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Abstract

Actin filaments and networks under force: A computational study

by

Evan Bo Wang

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Phillip Geissler, Chair

Rich understanding of a complex system can often emerge from simple but carefully
constructed models. With an appropriate model, we can ask questions about how tuning
the parameters of the model or modifying the constraints of the system changes the system
behavior. My research involves applying such an approach to actin, an essential biopolymer
in the cell. In this work, we explore how forces affect actin at the filament and network
length scales.

In the first part, we investigate how different forces modulate the interaction between
actin filaments and actin-binding proteins. One such protein complex, Arp2/3, can cause
filaments to form branches. Experiments indicate that branches preferentially form on the
convex side of bent filaments. Using a coarse-grained model discretized at the monomer
pair level, we show that binding is dependent upon a high local curvature fluctuation of the
filament. The results indicate that actin can sense and respond to mechanical environmental
cues to regulate the binding of Arp2/3. We further believe such a picture can serve as a useful
framework for studying the effects of force on the binding and function of other proteins. In
a follow-up project, we derive analytical expressions for the nanoscale curvature distribution
of a worm-like chain and membrane as a function of applied tension. These expressions
can be used to understand the force dependence of protein binding on actin filaments and
membranes within a biological context.

In the second part, we focus on actin network elasticity. Specifically, we explore how
actin networks respond to large external forces. However, the theoretical toolkit for such a
task is incomplete. First we develop a constant-stress framework to apply large forces on soft
but strongly nonlinear materials. Additionally, we create a toy model of a soft elastic solid
with a nonlinear elastic response on which we test our constant-stress method. Finally, we
utilize the constant-stress method and a coarse-grained model for short, semiflexible chains to
explore actin network elasticity under compression. We consistently observe stress softening
under compression, which we analyze from a single filament perspective and using normal
mode analysis.
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Chapter 1

Introduction

Actin is an ubiquitous and highly conserved protein in cells, playing central roles in a wide
variety of cellular function such as cell motility, shape modification, and the transportation
of cellular cargo. These diverse roles reveal a very complex and intricate piece of molecular
machinery whose structure and properties are highly sensitive to its surrounding conditions
and environmental cues. In order to perform its various roles, actin interacts closely with a
large number of helper proteins.

Actin was first discovered in 1942 by biochemists Szent-Györgyi and Straub when they
demonstrated that, in the presence of ATP, myosin and actin produced muscle contrac-
tion [120, 117]. Soon after the initial discovery, Schaub showed that actin exists in both
monomeric form (globular actin or G-actin) and polymeric form (filamentous actin or F-
actin) [118].

Because of actin’s complex behavior, disparate roles, and wide range of properties and
interactions across different length scales, it is inevitable that a multitude of tools are nec-
essary to piece together even a small part of the actin puzzle. In this work, we develop and
apply various theoretical models and methods, aided by experimental evidence, to under-
stand the biophysical and mechanical properties of actin at the single filament and network
levels.

1.1 Monomeric and polymeric actin structure

Actin is one of the most abundant proteins in eukaryotic cells, comprising 10% of the total
protein content in muscle cells and 1-5% in non-muscle cells [67]. Actin is also highly
conserved in evolution. One idea is that because actin interacts with 100 - 200 different actin
binding proteins (ABPs), any variation in sequence and structure will likely be detrimental
to one or more of these interactions. A more recent explanation points to the cooperative
and allosteric properties of actin as factors constraining its evolutionary variability [36].

Fig. 1.1 shows actin at various length scales. Monomeric actin is a ∼42 kDa protein made
up of 375 amino acids, with a diameter of approximately 5.4 nm. At physiological conditions,
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G-actin monomers polymerize in a double-helical fashion to form F-actin (Fig. 1.1 b and c).
Because each actin monomer is structurally asymmetric, the resulting F-actin also exhibits
structural polarity with a plus (barbed) end and a minus (pointed) end. Monomers can be
added and removed at either end. However, both the addition and subtraction processes
occur faster at the barbed end than at the pointed end [91]. In general, above critical free
monomer concentrations, growth occurs at the barbed end.

Saturday, March 9, 13

Figure 1.1: Monomeric and polymeric actin. (a) The building blocks of polymeric actin
are G-actin monomers. Each actin monomer has a molecular weight of ∼42 kDa and is
approximately 5.4 nm in diameter. (b) Actin monomers assemble together in a double helix
to form F-actin. F-actin has a diameter of 8.4 nm but exists in a wide range of lengths in
cells. Polymeric actin is polar, with a plus and a minus end, which means that the kinetics
of assembly and disassembly occurs at different rates at the two ends. (c) Actin filaments
seen using electron microscopy. Figure adapted from [2].

1.2 Single filament properties

Single actin filaments exhibit significant thermal bending fluctuations that are essential to
the mechanical properties of actin filaments and networks. The scale of bending flexibility
is defined by the persistence length (lp), which is the length scale at which tangent vectors
along the contour of a filament become decorrelated. Actin has a persistence length on the
order of ∼10 µm [57, 43].

There are three classes of polymers in polymer theory. Flexible polymers are defined
by having a persistence length much less than their contour length. For these polymers,
entropy dominates their elastic properties because stretching them decreases the number of
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degenerate states and the corresponding conformational entropy. On the other extreme, stiff
polymers have a persistence length that is much smaller than its contour length. Because
these chains bend very little, their elasticity is dominated by the enthalpy of their constituent
monomers and distances relative to each other. Actin filaments, with a persistence length
that is comparable in magnitude to their contour length, belong in a class of polymers called
semiflexible polymers. These polymers exhibit significant bending fluctuations and their
material properties are governed by a mixture of entropic and enthapic contributions.Volume 70 February 1996

neurofilament
FIGURE 1 Classification of polymer stiffness by the
persistence length Lp. This concept is based on the idea
that the correlation between the orientations of the local
tangent t(s) decays with the distance s along the filament
contour according to (t(s) t(s')) = exp(-Is - s'IILp).
The rhodamine-labeled microtubule, which has a per-
sistence length Lp exceeding the filament length L, is a
typical example for a stiff rod. The semiflexible char-
acter of the rhodamine-phalloidin-labeled actin filament
can be expressed by the fact that Lp and L are compa-
rable. In case of flexible polymers, like the rhodamine-
labeled neurofilament shown above, a random coiled
shape, which is dominated by entropy, can be observed.
The high flexibility implies that the persistence length
Lp is smaller than the filament length L.

stiff rod
Lp>>L

diffusion of a polymer chain in an isotropic solution of
entangled polymers. In more concentrated F-actin solutions
we observed the filaments in a state of aligned and entan-
gled domains due to a transition from an isotropic phase to
a nematic-isotropic coexistence. Formation of aligned do-
mains is predicted by classical theories of stiff polymers
(Onsager, 1949; de Gennes and Prost, 1994) and has pre-
viously been demonstrated experimentally with F-actin (Su-
zuki et al., 1991; Coppin and Leavis, 1992; Furukawa et al.,

FIGURE 2 (a) In vitro length
distribution of polymerized actin.
The filaments show a very broad
length distribution of up to 69 ,um
and an average length of 20 ,um.
The length distribution was deter-
mined with rhodamine-phalloidin-
labeled F-actin in the fluorescence
microscope. In some of our prepa-
rations the maximum length of the
filaments dropped to -44 ,um and
an average length of 14 ,tm. (b)
Onset concentration of the semidi-
lute regime. In a 40 nM solution of,
rhodamine-phalloidin-labeled F-ac-
tin single filaments start to overlap
and sterically restrict each other.

semifexb
polymer
Lp L

flexible polymer
Lp «< L

1993). By visualizing the motions of individual chains
within the aligned domains we show that they retain a very
high degree of diffusional freedom along the director and
therefore are able to attain thermodynamic equilibrium be-
tween the isotropic and nematic phases. This first direct
observation of the dynamics of semiflexible polymers in a
nematic phase also indicated that the chain interactions
speed up the diffusion of the filaments and make it nearly
independent of filament length.

A
0.2

0.1

010 1n0f LO10 10 10 0e 10 10n,n110 10 L10 10 10 Lo in10 10 10 10 10 10 11

o6r cs 6 o6b > cs 6 6-> c6 6 o6 'C leg [ cg i cn ] cq t o6~~~~~cq cq cq co M o 27CDo co 11 X1 m m o co CD CDC

length [glm]
B

Biophysical Journal610

Figure 1.2: Classes of polymers. In polymer theory, the three classes of polymers are
flexible polymers, stiff rods, and semiflexible polymers. Flexible polymers such as neurofila-
ments have a persistence length much greater than the contour length and are often found
as coils. Stiff rods such as microtubules have a persistence length much smaller than the
contour length and appear very stiff. For semiflexible polymers such as actin, the persistence
length is on the order of the contour length. These polymers exhibit significant bending fluc-
tuations and their material properties are governed by a mixture of entropic and enthapic
contributions. Figure adapted from [60].

In addition to bending motions, actin filaments also undergo twisting motions. Experi-
ments have found that actin filaments have a twist distribution centered between 166◦ and
167◦ per monomer, although interactions with the actin binding protein cofilin can shift this
distribution downward by 5◦ [115, 78]. The torsional elasticity is captured by the torsional
rigidity. For actin, there are several estimates for this value ranging from 0.23–8.0 ×10−26

Nm2 [125, 96].
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Saturday, March 9, 13

Figure 1.3: Architectures of actin networks. Depending on where you look in the cell,
you can find actin in different architectures, interacting with different actin binding proteins,
and subjected to different kinds of forces. Three very prominent and different networks are
the branched networks near the tip of the lamellipodia, tight bundles in filopodia and stress
fibers, and random networks in the cell cortex. Figure made by Viviana Risca.

1.3 Architecture of actin networks

The architecture of actin networks is varied in different parts of the cell. This structural
heterogeneity is intimately tied to the function of actin in each part of the cell, thus allowing
actin to play a wide variety of roles and respond to different kinds of forces [32]. Fig. 1.3
shows three different actin network structures found within the cell.

1.3.1 Branched network

By mass, actin is the major component in the lamellipodia, a thin, mesh-like region near the
edge of the cell. Near the tip of the lamellipodia and close to the plasma membrane (also
called the leading edge of the cell), the assembly of actin filaments pushes on the membrane,
allowing cells to craw [93]. The architecture of the actin network at the leading edge is a
branched network, also called a dentritic network. In this region, actin filaments can branch,
and essential in this process are proteins known as actin-related proteins 2 and 3 (Arp2/3),
with five additional associated proteins ARPC 1-5. Together, these proteins are more com-
monly referred to as the Arp2/3 complex. Upon activation by a nucleation promoting factor
(NPF), Arp2/3 can nucleate new “daughter” filaments from pre-existing “mother” filaments
by attaching itself to the mother filament. The daughter filament connects to the mother
filament at a 70◦ angle, and the resulting structure has a characteristic Y-shape [44].
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1.3.2 Bundle network

Tightly bundled and unbranched actin networks are found in stress fibers and filopodia.
In stress fibers, the actin binding protein α-actinin crosslinks nearly filaments into bundles
[123]. The molecular protein myosin II can walk on these bundles, enabling them to contract.
In filopodia, parallel actin filaments crosslinked by fascin proteins protrude from the cell,
allowing cells to explore their environment and respond to various extracellular mechanical
and chemical signals [39, 73].

1.3.3 Random network

Under the plasma membrane of animal cells, we find actin in a random or non-aligned
network that aids the cell in maintaining its shape [107]. In this network architecture, nearby
filaments are crosslinked by the relatively flexible actin binding protein filamin, which links
filaments that are approximately orthogonal to each other [2].

1.4 Research approach

In the previous sections, we have introduced actin’s various roles, structures, and dynamics
in the cell. These diverse behaviors and architectures stem from a very complex and intricate
piece of molecular machinery.

How do we begin to probe such a complicated protein? Because of the sheer size of
actin filaments and networks, we cannot simulate every atom or component in the entire
system. And although every part of a biological system is important to some extent and
contributes to its overall behavior, not every component of the feature space is necessary
to answer a specific question. If we are probing a system’s behavior at a certain length
scale, details at much smaller length scales can often be reduced and simplified. The main
goal in the model building process is to select a level of abstraction or representation that
is appropriate for answering a particular question. Making judicious choices about what
to include and what to leave out can mean the difference between obtaining a result in a
day, a month, or never being able to answer a question at all. In our work, we develop and
modify simplified (coarse-grained) models of the actin filament and network that nonetheless
capture the relevant behavior that we are trying to understand.

With a model that describes the pertinent behavior of the system, we can ask questions
about how tuning the parameters of the model or modifying the constraints of the system
changes the system behavior. The implementation takes form in various flavors of Monte
Carlo simulations. From analyzing differences in resulting distributions in the protein con-
formation or behavior, we start to gain an understanding of what kinds of factors affect the
behavior of the protein and what are the underlying explanations to questions we are asking.
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1.5 Overview

One of the most important roles for actin is to provide structural integrity to the cell, prevent-
ing the cell from collapsing under force. Depending on where one looks in the cell, different
proteins and mechanisms contribute to this role. Despite many years of both experimental
and theoretical research, there are still many open questions and undiscovered mechanisms.
The central theme of this work is to explore the effect of force on actin to better understand
how single filaments and networks adapt to their changing mechanical environment. The
chapters in this work are separated into two parts by the length scales we are probing, which
also dictate the resolution of the simulation models we utilize. In part I (chapters 2–4), we
explore how force affects actin at the single filament level, with applications to protein bind-
ing. In part II (chapters 5–6), we investigate the elastic properties of actin at the network
level.

In chapter 2, we introduce a coarse-grained model for single actin filaments that can
resolve curvature fluctuations at the nanoscale. We utilize this model in chapters 3 and 4.

In chapter 3, we examine the regulation of Arp2/3 binding by actin itself in a collabora-
tion with Viviana Risca and coworkers in the group of Daniel Fletcher from the Department
of Bioengineering at the University of California, Berkeley. My experimental collaborators
found that Arp2/3-nucleated branches preferentially form on the convex side of bent fil-
aments. Using Monte Carlo simulations of a worm-like chain representation of actin, we
developed a fluctuation-gating model in which binding of the Arp2/3 complex to the side of
an actin filament only occurs when the filament undergoes a rare fluctuation that induces
high local curvature over a length scale on the order of the 10 nm footprint of the Arp2/3
complex. In the context of the cell, near the plasma membrane, compressive forces of the
membrane oppose the force generated by the growing actin filaments, resulting in filament
bending away from the force. However, this causes the cell to be structurally weaker. Our
results indicate that new branches are more likely to form in the direction facing the force,
restoring the structural integrity of the cell. Furthermore, our model shows that actin itself
is a mechanosensor and can actively respond to mechanical environmental cues to regulate
the binding of ABPs, in this case Arp2/3.

The fluctuation-gating model can serve as a useful framework for studying the effects
of tensile force on the binding and function of other proteins with cytoskeletal filaments
or membranes. In order to identify the details of these mechanisms, it is necessary to
characterize the distribution of curvature fluctuations as a function of external force or
spatial constraints. However, this is very difficult to measure experimentally. In chapter 4,
we derive analytical expressions for the nanometer-scale curvature distribution of a worm-
like chain and membrane as a function of applied tension. Our results will be applicable
to any model that presupposes a role of local curvature in the association of proteins with
semiflexible polymers such as actin and DNA, as well as membranes such as the plasma
membrane and endosomes.

In the last two chapters, we extend our study to examine how actin networks respond to
large external forces. However, the theoretical toolkit for tackling such a problem is not yet
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complete. Although strain fluctuation methods first developed by Parrinello and Rahman
[86] can be used to apply stress to and measure the elastic properties of systems with a linear
stress-strain response, there is currently no computational method to accurately apply stress
to nonlinearly elastic materials. In chapter 5, we develop a constant-stress method to apply
large forces on soft materials in order to probe the nonlinear stress-strain behavior of actin
gels. Additionally, we develop a toy model of a soft elastic solid with a nonlinear elastic
response to test our constant-stress method.

In chapter 6, we utilize the constant-stress method and a coarse-grained model for short,
semiflexible chains to probe actin network elasticity under compression, a biologically im-
portant phenomenon. We found that for a variety of network structures and features, the
networks exhibited stress softening behavior. From a single filament perspective, network
compression gives rise to a bimodal distribution of segment lengths composed of bent and
unbent filaments, with no evidence for filament stretching. Additionally, we use normal
mode analysis to identify network soft regions and obtain a rough estimate of the relative
linear elastic modulus among various networks. These results can motivate and aid the
interpretation of new experiments in this area.
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Part I

Single filament level
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Chapter 2

Coarse-grained model of actin at the
single filament level

A main component of this work is to reduce a complex system into simplified simulation
models, selecting a level of representation that is appropriate for the question at hand. In
this chapter, we describe the coarse-grained model we use to probe the properties of single
actin filaments, in particular nanoscale curvature fluctuations. We utilize this model in
chapters 3 and 4.

2.1 Worm-like chain model

Theoretically, semiflexible polymers such as actin are well described by the worm-like chain
model, also known as the Kratky-Porod model [64, 34]. The energy of a WLC described by
the space curve r(s) and parameterized by arc length s is

E =
kBT lp

2

∫ L

0

ds

∣∣∣∣
∂2r(s)

∂s2

∣∣∣∣
2

, (2.1)

where L is the contour length and lp is the persistence length. In the model, the energy
penalty for bending scales quadratically with the local curvature κ(s), defined as

κ(s) =

∣∣∣∣
∂2r(s)

∂s2

∣∣∣∣ =

∣∣∣∣
∂t(s)

∂s

∣∣∣∣ , (2.2)

where t(s) = ∂r(s)/∂s is the unit tangent vector. One property of the WLC model is that
the tangent-tangent correlation function decays exponentially

〈t(s) · t(s′)〉 = exp

(−|s− s′|
lp

)
. (2.3)
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This function can be integrated to obtain the mean squared end-to-end distance of a worm-
like chain [106]

〈R2〉 =

∫ L

0

∫ L

0

exp

(−|s− s′|
lp

)
ds ds′

= 2L lp − 2 l2p

(
1− exp

(
−L
lp

))
.

(2.4)

2.2 Discretized worm-like chain

For purposes of simulation, we utilize a discretized version of the WLC model made up
of a linear sequence of beads, each separated from adjacent beads by a fixed length. For
example, a chain with contour length L and a discretization length ∆s would be represented
by L/∆s + 1 bead positions ri, or viewed in another way, a list of bond vectors connecting
adjacent beads bi = ri+1− ri. The bond vectors relate to the the unit tangent vectors t̂i as

bi = t̂i ∆s. (2.5)

The energy of a discretized WLC is

E = kBT

L/∆s∑

i

lp
2
κ2
i∆s = kBT

L/∆s∑

i

lp
∆s

(1− cos θi), (2.6)

where κi = t̂i+1 − t̂i and θi = cos−1
(
t̂i+1 · t̂i

)
. A schematic of a discretized WLC is shown

in Fig. 2.1.

2.3 Coarse-graining resolution

In order to understand the complex interactions and mechanisms that contribute to actin
behavior at the single filament level, it is necessary to model actin filaments at a resolution
most appropriate for the problem. For the problem described in chapter 3, each bead of the
WLC represents a pair of actin monomers (Fig. 2.2). We choose this discretization length
scale because it allows us to calculate curvature at a length scale most comparable to the
binding footprint of Arp2/3. The discretization length ∆s is set to 5.4 nm, representing the
distance between the centers of two adjacent actin monomer pairs.

2.4 Monte Carlo procedure

With a model and corresponding energetics, we can sample the conformational fluctuations
of the model using the Metropolis implementation of Monte Carlo. To ensure the correct
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Figure 2.1: Model for actin filaments. In the schematic, actin is represented as a chain of
non-interacting and inextensible position vectors representing actin monomer pairs. ri and t̂i
represent the position and tangent vectors at position i, respectively. ∆s is the discretization
length and θi is the local bending angle at position i.

Fig. S5. Relative branch density plots and linear slope for different biochemical conditions. (A) Mother filaments unstabilized by phalloidin during branching,
labeled with 30%maleimide-AF546 and 10%maleimide-biotin in buffer KMEI (percentages refer to fraction of labeled monomers) (see Fig. 2D,Materials and
Methods, and SI Materials and Methods) (n ¼ 5). (B) Mother filaments labeled only with 10% maleimide-biotin and stabilized with rhodamine-phalloidin
during branching (n ¼ 7). (C) Unstabilized mother filaments labeled with 30% NHS-Cy3 and 10% NHS-biotin in buffer KMEI (n ¼ 5). (D) NHS-labeled mother
filaments in buffer KMEI with 25 mM phosphate (n ¼ 6). Red lines, best-fit linear slope (least squares weighted by the number of mother filament samples in
each bin). Dotted blue lines, 95% confidence interval on the slope. (E) The slope of the relative branch density (quantification of red lines from A–D) shown as a
function of the mode of fluorescent labeling (AF-546-maleimide or NHS-Cy3) or actin stabilization (phalloidin, phosphate, or none). All error bars: SEM.
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Fig. S6. The actin filament was simulated as a discretized WLC polymer. (A) Each particle of the WLC polymer stands for two actin monomers, with Δs ¼
5.4 nm bonds between particles. (B) The WLC polymer was tethered to a path with a defined curvature at six particles (asterisks), and curvature was calculated
(SI Materials and Methods, Eq. S5), from the section between the middle two tethered particles, in order to avoid end effects. The likelihood of curvature
inverting fluctuations is high because the curvature distribution is wide relative to changes in the mean, making a simple equilibrium mechanism for the
branching bias unlikely. (C) Schematic representation of the imposed curvature (shown by red arc) of a segment of an actin filament, which is concave to
the right in this case. (D) A shape fluctuation of the filament can transiently give rise to the same local curvature, but with opposite concavity (blue arc).
A state in which the NPF- and G-actin-bound Arp2/3 complex is bound to the left side of the filament in C has the same energy as the ternary complex bound
to the right side of the filament in D, because the microscopic curvature is locally the same. Therefore, the total probability of the Arp2/3 complex being bound
to the right or left side of the filament depends only on the relative likelihood of states C andD. (E) Distribution of local curvatures on a simulated filament with
imposed curvature κ0 ¼ −1 μm−1 (choosing the coordinate system arbitrarily). The average curvature does not fully describe the shape of the filament as
encountered by the Arp2/3 complex. The likelihood of that location on the filament having the same local curvature as the imposed mean curvature
(red line, state depicted in C) is only 10% larger than its likelihood having the curvature of opposite concavity, and hence opposite sign (blue line, state depicted
in D). For comparison, the experimental results (Fig. 2) showed 99% more branching on the convex side than on the concave side.

Risca et al. www.pnas.org/cgi/doi/10.1073/pnas.1114292109 6 of 10

Figure 2.2: Coarse-graining resolution. Each particle of model (right) stands for two
actin monomers in the filament (left), with ∆s = 5.4 nm, representing the distance between
the centers of two adjacent actin monomer pairs.
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sampling, we propose trial moves to the chain and accept these moves according to the
Metropolis acceptance criteria [79],

Pacc =

{
e−∆E/kBT if ∆E > 0

1 if ∆E ≤ 0
(2.7)

where Pacc is the probability of accepting a proposed configuration, ∆E is the change in
energy of the system going from one configuration to another, kB is Boltzmann’s constant,
and T is the system temperature.

