
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Counting Cliques in Real-World Graphs

Permalink
https://escholarship.org/uc/item/8m61g6b6

Author
Jain, Shweta

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8m61g6b6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

COUNTING CLIQUES IN REAL-WORLD GRAPHS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Shweta Jain

March 2020

The Dissertation of Shweta Jain
is approved:

Prof. Seshadhri Comandur, Chair

Prof. Abhradeep Guha Thakurta

Prof. Yang Liu

Quentin Williams
Vice Provost and Dean of Graduate Studies

Copyright © by

Shweta Jain

2020

Table of Contents

List of Figures vi

List of Tables x

Abstract xii

Dedication xiv

Acknowledgments xv

1 Introduction 1
1.1 Contributions . 5

1.1.1 TuránShadow . 5
1.1.2 PEANUTS . 6
1.1.3 Pivoter . 6
1.1.4 SADDLES . 7

2 Preliminaries and State of the art 8

3 TuránShadow 13
3.1 Introduction . 13

3.1.1 Problem Statement . 13
3.1.2 Main contributions . 14
3.1.3 Related Work . 16

3.2 Main Ideas . 18
3.2.1 Main theorem and significance 19

3.3 Turán’s Theorem . 20
3.4 Clique shadows . 21
3.5 Constructing saturated clique shadows 24

3.5.1 Putting it all together . 28
3.5.2 The shadow size . 29

3.6 Experimental results . 30

iii

3.6.1 Comparison with other algorithms 33
3.6.2 Details about Turán-shadow 34

3.7 Demonstration of clique sampling 35
3.8 Future work . 37

4 Counting near-cliques 39
4.1 Introduction . 39

4.1.1 Problem description . 41
4.1.2 Our contributions . 43
4.1.3 Related Work . 45

4.2 Main ideas . 47
4.3 Preliminaries . 49
4.4 Main algorithm . 50

4.4.1 Inverse-TS . 54
4.5 Counting cliques and near-k-cliques 58

4.5.1 Counting (k, 1)-cliques . 58
4.5.2 Counting Type 1, (k, 2)-cliques 59
4.5.3 Counting Type 2 (k, 2)-cliques 60

4.6 Experimental Results . 62
4.6.1 Near-cliques in practice . 67

4.7 Missteps and practical insights . 68
4.8 Future Work . 70

5 Pivoter 71
5.1 Introduction . 71

5.1.1 Problem Statement . 71
5.1.2 Main contributions . 73
5.1.3 Related Work . 75

5.2 Main Ideas . 77
5.3 Main Algorithm . 80

5.3.1 Preliminaries . 80
5.4 Building the SCT . 82
5.5 Getting global and local counts 85
5.6 Experimental results . 90

5.6.1 Running time and comparison with other algorithms . . . 92
5.6.2 Demonstrations of Pivoter 95

5.7 Future work . 96

6 Estimating the degree distribution 98
6.1 Introduction . 98

6.1.1 Problem description . 101
6.1.2 Our contributions . 103
6.1.3 Theoretical results in detail 104

iv

6.1.4 Challenges and Main Idea 106
6.1.5 Related Work . 108

6.2 Preliminaries . 110
6.2.1 More on Fatness indices 111
6.2.2 Simulating degree queries for HDM 113

6.3 The Main Result and SADDLES 115
6.4 Analysis of SADDLES . 118
6.5 Experimental Results . 123

6.5.1 Implementation Details . 124
6.5.2 Evaluation of SADDLES 125
6.5.3 Comparison with previous work 128

6.6 Future work . 130

7 Conclusion and future work 131

v

List of Figures

3.1 Summary of behavior of Turán-shadow over several datasets.
Fig. 3.1a shows the percent relative error in the estimates for k=7
given by Turán-shadow. We only show results for graphs for
which we were able to obtain exact counts using either brute force
enumeration, or from the results of [105]. The errors are always
< 2% and mostly < 1%. Fig. 5.1a shows the time taken by
Turán-shadow for k=7 and k=10. Fig. 3.1c shows the speedup
(time of algorithm/time of Turán-shadow) over other state of
the art algorithms for k=7. The red line indicates a speedup of 1.
We could not give a figure for speedup for k=10 because for most
instances no competing algorithm terminated in min(7 hours, 100
times Turán-shadow time). 14

3.2 Figure shows convergence over 100 runs of Turán-shadow using
10K, 50K, 100K, 500K and 1M samples each. Turán-shadow has
an extremely low spread and consistently gives very accurate results. 32

3.3 Figures show the sizes of the Turán shadows generated for k=7
and k=10 in all the graphs. The runtime of the algorithm is
proportional to the size of the shadow and crucially, the sizes scale
only linearly with the number of edges. 32

3.4 Figures show the success ratio (probability of finding a clique)
obtained in the sampling experiments in all the graphs. 33

vi

3.6 Figures show the graph visualizations obtained for Rice31 graph.
LAPTS uses the information about cliques obtained using
TuránShadow . 37

4.1 Fig. 4.1a shows the ratio of number of different types of near-cliques
to k-cliques for k = 5 in four real world graphs. The red line
indicates ratio = 1. In most cases the number of near-cliques is
at least of the same order of magnitude as number of k-cliques, if
not more. Fig. 4.1b shows the time required by Inverse-TS (inv-ts),
color-coding (cc) and brute force (bf) to estimate the number of
(7, 1)-cliques in 10 real world graphs. The y−axis shows time in
seconds on a log scale. The red line indicates 86400 seconds (24
hours). All experiments that ran for more than 24 hours were
terminated. Inverse-TS terminated in minutes in all cases except
com-orkut, giving a speedup of anywhere between 3x-100x. 41

4.2 Fig. 4.2a shows the percentage error in the estimates for Type 1
(k, 2)-cliques for k = 5 obtained using Inverse-TS. As we can
see, the error is < 2% and in most cases < 1%. Fig. 4.2b shows
the savings in time and space when using Inverse-TS (500000
samples) vs when using TuránShadow (50000 samples) to estimate
the number of 7-cliques in 4 of the largest real world graphs we
experimented with. The green bars show the factor savings in the
percentage of the Turán Shadow that was explored (factor of 2-10).
The purple bar shows the factor saving in the maximum amount of
space required for the Turán Shadow at any instant. 42

4.3 Near-7-cliques. Dotted lines indicate the missing edges. Blue lines
mark the contained clique. 42

4.4 Fig. 4.4a, Fig. 4.4b, Fig. 4.4c show convergence over 100 runs of
Inverse-TS using number of samples in [10K, 50K, 100K, 500K,1M]
for all near-clique types. The red line indicates the true value. . . 65

vii

4.5 Figure shows the time required by Inverse-TS (inv-ts), color-coding
(cc) and brute force (bf) to estimate the number of Type 1 and Type
2 (k, 2)-cliques resp. in 10 real world graphs for k = 7. The red
line indicates 86400 seconds (24 hours). 66

4.6 Figure shows the estimates obtained from 20 runs each of 2 counters
of near-cliques for k = 7, one where we sample a 5 clique and the
one where we sample a 6-clique, as in the case of Func-(k, 1)-Clique.
Red line shows the actual count of (7,−1)−cliques. 69

4.7 Figure shows the distribuion of f obtained using 2 different counters
of near-cliques for k = 7, one where we sample a 5 clique and one
where we sample a 6-clique. x-axis is on log scale. As expected, the
variance and max value of f is much larger when sampling 5-cliques
than when sampling 6-cliques. 70

5.1 Fig. 5.1a shows the comparison of time taken (in seconds) by
Pivoter for 4 of our largest graphs to count all k−cliques with
the time taken by kClist40 (the parallel version of the state of the
art algorithm kClist that uses 40 threads) to count the number of
k−cliques, where k is the maximum clique size in each graph. For
Stanford, BerkStan, as-skitter, orkut, the maximum clique sizes
were 61, 201, 67 and 51 resp. Pivoter terminated for most
graphs in minutes, (except for orkut, for which it took about 2
hours) whereas kClist40 had not terminated even after 3 days,
giving a speedup of 100x to 10000x. Fig. 5.1a also shows the time
taken by Pivoter to obtain the per-vertex and per-edge k−clique
counts. They were within a factor of the time taken to obtain
global k−clique counts. Fig. 5.1b and Fig. 5.1c shows the frequency
distribution of k-cliques i.e. for every number r on the x-axis, the
y-axis shows the number of vertices that participate in r k-cliques,
for k ∈ [5, 10, 15, 20, 25] for as-skitter and web-Stanford graphs. . 72

viii

5.2 Fig. 5.2a shows the number of nodes in the SCT vs the number of
edges (m) for different graphs. The running time of Pivoter is
directly proportional to the SCT size which seems to be roughly
linear in the number of edges. Fig. 5.2b shows the trends in clique
counts for a number of graphs. For some of the graphs, the complete
distribution of their clique counts has been obtained for the first
time. Fig. 5.2c shows the trends in the clique counts of 2 different
versions over time of the dblp graph. 93

6.1 The output of SADDLES on a collection of networks: amazon0601

(403K vertices, 4.9M edges), web-Google (870K vertices, 4.3M
edges), cit-Patents (3.8M vertices, 16M edges), com-orkut social
network (3M vertices, 117M edges). SADDLES samples 1% of
the vertices and gives accurate results for the entire (cumulative)
degree distribution. For comparison, we show the output of a
number of sampling algorithms from past work, each run with
the same number of samples. (Because of the size of com-Orkut,
methods involving optimization [270] fail to produce an estimate in
reasonable time.) . 100

6.2 The result of runs of SADDLES on a variety of graphs, for the
HDM. We set r + q to be 1% of the number of vertices, for all
graphs. The actual number of edges sampled varies, and is given
in Tab. 6.1. 126

6.3 Convergence of SADDLES: We plot the values of the error
parameter α (as defined in §6.5.2) for 100 runs at increasing values
of r + q. We have a different plot for d = 10, 100, 1000, 10000 to
show the convergence at varying portions of the ccdh. 127

ix

List of Tables

3.1 Graph properties . 31
3.2 Table shows the sizes, degeneracy, maximum degree of the graphs,

the counts of 5, 7 and 10 cliques obtained using Turán-shadow,
the percent relative error in the estimates, and time in seconds
required to get the estimates. Some of the exact counts were
obtained from [105] (where available). This is the first such
algorithm that obtains these counts with < 2% error without using
any specialized hardware. 31

4.1 Table shows the sizes, degeneracy, maximum degree of the graphs,
the counts of 5, 7 and 10 cliques and near-cliques obtained using
Inverse-TS, the percent relative error in the estimates (for those
graphs for which we were able to get exact numbers within 24
hours), and time in seconds required to get the estimates. The
rows whose types are k in the rightmost column show the number of
k-cliques.For most instances, the algorithm terminated in minutes.
Values marked with * have significant errors which are addressed
in Tab. 4.2 . 63

4.2 Table revised estimates and revised error for the counts of
near-cliques obtained using PEANUTS with 500K samples for the
erroneous estimates in Tab. 6.1 (marked with *). 65

x

5.1 Table shows the sizes, degeneracy, maximum clique size, and the
time taken (in seconds) by Pivoter to obtain global k−clique
counts, per-vertex and per edge k−cliques counts for all k. *For
the com-lj graph, we were not able to get all k−clique counts in
1 day so we tested for the maximum k we could count in about
a day. Pivoter was able to count the number of 9-cliques in 30
hours whereas kClist40 had not terminated even after 6 days. . . 92

5.2 Time taken in seconds by the state-of-the-art randomized (TS,
short for TuránShadow) and parallel (kClist40) algorithms. Note
that Pivoter obtains all k−clique counts for these graphs in a
fraction of the time taken by other methods to count just 13-cliques. 93

5.3 Table shows the time taken to count k-cliques for com-lj graph. For
k=9, Pivoter terminated in about 30 hours where kClist40 had
not terminated in 6 days. 93

6.1 Graph properties: #vertices (n), #edges (m), maximum degree,
h-index and z-index. The last column indicates the median number
of samples over 100 runs (as a percentage of m) required by
SADDLES under HDM, with r + q = 0.01n. 125

xi

Abstract

Counting Cliques in Real-World Graphs

by

Shweta Jain

Cliques are important structures in network science that have been used in

numerous applications including spam detection, graph analysis, graph modeling,

community detection among others. Obtaining the counts of k-cliques in

graphs with millions of nodes and edges is a challenging problem due to

combinatorial explosion. Essentially, as k increases, the number of k-cliques

goes up exponentially, and it is not known how one can count them without

enumerating. Most existing techniques fail to count k-cliques for k > 5. Obtaining

global k-clique counts is challenging. Obtaining counts of k-cliques that each edge

or vertex is a part of (called local k-clique counts) is even more so.

In this work, we present a set of techniques to efficiently count the number of

k-cliques in large graphs that improve upon the state of the art, both in practice

and in theory. Our first method is a randomized algorithm called TuránShadow

that uses insights from extremal combinatorics to estimate the k-clique counts

for k ≤ 10, while being orders of magnitude faster and more accurate than

state-of-the-art methods. We further employ this machinery of clique counting

for counting near-cliques – cliques that are missing a few edges. In another

application, we show how going beyond edges and incorporating the information

of higher-order structures like k-cliques yields graph visualizations that are more

human-readable than existing methods.

In a somewhat surprising result, our second method called Pivoter counts all

global and local k-cliques, for all k, in a fraction of the time taken by all other

xii

methods, including parallel/approximation methods. In addition, it improves the

worst-case running time of clique counting from O(2n) to O(3n/3) and proves that

it is indeed possible to count cliques without enumerating them. Crucially, it uses

a classic technique called pivoting that drastically reduces the search space for

cliques. Using this algorithm, for the first time we were able to obtain the counts

of k-cliques of several graphs for which clique counting was infeasible before.

With increasing data come increasing challenges. We highlight certain open

problems and future directions to explore to make clique counts even more

accessible on large, real-world graphs.

xiii

To my family

xiv

Acknowledgments

This Ph.D. experience has been one of the most rewarding, challenging,

intellectually stimulating and wonderful experiences of my life. Needless to say,

this would not have been possible without an army of people supporting me. I

would like to thank my advisor, Prof. Seshadhri Comandur, whose time, advice

and generous funding I am grateful for. I have been fortunate to have had

wonderful mentors who gave me valuable help and advice at important junctures

of my Ph.D. I want to thank Prof. David Gleich and Prof. Anthony Wirth for

their support, career advice and kind words of encouragement. In the last one

year, I have also had the opportunity to collaborate with Prof. Moses Charikar.

I am grateful for his help in finding postdoc opportunities, for his advice and for

giving me the chance to work with him.

I am grateful for having had the opportunity to work at Sandia National Labs

with Dr. Ali Pinar. The work I did at Sandia has become a part of this thesis. My

work has also been supported by NSF Awards CCF-1740850, CCF-1813165, and

ARO Award W911NF1910294 and I am grateful for this support. I am grateful

also to my several fantastic co-authors, including Prof. David Gleich, Prof. Austin

Benson, Prof. Dana Ron, Huda Nassar, Talya Eden and Prof. Seshadhri. I have

greatly enjoyed working with them and learning from them.

Teachers have played a very influential role in my life and have steadily led me

on this path to a Ph.D. They have inspired me and impacted my life in profound

ways. I am forever grateful to Siddhartha Sir, who was not only a brilliant mentor

who went above and beyond what his job required to bring out the best in his

students, but is a role model to all his students and a wonderful human being.

I am thankful to Udayan Kanade, for having the courage to follow the path less

traveled and for re-instilling the love of science and math in me. I am grateful to

xv

Prof. László Babai for his infectious enthusiasm and love for teaching that made

me fall in love with Discrete Math and Algorithms. I am thankful to Prof. Jason

Hartline for mentoring me during my internship which gave me a glimpse of the

life of a Ph.D. student and fueled my desire to do research. I am thankful to

Prof. Sunil Shende, who gave me invaluable advice regarding Ph.D. admissions.

I am grateful to my Algorithms teacher, Gerry, at the University of Chicago for

going out of her way to convince the Dean to let me pursue Algorithms. I am

also thankful to Prof. Lise Getoor for encouraging me to be at UCSC and for

supporting me.

Without a sense of community, the journey of Ph.D. can seem like a very long

and solitary process. I am grateful for the friendship and camaraderie of my friends

at UCSC, esp. Andrew S., Hadley and Params. I am thankful to my “army” on

Nashik Katta, for their encouragement and for celebrating my achievements. I

would like to thank my Bay Area friends including Piyush, Atreyee, Dani, Bhago,

Shardul, Sonia, Mihir, Harshad, Chirayu, David and Andrew W. for the much

needed lighter moments in this journey. Thank you to my friend Akash for helping

me navigate through some difficult times during my Ph.D. and for obliging me

with his ever-listening ear. I am also grateful to my friends from back home

including Sumit, Ameya, Aditya, Sumeet and Ketaki for always supporting me. I

am thankful to Lorchen for the many insightful conversations. I am thankful to

Anupama Tai and my friends from Saptak Music School for the joy of learning

and exploring music with them. I am thankful to Ben and Acharya Marasaabs

for their love and wisdom.

I am greatly indebted to Saurabh for his unwavering support and faith in me,

and for lifting my spirits on countless occassions. You are one of the biggest

reasons for my success and I would not be here today without you. Thank you

xvi

also to Arun Uncle and Meenal Aunty for their support.

Lastly, I am infinitely grateful to my ever loving family to whom this work

is dedicated – Mom, Dad, Deepa, Megha, Siddharth and Aditi. I am especially

thankful to Dad for instilling the love of science from an early age in me and for

encouraging me to dream. I am grateful to my mother for the many sacrifices

she made and for encouraging me to be an independent thinker. I have immense

gratitue for my sisters Deepa and Megha, who have been my pillars of strength

and my biggest supporters, and for my brother-in-law, Siddharth, who has always

been there for me. Last but not the least, I am very thankful to my adorable

3-year-old niece, Aditi, for always cheering on her Sheta Maasi even though she

had no clue what she was cheering for.

xvii

Chapter 1

Introduction

Graphs are ubiquitous structures. Wherever there are entities and relations

between the entities, there exists a graph that represents the relations and the

entities. A routing network, for example, is a graph representing connections

between routers. A web graph represents which pages within an interconnected

domain or across domains link to which other pages. A citation network has

nodes that represent papers and edges that represent which paper cites which

other paper. A PPI network or protein-protein interaction network represents

which protein interacts with which other protein to carry out a certain bodily

function in an organism. A graph representing a social network has nodes for

people and edges representing which two people know each other on the social

network. All these networks have the common property that they consist of a

large number of vertices (ranging from 100s to millions) and similar number of

edges. Given such big graphs, how can we make sense of them? What can we say

about the structure of the graph beyond just the vertices and the edges? How can

we compare, characterize, analyze and generate similar graphs?

