z:, t) as a function of:z: for fixed t. 

The subtle but apparent structure which the two-phase data produces in 
the weak limit (see Figure 14) is a challenge to more generally applicable 
numerical methods such as averaging small-f solutions of KdV. To quickly 
illustrate the effect of oscillations on the weak limit, we next compute the 
solution of KdV for f = 0.05, display the spatial profiles (see Figure 15) 
and consider locally averaging over the oscillations to obtain the weak limit. 
The behavior of the weak limit u(:z:, t) should be contrasted with the actual 
oscillatory structure which is present in the wave at small, but positive, 
values of f. We note that the expected multiphase microstructure in the 
spatial profile of 1L is not apparent at this value of f, because the oscillations 
are certainly not fine enough to resolve the local two-soliton structure. 
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Figure 12: Space-time diagram for Example B. The domain is [-1.5,5.5] x 
[0,1] . 
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· . 

Figure 13: The minimizer r for Example B, shown for t = 0 to 0.5 in steps 
of 0.1 and for several :z: values at each t, from left to right and top to bottom. 
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Figure 13: (continued) Selected minimizers from Example B, with the con­
straint shown dashed. 
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u(t=O.OOO) . u(t=O.040) u(t=O.080) 

u(t=O.120) u(t=O.160) u(t=O.200) 

u(t=O.240) u(t=O.280) u(t=O.320) 

Figure 14: The weak limit u for selected values of t in Example B, computed 
with third-order smoothed ENO differencing on [-1.5,5.5]. 
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u(t=O.360) u(t=OAOO) u(t=0.440) 

u(t=0.480) u(t=O.520) u(t=O.560) 

u(t=O.600) u(t=O.640) u(t=O.680) 

Figure 14: (continued) 
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u(t=O.240) u(t=O.280) u(t=O.320) 

\ \ \ 

Figure 15: Solution of KdV equation for Example B with € = 0.05, computed 
on [-1.5,5.5]. 
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u(t=O.600) u(t=O.640) u(t=O.680) 

Figure 15: (continued) 
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5.4 Example c: three-phase data 

Example B described phase boundaries between one-phase and two-phase 
components, phenomena which are just beyond current theoretical studies 
[Tia92b, Wri91]. In example C we proceed further, with data chosen to 
generate three-phase behavior. Specifically, we choose piecewise quintic data 
with breakpoints, values and derivatives given in Table 6. Figure 16 shows 
v, cp and fJ for this example. 

u(t=O.OOO) 

Figure 16: The initial data v(:r:) and spectral functions cp and fJ for Example 
C, with the adaptive tabulation points indicated by tick marks and €t = 10-4 • 

We first display the space-time diagram in Figure 17. The phase structure 
of this example is rather complicated, reaching three phases (a seven-sheeted 
surface marked with 4 and 5 in the figure). Still, one notes very sharp phase 
boundaries. Also, for this example, some of the phase regions are quite 
narrow in spatial extent, but last for long durations of time. Again, the long 
time behavior is single phase. 

We organize the presentation of this example in the same order as in 
example B: (1) representative minimizers and local spectrum in Figure 18; (2) 
spatial profiles of the weak limit in Figure 19; (3) direct numerical simulations 
of KdV with € = 0.05 in Figure 20. 
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· 

Figure 17: Space-time diagram for Example C. The domain is [-1,2] x [0, 0.5]. 