2.4.1 Monte Carlo moves

For an efficient and ergodic sampling of the conformational space, we use a combination of
free rotation and crankshaft moves [126], shown in Fig. 6.9.

Wednesday, March 5, 14
Wednesday, March 5, 14

(a) (b)

Figure 2.3: Monte Carlo moves. We use a combination of (a) free rotation and (b)
crankshaft Monte Carlo moves.

In a free rotation move (Fig. 6.9a), a random particle from the chain is selected. Then the
particles on one side of the selected particle are rotated by an random angle around a random
axis passing through the selected particle. In a crankshaft move (Fig. 6.9b), two different
particles are selected at random from the chain. Then, the particles in between are rotated
by a random angle around the line segment that connects the two selected particles. The
random angles are drawn from a uniform distribution, with a maximum threshold unique to
each move such that the acceptance rate for each move is approximately 40%.
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Chapter 3

Actin filament curvature biases
branching direction

The work described in this chapter was performed in collaboration with Viviana Risca, Ovijit
Chaudhuri, Jia Jun Chia, and Professor Daniel Fletcher. All experiments were performed
by Viviana Risca. It is used with permission and was previously published as:

V. Risca, E. Wang, O. Chaudhuri, J. Chia, P. Geissler and D. Fletcher. “Actin filament
curvature biases branching direction”, PNAS. 2012, 109, 2913-2918.

Mechanical cues affect many important biological processes in metazoan cells, such as mi-
gration, proliferation, and differentiation. Such cues are thought to be detected by specialized
mechanosensing molecules linked to the cytoskeleton, an intracellular network of protein fila-
ments that provide mechanical rigidity to the cell and drive cellular shape change. The most
abundant such filament, actin, forms branched networks nucleated by the Arp 2/3 complex
that support or induce membrane protrusions and display adaptive behavior in response to
compressive forces. Here we show that filamentous actin serves in a mechanosensitive capac-
ity itself, by biasing the location of actin branch nucleation in response to filament bending.
Using an in vitro assay to measure branching from curved sections of immobilized actin
filaments, we observed preferential branch formation by the Arp2/3 complex on the convex
face of the curved filament. To explain this behavior, we propose a fluctuation gating model
in which filament binding or branch nucleation by Arp2/3 occur only when a sufficiently
large, transient, local curvature fluctuation causes a favorable conformational change in the
filament, and we show with Monte Carlo simulations that this model can quantitatively ac-
count for our experimental data. We also show how the branching bias can reinforce actin
networks in response to compressive forces. These results demonstrate how filament curva-
ture can alter the interaction of cytoskeletal filaments with regulatory proteins, suggesting
that direct mechanotransduction by actin may serve as a general mechanism for organizing
the cytoskeleton in response to force.
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3.1 Introduction

Mechanical forces from a metazoan cell’s environment are transduced into biochemical signals
during many biological processes, such as the differentiation, proliferation, and migration of
cells, to regulate processes ranging from cytoskeletal remodeling to gene expression [29].
Mechanotransduction has been thought to occur primarily via specialized mechanosensing
molecules, which stretch or unfold in response to applied forces [129, 53], whereas the filament
networks that make up the bulk of the cytoskeleton have been studied primarily as materials,
whose mechanical properties determine how they transmit or absorb forces [58, 32]. We asked
whether F-actin, a major part of the cytoskeleton, can act as a mechanosensor in its own
right.

The actin cytoskeleton consists of an organized network of filaments that bear both
tensile and compressive forces and largely determine the shape and rigidity of metazoan
cells [32]. Growth of one specialized cytoskeletal structure, the branched actin network
[46, 93, 133], produces forces that act on cellular membranes to help them protrude or change
shape [42, 71, 85, 95] and plays an important role in cell motility, the trafficking of cellular
membranes including endocytosis, and the motility of intracellular pathogens [31, 48]. When
this protrusive growth is opposed by resistance from the surrounding cytoskeleton or plasma
membrane, the actin network compresses, and filaments in the network bend [16, 41, 62, 66].
In vitro studies have shown that compressive forces applied to branched networks cannot only
reversibly deform them [16] but can also alter their density [113] and growth velocity [71, 85],
suggesting that their architecture may respond actively to mechanical forces. Although the
binding of many ABPs to the side of an actin filament has been characterized [77] and, in
some cases, shown to depend on the filament’s twist [20, 35] or its bound nucleotide [68, 83],
the response of most F-actin-ABP interactions to filament bending is unknown [32]. The only
such response that has been documented is an increased frequency of severing by actophorin
or its homolog actin depolymerizing factor (ADF)/cofilin at highly curved sections of actin
filaments [68, 76].

Bending of F-actin is particularly relevant to its interaction with the Arp2/3 complex
because of the complex’s central regulatory and structural roles in the formation of branched
actin networks [46]. Upon activation by two molecules of NPF localized at or near a mem-
brane, the Arp2/3 complex nucleates a new, “daughter” filament from the side of a preex-
isting “mother” filament, forming a Y-shaped branch that serves as the basic structural unit
of these networks [92, 84, 122] (Fig. 3.1). Importantly, the Arp2/3 binding site on F-actin
spans three actin monomers along F-actin’s long-pitch helix, suggesting that its binding may
be affected by changes in both monomer conformation and intermonomer distance induced
by bending stresses [23].

The mechanism of Arp2/3 branch nucleation (Fig. 3.1) is understood to involve confor-
mational changes in the Arp2/3 complex induced by the binding of NPFs [92, 84, 122, 23, 45].
Additional conformational changes in both the Arp2/3 complex and several monomers in the
mother filament probably occur upon the binding of the ternary complex of NPFs, Arp2/3,
and G-actin to the mother filament or during a subsequent activation step that is necessary
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Fig. S1. Arp2/3 branch nucleation occurs via a complex pathway (1–12). (1) The Arp2/3 complex (violet and shades of blue), one or two molecules of nuclea-
tion-promoting factor (NPF, black curve), and one or two G-actinmonomers (gray), assemble on a preexisting F-actin “mother” filament (gray). Interaction with
the NPF causes a conformational change in the inactive Arp2/3 complex (violet and black) that partially activates it, bringing Arp2 and Arp3 into a conformation
similar to a short-pitch helix actin dimer (violet and dark blue). There are multiple pathways for assembly of this complex, and the extent to which different
pathways are populated in vivo remains to be elucidated. (2a and 2b) The mother filament bound Arp2/3 complex then undergoes a further conformational
change that fully activates the Arp2/3 complex (violet and light blue) for nucleation of a new actin filament as a branch on themother filament. (3a and 3b) This
new filament then elongates as more actin monomers bind to its free barbed end, and the NPF dissociates soon after nucleation. (4) After several minutes, the
two filaments dissociate in a process called debranching.

1 Beltzner CC, Pollard TD (2008) Pathway of actin filament branch formation by Arp2/3 complex. J Biol Chem 283:7135–7144.
2 Padrick SB, Doolittle LK, Brautigam CA, King DS, Rosen MK (2011) Arp2/3 complex is bound and activated by two WASP proteins. Proc Natl Acad Sci USA 108:E472–E479.
3 Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477.
4 Ti S, Jurgenson CT, Nolen BJ, Pollard TD (2011) Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc

Natl Acad Sci USA 108:E463–E471.

Risca et al. www.pnas.org/cgi/doi/10.1073/pnas.1114292109 3 of 10

Figure 3.1: Arp2/3 branch nucleation pathway. Arp2/3 branch nucleation occurs via a
complex pathway [8, 84, 92, 122]. (1) The Arp2/3 complex (violet and shades of blue), one
or two molecules of nucleation-promoting factor (NPF, black curve), and one or two G-actin
monomers (gray), assemble on a preexisting F-actin “mother” filament (gray). Interaction
with the NPF causes a conformational change in the inactive Arp2/3 complex (violet and
black) that partially activates it, bringing Arp2 and Arp3 into a conformation similar to
a short-pitch helix actin dimer (violet and dark blue). There are multiple pathways for
assembly of this complex, and the extent to which different pathways are populated in vivo
remains to be elucidated. (2a and 2b) The mother filament bound Arp2/3 complex then
undergoes a further conformational change that fully activates the Arp2/3 complex (violet
and light blue) for nucleation of a new actin filament as a branch on the mother filament. (3a
and 3b) This new filament then elongates as more actin monomers bind to its free barbed
end, and the NPF dissociates soon after nucleation. (4) After several minutes, the two
filaments dissociate in a process called debranching.
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to allow branch nucleation [92, 8], because the bound NPFs appear to partially overlap the
F-actin binding surface of the Arp2/3 complex [25]. Once formed, the branch can then sur-
vive for minutes in vitro before dissociating (a process called “debranching”) [69]. The rate
of debranching has been shown to depend on the nucleotide bound to the mother filament
(ATP, ADP-Pi or ADP) [69], and on the presence of the actin stabilizing drug phalloidin
[24, 70]. Branch nucleation appears to happen most readily on actin in the ATP-bound state
[56], although it is not yet fully determined whether this is due to enhanced nucleation or
stability against fast debranching. Experiments that used saturating amounts of phosphate
to stabilize actin in the ADP-Pi-bound state showed a rate of barbed end creation similar
to that on unstabilized actin [69]. The regulation of both branch nucleation and branch
stability by direct mechanical factors has not yet been studied. We asked whether filament
bending by externally imposed geometric constraints plays a regulatory role at any point in
this actin branch nucleation pathway.

3.2 Experimental results

3.2.1 Surface-based branching assay reveals that actin filament
curvature biases branching direction.

To examine whether and how the bending of filaments affects their interaction with the
Arp2/3 complex, we imaged branch nucleation from fluorescently labeled F-actin that was
preimmobilized on a surface before incubation with Arp2/3 complex, an NPF, and monomeric
actin (G-actin) (Fig. 3.2 a-c). From the total of 403 images (Fig. 3.2d) acquired in five in-
dependent experiments, we measured the distribution of curvature along the immobilized
mother filaments [135] (Fig. 3.2 e-h). Curvature varied smoothly as observed by fluores-
cence microscopy and could be measured on filaments spanning at least 3 µm, with a spatial
resolution of approximately 1.1 µm. We were able to infer the location of Arp2/3 complex
binding on the mother filament, with a spatial resolution of approximately 500 nm, from the
location and direction of the short and stiff actin branches it nucleated, which were imaged
separately from mother filaments using a two-color fluorescent labeling strategy [24, 56]. Fil-
ament curvature at branch points and the direction of branch growth (Fig. 3.2c) determined
the sign of the curvature value assigned to each branch. Branches on the convex side of
the filament curve were assigned negative curvature, and branches on the concave side were
assigned positive curvature.

Interestingly, we observed that branches were more likely to be found on the convex
surface of a curved filament than on the concave surface. We compared the distribution
of curvatures measured at equally spaced points 182-nm apart along a total of 27.4 mm
of mother filaments where branches could have formed (Fig. 3.3a), to the distribution of
curvatures observed at 10,443 branch points, where branches actually formed (Fig. 3.3b). If
branch density were independent of mother filament curvature, the two distributions would
be identical after normalization. Instead, we found that the distributions were different
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bending by externally imposed geometric constraints plays a reg-
ulatory role at any point in this actin branch nucleation pathway.

Results and Discussion
Surface-Based Branching Assay Reveals That Actin Filament Curvature
Biases Branching Direction. To examine whether and how the bend-
ing of filaments affects their interaction with the Arp2/3 complex,
we imaged branch nucleation from fluorescently labeled F-actin
that was preimmobilized on a surface before incubation with Arp2/
3 complex, an NPF, and monomeric actin (G-actin) (Fig. 1 A–C).
From the total of 403 images (Fig. 1D) acquired in five indepen-
dent experiments, we measured the distribution of curvature along
the immobilized mother filaments (37) (Fig. 1 E–H). Curvature
varied smoothly as observed by fluorescence microscopy and could
be measured on filaments spanning at least 3 μm, with a spatial
resolution of approximately 1.1 μm. We were able to infer the
location of Arp2/3 complex binding on the mother filament, with
a spatial resolution of approximately 500 nm, from the location
and direction of the short and stiff actin branches it nucleated,
which were imaged separately from mother filaments using a two-
color fluorescent labeling strategy (34, 36). Filament curvature at
branch points and the direction of branch growth (Fig. 1C) deter-
mined the sign of the curvature value assigned to each branch.
Branches on the convex side of the filament curve were assigned
negative curvature, and branches on the concave side were as-
signed positive curvature.

Interestingly, we observed that branches were more likely to
be found on the convex surface of a curved filament than on
the concave surface. We compared the distribution of curvatures
measured at equally spaced points 182-nm apart along a total of
27.4 mm of mother filaments where branches could have formed
(Fig. 2A), to the distribution of curvatures observed at 10,443
branch points, where branches actually formed (Fig. 2B). If
branch density were independent of mother filament curvature,
the two distributions would be identical after normalization.
Instead, we found that the distributions were different (Fig. 2C

and Table S1) and calculated their ratio, which we call the relative
branch density (Fig. 2D).

The relative branch density increased with negative curvature,
indicating that extensional strain on the Arp2/3-binding surface
of F-actin makes branch nucleation more likely, whereas com-
pressional strain makes it less likely (Fig. 2D). We quantified the
trend with a weighted least-squares linear fit to the relative
branch density calculated from a subset of mother filament
curvature samples selected randomly, one per filament to strictly
satisfy the assumptions underlying linear regression. The weights
were the number of samples of mother filament curvature in each
curvature bin. The relative linear branch density decreased with a
slope of −33% per μm−1 of curvature [95% C.I.: (−40, −26%),
R2 ¼ 0.56] (Fig. S2A and Table S2). Thus, the probability of find-
ing a branch on the convex side of a filament with a curvature of
1 μm−1 is 99% higher than finding it on the concave side. Linear
regression against the full dataset containing multiple curvature
measurements from each mother filament yielded similar results
(Table S2).

To quantify the effect of filament bending on total linear
branch density, we carried out the same analysis as above with
unsigned branch curvatures (Fig. 2 E and F) and found that
the likelihood of branching per unit length shows a weak depen-
dence on curvature (Fig. 2 G and H and Fig. S2B) with a slope of
13% per μm−1 [95% CI: (3.3, 23%)]. However, the linear fit does
not describe the unsigned curvature data very well (Fig. S2B and
Table S2, R2 ¼ 0.17), and the size of the deviation from a flat
curve is comparable to the size of systematic errors in digital cur-
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Fig. 1. Branching from curved filaments was observed in vitro. (A) Mother
filaments (red) immobilized via biotin-streptavidin tethers (asterisks) before
nucleation of branches (cyan blue) by Arp2/3 complex (violet). (B) Actin
branches grow at a branch angle φ ∼ 70° to the mother filament (black line)
with an azimuthal angle θ from 0° to 180° (white line). (C) Fluorescence image
of actin growth at mother filament ends (white asterisk) and on branches
on concave (open arrowhead) and convex (filled arrowhead) sides of mother
filament curves. (Scale bar: 2 μm.) (D) Sample field of view. (Scale bar: 10 μm.)
(E–G) Filament image thresholded and skeletonized to an 8-connected digital
curve. (Scale bar: 2 μm.) (H) Mother filament curvature measured with the
tangent angle method.
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Fig. 2. Filament curvature biases branching direction. (A) Mother filament
curvature distribution and (B) the distribution of mother filament curvature
at branch points measured with the tangent angle method. (C) The differ-
ence and (D) the ratio of the histograms in B and A. The latter is called
the relative branch density. The red curve represents the best fit (by least
squares) by the fluctuation gating model with a 5 μm−1 threshold curvature.
C, D, G, and H were normalized using a simulated control (see Materials and
Methods). (E–H) The unsigned curvature distributions corresponding to A–D.
Error bars: SEM, n ¼ 5 independent experiments.
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Figure 3.2: Branching from curved filaments in vitro (a) Mother filaments (red) immo-
bilized via biotin-streptavidin tethers (asterisks) before nucleation of branches (cyan blue) by
Arp2/3 complex (violet). (b) Actin branches grow at a branch angle ϕ ∼ 70◦ to the mother
filament (black line) with an azimuthal angle θ from 0◦ to 180◦ (white line). (c) Fluorescence
image of actin growth at mother filament ends (white asterisk) and on branches on concave
(open arrowhead) and convex (filled arrowhead) sides of mother filament curves. (Scale bar:
2 µm.) (d) Sample field of view. (Scale bar: 10 µm.) (e-g) Filament image thresholded
and skeletonized to an 8-connected digital curve. (Scale bar: 2 µm.) (h) Mother filament
curvature measured with the tangent angle method.

(Fig. 3.3c) and calculated their ratio, which we call the relative branch density (Fig. 3.3d).
The relative branch density increased with negative curvature, indicating that exten-

sional strain on the Arp2/3-binding surface of F-actin makes branch nucleation more likely,
whereas compressional strain makes it less likely (Fig. 3.3d). We quantified the trend with
a weighted least-squares linear fit to the relative branch density calculated from a subset of
mother filament curvature samples selected randomly, one per filament to strictly satisfy the
assumptions underlying linear regression. The weights were the number of samples of mother
filament curvature in each curvature bin. The relative linear branch density decreased with a
slope of -33% per µm−1 of curvature [95% CI: (-40, -26%), R2 = 0.56]. Thus, the probability
of finding a branch on the convex side of a filament with a curvature of 1 µm−1 is 99% higher
than finding it on the concave side. Linear regression against the full dataset containing
multiple curvature measurements from each mother filament yielded similar results.
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To quantify the effect of filament bending on total linear branch density, we carried out
the same analysis as above with unsigned branch curvatures (Fig. 3.3 e and f) and found
that the likelihood of branching per unit length shows a weak dependence on curvature
(Fig. 3.3 g and h) with a slope of 13% per µm−1 [95% CI: (3.3, 23%)]. However, the linear
fit does not describe the unsigned curvature data very well (R2 = 0.17), and the size of the
deviation from a flat curve is comparable to the size of systematic errors in digital curvature
estimation. In addition, fitting the data with a higher-order polynomial did not significantly
improve the fit (p = 0.06, ANOVA). We conclude that total linear branch density depends
weakly on absolute curvature, and we focus on studying the predominant effect of mother
filament curvature on branch direction.

To confirm that the existence of a branching bias due to curvature was robust to the
analysis method, we applied an alternative spline-based curvature estimation algorithm [135,
9]. The exact value of the slope depended on the curvature estimation method, but the
observation of branch direction bias due to curvature [-14% per µm−1 of curvature, 95% CI:
(-17, -10%)] was unchanged. We also checked how our estimate of bias in the direction of
branching was affected by changes in image magnification and found only a weak effect (p
= 0.076).

As biochemical controls, we verified that our results do not depend on the mode of actin
labeling (p = 0.69). We also tested whether stabilizing the mother filament in the ADP-
Pi-bound state by adding 25 mM phosphate affected the observed branching bias and did
not observe an effect (p = 0.998), nor did we observe a significant change in slope due to
phalloidin stabilization of F-actin (p = 0.10).

3.2.2 The observed bias in branch direction is not caused by
debranching

Mother filament curvature may influence one or several of the steps in the branch nucleation
pathway. Because we imaged the end products of this branching pathway, we could not
address the effect of mother filament curvature on Arp2/3 binding separately from branch
nucleation. To address the role of debranching, we incubated samples in which branching
had occurred for 2 min for an additional 33 min in the absence of Arp2/3 complex. We
did not observe debranching during the additional incubation time (Fig. 3.4a), even with
a high concentration of blocking protein (2 mg/mL BSA) included in solution to prevent
nonspecific adsorption of branches onto the coverslip surface. To quantify branch density
and its dependence on curvature, we incubated different samples for either 50 s or 15 min
before stabilization with phalloidin. In these experiments, the branch density decreased, but
not to a statistically significant extent (Fig. 3.4b), and there was not a statistically significant
difference in the slope of the relative branch density as a function of curvature (Fig. 3.4c).
These results indicate that mother filament curvature primarily acts on branch nucleation.

It is also possible that curvature acts on the stability of very short branches that were
proposed by Mahaffy and Pollard to dissociate before microscopy-based methods can detect
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bending by externally imposed geometric constraints plays a reg-
ulatory role at any point in this actin branch nucleation pathway.

Results and Discussion
Surface-Based Branching Assay Reveals That Actin Filament Curvature
Biases Branching Direction. To examine whether and how the bend-
ing of filaments affects their interaction with the Arp2/3 complex,
we imaged branch nucleation from fluorescently labeled F-actin
that was preimmobilized on a surface before incubation with Arp2/
3 complex, an NPF, and monomeric actin (G-actin) (Fig. 1 A–C).
From the total of 403 images (Fig. 1D) acquired in five indepen-
dent experiments, we measured the distribution of curvature along
the immobilized mother filaments (37) (Fig. 1 E–H). Curvature
varied smoothly as observed by fluorescence microscopy and could
be measured on filaments spanning at least 3 μm, with a spatial
resolution of approximately 1.1 μm. We were able to infer the
location of Arp2/3 complex binding on the mother filament, with
a spatial resolution of approximately 500 nm, from the location
and direction of the short and stiff actin branches it nucleated,
which were imaged separately from mother filaments using a two-
color fluorescent labeling strategy (34, 36). Filament curvature at
branch points and the direction of branch growth (Fig. 1C) deter-
mined the sign of the curvature value assigned to each branch.
Branches on the convex side of the filament curve were assigned
negative curvature, and branches on the concave side were as-
signed positive curvature.

Interestingly, we observed that branches were more likely to
be found on the convex surface of a curved filament than on
the concave surface. We compared the distribution of curvatures
measured at equally spaced points 182-nm apart along a total of
27.4 mm of mother filaments where branches could have formed
(Fig. 2A), to the distribution of curvatures observed at 10,443
branch points, where branches actually formed (Fig. 2B). If
branch density were independent of mother filament curvature,
the two distributions would be identical after normalization.
Instead, we found that the distributions were different (Fig. 2C

and Table S1) and calculated their ratio, which we call the relative
branch density (Fig. 2D).

The relative branch density increased with negative curvature,
indicating that extensional strain on the Arp2/3-binding surface
of F-actin makes branch nucleation more likely, whereas com-
pressional strain makes it less likely (Fig. 2D). We quantified the
trend with a weighted least-squares linear fit to the relative
branch density calculated from a subset of mother filament
curvature samples selected randomly, one per filament to strictly
satisfy the assumptions underlying linear regression. The weights
were the number of samples of mother filament curvature in each
curvature bin. The relative linear branch density decreased with a
slope of −33% per μm−1 of curvature [95% C.I.: (−40, −26%),
R2 ¼ 0.56] (Fig. S2A and Table S2). Thus, the probability of find-
ing a branch on the convex side of a filament with a curvature of
1 μm−1 is 99% higher than finding it on the concave side. Linear
regression against the full dataset containing multiple curvature
measurements from each mother filament yielded similar results
(Table S2).