One of the approaches to mine useful structural information about graphs

which has recieved a lot of attention in recent times is to use counts of certain

1

patterns – (typically small) subgraphs that may occur in the given graph, for eg.,

cycles, triangles, cliques, etc. It has been observed that, many real world graphs

show significantly higher counts of certain patterns than one would expect in a

random graph [126, 179, 258]. Indeed, one of the hallmarks of many real-world

graphs is the existence of a lot of triangles – set of 3 vertices, all connected to each

other, and this is believed to be an artifact of the procedure generating the graph.

For example, in a social network, the existence of a large number of triangles can

perhaps be explained by the phenomena that a friend of a friend is likely to be a

friend.

Counts of patterns can thus reveal important properties about the structure

of the graph and the underlying phenomenon that the graph represents. Pattern

counting is referred to with a variety of names: subgraph analysis, motif counting,

graphlet analysis, etc. But the fundamental task is to count the occurrence of a

small pattern graph in a large input graph. Counts of patterns have been used in

anomaly detection, social network analysis, bioinformatics among others [50, 102,

126, 127, 179, 200]. (refer to tutorial [217] and references within). Similar to the

vertex degree distribution, [178] and [218] defined a graphlet degree distribution

and graphlet kernel, respectively as ways to compare graphs. The use of triangles,

and clustering coefficients in particular, has a rich history [50, 126, 258, 259].

Triangle counts have been used in spam detection [30] and role detection [50].

[207] uses clustering coefficients (among other properties) to show that Preferential

Attachment has poor clustering. [128, 214, 225] use triadic closure properties to

model graphs. The past decade saw use of 4 and 5 vertex patterns [35, 249] in

graph analysis. In all such applications, it is essential to have fast algorithms for

pattern counting.

The number of possible patterns goes up exponentially with the size of the

2

pattern. Each of the patterns presents different challenges and often requires

different techniques to count them. One of the patterns that is of special

importance is the k-clique. A k-clique is a set of k vertices that are all connected

to each other; thus, a triangle is a 3-clique. Cliques are extremely significant in

social network analysis (Chap. 11 of [121] and Chap. 2 of [132]). They are the

archetypal example of a dense subgraph, and a number of recent results use cliques

to find large, dense subregions of a network [183, 208, 244, 247], in topological

approaches to network analysis [224] and in community detection [166]. We focus

on the specific problem of clique counting.

There is a large literature for counting 3-cliques (triangles) and some of these

methods have been extended to counting cliques upto size 5 [11, 137, 171, 194].

However, practical algorithms for counting cliques beyond size 5 have proven to be

much harder, and the reason for this is combinatorial explosion. Essentially, as k

increases, the number of k-cliques blows up. An autonomous system network with

ten million edges has more than a trillion 10-cliques. Any enumeration procedure

is doomed to failure. Under complexity theoretical assumptions, clique counting

is believed to be exponential in the size k [56], and we cannot hope to get a good

worst-case algorithm.

Similar to global k−clique counts, one can define the per-vertex and per-edge

k-clique counts (also sometimes called local counts) as the number of k-cliques

that every vertex and every edge partakes in. In clustering applications, the local

counts are used as vertex or edge weights, and are therefore even more useful than

global counts [31, 166, 208, 244, 246, 264].

Local counting, for all k, is harder than global counting, especially given the

sheer size of the output. Parallel methods would eventually need to store local

counts for every subproblem, which would increase the overall memory footprint.

3

For local counts, sampling would require far too many random variables, each of

which need to be sampled many times for convergence. (We give more explanation

in §6.1.5.)

This raises the main question:

Do there exist scalable algorithms for getting all global and local clique counts,

on real-world graphs with millions of edges?

We explore this question using several different approaches and tools

from randomized algorithms, extremal graph theory and classic backtracking

algorithms and show that it is indeed possible to count the number of k-cliques in

real-world graphs of millions of vertices and edges, on a single commodity machine.

While clique counts are important, the requirement that every edge in the

clique be present is excessively rigid. Data is often noisy or incomplete, and

it is likely that cliques that are missing even an edge or two are significant.

Hence, it is important to also look at counts of patterns that are close to

being cliques. We will call these structures near-cliques but they are also

known as quasi-cliques [163, 190] and defective cliques [267] and have several

applications ranging from clustering to prediction. Recent work has used the

fraction of near-cliques to k-cliques to define higher order variants of clustering

coefficients [265]. In the bioinformatics literature, near-cliques (or defective

cliques, as they are known) have been used to predict missed protein-protein

interactions in noisy PPI networks [267] and have been shown to have good

predictive performance. An alternative viewpoint of looking at near-cliques views

them as dense subgraphs. Mining dense subgraphs is an important problem with

many applications in Network Analysis. [21, 57, 107, 153, 209]

Counting cliques is already challenging, and counting near-cliques introduces

more challenges. Most importantly, near-cliques do not enjoy the recursive

4

structural property of cliques - that a subset of a clique is also a clique. This

rules out most recursive backtracking algorithms for clique counting. Empirical

evidence suggests that the number of near-cliques in real world datasets is order of

magnitudes higher than that of cliques, making the task of counting them equally

difficult if not more.

1.1 Contributions

In this work, we present several tools for efficiently counting k−cliques and

near-cliques in large real-world graphs. Our main contributions are described in

the chapters ahead, a short summary of which we provide below. The main results

of chapters 3 and 6 and 4 were published at WWW 2017, WWW 2018 and WWW

2020, respectively, and those of 5 at WSDM, 2020.

We stress that we make no distributional assumption on the graph. For each

algorithm, we have made our code public for others to use.

1.1.1 TuránShadow

We present TuránShadow - an algorithm for estimating the number of k-cliques

in a given graph, for a given k. It uses the fact that although real-world graphs

are usually sparse (which makes random sampling inefficient), they consists of

dense pockets. By drilling down on these dense pockets, and sampling for cliques

within them, we can estimate the number of cliques faster. The algorithm

uses a classic result from Extremal Combinatorics called Turán’s Theorem which

characterizes “dense” pockets such that we can bound the number of samples

that will be required to obtain estimates with provable error guarantees. We

run our algorithm on a number of real-world graphs and demonstrate a speedup

5

of at least 100 times for most cases over existing state-of-the-art algorithms for

counting cliques upto k = 10. We also show an application of TuránShadow to

graph visualization and demonstrate how the fast computation of k-cliques and

incorporating their information in the visualization algorithms can yield more

human-readable representations. This paper [134] won the Best Paper Award at

WWW, 2017.

Code available at: https://bitbucket.org/sjain12/cliquecounting/

1.1.2 PEANUTS

This work uses the ideas from TuránShadow to provide an algorithm

Inverse-TS to count near-cliques efficiently. Near-cliques are cliques that are

missing an edge or two. Every near-clique contains a smaller clique. By

using TuránShadow to find the smaller cliques and using them as clues to mine

near-cliques, we give an estimate for the total number of near-cliques in the

graph. We also provide a heuristic that computes the count of near-cliques in an

online fashion and drastically reduces the amount of space required. On several

real-world instances, Inverse-TS performed several orders of madnitude faster and

more accurately over other methods. This paper will be published at WWW,

2020.

Code available at: https://bitbucket.org/sjain12/peanuts/

1.1.3 Pivoter

This chapter describes an exact clique counting algorithm that uses a classic

technique called pivoting. Interestingly, it demonstrates that it is indeed possible

to count all cliques without enumerating them. This technique is several orders

of magnitude faster than any other known algorithm for clique counting, whether

6

https://bitbucket.org/sjain12/cliquecounting/
https://bitbucket.org/sjain12/peanuts/

randomized or deterministic, sequential or parallel. Pivoter makes clique counting

possible for several graphs for which clique counting was infeasible before.

Furthermore, it provides the first scalable and efficient algorithm for obtaining

local clique counts in graphs with millions of vertices and improves the worst-case

running time of clique counting from O(2n) to O(3n/3. This paper [136] won the

Best Paper Award at WSDM, 2020.

Code available at: https://bitbucket.org/sjain12/pivoter/

1.1.4 SADDLES

In this work, we demonstrate how sampling can be used to estimate the count

of some graph substructure when we don’t even have access to the whole graph.

In particular, we design sublinear algorithm for estimating the degree distribution

of a graph when given only query access to the graph. Our method required an

order of magnitude lesser number of samples to achieve better accuracy that other

state-of-the-art methods. This paper [92] was published at WWW, 2018.

Code available at: https://bitbucket.org/sjain12/saddles/

7

https://bitbucket.org/sjain12/pivoter/
https://bitbucket.org/sjain12/saddles/

Chapter 2

Preliminaries and State of the art

In this chapter, we lay the groundwork and describe several definitions,

concepts and procedures related to clique counting. We will use G = G(V,E)

to represent the graph, and k to represent the size of the clique (or near-clique,

depending on the context) we want to count. We assume that G is stored as an

adjacency list. We will use Ck to represent the number of k-cliques in the graphs

and C ′k to represent the number of k−cliques estimated by the algorithm, unless

specified otherwise. We will use u.a.r. as a shorthand for uniformly at random.

• Degeneracy

Definition 2.0.1. The degeneracy of a graph is the smallest value α such

that any induced subgraph of the graph has a vertex with degree at most α.

The degeneracy of a graph is a measure of the density of the graph. Most

real-world graphs have bounded degeneracy and typically, α << n.

• Degeneracy ordering

Definition 2.0.2. The degeneracy ordering of a graph is defined as an

ordering of vertices obtained by taking the lowest degree vertex in the graph

8

at that point (ties may be broken by id) and removing it from the graph.

It can be shown that when the vertices of a graph are ordered by degeneracy

and the graph is coverted into a DAG using this ordering i.e. edges are

directed from lower to higher vertices in the ordering, the resulting outdegree

of any vertex is atmost α, the degeneracy.

For many of the algorithms presented here, we will use the degeneracy

ordering to convert the graph into a DAG. For v ∈ V , we will let N+
v

represent the outneighborhood of v.

It is a well known fact in network science that the degeneracy ordering of a

graph can be calculated in linear time.

Lemma 2.0.3. [173] Given a graph G = (V,E), there is a linear time

algorithm that constructs an ayclic orientation of G such that all outdegrees

are at most α.

• Brute force procedure for clique counting

This is a clique enumeration procedure proposed by Chiba and Nischizeki

[61] that uses degeneracy ordering to split the graph into several subgraphs

and recursively counts cliques in the subgraphs. Since the original algorithm

was for listing every k-clique, when the subgraph was a clique it still

enumerated every subset in the clique. From the point of view of counting,

this is wasteful. If the subgraph is a clique of size n′ then the number of r

cliques in it is simply
(
n′

r

)
.

• Color coding

This is a randomized approximation algorithm [20] that speeds up

clique-counting by pruning the search space for cliques. Essentially, to count

9

Algorithm 1: CliquesBruteForce(G, k)
1 if k == 1:
2 return |V |
3 if G is a clique:
4 return

(
|V |
k

)
5 Let C ′k = 0
6 Order the vertices of G according to the degeneracy ordering and convert it
into a DAG DG.

7 Let N+
v denote the outneighborhood of v in DG.

8 For v ∈ V :
9 C ′k = C ′k+CliquesBruteForce(N+

v , k − 1)
10 return C ′k

the number of k−cliques, every vertex is assigned a color chosen uniformly at

random from a palette of k colors. We then count the number of multicolored

k−cliques, where multicolored means that every vertex of the clique has a

different color. The probability that all vertices of a clique will recieve a

different color is k!/kk. Thus, if Ck is the number of k-cliques in a graph,

then in expectation Ck ∗ k!/kk would be multicolored. By counting the

number of multicolored k-cliques and comparing with the expected value,

we can get an estimate for Ck.

Algorithm 2: CliquesColorCoding(G, k)
1 Assign a color to the vertices in V chosen u.a.r. from a palette of k colors
2 Let Col[i] denote the color of vertex i
3 return CliquesColorCodingRec(G, k, Col, ∅)∗k!/kk

The problem with this approach is that it does not scale. As k increases, the

probability that a clique is multicolored goes down drastically and variance

goes up. As a result, the estimates obtained are more noisy.

• Edge sampling Edge sampling was discussed by Tsourakakis et al. in

the context of triangle counting [241, 242, 245], though the idea is flexible

10

Algorithm 3: CliquesColorCodingRec(G, k, Col,K)
1 if k == 0:
2 return 0
3 Order the vertices of G according to the degeneracy ordering and convert it
into a DAG DG.

4 Let N+
v denote the outneighborhood of v in DG.

5 Let C ′k = 0
6 Let S = {Col[w]|w ∈ K}
7 For v ∈ N+

v :
8 if Col[v] /∈ S:
9 C ′k = C ′k+CliquesColorCodingRec(N+

v , k − 1, Col,K ∪ {v})
10 return C ′k

and can be used for large patterns [95]. The idea here is to sample each

edge independently with some probability p, and then count k-cliques in

the down-sampled graph. A k-clique from the original graph survives in

the subsampled graph only if all
(
k
2

)
edges of the clique are retained in

the subsampled graph, the probability of which is (1 − p)(
k
2). Thus, by

counting the number of k-cliques in the subsampled graph and scaling up

by 1/(1− p)(
k
2), we get an unbiased estimate for the number of k-cliques.

Algorithm 4: CliquesEdgeSampling(G, k, p)
1 For every edge e in E:
2 Delete e from G with probability p
3 return CliquesBruteForce(G, k)/(1− p)(

k
2)

Similar to color-coding, edge sampling performs poorly as k increases.

• GRAFT

[201]: Rahman et al. give a variant of edge sampling with better

performance for large pattern counts [201]. This is a sampling method in

which a number of edges s are sampled uniformly at random from the graph,

and the number of k-cliques that each sampled edge partakes in is calculated.

11

Algorithm 5: GRAFT(G, k, s)
1 Let C ′k = 0
2 Order the vertices of G according to the degeneracy ordering and convert it
into a DAG DG.

3 Let N+
v denote the outneighborhood of v in DG.

4 For i = 1 to s:
5 Sample an edge (u, v) from E u.a.r.
6 C ′k = C ′k+CliquesBruteForce(N+

v ∩N+
u , k − 2)

7 return C ′k ∗ |E|/s

The average number of k-cliques of the sampled edges scaled by the number

of edges in the graph gives an estimate for the total number of k-cliques in

the graph.

• kClist

This is a parallel version of the clique enumeration algorithm of [61],

described in [79]. Essentially, to count k-cliques, one only needs to count

the number of k − 1-cliques in the outneighborhood of every vertex in the

graph. Thus, we can treat them as separate problems and parallelize the

counting of cliques in them. The parallel algorithms given are able to list

trillions of cliques in a day on commodity hardware but does not scale for

very large graphs.

12

Chapter 3

TuránShadow

3.1 Introduction

This chapter presents a randomized algorithm called TuránShadow to estimate

the counts of k-cliques that works well on real-world graphs for k ≤ 10. Essentially,

it decomposes the given graph into smaller, dense subgraphs and performs random

sampling on the dense subgraphs. Crucially, it uses a classic theorem from

extremal combinatorics to bound the number of samples required. TuránShadow

gives orders of magnitude improvement over pre-existing methods for clique

couting. The core results of this paper were presented at WWW, 2017.

3.1.1 Problem Statement

Given an undirected graph G = (V,E), a k-clique is a set S of k vertices in V

with all pairs in S connected by an edge. The problem is to count the number of

k-cliques, for varying values of k. Our aim is to get all clique counts for k ≤ 10.

The primary challenge is combinatorial explosion. An autonomous system

network with ten million edges has more than a trillion 10-cliques. Any

13

lo
c-

g
o
w

w
e
b
-S

ta
n

a
m

a
zo

n

y
o
u
tu

b
e

G
o
o
g
le

B
e
rk

S
ta

n

a
s-

sk
it

te
r

P
a
te

n
ts

so
c-

p
o
ke

c

Graphs

0.0

0.5

1.0

1.5

2.0

P
e
rc

e
n
t

re
la

ti
v
e
 e

rr
o
r k=7

(a) Percent relative error for
k=7

lo
c-

g
o
w

w
e
b
-S

ta
n

a
m

a
zo

n

y
o
u
tu

b
e

G
o
o
g
le

B
e
rk

S
ta

n

a
s-

sk
it

te
r

P
a
te

n
ts

so
c-

p
o
ke

c

co
m

-l
j

co
m

-o
rk

u
t

Graphs

10-1
100
101
102
103
104
105
106

T
im

e
 i
n
 s

e
co

n
d
s

Timings

k=7 k=10

(b) Timings for k=7 and
k=10

lo
c-

g
o
w

w
e
b
-S

ta
n

a
m

a
zo

n

y
o
u
tu

b
e

G
o
o
g
le

B
e
rk

S
ta

n

a
s-

sk
it

te
r

P
a
te

n
ts

so
c-

p
o
ke

c

co
m

-l
j

co
m

-o
rk

u
t

Graphs

10-1

100

101

102

103

S
p
e
e
d
u
p

k=7

ES GRAFT

(c) Speedup for k=7

Figure 3.1: Summary of behavior of Turán-shadow over several datasets.
Fig. 3.1a shows the percent relative error in the estimates for k=7 given by
Turán-shadow. We only show results for graphs for which we were able to
obtain exact counts using either brute force enumeration, or from the results
of [105]. The errors are always < 2% and mostly < 1%. Fig. 5.1a shows the time
taken by Turán-shadow for k=7 and k=10. Fig. 3.1c shows the speedup (time
of algorithm/time of Turán-shadow) over other state of the art algorithms for
k=7. The red line indicates a speedup of 1. We could not give a figure for speedup
for k=10 because for most instances no competing algorithm terminated in min(7
hours, 100 times Turán-shadow time).

enumeration procedure is doomed to failure. Under complexity theoretical

assumptions, clique counting is believed to be exponential in the size k [56],

and we cannot hope to get a good worst-case algorithm. Our aim is to employ

randomized sampling methods for clique counting, which have seen some success

in counting triangles and small patterns [137, 215, 245]. We stress that we make

no distributional assumption on the graph. All probabilities are over the internal

randomness of the algorithm itself (which is independent of the instance).

3.1.2 Main contributions

Our main theoretical result is a randomized algorithm Turán-shadow that

approximates the k-clique count, for any constant k. We implement this algorithm

on a commodity machine and get k-clique counts (for all k ≤ 10) on a variety of

data sets, the largest of which has 100M edges. The main features of our work

14

follow.

Extremal combinatorics meets sampling. Our novelty is in the

algorithmic use of classic extremal combinatorics results on clique densities.

