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Abstract

This paper develops an improved algorithm for estimating velocity from isolated loop detector data.
Unlike preceding works, the algorithm is simple enough that it can be implemented using existing
controller hardware. The discussion shows how the benefits of this work extend to automated
tests of detector data quality at dual loop speed traps. Finally, this paper refutes an earlier study
that found conventional isolated |oop velocity estimates are biased.

Keywor ds: traffic surveillance, single loop detectors, velocity estimation, data screening

Introduction

L oop detectors are the preeminent vehicle detector for freeway traffic survelllance. They are
frequently deployed asisolated detectors, i.e., one loop per lane per detector station. Although
isolated loops have been used for decades, debate continues on how to interpret the measurements
and how to calibrate the detectors. This paper will provide anew perspective by clarifying the
source of severa errors and suggesting ways to eliminate these errors. The body of thiswork
emphasizes velocity estimation, but it has implications for tests of detector data quality as well.

The first section of this paper reviews the state of the practice for parameter measurement and
estimation from isolated loop detectors. The next section illustrates how conventional practice may
be susceptible to changes in the vehicle population throughout the day as well as errors due to
sample size. The paper continues by developing an agorithm to overcome these problems.
Finally, the discussion shows how the work has implications for tests of detector data quality and
elucidates the findings of an earlier study that concluded that isolated loop velocity estimates are
biased.
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Parameter Measurement and Estimation

Conventional isolated loop detectors are capable of measuring flow, the number of vehicles that
pass the detector during afixed sample period, and occupancy, the percentage of the given sample
period that the detector is"occupied” by vehicles. For each lane, these two parameters are defined
as.

n
O = ?k (1A)

X
10

6 =
S

(1B)

where the subscript "k" indicates the given sample, subscript *j" indicates vehicle specific
parameters and

g, = flow during sample k

6, = occupancy during sample k

n, = number of vehicles that pass the detector during sample k
T = sampling period

J, = set of al vehiclesthat pass the detector during sample k

t, = vehiclej'son time.

Two interdependent vehicle parameters are of interest for estimating mean sample velocity: vehicle
velocity and vehicle length. Consider asingle vehicle passing over aloop detector, as shown in
Figure 1, the relationship between the vehicle's length and velocity is simply:

L =L+ =v [ 2
where

L; = vehiclej's effective length as"seen” by the detector
L = vehiclej'strue length
L; = length of detector's sensitivity region for vehicle]

v, = vehiclej's velocity
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The length of the detector's sensitivity region typically depends on many variables such asthe
vehicle's position in the lane, height of the vehicle's underframe, and the amount of ferrous metal
inthevehicle. It isdifficult to separate this length from the vehicle's true length using loop
detector data, so for the rest of this paper "length” will refer to the sum of these two lengths, often
referred to as the effective vehicle length.

From equations 1 and 2,

1 L. 1 L.
6 == = — -4 3A
KT 2 % n, jzmk v, @A)

iV

assuming that individual vehicle lengths and velocities are uncorrel ated,

Qk ~ qk_ELk (38)
Vk
where
L, = arithmetic mean vehicle length for sample k
V, = harmonic mean vehicle velocity for sample k, often referred to as the space mean
Speed.
In other words,
o G
v 4
) (4)

Equation 4 shows the relationship between mean velocity and mean length, but these two
parameters can not be measured independently at an isolated loop. Typicaly, an operating agency

will use one of two approaches to address this problem, in the first case, L, issimply settoa

constant value, L, and Equation 5 is used to estimate V.

()

But there are many site specific variables that can influence the mean vehicle length, such asthe
percentage of long vehicles at the station, percentage of long vehiclesin the lane and the detector's
sensitivity. So, other municipalities assume afixed free flow velocity and reversing the

3
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assignment in Equation 5, estimate L each day during periods when traffic over the detector is

almost certain to be free flowing. Then, L isheld fixed during the remainder of the day and the
velocity estimation progresses using Equation 5 directly.