To quantify the effect of filament bending on total linear
branch density, we carried out the same analysis as above with
unsigned branch curvatures (Fig. 2 E and F) and found that
the likelihood of branching per unit length shows a weak depen-
dence on curvature (Fig. 2 G and H and Fig. S2B) with a slope of
13% per μm−1 [95% CI: (3.3, 23%)]. However, the linear fit does
not describe the unsigned curvature data very well (Fig. S2B and
Table S2, R2 ¼ 0.17), and the size of the deviation from a flat
curve is comparable to the size of systematic errors in digital cur-
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Fig. 1. Branching from curved filaments was observed in vitro. (A) Mother
filaments (red) immobilized via biotin-streptavidin tethers (asterisks) before
nucleation of branches (cyan blue) by Arp2/3 complex (violet). (B) Actin
branches grow at a branch angle φ ∼ 70° to the mother filament (black line)
with an azimuthal angle θ from 0° to 180° (white line). (C) Fluorescence image
of actin growth at mother filament ends (white asterisk) and on branches
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filament curves. (Scale bar: 2 μm.) (D) Sample field of view. (Scale bar: 10 μm.)
(E–G) Filament image thresholded and skeletonized to an 8-connected digital
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Fig. 2. Filament curvature biases branching direction. (A) Mother filament
curvature distribution and (B) the distribution of mother filament curvature
at branch points measured with the tangent angle method. (C) The differ-
ence and (D) the ratio of the histograms in B and A. The latter is called
the relative branch density. The red curve represents the best fit (by least
squares) by the fluctuation gating model with a 5 μm−1 threshold curvature.
C, D, G, and H were normalized using a simulated control (see Materials and
Methods). (E–H) The unsigned curvature distributions corresponding to A–D.
Error bars: SEM, n ¼ 5 independent experiments.
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Figure 3.3: Filament curvature biases branching direction. (a) Mother filament cur-
vature distribution and (b) the distribution of mother filament curvature at branch points
measured with the tangent angle method. (c) The difference and (d) the ratio of the his-
tograms in b and a. The latter is called the relative branch density. The red curve represents
the best fit (by least squares) by the fluctuation gating model with a 5 µm−1 threshold curva-
ture. c, d, g, and h were normalized using a simulated control. (e-h) The unsigned curvature
distributions corresponding to a-d. Error bars: SEM, n = 5 independent experiments.
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vature estimation (Materials and Methods, Fig. S2D, and SI
Materials and Methods). In addition, fitting the data with a higher-
order polynomial did not significantly improve the fit (p ¼ 0.06,
ANOVA). We conclude that total linear branch density depends
weakly on absolute curvature, and we focus on studying the
predominant effect of mother filament curvature on branch
direction.

To confirm that the existence of a branching bias due to curva-
ture was robust to the analysis method, we applied an alternative
spline-based curvature estimation algorithm (37, 38) (Fig. S3). The
exact value of the slope depended on the curvature estimation
method, but the observation of branch direction bias due to cur-
vature [−14% per μm−1 of curvature, 95% C.I.: (−17, −10%)] was
unchanged (Table S2). We also checked how our estimate of bias
in the direction of branching was affected by changes in image
magnification and found only a weak effect (Fig. S4 and Table S3,
p ¼ 0.076).

As biochemical controls, we verified that our results do not
depend on the mode of actin labeling (Fig. S5 A, C, and E, and
Table S3) (p ¼ 0.69). We also tested whether stabilizing the
mother filament in the ADP-Pi-bound state by adding 25 mM
phosphate affected the observed branching bias and did not ob-
serve an effect (Fig. S5 C–E and Table S3) (p ¼ 0.998), nor did we
observe a significant change in slope due to phalloidin stabiliza-
tion of F-actin (Fig. S5 A, B, and E, and Table S3) (p ¼ 0.10).

The Observed Bias in Branch Direction Is Not Caused by Debranching.
Mother filament curvature may influence one or several of the
steps in the branch nucleation pathway. Because we imaged the
end products of this branching pathway, we could not address the
effect of mother filament curvature on Arp2/3 binding separately
from branch nucleation. To address the role of debranching, we
incubated samples in which branching had occurred for 2 min for
an additional 33 min in the absence of Arp2/3 complex. We did
not observe debranching during the additional incubation time
(Fig. 3A), even with a high concentration of blocking protein
(2 mg∕mL BSA) included in solution to prevent nonspecific
adsorption of branches onto the coverslip surface. To quantify
branch density and its dependence on curvature, we incubated
different samples for either 50 s or 15 min before stabilization

with phalloidin. In these experiments, the branch density de-
creased, but not to a statistically significant extent (Fig. 3B), and
there was not a statistically significant difference in the slope of
the relative branch density as a function of curvature (Fig. 3C and
Table S3). These results indicate that mother filament curvature
primarily acts on branch nucleation.

It is also possible that curvature acts on the stability of very
short branches that were proposed by Mahaffy and Pollard to
dissociate before microscopy-based methods can detect them
(33). However, the lack of dependence on phosphate added at a
concentration similar to that used by Mahaffy and Pollard sug-
gests that curvature most likely acts on nucleation rather than
dissociation. Overall, we do not exclude the possibility that cur-
vature may affect fast debranching that we do not detect, but we
favor the interpretation that curvature primarily affects branch
nucleation. Itchetovkin et al. observed an enhanced branch den-
sity on filaments stabilized in the ATP-bound state (36), suggest-
ing that the presence of ATPmay have an effect on the nucleation
process and may also affect sensitivity to curvature. However in
our experiments, freshly polymerized actin containing ATP was
only present on filament ends, where curvature could not be
accurately measured.

Monte Carlo Simulations Revealed the Nanometer-Scale Curvature
Fluctuations of Constrained Filaments. Because the length scale re-
levant to Arp2/3 binding and branch nucleation is 5–10 nm, well
below the length scale at which fluorescence microscopy can
measure curvature and also below the micrometer length scale at
which curvature can be externally imposed, we used Monte Carlo
simulations of a discretized worm-like chain (WLC) polymer
(Fig. S6 A and B, and SI Materials and Methods) to assess the
nanometer-scale implications of the micrometer-scale curvature.
The validity of the WLC model to F-actin elasticity has been
demonstrated for filament curvatures as high as 5 μm−1 (39). In
our work, the WLC polymer, with the persistence length of actin
(Lp ¼ 9 μm) (40), was pinned to a plane with imposed curvature,
κ0, mimicking the experiment (Fig. 4A).

Despite being constrained to an average curvature of κ0, the
simulated filament exhibits large thermal fluctuations in nan-
ometer-length-scale local curvature about that average (Fig. 4 A
and B, and Fig. S6E). The breadth of the local curvature distribu-
tion is large in comparison to the range of experimentally acces-
sible imposed curvatures. Therefore, for the side of a filament with
convex average curvature of −1 μm−1, locally concave fluctuations
occur almost as often as locally convex ones (Fig. S6 C–E). This
small, 10% asymmetry is inconsistent with the larger, 99% asym-
metry in branch density we observed between the two sides of
filaments with −1 μm−1 average curvature (Fig. 2D and Fig. S2A).
Strong differences between the sides of the filament with convex
and concave average curvature only occur in the extreme tails of
the corresponding curvature distributions. Therefore, we conclude
that branchingmust be sensitive to local curvature fluctuations that
are far from the average. In addition, because such extreme local
curvature fluctuations occur rarely, making the system slow to
reach chemical equilibrium, we discuss the effect of curvature on
branch nucleation by Arp2/3 in kinetic terms.

A Fluctuation Gating Model for Branching by the Arp2/3 Complex Is
Consistent with the Experimental Data. Two lines of evidence sup-
port the hypothesis that curvature regulates branch nucleation
kinetics. First, the Arp2/3 complex binds F-actin in solution with
a slow on-rate, perhaps because it must wait for a favorable struc-
tural fluctuation of the filament (31). Second, a structural model
of the Arp2/3-actin branch shows a local distortion involving
subdomain 2 of an actin monomer at the Arp2/3 binding site
(29). Extensional strain could weaken longitudinal intermonomer
contacts in F-actin, helping to stabilize a transition state with
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Fig. 3. Branch stability does not affect the branching bias. (A) Actin
branches (cyan blue) grown from unstabilized mother filaments (red) and in-
cubated in buffer with unlabeled actin but without phalloidin stabilization
for times shown exhibited little to no debranching when the same sample
was imaged at the two time points. (Scale bars: 5 μm.). (B and C) To obtain
enough images for curvature analysis, identical but separate samples were
prepared with incubation times of 0.83 or 15 min. in KMEI buffer (see SI
Materials and Methods) with unlabeled actin before stabilization with phal-
loidin and imaging. (B) We found a decrease in overall branch density be-
tween short and long incubation samples, but it was not statistically
significant (p ¼ 0.12, Welch’s t test, n ¼ 4). (C) There was no significant dif-
ference in the slope of relative branch density with respect to curvature
(Table S3, p ¼ 0.66). Error bars: SEM.
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Figure 3.4: Branch stability does not affect branching bias. (a) Actin branches
(cyan blue) grown from unstabilized mother filaments (red) and incubated in buffer with
unlabeled actin but without phalloidin stabilization for times shown exhibited little to no
debranching when the same sample was imaged at the two time points. (Scale bars: 5 µm.).
(b and c) To obtain enough images for curvature analysis, identical but separate samples
were prepared with incubation times of 0.83 or 15 min. in KMEI buffer with unlabeled actin
before stabilization with phalloidin and imaging. (b) We found a decrease in overall branch
density between short and long incubation samples, but it was not statistically significant (p
= 0.12, Welch’s t test, n = 4). (c) There was no significant difference in the slope of relative
branch density with respect to curvature. Error bars: SEM.

them [69]. However, the lack of dependence on phosphate added at a concentration similar
to that used by Mahaffy and Pollard suggests that curvature most likely acts on nucleation
rather than dissociation. Overall, we do not exclude the possibility that curvature may
affect fast debranching that we do not detect, but we favor the interpretation that curvature
primarily affects branch nucleation. Itchetovkin et al. observed an enhanced branch density
on filaments stabilized in the ATP-bound state [56], suggesting that the presence of ATP
may have an effect on the nucleation process and may also affect sensitivity to curvature.
However in our experiments, freshly polymerized actin containing ATP was only present on
filament ends, where curvature could not be accurately measured.
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3.3 Simulation model

3.3.1 Bridging lengthscale differences

Because the length scale relevant to Arp2/3 binding and branch nucleation is 5-10 nm, well
below the length scale at which fluorescence microscopy can measure curvature and also
below the micrometer length scale at which curvature can be externally imposed, we used
Monte Carlo simulations of a discretized worm-like chain polymer to assess the nanometer-
scale implications of the micrometer-scale curvature.

3.3.2 Coarse-grained model

The validity of the WLC model to F-actin elasticity has been demonstrated for filament
curvatures as high as 5 µm−1 [26]. In our work, the WLC polymer, with the persistence
length of actin (lp = 9 µm) [57], was pinned to a plane with imposed curvature, κ0, mimicking
tethering of actin filaments to a plane surface in experiments (Fig. 3.5).

F-actin was coarse-grained as a discretized WLC polymer (details in chapter 2) composed
of 5.4-nm-long bonds between particles, with a persistence length of 9 µm [57]. We restrict
Monte Carlo moves to certain sections of the 1.25-µm-long filament, effectively pinning down
the filament at six equally spaced points. The Monte Carlo moves consist of attempts to
perform a crankshaft move (shown in Fig. 6.9b). Conformations are sampled with the
Metropolis acceptance criterion.

Robustness analysis was performed to examine the effect of changing various simulation
parameters on the distribution of local curvatures. The parameters considered were (i)
length between adjacent particles, (ii) contour length of filament between tether points, (iii)
“looseness,” the ratio of end-to-end length to contour length between tether points, (iv)
number of tethers, and (v) curvature resolution and the possible need to average curvature
over neighboring angles. These test simulations revealed that only averaging over neighboring
angles has a significant effect on curvature distributions. The final set of parameters employed
for the simulations is 5.4 nm between adjacent particles, a contour length of 250 nm between
tether points, the end-to-end length between tether points for a given contour length equal
to the average end-to-end distance for a free WLC polymer of the same persistence length
and contour length (Eq. 2.4).

Imposed curvatures were largely in a 2D plane because filaments were tethered to the
coverslip surface and their stiffness limited out-of-plane bending of large amplitude. Filament
ends and large loops that were not tethered were blurred during the 1-s exposures used, and
were eliminated during image thresholding. To approximate the experimental conditions, the
WLC filament was simulated in three dimensions, but tethered to a 2D plane and curvature
was measured in 2D from the projection of the filaments’ shape onto that plane, neglecting
out-of-plane bending. For consistency, 2D projection was used for all curvature analysis
of filament shape in experiments and simulations, as well as for determination of branch
direction. The reported relative linear branch density also contained an internal control, as
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branching from curved filament sections can be compared directly to branching from straight
filament sections.

high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Fig. 5. A bias in the direction of branching can increase the total amount of
actin in a branched network. (A) In a branched network, compressive forces
bend filaments away from the membrane (black). Excess branching on the
convex side of a bent filament creates more branches pointing toward
the membrane, increasing the number of filaments pushing against the
membrane (cyan blue arrows). Capping (red) can occur anywhere, but fila-
ments can only branch in the branching zone (gray). (B) Results of a stochastic
branching simulation (Materials and Methods) in which rigid branches with
angles of #36° and −108° grow with a given bias (right column) toward the
membrane. (Insets) Schematic snapshots of branching with 0% and 15% bias
(gray, branching zone).
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Figure 3.5: Mimicking tethering of actin filaments. Schematic of the WLC polymer
tethered at six points (asterisks) to a curve with imposed curvature κ0 < 0. Fluctuations
with local curvature κ < 0 and κ > 0 are possible. Curvature was calculated from the section
between the middle two tethered particles in order to avoid end effects.

3.4 Simulation results

3.4.1 Simulations reveal the nanoscale curvature fluctuations of
constrained filaments

Despite being constrained to an average curvature of κ0, the simulated filament exhibits
large thermal fluctuations in nanometer-length-scale local curvature about that average.
The breadth of the local curvature distribution is large in comparison to the range of exper-
imentally accessible imposed curvatures. In Fig. 3.6, we show that for the side of a filament
with convex average curvature of -1 µm−1, locally concave fluctuations occur almost as often
as locally convex ones. This small, 10% asymmetry is inconsistent with the larger, 99%
asymmetry in branch density we observed between the two sides of filaments with -1 µm−1

average curvature (Fig. 3.3d). Strong differences between the sides of the filament with
convex and concave average curvature only occur in the extreme tails of the corresponding
curvature distributions. Therefore, we conclude that branching must be sensitive to local
curvature fluctuations that are far from the average. In addition, because such extreme local
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curvature fluctuations occur rarely, making the system slow to reach chemical equilibrium,
we discuss the effect of curvature on branch nucleation by Arp2/3 in kinetic terms.

Fig. S5. Relative branch density plots and linear slope for different biochemical conditions. (A) Mother filaments unstabilized by phalloidin during branching,
labeled with 30%maleimide-AF546 and 10%maleimide-biotin in buffer KMEI (percentages refer to fraction of labeled monomers) (see Fig. 2D,Materials and
Methods, and SI Materials and Methods) (n ¼ 5). (B) Mother filaments labeled only with 10% maleimide-biotin and stabilized with rhodamine-phalloidin
during branching (n ¼ 7). (C) Unstabilized mother filaments labeled with 30% NHS-Cy3 and 10% NHS-biotin in buffer KMEI (n ¼ 5). (D) NHS-labeled mother
filaments in buffer KMEI with 25 mM phosphate (n ¼ 6). Red lines, best-fit linear slope (least squares weighted by the number of mother filament samples in
each bin). Dotted blue lines, 95% confidence interval on the slope. (E) The slope of the relative branch density (quantification of red lines from A–D) shown as a
function of the mode of fluorescent labeling (AF-546-maleimide or NHS-Cy3) or actin stabilization (phalloidin, phosphate, or none). All error bars: SEM.
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Fig. S6. The actin filament was simulated as a discretized WLC polymer. (A) Each particle of the WLC polymer stands for two actin monomers, with Δs ¼
5.4 nm bonds between particles. (B) The WLC polymer was tethered to a path with a defined curvature at six particles (asterisks), and curvature was calculated
(SI Materials and Methods, Eq. S5), from the section between the middle two tethered particles, in order to avoid end effects. The likelihood of curvature
inverting fluctuations is high because the curvature distribution is wide relative to changes in the mean, making a simple equilibrium mechanism for the
branching bias unlikely. (C) Schematic representation of the imposed curvature (shown by red arc) of a segment of an actin filament, which is concave to
the right in this case. (D) A shape fluctuation of the filament can transiently give rise to the same local curvature, but with opposite concavity (blue arc).
A state in which the NPF- and G-actin-bound Arp2/3 complex is bound to the left side of the filament in C has the same energy as the ternary complex bound
to the right side of the filament in D, because the microscopic curvature is locally the same. Therefore, the total probability of the Arp2/3 complex being bound
to the right or left side of the filament depends only on the relative likelihood of states C andD. (E) Distribution of local curvatures on a simulated filament with
imposed curvature κ0 ¼ −1 μm−1 (choosing the coordinate system arbitrarily). The average curvature does not fully describe the shape of the filament as
encountered by the Arp2/3 complex. The likelihood of that location on the filament having the same local curvature as the imposed mean curvature
(red line, state depicted in C) is only 10% larger than its likelihood having the curvature of opposite concavity, and hence opposite sign (blue line, state depicted
in D). For comparison, the experimental results (Fig. 2) showed 99% more branching on the convex side than on the concave side.
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Fig. S6. The actin filament was simulated as a discretized WLC polymer. (A) Each particle of the WLC polymer stands for two actin monomers, with Δs ¼
5.4 nm bonds between particles. (B) The WLC polymer was tethered to a path with a defined curvature at six particles (asterisks), and curvature was calculated
(SI Materials and Methods, Eq. S5), from the section between the middle two tethered particles, in order to avoid end effects. The likelihood of curvature
inverting fluctuations is high because the curvature distribution is wide relative to changes in the mean, making a simple equilibrium mechanism for the
branching bias unlikely. (C) Schematic representation of the imposed curvature (shown by red arc) of a segment of an actin filament, which is concave to
the right in this case. (D) A shape fluctuation of the filament can transiently give rise to the same local curvature, but with opposite concavity (blue arc).
A state in which the NPF- and G-actin-bound Arp2/3 complex is bound to the left side of the filament in C has the same energy as the ternary complex bound
to the right side of the filament in D, because the microscopic curvature is locally the same. Therefore, the total probability of the Arp2/3 complex being bound
to the right or left side of the filament depends only on the relative likelihood of states C andD. (E) Distribution of local curvatures on a simulated filament with
imposed curvature κ0 ¼ −1 μm−1 (choosing the coordinate system arbitrarily). The average curvature does not fully describe the shape of the filament as
encountered by the Arp2/3 complex. The likelihood of that location on the filament having the same local curvature as the imposed mean curvature
(red line, state depicted in C) is only 10% larger than its likelihood having the curvature of opposite concavity, and hence opposite sign (blue line, state depicted
in D). For comparison, the experimental results (Fig. 2) showed 99% more branching on the convex side than on the concave side.
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Fig. S6. The actin filament was simulated as a discretized WLC polymer. (A) Each particle of the WLC polymer stands for two actin monomers, with Δs ¼
5.4 nm bonds between particles. (B) The WLC polymer was tethered to a path with a defined curvature at six particles (asterisks), and curvature was calculated
(SI Materials and Methods, Eq. S5), from the section between the middle two tethered particles, in order to avoid end effects. The likelihood of curvature
inverting fluctuations is high because the curvature distribution is wide relative to changes in the mean, making a simple equilibrium mechanism for the
branching bias unlikely. (C) Schematic representation of the imposed curvature (shown by red arc) of a segment of an actin filament, which is concave to
the right in this case. (D) A shape fluctuation of the filament can transiently give rise to the same local curvature, but with opposite concavity (blue arc).
A state in which the NPF- and G-actin-bound Arp2/3 complex is bound to the left side of the filament in C has the same energy as the ternary complex bound
to the right side of the filament in D, because the microscopic curvature is locally the same. Therefore, the total probability of the Arp2/3 complex being bound
to the right or left side of the filament depends only on the relative likelihood of states C andD. (E) Distribution of local curvatures on a simulated filament with
imposed curvature κ0 ¼ −1 μm−1 (choosing the coordinate system arbitrarily). The average curvature does not fully describe the shape of the filament as
encountered by the Arp2/3 complex. The likelihood of that location on the filament having the same local curvature as the imposed mean curvature
(red line, state depicted in C) is only 10% larger than its likelihood having the curvature of opposite concavity, and hence opposite sign (blue line, state depicted
in D). For comparison, the experimental results (Fig. 2) showed 99% more branching on the convex side than on the concave side.
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Figure 3.6: Curvature fluctuations of a single constrained filament. (a) Schematic
representation of the imposed curvature (shown by red arc) of a segment of an actin filament,
which is concave to the right in this case. (b) A shape fluctuation of the filament can
transiently give rise to the same local curvature, but with opposite concavity (blue arc).
A state in which the NPF- and G-actin-bound Arp2/3 complex is bound to the left side
of the filament in a has the same energy as the ternary complex bound to the right side
of the filament in b, because the microscopic curvature is locally the same. Therefore, the
total probability of the Arp2/3 complex being bound to the right or left side of the filament
depends only on the relative likelihood of states a and b. (c) Distribution of local curvatures
on a simulated filament with imposed curvature κ0 = -1 µm−1 (choosing the coordinate
system arbitrarily). The average curvature does not fully describe the shape of the filament
as encountered by the Arp2/3 complex. The likelihood of that location on the filament
having the same local curvature as the imposed mean curvature (red line, state depicted
in a) is only 10% larger than its likelihood having the curvature of opposite concavity, and
hence opposite sign (blue line, state depicted in b). For comparison, the experimental results
(Fig. 3.3) showed 99% more branching on the convex side than on the concave side.

3.4.2 A fluctuation gating model for branching by the Arp2/3
complex is consistent with the experimental data

Two lines of evidence support the hypothesis that curvature regulates branch nucleation
kinetics. First, the Arp2/3 complex binds F-actin in solution with a slow on-rate, perhaps
because it must wait for a favorable structural fluctuation of the filament [8]. Second, a
structural model of the Arp2/3-actin branch shows a local distortion involving subdomain
2 of an actin monomer at the Arp2/3 binding site [23]. Extensional strain could weaken
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longitudinal intermonomer contacts in F-actin, helping to stabilize a transition state with
high local curvature and increasing the kinetic rate of either Arp2/3 binding or branch
nucleation.