Seminal results of Turán [248] and Erdős [99] provide bounds on the number

of cliques in a sufficiently dense graph. Turán-shadow tries to cover G by a

carefully chosen collection of dense subgraphs that contains all cliques, called a

Turán-shadow. It then uses standard techniques to design an unbiased estimator

for the clique count. Crucially, the result of Erdős [99] (a quantitative version of

Turán’s theorem) is used to bound the variance of the estimator.

We provide a detailed theoretical analysis of Turán-shadow, proving correctness

and analyzing its time complexity. The running time of our algorithm is bounded

by the time to construct the Turán-shadow, which as we shall see, is quite feasible

in all the experiments we run.

Extremely fast. In the worst case, we cannot expect the Turán-shadow to

be small, as that would imply new theoretical bounds for clique counting. But in

practice on a wide variety of real graphs, we observe it to be much smaller than the

worst-case bound. Thus, Turán-shadow can be made into a practical algorithm,

which also has provable bounds. We implement Turán-shadow and run it on

a commodity machine. Fig. 5.1a shows the time required for Turán-shadow

to obtain estimates for k = 7 and k = 10 in seconds. The as-skitter graph is

processed in less than 3 minutes, despite there being billions of 7-cliques and

trillions of 10-cliques. All graphs are processed in minutes, except for an Orkut

social network with more than 100M edges (Turán-shadow handles this graph

within 2.5 hours). To the best of our knowledge, there is no existing work that gets

comparable results. An algorithm of Finocchi et al. also computes clique counts,

but employs MapReduce on the same datasets [105]. We only require a single

15

machine to get a good approximation.

We tested Turán-shadow against a number of state of the art algorithmic

techniques (color coding [20], edge sampling [245], GRAFT [201]). For 10-clique

counting, none of these algorithms terminate for all instances even in 7 hours;

Turán-shadow runs in minutes on all but one instance (where it takes less than

2.5 hours). For 7-clique counting, Turán-shadow is typically 10-100 times faster

than competing algorithms. (A notable exception is com-orkut, where an edge

sampling algorithm runs much faster.)

Excellent accuracy. Turán-shadow has extremely small variance, and

computes accurate results (in all instances we could verify). We compute exact

results for 7-clique numbers, and compare with the output of Turán-shadow.

In Fig. 3.1a, we see that the accuracy is well within 2% (relative error) of the true

answer for all datasets. We do detailed experiments to measure variance, and in

all cases, Turán-shadow is accurate.

The efficiency and accuracy of Turán-shadow allows us to get clique counts for

a variety of graphs, and track how the counts change as k increases. We seem to

get two categories of graphs: those where the count increases (exponentially) with

k, and those where it decreases with k, see Fig. 5.2b. This provides a new lens to

view social networks, and we hope Turán-shadow can become a new tool for

pattern analysis.

3.1.3 Related Work

The importance of pattern counts gained attention in bioinformatics with a

seminal paper of Milo et al. [179], though it has been studied for many decades in

the social sciences [126]. Triangle counting and its use has an incredibly rich

history, and is used in applications as diverse as spam detection [30], graph

16

modeling [214], and role detection [50]. Counting four cliques is mostly feasible

using some recent developments in sampling and exact algorithms [11, 137].

Clique counts are an important part of recent dense subgraph discovery

algorithms [208, 244]. Cliques also play an important role in understanding

dynamics of social capital [133], and their importance in the social sciences is well

documented [121, 132]. In topological approaches to network analysis, cliques are

the fundamental building blocks used to construct simplicial structures [224].

From an algorithmic perspective, clique counting has received much attention

from the theoretical computer science community [20, 56, 61, 250]. Maximal clique

enumeration has been an important topic [16, 97, 238] since the seminal algorithm

of Bron-Kerbosch [47]. Practical algorithms for finding the maximum clique were

given by Rossi et al. using branch and bound methods [205].

Most relevant to our work is a classic algorithm of Chiba and Nishizeki [61].

This work introduces graph orientations to reduce the search time and provides

a theoretical connection to graph arboricity. We also apply this technique in

Turán-shadow.

The closest result to our work is a recent MapReduce algorithm of Finocchi

et al. for clique counting [105]. This result applied the orientation technique

of [61], and creates a large set of small (directed) egonets. Clique counting overall

reduces to clique counting in each of these egonets, and this can be parallelized

using MapReduce. We experiment on the same graphs used in [105] (particularly,

the largest ones) and get accurate results on a single, commodity machine (as

opposed to using a cluster). Alternate MapReduce methods using multi-way joins

have been proposed, though this is theoretical and not tested on real data [7].

A number of randomized techniques have been proposed for pattern counting,

and can be used to design algorithms for clique counting. Most prominent are

17

color coding [20, 37, 127, 271] and edge sampling methods [201, 242, 245]. (MCMC

methods [38] typically do not scale for graphs with millions of vertices [137].) We

perform detailed comparisons with these methods, and conclude that they do not

scale for larger clique counting.

3.2 Main Ideas

The starting point for our result is a seminal theorem of Turán [248]: if the

edge density of a graph is more than 1− 1
k−1 , then it must contain a k-clique. (The

density bound is often called the Turán density for k.) Erdős proved a stronger

version [99]. Suppose the graph has t vertices. Then in this case, it contains

Ω(tk−2) k-cliques!

Consider the trivial randomized algorithm to estimate k-cliques. Simply

sample a uniform random set of k vertices and check if they form a clique. Denote

the number of k-cliques by C, then the success probability is C/
(
t
k

)
. Thus, we can

estimate this probability using
(
t
k

)
/C samples. By Erdős’ bound, C = Ω(tk−2).

Thus, if a graph (with t vertices) is above the Turán density, one can estimate the

number of k-cliques using O(t2) samples.

Of course, the input graph G is unlikely to have such a high density, and

O(t2) is a large bound. We try to cover all k-cliques in G using a collection of

dense subgraphs. This collection is called a Turán shadow. We employ orientation

techniques from Chiba-Nishizeki to recursively construct a shadow [61].

We take the degeneracy (k-core) ordering in G [213]. It is well-known that

outdegrees are typically small in this ordering. To count k-cliques in G, it suffices

to count (k − 1)-cliques in every outneighborhood. (This is the main idea in the

MapReduce algorithms of Finocchi et al [105].) If an outneighborhood has density

higher than the Turán density for (k − 1), we add this set/induced subgraph to

18

the Turán shadow. If not, we recursively employ this scheme to find denser sets.

When the process terminates, we have a collection of sets (or induced

subgraphs) such that each has density above the Turán threshold (for some

appropriate k′ for each set). Furthermore, the sum of cliques (k′-cliques, for the

same k′) is the number of k-cliques in G. Now, we can hope to use the randomized

procedure to estimate the number of k′-cliques in each set of the Turán shadow.

By a theorem of Chiba-Nishizeki [61], we can argue that number of vertices in any

set of the Turán shadow is at most
√

2m (where m is the number of edges in G).

Thus, O(m) samples suffices to estimate clique counts for any set in the Turán

shadow.

But the Turán shadow has many sets, and it is infeasible to spend O(m)

samples for each set. We employ a randomized trick. We only need to approximate

the sum of clique counts over the shadow, and can use random sampling for that

purpose. Working through the math, we effectively set up a distribution over the

sets in the Turán shadow. We pick a set from this distribution, pick some subset

of random vertices, and check if they form a clique. The probability of this event

can be related to the number of k-cliques in G. Furthermore, we can prove that

O(m) samples suffice to estimate this probability. All in all, after constructing

the Turán shadow, k-clique counting can be done in O(m) time.

3.2.1 Main theorem and significance

The formal version of the main theorem is Theorem3.5.5. It requires a fair bit

of terminology to state. So we state an informal version that maintains the spirit

of our main result. This should provide the reader with a sense of what we can

hope to prove. We will define the Turán shadow formally in later sections. But it

basically refers to the construct described above.

19

Theorem 3.2.1. [Informal] Consider graph G = (V,E) with n vertices, m edges,

and maximum core number α. Let S be the Turán k-clique shadow of G, and let

|S| be the number of sets in S.

Given any δ > 0, ε > 0, k, with probability at least 1 − δ, the procedure

Turán-shadow outputs a (1 + ε)-multiplicative approximation to the number

of k-cliques in G. The running time is linear in |S| and mα log(1/δ)/ε2. The

storage is linear in |S|.

Observe that the size of the shadow is critical to the procedure’s efficiency. As

long as the number of sets in the Turán shadow is small, the extra running time

overhead is only linear in m. And in practice, we observe that the Turán shadow

scales linearly with graph size, leading to a practically viable algorithm.

Outline: In §6.2, we formally describe Turán’s theorem and set some

terminology. §3.4 defines (saturated) shadows, and shows how to construct

efficient sampling algorithms for clique counting from shadow. §3.5 describes

the recursive construction of the Turán shadow. In §3.5.1, we describe the final

procedure Turán-shadow, and prove (the formal version of) Theorem6.3.1.

Finally, in §6.5, we detail our empirical study of Turán-shadow and comparison

with the state of the art.

3.3 Turán’s Theorem

For any arbitrary graphH = (V (H), E(H)), let Ci(H) denote the set of cliques

in H, and ρi(H) := |Ci(H)|/
(
|V (H)|

i

)
is the i-clique density. Note that ρ2(H) is

the standard notion of edge density.

The following theorem of Turán is one of the most important results in extremal

graph theory.

20

Theorem 3.3.1. (Turán [248]) For any graph H, if ρ2(H) > 1 − 1
k−1 , then H

contains a k-clique.

This is tight, as evidenced by the complete (k − 1)-partite graph Tn,k−1 (also

called the Turán graph). In a remarkable generalization, Erdős proved that if

an n-vertex graph has even one more edge than Tn,k−1, it must contain many

k-cliques. One can think of this theorem as a quantified version of Turán’s

theorem.

Theorem 3.3.2. (Erdős [99]) For any graph H over t vertices, if ρ2(H) > 1− 1
k−1 ,

then H contains at least (t/(k − 1))k−2 k-cliques.

It will be convenient to express this result in terms on k-clique densities. We

introduce some notation: let f(k) = kk−2/k!. By Stirling’s approximation, f(k)

is well approximated by ek/
√

2πk5. Note that f(k) is some fixed constant, for

constant k. This corollary will be critical to our analysis.

Corollary 3.3.3. For any graph H over t vertices, if ρ2(H) > 1 − 1
k−1 , then

ρk(H) ≥ 1/f(k)t2.

Proof. By Theorem3.3.2, H has at least (t
(k−1))

k−2 k-cliques. Thus,

ρk(H) ≥
(t

(k−1))
k−2(

t
k

) ≥ tk−2/tk × k!/(k − 1)k−2 ≥ 1/(f(k)t2)

3.4 Clique shadows

A key concept in our algorithm is that of clique shadows. Consider graph

G = (V,E). For any set S ⊆ V , we let C`(S) denote the set of `-cliques contained

in S.

21

Definition 3.4.1. A k-clique shadow S for graph G is a multiset of tuples

{(Si, `i)} where Si ⊆ V and `i ∈ N such that: there is a bijection between Ck(G)

and ⋃(S,`)∈S C`(S).

Furthermore, a k-clique shadow S is γ-saturated if ∀(S, `) ∈ S, ρ`(S) ≥ γ.

Intuitively, it is a collection of subgraphs, such that the sum of clique counts

within them is the total clique count of G. Note that for each set S in the shadow,

the associated clique size ` is different (for different S). Observe that {(V, k)} is

trivally a clique shadow. But it is highly unlikely to be saturated.

It is important to define the size of S, which is really the storage required to

represent it.

Definition 3.4.2. The representation size of S is denoted size(S), and is∑
(S,`)∈S |S|.

Algorithm 6: sample(S, γ, k, ε, δ)
S is γ-saturated k-clique shadow
ε, δ are error parameters
1 For each (S, `) ∈ S, set w(S) =

(
|S|
`

)
;

2 Set probability distribution D over S where p(S) = w(S)/∑(S,`)∈S w(S) ;
3 For r ∈ 1, 2, . . . , t = 20

γε2 log(1/δ);
4 Independently sample (S, `) from D;
5 Choose a u.a.r. `-tuple A from S;
6 If A forms `-clique, set indicator Xr = 1. Else, Xr = 0 ;
7 Output

∑
r
Xr

t

∑
(S,`)∈S

(
|S|
`

)
as estimate for |Ck(G)|;

When a k-clique shadow S is γ-saturated, each (S, `) ∈ S has many `-cliques.

Thus, one can employ random sampling within each S to estimate |C`(S)|, and

thereby estimate Ck(G). We use a sampling trick to show that we do not need to

estimate all |C`(S)|; instead we only need O(1/γ) samples in total.

22

Theorem 3.4.3. Suppose S is a γ-saturated k-clique shadow for G. The procedure

sample(S) outputs an estimate Ĉ such |Ĉ − |Ck(G)|| ≤ ε|Ck(G)| with probability

> 1− δ.

The running time of sample(S) is O(size(S) + 1
γε2 log(1/δ)).

Proof. We remind the reader that w(S) =
(
|S|
`

)
. Set α = |Ck(G)|/∑S∈S w(S).

Observe that

Pr[Xr = 1] =
∑

(S,`)∈S

Pr[(S, `) is chosen]

× Pr[`-clique chosen in S|(S, `) is chosen]

The former probability is exactly w(S)/∑S∈S w(S), and the latter is exactly

|C`(S)|/
(
|S|
`

)
= |C`(S)|/w(S). So,

Pr[Xr = 1] =
∑

(S,`)∈S

|C`(S)|/
∑
S∈S

w(S)

Since S is a k-clique shadow, ∑(S,`)∈S |C`(S)| = |Ck(G)|. Thus, Pr[Xr = 1] = α.

By the saturation property, ρ`(S) ≥ γ, equivalent to |C`(S)| ≥ γw(S). So∑
S∈S |C`(S)| ≥ γ

∑
S∈S w(S). That implies that α ≥ γ. By linearity of

expectation, E[∑r≤tXr] = ∑
r≤tE[Xr] ≥ γt.

Note that all the Xrs come from independent trials. (The graph structure

plays no role, since the distribution of each Xr does not change upon conditioning

on the other Xrs.) By a multiplicative Chernoff bound (Thm 1.1 of [84]),

Pr[
∑
r

Xr/t ≤ α(1− ε)] ≤ exp(−ε2E[
∑
r

Xr]/3)

≤ exp(−ε2γt/3) = exp(−5 log(1/δ)) ≤ δ/5.

By an analogous upper tail bound, Pr[∑rXr/t ≥ α(1 + ε)] ≤ δ/5. By the union

23

bound, with probability at least 1 − 2δ/5, α(1 − ε) ≤ ∑
rXr/t ≤ α(1 + ε). Note

that the output Ĉ = (∑rXr/t)
∑
S∈S w(S). We multiply the bound above on∑

rXr/t by
∑
S∈S w(S), and note that α∑S∈S w(S) = |Ck(G)| to complete the

proof.

We stress the significance of Theorem3.4.3. Once we get a γ-saturated clique

shadow S, |Ck(G)| can be approximated in time linear in size(S). The number

of samples chosen only depends on γ and the approximation parameters, not on

the graph size.

But how to actually generate a saturated clique shadow? Saturation appears

to be extremely difficult to enforce. This is where the theorem of Erdős

(Theorem3.3.2) saves the day. It merely suffices to make the edge density of

each set in the clique shadow high enough. The k-clique density automatically

becomes large enough.

Theorem 3.4.4. Consider a k-clique shadow S such that ∀(S, `) ∈ S, ρ2(S) >

1− 1
`−1 . Let γ = 1/max(S,`)∈S f(`)|S|2. Then, S is γ-saturated.

Proof. By Corollary 3.3.3, for every (S, `) ∈ S, ρ`(S) ≥ 1/(f(`)|S|2). We simply

set γ to be the minimum such density over all (S, `) ∈ S.

3.5 Constructing saturated clique shadows

We use a refinement process to construct saturated clique shadows. We start

with the trivial shadow S = {(V, k)} and iteratively “refine" it until the saturation

property is satisfied. By Theorem3.4.4, we just have to ensure edge densities in

each set are sufficiently large.

In this section, we need notation for induced subgraphs. For any set S ⊂ V ,

G|S is the subgraph of G induced by S. Given an unsaturated k-clique shadow S,

24

we find some (S, `) ∈ S such that ρ2(S) ≤ 1− 1
`−1 . By iterating over the vertices,

we replace (S, `) by various neighborhoods in G|S to get a new shadow. We would

like the edge densities of these neighborhoods to increase, in the hope of crossing

the threshold given in Theorem3.4.4.

The key insight is to use the degeneracy ordering to construct specific

neighborhoods of high density that also yield a valid shadow. This is basically

the classic graph theoretic technique of computing core decompositions, which is

widely used in large-graph analysis [108, 213]. As mentioned earlier, this idea is

used for fast clique counting as well [61, 105].

The degeneracy DAG of G, denoted D(G) is obtained by orienting edges in

degeneracy order. In other words, every edge (u, v) ∈ G is directed from lower to

higher in the degeneracy ordering.

The degeneracy ordering is the deletion time of the standard linear time

procedure that computes the degeneracy [173] (Lemma5.3.1) It is convenient

for us to think of the degeneracy in terms of graph orientations. As defined

earlier, any permutation on V can be used to make a DAG out of G. We use this

idea for generating saturated clique shadows. Essentially, while G may be sparse,

out-neighborhoods in G are typically dense. (This has been observed in numerous

results on dense subgraph discovery [22, 208, 240].)

We now define the procedure Shadow-Finder(G, k), which works by a simple,

iterative refinement procedure. Think of T as the current working set, and S as

the final output. We take a set (S, `) in T , and construct all outneighborhoods

in the degeneracy DAG. Any such set whose density is above the Turán threshold

goes to S (the output), otherwise, it goes to T (back to the working set).

It is useful to define the recursion tree T of this process as follows. Every pair

(S, `) that is ever part of T is a node in T . The children of (S, `) are precisely the

25

Algorithm 7: Shadow-Finder(G, k)
1 Initialize T = {(V, k)} and S = ∅;
2 While ∃(S, `) ∈ T such that ρ2(S) ≤ 1− 1

`−1 ;
3 Construct the degeneracy DAG D(G|S);
4 Let N+

s denote the outneighborhood (within D(G|S)) of s ∈ S;
5 Delete (S, `) from T ;
6 For each s ∈ S;
7 If ` ≤ 2 or ρ2(N+

s) > 1− 1
`−2 ;

8 Add (N+
s , `− 1) to S;

9 Else, add (N+
s , `− 1) to T ;

10 Output S;

pairs (N+
s , `− 1) added in Step 8. (At the point, (S, `) is deleted from T , and all

the (N+
s , ` − 1) are added.) Observe that the root of T is (V, k), and the leaves

are precisely the final output S.