Analysis

Some of the site specific variables are corrected with adaily estimate of L, but other factors are not
addressed, such as the possibility that the percentage of long vehicles may change during the day
or the simple fact that a sample with few vehicles (i.e., low flow) may not have arepresentative
sample of vehicle lengths. For this study, we examine how L, change throughout the day for each
lane at a detector station on Interstate-80 in Berkeley, California. The raw data used for this study
consists of 24 hours of detector actuations sampled at 60 Hz. Rather than using isolated loop
detectors, the data come from dual |oop speed traps; where a speed trap consists of two closely
spaced loop detectorsin the same lane. In this configuration, it is possible to measure true vehicle
velocities by dividing the loop separation by the differencein arrival times at each loop. Finally,

L, is calculated using Equation 4 and assuming absol ute equality.

Figures 2A and 3A* illustrate the time series evolution of L, for T =15min. Thevauesof L,
range from 19 feet to 51 feet and almost all lanes exhibit a strong temporal dependency. Following
Caltrans convention, lanes are numbered starting with one at the inside and increasing outward. At
this location, lane 1 northbound and lanes 1-2 southbound exhibit lower L, values because trucks
arerestricted from these lanes. The legend indicates the total number of vehiclesin each lane
during the day. Parts B-C of these figures show the corresponding n, and v, , respectively, for

the given directions. One can clearly see the velocities decrease with increasing lane number

When an operating agency estimates L, they typically sample the value during early morning
hours. Asone would expect, these hours are free flowing for this example, however, they also

correspond to the highest true values of L,. Furthermore, the flows are lowest during this period,
with no vehicles observed in lane 1 southbound for over three hours. Thus, if L were estimated

strictly during the early morning, estimates of velocity from Equation 5 would be too high
throughout the remainder of the day. Since the phenomena depend on site specific factors, one

! Note that the vertical scaleis different in the two figures to show as much detail as possible.



Coifman, B. 7/28/99

should not attempt to calculate correction factors from these data, rather, the figures indicate the
need for an improved method of estimating L.

Removing the temporal component, Figure 4 shows the cumulative distribution of L, for the
northbound lanes using four different sampling periods. T =30sec, T =1min, T =5min, and

T =15min. Although the distributions are fairly tight for lane 1, the other lanes exhibit alarge
variance. So no single vaue of L will be representative of al samples. More importantly, avalue

of L estimated us ng onevalue of T may not be valid for another value of T.

The primary source of this variance comes from the fact that the vehicles observed during a given
sample may not be representative of the entire vehicle population. Figure 5 shows the observed
distribution of individual vehicle lengths, as calculated from Equation 2, for the northbound traffic.
Approximately 85 percent of the vehicle lengths are between 15 and 22 feet, but some vehicles are
aslong as 80 feet or roughly four times the median length. Particularly during low flow, when n,
issmall, along vehicle can skew 6, ssmply because it takes more time for the long vehicle to pass
the detector.

In accordance with the Central Limit Theorem, the sample distribution should become more
representative of the entire population as n, increases, which in turn, increases with ¢, and with
T. Figure 6 illustrates this phenomena using the northbound data from all lanes for three different

valuesof T. Thetop half of the figure shows L, during free flow conditions, v, > 50 mph, while

the lower half shows L, during congestion, V, <50 mph. The mean value of L, isindicated for

the datain each plot. In parts A and D, where T = 30sec, the maximum number of vehicles per
sampleis so small that the observations fall into distinct columns, i.e., the first column contains
observations with only one vehicle, the second column contains observations with only two

vehicles, and so on. Notice that for each value of T, therange of L, decreasesas g, increases,
also note that the lowest flows are only observed during free flow conditions in this data set.

Estimating Sample Velocity

As previoudly noted, an isolated loop detector can not measure Vv, directly and estimates of L may
be biased by the time of day. This section devel ops a methodology to overcome these problems.

Like conventional practice, L isestimated during periods when the traffic should be free flowing.
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But rather than using a static period of the day chosen apriori for this estimation, the approach
uses 6, to identify free flowing periods. In particular, asampleis considered free flowing if

ek < ethr%hold (6)

where 6,44 = 10% for thisstudy. To account for transient samples with high 6, dueto free

flowing trucks, for T = 30sec, asampleis also considered free flowing if at least half of the 10
preceding samples satisfy Equation 6. Next,

= Vg Dmean§g over al k OK (7

where

= assumed fixed free flow velocity, set to 60 mph for this study

K = set of al free flow sampleswith g, >0 and 8, > 0 in the given lane during the 24
hour study.