Based on this evidence, we developed a filament fluctuation gating model, conceptually
similar to fluctuation-gated binding of ligands to proteins [74]. In our model, stable Arp2/3
ternary complex binding and branch nucleation occur only when the local curvature of the
filament fluctuates beyond a threshold value κ (Fig. 3.7). A sharp threshold is chosen because
in the extreme wings of the local curvature distribution, probability attenuates so rapidly
that the only pertinent model parameter is the lowest curvature value where branching is
greatly enhanced, in effect, κth. Thus, the probability that a branch forms on either side
of the curved filament under our model is the net probability of respective curvature values
in excess of +κth or -κth (Fig. 3.8a). Based on this idea, we can calculate a relative branch
density using

P rel,−
branch(κth, κ0) =

Pκ0=κi(κ < κth)

Pκ0=0(κ < κth)
, P rel,+

branch(κth, κ0) =
Pκ0=κi(κ > κth)

Pκ0=0(κ > κth)
, (3.1)

where κth is the threshold curvature, κ0 is the imposed curvature, and κi is a value for
the imposed curvature 6= 0. The predictions generated from these results can then be
compared directly with experimental results for the relative branch density (Fig. 3.3d). Our
calculations assess how extreme the curvature threshold κth needs to be in order to account
for the curvature preference we observe experimentally.
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Fig. 5. A bias in the direction of branching can increase the total amount of
actin in a branched network. (A) In a branched network, compressive forces
bend filaments away from the membrane (black). Excess branching on the
convex side of a bent filament creates more branches pointing toward
the membrane, increasing the number of filaments pushing against the
membrane (cyan blue arrows). Capping (red) can occur anywhere, but fila-
ments can only branch in the branching zone (gray). (B) Results of a stochastic
branching simulation (Materials and Methods) in which rigid branches with
angles of #36° and −108° grow with a given bias (right column) toward the
membrane. (Insets) Schematic snapshots of branching with 0% and 15% bias
(gray, branching zone).
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Figure 3.7: The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the WLC
polymer tethered at six points (asterisks) to a curve with imposed curvature �0 < 0. Fluctu-
ations with local curvature � < 0 and � > 0 are possible. Curvature was calculated from the
section between the middle two tethered particles, in order to avoid end e�ects (SI Materials
and Methods). (B) Distribution of local curvature fluctuations for a filament tethered to a
straight (black) or curved (red) path. Shaded areas indicate probability of branching. (C)
The fluctuation gating model predicts a threshold convex local curvature beyond which sta-
ble binding and branching by the Arp2/3 complex (violet) can occur. (D) Relative branch
density calculated from the ratio of the red- and black-shaded areas in B for several values of
�th plotted with experimental data (also shown in Fig. 3.3D, with the red line corresponding
to the same value of �th). Error bars: SEM.
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Fig. 5. A bias in the direction of branching can increase the total amount of
actin in a branched network. (A) In a branched network, compressive forces
bend filaments away from the membrane (black). Excess branching on the
convex side of a bent filament creates more branches pointing toward
the membrane, increasing the number of filaments pushing against the
membrane (cyan blue arrows). Capping (red) can occur anywhere, but fila-
ments can only branch in the branching zone (gray). (B) Results of a stochastic
branching simulation (Materials and Methods) in which rigid branches with
angles of #36° and −108° grow with a given bias (right column) toward the
membrane. (Insets) Schematic snapshots of branching with 0% and 15% bias
(gray, branching zone).
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Figure 3.7: The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the WLC
polymer tethered at six points (asterisks) to a curve with imposed curvature �0 < 0. Fluctu-
ations with local curvature � < 0 and � > 0 are possible. Curvature was calculated from the
section between the middle two tethered particles, in order to avoid end e�ects (SI Materials
and Methods). (B) Distribution of local curvature fluctuations for a filament tethered to a
straight (black) or curved (red) path. Shaded areas indicate probability of branching. (C)
The fluctuation gating model predicts a threshold convex local curvature beyond which sta-
ble binding and branching by the Arp2/3 complex (violet) can occur. (D) Relative branch
density calculated from the ratio of the red- and black-shaded areas in B for several values of
�th plotted with experimental data (also shown in Fig. 3.3D, with the red line corresponding
to the same value of �th). Error bars: SEM.
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Fig. 5. A bias in the direction of branching can increase the total amount of
actin in a branched network. (A) In a branched network, compressive forces
bend filaments away from the membrane (black). Excess branching on the
convex side of a bent filament creates more branches pointing toward
the membrane, increasing the number of filaments pushing against the
membrane (cyan blue arrows). Capping (red) can occur anywhere, but fila-
ments can only branch in the branching zone (gray). (B) Results of a stochastic
branching simulation (Materials and Methods) in which rigid branches with
angles of #36° and −108° grow with a given bias (right column) toward the
membrane. (Insets) Schematic snapshots of branching with 0% and 15% bias
(gray, branching zone).
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Figure 3.7: The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the WLC
polymer tethered at six points (asterisks) to a curve with imposed curvature �0 < 0. Fluctu-
ations with local curvature � < 0 and � > 0 are possible. Curvature was calculated from the
section between the middle two tethered particles, in order to avoid end e�ects (SI Materials
and Methods). (B) Distribution of local curvature fluctuations for a filament tethered to a
straight (black) or curved (red) path. Shaded areas indicate probability of branching. (C)
The fluctuation gating model predicts a threshold convex local curvature beyond which sta-
ble binding and branching by the Arp2/3 complex (violet) can occur. (D) Relative branch
density calculated from the ratio of the red- and black-shaded areas in B for several values of
�th plotted with experimental data (also shown in Fig. 3.3D, with the red line corresponding
to the same value of �th). Error bars: SEM.
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Fig. 5. A bias in the direction of branching can increase the total amount of
actin in a branched network. (A) In a branched network, compressive forces
bend filaments away from the membrane (black). Excess branching on the
convex side of a bent filament creates more branches pointing toward
the membrane, increasing the number of filaments pushing against the
membrane (cyan blue arrows). Capping (red) can occur anywhere, but fila-
ments can only branch in the branching zone (gray). (B) Results of a stochastic
branching simulation (Materials and Methods) in which rigid branches with
angles of #36° and −108° grow with a given bias (right column) toward the
membrane. (Insets) Schematic snapshots of branching with 0% and 15% bias
(gray, branching zone).
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Figure 3.7: The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the WLC
polymer tethered at six points (asterisks) to a curve with imposed curvature �0 < 0. Fluctu-
ations with local curvature � < 0 and � > 0 are possible. Curvature was calculated from the
section between the middle two tethered particles, in order to avoid end e�ects (SI Materials
and Methods). (B) Distribution of local curvature fluctuations for a filament tethered to a
straight (black) or curved (red) path. Shaded areas indicate probability of branching. (C)
The fluctuation gating model predicts a threshold convex local curvature beyond which sta-
ble binding and branching by the Arp2/3 complex (violet) can occur. (D) Relative branch
density calculated from the ratio of the red- and black-shaded areas in B for several values of
�th plotted with experimental data (also shown in Fig. 3.3D, with the red line corresponding
to the same value of �th). Error bars: SEM.

(a) (b)

Figure 3.7: Fluctuation gating model. (a) The fluctuation gating model predicts a
threshold convex local curvature beyond which stable binding and branching by the Arp2/3
complex (violet) can occur. (b) Below that threshold curvature, binding and branching do
not occur.

With these simple assumptions, the fluctuation gating model captures the shape of the
curvature-dependent branching bias and agrees quantitatively with our data over the entire
experimental range for a value of κth = 5 µm−1 (red curve, Figs. 3.3d and 3.8b). These
results are consistent with a mechanism in which F-actin bending fluctuations play a role
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Fig. 5. A bias in the direction of branching can increase the total amount of
actin in a branched network. (A) In a branched network, compressive forces
bend filaments away from the membrane (black). Excess branching on the
convex side of a bent filament creates more branches pointing toward
the membrane, increasing the number of filaments pushing against the
membrane (cyan blue arrows). Capping (red) can occur anywhere, but fila-
ments can only branch in the branching zone (gray). (B) Results of a stochastic
branching simulation (Materials and Methods) in which rigid branches with
angles of #36° and −108° grow with a given bias (right column) toward the
membrane. (Insets) Schematic snapshots of branching with 0% and 15% bias
(gray, branching zone).
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Figure 3.8: The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the WLC
polymer tethered at six points (asterisks) to a curve with imposed curvature �0 < 0. Fluctu-
ations with local curvature � < 0 and � > 0 are possible. Curvature was calculated from the
section between the middle two tethered particles, in order to avoid end e�ects (SI Materials
and Methods). (B) Distribution of local curvature fluctuations for a filament tethered to a
straight (black) or curved (red) path. Shaded areas indicate probability of branching. (C)
The fluctuation gating model predicts a threshold convex local curvature beyond which sta-
ble binding and branching by the Arp2/3 complex (violet) can occur. (D) Relative branch
density calculated from the ratio of the red- and black-shaded areas in B for several values of
�th plotted with experimental data (also shown in Fig. 3.3D, with the red line corresponding
to the same value of �th). Error bars: SEM.

(a)

high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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(b)

Figure 3.8: Fluctuation gating model predictions. (a) Distribution of local curvature
fluctuations for a filament tethered to a straight (black) or curved (red) path. Shaded areas
indicate probability of branching. (b) Relative branch density calculated from the ratio of
the red- and black-shaded areas for several values of κth plotted with experimental data.

in regulating branch formation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due to constraints on actin
network architecture or by binding of other ABPs. However, because of its coarse-grained
resolution, this model cannot make predictions about conformational changes of the actin
monomer caused by bending in the Arp2/3 binding site on the scale of individual amino acid
residues. This model is presented in the simplest form that is consistent with our data and
experimental parameters, but it could be extended to include details about the dependence of
branch direction on curvature based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch density may decrease as the
curvature distorts the mother filament to such an extent that it can no longer accommodate
branch nucleation.
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3.4.3 Autocatalytic branching amplifies the branching bias

Directionally biased branching has important implications for branched actin assembly in
vivo, where autocatalytic nucleation amplifies small effects [92, 14]. A large fraction of
filaments in a branched actin network adopt an approximately 35◦ orientation [22], and
the side of a bent filament experiencing extensional strain is the same side that typically
faces the bending force. Excess growth on the convex side of the curved filament would
therefore create more branches oriented toward the bending force, reinforcing the branched
network (Fig. 3.9a). The excess of branches on the most convex side of the mother filament
may also define a preferred plane for branching that coincides with the plane of filament
curvature, possibly contributing to the flat and thin shape of lamellipodia. It would also
lead to more filaments growing into the membrane-adjacent zone where new branches can be
nucleated, increasing total branch density. We studied this effect with a different, stochastic
simulation of branching in two dimensions (Fig. 3.9b) and found that, for a 15% bias toward
the membrane, the total number of filaments is double that of the zero bias case after only 10
branch generations (Fig. 3.9b). Based on our experimental data (Fig. 3.3d), a 15% curvature
bias corresponds to a radius of curvature of 2.3 µm and a bending energy of 0.6 kBT per
µm of ATP-bound filament [57]. This amount of curvature could result from a lateral force
of 1 pN applied perpendicularly to the end of a 0.05 µm-long filament fixed at the other
end [7], which reflects the average force per filament due to membrane tension and rigidity
[1, 80] and the approximate length of free F-actin [119] at the leading edge of the cell. If the
length of free F-actin is longer at the leading edge [127, 111], the filaments require even less
force to bend. Therefore, even modest filament curvature that is caused by the normal force
balance of branched actin growth against a membrane can generate a significant bias in the
direction of actin branch nucleation.

3.5 Conclusions

We have shown that F-actin curvature regulates Arp2/3 complex activity, providing the
cell with a distributed, filament-dependent mechanism for sensing and responding to the
compressive stress on branched actin networks. Our results suggest the possibility that
mechanical stress on cytoskeletal filaments can modulate how they interact with their binding
partners. The actin filament takes on a diversity of structural states as it grows, interacts
with binding proteins, encounters physical constraints, and fluctuates due to thermal motion
[65, 104]. It is likely that other side-binding ABPs besides the Arp2/3 complex exhibit similar
sensitivity to local actin curvature, providing a direct mechanism for altering organization of
the actin cytoskeleton in response to force. For example, filament severing by the ADF/cofilin
homolog actophorin occurs more readily at points of high curvature [68], consistent with a
recently elucidated mechanism for severing by cofilin that depends on a mechanism that
takes advantage of the mechanical instability at the border between two structural states
of F-actin [76]. However, it is not yet known whether cofilin binding or the cooperativity
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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(a) (b)

Figure 3.9: A bias in the direction of branching can increase the total amount
of actin in a branched network. (a) In a branched network, compressive forces bend
filaments away from the membrane (black). Excess branching on the convex side of a bent
filament creates more branches pointing toward the membrane, increasing the number of
filaments pushing against the membrane (cyan blue arrows). Capping (red) can occur any-
where, but filaments can only branch in the branching zone (gray). (b) Results of a stochastic
branching simulation in which rigid branches with angles of ±36◦ and -108◦ grow with a given
bias (right column) toward the membrane. (Insets) Schematic snapshots of branching with
0% and 15% bias (gray, branching zone).

of cofilin binding is affected by local filament curvature, although it has been shown that
its binding lowers the persistence length of actin [75] and that its binding is enhanced by
tension on F-actin [50]. Nor have other proteins that modify the persistence length of actin,
such as drebrin [109] or tropomyosin [57], been tested for sensitivity to F-actin curvature.
The methods we have developed can be used as a platform to investigate the curvature
dependence of other ABP-filament interactions and the role of actin filament bending in
mechanotransduction and cytoskeletal reorganization.
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Chapter 4

Curvature dependent force sensing

The work described in this chapter was performed in collaboration with Julian Weichsel,
Viviana Risca, and Professor Daniel Fletcher.

Cytoskeletal filaments and the plasma membrane participate in a broad range of essential
and disparate cellular processes. Their physical environment subjects them to a range of
mechanical cues, including tensile forces. Results from chapter 3 and elsewhere in the lit-
erature suggest that changes in curvature fluctuations of filaments and membranes induced
by such forces are likely to play an important role in regulating protein binding. A problem
inherent in studying how forces affect protein binding is the large difference in length scale
between the systems’ micrometer-scale properties measured in experiment and the nanome-
ter conformational changes that determine the interaction with proteins.

This nanometer-scale curvature of cytoskeletal filaments or the plasma membrane, how-
ever, is readily accessible for well established mesoscale models without requiring atomistic
detail. In this chapter, we present a framework for accessing nanometer-scale curvature with-
out simulation. More specifically, we derive analytical expressions for the nanometer-scale
curvature distribution of a worm-like chain and membrane as a function of applied tension.
These results agree well with curvature distributions calculated in Monte Carlo simulations
of a discretized worm-like chain and a triangulated membrane sheet. We also discuss how
these results can be used to understand the force dependence of protein binding to actin fil-
aments and membranes within the biological context. Our findings are generally applicable
to semiflexible polymers such as actin and DNA, as well as membranes such as the plasma
membrane and endosomes.

4.1 Introduction

A central challenge in actin research is understanding how the actin network dynamics ob-
servable by light microscopy arise from molecular interactions [94]. This task is made more
difficult by the fact that mechanical force, produced by extracellular sources and intracellular
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myosin motors, acts on actin networks to constrain and modulate the biochemical reactions
that govern their mechanical properties and dynamics [32, 53]. The transduction of force into
biochemical signals has been extensively studied in the context of specialized mechanosens-
ing molecules [129], but new evidence suggests that mechanosensitivity also rests in actin
filaments themselves and in their interactions with regulatory proteins [36, 50, 110, 128].
Actin filaments have been demonstrated to be highly polymorphic [37, 108], and their con-
formation can be modulated both by ABPs [38] and by applied forces [36, 110]. Modulation
of protein binding to actin by filament curvature [105] or applied force [50, 128] has also
been demonstrated.

In membrane biophysics research, the relationship between protein binding and curva-
ture has been much more extensively studied. It has been found that proteins can induce
membrane curvature through scaffolding, helix-insertion, and crowding mechanisms [6, 114].
Additionally, many experiments have identified and characterized proteins that preferen-
tially bind to highly curved membranes [10, 88]. Several characteristics of these proteins
have been proposed to underlie such curvature sensing [3]. For example, proteins containing
crescent-shaped BAR (BinAmphiphysinRvs) domains sense curvature by binding to mem-
branes along the inner face of its arc. ALPS (Amphipathic Lipid Packing Sensor) motifs
are intrinsically unstructured and have been shown to preferentially bind to lipid packing
defects that are more probable on curved surfaces. Another aspect of membrane mechanics
that may regulate protein binding is membrane tension. Although progress has been made
regarding the effect of tension on cell polarity and motility [55, 5], it remains unclear how
this might affect the protein binding by altering curvature fluctuations.

The complex relationship between macroscopic constraints and microscopic structure
presents a problem in understanding how forces affect protein binding. Binding relies on
the atomic-scale conformation and fluctuations, while forces affect biological systems at all
length scales. One parameter that has the potential to bridge the disparate length scales of
actin and membrane networks and proteins is curvature. In both cases, there is experimental
evidence showing a clear dependence of protein binding on the curvature [105, 88]. Here,
we derive and simulate the nanometer-scale curvature distribution of WLC (Sec. 4.2.1) and
triangulated membrane sheet (Sec. 4.2.3) under tension. The expressions we derive for
curvature distributions as a function of force are generally applicable to other semiflexible
polymers that can be modeled by the WLC as well as different types of biological membranes.

4.2 Results

4.2.1 Curvature distribution of a WLC under tension

The energy of a free WLC is

E = kBT

∫ L

0

lp
2
κ(s)2ds. (4.1)
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L is the contour length, lp is the persistence length, s is the arc length, and κ is the local
curvature, defined as

κ(s) =

∣∣∣∣
∂t(s)

∂s

∣∣∣∣ , (4.2)

where t(s) = ∂r(s)/∂s is the unit tangent vector along the contour of the chain. The
curvature distribution for a single component (in the following called x or y) is Gaussian,

P (κx)dκ ∝ e−κ
2
x/2σ

2
x , (4.3)

where σ2
x is the variance of a single Cartesian component of the curvature vector. For a free

filament, the variance of this distribution is

σ2
x =

1

lp∆s
. (4.4)

We are more interested in the probability distribution for the magnitude of the total curva-
ture, because the total curvature is useful as a parameter that can approximate the distortions
of the WLC. The probability distribution for the total curvature is [101]

P (κ)dκ ∝ κe
−κ2
2σ2x dκ. (4.5)

The variance of the total curvature distribution is

σ2 = 2σ2
x =

2

lp∆s
. (4.6)

It is important to note that the variance is finite only for ∆s 6= 0. However, because our
framework intended for accessing curvature on a length scale commensurate with that of
protein binding (nanometer-scale), this condition will always be satisfied for biologically
relevant problems. Under tension, the variance of the distribution changes. In order to
derive an expression for this variance as a function of applied tension, we start with the
Hamiltonian of a WLC under tension

E = kBT

∫ L

0

lp
2
κ2ds− fz, (4.7)

where f is the tensile force applied to the end-to-end axis of the chain (z axis).
Under moderate tension, the tangent vector of the chain fluctuates very little around the

z axis, allowing us to make a small curvature approximation in which we approximate the
overall curvature κ ≈ κ⊥ as a sum of the x and y component curvatures

κ ≈ κ⊥ = κx + κy. (4.8)

Using this approximation, we can rewrite the Hamiltonian as

E =
1

2

∫ L

0

[
kBT lp

∣∣∣∣
∂t⊥
∂s

∣∣∣∣
2

+ ft2
⊥

]
ds− fL. (4.9)
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The tangent vector and its derivative can be decomposed in their respective Fourier series,

t⊥(s) =
1

L

∑

q

t̂⊥(q) eiqs ≈
∫

dq

2π
t̂⊥(q) eiqs (4.10)

∂t⊥
∂s

=
1

L

∑

q

t̂⊥(q) iq eiqs ≈
∫

dq

2π
t̂⊥(q) iq eiqs, (4.11)

where the limits of integration are determined by the maximum and minimum wave vectors
corresponding to a chain of contour length L and discretization ∆s (qmax = π/∆s, qmin =
π/L). Since the curvature is real-valued, the Fourier coefficients have the property that
t̂⊥(−q) = t̂

∗
⊥(q). Thus, the Fourier representation of the energy is

E =
1

2L

∑

q

(
kBT lp q

2 + f
)
|t̂⊥(q)|2 − fL, (4.12)

Each Fourier mode has energy kBT/2 by equipartition and we find that

〈|t̂⊥(q)|2〉 = 2〈|t̂x(q)|2〉 =
2L

lp q2 + f/kBT
. (4.13)

The variance of a single Cartesian component of the curvature vector is given by,

σ2
x = 〈

∣∣∣∣
∂tx
∂s

∣∣∣∣
2

〉 = 〈
∫

dq

2π
eiqs(iq)t̂x(q)

∫
dq′

2π
eiq
′s(iq′)t̂x(q

′)〉

=
1

L

∫
ds

∫
dq

2π
eiqs(iq)t̂x(q)

∫
dq′

2π
eiq
′s(iq′)t̂x(q

′)

=
1

L

∫
dq

2π
q2〈|t̂x(q)|2〉

=

∫
dq

2π

q2

lp q2 + f/kBT
.

(4.14)

The limits of integration are determined by the maximum and minimum wave vectors,

σ2
x = 〈

(
∂tx
∂s

)2

〉 =

∫ −π/L

−π/∆s

dq

2π

q2

lp q2 + f/kBT
+

∫ π/∆s

π/L

dq

2π

q2

lp q2 + f/kBT

≈
∫ π/∆s

−π/∆s

dq

2π

q2

lp q2 + f/kBT
for large L

=
1

lp∆s
−
√
f/kBT

2l
3/2
p

.

(4.15)

We compared this analytical result with Monte Carlo simulations of a WLC with discretiza-
tion length ∆s. For both the curvature distribution at fixed tensile force (Fig. 4.1 c and d)
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and the variance of the curvature as a function of tension (Fig. 4.1f), we find good agreement
between theory and simulation. It is important to note that in Fig. 4.1f, we are plotting the
second moment of the total curvature distribution, which relates to the variance of distribu-
tion for each component as

σ2 = 2σ2
x = 2

(
1

lp∆s
−
√
f/kBT

2l
3/2
p

)
. (4.16)

The snapshots in Fig. 4.1 a and b illustrate the effect of tension on the fluctuations at
different length scales. Applying 30 pN of tension substantially changes the large wavelength
fluctuations compared to that of a tensionless chain, but the effect on the smaller wavelengths
fluctuations (zoomed-in view) on the contrary are very subtle. In Fig. 4.1e, we see how the
curvature distribution changes as a function of tension. The range of forces was chosen
to reflect the tensions to which actin filaments are subjected in the biological context, for
instance in stress fibers, which are contractile elements present in many cell types, and in in
vitro experiments. On the lower end of that range, 30 pN corresponds to the stall force of 7-10
myosin motors [30] and to the force applied to actin in an experiment measuring the impact
of tension on cofilin binding [50]. The upper end of the range is based on measurements
of the traction forces applied by single focal adhesions that couple to single stress fibers
(approximately 4 nN) [4, 121] and on the number of actin filaments in a stress fiber or a
similar contractile bundle (tens) [19].

4.2.2 Curvature distribution of a WLC under compression

We follow a very similar strategy to derive expressions for the curvature distribution of a
WLC under compression. The variance of a single Cartesian component of the curvature
vector is given by,

σ2
x = 〈

(
∂tx
∂s

)2

〉 =
1

lp∆s
+

√
f/kBT

πl
3/2
p

coth−1

[
π
√
lp

L
√
f/kBT

]
(4.17)

The inverse hyperbolic cotangent term becomes undefined at f = lpπ
2/L2

c , which is the
buckling force. The accuracy of the analytical solution decreases rapidly for increasing
compression force because the small angle approximation no longer holds at even modest
forces. For a WLC with L = 0.5 µm and lp = 9 µm, the buckling force is approximately 1.48
pN. The analytical solution is only accurate below ∼ 0.5 pN, where the curvature distribution
changes very little from that of the free filament.