Theorem 3.5.1. The output S of Shadow-Finder(G, k) is a γ-saturated k-clique

shadow, where γ = 1/max(S,`)∈S(f(`)|S|2).

Proof. We first prove by induction the following loop invariant for Shadow-Finder:

T ∪S is always a k-clique shadow. For the base case, note that at the beginning,

T = {(V, k)} and S = ∅. For the induction step, assume that T ∪S is a k-clique

shadow at the beginning of some iteration. The element (S, `) is deleted from T .

Each (N+
s , `− 1) is added to S or to T .

Thus, it suffices to prove that there is a bijection between C`(S) and⋃
s∈S C`−1(N+

s). (By the induction hypothesis, we can then construct a bijection

between Ck(G) and the appropriate cliques in T ∪ S.) Consider an `-clique K

in S. Set s to be the minimum vertex according to the degeneracy ordering in

D(G|S). Observe that the remaining vertices form an (`− 1)-clique in N+
s , which

we map the K to. This is a bijection, because every clique K can be mapped to

a (unique) (`− 1)-clique, and furthermore, every (`− 1)-clique in ⋃s∈S C`−1(N+
s)

is in the image of this mapping.

26

Thus, when Shadow-Finder terminates, T ∪ S is a k-clique shadow. Since T

must be empty, S is a k-clique shadow. Furthermore, a pair (S, `) is in S iff

ρ2(S) > 1− 1
`−1 . By Theorem3.4.4, S is 1/max(S,`)∈S(f(`)|S|2)-saturated.

We have a simple, but important claim that bounds the size of any set in the

shadow by the degeneracy.

Claim 3.5.2. Consider non-root (S, `) ∈ T . Then |S| ≤ α(G).

Proof. Suppose the parent of (S, `) is (P, ` + 1). Observe that S is the

outneighborhood of some node p in the DAG D(G|P). Thus, |S| ≤ α(G|P).

The degeneracy can never be larger in a subgraph. (This is apparent by an

alternate definition of degeneracy, the maximum smallest degree of an induced

subgraph [173].) Hence, α(G|P) ≤ α(G).

Theorem 3.5.3. The running time of Shadow-Finder(G, k) is O(α(G)size(S) +

m+ n). The total storage is O(size(S) +m+ n).

Proof. Every time we add (N+
S , ` − 1) (Step 8) to T , we explicitly construct the

graph G|N+
s
. Thus, we can guarantee that for every (S, `) present in T , we can

make queries in the graph G|S. This construction takes O(|S|2) time, to query

every pair in S. (This is not required when S = V , since G|V = G.) Furthermore,

this construction is done for every (S, `) ∈ T , except for the root node in T . Once

we have G|S, the degeneracy order can be computed in time linear in the number

of edges in G|S [173].

Thus, the running time can be bounded by O(∑(S,`)∈T :S 6=V |S|2 + m + n).

By Claim 3.5.2, we can bound ∑
(S,`)∈T :S 6=V |S|2 = O(α(G)∑(S,`)∈T |S|). We

split the sum over leaves and non-leaves. The sum over leaves is precisely a

sum over the sets in S, so that yields O(α(G)size(S)). It suffices to prove that∑
(S,`)∈T :S non-leaf |S| = O(size(S)), which we show next.

27

Observe that a non-leaf node (S, `) in T has exactly |S| children, one for each

vertex s ∈ S. Thus,

∑
(S,`)∈T :(S,`)non-leaf

|S| =
∑

(S,`)∈T
children of (S, `)

= # edges in T

All internal nodes in T have at least 2 children, so the number of edges in T is at

most twice the number of leaves in T . But this is exactly the number of sets in

the output S, which is at most size(S).

The total storage is O(∑(S,`)∈T |S| + m + n), which is O(size(S) + m + n) by

the above arguments.

We now formally define the Turán shadow to be output of this procedure.

Definition 3.5.4. The k-clique Turán shadow of G is the output of

Shadow-Finder(G, k).

3.5.1 Putting it all together

Algorithm 8: Turán-shadow(G, k, ε, δ)
1 Compute S = Shadow-Finder(G, k);
2 Set γ = 1/max(S,`)∈S(f(`)|S|2);
3 Output Ĉk = sample(G, k, γ, ε, δ);

Theorem 3.5.5. Consider graph G = (V,E) with m edges, n vertices, and

degeneracy α(G). Assume m ≤ n2/4. Let S be the Turán k-clique shadow of

G.

With probability at least 1 − δ (this probability is over the randomness of

Turán-shadow; there is no stochastic assumption on G), |Ĉk − |Ck(G)|| ≤

ε|Ck(G)|.

28

The running time of Turán-shadow is O(α(G)size(S)+f(k)m log(1/δ)/ε2+

n) and the total storage is O(size(S) +m+ n).

Proof. By Theorem3.5.1, S is γ-saturated, for γ = 1/max(S,`)∈S f(`)|S|2. Since

m ≤ n2/4, the procedure Shadow-Finder(G, k) cannot just output {(V, k)}. All

leaves in the recursion tree must have depth at least 2, and by Claim 3.5.2, for

all (S, `) ∈ S, |S| ≤ α(G). A classic bound on the degeneracy asserts that

α(G) ≤
√

2m (Lemma 1 of [61]). Since f(`) is increasing in `, max(S,`)∈S f(`)|S|2 ≤

2f(k)m. Thus, γ = Ω(1/(f(k)m)).

By Theorem3.4.3, the running time of sample is O(size(S) + log(1/δ)/(γε2)),

which is O(size(S) + f(k)m log(1/δ)/ε2). Theorem3.4.3 also asserts the accuracy

of the output. Adding the bounds of Theorem3.5.3, we prove the running time

and storage bounds.

3.5.2 The shadow size

The practicality of Turán-shadow hinges on size(S) being small. It is not

hard to prove a worst-case bound, using the degeneracy.

Claim 3.5.6. size(S) = O(nα(G)k−2).

Proof. By arguments in the proof of Theorem3.5.3, we can show that size(S) is

at most the number of edges in T . In T , the degree of the root is n, and by

Claim 3.5.2, the degree of all other nodes is at most α(G). The depth of the tree

is at most k − 1, since the value of ` decreases every step down the tree. That

proves that nαk−2 bound.

This bound is not that interesting, and the Chiba-Nishizeki algorithm for exact

clique enumeration matches this bound [61]. Indeed, we can design instances

29

where Claim 3.5.6 is tight (a set of n/α Erdős-Rényi graphs Gα,1/3). In any case,

beating an exponential dependence on k for any algorithm is unlikely [56].

The key empirical insight of this paper is that Turán clique shadows are small

for real-world graphs. We explain in more detail in the next section; Fig. 3.3 shows

that the shadow sizes are typically less than m, and never more than 10m.

3.6 Experimental results

Preliminaries: We implemented our algorithms in C++ and ran our

experiments on a commodity machine equipped with a 3.00GHz Intel Core

i7 processor with 8 cores and 256KB L2 cache (per core), 20MB L3

cache, and 128GB memory. All code for the experiments is available at:

https://bitbucket.org/sjain12/cliquecounting/

We performed our experiments on a collection of graphs from SNAP [159], the

largest with more than 100M edges. The collection includes social networks, web

networks, and infrastructure networks. Each graph is made simple by ignoring

direction. Basic properties of these graphs are presented in Tab. 3.1.

In the implementation of Turán-shadow, there is just one parameter to

choose: the number of samples chosen in Step 2 in sample. Theoretically, it is set

to (20/γε2) log(1/δ); in practice, we just set it to 50K for all our runs. Note that

γ is not a free parameter and is automatically set in Step 1 of Turán-shadow.

We focus on counting k-cliques for k ranging from 5 to 10. We ignore k = 3, 4,

since there is much existing (scalable) work for this setting [11, 137, 215]. For the

sake of presentation, we showcase results for k = 7, 10. We focus on k = 10 since

no existing algorithm produces results for 10-cliques in reasonable time. We also

show specifics for k = 7, to contrast with k = 10.

Convergence of Turán-shadow: We picked two smaller graphs amazon0601

30

https://bitbucket.org/sjain12/cliquecounting/

Table 3.1: Graph properties
k=5 k=7 k=10

graph vertices edges degen max degree estimate % error time estimate % error time estimate % error time
loc-gowalla 1.97E+05 9.50E+05 51 14730 1.46E+07 0.20 2 4.78E+07 0.36 2 1.08E+08 1.63 3
web-Stanford 2.82E+05 1.99E+06 71 38625 6.21E+08 0.00 20 3.47E+10 0.13 43 6.63E+12 - 52
amazon0601 4.03E+05 4.89E+06 10 2752 3.64E+06 0.93 1 9.98E+05 0.95 1 9.77E+03 0.01 1
com-youtube 1.13E+06 2.99E+06 51 28754 7.29E+06 1.08 7 7.85E+06 1.38 8 1.83E+06 0.20 8
web-Google 8.76E+05 4.32E+06 44 6332 1.05E+08 0.10 2 6.06E+08 0.09 2 1.29E+10 0.82 2
web-BerkStan 6.85E+05 6.65E+06 201 84230 2.19E+10 0.00 101 9.30E+12 1.05 214 5.79E+16 - 262
as-skitter 1.70E+06 1.11E+07 111 35455 1.17E+09 0.01 153 7.30E+10 0.23 164 2.28E+13 - 180
cit-Patents 3.77E+06 1.65E+07 64 793 3.05E+06 0.34 10 1.89E+06 0.83 9 2.55E+03 4.46 9
soc-pokec 1.63E+06 2.23E+07 47 14854 5.29E+07 0.13 42 8.43E+07 0.48 45 1.98E+08 0.01 45
com-lj 4.00E+06 3.47E+07 360 14815 2.46E+11 - 106 5.14E+14 - 153 1.47E+19 - 252
com-orkut 3.07E+06 1.17E+08 253 33313 1.57E+10 0.00 3119 3.61E+11 1.97 5587 3.14E+13 - 9298

Table 3.2: Table shows the sizes, degeneracy, maximum degree of the graphs,
the counts of 5, 7 and 10 cliques obtained using Turán-shadow, the percent
relative error in the estimates, and time in seconds required to get the estimates.
Some of the exact counts were obtained from [105] (where available). This is the
first such algorithm that obtains these counts with < 2% error without using any
specialized hardware.

and web-Google for which the exact k-clique count is known (for all k ∈

[5, 10]). We choose both k = 7, 10. For each graph, for sample size in

[10K,50K,100K,500K,1M], we perform 100 runs of the algorithm. We plot the

spread of the output of Turán-shadow, over all these runs. The results are

shown in Fig. 4.4. The red line denotes the true answer, and there is a point for

the output of every single run. Even for 10-clique counting, the spread of 100 runs

is absolutely minimal. For 50K samples, the range of values is within 2% of the

true answer. This was consistent with all our runs.

Accuracy of Turán-shadow: For many graphs (and values of k), it was

not feasible to get an exact algorithm to run in reasonable time. The run time of

exact procedures can vary wildly, so we have exact numbers for some larger graphs

but could not generate numbers for smaller graphs. We collected as many exact

results as possible to validate Turán-shadow. For the sake of presentation, we

only show a snapshot of these results here.

For k = 7, we collected exact results for a collection of graphs, and for

each graph, compared the output of a single run of Turán-shadow (with 50K

31

104 105 106

Number of samples

0.0

0.5

1.0
C

liq
ue

s
×106

amazon0601, k=7

104 105 106

Number of samples

0.0

0.5

1.0

C
liq

ue
s

×104

amazon0601, k=10

104 105 106

Number of samples

0.0

0.5

C
liq

ue
s

×109

web-Google, k=7

104 105 106

Number of samples

0.0

0.5

1.0

1.5

C
liq

ue
s

×1010

web-Google, k=10

Figure 3.2: Figure shows convergence over 100 runs of Turán-shadow using
10K, 50K, 100K, 500K and 1M samples each. Turán-shadow has an extremely
low spread and consistently gives very accurate results.

105 106 107 108 109 1010

Number of edges

105

106

107

108

109

1010

S
ha

do
w

si
ze

Shadow size, k=7

104 105 106 107 108 109 1010

Number of edges

104

105

106

107

108

109

1010

S
ha

do
w

si
ze

Shadow size, k=10

Figure 3.3: Figures show the sizes of the Turán shadows generated for k=7 and
k=10 in all the graphs. The runtime of the algorithm is proportional to the size of
the shadow and crucially, the sizes scale only linearly with the number of edges.

samples) with the true answer. We compute relative error : |true - estimate|/true.

These results are presented in Fig. 3.1a. Note that the errors are within 2% in all

cases, again consistent with all our runs.

In Tab. 3.1, we present the output of our algorithm for a single run on all

instances and k = 5, 7, 10. For every graph where we know the true value, we

present the relative error. Barring one example (cit-Patents for k = 10), all

errors are less than 2%. Even in the worst case, the error is at most 5%.

Running time: All runtimes are presented in Tab. 3.1. (We show the time for

a single run, since there was little variance for different runs on the same graph.)

In all instances except com-orkut, the runtime was a few minutes, even for graphs

with tens of millions of edges. We stress that these are all on a single machine.

For com-orkut, the runtime is at most 2.5 hours. Previously, such graphs were

processed with MapReduce on clusters [105].

32

lo
c-

go
w

w
eb

-S
ta

n
am

az
on

yo
ut

ub
e

G
oo

gl
e

B
er

kS
ta

n
as

-s
ki

tte
r

P
at

en
ts

so
c-

po
ke

c
co

m
-lj

co
m

-o
rk

ut

Number of edges

10−3

10−2

10−1

100

S
uc

ce
ss

ra
tio

Success ratio, k=7

lo
c-

go
w

w
eb

-S
ta

n
am

az
on

yo
ut

ub
e

G
oo

gl
e

B
er

kS
ta

n
as

-s
ki

tte
r

P
at

en
ts

so
c-

po
ke

c
co

m
-lj

co
m

-o
rk

ut

Number of edges

10−3

10−2

10−1

100

S
uc

ce
ss

ra
tio

Success ratio, k=10

Figure 3.4: Figures show the success ratio (probability of finding a clique)
obtained in the sampling experiments in all the graphs.

5 6 7 8 9 10
Clique size

100

102

104

106

108

1010

1012

1014

1016

1018

1020

C
liq

u
e
s

Trends in clique counts

amazon0601

com-youtube

web-BerkStan

as-skitter

cit-Patents

com-lj

com-orkut

3.6.1 Comparison with other algorithms

We compare TuránShadow with color coding, edge sampling, GRAFT and the

brute force algorithm. All of these are described in 2. Note that the parallel

clique counting method of [79] called kClist was developed after this work was

published. We provide a comparison with kClist in 5

We focus on k = 7, 10 for clarity. In all cases, we simply terminate the

algorithm if it takes more than the minimum of 7 hours and 100 times the time

required by Turán-shadow. We present the speedup of Turán-shadow with

respect to all these algorithms in Fig. 3.1c for k=7. For k=10, for most instances,

no competing algorithm terminated.

• k = 7 (Fig. 3.1c): Turán-shadow outperformed Color Coding and

GRAFT across all instances. Color Coding never gave good accuracy, so we

ignore it in our speedup plots. We do note that Edge Sampling gives extremely

good performance in some instances, but can be very slow in others. For

33

amazon0601, com-youtube, cit-Patents, and soc-pokec, Edge Sampling is

faster than Turán-shadow. But Turán-shadow handles all these graphs

with a minute. The only exception is com-orkut, where GRAFT is much faster

than Turán-shadow. We note that all other algorithms can perform extremely

poorly on fairly small graphs: Edge Sampling is 10-100 times slower on a number

of graphs, which have only millions of edges. On the other hand, Turán-shadow

always runs in minutes for these graphs.

• k = 10 : No competing algorithm is able to handle 10 cliques for all datasets,

even in 7 hours (giving a speedup of anywhere between 3x to 100x). They all

generally fail for at least half of the instances. Turán-shadow gets an answer

for com-orkut within 2.5 hours, and handles all other graphs in minutes.

3.6.2 Details about Turán-shadow

Shadow size: In Fig. 3.3, we plot the size of the k-clique Turán shadow with

respect to the number of edges in each instance. This is done for k = 7, 10. (The

line y = x is drawn as well.) As seen from Theorem3.5.5, the size of the shadow

controls the storage and runtime of Turán-shadow. We see how in almost

all instances, the shadow size is around the number of edges. This empirically

explains the efficiency of Turán-shadow. The worst case is com-orkut, where

the shadow size is at most ten times the number of edges.

Success probability: The final estimate of Turán-shadow is generated

through sample. We asserted (theoretically) that O(m) samples suffice, and in

practice, we use 50K samples. In Fig. 3.4, we plot (for k = 7, 10) the empirical

probability of finding a clique in Step 6 of sample. The higher this is, the

fewer samples we require and the more confidence in the statistical validity of

our estimate. Almost all (empirical) probabilities are more than 0.1, and 50K

34

samples are more than enough for convergence.

Trends in clique numbers: Fig. 5.2b plots the number of k-cliques (as

computed by Turán-shadow) versus k. (We do not consider all graphs for the

sake of clarity.) Interestingly, there are some graphs where the number of cliques

grows exponentially. This is probably because of a large clique/dense-subgraph,

and it would be interesting to verify this. For another class of graphs, the clique

counts are consistently decreasing. This seems to classify graphs into one of

two types. We feel further analysis of these trends would be interesting, and

Turán-shadow can be a useful tool for network analysis.

3.7 Demonstration of clique sampling

An important observation about TuránShadow is that it not only estimates the

count of k-cliques but provides an efficient method to sample k-cliques uniformly

at random. This is useful in applications that want to incorporate the information

about higher-order structures like cliques in their modeling/analysis tasks. In

joint work with Huda Nassar (Stanford University), Prof. David Gleich (Purdue

University), Prof. Austin Benson (Cornell University) and Caitlin Kennedy

(Salesforce Inc.) we demonstrate one such application of cliques in better graph

visualization.

The goal in graph visualization is to give a 2D representation of a graph that

meaningfully shows connections and communities in a graph. Having a meaningful

layout is often useful to help interpret the results from network sciences tasks such

as community detection and link prediction. There are several existing graph

visualization techniques in the literature that are based on spectral methods,

graph embeddings, or optimizing graph distances. Despite the large number of

methods, it is still often challenging or extremely time consuming to produce

35

meaningful layouts of graphs with hundreds of thousands of vertices. Existing

methods often either fail to produce a visualization in a meaningful time window,

or produce a layout colorfully called a “hairball”, which looks like a filled ellipse

with small hairs emerging that does not illustrate any internal structure in the

graph.