Figure 18: The minimizer j. for Example C, shown for t = 0 to 0.3 in steps 
of 0.05 and for t = 0.3 to t = 0.5 in steps of 0.1, from left to right and top to 
bottom. The domain of each plot is [-1,2]. 
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Figure 18: (continued) Selected minimizers from Example C. Note particu­
larly the multiple breaking sequence in the bottom row. 
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U o (l=O.OOO) Uo (l=O.060) U o (l=O.120) 

U o (l=O.180) Uo (t=O.240) U o (t=O.300) 

U o (t=O.360) Uo (t=0.420) U o (t=0.480) 

Figure 19: The weak limit 11 for selected values of t in Example C, computed 
with third-order smoothed ENO differencing. The domain of each plot is 
[-1,2]. 
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u(t=O.360) u(t=0.420) u(t=O.4BO) 

Figure 20: Solution of KdV equation for Example C with € = 0.05, on [-1,2]. 
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-, 

J x· , v(x;) v'(x;) V"(X;) 
1 -1 0 -2 2 
2 0 -1 0 2 
3 0.1 -0.99 0.2 2 
4 0.2 -0.96 0.4 2 
5 0.3 -0.91 0.7 2 
6 0.4 -0.84 0.8 2 
7 0.5 -0.69 0.2 0 
8 0.6 -0.64 1.3 2 
9 0.7 -0.25 1 0 
10 0.8 -0.18 1.8 2 
11 0.9 -0.08 1.2 0 
12 1 0 2 2 

Table 6: Breakpoints, values and derivatives for the piecewise quintic v( x) 
of Example C. 
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6 Conclusion 

The generation and propagation of oscillations is an important natural phe­
nomenon for nonlinear conservative waves. In the presence of small disper­
sion, these oscillations can be sufficiently intense to prevent the existence of a 
strong limit as the dispersion vanishes. In general nonlinear wave situations, 
it is difficult to develop a numerical procedure which accurately captures the 
weak limit by averaging over these oscillations [EH89]. On the other hand, for 
special integrable nonlinear waves, the Lax-Levermore formulation provides 
a natural characterization of the weak limit which reveals detailed structure 
far beyond that currently accessible to direct computational methods. Ana­
lytically, it is somewhat difficult to extract detailed quantitative information 
from the Lax-Levermore characterization. However, as a quadratic mini­
mization problem, the Lax-Levermore characterization of the weak limit is 
amenable to numerical study. In this article we have developed an algorithm 
for this study for the KdV equation. This algorithm should be useful (1) for 
understanding the structure of the weak limit of the special integrable KdV 
problem, and (2) as a means to calibrate algorithms which compute the weak 
limit for more general problems. 

The algorithm, as described in the text, is surprisingly efficient when 
properly programmed. In addition, since the quadratic minimization problem 
has no coupling between different space-time points, it is natural for massively 
parallel computation. 

Even in these initial studies of the weak limit of the KdV equation, the 
algorithm enables us to investigate phenomena beyond those currently ac­
cessible to analytical methods. In particular, we mention multiple breaking 
and the associated structure of u in this regard. Our numerical experiments 
clearly demonstrate that different phases, which live in sharply defined re­
gions of space time, evolve and interact in interesting ways. Thus distinct 
phases, which result from microscopic oscillations, have observable macro­
scopic consequences in the profile of u. For such KdV studies, the quadratic 
minimization problem seems more efficient than a direct study of Whitham's 
equations, particularly in transition regions where the number of phases 
changes. Computing the weak limit by numerical averaging seems even more 
difficult, especially if one wishes to resolve the macroscopic consequences of 
the multi phase microstructure. 

The algorithm is sufficiently efficient to consider a study of more interest-
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ing initial data - data with many minima and even random data. For such 
studies, one would presumably need to implement the algorithm on a paral­
lel machine, and consider ways to further improve its efficiency as well. For 
example, one might make use of its simple structure to implement wavelet 
technology [ABCR90]. These algorithms might reduce the number of opera­
tions required to solve the minimization problem with N points from O( N3) 
to O(N). However, it is unclear whether they would actually be faster in 
practical situations. Also, better ways to handle the singular functions which 
appear could certainly be developed. 

The variational methods implemented here can certainly be adapted to 
other soliton equations such as the Toda lattice and the (defocusing) non­
linear Schrodinger equation. However, they seem intrinsically restricted to 
integrable equations. It would be really exciting if a similar variational ap­
proach could be invented for the numerical study of oscillations in more 
general nonlinear waves! 
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