4.2.3 Curvature distribution of a membrane under tension

Consider a nearly flat piece of membrane. Within the Monge gauge, the surface shape is
parametrized by its height field h ≡ h(r) with respect to its two dimensional reference plane
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Figure 4.1: Worm-like chain under tension. Snapshots of a WLC simulation correspond-
ing to a chain with contour length Lc = 9 µm and persistence length Lp = 9 µm (zoomed-in
section ∼0.09 µm) under (a) 0 pN and (b) 30 pN of tension from simulation. Comparisons
of analytical theory and WLC simulation corresponding to a chain with Lc = 0.5 µm and Lp
= 9 µm. Curvature distribution under (c) 30 pN and (d) 100 pN of tension obtained using
both the theoretical prediction and simulation. (e) Curvature distribution of a simulated
WLC under a range of tensile forces ranging from 0 to 300 pN. (f) Variance of the total
curvature under tension.
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r ≡ (x, y) of size L2. Additionally using a small gradient approximation (i.e. |∇h| � 1), the
membrane energy can be written as,

E =

∫

L2

d2x

[
kc
2

(
∇2h

)2
+
γ

2
(∇h)2

]
, (4.18)

with bending modulus kc and surface tension γ. The mean curvature distribution is Gaussian,

P
(
∇2h

)
d∇2h ∝ e−

(∇2h)2

2σ2 d∇2h. (4.19)

For a large tensionless membrane (γ = 0), the variance of this distribution is,

σ2 = 〈
(
∇2h

)2〉 =
kBT

kcδx2
, (4.20)

where the length δx indicates some finite discretization in x, y. To derive the width of the
distribution for the general case (γ ≥ 0), we start with the Fourier transform of the energy.
Using the definition of the Fourier transform of the membrane height h,

h(r) =
1

L2

∑

q

ĥ(q) eiqr ≈
∫

dq

(2π)2
ĥ(q) eiqr (4.21)

∇h(r) =
1

L2

∑

q

ĥ(q) (iq) eiqr ≈
∫

dq

(2π)2
ĥ(q) (iq) eiqr (4.22)

∇2h(r) =
1

L2

∑

q

ĥ(q) (iq)2 eiqr ≈
∫

dq

(2π)2
ĥ(q) (iq)2 eiqr (4.23)

(4.24)

in Eq. 4.18 leads to,

βE =
1

2L2

∑

q

(
kcq

4 + γq2
)
|ĥ(q)|2 , (4.25)

which directly indicates,

〈|ĥ(q)|2〉 =
kBTL

2

kcq4 + γq2
, (4.26)
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due to equipartition. The variance of the mean curvature distribution is therefore given by,

σ2 = 〈
(
∇2h

)2〉 = 〈
∫

ĥ(q)

(2π)2
(iq)2 eiqr dq

∫
ĥ(q′)

(2π)2
(iq′)2 eiq

′r dq′〉 (4.27)

=
1

L2

∫
dx2

∫
ĥ(q)

(2π)2
(iq)2 eiqr dq

∫
ĥ(q′)

(2π)2
(iq′)2 eiq

′r dq′ (4.28)

=
1

L2

∫
dq

(2π)2
q4〈|ĥ(q)|2〉 (4.29)

=
kBT

(2π)2

∫
d2q

q4

kcq4 + γq2
(4.30)

=
kBT

(2π)2kc

(∫
d2q−

∫
d2q

γ

kcq2 + γ

)
. (4.31)

Here we have approximated the two sums (each with discretization ∆qx,y = 2π/L) by inte-
grals in the first step and used

∫
d2x ei~r(~q+~q

′) = (2π)2δ(~q+~q′) and Eq. 4.26 subsequently. In the
last step, the integral was additionally separated into tension-independent and -dependent
parts. The limits for the integrations are determined by the minimum and maximum wave
vector cutoffs qmin and qmax. For a periodic membrane sheet of finite linear extension L,
the smallest possible mode is qmin = 2π/L. This is negligible at sufficiently large L (i.e.
qmin ' 0). The maximum mode is determined by the discretization of the membrane (i.e. in
the extreme case by the size of a single lipid), qmax = π/δx. Using these limits, the tension-
independent part of Eq. 4.31 can be readily integrated in Cartesian coordinates, while we
will approximate the integration of the tension-dependent term in polar coordinates (i.e.
d2q ≈ 2πqdq). The variance of the curvature distribution is thus given by,

σ2 ≈ kBT

[
1

kcδx2
− γ

4πk2
c

ln

(
π2kc
δx2γ

+ 1

)]
for large L . (4.32)

Note that Eq. 4.32 also includes the limiting case γ → 0,

lim
γ→0

σ2 =
kBT

kcδx2
. (4.33)

Fig. 4.2 shows comparisons of the mean curvature distribution from simulation to ana-
lytical theory. The results are in good agreement for curvature distributions (Fig. 4.2 c and
d) at fixed surface tensions and for the variance of the distributions (Fig. 4.2f).

4.3 Computational methods

4.3.1 Worm-like chain

To test and verify the analytical results, we performed Monte Carlo simulations of a dis-
cretized WLC under tension and compression. We start with a model of a free WLC whose



36

(a) (b)

0 0.04 0.08 0.12
0

5

10

Local curvature (nm
−1

)

P
ro

b
ab

il
it

y

 

 

 Theory

 Simulation

0 0.04 0.08 0.12
0

5

10

Local curvature (nm
−1

)

P
ro

b
ab

il
it

y

 

 

 Theory

 Simulation

(c) (d)

0 0.04 0.08 0.12
0

5

10

Local curvature (nm
−1

)

P
ro

b
ab

il
it

y

 

 

 0.0 kT/nm
2

 0.1 kT/nm
2

0 0.025 0.05 0.075 0.1
1.6

1.65

1.7

1.75x 10
−3

Surface tension (kT nm
−2

)

σ
2
 (

n
m

−
2
)

 

 

 Theory

 Simulation

(e) (f)

Figure 4.2: Membrane sheet under tension. Representative snapshots of a triangulated
membrane sheet under (a) 0 and (b) 0.1 kBT/nm2 surface tension. Comparisons of analytical
theory and simulation corresponding to a membrane with bending modulus kc = 20 kBT .
Curvature distribution under (c) 0 and (d) 0.1 kBT/nm2 of surface tension obtained using
both the theoretical prediction and simulation. (e) Comparison of the curvature distribution
for surface tensions 0 and 0.1 kBT/nm2. (f) Variance of the total curvature under surface
tension.
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coarse-graining resolution and energetics are detailed in 2. We then apply a force to the end-
to-end vector R of the WLC. If we align the end-to-end vector of the chain on the z-axis,
the energy attributed to the force f can be written as

βEforce = βfz. (4.34)

The total energy of our WLC under force is then simply the sum of the bending energies
and the applied force

βEtotal = βEbend + βEforce =
1

2

N∑

i

lp|κi|2∆s+ βfz. (4.35)

Conformational fluctuations are sampled using the standard Metropolis Monte Carlo algo-
rithm.

4.3.2 Triangulated membrane sheet

In order to test our analytical approximation for the curvature distribution of a membrane
under tension, we rely on a widely used dynamically triangulated surface model for fluctuat-
ing fluid membranes [52, 47]. We are simulating a quasi-flat periodically continued membrane
interface employing a Metropolis Monte Carlo method. The bending energy as well as the
local curvature of the membrane is evaluated using a discretized version of the Laplacian on
the triangulated lattice as described in [47]. A constant surface tension is prescribed by al-
lowing the simulation box to fluctuate and biasing the acceptance of these moves accordingly
[112].

4.4 Biological implications

These results can be interpreted in the context of protein binding to semiflexible filaments like
actin or membranes such as the plasma membrane. In a simple model of binding, we assume
that nanometer- and angstrom-scale conformation in the filament correlates with its local
curvature as it undergoes Brownian fluctuations [105]. In the simplest case, only a window
of permissive local curvature allows for protein binding (Fig. 4.3). The window is defined by
a threshold curvature κth. Only sections of the filament or membrane whose instantaneous
curvature is in the permissive window take on a conformation that allows binding, while
other sections with non-permissive curvature do not result in productive collisions. This
model is conceptually similar to the gated ligand binding model developed by McCammon
and Northurp [74]. By integrating the area under the curvature probability distribution Eqs.
(4.5) and (4.19) within the binding window (in this case, above the threshold curvature), we
can calculate the fraction of the filament or membrane that adopts permissive curvature at
any time, or, equivalently, the fraction of the time that any section of filament or membrane
adopts permissive curvature for binding.
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Figure 10: Monte Carlo moves for the WLC: a. free rotations b. crankshaft rotations.

The curvature of the WLC, �, was calculated from the angle between successive bonds, �, and
the discretization, �s:

� =
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7 Conclusions

We have presented analytical expressions for how the bend curvature distribution changes as a
function of compressive and tensile forces. For compression, the curvature distribution undergoes
little change until the buckling transition, when the variance of of the distribution increases rapidly
with increasing force. For tension, our results show that applied tension subtly shifts the distri-
bution of local curvature fluctuations toward smaller curvatures. This shift is small, and perhaps
smaller than might be intuitively expected. The largest changes are observed in the wings of the
local curvature distribution, implying that processes that depend on rare fluctuations that make
up the tails of the nanometer-scale curvature distribution would be far more a�ected by tension
than processes that depend on the most likely or average value of the nanometer-scale curvature.
It is important to note that our results and this discussion focus on the nanometer-scale filament
curvature with length scales comparable to the footprints of ABPs. Larger changes in curvature
distribution as a function of tension are expected at larger several-micrometer length scales.

In our previous work with Arp2/3, we found that Arp2/3 binding and branching must be sensi-
tive to rare but large local curvature fluctuations. In our fluctuation-gating model, we hypothesize
that Arp2/3 binding and branching only occurs when the local curvature of the filament fluctuates
beyond a threshold value (Risca et al., 2012). Experimental evidence suggests a similar mode of ac-
tion for other actin binding proteins, including cofilin and myosin II. Specifically, increasing tension
on actin filament decreases binding and severing by the actin-severing protein cofilin (Hayakawa et
al., 2011). In contrast, myosin II motor proteins preferentially localizes to the stretched parts of
the actin cortex, indicating greater binding and interaction with tensed actin filaments (Uyeda et
al., 2011).

We believe that our result, combined with a model describing the interaction between the ABP
and filament, can be used to explain the specific mechanisms by which compression or tension
on particular populations of actin filaments helps to specify which ABPs will associate with that
population, thus giving rise to a distinct cytoskeletal structure. Our result will hopefully motivate
other experiments seeking to identify additional ABPs that interact with actin in a mechanosensitive
manner.

Beyond the scope of the actin cytoskeleton, these results apply to all semiflexible filaments and
may prove relevant in the understanding of other polymer systems that are subject to compressive
and tensile forces and in which local filament curvature is an important parameter.
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on actin filament decreases binding and severing by the actin-severing protein cofilin (Hayakawa et
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the actin cortex, indicating greater binding and interaction with tensed actin filaments (Uyeda et
al., 2011).

We believe that our result, combined with a model describing the interaction between the ABP
and filament, can be used to explain the specific mechanisms by which compression or tension
on particular populations of actin filaments helps to specify which ABPs will associate with that
population, thus giving rise to a distinct cytoskeletal structure. Our result will hopefully motivate
other experiments seeking to identify additional ABPs that interact with actin in a mechanosensitive
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Under tension, only the variance changes. Therefore, we want to derive an expression for the
variance as a function of applied tension. We start with the Hamiltonian of a WLC under tension

�E =

� L

0

lp
2
�2ds � �fz, �th (7)

where f is the tensile force applied to the end-to-end axis of the chain (z axis). Under moderate
tension, the tangent vector of the chain fluctuates very little around the z axis. This allows us to
make a small curvature approximation in which we approximate the overall curvature � � �� as a
sum of the x and y component curvatures

� � �� = �x + �y. (8)

Using the approximation, we can rewrite the Hamiltonian as

�E =
1

2

� L

0

�
lp

����
�t�
�s

����
2

+ �ft2
�

�
ds � �fL. (9)

The tangent vector and its derivative can be written as the sum of their respective Fourier series,

t�(s) =
1

L

�

q

t̂�(q) eiqs �
� qmax

�qmax

dq

2�
t̂�(q) eiqs (10)

�t�
�s

=
1

L

�

q

t̂�(q) iq eiqs �
� qmax

�qmax

dq

2�
t̂�(q) iq eiqs, (11)

where the limits of integration are determined by the maximum and minimum wave vectors corre-
sponding to a chain of contour length L and discretization �s (qmax = �/�s, qmin = �/L). Since
the curvature is real-valued, the Fourier coe�cients have the property that t̂�(�q) = t̂

�
�(q). The

Fourier representation of the energy is

�E =
1

L

�

q

�
lpq

2 + f
�
|t̂�(q)|2 � �fL, (12)

Each Fourier mode has energy kBT/2 by equipartition and we find that

�|t̂�(q)|2� = 2�|t̂x(q)|2� =
2kBTL
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Figure 10: Monte Carlo moves for the WLC: a. free rotations b. crankshaft rotations.

The curvature of the WLC, �, was calculated from the angle between successive bonds, �, and
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7 Conclusions

We have presented analytical expressions for how the bend curvature distribution changes as a
function of compressive and tensile forces. For compression, the curvature distribution undergoes
little change until the buckling transition, when the variance of of the distribution increases rapidly
with increasing force. For tension, our results show that applied tension subtly shifts the distri-
bution of local curvature fluctuations toward smaller curvatures. This shift is small, and perhaps
smaller than might be intuitively expected. The largest changes are observed in the wings of the
local curvature distribution, implying that processes that depend on rare fluctuations that make
up the tails of the nanometer-scale curvature distribution would be far more a�ected by tension
than processes that depend on the most likely or average value of the nanometer-scale curvature.
It is important to note that our results and this discussion focus on the nanometer-scale filament
curvature with length scales comparable to the footprints of ABPs. Larger changes in curvature
distribution as a function of tension are expected at larger several-micrometer length scales.

In our previous work with Arp2/3, we found that Arp2/3 binding and branching must be sensi-
tive to rare but large local curvature fluctuations. In our fluctuation-gating model, we hypothesize
that Arp2/3 binding and branching only occurs when the local curvature of the filament fluctuates
beyond a threshold value (Risca et al., 2012). Experimental evidence suggests a similar mode of ac-
tion for other actin binding proteins, including cofilin and myosin II. Specifically, increasing tension
on actin filament decreases binding and severing by the actin-severing protein cofilin (Hayakawa et
al., 2011). In contrast, myosin II motor proteins preferentially localizes to the stretched parts of
the actin cortex, indicating greater binding and interaction with tensed actin filaments (Uyeda et
al., 2011).

We believe that our result, combined with a model describing the interaction between the ABP
and filament, can be used to explain the specific mechanisms by which compression or tension
on particular populations of actin filaments helps to specify which ABPs will associate with that
population, thus giving rise to a distinct cytoskeletal structure. Our result will hopefully motivate
other experiments seeking to identify additional ABPs that interact with actin in a mechanosensitive
manner.

Beyond the scope of the actin cytoskeleton, these results apply to all semiflexible filaments and
may prove relevant in the understanding of other polymer systems that are subject to compressive
and tensile forces and in which local filament curvature is an important parameter.
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high local curvature and increasing the kinetic rate of either
Arp2/3 binding or branch nucleation.

Based on this evidence, we developed a filament fluctuation
gating model, conceptually similar to fluctuation-gated binding
of ligands to proteins (41). In our model, stable Arp2/3 ternary
complex binding and branch nucleation occur only when the local
curvature of the filament fluctuates beyond a threshold value κth
(Fig. 4C). A sharp threshold is chosen because in the extreme
wings of the local curvature distribution, probability attenuates
so rapidly that the only pertinent model parameter is the lowest
curvature value where branching is greatly enhanced, in effect,
κth. Thus, the probability that a branch forms on either side of the
curved filament under our model is the net probability of respec-
tive curvature values in excess of þκth or −κth (Fig. 4 B and C).
Our calculations assess how extreme this curvature threshold
needs to be in order to account for the curvature preference we
observe experimentally.

With these simple assumptions, the fluctuation gating model
captures the shape of the curvature-dependent branching bias
and agrees quantitatively with our data over the entire experi-
mental range for a value of κth ¼ 5 μm−1 (red curve, Figs. 2D
and 4D). These results are consistent with a mechanism in which
F-actin bending fluctuations play a role in regulating branch for-
mation by the Arp2/3 complex, suggesting that branching can be
regulated by alterations of bending fluctuations of filaments due
to constraints on actin network architecture or by binding of other
ABPs. However, because of its coarse-grained resolution, this
model cannot make predictions about conformational changes
of the actin monomer caused by bending in the Arp2/3 binding
site on the scale of individual amino acid residues. This model is
presented in the simplest form that is consistent with our data
and experimental parameters, but it could be extended to include
details about the dependence of branch direction on curvature
based on future findings. For example, we currently have little
data in the very high convex curvature regime, where the branch
density may decrease as the curvature distorts the mother fila-
ment to such an extent that it can no longer accommodate branch
nucleation.

Autocatalytic Branching Amplifies the Branching Bias. Directionally
biased branching has important implications for branched actin
assembly in vivo, where autocatalytic nucleation amplifies small
effects (26, 42). A large fraction of filaments in a branched actin
network adopt an approximately −35° orientation (43), and the
side of a bent filament experiencing extensional strain is the same
side that typically faces the bending force. Excess growth on the
convex side of the curved filament would therefore create more
branches oriented toward the bending force, reinforcing the
branched network (Fig. 5A). The excess of branches on the most
convex side of the mother filament may also define a preferred
plane for branching that coincides with the plane of filament cur-
vature, possibly contributing to the flat and thin shape of lamelli-
podia. It would also lead to more filaments growing into the
membrane-adjacent zone where new branches can be nucleated,
increasing total branch density. We studied this effect with a differ-
ent, stochastic simulation of branching in two dimensions (Fig. 5B)
and found that, for a 15% bias toward the membrane, the total
number of filaments is double that of the zero bias case after only
10 branch generations (Fig. 5B). Based on our experimental data
(Fig. 2D), a 15% curvature bias corresponds to a radius of curva-
ture of 2.3 μm and a bending energy of 0.6 kBT per μm of ATP-
bound filament (40). This amount of curvature could result from a
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Fig. 4. The branching bias can be explained by a shift in the curvature fluc-
tuations of a WLC filament tethered to a curved path. (A) Schematic of the
WLC polymer tethered at six points (asterisks) to a curve with imposed cur-
vature κ0 < 0. Fluctuations with local curvature κ < 0 and κ > 0 are possible.
Curvature was calculated from the section between the middle two tethered
particles, in order to avoid end effects (SI Materials and Methods). (B) Distri-
bution of local curvature fluctuations for a filament tethered to a straight
(black) or curved (red) path. Shaded areas indicate probability of branching.
(C) The fluctuation gating model predicts a threshold convex local curvature
beyond which stable binding and branching by the Arp2/3 complex (violet)
can occur. (D) Relative branch density calculated from the ratio of the red-
and black-shaded areas in B for several values of κth plotted with experimen-
tal data (also shown in Fig. 2D, with the red line corresponding to the same
value of κth). Error bars: SEM.
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Under tension, only the variance changes. Therefore, we want to derive an expression for the
variance as a function of applied tension. We start with the Hamiltonian of a WLC under tension

�E =

� L

0

lp
2
�2ds � �fz, �th (7)

where f is the tensile force applied to the end-to-end axis of the chain (z axis). Under moderate
tension, the tangent vector of the chain fluctuates very little around the z axis. This allows us to
make a small curvature approximation in which we approximate the overall curvature � � �� as a
sum of the x and y component curvatures

� � �� = �x + �y. (8)

Using the approximation, we can rewrite the Hamiltonian as
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where the limits of integration are determined by the maximum and minimum wave vectors corre-
sponding to a chain of contour length L and discretization �s (qmax = �/�s, qmin = �/L). Since
the curvature is real-valued, the Fourier coe�cients have the property that t̂�(�q) = t̂
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�(q). The

Fourier representation of the energy is
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Each Fourier mode has energy kBT/2 by equipartition and we find that
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Figure 4.3: Biological implications. Possible application of our analytical expressions for
the curvature distribution of WLCs and membranes under tension to the interaction with
proteins. (a) A window of permissive values of the transient local curvature of the filament
or membrane allows for protein binding. The window is defined by a threshold curvature
κth. The area under the curve above κth represents the probability of protein binding or
activity. (b) Only sections of the filament or membrane whose instantaneous curvature is
in the permissive window take on a conformation that allows binding, while other sections
with non-permissive curvature do not result in productive collisions.

4.5 Conclusions

Here, we have derived simple analytical expressions for the curvature distribution of WLCs
and membranes as a function of tensile forces. Tension on actin filaments and membranes
is not only common in the cellular environment, but is also likely to give rise to significant
changes in curvature fluctuations. Our model, coupled with emerging models of how proteins
interact with filaments and membranes, may provide a useful bridge between the micron-
scale network mechanical processes and nanometer-scale protein-protein interactions. Our
result, combined with more specific models describing the interaction between the proteins
and filament or membrane, can potentially be used to explain specific mechanisms by which
tension regulates protein binding affinity. Furthermore, our results can motivate new exper-
iments in this context, seeking to identify proteins that interact with cytoskeletal filaments
or membranes in a mechanosensitive curvature sensing way.
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Part II

Network level
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Chapter 5

Simulating soft materials under stress

The work described in this chapter was performed in collaboration with Sander Pronk.

Thus far, we have examined how forces affect actin at the single filament level. In this
and the next chapter, we shift to a larger length scale and investigate how actin networks
respond to large external stresses. In particular, because actin networks exhibit a very
nonlinear elastic response, our goal is to better understand the properties and structures that
give rise to the bulk properties responsible for maintaining the structural integrity of cells
in a mechanically stressed environment. Although there exist computational methods for
probing the properties of linearly elastic materials [86], there is currently no computational
method to accurately apply stress to nonlinearly elastic materials. Therefore, before we can
investigate the behavior of an actin network under stress, we need to develop a framework
to do so. In this chapter, we present a constant stress method to accurately apply stress
to nonlinearly elastic materials. Additionally, we develop a toy model of a soft elastic solid
with a nonlinear elastic response to test our method.

5.1 Introduction

Many interesting biologically important materials are soft. They exhibit substantial defor-
mations as a result of moderate stresses, despite consisting of particles that interact through
strong repulsions or attractions, for instance, hard-sphere repulsions and short-range at-
tractions in colloidal systems [100, 27], and strongly cross-linked stiff polymers in many
mechanically active biological systems [11].

In order to measure elastic properties in these systems, it can be numerically infeasible to
calculate the stress directly using the virial stress equation, which depends on the derivative
of the interaction potential [33]. Instead, the strain can be allowed to fluctuate by sampling
the simulation box shape.

Such strain fluctuation methods, as first described by Parrinello and Rahman [86], are
among the earliest uses of fluctuations as measure for thermodynamic quantities in computer
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simulations: the fluctuations of the matrix that determines the simulation box shape are
inversely proportional to the elastic constants obtained from a single simulation. This method
was later made rigorously correct in the case of large imposed stress [102, 103] by applying
finite-deformation elasticity theory [131, 132]. By ‘large stress’ we mean a stress that leads to
a non-negligible strain, including isotropic pressures that lead to compression of an otherwise
non-interacting gas.