We show that adding higher order information based on cliques to a classic

eigenvector based graph visualization techniques enables it to produce meaningful

plots of large graphs. As noted earlier, one of the hallmarks of real world graphs

is that they are not random and the edges are concentrated in dense pockets. For

example, in social networks, groups with similar location or interests or belonging

to some organization tend to be densely connected. This suggests that we could

leverage the information of these dense subgraphs to group vertices in such a way

that densely connected vertices are close-by in the representation.

We employ TuránShadow to sample a number of k−cliques (for a number of

k) u.a.r. and add the higher order information based on the sampled cliques to

a classic eigenvector based graph visualization technique. Essentially, we look

at the number of k-cliques that any given edge (u, v) participates in and use

that as its weight. We observed that using higher order information improved

the graph layout over other existing methods like Node2Vec [117], LGL [6] and

DRL [172] and arguably, produces more meaningful plots. As an example,

for the Rice31 graph from the Facebook100 dataset [239](a set of 100 graphs

representing the Facebook social network from 100 U.S. educational institutions)

the representations obtained looked as shown in Fig. 3.6. The dataset contains

labeled information about each node (student) in the graph, and the label we

use as a prior on community structure is the dorm a student belonged to. In this

scenario, our expectation is that if two students lived in the same dorm, it is likely

36

Figure 3.6: Figures show the graph visualizations obtained for Rice31 graph.
LAPTS uses the information about cliques obtained using TuránShadow

that they know each other, and so we expect them to appear next to each other

in the graph layout. As we can see, incorporating information about k-cliques

indeed helps provide better separation among the clusters.

This work was published at The Web Conference, 2020.

3.8 Future work

Some natural extensions to Turán-shadow come to mind. Firstly, we have

directly implemented the theoretical algorithm using Turán densities. It is likely

that this is overkill, and we can design an even faster heuristic by modifying

the density threshold for a shadow. Also, our algorithm currently creates a new

shadow for different values of k. We believe that these can all be “folded together"

to get one algorithm that gives all k-clique counts for k ≤ 10.

An intriguing question is whether the approaches in this paper can be used for

finding dense subgraphs (not just cliques).

In follow up work to TuránShadow, in 5, we show that it is possible to count

cliques without enumerating them and we give an even faster algorithm which uses

a different set of techniques. Nonetheless, the techniques used in TuránShadow

lend themselves to algorithms for other problems. We demonstrate one such

37

application in 4 where we use TuránShadow to count the number of near-cliques.

We also give an online version of TuránShadow that does not require us to store the

entire Turán shadow before sampling but rather, computes the estimate of clique

counts as the shadow is being generated, thus reducing the memory footprint of

the algorithm.

38

Chapter 4

Counting near-cliques

4.1 Introduction

The requirement that every edge in a clique be present is perhaps excessively

rigid. Data is often noisy or incomplete, and it is likely that cliques that are

missing even an edge or two are significant. Hence, it is important to also look

at counts of patterns that are extremely close to being cliques. We will call these

structures near-cliques but they are also known as quasi-cliques [163, 190] and

defective cliques [267] and have several applications ranging from clustering to

prediction. Recent work on has used the fraction of near-cliques to k-cliques to

define higher order variants of clustering coefficients [265].

In the bioinformatics literature, near-cliques (or defective cliques, as they are

known) have been used to predict missed protein-protein interactions in noisy

PPI networks [267] and have been shown to have good predictive performance.

An alternative viewpoint of looking at near-cliques views them as dense subgraphs.

Mining dense subgraphs is an important problem with many applications in

Network Analysis. [21, 57, 107, 153, 209]

Counting cliques is already challenging, and counting near-cliques introduces

39

more challenges. Most importantly, near-cliques do not enjoy the recursive

structural property of cliques - that a subset of a clique is also a clique. This

rules out most recursive backtracking algorithms for clique counting. Moreover,

empirical evidence suggests that the number of near-cliques in real world datasets

is order of magnitudes higher than that of cliques, making the task of counting

them equally difficult if not more. Fig. 4.1a shows the ratio of 3 different types

of near-cliques to the number of k-cliques for k = 5 for 4 real world graphs. The

number of near-cliques is often ten times higher than the number of k-cliques.

There are several different ways of defining near-cliques. [240] define

α-quasi-cliques as cliques that are missing a α fraction of the edges. Other

formulations define them in terms of graph properties like degree of every vertex

in the near-clique or diameter of the near-clique. A set S of size n is called a

k−plex if every member of the set is connected to n − k others. A k-club is a

subset S of nodes such that in the subgraph induced by S, the diameter is k

or less. All these formulations have the common property that they represent a

clique that is missing a few edges. We formulate near-cliques in a slightly different

way, as cliques that are missing 1 or 2 edges. The advantage of defining them this

way is that they allow us to leverage the machinery of clique counting. Every

such near-clique has a smaller clique contained in it. By sampling the smaller

cliques and using them as hints to find near-cliques, we give an estimate for the

total number of near-cliques. In §4.6.1 we show an interesting application of such

near-cliques where we run our algorithm on a citation network to discover papers

that perhaps should have cited other papers but did not.

40

S
ta

n

G
oo

gl
e

B
er

kS
ta

n

as
-s

ki
tte

r

Graphs

10−1

100

101

102

103

104

105

ne
ar

-c
liq

ue
s/

cl
iq

ue
s

k=5, near-cliques
(5,1)
(5,2) Type 1

(5,2) Type 2

(a) Ratios

w
eb

-S
ta

n

w
eb

-G
oo

gl
e

am
az

on

B
er

kS
ta

n

as
-s

ki
tte

r

P
at

en
ts

so
c-

po
ke

c

co
m

-lj

so
c-

LJ

co
m

-o
rk

ut

Graphs

100

101

102

103

104

105

106

Ti
m

e
in

se
c

(7, 1)−cliques
inv-ts cc bf

(b) Timings

Figure 4.1: Fig. 4.1a shows the ratio of number of different types of near-cliques
to k-cliques for k = 5 in four real world graphs. The red line indicates ratio
= 1. In most cases the number of near-cliques is at least of the same order of
magnitude as number of k-cliques, if not more. Fig. 4.1b shows the time required
by Inverse-TS (inv-ts), color-coding (cc) and brute force (bf) to estimate the
number of (7, 1)-cliques in 10 real world graphs. The y−axis shows time in seconds
on a log scale. The red line indicates 86400 seconds (24 hours). All experiments
that ran for more than 24 hours were terminated. Inverse-TS terminated in
minutes in all cases except com-orkut, giving a speedup of anywhere between
3x-100x.

4.1.1 Problem description

A k-clique is a set of k vertices such that there is an edge between all pairs of

vertices belonging to the set. We define (k, 1)-clique and (k, 2)-clique below. For

the rest of this paper, whenever we say near-cliques, we will imply the following

3 kinds of near-cliques (unless mentioned otherwise)

Definition 4.1.1. A (k, 1)-clique is a k-clique with exactly 1 edge missing.

For (k, 2)-cliques, there are 2 configurations possible - one in which the missing

edges share a vertex, and one in which they don’t.

Definition 4.1.2. A Type 1 (k, 2)-clique is a k-clique with exactly 2 edges missing

such that the missing edges share a vertex.

Definition 4.1.3. A Type 2 (k, 2)-clique is a k-clique with exactly 2 edges missing

such that the missing edges do not share a vertex.

41

w
eb

-S
ta

n

w
eb

-G
oo

gl
e

am
az

on

B
er

kS
ta

n

as
-s

ki
tte

r

co
m

-lj

so
c-

LJ
Graphs

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
tr

el
at

iv
e

er
ro

r

Type 1, (5, 2)−cliques, k=5

(a) Error

B
er

kS
ta

n

co
m

-lj

so
c-

LJ

co
m

-o
rk

ut

Graphs

100

101

102

103

104

105

Fa
ct

or
sa

vi
ng

s

k=7, cliques
time SS inst SS

(b) TS vs Inverse-TS

Figure 4.2: Fig. 4.2a shows the percentage error in the estimates for Type 1
(k, 2)-cliques for k = 5 obtained using Inverse-TS. As we can see, the error is
< 2% and in most cases < 1%. Fig. 4.2b shows the savings in time and space
when using Inverse-TS (500000 samples) vs when using TuránShadow (50000
samples) to estimate the number of 7-cliques in 4 of the largest real world graphs
we experimented with. The green bars show the factor savings in the percentage
of the Turán Shadow that was explored (factor of 2-10). The purple bar shows the
factor saving in the maximum amount of space required for the Turán Shadow at
any instant.

(a) (7, 1) (b) Type 1 (7, 2) (c) Type 2 (7, 2)

Figure 4.3: Near-7-cliques. Dotted lines indicate the missing edges. Blue lines
mark the contained clique.

42

The different types of near-cliques are shown in Fig. 4.3. We want to estimate

the number of (k, 1)-cliques and (k, 2)-cliques in G. Note that all our near-cliques

are induced and obtaining counts of non-induced near-cliques is simply a matter

of taking a linear combination of the number of k-cliques and near-cliques. For

the sake of brevity, we skip a detailed discussion.

We stress that we make no distributional assumption on the graph. All

probabilities are over the internal randomness of the algorithm itself (which is

independent of the instance).

4.1.2 Our contributions

We provide a randomized algorithm based on TuránShadow called PEANUTS

which estimates the counts of (k, 1)-cliques and (k, 2)-cliques. In addition, we

also provide a heuristic algorithm called Inverse-TS based on PEANUTS which

takes roughly the same time as PEANUTS (and in some cases, upto 10x less time)

but drastically reduces the space required. Our implementation of Inverse-TS on a

commodity machine showed significant savings in terms of time in obtaining counts

of near-cliques over other methods like color-coding and brute force counting and

showed consistently low error over 100s of runs of the algorithm.

• Leveraging cliques for near-cliques: Data being noisy, cliques are brittle

and as a result, number of near-cliques is often very large. However, it is not

at all clear how one can count their number without looking at every set of

k−vertices, which is computationally very expensive. PEANUTS uses the fact

that near-cliques themselves contain cliques, and leverages TuránShadow to count

near-cliques. There exist algorithms for generic pattern counting which can be

used for counting near-cliques but there is no known algorithm dedicated to finding

near-cliques that exlploits the clique-like structure of near-cliques to give a faster

43

estimate.

• Extremely fast: PEANUTS is based on the observation that every

near-clique contains a smaller clique. Thus, we can use cliques as clues for finding

near-cliques. We leverage a fast clique-counting algorithm (TuránShadow) to

achieve fast and accurate near-clique counting. Fig. 4.1b shows the time taken

by Inverse-TS, color-coding (cc) and brute force (bf) to count the number of

(7, 1)-cliques for a variety of graphs. Inverse-TS is able to estimate their number

to within 2% error in a graph (com-lj) with 4 million vertices and 34 million edges

in 452 seconds which is at least 100 times faster than cc and bf. As we will show

later, similar performance is found in the estimation of other near-cliques and on

other graphs.

• Extremely accurate: Similar to TuránShadow, Inverse-TS uses the

seminal result from extremal combinatorics, called Turán’s theorem which allows

for efficiently sampling cliques, which translates to fast and accurate estimation

of the number of near-cliques. Fig. 4.2a shows the error in the estimate obtained

for number of Type 2 (5, 2)−cliques (a specific configuration of (5, 2)−cliques) in

a variety of graphs using Inverse-TS. As we can see, all the errors were within

2%. Moreover, unlike color-coding, Inverse-TS allows us to control the number

of samples we take, and even using 500K samples, Inverse-TS was more accurate

and took less time than color-coding (6.5).

For many of the graphs we experimented with, the brute force algorithm had not

terminated within 1 day and thus was unable to give us ground truth values, but

in the cases where the algorithm did terminate, we saw that Inverse-TS gave < 5%

error and mostly < 2%. For the cases where the brute force algorithm did not

terminate, we looked at the output of 100 runs of our algorithm. In all cases, the

algorithm showed very good convergence properties (more details in §6.5).

44

• Excellent space efficiency: TuránShadow requires that the entire shadow

be generated and stored, which for a graph with 100s of millions of edges can

potentially require large amount of memory. Our practical implementation of

Inverse-TS addresses this by removing the separation in the Shadow construction

and sampling phases and instead, performs sampling while the shadow is being

constructed in an online fashion. This eliminates the need for storing the entire

Shadow and consequently gives savings of orders of magnitude in space required.

The purple bars in Fig. 4.2b show the factor savings in the maximum shadow

size required to be stored at any point (instantaneous shadow size or inst SS) for

Inverse-TS vs the space required by TuránShadow. There is atleast 100x savings

in space using Inverse-TS.

• Comparison with other algorithms: We do a thorough analysis of

Inverse-TS by deploying it on a number of real-world graphs of varying sizes.

In most cases we observed that Inverse-TS was considerably fast while showing

consistently low error over 100s of runs of the algorithm. We also do a thorough

comparison of Inverse-TS with other generic pattern-counting algorithms like

color-coding. Fig. 4.1b shows the time required for counting (7, 1)-cliques by the

different methods. Across all of our experiments we observe that Inverse-TS was

at least 10 times faster on most graphs as compared to other algorithms.

• All code and data available: All the datasets we used

are publicly available at [159] and our code is available at

https://bitbucket.org/sjain12/peanuts/.

4.1.3 Related Work

Pattern counting, also known as graphlet counting or motif counting has been

an important tool for graph analysis. It has been used in bioinformatics [179, 199,

45

https://bitbucket.org/sjain12/peanuts/

260], social sciences [126], spam detection [30], graph modeling [214], etc. Triangle

counting, and more recently, clique counting have gained a lot of attention [79, 105,

135] due to their special role in characterizing real-world graphs. Clique counts

have been employed in applications such as discovery of dense subgraphs [208, 244],

in topological approaches to network analysis [224], graph clustering [265] among

others. More generally, motif counts have been used in clustering [247, 265],

evaluation of graph models [214, 222], classification of graphs [249] etc.

On the theoretical side, several motif-counting algorithms exist [61, 77, 265].

On the more practical side, only recently, efficient methods for counting graphlets

upto size 5 [124, 137, 195, 255] have been proposed. For patterns of larger sizes, two

widely used techniques are the MCMC [120, 253] and color-coding (CC) of [20].

However, as shown in [45], MCMC based methods have poorer accuracy for the

same running time than CC and for patterns of sizes greater than 5, CC is also

generally quite inefficient, as we will show in our results. Motif counting has been

studied in streaming [42, 143] and distributed settings [96] and in temporal

networks [187].

All these methods are geared towards counting arbitrary patterns with upto

6 nodes but none of these methods scale beyond 6 nodes. Moreover, these are

generic pattern counting methods that do not utilize the clique-like nature of

near-cliques to give more efficient methods. Ours is the first work to do so.

Dense subgraph algorithms: The notion of dense subgraphs as near-cliques

was introduced by Tsourakakis et. al. in [240]. There are several different

formulations of dense subgraphs, many of which are NP-Hard (indeed, even

the problem of finding the densest subgraph on k vertices, known as the

densest-k-subgraph is NP-Hard [208]). The algorithms of Andersen and

Chellapilla [22], Rossi et al. [205], and Tsourakakis et al. [240, 244] provide

46

practical algorithms for some of the formulations. However, most of them focus

on finding or approximating the densest subgraph rather than giving global stats.

4.2 Main ideas

The starting point of our result is the TuránShadow algorithm from 3 for

estimating the number of k-cliques in a graph. TuránShadow is based on a

seminal theorem of Turán and Erdös that says that: if the edge density of an

n−vertex graph is greater than 1− 1/(k− 1) (the Turan density), then the graph

is guaranteed to have many (O(nk−2)) k-cliques. This implies that if we randomly

sample a k-vertex set from the graph, the probability of it being a k-clique would

be high. TuránShadow exploits this fact by splitting G into (possibly overlapping)

Turan-dense subgraphs such that there is a one-to-one correspondence between

the cliques of a specific size in each subgraph, and the number of k-cliques in G.

The set of all such subgraphs of G is called the Turán Shadow of G. Essentially,

TuránShadow reduces the search space for k-cliques in G from 1 large sparse graph

to several dense subgraphs.

More importantly though, for any h, TuránShadow provides an efficient way

of sampling a u.a.r. h-clique from G. Let Ch be the set of all h-cliques in G and

let f : Ch → R+ be a bounded function over all h-cliques, then we can obtain

an unbiased estimate for F = ∑
K∈Ch

f(K) by obtaining the average of f over a set

of uniformly sampled h-cliques and scaling by the total number of h-cliques. In

other words, we can use this clique sampler to obtain an unbiased estimate of the

sum (and mean value) of any bounded function over h-cliques. We exploit this

fact to obtain an estimate of the number of near-cliques.

To estimate the number of (k, 1)-cliques, we make the following observation:

Every (k, 1)-clique has exactly two k − 1-cliques embedded in it. Let Ck−1 be

47

the set of (k, 1)-cliques in G and Ck−1 be the set of k − 1-cliques in G, and

∀K ∈ Ck−1, let f(K) = number of (k, 1)-cliques that clique K is contained in,

then ∑
K∈Ck−1

f(K) = 2|Ck−1|. However, since every (k, 1)-clique is counted twice,

the variance of the estimator can be pretty large. We observe that if the missing

edge in a (k, 1)-clique is (u, v), u < v, exactly one of the k − 1-cliques contains

u and the other contains v. In order to reduce the variance, we define f(K) =

number of (k, 1)-cliques that clique K is contained in, such that u ∈ K i.e. we

break ties based on the direction of the missing edge. With this formulation,∑
K∈Ck−1

f(K) = |Ck−1|.

For (k, 2)-cliques, there are 2 possible configurations, as shown in Fig. 4.3.

Type 1 consists of exactly one k− 1-clique embedded in it. Hence, we set f(K) =

number of Type 1 (k, 2)-cliques that a given k− 1-clique K is contained in. Type

2 (k, 2)-cliques are a bit more complicated. A Type 2 (k, 2)-clique has exactly

four k− 2-cliques embedded in it. If the edges (u, v) and (w, x) are missing, then

there is an induced cycle involving u, v, w and x and every edge of this cycle gives

a different k − 2-clique of the four k − 2-cliques embedded in the (k, 2)-clique.

Let min(u, v, w, x) = u and let min(w, x) = w. Then, for k − 2-clique K, we set

f(K) = number of (k, 2)-cliques such that u,w ∈ K.