The resulting L for the northbound traffic are shown in Table 1. Us ng these values and Equation
5to caculae v, , Figure 7 shows Vv, versus V, for the northbound lanes over entire 24 hour study.
The solid line in each plot indicates where the estimated val ues equal the measured values. Note
that v, ranges between 20 mph and 120 mph for samples with v, > 50 mph. In other words, the
estimate is very noisy when the traffic isfree flowing. Finaly, consider the congested
observations, V, <50 mph. In each |ane the observations are roughly collinear. The guessof v,
serves as a scaling factor, increasing or decreasing the slope of the congested data. Inlane 1, the
guess of v, wastoo low and the estimated velocities are lower than the measured velocities, while

inlanes 3 and 4, the oppositeistrue. Thiserror isincluded in the plots because it can not be
eliminated from an isolated loop data without additional detectors.

The anaysisis repeated with T = 5min to reduce the estimate noise. Now, however, asampleis
only considered free flowing if it satisfies Equation 6 or the preceding sample satisfied Equation 6.

Once moretheresulting L are shown in Table 1, while Figure 8 shows v, versus V, for the

northbound laneswith T = 5min. Even with the longer sampling period, the estimates are still
noisy when the traffic is free flowing.
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To illustrate the effects of different values of v, or L, Fi gures 9 and 10 show contour plots of the

cumulative distribution of the percent error as L ranges between 16 and 32 feet for two different

laneswhen (A) T = 30sec and (B) T = 5min. For example, when L = 19feetin Figure 9A,
approximately 70 percent of the estimated velocities are within 5 percent of the measured values.
Comparing part B to part A in either lane, a the longer sampling period, the error is reduced dueto

increased n,. Notice that the optimal value of L appearsto depend on T in Figure 10, reaffirming

thefact that L estimated a onevaueof T may not be valid for another value of T.

Improving the Velocity Estimates

In Figures 7-8, when V, > 50, most of the estimation errors are due to the large range of L, at low
g.. From an operational stand point, it is sufficient to know that traffic is free flowing rather than
knowing the true velocity during free flow conditions. This supposition isimplicit with on-line
estimation of L. It would be desirable to identify the free flow, low flow, Ok < Oityesnoid» SEMPlES
and simply assign V, = v, for these periods. But one can not simply use g, to identify these
samples since agiven value of g, can correspond to two traffic states, one free flowing and the
other congested, as shown in Figure 11. Fortunately, Equation 3 shows that 6, monotonically
increases as V, decreases. So rather than using aflow based constraint, one can identify the free

flow datavia 6, < 6,4 Rewriting Equation 5 to include this constraint yields Equation 8:

T O
\7k = %7' O 2 Byyesnola (8)

E Ve, B < Bresnoia

To illustrate the benefits of this thresholding, return to the datain Figure 8. Recaculating V, using
Equation 8 with 6, ., = 10%, the new relationships are shown in Figure 12. Notice that almost
all of the noise has been eliminated from the estimates corresponding to sampleswith v, > 50
mph. Figure 13 compares the time series v, "before cleaning" from Equation 5, "after cleaning"
from Equation 8, and Vv, . Inthisfigure, one can see that cleaning removed many erroneous

velocity estimates, particularly during the early morning. Repeating this exercise for the
southbound data yields Figure 14. One can aso apply this cleaning method to the 30 second data
with similar results, Figure 15.
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Implementation

Theanalysisfor T = 30sec used a moving average to identify free flow periods with high 6,, but

amoving average ismemory intensive. In contrast, exponential filtering can accomplish the same
goa with amost no data storage. The following code can be used to implement the theory
presented in the preceding section:

if 6, >0and g, >0
if 6, <10%or u>0.1

Vi = Vg

u=1p+ulfl-p)
else

u=00Cp+ulfl-p)
end

end
where

u = anindicator variable

I = filtering factor with atime constant on the order of 24 hours, e.g., r =1/2880 for
T =30sec and r =1/288 for T = 5min.

p = filtering factor with atime constant on the order of 5 minutes, e.g., p = 0.2 for
T=30secand p=1for T =5min.

Note that rather than using a static assignment of L, asin Equation 7, the algorithm uses an

exponential filter to dynamically update L.