In this chapter we describe Monte Carlo methods to sample an ensemble close in spirit
to the common laboratory scenario for constant stress. The underlying transition probabil-
ity for these methods does not obey detailed balance, and we cannot offer closed forms for
their stationary distributions. Thus, the simulations should not be regarded as mathemat-
ically well-controlled approximations to real equilibrium states, even for the model system
we consider for illustration. However, using the constant-stress framework, we are able to
accurately apply large stresses to a nonlinearly elastic system, as evidence by the small dif-
ference between the imposed stress and the measured (virial) stress. For the model system,
we show that our method can be used to probe very nonlinear stress-strain behavior and
elastic phase transitions.

5.2 The reference state of strain

Subtleties associated with sampling an ensemble of elastic deformation arise with the very
definition of stress and strain. We therefore begin by discussing these basic quantities,
adopting the notation introduced by Wallace [131, 132] in his description of finite-strain
elasticity theory.

Strain quantifies the amount and type of deformation of an object. It can be specified
through a set of internal coordinates in the undeformed state, Xi, and their transformed
counterparts xi in the deformed state. Limiting our attention to affine deformations, strain
can be compactly described through a matrix αij,

xi = αijXj = (uij + δij)Xj, (5.1)

where uij is the conventional displacement matrix and δij is the Kronecker delta. Einstein
notation is implied by repeated subscripts, which refer to projections onto Cartesian axes.
In principle, the reference state X is artificial, and need not correspond to an undeformed
configuration. In practice, many computational methods presume knowledge of such a state,
and are most easily described with X chosen accordingly.

Systems of statistical-mechanical interest typically comprise many interacting particles.
As a material property, strain should arise only when their coordinates change relative to
each other – as a pure rotation, for example, should not register as a strain. The Lagrangian
strain ηij provides such a measure of internal deformation [132]:

ηij =
1

2
(αkiαkj − δij) =

1

2
(uij + uji + ukiukj) . (5.2)
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Stress is a directional force per unit area, i.e., a tensorial generalization of pressure. In
terms of the force fi acting on an infinitesimal surface element with normal vector dsj:

Tijdsj = fi. (5.3)

We can calculate the work required for an infinitesimal deformation,

δW =

∫

S

dsiTijδxj, (5.4)

For a system that has volume V0 at zero strain [132],

δW = Tijα
−1
ij δηmnα

−1
ni |α|V0 (5.5)

Stress can therefore be obtained from the thermodynamics of small displacements as the
derivative of free energy F with respect to the Lagrangian strain

Tij = V −1
0 αikαjl

(
∂F

∂ηkl

)

T

. (5.6)

Equations 5.5 and 5.6 manifest a close connection between stress and strain, but they
also make clear that these quantities are not simply conjugate to one another in the same
sens as, e.g., pressure and volume. Their somewhat more complicated relationship in fact
precludes a well-defined ensemble of strain fluctuations at constant stress.

Under a set of fixed external forces, a very stiff system executes only very small fluctua-
tions about its equilibrium shape. To a good approximation in this case,

δWstiff ≈ TijδηjiV0, (5.7)

where we have neglected all terms of higher order in η. Because of this simplification, it is
straightforward to consider strain variations at fixed stress T as being governed by a simple
external potential

Vstiff(η) = V0Tijηji. (5.8)

Eq. 5.8 has formed the basis of many simulations of elastic solids [86]. The approx-
imation underlying Eq. 5.8 are well-founded, however, only when (a) the reference state
X corresponds to the equilibrium shape, and (b) spontaneous excursions away from X are
severely limited by internal forces. The former condition complicates applications to cases
of high stress, even for stiff systems, since the system’s shape is generally unknown a priori
outside the regime of linear response. For soft materials, inevitable violation of condition b
necessitates a different approach.

Problems arise when strain fluctuations are sufficiently large such that δWstiff is a poor
approximation to δW . If the external forces acting on a material are held constant, i.e. fixing
Tij, then δW is not an exact differential. There exists in general no external potential V (ηij)
which regulates strain fluctuations in the same way as fixing Tij. Though computationally
inconvenient, this fact does not of course negate the possibility of stable equilibrium states
at fixed Tij. It instead means that the probability distribution functions governing their
microscopic fluctuations cannot be deduced from the standard partitioning of a conserved
quantity.
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5.3 The work of a finite deformation

In order to formulate an ensemble with constant stress tensor, we will first calculate the
work associated with a finite deformation under constant stress. From this work function we
can define a pseudo-Hamiltonian: a function that gives correct energy differences for single
strain component deformations around the current state, but is not a state function in itself.
We will then use this work to define a pseudo-Hamiltonian based on the elastic state, and
use that as the basis for the approximate constant stress ensemble.

Starting with the stress as defined through Eq. 5.3 and an infinitesimally small deforma-
tion around the arbitrary state xi → x′i, we can define a relative deformation δαij

x′i − xi = δxi =
(
α′ij − αij

)
Xj = δαijXj, (5.9)

Now the work of such a deformation is the force on the boundaries of the system times δxi

δW =

∫

S

dsi Tijδxj

=

∫

S

dsi TijδαjkXk, (5.10)

which, through the divergence theorem, becomes

δW =

∫

V

dx ∂i (TijδαjkXk)

=

∫

V

dx ∂i
(
Tijδαjkα

−1
kl xl

)

= Tijδαjkα
−1
ki V (x)

= Tijδαjkα
−1
ki |α|V0. (5.11)

where V0 is the volume of the system at αij = δij. We can derive the work associated with
a finite deformation of the form

αij(λ) = αoij + λ ∆αij (5.12)

where λ goes from 0 to 1 as the system goes from αo to αn, and ∆αij = αnij − αoij, the total
amount of finite work ∆W o→n is

∆W o→n =

∫ 1

0

dλ
∂W (λ)

∂λ

=

∫ 1

0

dλ lim
ε→0

ε−1V0Tijα
−1
ki (λ) |α(λ)|

× [αjk(λ+ ε)− αjk(λ)]

= V0Tij∆αjk

∫ 1

0

dλ α−1
ki (λ) |α(λ)|

= V0Tij∆αjk

∫ 1

0

dλ C[α(λ)]ik (5.13)
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where C[α(λ)]ij is the cofactor of α(λ). This cofactor is

C(α)ji = |α|α−1
ij . (5.14)

Because we’re dealing with explicit determinants, we need to tackle the 2D and 3D case
separately. In 2D the work becomes

∆W o→n = V0Tij∆αjk

∫ 1

0

dλ

×
(

αoyy + λ∆αyy −αoxy − λ∆αxy
−αoyx − λ∆αyx αoxx + λ∆αxx

)

ki

= V0Tij∆αjk

[(
αoyy −αoxy
−αoyx αoxx

)

ki

+
1

2

(
∆αyy −∆αxy
−∆αyx ∆αxx

)

ki

]

= V0Tij∆αjk

(
C(αo)ik +

1

2
C(∆α)ik

)

= V0Tij∆αjk

(
|αo| (αo)−1

ki +
1

2
|∆α| (∆α)−1

ki

)

= V0 |αo|Tij∆αjk(αo)−1
ki + V0

1

2
Tii |∆α| (5.15)

and in 3D, it is

∆W o→n = V0Tij∆αjk

∫ 1

0

dλ

×




∣∣∣∣
αoyy + λ∆αyy αozy + λ∆αzy
αoyz + λ∆αyz αozz + λ∆αzz

∣∣∣∣ . . .

...
. . .



ki

= V0Tij∆αjk

∫ 1

0

dλ C(αo)ik + λ2C(∆α)ik + λΓki

= V0Tij∆αjk

[
C(αo)ik +

1

3
C(∆α)ik +

1

2
Γki

]

= V0

(
|αo|Tij∆αjk(αo)−1

ki +
1

2
Tij∆αjkΓki

+
1

3
|∆α|Tii

)
(5.16)
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Here Γij is a cofactor-like matrix that holds cross terms from αo and ∆α. Its full form is

Γij =




αoyy∆αzz
+αozz∆αyy
−αoyz∆αzy
−αozy∆αyz

−αoxy∆αzz
−αozz∆αxy
+αoxz∆αzy
+αozy∆αxz

αoxy∆αyz
+αoyz∆αxy
−αoxz∆αyy
−αoyy∆αxz

−αoyx∆αzz
−αozz∆αyx
+αoyz∆αzx
+αozx∆αyz

αoxx∆αzz
+αozz∆αxx
−αoxz∆αzx
−αozx∆αxz

−αoxx∆αyz
−αoyz∆αxx
+αoxz∆αyx
+αoyx∆αxz

αoyx∆αzy
+αozy∆αyx
−αoyy∆αzx
−αozx∆αyy

−αoxx∆αzy
−αozy∆αxx
+αoxy∆αzx
+αozx∆αxy

αoxx∆αyy
+αoyy∆αxx
−αoxy∆αyx
−αoyx∆αxy




(5.17)

Note that both in 2D and 3D, for an isotropic expansion under isotropic pressure Tij =
δijP , the following relation holds:

∆W o→n = PV0 (|αn| − |αo|) = P∆V (5.18)

5.4 The constant-stress pseudo-ensemble

It is important to note that Eqs. 5.15 and 5.16 are not state functions: the work is path-
dependent. This can easily be shown by example: consider the case where the pressure
tensor is

Tij =

(
Px 0
0 Py

)
. (5.19)

Comparing the energies associated with deformations between strain states

αo =

(
1 0
0 1

)
, αn

′
=

(
c 0
0 1

)
, αn =

(
c 0
0 c

)
(5.20)

we arrive at energy differences

∆W o→n′ = V0(c− 1)Px

∆W n′→n = V0(c− 1)Py (5.21)

while a direct transformation between o→ n leads to

∆W o→n = V0(Px + Py)

[
(c− 1) +

1

2
(c− 1)2

]
. (5.22)
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This discrepancy is unsurprising: it is a result of the thermodynamic tension being the
conjugate to the stress tensor. The work functions of Eqs. 5.15 and 5.16 do allow us to
construct a pseudo-Hamiltonian that is locally valid for changes in individual strain (α)
matrix components.

This means that we can construct a pseudo-ensemble that is locally valid around any
average; giving us the correct thermodynamic ground state for any pressure tensor. Because
the pressure tensor is the experimentally most readily available form of stress, and we do not
rely on the starting state as a reference state, this ensemble can be used to quickly explore
elastic behavior.

In order to arrive at the pseudo-ensemble, we start with Eqs. 5.15 and 5.16, giving us an
energy difference between two different strain states given a constant stress. To formulate
the ensemble, we need a Hamiltonian-like function: we start with a state with zero ‘energy’,
and an associated (but otherwise completely arbitrary) reference state. We can take

αoij = δij, (5.23)

so the deformation change becomes

∆αij = αij − δij = uij. (5.24)

where uij is the displacement matrix of the state for which the energy is calculated. Given
this ‘zero state’, the 2D case of Eq. 5.15 reduces to

E2(α) = V0

(
Tijuji +

1

2
Tii |u|

)
. (5.25)

With this, we can formulate a constant tension ensemble with a partition sum

Ξ2(N, Tij, T ) =

∫
dαdν exp [−βE2(α)− βH(ν)]

=

∫
dαdν exp

[
− βV0

(
Tklulk +

1

2
|u|Tll

)

−βH(ν)

]
(5.26)

where ν is the collection of microstates within the space spanned by α. In 3D, we use the
same procedure and take the same zero state for the energy as for 2D. The energy with
respect to αoij = δij is, according to Eq. 5.16,

E3(α) = V0

[
Tij∆αjkδki +

1

2
Tij∆αjkΓki +

1

3
|∆α|Tii

]
(5.27)

where Γij simplifies to
Γij = δijukk − uij (5.28)
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which makes

E3(α) = V0

(
Tijuji +

1

2
Tijujiumm −

1

2
Tijujkuki +

1

3
Tii |u|

)

≡ V0

[
Tijωji +

1

3
Tii |u|

]
, (5.29)

where, for notational convenience, we introduce the matrix

ωji ≡ uji +
1

2
ujiukk −

1

2
ujkuki. (5.30)

With this, we can write a constant stress partition function as

Ξ3(N, Tij, T ) =

∫
dαdν exp (−β [E3(α) +H(ν)]) (5.31)

5.5 A test system

As an example application of the constant stress ensemble, we have performed simulations
of a two-dimensional system of point particles interacting in a pairwise fashion through a
purely repulsive Gaussian shaped potential, known as the Gaussian core model:

UGC(r) = ε exp

(
− r

2

σ2

)
(5.32)

where r is the interparticle distance, and ε and σ are tunable parameters, modulating the
interaction strength and the range, respectively.

The soft interactions of the model result in significant nonlinear elastic response, while its
simplicity allows for direct comparison between constant-stress and constant strain methods.
At a temperature of T = 0.0005 ε/kB and a number density of ρ = 0.4/σ2 (corresponding to
imposed stress of Txx = 0.195105 ε/σ2, Tyy = 0.195114 ε/σ2, and Txy, Tyx = 0), the system
is stable as a hexagonal crystal.

With only the pairwise Gaussian core potential, plastic flow was observed under high
strain. Since there is no potential enforcing a certain coordination between particles, slippage
occurs and the system is able to access a lower stress state (Fig. 5.1). To prevent plastic
flow, we added an additional neighboring potential between each particle and its six nearest
neighbors:

Unb(r) =





0 if r < rc,

ε

(
r − rc
σ

)6

otherwise,
(5.33)

where we set the cut-off distance rc = 1.03〈∆r〉 ≈ 1.80 σ, and 〈∆r〉 is the average distance
between neighboring particles in the undeformed crystal at ρ = 0.4/σ2. At small strain
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Figure 5.1: Plastic flow stress-strain curve. Plastic flow was observed under high strain.
Since there is no potential enforcing a certain coordination between particles, slippage occurs
and the system is able to access a lower stress state. This occurs several times as the simple
shear is applied to the system.

values, when no plastic behavior is observed, the typical distance between an atom and
its six nearest neighbors is less than rc. Therefore, the neighboring potential contributes
negligibly to the internal energy of the undeformed (or weakly deformed) system and linear
elastic response is dictated by the Gaussian core potential. However, at larger strain values
when slippage would be favored by the Gaussian core potential, typical neighbor distances
will tend to exceed rc, activating the neighboring potential. The rapid increase of Unb(r)
once r > rc effectively enforces a topological constraint that prohibits changes in particle
coordination that would accompany plastic flow. Thus, introducing Unb(r) allows us to assess
highly nonlinear yet elastic stress-strain behavior. It is important to note that this behavior
is reversible; the same curve is produced by gradually increasing strain from 0 to 0.5 and by
subsequently decreasing the strain back to 0.

Fig. 5.2 shows the nonlinear stress-strain response of this system. Simple shear strain
deformation (volume-conserving, 0% to 50% strain) was imposed on the rectangular solid,
and the corresponding stress was measured using the virial stress equation,

Tα,β = 〈
∑

ij

Fij,α · rij,β〉/V, (5.34)

where T is the stress tensor, i, j are interacting particles, and α, β are Cartesian indices.
As an illustration of the nonlinear stress-strain response of this system, Fig. 5.3a shows

shear (xy) stress as a response to imposed shear strain for this system, where two strain
components are free to fluctuate (xx and xy): the strain response is single-valued and clearly
nonlinear: it shows a softening (large strain response to small stress change) around Txy ≈
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Figure 5.2: Constant strain (benchmark) simulation. Nonlinear response of shear (xy)
stress to imposed shear strain of the Gaussian core model. Simple shear strain deforma-
tion (volume-conserving, 0% to 50% strain) was imposed on the rectangular solid, and the
corresponding stress was measured using the virial stress equation (Eq. 5.34).
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Figure 5.3: Stress-strain response under shear. Nonlinear response of shear (xy) stress
to imposed shear strain of the Gaussian core model. (a) For the strain fluctuation methods,
only the xx and xy components of the deformation matrix are free to fluctuate. (b) All
independent strain components (xx, xy, yy) are free to fluctuate.
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0.015 ε/σ2, and stiffening at Txy ≈ 0.020ε/σ2. Note that here, while the the constant-
stress method of Section 5.4 reproduces the strains (and stresses) of the constant strain
method, the stiff approximation deviates from the two other methods at high stress, where
the difference between the stress and thermodynamic tension is large.
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Figure 5.4: Sheared configurations. Configurations near the elastic phase transition, at
Txy = 0.02006 ε/σ2 (and diagonal components as in Fig. 5.3b). Configuration (a) shows
a the strain state adopted by the stiff approximation, and (b) shows the compressed state
adopted by the constant-stress method of Section 5.4

When all three independent elements of the strain matrix are allowed to fluctuate, the
picture becomes more complex: Fig. 5.3b shows that while the constant strain measurements
show, by definition, no change in behavior, the strain fluctuation methods now show markedly
different behavior.

This divergence is caused by an elastic transition around Txy ≈ 0.015 ε/σ2: the constant-
stress method of Section 5.4 converges towards a new crystalline state with compressed yy
strain. Fig. 5.4 shows crystalline configurations from both the stiff approximation and the
constant-stress method. The situation is more clearly illustrated by the strain distributions
close to the phase transition, as shown in Fig. 5.5. Here, the constant-stress method shows
a bimodal distribution while the stiff approximation only identifies a single peak.

In fact, the difference between imposed stress and resulting virial stress, as shown in
Fig. 5.7, highlights the difference between the two methods: while the constant-stress method
maintains the imposed stress, the stiff approximation shows large deviations from the im-
posed stress at the phase transition. While this strictly speaking is not erroneous – the
difference between stress and thermodynamic tension is large when strains are far away from
the zero strain state – it is clearly not a desirable feature for a strain fluctuation method.

More fundamental, however, is the failure of the stiff approximation to identify multiple
coexisting states at the same stress: no amount of zero-strain-state correction could im-
prove that, because multiple states with the same stress each have their own, not a priori
identifiable, zero strain state.

It should to noted that the strain distributions of Fig. 5.5 are not necessarily the proba-
bility distributions of the underlying system, because the method of Section 5.4 does not rely
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Figure 5.5: Strain distributions. Strain distributions around Txy = 0.01536 ε/σ2, for the
two strain fluctuation methods.
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Figure 5.6: Stress distributions. Stress distribution around Txy = 0.01536 ε/σ2: measured
shear virial stresses over the full range of shear strains for the constant-stress method of
Section 5.4.
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Figure 5.7: Comparison of errors. Relative difference between the imposed and the
measured (virial) stress for Txy: ∆ = (T virial

xy − Txy)/Txy, for varying imposed stress.

on a valid statistical mechanical ensemble. The fact that all strains generated by this method
have the same average stress does mean that the strain states in both peaks of Fig. 5.5 are
compatible with this stress and are therefore likely to be present in any experiment with
similar conditions.

5.6 Conclusions

We have introduced a pseudo-ensemble, based on an imposed stress tensor. By using a stress
tensor instead of a thermodynamic tension, application of this ensemble in simulations allows
the exploration of large excursions in strain and the sampling of elastic phase transitions
where multiple values of strain may be stable at once.

As a test for this ensemble, we have explored the elastic behavior of a simple model system
that shows nonlinear elasticity and an elastic phase transition at moderate shear stresses.
This phase transition clearly shows the limitations of classical constant strain methods and
the stiff approximation: neither shows the presence of two stable elastic states.

While the amplitudes of the strain distributions using the constant-stress method may not
be representative of the true underlying probability distribution of strain given an imposed
stress, the method does sample states that share the same stress tensor. Thus, we have
shown that the constant-stress method is an effective method to quickly explore the full
range of nonlinear elastic (phase) behavior, which can then be used as an input for more
quantitative methods.
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Chapter 6

Toward an understanding of actin
network elasticity

Biopolymer networks which make up the cytoskeleton tend to exhibit stiffening at low to
intermediate strains, a property that is essential in maintaining the structural integrity of
cells under external force. While there are many experimental and theoretical studies probing
the elasticity of actin networks under shear, there are far fewer studies on the behavior of
such networks under compression, a biologically significant case. In this work, we explore
actin network elasticity under compression. Using our previously developed constant-stress
method and a coarse-grained model for short, semiflexible chains, we investigate the elastic
response of actin networks as a function of the network architecture as well as single filament
configurations that give rise to the bulk mechanical properties. We observed that under
compression, networks consistently exhibited a linearly elastic response followed by stress
softening. Additionally, at the single filament length scale, increasing compression resulted
in a bimodal distribution of segment lengths composed of bent and unbent filaments, with
no evidence for filament stretching. Using a normal mode analysis, we are further able to
identify soft regions in the networks and obtain a rough estimate of the relative linear elastic
modulus among various networks. Our findings shed light on the elastic behavior of actin
networks under compression and can be used to motivate new experiments in this area.

6.1 Introduction

A material’s elasticity refers to its tendency to resist deformation under external force. More
quantitatively, this tendency is measured by the relationship between stress (average force
per unit area) and strain (deformation). Linearly elastic materials will deform twice as much
when the external force is doubled (Fig. 6.1a). The corresponding elastic modulus, which
is the slope of the stress–strain curve, will be constant, independent of the strain or stress
state of the material. For a nonlinearly elastic material, how much the material deforms per
unit stress depends on the stress state of the material (Fig. 6.1 b and c). The corresponding



54

elastic modulus will not be constant, but rather a function of the stress or strain.
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Figure 6.1: Linear and nonlinear elasticity. An elastic material can exhibit (a) linear
elasticity or nonlinear elasticity in the form of (b) stiffening or (c) softening. For linearly
elastic materials, the elastic modulus, which is the slope of the stress-strain curve, is constant.
For nonlinearly elastic materials, the elastic modulus changes as a function of stress or strain.

Many biological gels such as actin gels display very nonlinear elastic properties, which
is intimately related to their functions in the cell [116]. Both experimental and theoretical
studies have found that these biological gels tend to stiffen under applied stress or strain [41,
59, 12, 61, 54]. This behavior is functionally very useful because by stiffening, actin and
other filament networks that make up the cellular cytoskeleton help to preserve the structural
integrity of the cell, allowing the cell to properly do its job.

There have been many studies probing the elastic properties of actin networks, many of
which involve applying simple shear to the networks and measuring the corresponding stress
or strain in the system. Nonlinear stress or strain stiffening has been observed at low to
moderate strains in several experiments involving crosslinked actin networks formed in vitro
[41, 116]. Although this general behavior has been observed across a variety of experiments,
the magnitude of the elastic modulus can be tuned by the crosslink density, actin concentra-
tion [41], and the type of crosslinking protein [40]. A common feature of these experiments is
that the filaments in these networks are isotropically (randomly) oriented. One model that
has been proposed to explain the stiffening behavior is based on the interplay between bend-
ing and stretching forces at the single filament level. Filament bending is much less costly
than filament stretching. Therefore initially, the constituent filaments remain oriented in
their reference configuration and are able to accommodate the network deformation through
bending. However, as the network becomes more deformed, the filaments reorient them-
selves in the direction of the shear. At this point, they are forced to stretch. Since filament
stretching is much more costly than bending, strain or stress stiffening is observed [59].