As long as f is bounded and is a “well behaved function” i.e. has low variance,

we can efficiently estimate F using TuránShadow as a black box. Improving the

running time of the black box only improves the running time of the overall

algorithm. We observe that in TuránShadow, most of the time is spent in

constructing the Shadow, but only a small fraction of it is used to gather samples.

Thus, if we can first sample and determine which areas of the Shadow the samples

lie in, we can save time by developing only those parts of the Shadow instead of

developing the whole Shadow. Additionally, when the number of samples are

48

fixed (as is the case in the practical implementation of our algorithm), we can

interleave the development of the parts of the Shadow with sampling for h-cliques

from those parts, thus obtaining our estimate of F in an online fashion. This leads

to considerable savings in space and time.

Outline: In §6.2 we set some basic notation. In §4.4 we show our basic

framework PEANUTS and an optimized version of it called Inverse-TS. Depending

on which type of pattern we want to count, we propose and analyze different

counters in §4.5. Finally, in §6.5 we provide a detailed experimental study of

Inverse-TS and its comparison with the state-of-the-art.

4.3 Preliminaries

We set some notation. The input graph G has n vertices and m edges. We

will assume that m ≥ n. Let α be the degeneracy of the graph. Recall that the

degeneracy is the maximum outdegree of any vertex when the edges of the graph

are oriented according to the degeneracy ordering of the vertices in G. Let Nv(G)

represent the neighborhood of v and let N+
v (G) represent the outneighborhood of

v when the vertices are ordered by degeneracy.

We use “u.a.r." as a shorthand for “uniform at random".

We will be using the following (rescaled) Chernoff bound.

Theorem 4.3.1. [Theorem 1 in [84]] Let X1, X2, . . . , Xk be a sequence of iid

random variables with expectation µ. Furthermore, let Xi ∈ [0, B]. Then, for

ε < 1, Pr[|∑k
i=1Xi − µk| ≥ εµk] ≤ 2 exp(−ε2µk/3B).

49

4.4 Main algorithm

At the core of TuránShadow lies an object called the shadow. We define an

analogous structure called Prefixed-Shadow.

Definition 4.4.1. Let Ck(G) be the set of all k−cliques in G. A k-clique

Prefixed-Shadow S for graph G is a set of triples {(Pi, Si, `i)} where Pi ⊆ V ,

Si ⊆ V and `i ∈ N such that ∀(Pi, Si, `i) ∈ S,∀c ∈ C`i(Si), Pi ∪ c is a unique

k-clique in G and there is a bijection between Ck(G) and ⋃
(Pi,Si,`i)∈S

⋃
c∈C`i (Si)

Pi ∪ c.

Moreover, if the multiset {(Si, `i)} is such that ∀(Si, `i), ρ2(Si) > 1 −

1/(`i − 1) where ρ2(Si) represents the edge density of Si, then S is a k-clique

Prefixed-Turán-Shadow of G.

It is easy to see that {(v,N+
v , h− 1)} is an h-clique Prefixed-Shadow of G.

We will briefly recap how TuránShadow constructs the shadow. It orders the

vertices of G by degeneracy and converts it into a DAG. As shown in [105],

to count k-cliques in G it suffices to count the number of k − 1-cliques in the

outneighborhood of every vertex. Hence, for every vertex v ∈ V , TuránShadow

counts the number of k-cliques with v as the lowest order vertex by looking at

the number of k − 1-cliques in the outneighborhood of v, and it applies this

procedure recursively. When the outneighborhood becomes dense enough, instead

of continuing to expand the partial clique, it adds the outneighborhood to the

shadow and continues until there are no more outneighborhoods left to be added

to the shadow.

Algorithm PrefixedTuránShadowFinder carries out exactly the same steps as

Shadow-Finder in 3, except that at each stage it also maintains the partial clique

P .

50

Algorithm 9: PrefixedTuránShadowFinder(G, k)
1 Initialize T = {(∅, V, k)} and S = ∅
2 While ∃(P, S, `) ∈ T such that ρ2(S) ≤ 1− 1

`−1
3 Construct the degeneracy DAG D(G|S)
4 Let N+

s denote the outneighborhood (within D(G|S)) of s ∈ S
5 Delete (P, S, `) from T
6 For each s ∈ S
7 If ` ≤ 2 or ρ2(N+

s) > 1− 1
`−2

8 Add (P ∪ {s}, N+
s , `− 1) to S

9 Else, add (P ∪ {s}, N+
s , `− 1) to T

10 Output S

Claim 4.4.2. Given a graph G and integer k, PrefixedTuránShadowFinder returns

a k-clique Prefixed-Turán-Shadow of G. Its running time is O(|G|k+1).

Proof. When the function returns, T is empty, and any element (P, S, `) ∈ S was

added to S only when ρ2(S) > 1− 1/(`− 1). Thus, if S is a Prefixed-Shadow, it

is also a Prefixed-Turán-Shadow.

By Theorem3.5.1, multiset {(S, `)} is a shadow and hence, there is a bijection

between Ck(G) and ⋃(P,S,`)∈S C`(S). Thus, it suffices to prove that ∀(P, S, `) ∈

T ∪ S, ∀c ∈ C`(S), P ∪ c is a unique k-clique in G. We will prove this using

induction. At the start of the first iteration, P is empty, S = V and ` = k,

S = {(P, S, `)} and T is empty. Thus, for the base case, the hypothesis is trivially

true.

Suppose the hypothesis is true at the start of some iteration and lets say

element E = (P ′, S ′, `′) is deleted from T at the start of this iteration. Each

Es = (P ′ ∪ {s}, N+
s , `

′ − 1) for s ∈ S ′ is added to S or to T . Let K(E) =

{P ′ ∪ c|c ∈ C`′(S ′)} denote the set of k-cliques obtained from E. It suffices to

prove that: (i) for any k−clique K ∈ K(E), K ∈ ⋃sK(Es), (ii) |K| =
∑
s |K(Es)|.

Consider a k-clique K = P ′ ∪ c, c ∈ C`′(S ′). Let s be the lowest order vertex

in c according to the degeneracy ordering in G|S′ . Then, c \ {s} is an `− 1-clique

51

in N+
s . Thus, K ∈ K(Es). Additionally, for c ∈ C`′(S ′) the smallest vertex

in c defines a partition over C`′(S ′). Hence, |C`′(S ′)| = ∑
s∈S′ |C`′−1(N+

s)| i.e.

|K(E)| = ∑
s∈S′ |K(Es)|. Hence, proved.

The out-degree of every vertex is at most |V | and the depth of the recursive

calls is atmost k−1. When processing an element (P, S, `) it constructs the graph

G|S which takes time atmost |V |2 since it queries every pair of vertices in S and

|S| < |V |. Thus, the time required is O(|V |k+1).

Algorithm 10: Sample-clique(S)
Inputs: S: k−clique Prefixed-Turán-Shadow of some graph G
Output: B: k−vertex set
1 Let w(S) = ∑

(P ′,S′,`′)∈S

(
|S′|
`′

)
2 Set probability distribution D over S such that (P, S, `) ∈ S is sampled
with probability

(
|S|
`

)
/w(S)

3 Sample a (P, S, `) from D
4 Choose a u.a.r. `−tuple c from S
5 Let B = P ∪ {c}
6 return B

Claim 4.4.3. The probability of any k-clique K in G being returned by a call to

Sample-clique is 1
w(S) .

Proof. Let E = (P, S, `) ∈ S where S is the k-clique Prefixed-Shadow of some

graph G. Note that w(S) = ∑
(P ′,S′,`′)∈S

(
|S′|
`′

)
. Let c be an `−clique in S and let

K = P ∪ c then K must be a unique k−clique in G.

Pr(K is sampled) = Pr(E is sampled from D) ∗ Pr(c is sampled from S) =
(|S|`)
w(S) ∗

1
(|S|`) = 1

w(S) . Thus, every k−clique in G has the same probability of being

returned by Sample-clique.

We will first describe PEANUTS. Essentially, it constructs the

52

Prefixed-Turán-Shadow of G, samples h-cliques, obtains f for the sampled

h-clique and estimates the value of F .

Algorithm 11: PEANUTS(G, h, s, Func)
Inputs: G: input graph, h: clique size // = k for cliques, k − 1 for
(k, 1)-clique and Type 1 (k, 2)-clique, k − 2 for Type 2 (k, 2)-clique
s: budget for samples, Func: Function that returns f(K) for h-clique K.
Output: F̂ : estimated F
1 S = PrefixedTuránShadowFinder(G,h)
2 Let w(S) = ∑

(P,S,`)∈S

(
|S|
`

)
3 For i = 1, 2, ..., s:
4 K = Sample− clique(S)
5 If K is a clique, set Xi = Func(G,K)
6 else set Xi = 0
7 W = W +Xi

8 let F̂ = W
s
w(S)

9 return F̂

Theorem 4.4.4. Let f be a function over h-cliques, bounded above by B such

that given an h-clique, it takes O(Tf) time to obtain the value of f . Let F̂ be

the output of PEANUTS, then E[F̂] = F . Moreover, given any ε > 0, δ > 0

and number of samples s = 3w(S)B ln (2/δ)/ε2F , then with probability at least

1− δ (this probability is over the randomness of PEANUTS; there is no stochastic

assumption on G), |F̂ − F | ≤ εF .

Let S denote the h-clique Turán shadow of G and size(S) = ∑
(S,`)∈S |S|. The

running time of PEANUTS is O(αsize(S) + sTf +m+n) and the total storage is

O(size(S) +m+ n).

Proof. The Xi are all iid random variables and by the arguments in Claim 4.4.3,

every h-clique in G has the same probability of being returned by Sample-clique.

E[Xi] = ∑
K∈Ck(G)

f(K)
w(S) = F

w(S) . Suppose Xi ∈ [0, B]. By Theorem6.2.1,

Pr[|∑s
i=1Xi − sE[Xi]| ≥ εsE[Xi] ≤ δ when s = 3w(S)B ln (2/δ)/ε2F .

53

The running time and storage required are a direct consequence of the running

time and storage required for TuránShadow. The only difference is the addition

of sTf in the running time which is the time required to obtain f for s samples.

4.4.1 Inverse-TS

We observed that with TuránShadow, bulk of the time is spent in building

the tree, and only a small fraction is needed for sampling. To give a few

examples, for the web-Stanford graph, construction of the shadow took 155

seconds for approximating number of 7 cliques, while taking 50K samples required

0.2 seconds. Similar results were observed for all other graphs we experimented

with. Thus, naturally, to optimize the performance of TuránShadow it would be

beneficial to minimize the fraction of the shadow that is required to be built.

Consider one extreme of minimizing building the shadow - we will call it level

1 sampling. Let N+
v be the outneighborhood of v in DG, Φv =

(
|N+
v |

h−1

)
and

Φ = ∑
v

Φv. {(v,N+
v , h − 1)} is an h-clique Prefixed-Shadow of G. If we sample

a v with probability proportional to Φv, and sample h − 1-tuple of vertices from

N+
v u.a.r., the probability of sampling a particular h − 1-clique in N+

v would be

Φv/Φ ∗ 1/Φv = 1/Φ. If there are Ch h-cliques in G then the probability that

a sampled set of h−vertices is a clique is Ch/Φ (we call this the success ratio).

Hence, number of samples required to find a h-clique would be O(Φ/Ch). But Φ

is typically very large compared to Ch and hence the number of samples required

would be very large. In other words, most of the h−vertex sets picked will not be

cliques.

TuránShadow remedies this by first finding the Turán shadow and then

sampling within the subgraphs of the shadow which are dense and hence require

54

lesser samples to find a k-clique. Thus, TuránShadow saves on the number of

samples required at the cost of building the shadow.

The advantage of level 1 sampling is that we do not need to spend time finding

the Turán Shadow. We mimic the process of sampling an h-clique from this

Prefixed-Shadow, but boost the success ratio by using the latter approach. In

particular, we sample a v proportional to Φv =
(
|N+
v |

h−1

)
, and obtain the h−1-clique

Prefixed-Turán-Shadow S of N+
v . Suppose the shadow size φv = ∑

(P,S,`)∈S

(
S
`

)
then probability of sampling a h− 1-clique = Ch−1(G|N+

v
)/φv. Thus, the success

ratio goes from Ch−1(G|N+
v

)/Φv to Ch−1(G|N+
v

)/φv. Since φv is typically much

smaller than Φv, the success ratio is much improved. However, to account for the

fact that we are now sampling u.a.r. in a search space of size φv and not Φv, we

give a smaller weight (φv/Φv) to every clique obtained from N+
v .

Algorithm 12: Inverse-TS(G, h, s, Func)
1 Order G by degeneracy and convert it to a DAG DG.
2 Let M be a map, W = 0
3 Set probability distribution D over V where p(v) = ∑

v
Φv/Φ.

4 For i = 1, 2, ..., s:
5 Independently sample a vertex v from D.
6 If M [v] exists, set S = M [v]
7 else
8 S = PrefixedTuránShadowFinder(G|N+

v
, h− 1)

9 M [v] = S
10 Let φv = ∑

(P,S,`)∈S

(
|S|
`

)
11 Let K = {v} ∪ Sample− clique(S)
12 If K is a clique, set Xi = φv

Φv ∗ Func(G,K)
13 else set Xi = 0
14 W = W +Xi

15 let F̂ = W
s

Φ
16 return F̂

For an element E = (P, S, `) ∈ S where S is the k−clique

55

Prefixed-Turán-Shadow of a graph G, let K(E) = {P ∪ c, c ∈ C`(S)} denote

the set of k-cliques obtained from E.

Lemma 4.4.5. Let F̂ be the value returned by Inverse-TS. Then E[F̂] = F .

Proof. Consider an h-clique K ∈ Ch(G) and let v be the lowest order vertex

according to degenerecy ordering of vertices in G. Let E = (v,N+
v , h − 1) then,

K ∈ K(E).

Let Sv be the h − 1-clique Prefixed-Turán-Shadow of G|N+
v

and let Ev =

(P, S, `) be the element in Sv such that K = v ∪ P ∪ c, c ∈ C`(S).

Pr(K is sampled in Step 11) = Pr(E is sampled) ∗ Pr(Ev is sampled) ∗

Pr(c is sampled) = Φv
Φ ∗

(|S|`)
φv
∗ 1

(|S|`) = Φv
Φφv Thus, E[Xi] = ∑

v∈V

∑
K∈K(Ev)

Φv
Φφv

φv
Φv f(K) =∑

K∈Ck(G)

f(K)
Φ = F

Φ

Moreover, W =
s∑
i=1

Xi. Therefore, E[W] = E[
s∑
i=1

Xi] =
s∑
i=1

E[Xi] = sFΦ .

Hence, E[F̂] = E[W
s

Φ] = F .

Theorem 4.4.6. Let f be a function over h-cliques, bounded above by B such

that given an h-clique, it takes O(Tf) time to obtain the value of f . Given any

ε > 0, δ > 0 and number of samples s = 3ΦB ln (2/δ)/ε2F , Inverse-TS outputs

an estimate F̂ such that with probability at least 1− δ, |F̂ − F | ≤ εF .

Let S denote the k-clique Turán shadow of G and size(S) = ∑
(S,`)∈S |S|. The

running time of Inverse-TS is O(min(sαh, αsize(S)) + sTf +m+n) and the total

storage is O(size(S) +m+ n).

Proof. The Xi are all iid random variables and by the arguments in Lemma4.4.5,

their expectation µ = F/Φ. Suppose Xi ∈ [0, B]. By Theorem6.2.1,

Pr[|∑s
i=1Xi − µs| ≥ εsµ] ≤ δ when s = 3ΦB ln (2/δ)/ε2F .

The degeneracy of G can be computed in time linear in the size of the

graph [173] (Lemma5.3.1). For any v, the map M [v] in Inverse-TS stores the

56

h−1-clique Prefixed-Turán-Shadow of N+
v . For any v that gets sampled in Step 5,

Inverse-TS checks if the Prefixed-Turán-Shadow of N+
v has been constructed and

if so, it uses the already-constructed shadow. If not, it constructs it in Step 8 and

stores it in M . Thus, in the worst case, it calculates the Prefixed-Turán-Shadow

of N+
v for every v i.e. it calculates the Prefixed-Turán-Shadow of G which requires

time O(αsize(S)) according to Theorem3.5.3. On the other hand, given any v,

the size of N+
v is atmost α so constructing the h−1-clique Prefixed-Turán-Shadow

takes time at most O(αh) (Claim 4.4.2) and it samples s such vertices from D so

time required is O(sαh).

There are s h-vertex sets sampled in Step 11 and checking if the sampled

vertices form a clique takes time h2, while calculating f given that the sampled

set is a clique, takes time Tf .

Thus, the total time required by Inverse-TS is O(min(αsize(S), sαk) + sTf +

m+ n).

Depending on which structure we are counting, we can find appropriate values

for B and Tf . Notice that in the worst case, depending on the structure of the

graph, Inverse-TS may end up building the entire shadow in which case it will not

provide any savings over PEANUTS. However, practically, we observe that we get

significant savings in the amount of shadow built using Inverse-TS in most cases.

Unless specified otherwise, all results in this paper are obtained using Inverse-TS.

57

Algorithm 13: Func-(k, 1)-Clique(G,K)
1 f ′ = 0
2 Let u and v be two distinct vertices from K
3 Let nbrs = Nu ∪Nv

4 For nbr ∈ nbrs:
5 If nbr is connected to all vertices in K except 1 vertex, say w and
nbr > w, then f ′ = f ′ + 1

6 return f ′

4.5 Counting cliques and near-k-cliques

4.5.1 Counting (k, 1)-cliques

Definition 4.5.1. Let (u, v), u < v, be the missing edge in a (k, 1)-clique J .

The lower-order k − 1-clique in J is the k − 1-clique J \ {u}, and J \ {v} is the

higher-order k − 1-clique in J .

Claim 4.5.2. Let f(K) for k−1-clique K denote the number of (k, 1)-cliques that

K is the lower-order k− 1-clique in. Then F = ∑
K∈Ck−1(G)

f(K) = total number of

(k, 1)-cliques in G.

Proof. Every (k, 1)-clique has exactly 1 lower-order k− 1-clique. If f(K) denotes

the number of (k, 1)-cliques that K is a part of and is the lower-order clique in,

then ∑
K∈Ck−1(G)

f(K) = F = total number of (k, 1)-cliques in G.

Claim 4.5.3. For input k − 1-clique K, Func-(k, 1)-Clique returns f(K).

Proof. For any nbr ∈ V , if K ∪ {nbr} is a (k, 1)-clique, then either nbr ∈ Nu or

nbr ∈ Nv or both. For a given K, Func-(k, 1)-Clique finds the set of nbr (nbrs)

that are connected to every vertex in K except one. Thus, every {nbr} ∪ K

for nbr ∈ nbrs is a (k, 1)-clique and it is counted in f ′ iff K is a lower-order

k − 1-clique. Thus, the value returned, f ′ = f(K).