Discussion

Although the implementation is fairly simple, thiswork has wide ranging implications for
practitioners and researchers.
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Implications Beyond Isolated Loop Velocity Estimates

The impact of thiswork to isolated loop detectorsis straight forward, but this work has
implications for dual loop speed traps aswell. Earlier studies have developed automated tests of
detector data quality, e.g., [1-3]. Their goal isto eliminate erroneous measurements due to
transient problems or component failures. Similar systems often go undocumented in the literature
because they are either designed in-house by an operating agency or a consulting firm (see[4] for
examples). Most of these data quality tests can be expressed using the following constraint to
bound good speed trap data:

\—/k 0 g:]k |:Lmin(eqw\_lk’ek) ’ qk D‘maxéQk’vk’Qk)B
D k k

(9A)

where L, and L, arelower and upper bounds, respectively, that may depend on g, Vv, or 6,.
Naturally, this constraint reduces to the following for isolated loop data:

\7k |:| D k |:Lmin (qk’ek) ’ qk |:I‘max(qklek)g (gB)
l 2 A 0

Some of these tests fail to accommodate the fact that the variancein L, increases as g, decreases.

The author recently identified such a system currently in use by alarge operating agency. In
particular, the agency applies Equation 9A to speed trap data. The test discards ailmost al early
morning observations from the agency's 400 detector stations simply because the constraint is too
restrictive during low occupancy conditions.

Previous Research in the Context of the new Analysis

Many researchers have sought better estimates of velocity from isolated loops, e.g., [5-7].
Considering the performance of Equation 5 shown in Figure 15A, this search isjustified.
Unfortunately, most of the preceding efforts focused on complicated models, losing sight of the
end goal: to produce an algorithm that can be deployed on a simple processor, such asaMode 170
controller®.

2 \When Model 2070 controllers are eventually deployed for freeway surveillance, they may be powerful enough to
implement the earlier works.
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Of greater concern, there has been some confusion in the discipline since Hall and Persaud [8]

concluded that, for afixed value of L, Equation 5 does not hold over an extended range of
occupancies. In particular, they examined the "g-factor”, where,

H

g (10)

L
Roughly summarizing their plots of g versus occupancy: g decreases by afactor of two from one
percent to five percent occupancy, remains constant over the range of five percent to 40 percent
occupancy, and then drops by an order of magnitude from 40 percent to 80 percent occupancy. To
reduce errors due to vehicle lengths, they selected lanes with truck restrictions. In an attempt to
reproduce these results, Figure 16A shows the g-factor versus occupancy for lane 1 northbound.
The g-factor does not exhibit the predicted occupancy dependence. Thereisone difference,
however, the earlier study used occupancy expressed in integer percent. After rounding percent
occupancy down to integer values and recalculating g, Figure 16B shows the new g-factor versus
integer percent occupancy. This plot exhibits the non-linearity at low occupancies predicted by
Hall and Persaud, but it does not show the drop in g at high occupancy. Finally, using time mean
speed® rather than space mean speed and the rounded occupancy to calculate g, Figure 16C follows
the predictions from the earlier study. Figure 17 compares the various methods of calculating the
g-factor on asingle plot. The figure shows mean g-factor over one percent ranges up to 35 percent
occupancy and then over five percent ranges through 50 percent occupancy. Note that by using
time mean speed without rounding occupancy, the g-factor follows the predictions for high
occupancy but it does not follow the predictions for low occupancy.

Although their diagnosis seems to be incorrect, Hall and Persaud correctly identified a significant
problem with conventional velocity estimation. An operating agency should expect to encounter

similar round off errors at low occupancy if they useinteger percent occupancy to estimate L and
this error will propagate to all subsequent velocity estimates. In the course of their analysis, Hall
and Persaud assumed the operating agency was measuring space mean speed when in fact it
appears that the agency was measuring time mean speed. This measurement error would explain
their results at high occupancy. To prevent such oversightsin the future, researchers should learn
the subtle details of the data measurement and aggregation procedures underlying their detector
data. One must remember that loop detectors, aswell as most other vehicle detectors, are not
precision instruments. To keep the detectors affordable, they are typically designed to meet

% The arithmetic mean of each samples' vehicle velocities.

10
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existing operational needs with minimal excess performance. Finaly, recall that the resultsin
Figure 17 represent alane with atruck restriction. Asshown earlier in this paper, when trucks are
present, the large range of possible vehicle lengths will reduce the accuracy of velocity estimates
from isolated loops.