Compared to experiments involving shear, experiments in which actin networks are sub-
jected to uniaxial compression are far less common. However, the biological relevance and
significance of such forces cannot be understated. The growing dentritic actin network near
the cell membrane, responsible for cell movement, is subjected to the compressive forces of
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the membrane and extracellular environment. This complex mix of actin growth and com-
pression ultimately results in cell motility. In a seminal experiment performed by Chaudhuri
and coworkers [16], compressional force (using a AFM cantilever) was applied to a dendritic
actin network reconstituted in vitro (Fig. 6.2a). A linearly elastic regime was initially ob-
served at low stress, followed by stress stiffening, and finally stress softening at high stress
(Fig. 6.2b). This behavior was shown to be reversible, demonstrating that the softening was
not caused by network fracture or unbinding of the crosslinkers. Although stiffening behavior
has been previously measured in other experiments, reversible softening was a novel obser-
vation. To explain this behavior, they proposed a model in which the initial stress stiffening
arises from filaments resisting compression and extension. But at some point, the applied
force is so large that filaments begin to buckle reversibly, resulting in a softening regime.

at 5 Hz, is similar to the elastic modulus measured on various cell
types19–22 and in a previous reconstitution of actin-based motility23.
Dendritic actin network elasticity is significantly higher than the
elasticity of actin networks reconstituted in solution containing the
Arp2/3 complex (,1 Pa), though differences in concentration and
components could account for this disparity24,25. The average elasti-
city of the actin networks studied here was found to be independent
of prestressing by myosin II motors (see Supplementary Information
D).

To understand further the mechanical properties of growing dend-
ritic actin networks, we probed the stress dependence of the elastic
modulus5,7 (see Methods). A typical experiment is shown in Fig. 3a
(black trace) where stress was increased on the network incremen-
tally, and the elasticity at each value of applied stress was measured.
For stresses up to ,15 Pa the elasticity remained constant, indicating
a linear elastic regime. Then the elasticity increased with stress in a
stress-stiffening regime, as has been seen previously4–6, for stresses up
to a critical stress, sc < 270 Pa. Above the critical stress, we found that
the elasticity of the network gradually decreased with stress in a
stress-softening regime.

Stress softening has been previously explained by network rupture
or crosslinker rearrangement. In rigidly crosslinked actin networks,
stress softening has been attributed to the fracture of extended fila-
ments or crosslinking/branch points at sc, after which elasticity dras-
tically decreased4–6. Alternatively, softening was proposed to occur as
a result of the unbinding of flexible crosslinkers above sc, which
either remain unbound or re-bind to form crosslinks at different
positions7. For either of these explanations, stress softening would
reflect permanent alterations in the network that would lead to irre-
versibility in the elasticity of the network. That is, higher elasticities
could not be recovered by reducing network loading from stresses
above sc (refs 4–7). However, in dendritic actin networks, the stress-

softening behaviour was reversible: the elasticity measured as the
stress was reduced to sc matched the elasticity seen for increasing
stress (Fig. 3a, red trace). This was seen in all experiments (Fig. 3b), so
stress softening in the dendritic actin network must arise from a
reversible mechanism.

A plausible explanation for reversible stress softening is through
elastic buckling of individual filaments under compression. A popu-
lation of filaments in the dendritic network, based on their length and
orientation, will begin to buckle at a threshold stress. Upon buckling,
these filaments are infinitely compliant while still supporting Fb (ref.
12). As a result, the number of load-bearing elements decreases for
higher stresses, resulting in a decrease in the effective stiffness of the
network. As the stress is increased, more filaments buckle, reducing
the elasticity of the network further. Because filaments are assembled
into an interconnected dendritic network, buckled filaments do
not collapse completely, and they can unbuckle when the force is
reduced, making the process of buckling reversible with load.
Stress softening has been predicted from simulations of athermal
crosslinked actin networks to occur as a result of filament buckling
and also in an elastic element model of the cytoskeleton26,27, although
such models do not predict stress stiffening before softening.
Interestingly, reversible elastic buckling of component elements is
observed under high compressional forces in some types of foams28.
Electron micrographs have shown the actin cytoskeleton ultrastruc-
ture to exhibit similarities with open lattice foams, so that this buck-
ling behaviour might be expected3.

Buckling of individual filaments can occur at forces consistent
with the observed stress softening, based on a simple calculation.
Using published electron micrographs of dendritic actin networks
reconstituted in vitro in a similar biochemical system, we estimate
filament lengths Lc to be 0.1–1 mm (ref. 17). We calculate an expected
buckling force Fb of 0.5–50 pN per filament using these lengths and
assuming Euler buckling, although the behaviour in a constrained
environment can lead to higher buckling forces29. In our experi-
ments, the average force per filament at sc (233 Pa, the mean value
from the inset of Fig. 3b), using an average filament spacing of 50–
100 nm (ref. 17), is calculated to be 0.45–2 pN, which lies within the
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Figure 1 | AFM-based microrheology of growing dendritic actin networks.
a, Cartoon illustrating the measurement geometry in which the surface is
driven sinusoidally (blue sinusoid and double-headed arrow), and the force
transmitted through the network (red mesh) is transduced by the cantilever
(pink sinusoid and double-headed arrow). b, Fluorescence micrograph of
the actin network, which is used to calculate the network area A. Scale bar is
10 mm. c, Graph showing surface drive and cantilever response signal as a
function of time for a 5 Hz measurement (colours are as in a). Note the
cantilever response is damped with respect to the drive signal indicating
compression of the network. This technique has the effect of applying a
sinusoidal stress on the network where hydrodynamic coupling was found to
be negligible (see Supplementary Information B). d, Stress and strain graph
calculated from measurement in c showing stress (black) and strain (red) as a
function of time (see Methods).
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Figure 2 | Frequency dependence of elastic (filled triangles, E9) and viscous
(open triangles, E99) moduli. The traces were constructed by averaging
normalized data from 11 separate experiments and 21 different frequency
sweeps. Each measurement of the elastic and viscous moduli was normalized
by the average elastic modulus at 5 Hz taken before and after the
measurement (see Supplementary Information C). The best-fit power-law
exponent for E9(f) was determined to be x 5 0.13 (dotted line), and the
average elastic modulus at 5 Hz was 985 6 655 Pa (mean 6 s.d.), which are
consistent with previous studies on cells. In addition to the power-law
behaviour, the viscous modulus has a similar shape to those seen previously.
Error bars on both curves are normalized s.d.
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lower range of predicted buckling forces. We note that the buckling
instability is smoothed entropically for a semiflexible polymer at
finite temperature, so that individual polymers will undergo stress
softening as the compressional force approaches the Euler buckling
force. The overlap in the lower range of predicted buckling forces
with the range of calculated applied force per filament at sc supports
the idea that buckling explains stress softening, because sc represents
the threshold stress at which filament buckling dominates nonlinear
elasticity. As the stress is increased, up to 3sc in our experiments,
shorter filaments buckle, and the elasticity decreases further.

Our measurements of nonlinear elasticity in dendritic actin net-
works are consistent with a model in which a combination of com-
pression, bending and extension gives rise to network mechanical
properties (Fig. 4). As stress is initially applied to the network, the
elasticity increases as a result of entropic resistance to filament and
flexible crosslinker extension normal to the direction of compression,
in addition to possible effects from nonlinear compliance of the
Arp2/3 complex (Fig. 4a, b). As stress on the network is further
increased, filaments oriented in the direction of compression begin
to buckle, reducing the elasticity of the network at higher stresses
(Fig. 4c, d). Buckling occurs only after filaments have already been

supporting a load, so the enthalpic resistance of filaments to com-
pression is likely to play a significant role in the linear and stress-
stiffening regimes.

The difference in the elasticity of dendritic networks grown from
surfaces and crosslinked networks formed in solution can be
explained in part by the actin concentration in the network. The
modulus of elasticity is expected to scale as E0 < C

5=2
A (ref. 8) for

isotropically crosslinked actin networks, where CA is the concentra-
tion of actin in the network and the crosslinks are assumed to be rigid.
The concentration of actin in dendritic networks has been estimated
to be ,1 mM (ref. 30), whereas the concentration of networks
studied in vitro was of the order of ,10 mM (refs 24, 25), suggesting
that the magnitude of elasticities for dendritic networks should be
significantly higher. Component concentration alone is sufficient to
describe network properties in flexible polymer networks (Lc ? Lp),
where Lp is much less than the distance between crosslinks, because
initial orientation and lengths of the filaments do not matter.
However, for semiflexible polymer networks, filament length can
be important when Lp is greater than the distance between cross-
links15. Additionally, the particular orientation of a filament in the
network determines whether the filament deforms by compression,
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Figure 3 | Dendritic actin networks exhibit stress stiffening and reversible
stress softening. a, In a typical nonlinear elasticity measurement, the stress
on the network is first increased incrementally (black trace) to and then
decreased incrementally from a maximum stress (red trace) of ,600 Pa, with
the elasticity measured at each stress at 5 Hz. The elasticity remains constant
for stresses up to ,15 Pa and then increases in a stress-stiffening regime. For
stresses above the critical stress sc of ,270 Pa, the elasticity decreases in a
stress-softening regime that is reversible, as indicated by the overlay of the
black and red traces. b, Averaged and normalized trace of the nonlinear
elasticity of actin networks (see Supplementary Information A). Each

individual measurement was normalized by the difference between the
elasticity before the measurement Emin and the maximum elasticity for
increasing stresses Emax and sc. The results of 28 different measurements
from 12 separate experiments were averaged together (mean 6 s.d. shown)
and found to exhibit three distinct regimes of elasticity: linear, stress
stiffening and stress softening. The stress softening is shown to be reversible.
Note that the elasticity in b is shown on a linear scale while the elasticity in a is
shown on a log scale. The inset shows a histogram of sc for which the mean
value was 233 Pa.
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Figure 4 | Stress stiffening and stress softening can arise in dendritic
networks owing to filaments resisting extension and buckling of filaments
resisting compression. a, b, When the stress on the network (s, indicated by
black arrows) is increased from s 5 0, a population of filaments or
crosslinkers is stretched (as indicated by green arrows) as the material
expands laterally, and the resistance to extension of filaments increases
owing to entropic elasticity, leading to a stress-stiffening regime. c, However,
as the stress is increased above sc, some filaments resisting compression

buckle when the compressional force (green arrows) exceeds the Euler
buckling force. Buckled filaments exhibit infinite compliance, so they no
longer contribute to the elasticity, but they do not collapse because they have
connections with the network and thus still support the buckling force. d, As
the stress is further increased, more filaments buckle and the elasticity of the
network is decreased further, leading to the stress-softening regime. In
principle, this process is completely reversible because buckled filaments will
unbuckle once the stress is reduced.
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at 5 Hz, is similar to the elastic modulus measured on various cell
types19–22 and in a previous reconstitution of actin-based motility23.
Dendritic actin network elasticity is significantly higher than the
elasticity of actin networks reconstituted in solution containing the
Arp2/3 complex (,1 Pa), though differences in concentration and
components could account for this disparity24,25. The average elasti-
city of the actin networks studied here was found to be independent
of prestressing by myosin II motors (see Supplementary Information
D).

To understand further the mechanical properties of growing dend-
ritic actin networks, we probed the stress dependence of the elastic
modulus5,7 (see Methods). A typical experiment is shown in Fig. 3a
(black trace) where stress was increased on the network incremen-
tally, and the elasticity at each value of applied stress was measured.
For stresses up to ,15 Pa the elasticity remained constant, indicating
a linear elastic regime. Then the elasticity increased with stress in a
stress-stiffening regime, as has been seen previously4–6, for stresses up
to a critical stress, sc < 270 Pa. Above the critical stress, we found that
the elasticity of the network gradually decreased with stress in a
stress-softening regime.

Stress softening has been previously explained by network rupture
or crosslinker rearrangement. In rigidly crosslinked actin networks,
stress softening has been attributed to the fracture of extended fila-
ments or crosslinking/branch points at sc, after which elasticity dras-
tically decreased4–6. Alternatively, softening was proposed to occur as
a result of the unbinding of flexible crosslinkers above sc, which
either remain unbound or re-bind to form crosslinks at different
positions7. For either of these explanations, stress softening would
reflect permanent alterations in the network that would lead to irre-
versibility in the elasticity of the network. That is, higher elasticities
could not be recovered by reducing network loading from stresses
above sc (refs 4–7). However, in dendritic actin networks, the stress-

softening behaviour was reversible: the elasticity measured as the
stress was reduced to sc matched the elasticity seen for increasing
stress (Fig. 3a, red trace). This was seen in all experiments (Fig. 3b), so
stress softening in the dendritic actin network must arise from a
reversible mechanism.

A plausible explanation for reversible stress softening is through
elastic buckling of individual filaments under compression. A popu-
lation of filaments in the dendritic network, based on their length and
orientation, will begin to buckle at a threshold stress. Upon buckling,
these filaments are infinitely compliant while still supporting Fb (ref.
12). As a result, the number of load-bearing elements decreases for
higher stresses, resulting in a decrease in the effective stiffness of the
network. As the stress is increased, more filaments buckle, reducing
the elasticity of the network further. Because filaments are assembled
into an interconnected dendritic network, buckled filaments do
not collapse completely, and they can unbuckle when the force is
reduced, making the process of buckling reversible with load.
Stress softening has been predicted from simulations of athermal
crosslinked actin networks to occur as a result of filament buckling
and also in an elastic element model of the cytoskeleton26,27, although
such models do not predict stress stiffening before softening.
Interestingly, reversible elastic buckling of component elements is
observed under high compressional forces in some types of foams28.
Electron micrographs have shown the actin cytoskeleton ultrastruc-
ture to exhibit similarities with open lattice foams, so that this buck-
ling behaviour might be expected3.

Buckling of individual filaments can occur at forces consistent
with the observed stress softening, based on a simple calculation.
Using published electron micrographs of dendritic actin networks
reconstituted in vitro in a similar biochemical system, we estimate
filament lengths Lc to be 0.1–1 mm (ref. 17). We calculate an expected
buckling force Fb of 0.5–50 pN per filament using these lengths and
assuming Euler buckling, although the behaviour in a constrained
environment can lead to higher buckling forces29. In our experi-
ments, the average force per filament at sc (233 Pa, the mean value
from the inset of Fig. 3b), using an average filament spacing of 50–
100 nm (ref. 17), is calculated to be 0.45–2 pN, which lies within the
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Figure 1 | AFM-based microrheology of growing dendritic actin networks.
a, Cartoon illustrating the measurement geometry in which the surface is
driven sinusoidally (blue sinusoid and double-headed arrow), and the force
transmitted through the network (red mesh) is transduced by the cantilever
(pink sinusoid and double-headed arrow). b, Fluorescence micrograph of
the actin network, which is used to calculate the network area A. Scale bar is
10 mm. c, Graph showing surface drive and cantilever response signal as a
function of time for a 5 Hz measurement (colours are as in a). Note the
cantilever response is damped with respect to the drive signal indicating
compression of the network. This technique has the effect of applying a
sinusoidal stress on the network where hydrodynamic coupling was found to
be negligible (see Supplementary Information B). d, Stress and strain graph
calculated from measurement in c showing stress (black) and strain (red) as a
function of time (see Methods).
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Figure 2 | Frequency dependence of elastic (filled triangles, E9) and viscous
(open triangles, E99) moduli. The traces were constructed by averaging
normalized data from 11 separate experiments and 21 different frequency
sweeps. Each measurement of the elastic and viscous moduli was normalized
by the average elastic modulus at 5 Hz taken before and after the
measurement (see Supplementary Information C). The best-fit power-law
exponent for E9(f) was determined to be x 5 0.13 (dotted line), and the
average elastic modulus at 5 Hz was 985 6 655 Pa (mean 6 s.d.), which are
consistent with previous studies on cells. In addition to the power-law
behaviour, the viscous modulus has a similar shape to those seen previously.
Error bars on both curves are normalized s.d.
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lower range of predicted buckling forces. We note that the buckling
instability is smoothed entropically for a semiflexible polymer at
finite temperature, so that individual polymers will undergo stress
softening as the compressional force approaches the Euler buckling
force. The overlap in the lower range of predicted buckling forces
with the range of calculated applied force per filament at sc supports
the idea that buckling explains stress softening, because sc represents
the threshold stress at which filament buckling dominates nonlinear
elasticity. As the stress is increased, up to 3sc in our experiments,
shorter filaments buckle, and the elasticity decreases further.

Our measurements of nonlinear elasticity in dendritic actin net-
works are consistent with a model in which a combination of com-
pression, bending and extension gives rise to network mechanical
properties (Fig. 4). As stress is initially applied to the network, the
elasticity increases as a result of entropic resistance to filament and
flexible crosslinker extension normal to the direction of compression,
in addition to possible effects from nonlinear compliance of the
Arp2/3 complex (Fig. 4a, b). As stress on the network is further
increased, filaments oriented in the direction of compression begin
to buckle, reducing the elasticity of the network at higher stresses
(Fig. 4c, d). Buckling occurs only after filaments have already been

supporting a load, so the enthalpic resistance of filaments to com-
pression is likely to play a significant role in the linear and stress-
stiffening regimes.

The difference in the elasticity of dendritic networks grown from
surfaces and crosslinked networks formed in solution can be
explained in part by the actin concentration in the network. The
modulus of elasticity is expected to scale as E0 < C

5=2
A (ref. 8) for

isotropically crosslinked actin networks, where CA is the concentra-
tion of actin in the network and the crosslinks are assumed to be rigid.
The concentration of actin in dendritic networks has been estimated
to be ,1 mM (ref. 30), whereas the concentration of networks
studied in vitro was of the order of ,10 mM (refs 24, 25), suggesting
that the magnitude of elasticities for dendritic networks should be
significantly higher. Component concentration alone is sufficient to
describe network properties in flexible polymer networks (Lc ? Lp),
where Lp is much less than the distance between crosslinks, because
initial orientation and lengths of the filaments do not matter.
However, for semiflexible polymer networks, filament length can
be important when Lp is greater than the distance between cross-
links15. Additionally, the particular orientation of a filament in the
network determines whether the filament deforms by compression,
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Figure 3 | Dendritic actin networks exhibit stress stiffening and reversible
stress softening. a, In a typical nonlinear elasticity measurement, the stress
on the network is first increased incrementally (black trace) to and then
decreased incrementally from a maximum stress (red trace) of ,600 Pa, with
the elasticity measured at each stress at 5 Hz. The elasticity remains constant
for stresses up to ,15 Pa and then increases in a stress-stiffening regime. For
stresses above the critical stress sc of ,270 Pa, the elasticity decreases in a
stress-softening regime that is reversible, as indicated by the overlay of the
black and red traces. b, Averaged and normalized trace of the nonlinear
elasticity of actin networks (see Supplementary Information A). Each

individual measurement was normalized by the difference between the
elasticity before the measurement Emin and the maximum elasticity for
increasing stresses Emax and sc. The results of 28 different measurements
from 12 separate experiments were averaged together (mean 6 s.d. shown)
and found to exhibit three distinct regimes of elasticity: linear, stress
stiffening and stress softening. The stress softening is shown to be reversible.
Note that the elasticity in b is shown on a linear scale while the elasticity in a is
shown on a log scale. The inset shows a histogram of sc for which the mean
value was 233 Pa.
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Figure 4 | Stress stiffening and stress softening can arise in dendritic
networks owing to filaments resisting extension and buckling of filaments
resisting compression. a, b, When the stress on the network (s, indicated by
black arrows) is increased from s 5 0, a population of filaments or
crosslinkers is stretched (as indicated by green arrows) as the material
expands laterally, and the resistance to extension of filaments increases
owing to entropic elasticity, leading to a stress-stiffening regime. c, However,
as the stress is increased above sc, some filaments resisting compression

buckle when the compressional force (green arrows) exceeds the Euler
buckling force. Buckled filaments exhibit infinite compliance, so they no
longer contribute to the elasticity, but they do not collapse because they have
connections with the network and thus still support the buckling force. d, As
the stress is further increased, more filaments buckle and the elasticity of the
network is decreased further, leading to the stress-softening regime. In
principle, this process is completely reversible because buckled filaments will
unbuckle once the stress is reduced.
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Figure 6.2: Reversible stress stiffening and softening. (a) An AFM cantilever was used
to apply compressional force to actin networks reconstituted in vitro. (b) Reversible stress
stiffening and softening of actin networks under compression. Figure adapted from [16].

The aim of this work is to understand what underlies these elastic properties. The bulk
elastic properties can be ultimately attributed to the configurations of single filaments and
whether they are predominantly bent or stretched. The transition from bending to stretching
modes often leads to drastic changes in the material properties. However, it is unclear what
parameter or property of the network connects the behavior at the single filament level to
the elastic quantities we measure at the network level. Experimental evidence points to the
hypothesis that the architecture of the gel might serve as a bridge connecting the two length
scales. We aim to better understand whether the network architecture or other parameters
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are the fundamental link between bulk elastic properties and behavior at the single filament
level.

6.2 Simulation model, methods, and parameters

6.2.1 Model for single segments

Using the discretized worm-like chain model (Ch. 2), we specify a single configuration of a
chain with contour length L and a discretization length ∆s by enumerating the positions of
all L/∆s+ 1 points along the chain,

{r1, r2, ..., rL/∆s+1}. (6.1)

Despite the relative simplicity of the WLC model, it is still too computationally costly to
use for modeling sizable actin networks.

To approximate short, semiflexible segments within a filament network, we build upon
the work of Pronk and Geissler and utilize their coarse-grained model for single chains and
segments [97, 136]. Instead of keeping track of all the monomers in a filament, the model
integrates out the positions and orientations of all intermediate monomers, which is possible
by making a small curvature approximation (Eq. 4.8). Thus, we only keep track of the
positions and orientations of the endpoints, or where the filaments are crosslinked (Fig. 6.3).
The reduction in the degrees of freedoms allows us to model much bigger systems than
previously.

!

Figure 6.3: Coarse-grained representation of crosslinked filaments. Instead of having
to represent all the monomer positions between crosslinks, we only keep track of the positions
of the crosslinks and the orientations of the filaments at the crosslinks. Figure adapted from
[136].

Using the model, a single segment within a filament network is described by its con-
tour length L, positions at its endpoints {r(0), r(L)}, and orientations at its endpoints
{t̂(0), t̂(L)}. It is important to note that each microstate in the model represents not a
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single chain configuration but rather an ensemble of configurations satisfying the constraints

{r(0), r(L), t̂(0), t̂(L), L}. (6.2)

If we translate and rotate the chain in a way such that one of the endpoints r(0) is at the
origin and its orientation vector t̂(0) points in the z direction, we can eliminate the degrees
of freedoms corresponding to the chain position and orientation at one end and represent a
microstate as

{r(L), t̂(L), L}. (6.3)

A representation of a microstate of the coarse-grained model is shown in Fig. 6.4.
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Figure 6.4: Instead of having to represent all the monomer positions between crosslinks, we
only keep track of the positions of the crosslinks and the orientations of the filaments at the
crosslinks.

A representation of a chain configuration is shown in Fig. 6.5. For each chain, its repre-
sentation is coarse-grained into the positions of its endpoints, the orientation of the chain at
the end points, and its contour length L. If we translate and rotate the chain in a way such
that one of the endpoints r(0) is at the origin and its unit orientation vector t(0) points in
the z direction, we can write the probability a particular position of r(s) and for a particular
orientation for t(s) as

P (r, t, L) / exp[��F (r, t, L)].