58

Theorem 4.5.4. Let dmax be the maximum degree of any vertex in G. Then

B = min(2dmax, n) and Tf = O(dmax) for Func-(k, 1)-Clique.

Proof. By Claim 4.5.2, F =total number of (k, 1)-cliques in G. For any

(k, 1)-clique J = K ∪ {nbr} that K is the lower-order k − 1-clique in, either

nbr ∈ Nu or nbr ∈ Nv or both. Thus the number of (k, 1)-cliques in which it

is the lower-order k − 1-clique is atmost 2dmax. On the other hand, there can

be atmost n nbr, thus B = min(2dmax, n). Finding nbrs takes time O(dmax)

and checking if nbr ∈ nbrs forms a (k, 1)-clique with K takes time O(1). Hence,

Tf = O(dmax)

4.5.2 Counting Type 1, (k, 2)-cliques

Algorithm 14: Func-(k, 2)-Clique-Type1(G,K)
1 f ′ = 0
2 For u ∈ K:
3 For v ∈ K, v > u:
4 Let nbrs be the set of vertices connected to all vertices in K except u
and v

5 f ′ = f ′ + |nbrs|
6 return f ′

Claim 4.5.5. Let f(K) for k − 1-clique K denote the number of Type 1

(k, 2)-cliques that K is contained in. Then F = ∑
K′∈Ck−1(G)

f(K ′) = the total

number of Type 1 (k, 2)-cliques in G.

Proof. Every Type 1 (k, 2)-clique contains exactly 1 k− 1-clique (Fig. 4.3). Thus,∑
K′∈Ck−1(G)

f(K ′) = F = the total number of Type 1 (k, 2)-cliques in G.

Claim 4.5.6. For input k − 1-clique K, Func-(k, 2)-Clique-Type1 returns f(K).

59

Proof. Given K, for every distinct pair of vertices u and v ∈ K, v > u,

Func-(k, 2)-Clique-Type1 finds the set of vertices nbrs such that ∀nbr ∈ nbrs,

nbr is connected to all vertices in K except u and v. Thus, K ∪ {nbr} is a

k-clique with exactly 2 edges missing - (u, nbr) and (v, nbr) with the missing

edges having a vertex in common (nbr) i.e. it is a Type 1 (k, 2)-clique. Thus,

Func-(k, 2)-Clique-Type1 returns the number of Type 1 (k, 2)-cliques that K is

contained in i.e. it returns f(K).

Theorem 4.5.7. B = min(3dmax, n), Tf = O(dmax) for

Func-(k, 2)-Clique-Type1.

Proof. For any 3 vertices u, v, w ∈ K and for any (k, 2)-clique J = K∪{nbr} that

K is contained in, atleast one of (u, nbr), (v, nbr), (w, nbr) ∈ E(G). Thus, any K

can be a part of atmost min(3dmax, n) Type 1 (k, 2)-cliques. For every pair (u, v)

in K, Func-(k, 2)-Clique-Type1 calculates the number of vertices connected to all

in K but u and v which takes time O(dmax). Thus, Tf = O(dmax).

4.5.3 Counting Type 2 (k, 2)-cliques

Definition 4.5.8. Given a Type 2 (k, 2)-clique J , v, x ∈ J , the set K = J \{v, x}

is the lowest order k − 2-clique of J if it fulfills all the following conditions:

1. (u, v) /∈ E(G), (w, x) /∈ E(G) (note that this implies that K is a k−2-clique).

2. degen(u) < degen(v)

3. degen(u) < degen(w) < degen(x).

Note that u, v, w and x are all distinct and J consists of exactly 4, k−2-cliques:

J \ {v, x}, J \ {v, w}, J \ {u, x} and J \ {u,w} (Fig. 4.3), and the lowest order

60

Algorithm 15: Func-(k, 2)-Clique-Type2(G,K)
1 f ′ = 0
2 Let degen(u) denote the position of u in the degeneracy order of G.
3 For u ∈ K:
4 For w ∈ K, degen(w) > degen(u):
5 Let nbrsu = N+

u be the set of out-nbrs of u such that they are
connected to all vertices in K except w and
∀nbru ∈ nbrsu, degen(w) < degen(nbru).

6 Let nbrsw be the set of neighbors of w in G such that they are
connected to all vertices in K except u

7 For x ∈ nbrsu:
8 For v ∈ nbrsw:
9 If (nbru, nbrw) ∈ E(G) : f ′ = f ′ + 1

10 return f ′

k − 2-clique of J is the one which has the vertex (u) with minimum position in

the degeneracy ordering of G and the minimum neighbor of u.

Claim 4.5.9. Let f(K) for k − 2-clique K denote the number of Type

2 (k, 2)-cliques that K is the lowest-order k − 2-clique in. Then F =∑
K′∈Ck−2(G)

f(K ′) = total number of Type 2 (k, 2)-cliques in G.

Proof. Every Type 2 (k, 2)-clique has exactly one lowest order k − 2-clique in it.

If f(K) denotes the number of Type 2 (k, 2)-cliques that K is the lowest-order

k − 2-clique in, then ∑
K′∈Ck−2(G)

f(K ′) =total number of Type 2 (k, 2)-cliques in

G.

Claim 4.5.10. For input k− 2-clique K, Func-(k, 2)-Clique-Type2 returns f(K).

Proof. Given a k−2-clique K, Step 3 and Step 4 loop over all possible candidates

for u and w, maintaining the condition that degen(u) < degen(w). In Step 5,

Func-(k, 2)-Clique-Type2 picks the outneighbors of u that are potential candidates

for x (nbrsu) such that (w, x) /∈ E(G) and degen(w) < degen(x). In Step 6, it

picks potential candidates for v (nbrsw) i.e. neighbors of w that are connected to

61

all vertices in K except u. Finally, in Step 9, it checks if v and x are connected.

Thus, f ′ in Step 9 is incremented iff all the conditions of a lowest order k−2-clique

of a Type 2 (k, 2)-clique are fulfilled. Thus, the returned value f ′ = f(K).

Theorem 4.5.11. B = min(n2, k2αdmax/2), Tf = O(α + dmax) for

Func-(k, 2)-Clique-Type2.

Proof. Given K, there can be atmost k2/2 candidates for (u,w). There can be

at most α candidates for x (since it has to be an outneighbor of u) and atmost

dmax candidates for v (neighbors of w). On the other hand, there can be atmost

n candidates for x and v each. Thus, B = min(n2, k2αdmax/2)

Given a set of k − 2 vertices, it takes O(k2) time to check if it forms a clique.

There are O(k2) candidates for (u,w) each. There are atmost α candidates for x

and dmax candidates for v whose connections to each of the k− 2 vertices need to

be checked. This takes time O(α + dmax). Altogether, Tf = O(α + dmax).

4.6 Experimental Results

Preliminaries: All code for our experiments is available here:

https://bitbucket.org/sjain12/peanuts/. We implemented our algorithms in C++

and ran our experiments on a commodity machine equipped with a 1.4GHz AMD

Opteron(TM) processor 6272 with 8 cores and 2048KB L2 cache (per core),

6144KB L3 cache, and 128GB memory. We performed our experiments on a

collection of graphs from SNAP [159], including social networks, web networks,

and infrastructure networks. The largest graph has more than 100M edges. Basic

properties like degneracy, maximum degree etc. of these graphs are presented in

Table 6.1. We consider the graph to be simple and undirected.

Our practical implementation differs slightly from Inverse-TS in two ways: we

62

https://bitbucket.org/sjain12/peanuts/

k=5 k=7 k=10
graph vertices edges degen dmax estimate % error time estimate % error time estimate % error time type

web-Stanford 2.82E+05 1.99E+06 71 38625

2.36E+10 0.85 142 8.99E+11 - 216 2.16E+14 - 129 (k, 1)
1.15E+11 0.46 8283 7.33E+11 - 3802 1.12E+14 - 1087 (k, 2) Type 1
1.12E+10 1.19 5396 2.51E+11 - 538 1.04E+14 - 293 (k, 2) Type 2
6.21E+8 3.47E+10 5.82E+12 k

web-Google 8.76E+05 4.32E+06 44 6332

6.76E+08 0.44 13 2.19E+09 0.45 12 2.41E+10 0.41 10 (k, 1)
2.08E+09 0.48 276 4.45E+09 0.01 172 2.05E+10 - 42 (k, 2) Type 1
7.18E+07 1.10 21 2.93E+08 0.01 18 7.70E+09 0.01 13 (k, 2) Type 2
1.05E+08 6.06E+08 1.29E+10 k

amazon0601 4.03E+05 4.89E+06 10 2752

1.17E+07 0.00 4 2.88E+06 0.01 3 3.76E+04 0.02 1.5 (k, 1)
5.38E+07 0.01 10 7.84E+06 0.01 7 8.70E+04 0.01 3 (k, 2) Type 1
3.16E+06 0.01 4 1.30E+06 0.01 5 2.96E+04 0.00 3 (k, 2) Type 2
3.64E+06 9.98E+05 9.77E+03 k

web-BerkStan 6.85E+05 6.65E+06 201 84230

4.89E+11 0.93 397 2.89E+13 - 470 1.85E+16 - 704 (k, 1)
1.89E+12 0.32 20534 7.39E+13 - 6080 1.43E+16 - 5383 (k, 2) Type 1
6.61E+10 0.09 12400 7.32E+11 - 605 1.65E+14 - 646 (k, 2) Type 2
2.19E+10 9.30E+12 5.79E+16 k

as-skitter 1.70E+06 1.11E+07 111 35455

3.94E+10 4.52 1180 5.44E+11 - 1034 7.91E+13 - 800 (k, 1)
2.97E+11 1.63 31724 2.48E+12 - 16220 2.27E+13 - 10461 (k, 2) Type 1
2.34E+10 1.37 4132 3.97E+11 - 2598 8.55E+13 - 1038 (k, 2) Type 2
1.17E+09 7.30E+10 1.43E+13 k

cit-Patents 3.77E+06 1.65E+07 64 793

4.12E+07 0.01 10 7.20E+07 0.01 6 9.06E+05* 42.22 4 (k, 1)
1.11E+08 1.83 17 1.31E+08 2.29 8 1.43E+06* 49.11 5 (k, 2) Type 1
1.31E+08 0.01 6 6.76E+08 3.36 9 2.54E+07* 31.35 5 (k, 2) Type 2
3.05E+06 1.89E+06 2.55E+03 k

soc-pokec 1.63E+06 2.23E+07 47 14854

4.22E+08* 8.48 218 5.41E+07* 9.96 81 7.67E+08 4.24 55 (k, 1)
2.40E+09* 6.19 218 1.59E+09* 4.6 136 1.67E+09 0.02 68 (k, 2) Type 1
3.34E+08 0.00 38 6.78E+08* 7.61 95 1.28E+09 0.01 64 (k, 2) Type 2
5.29E+07 8.43E+07 1.98E+08 k

com-lj 4.00E+06 3.47E+07 360 14815

2.85E+11 0.11 200 4.28E+14 - 452 1.18E+19 - 558 (k, 1)
4.63E+11 0.34 756 5.11E+14 - 613 1.22E+19 - 680 (k, 2) Type 1
5.39E+10 0.53 269 1.24E+14 - 581 4.23E+18 - 568 (k, 2) Type 2
2.47E+11 4.51E+14 1.47E+19 k

soc-LJ 4.84E+06 8.57E+07 372 20333

6.32E+11 0.03 677 1.01E+15 - 779 4.14E+19 - 960 (k, 1)
1.03E+12 0.17 1504 1.27E+15 - 1107 4.57E+19 - 1320 (k, 2) Type 1
1.34E+11 0.41 506 2.77E+14 - 1007 1.17E+19 - 1111 (k, 2) Type 2

4.49E+14 k

com-orkut 3.07E+06 1.17E+08 253 33313

1.56E+11 - 9507 2.26E+12 - 16546 4.66E+13 - 26370 (k, 1)
1.46E+12 - 21213 7.82E+12 - 24148 1.04E+14 - 29881 (k, 2) Type 1
2.37E+11 - 3879 3.51E+12 - 11617 1.60E+14 - 22676 (k, 2) Type 2
1.57E+10 3.61E+11 3.03E+13 k

Table 4.1: Table shows the sizes, degeneracy, maximum degree of the graphs,
the counts of 5, 7 and 10 cliques and near-cliques obtained using Inverse-TS, the
percent relative error in the estimates (for those graphs for which we were able
to get exact numbers within 24 hours), and time in seconds required to get the
estimates. The rows whose types are k in the rightmost column show the number
of k-cliques.For most instances, the algorithm terminated in minutes. Values
marked with * have significant errors which are addressed in Tab. 4.2

fix the number of samples to 500K. Moreover, since the number of samples are

fixed, we can sample from D in Inverse-TS all at once and maintain counts of the

number of cliques to be sampled from each outneighborhood. We can then explore

the outneighborhoods in an online fashion, sampling as we build the shadow. Once

the samples from a vertex’s outneighborhood have been ontained, we no longer

need the shadow of the outneighborhood and the shadow can be discarded. Thus,

we don’t need to store the entire shadow but only the shadow of the current

vertex’s outneighborhood.

We focus on counting near-k-cliques for k ranging from 5 to 10.

Accuracy and convergence of Inverse-TS: We picked some graphs for

63

which the exact near-clique counts are known (for all k ∈ [5, 10]). For each graph

and near-clique type, for sample size in [10K,50K,100K,500K,1M], we performed

100 runs of the algorithm. We show here results for amazon0601 for k = 7, though

similar results were observed for other graphs and k. We plot the spread of the

output of Inverse-TS, over all these runs. The results are shown in Fig. 4.4. The

red line denotes the true answer, and there is a point for the output of every single

run. As we can see, the output of Inverse-TS fast converges to the true value as we

increase the number of samples. For 500K samples, the range of values is within

5% of the true answer which is much less compared to the spread of cc. Similar

results were observed for other graphs for which the exact counts were available,

except soc-pokec. The error was mostly < 5% and often < 1% as can be seen

from Tab. 6.1.

In cases like soc-pokec the error can be high. This happens when most of the

samples end up empty, either because the sampled vertices did not form a clique,

or the samples belonged to out-neighborhoods that did not have a clique of the

required size or the sampled clique does not participate in any near-cliques. This

can be detected by observing how many of the samples taken in Step 11 were

cliques with non-zero f . If this number is << 5000, the estimates are likely to

have substantial error. This can be remedied by either taking more samples or

using PEANUTS. Tab. 4.2 shows the revised estimates obtained using PEANUTS

using 500K samples, for values in Tab. 6.1 that have substantial error (marked

with an asterisk).

For the graphs for which we could not get exact numbers (since the bf algorithm

did not terminate in 1 day), we were unable to obtain error percentages. However,

even for such graphs we saw good convergence over 100 runs of the algorithm.

Running time: The runtimes for near-cliques of size 7 are presented in

64

graph k revised estimate revised % error type

cit-Patents 10
648944 1.9 (k, 1)

2.84E+06 1.32 (k, 2) Type 1
3.69+07 0.3 (k, 2) Type 2

soc-pokec 5 3.91E+08 0.4 (k, 1)
2.27E+09 0.1 (k, 2) Type 1

soc-pokec 7
4.92E+08 0.0 (k, 1)
1.53E+09 0.2 (k, 2) Type 1
6.27E+08 0.6 (k, 2) Type 2

Table 4.2: Table revised estimates and revised error for the counts of near-cliques
obtained using PEANUTS with 500K samples for the erroneous estimates in
Tab. 6.1 (marked with *).

104 105 106

Number of samples

0

1

2

3

(7
,1

)−
cl

iq
ue

s

×109

web-Google, k=7

bf
cc
inv-ts

(a) (k, 1)-clique

104 105 106

Number of samples

0

2

4

6

Ty
pe

1,
(7
,2

)−
cl

iq
ue

s ×109

web-Google, k=7

bf
cc
inv-ts

(b) Type 1, (k, 2)-clique

104 105 106

Number of samples

0

2

4

Ty
pe

2,
(7
,2

)−
cl

iq
ue

s ×108

web-Google, k=7

bf
cc
inv-ts

(c) Type 2, (k, 2)-clique

Figure 4.4: Fig. 4.4a, Fig. 4.4b, Fig. 4.4c show convergence over 100 runs of
Inverse-TS using number of samples in [10K, 50K, 100K, 500K,1M] for all
near-clique types. The red line indicates the true value.

65

w
eb

-S
ta

n

w
eb

-G
oo

gl
e

am
az

on

B
er

kS
ta

n

as
-s

ki
tte

r

P
at

en
ts

so
c-

po
ke

c

co
m

-lj

so
c-

LJ

co
m

-o
rk

ut

Graphs

101

102

103

104

105

106
Ti

m
e

in
se

c

Type 1, (7, 2)−cliques
inv-ts cc bf

w
eb

-S
ta

n

w
eb

-G
oo

gl
e

am
az

on

B
er

kS
ta

n

as
-s

ki
tte

r

P
at

en
ts

so
c-

po
ke

c

co
m

-lj

so
c-

LJ

co
m

-o
rk

ut

Graphs

101

102

103

104

105

106

Ti
m

e
in

se
c

Type 2, (7, 2)−cliques
inv-ts cc bf

Figure 4.5: Figure shows the time required by Inverse-TS (inv-ts), color-coding
(cc) and brute force (bf) to estimate the number of Type 1 and Type 2
(k, 2)-cliques resp. in 10 real world graphs for k = 7. The red line indicates
86400 seconds (24 hours).

Tab. 6.1. We show the time for a single run in each case. In all cases except

com-orkut, the algorithm terminated in minutes (for com-orkut, it took less than

a day) where cc and bf did not terminate in an entire day (and in some cases,

even after 5 days).

Comparison with other algorithms: Our exact brute-force procedure is a

well-tuned algorithm that uses the degeneracy ordering and exhaustively searches

outneighborhoods for cliques (based on the approach by Chiba-Nishizeki [61]).

Once a clique is found, we count all the near-cliques the clique is a part of and

sum this quantity over all cliques.

On average, color-coding took time anywhere between 2x to 100x time taken

by Inverse-TS, while giving poorer accuracy. Brute force took even more time.

Inverse-TS has reduced the time required to obtain these estimates from days to

minutes.