Conclusions

This paper developed an improved method for estimating L, when compared to conventiona

practice, it isless sengitive to time of day trendsin L,. Inthe process of deriving the method, it

was shown that variancein L, increases as g, decreases. It was also shown that a value of L
estimated using one value of T may not be valid for another value of T. Next, the paper
developed arobust velocity estimate that reducesthe errors at low ¢,. Unlike many preceding

works, the approach is simple enough that it can be implemented on existing traffic controllers that
have limited processing power, such asaModel 170 controller.

The significance of thiswork to isolated loop detectorsis straight forward. The discussion shows
how the work is also applicable to automated tests of detector data quality, both from dua and
single loop detectors. Then, the paper closes by refuting an earlier study, showing that Equation 5
does indeed hold over an extended range of occupancies provided care is taken to measure the right
parameters and prevent round off errors.
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Figure 1, Vehicle j passing over a loop detector. The height of the vehicle's trajectory reflects the non-
zero vehicle length.

Distance

Detection zone

—h<

Time



Coifman, B.

Figure 2, (A) True Zk by lane as a function of time for the northbound lanes, 7' = 15 minutes, and the
corresponding (B) number of vehicles per sample (C) measured velocities.
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Figure 3, (A) True Zk by lane as a function of time for the southbound lanes, 7' = 15 minutes, and the

corresponding (B) number of vehicles per sample (C) measured velocities.

(A)

A~
o O
T T

lane 1, 10026 veh
lane 2, 30414 veh
lane 3, 26492 veh
lane 4, 24813 veh
lane 5, 13461 veh

(B)

time (h)

600

500

N
o
o

number of vehicles

10

time (h)

15

25

~
o
T

(2}
o
T

velocity (mph)
5w
o (@)
T T

w
o
T

N
o
o

10

time (h)

15

20

25



Coifman, B.

Figure 4, CDF of the true Zk over 24 hours for the northbound traffic, (A) lane 1 (B) lane 2 (C) lane 3 (D) lane 4.
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Figure 5, (A) Cumulative distribution of individual vehicle lengths, L;, for the northbound lanes. (B)
detail of part A.
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Figure 6, Zk versus flow, g,, for the northbound traffic: (A)-(C) during free flow, v, > 50 mph and (D)-(F) congestion, v, <50 mph;
sampled at (A) & (D) T =30sec,(B) & (E) T =5 min, (C) & (F) T =15 min.
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Figure 7, Estimated velocity versus measured velocity, northbound traffic, 7 = 30 sec, (A) lane 1, (B)
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Figure 8,
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A

Figure 9, Contour plot showing the CDF of percent error in estimated velocity at fixed estimates of L

5 min.
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Figure 10, Contour plot showing the CDF of percent error in estimated velocity at fixed estimates of L

for lane 5 southbound, +5% error for each line, (A) T =30 sec, (B) T =5 min.
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Figure 11, Simplified bivariate flow-occupancy relationship with observation k highlighted.
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Figure 12,"Cleaned" estimated velocity versus measured velocity, northbound traffic, 7 = 5 min, (A)
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Figure 13, (A) Estimated velocity before cleaning, v, northbound traffic, 7 = 5 min and the
corresponding (B) estimates after cleaning, (C) measured velocities, v, .
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Figure 14, (A) Estimated velocity before cleaning, v,, southbound traffic, 7 = 5 min and the
corresponding (B) estimates after cleaning, (C) measured velocities, v, .
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Figure 15, (A) Estimated velocity before cleaning, v,, southbound lane 3 (other lanes omitted for clarity),
T = 30 sec and the corresponding (B) estimates after cleaning, (C) measured velocities, Vv, .
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Figure 16,(A) The g-factor versus occupancy , T = 30 seconds, lane 1 northbound, (B) with occupancy
rounded down to integer values, (C) using time mean speed and rounded occupancy.
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Figure 17,Mean g-factor calculated various ways versus occupancy , 7' = 30 seconds, northbound

lane 1.
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Table 1, The resulting estimates of L for the northbound traffic

L (feet) L (feet)
Lane T =30sec T=5min
1 16.8 16.9
2 19.6 19.9
3 21.3 22.0
4 21.8 22.8
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