The form of the free energy is

F (z, R, T ) = 2T 2 + 6R2 � 6R · T � a + b2
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Figure 1: The endpoints of a semiflexible chain

From now on we will omit the stars, and the energy will be

�E =
1
2

Z l

0
ds
����
�2r(s)

�s2

����
2

(6)

Additionally, we’ll define r and t as their values at the end points:

r = r(l) (7)
t = t(l) (8)

2 The short chain approximation

We now expand r(s) and t(s) along a short chain. r(s) and t(s) can be split up
in parts parallel and perpendicular to the z-axis. (see Fig. 1 for an illustration)

r(s) = r�(s) + rz(s)

t(s) = t�(s) + tz(s) (9)

Now, for short chains, where L ⌧ A, the average h|t�(s)|2i ⌧ 1, so we can
write

tz(s) = t̂z
�

1 �
��t�(s)

��2

⇡ t̂z


1 � 1
2
|t�(s)|2 + O(|t�(s)|4)

�
(10)

2

Figure 6.5: Given that r(0) is at the origin and t(0) is a unit vector point in the z direction,
the pertinent variables are z, which is l � rz, r?, tz, t?, and the filament length in reduced
units l/lp.
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only keep track of the positions of the crosslinks and the orientations of the filaments at the
crosslinks.

A representation of a chain configuration is shown in Fig. 6.5. For each chain, its repre-
sentation is coarse-grained into the positions of its endpoints, the orientation of the chain at
the end points, and its contour length L. If we translate and rotate the chain in a way such
that one of the endpoints r(0) is at the origin and its unit orientation vector t(0) points in
the z direction, we can write the probability a particular position of r(s) and for a particular
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t(0) = ẑ lt(0)

t

r?

t?

z

Figure 1: The endpoints of a semiflexible chain

From now on we will omit the stars, and the energy will be

�E =
1
2

Z l

0
ds
����
�2r(s)

�s2

����
2

(6)

Additionally, we’ll define r and t as their values at the end points:

r = r(l) (7)
t = t(l) (8)

2 The short chain approximation

We now expand r(s) and t(s) along a short chain. r(s) and t(s) can be split up
in parts parallel and perpendicular to the z-axis. (see Fig. 1 for an illustration)

r(s) = r�(s) + rz(s)

t(s) = t�(s) + tz(s) (9)

Now, for short chains, where L ⌧ A, the average h|t�(s)|2i ⌧ 1, so we can
write

tz(s) = t̂z
�

1 �
��t�(s)

��2

⇡ t̂z


1 � 1
2
|t�(s)|2 + O(|t�(s)|4)

�
(10)

2

Figure 6.5: Given that r(0) is at the origin and t(0) is a unit vector point in the z direction,
the pertinent variables are z, which is l � rz, r?, tz, t?, and the filament length in reduced
units l/lp.
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Figure 6.4: Variables denoting a microstate in the coarse-grained model. Given
that r(0) is at the origin and t̂(0) is a unit vector point in the ẑ direction, the pertinent
degrees of freedom are r(L), t̂(L), and L. Each microstate in the model represents not a
single chain configuration but rather an ensemble of configurations satisfying the constraints
listed above. Figure adapted from [97].

Using a combination of analytical results and fits based on simulation data, the full free
energy was calculated to be

F (R,T, z) = 2T2 + 6R2 − 6R ·T− a+ b2

(
(z − c) +

d

z − c

)
, (6.4)

where R = r⊥/L3/2, T = t⊥/L1/2, z = L− r(L) · t̂(0), and a, b, c, d (detailed in Appendix,
Sec. A.1) are functions of R and T.

We tested our approximate coarse-grained model against the more detailed WLC model
by comparing the free energy as a function of the end-to-end distance/contour length ratio.
As seen in Fig. 6.5, the two models agree very well.

6.2.2 Construction of network

In order for our results to be biologically relevant, it is important to create realistic actin
network architectures using experimental measurements. One such parameter is the mesh
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(a) (b)Figure 6.5: Comparison with the WLC model. Comparison of the free energy as a
function of the end-to-end distance/contour length ratio using the WLC and coarse-grained
models. The contour length of the simulated filaments is 1% of its persistence length.

size, or the average distance between adjacent crosslinks. The mesh size for cortical actin
has been measured to be approximately 100–200 nm [81, 15]. An additional measure is the
minimum length between two adjacent crosslinkers. One of the essential crosslinking proteins
in the cell cortex is Filamin A, made up of two 280 kDa subunits [82]. When Filamin A
crosslinks actin filaments, each of the two subunits (hinges) extends out approximately 60
nm into the filaments [49], shown in Fig. 6.6. We reason that these measurements effectively
impose a minimum segment length constraint on our network geometry.

With the constraints and parameters defined, we use the following procedure to gen-
erate two-dimensional networks. We model actin networks in two dimensions as a good
approximation for the sheet-like structures of actin networks within the lamellipodia [2]. We
iteratively place linear line segments of length L representing filaments into a square, peri-
odically replicated simulation box. Wherever the filaments cross is designated a crosslink.
The center of mass for each filament is chosen at random from a uniform distribution inside
the box. The orientation of each individual filament, however, is a tunable parameter which
we vary. More specifically, the orientation can be drawn from one of two distributions, a
uniform or Gaussian distribution from 0◦ to 180◦. The choice of using two distributions is
an approximation for the structural differences of actin networks in different parts of the
cell, from the orientationally biased branched network to the isotropically oriented random
networks (Ch. 1, Sec. 1.3). The percentage of filament orientations drawn from each distri-
bution is the architectural parameter we tune (Fig. 6.7). The filaments whose orientations
are drawn from a Gaussian distribution are more likely to be aligned in a similar direction
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Wednesday, March 19, 14

Figure 6.6: Structure and function of filamin. (a) Each filamin is made up of two
subunits, or hinges, that extends out on each actin filament approximately 60 nm. (b)
Filamin proteins crosslink adjacent actin filaments into a network. Figure adapted from [2].

as the direction of the applied stress.
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(a) (b)

Figure 6.7: Orientation bias. Implementation of an orientation bias in the networks. (a)
All the filament orientations are drawn from a uniform distribution from 0◦ to 180◦. (b)
60% of the filament orientations are drawn from a uniform distribution while 40% of the
orientations are drawn from a Gaussian distribution.

After each filament placement, we calculate the minimum segment length of the network.
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If a placement results in a new segment shorter than the minimum segment length, we take
out that filament and try again. We stop adding more filaments when the mesh size (average
segment length) falls within the accepted range. The segment lengths are the end-to-end
distances between adjacent crosslinks. The actual contour length of a segment is slightly
greater than its end-to-end length, set such that the end-to-end length correspond to a free
energy minimum. Typical geometries generated from this protocol are shown in Fig. 6.8. The
lines are only meant to convey the positions of crosslinks and network connectivity. Given
the positions of the crosslinks (shown) and the filament orientations at those crosslinks (not
shown), each microstate in the model represents an ensemble of configurations satisfying the
positional and orientational constraints.

(a) (b) (c)

Figure 6.8: Typical network structures. Percentage of filament orientations drawn from
a Gaussian distribution: (a) 0% (b) 40% (c) 80%. The size of the system is 0.15 lp ×
0.15 lp ≈ 0.15× 0.15 µm2. The lines shown are only mean to convey crosslink positions and
network connectivity. Each microstate in the model represents an ensemble of configurations
satisfying the positional and orientational constraints.

For an efficient and ergodic sampling, we use a combination of crosslink translation,
orientation vector rotation, and strain deformation trial moves (Fig. 6.9).

6.2.3 Slice moves

Biological materials such as actin gels are often very inhomogeneous in their spatial organiza-
tion. For example, one part of an actin network might be dense with filaments and crosslinks
while another part might be much more sparse. Naturally, the dense parts of the network
are much more stiff than the sparse parts. While this feature poses no problems for nature,
it does pose a special problem for simulating such materials. Specifically, dense and stiff
parts of a network resist changes in strain very strongly. Therefore, to achieve reasonable
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Figure 6.9: Monte Carlo moves. We use a combination of (a) crosslink translation, (b)
orientation vector rotation, and (c) strain deformation Monte Carlo trial moves.

acceptance rates for global deformations, the magnitude for strain deformation trial moves
must be very small, resulting in very long simulation times.

To circumvent this problem, we make use of partial volume updates (also known as
slice) moves (Fig. 6.10) developed by Pronk and Geissler [98]. Instead of rescaling the
entire system, we make deformations in randomly selected slices of the system. Since the
networks themselves are inhomogeneous, we likewise make box shape changes that are also
inhomogeneous. Changes in strain that have a very small probability of being accepted
when applied globally now have a greater acceptance probability when applied to a smaller
subvolume, greatly speeding up network relaxation and equilibration.

Ultimately, we make use of the slice moves in order to speed up network relaxation
and equilibration. To quantify the magnitude of the speed-up, we constructed a simple
periodically replicated random network (Fig. 6.11a) and ran constant stress simulations in
which we applied stress in the vertical direction and monitored the height fluctuations of the
system. The results (Fig. 6.11b) show an approximate 4 fold decrease in equilibration time
using slice moves.

6.3 Results

6.3.1 Elastic response of networks under tension

We first evaluate the network elastic response under tension. We hypothesize that these net-
works will exhibit stress stiffening. As previously mentioned, stretching a filament beyond its
equilibrium length distribution is very costly [59]. This observation is illustrated in Fig. 6.5b,
where the free energy curve rises rapidly to the right of the free energy minimum. When
we put a network under tension, the filaments that are closer in alignment to the direction
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Figure 6.10: Speeding up simulation using slice moves. In performing a slice move,
we do not rescale the entire system. Rather, we deform a randomly selected vertical or
horizontal slice of the network, greatly speeding up the relaxation and equilibration of a
system with dense or stiff parts. Figure adapted from [98].

of the applied stress will likely be stretched beyond their equilibrium length, resulting in
stiffening behavior.

Indeed, in the simulations, networks stiffened under tension. Since the elasticity of the
crosslinkers (tested in Sec. 6.3.3) or entanglement effects are not included in the model, the
stiffening behavior is solely attributed to the elasticity of single filaments.

6.3.2 Elastic response of the network under compression

Next, we characterized the mechanical behavior of networks under compression. In the
introduction of this chapter, we briefly described the work of Chaudhuri and coworkers [16],
who observed reversible stress stiffening followed by softening under compressional stress
(Fig. 6.2). In their experiments, the controlled input was the amount of stress as applied
by the AFM cantilever and the observable was the deformation (change in height) of the
network. Our simulation method mirrors this setup. Using the constant-stress framework
discussed in chapter 5, we control the amount of stress applied and measure the corresponding
strain in the system.

In Fig. 6.12, we plotted the applied stress against the measured strain for several network
realizations. For each of the networks, the number of input filaments remained constant at
60. The parameter we tuned was the percentage of filaments with orientation drawn from
an uniform or orientationally biased Gaussian distribution (detailed in Sec. 6.2.2). For the
results shown, the percentage of filament orientation drawn from a Gaussian distribution was
set at 0%, 40%, and 80%. Five different statistical realizations of each case were examined.
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Figure 6.11: Application of slice moves. (a) The simulated network, in which compressive
stress was applied in the vertical (y) direction. (b) Comparison of strain component αyy under
applied stress in the y direction, with and without slice moves.

Across all network parameter regimes, we observed a linearly elastic regime followed by
stress softening (Fig. 6.12). At a certain point after the softening starts to occur, the network
collapses due to filament buckling. In general, network softening occurs at 5–10% network
strain, although it can occur as low as 2.5% strain. In addition, for each group of similarly
oriented networks, we observed a wide range of linear elastic modulus as well as applied
stress values where the network softens and ultimately collapses.

6.3.3 Crosslinking potential

The elasticity of the constituent filaments are not the only contributors to the mechanical
properties of an actin network. Studies of actin networks with a single type of crosslinker
have found that both the type as well as the concentration of the crosslinker can dramatically
affect the rheological properties and stiffness of the network. For example, actin networks
with a very strong crosslinker (biotin/avidin) behave like a solid while networks with a weak
crosslinker (amoeba α-actinin) exhibit viscoelastic properties [130]. Additionally, varying
the crosslinker concentration can change the elastic modulus up to 1000–fold [41].
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Figure 6.12: Stress softening under compression. Under network compression, we ob-
served a linear regime followed by stress softening. The varied parameter was the percentage
of filament orientation drawn from a orientationally biased Gaussian distribution. This pa-
rameter was set at (a) 0%, (b) 40%, and (c) 80%. The rest of the filament orientations were
drawn from a uniform distribution. Five different statistical realizations (differently colored
curves) of each case were examined.



65

Filamin, the cytoskeletal crosslinker whose steric effects have been included in the model,
possesses elastic properties of its own. It can be modeled as a WLC, with a persistence
length of 14 nm (lp = 22 nm for each subunit) [49]. Using the variance in the angle between
crosslinked actin filaments, found to be (15.5◦)2, Hartemink calculated the rotational stiffness
of filamin to be 0.6× 10−19 N·m [49].

However, in our network model, filaments are able to freely rotate around a crosslink. The
only constraint is that filaments are attached at the point of the crosslink. To approximate
the effects of filamin’s rotational stiffness, we added a harmonic potential at each crosslink,

Uc(θ) = kc(θ − θeq)2, (6.5)

where θeq is the junction angle in the network without stress (reference configuration). The
total system energy is then composed of the filament energy and crosslinking potential.

A variety of spring constants for the harmonic potential were tested and the results are
shown in Fig. 6.13. Although the linear elastic modulus increased as a function of increas-
ing spring constant, the overall stress-strain behavior of the networks did not qualitatively
change. They still exhibit the softening behavior observed without the added harmonic po-
tential. The increase in the elastic modulus for the linear regime with an increasing spring
constant is expected. As force is applied to the networks, the filaments are strained from
their original positions. During this process, some junction angles shift away from their
reference configuration angle distribution in order to accommodate the new positions. The
higher the spring constant associated with the junction angle, the more a network is able
to resist the applied stress, resulting in a higher compression modulus in the linear region.
The strain values at which softening and network collapse occurs remain similar for varying
values of the spring constant.

6.3.4 A single filament perspective on compressed actin networks

One advantage of modeling and simulation is that we are often able to probe small length
scale properties and distributions that are very difficult to access experimentally. Thus far,
we have been subjecting networks to compressional stress and measuring the corresponding
bulk compressional modulus. We aim to understand how stress changes properties at the
single filament level and correspondingly, whether we can utilize the single filament behavior
to explain the bulk elastic response.

Fig. 6.14 shows a single filament view into networks under compression. A network was
subjected to increasing compression. For each stress, the fluctuations of segment lengths
were recorded. Those lengths were then divided by the corresponding segment lengths in
the reference configuration and the resulting scaled distributions were plotted. In the figure,
three such strain/stress states are shown. The blue line represents the filament length dis-
tribution in the reference configuration (γnetwork = 0%). Under moderate stress (red curve,
γnetwork = 7%), the majority of segments still fluctuated around their non-stress equilibrium
states. However, a small crop of segments were significantly bent, resulting in a bimodal
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Figure 6.13: Crosslinking potential. In order to approximate the effects of a crosslinker
with a rotational stiffness, we added a harmonic potential at each crosslink (Eq. 6.5). Various
spring constants (k) were tested. Although the linear elastic modulus increased as a function
of increasing spring constant, stress softening was observed in all cases.

distribution. Under high stress (green curve, γnetwork = 29%), this crop of bent segments
grew. But surprisingly, the majority of segments still fluctuated around their unstressed
length distributions. This qualitative picture was seen with all the networks tested.

In general, an increasing proportion of bent segments was observed with greater net-
work compression. However, there is little evidence of stretched filaments, supporting the
observation of stress softening at the network level.

6.3.5 Normal mode analysis

Even for the same set of input parameters (number of filaments, box size, filament length,
percentage of orientationally biased filaments), the elastic moduli in the linear region varied
significantly (Fig. 6.12). In some cases, the linear elastic modulus for the stiffest network in
the group is approximately 5 times higher than that of the softest network (Fig. 6.15).

We examined the reasons for such large variations in the network elasticity using normal
mode analysis. The normal modes reveal the collective motions of the network constituents.
Thus, we hypothesize that the relative number or proportion of low frequency (soft) modes
may potentially provide insights into the network elasticity in the linear region.

To calculate the normal modes, it is necessary to obtain a network structure corresponding
to a local energy minimum because fundamentally, normal modes describe harmonic motions
about an energy minimum [51]. Although the potential dictating the chain configurations
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Figure 6.14: Single filament length distributions. As more stress was applied to a
network, the corresponding changes in the distributions of single segment lengths were mon-
itored. In general, with greater network deformation, the majority of segments stilled fluctu-
ated around their non-stress equilibrium lengths while a small proportion of filaments were
significantly bent, resulting in a bimodal distribution.
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Figure 6.15: Elasticity in the linear regime. The results shown are for the linearly elastic
region of Fig. 6.12b. For the same set of input parameters, there is a large variation in the
linear elastic modulus.
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is anharmonic (Fig. 6.5b), its behavior about a minimum can be approximated using a
harmonic potential. To find a conformation corresponding to such an energetic state, a
Monte Carlo simulated annealing procedure was used to slowly cool the network into a local
minimum. This was followed by the calculation of the Hessian matrix H, a matrix of mixed
second derivatives of the energy with respect to the particle coordinates,

H =




∂2f

∂x2
1

∂2f

∂x1 ∂x2

· · · ∂2f

∂x1 ∂yN
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∂x2 ∂x1

∂2f

x2
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· · · ∂2f

∂x2 ∂yN
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...
. . .
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· · · ∂2f

∂y2
N




. (6.6)

Differentiation was performed using finite differences, since the model potential is not easily
differentiable.

Finally, the Hessian was diagonalized to obtain a list of eigenvectors and eigenvalues
that defines the normal modes. Since the actin networks are two-dimensional, there are
2N eigenvectors and eigenvalues, where N is the number of crosslinks in our network. By
definition,

Hηi = ω2
i ηi (6.7)

where ηi is the ith eigenvector and ω2
i is the ith eigenvalue. In this equation, ω is also the

angular frequency [51]. Each eigenvector represents the magnitudes and directions for all
particle motions and the corresponding eigenvalues are their frequencies.

Identifying network soft regions

In general, the low-frequency modes describe collective system motions while the higher
frequency modes describe more localized motion. By visualizing the low-frequency normal
modes, we can gain insights into the soft regions in the networks. Fig. 6.16 shows a reference
configuration network structure and the first four non-translational normal mode displace-
ments corresponding to the network. It is apparent from visualizing the displacement vectors
that most of the motion corresponds to the region on the right side of the network. Compared
to other network regions, this region is relatively soft and susceptible to deformation.

Comparing network normal modes

Although visualizing normal mode displacement vectors can be useful for identifying soft
regions in the networks, we aim to predict relative network stiffness from the normal modes.
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Figure 6.16: Visualizing low-frequency normal modes. Network structure (left) and
the first four non-translational normal mode displacements corresponding to the network
(right). The index starts at four because first two modes are translational modes.

And since low-frequency modes correspond to collective motions which are ultimately re-
sponsible for the network conformational changes under stress, we hypothesize that directly
comparing these soft modes might provide insights into relative network stiffnesses. Fig. 6.17
shows the square of the angular frequencies (ω2) for the first 50 normal modes corresponding
to the 5 networks in Fig. 6.15 (using the same color scheme). Previously, it has been shown
that the networks in cyan and green are the softest networks, followed by red, and the blue
and magenta networks are the stiffest in the group. In Fig. 6.17, the frequencies for the green
network are consistently lower than those of other networks for the corresponding index. The
network denoted by the color cyan shows similar normal mode frequencies for approximately
the first 20 normal modes. Frequencies for networks corresponding to magenta, blue, and
red are distinguishable from green and cyan (the softest networks), but are more difficult to
distinguish from each other. Therefore, although it is possible to loosely correlate the relative
frequencies of the low-frequency normal modes to the network strength, the ability to make
accurate predictions for networks with similar linear elastic moduli is not yet achieved.
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Figure 6.17: Comparison of normal mode frequencies in different networks. Square
of the angular frequencies (ω2) against the normal mode index for the first 50 normal modes
corresponding to the networks in Fig. 6.15 (using the same color scheme).

6.4 Conclusions

In this work, we utilized our previously developed constant stress method and a coarse-
grained model for short, semiflexible chains to gain insight into the elastic properties of
actin networks under compression. Under compressional stress, we consistently observed a
linearly elastic regime followed by stress softening in the networks, without any evidence of
stiffening. We analyzed the softening response using a single filament perspective, in which
we detected more filament bending as a function of increasing compressional stress, resulting
in a bimodal distribution of filament lengths. Our results suggest the possibility that the
reversible stress stiffening and softening seen by Chaudhuri et al. [16] might arise from the
interaction of actin with a host of other ABPs, and thus the elastic responses are not directly
comparable. We also analyzed the elastic responses using normal mode analysis, from which
we can identify network soft regions and obtain a rough estimate of the relative elastic moduli
among different networks in the linearly elastic regime. Our findings can motivate and aid
the interpretation of new experiments using a minimal set of proteins to further shed light
on the elastic behavior of actin networks under compression.
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Appendix A

Appendix

A.1 Variables used in approximation for short

semiflexible chains

The variables a, b, c, d previously used in Ch. 6, Eq. 6.4 are defined as follows:

a = − ln
[
2
√
dK1

(
2b2
√
d
)]

(A.1)

b =

[
1

2
√
d
G

( √
d

〈z − c〉

)]1/2

(A.2)

c = L2
(
6.0 · 10−3 + 0.497432 |R|2

)
(A.3)

d = (c− zmax). (A.4)

In a, K1(x) is a modified Bessel function of the second kind.

In b,

G(k) ≈ 2

3
(k − 1)− 1

9
(k − 1)2 +

1

9
(k − 1)3 − 23

162
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and
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where
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3

2
x−1 +

3

8
x−2 − 3

8
x−3 +

63

128
x−4 +O(x−5). (A.7)
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In d,

zmax = 〈z〉 − L2

[
0.017980 +0.0013970 |R|
+0.010447 |T| −0.0018700 |T|2
+0.00011252 |T|3 −0.0039224 |R| |T|
+0.00070242 |R|2 |T| +0.00074855 |R| |T|2
−1.4741 · 10−4 |R|2 |T|2 +0.0031051 (R ·T)
−9.3484 · 10−4 |R| (R ·T) −5.1088 · 10−4 |T| (R ·T)

+0.00016520 |R| |T| (R ·T)

]
,

(A.8)

where

〈z〉 = L2

[
0.063774 +0.0020034 |R|
+0.60537 |R|2 +0.0075152 |R|3
+0.0055939 |T| +0.062203 |T|2
+0.0028756 |T|3 −0.012364 |R| |T|
+0.0092160 |R|2 |T| +0.00090847 |R| |T|2
−7.2895 · 10−4 |R|2 |T|2 −0.10962 (R ·T)
−0.0030577 |R| (R ·T) −1.5964 · 10−4 |R| |T| (R ·T)

−1.2347 · 10−4 (R ·T)2

]
.

(A.9)
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