66

4.6.1 Near-cliques in practice

One of the important applications of near-cliques is in finding missing edges

that likely should have been present in the graph in the first place. We deployed

our algorithm on a citation network [235]. Using Inverse-TS we were able to

obtain several sets of papers in which, ever pair of paper either cited or was cited

by the other paper (depending on the chronological order of the papers), except 1

or 2 pairs. For example, a (7, 1)-clique we obtained comprised of the papers with

the following titles:

1. A ray tracing solution for diffuse interreflection

2. Distributed ray tracing

3. A global illumination solution for general reflectance distributions

4. Adaptive radiosity textures for bidirectional ray tracing

5. The rendering equation

6. A two-pass solution to the rendering equation: A synthesis of ray tracing

and radiosity methods

7. A framework for realistic image synthesis

in which, only (1) and (3) were not connected. Thus, by mining near-cliques one

can discover missing links and offer suggestions for which items should be related.

In applications where the data is known to be noisy, it would be interesting to

see how the properties of the graph change upon adding these (possibly) missing

links and obtaining a more complete picture.

Listing near-cliques: In some applications of near-cliques, a u.a.r. sample

of near-cliques may be required. Suppose we want to provide a u.a.r. sample of

67

Type 1 (k, 2)-cliques for a given k. PEANUTS allows us to sample cliques u.a.r.

Once a clique K is sampled, suppose we return a u.a.r. Type 1 (k, 2)-clique that

K participates in. Let J be a Type 1 (k, 2)-clique that K participates in, then

the probability of J being returned is inversely proportional to f(K). In other

words, this approach does not give us a u.a.r. sample of Type 1 (k, 2)-cliques.

However, if we list all the Type 1 (k, 2)-cliques that K participates in, and repeat

this process for several different K, even though the samples in the list may be

correlated, every Type 1 (k, 2)-cliques in G has equal probability of being put in

the list. In applications where some amount of correlation in samples is tolerable,

such a list can be useful.

4.7 Missteps and practical insights

There were several insights we gained during the implementation of this project

which are practically useful.

Our first approach to tackling the problem of estimating the number of

(k, 1)-cliques was as follows: for every missing edge, add that edge to the graph and

count the number of k-cliques containing that missing edge. In other words, given

a vertex v, we look at all vertices u such that degen(u) > degen(v), (u, v) /∈ E(G)

and u and v have atleast k − 2 common neighbors. Every k − 2-clique in this

common neighborhood corresponds to a unique (k, 1)-clique in G. Essentially,

there is branch spawned for every wedge that is not a part of a triangle when

u and v have atleast k − 2 common neighbors. However, practical experiments

showed that the resultant Turán shadow was much larger compared to the shadow

for Turán k − 1-clique. In other words, rather than keeping the vertices in dense

regions together, the dense regions were getting split, resulting in many copies of

the same vertices.

68

2.80

2.85

2.90

2.95
(7

,-1
)c

liq
ue

s
×106

amazon0601, (7,-1) cliques

5-clique
6-clique

1.8

2.0

2.2

2.4

2.6

(7
,-1

)c
liq

ue
s

×109

web-Google, (7,-1) cliques

5-clique
6-clique

Figure 4.6: Figure shows the estimates obtained from 20 runs each of 2 counters
of near-cliques for k = 7, one where we sample a 5 clique and the one where we
sample a 6-clique, as in the case of Func-(k, 1)-Clique. Red line shows the actual
count of (7,−1)−cliques.

Another important insight we gained was from a different approach for

counting (k, 1)-clique: every (k, 1)-clique J has a unique k−2-cliqueK = J\{u, v}

such that (u, v) /∈ E(G). Let us call such a k−2-clique the anchor of J then every

(k, 1)-clique has a unique anchor. Given a k − 2-clique K, let f(K) = number

of (k, 1)-cliques K is the anchor for, then total number of (k, 1)-cliques = F .

However, it turned out that the variance in this case in f was much larger. Fig. 4.6

shows the spread from 20 runs of Pivoter for k = 7 using Func-(k, 1)-Clique

(6-clique) and the 5-clique approach. One way to explain this behavior is that in

the 5-clique approach, F is spread over C5(G) i.e. the set of 5-cliques, while in

6-clique approach (as used in Func-(k, 1)-Clique), F is spread over C6(G). If we

look at the trend in clique counts of graphs in Fig. 5 of [135], barring a couple

of small graphs, in most graphs, for 5 ≤ k ≤ 10, number of k-cliques shows an

increasing trend, which means that F is spread over more objects (cliques) in the

6-clique than in the 5-clique case which could be an explanation for the higher

variance in 5-clique case. Fig. 4.7 shows the distribution of f and as we can see,

in the case of 5-clique, the range of f (orange line) is indeed very large, compared

to the range of f in the 6-clique case.

69

100 101 102 103

f

0.0

0.5

1.0
pr

ob
ab

ili
ty

amazon0601(7,-1) cliques

5-clique
6-clique

100 101 102 103 104 105 106

f

0.0

0.5

1.0

pr
ob

ab
ili

ty

web-Google(7,-1) cliques

5-clique
6-clique

Figure 4.7: Figure shows the distribuion of f obtained using 2 different counters
of near-cliques for k = 7, one where we sample a 5 clique and one where we sample
a 6-clique. x-axis is on log scale. As expected, the variance and max value of f is
much larger when sampling 5-cliques than when sampling 6-cliques.

4.8 Future Work

We leverage the fast clique counting algorithm TuránShadow to count

near-cliques that are essentially k-cliques missing 1 or 2 edges, for k upto 10.

The proposed algorithm gives significant savings in space and time compared to

state of the art.

One could generalize the definition of near-cliques to larger values of r and

define a (k, r)−clique as a k− clique that is missing exactly r edges. It would be

interesting to see how far r can be increased such that near-clique counting would

still be feasible using this clique-centered approach.

70

Chapter 5

Pivoter

5.1 Introduction

We revisit the problem of clique counting. Despite much effort on this

problem, it has been challenging to get scalable algorithms for clique counting.

For large graphs, some recent practical algorithms have succeeded in counting up

to (around) 10-cliques [79, 105, 134]. They either use randomized approximation

or parallelism to speed up their counting. But they do not scale for larger k and

it is difficult to obtain more refined clique counts (such as counts for every vertex

or every edge).

5.1.1 Problem Statement

We are given an undirected, simple graph G(V,E). For k ≥ 3, a k-clique is a

set of k vertices that induce a complete subgraph (it contains all edges among the

k vertices). We will denote the number of k-cliques as Ck. For a vertex v ∈ V , we

use ck(v) to denote the number of k-cliques that v participates in. Analogously,

we define ck(e) for edge e ∈ E.

71

Stanford BerkStan as-skitter orkut
Graphs

100

102

104

106
T

im
e

in
se

co
nd

s

Timings
Pivoter

Pivoter, per-vertex

Pivoter, per-edge

kClist40 (did not terminate)

(a) Timings

103 107 1011 1015 1019

Num occurrences

100

101

102

103

104

105

N
um

ve
rt

ic
es

as-skitter

k=5

k=10

k=15

k=20

k=25

(b) Frequency distribution

103 107 1011 1015

Num occurrences

100

101

102

103

104

105

N
um

ve
rt

ic
es

web-Stanford

k=5

k=10

k=15

k=20

k=25

(c) Frequency distribution

Figure 5.1: Fig. 5.1a shows the comparison of time taken (in seconds) by
Pivoter for 4 of our largest graphs to count all k−cliques with the time taken by
kClist40 (the parallel version of the state of the art algorithm kClist that uses 40
threads) to count the number of k−cliques, where k is the maximum clique size in
each graph. For Stanford, BerkStan, as-skitter, orkut, the maximum clique sizes
were 61, 201, 67 and 51 resp. Pivoter terminated for most graphs in minutes,
(except for orkut, for which it took about 2 hours) whereas kClist40 had not
terminated even after 3 days, giving a speedup of 100x to 10000x. Fig. 5.1a also
shows the time taken by Pivoter to obtain the per-vertex and per-edge k−clique
counts. They were within a factor of the time taken to obtain global k−clique
counts. Fig. 5.1b and Fig. 5.1c shows the frequency distribution of k-cliques i.e.
for every number r on the x-axis, the y-axis shows the number of vertices that
participate in r k-cliques, for k ∈ [5, 10, 15, 20, 25] for as-skitter and web-Stanford
graphs.

We focus on the following problems, in increasing order of difficulty. We stress

that k is not part of the input, and we want results for all values of k.

• Global clique counts: Output, ∀k ≥ 3, Ck.

• Per-vertex clique counts: Output, ∀k, ∀v ∈ V , the value ck(v).

• Per-edge clique counts: Output, ∀k, ∀e ∈ E, the value ck(e).

The per-vertex and per-edge counts are sometimes called local counts. In

clustering applications, the local counts are used as vertex or edge weights, and

are therefore even more useful than global counts [31, 166, 208, 244, 246, 264].

Challenges: Even the simplest problem of getting global clique counts

subsumes a number of recent results on clique counting [79, 105, 134]. The

main challenge is combinatorial explosion: for example, the web-Stanford web

72

graph with 2M edges has 3000 trillion 15-cliques. These numbers are even more

astronomical for larger graphs. Any method that tries to enumerate is doomed to

failure.

Amazingly, recent work by Danisch-Balalau-Sozio uses parallel algorithms to

count beyond trillions of cliques. But even their algorithm fails to get all global

clique counts for a number of datasets. Randomized methods have been used with

some success, but even they cannot estimate all clique counts [105, 134].

Local counting, for all k, is even harder, especially given the sheer size of the

output. Parallel methods would eventually need to store local counts for every

subproblem, which would increase the overall memory footprint. For local counts,

sampling would require far too many random variables, each of which need to be

sampled many times for convergence. (We give more explanation in §6.1.5.)

This raises the main question:

Is there a scalable, exact algorithm for getting all global and local cliques counts,

on real-world graphs with millions of edges?

To the best of our knowedge, there is no previous algorithm that can solve

these problems on even moderate-sized graphs with a few million edges.

5.1.2 Main contributions

Our main contribution is a new practical algorithm Pivoter for the global

and local clique counting problems.

Exact counting without enumeration: Current methods for exact clique

counting perform an enumeration, in that the algorithm explicitly “visits" every

clique. Thus, this method cannot scale to counting larger cliques, since the number

of cliques is simply too large. Our main insight is that the method of pivoting,

used to reduce recursion trees for maximal clique enumeration [48, 98], can be

73

applied to counting cliques of all sizes.

Succinct Clique Trees through Pivoting: We prove that pivoting can be

used to construct a special data structure called the Succinct Clique Tree (SCT).

The SCT stores a unique representation of all cliques, but is much smaller than the

total number of cliques. It can also be built quite efficiently. Additionally, given

the tree, one can easily “read off" the number of k-cliques and various local counts

in the graph. Remarkably, we can get all counts without storing the entire tree

and the storage required at any point is linear in the number of edges. The SCT

can also be used to obtain local counts for bigger structures. For eg. how many

7-cliques is a given 3-clique a part of. Applications that require an enumeration of

such structures require a lot of memory to store all the structures. SCT provides

a compact way of representing them such that they can be efficiently read from

the tree.

Excellent practical performance: We implement Pivoter on a

commodity machine. For global clique counting, Pivoter is able to process

graphs of up to tens of millions of edges in minutes. Previous results either work

only for small values of k (typically up to 10) or take much longer. Consider

Fig. 5.1a, where the time of Pivoter is compared with that of kClist (the state

of the art parallel algorithm for clique counting) [79]. In the instances shown

kClist did not terminate even after running for 3 days. By contrast, for the largest

com-orkut social network with more than 100M edges, Pivoter gets all values

of Ck within two hours. (Typically, in this time, kClist gets k−clique counts only

up to k ≤ 13.)

Feasible computation of local counts: Pivoter is quite efficient for

per-vertex counts, and runs in at most twice the time for global counts. The

times for local clique counting are given in Fig. 5.1a. Even for the extremely

74

challenging problem of per-edge counts, in most instances Pivoter gets these

numbers in a few hours. (For the com-orkut social network though, it takes a few

days.)

This allows us to get data shown in Fig. 5.1b and Fig. 5.1c, that plots the

frequency distribution of k-cliques. (In other words, for every number r, we plot

the number of vertices that participate in r k-cliques.) As mentioned earlier,

this information is used for dense subgraph discovery [208, 244]. To the best of

our knowledge, this is the first algorithm that is able to get such information for

real-world graphs.

5.1.3 Related Work

Subgraph counting has an immensely rich history in network science, ranging

from applications across social network analysis, bioinformatics, recommendation

systems, graph clustering (we refer the reader to the tutorial [217] and references

within). We only describe work directly relevant to clique counting.

The simplest case of clique counting is triangle counting, which has received

much attention from the data mining and algorithms communities. Recent work

has shown the relevance of counts of large subgraphs (4, 5 vertex patterns) [35,

206, 224, 249, 263]. Local clique counts have played a significant role in a flurry of

work on faster and better algorithms for dense subgraph discovery and community

detection [31, 208, 244, 246]. The latter results define the “motif conductance",

where cuts are measured by the number of subgraphs (not just edges) cut. This

has been related to higher order clustering coefficients [263, 264]. These quantities

are computed using local clique counts, underscoring the importance of these

numbers.

The problem of counting cliques (and variants such as counting maximal

75

cliques) has received much attention both from the applied and theoretical

computer science communities [20, 56, 61, 250]. Classic techniques like

color-coding [37, 271] and path sampling [137, 216, 254] have been employed for

counting cliques up to size 5.

For larger cliques, Finocchi-Finocchi-Fusco gave a MapReduce algorithm that

uses orientation and sampling techniques [105]. 3 uses methods from extremal

combinatorics to give a fast sampling algorithm [134], that is arguably the fastest

approximate clique counter to date. In a remarkable result, Danisch-Balalau-Sozio

gave a parallel implementation (kClist) of a classic algorithm of Chiba-Nishizeki,

which is able to enumerate upto trillions of cliques [79]. For exact counting, we

consider kClist as the state of the art. Despite the collection of clever techniques,

none of these methods really scale beyond counting (say) 10-cliques for large

graphs.

Why local counting is hard: Note that either parallelism or sampling is

used to tame the combinatorial explosion. Even though (at least for small k), one

can enumerate all cliques in parallel, local counting requires updating a potentially

global data structure, the list of all ck(v) or ck(e) values. To get the benefits of

parallelism, one would either have to duplicate a large data structure or combine

results for various threads to get all local counts. While this may be feasible, it

adds an extra memory overhead.

Sampling methods typically require some overhead for convergence. For local

counts, there are simply too many samples required to get accurate values for

(say) all ck(v) values. For these reasons, we strongly believe that new ideas were

required to get efficient local counting.

Maximal clique enumeration: Extremely relevant to our approach is a

line of work of maximal clique enumeration. A maximal clique is one that is

76

not contained in a larger clique. Unlike the combinatorial explosion of k-cliques,

maximal cliques tend to be much fewer. The first algorithm for this problem is the

classic Bron-Kerbosch backtracking procedure from the 70s [16, 48]. They also

introduced an idea called pivoting, that prunes the recursion tree for efficiency.

Tomita-Tanaka-Takahashi gave the first theoretical analysis of pivoting rules, and

showed asymptotic improvements [238]. Eppstein-Löeffler- Strash combined these

ideas with orientation methods to give a practical and provably fast algorithm for

maximal clique enumeration [97, 98]. An important empirical observation of this

line of work is that the underlying recursion tree created with pivoting is typically

small for real-world graphs. This is the starting point for our work.

5.2 Main Ideas

Inspired by the success of maximal clique enumeration through pivoting, we

design the Succinct Clique Tree (SCT) of a graph for clique counting.

To explain the SCT, it is useful to begin with the simple backtracking algorithm

for listing all cliques. For any vertex v, let N(v) denote the neighborhood of v.

Any clique containing v is formed by adding v to a clique contained in N(v). Thus,

we can find all cliques by this simple recursive procedure: for all v, recursively

enumerate all cliques in N(v). For each such clique, add v to get a new clique.

It is convenient to think of the recursion tree of this algorithm. Every node of

the tree (corresponding to a recursive call) corresponds to a subset S ⊆ V , and

the subtree of calls enumerates all cliques contained in S. A call to S makes a

recursive call corresponding to every s ∈ S, which is over the set N(s) ∩ S (the

neighbors of v in S). We can label every edge of the tree (call them links to

distinguish from edges of G) with a vertex, whose neighborhood leads to the next

recursive call. It is not hard to see that the link labels, along any path from a

77

root (that might not end at a leaf), give a clique. Moreover, every clique has such

a representation.

Indeed, every permutation of clique forms such a path. A simple

and classic method to eliminate multiple productions of a clique is acyclic

orientations. Simply orient the graph as a DAG, and only make recursive calls

on out-neighborhoods. Typically, an orientation is chosen by degeneracy/core

decomposition or degree orderings, so that out-neighborhood sizes are minimized.

This is a central technique in all recent applied algorithms on clique counting [79,

105, 134]. Yet it is not feasible to construct the recursion tree to completion, and

it is typically truncated at some depth (≤ 10) for large graphs.

Is it possible to somehow “compress" the tree, and get a unique (easily

accessible) representation of all cliques?

The power of pivoting: We discover a suprising answer, in pivoting. This

was discovered by Bron-Kerbosch in the context of maximal cliques [48]. We

describe, at an intuitive level, how it can be applied for global and local clique

counting. For the recursive call at S, first pick a pivot vertex p ∈ S. Observe

that the cliques in S can be partitioned into three classes as follows. For clique

C contained in S: (i) p ∈ C, (ii) C ⊂ N(p), (iii) C contains a non-neighbor of p.

There is 1-1 correspondence between cliques of type (i) and (ii), so we could hope

to only enumerate type (ii) cliques.

Thus, from a recursive call for S, we make recursive calls to find cliques in

N(p) ∩ S, and N(u) ∩ S for every non-neighbor u of p in S. We avoid making

recursive calls corresponding to vertices in N(p). This gives the main savings over

the simple backtracking procedure. The natural choice of p is the highest degree

vertex in the graph induced on S. The recursion tree obtained is essentially the

SCT. We stress that this is quite different from the Bron-Kerbosch recursion tree.

78

The BK algorithm also maintains a set of excluded vertices since it only cares for

maximal cliques. This excluded set is used to prune away branches that cannot

be maximal; moreover, the pivots in BK are potentially chosen from outside S

to increase pruning. The SCT is constructed in this specific manner to ensure

unique clique representations, which the BK tree does not provide.

The SCT is significantly smaller than recursion trees that use degeneracy

orientations (which one cannot feasibly construct). In practice, it can be

constructed efficiently for graphs with tens of millions of edges. As before

the nodes of the SCT are labeled with subsets (corresponding to the recursive

calls), and links are labeled with vertices (corresponding to the vertex whose

neighborhood is being processed). Abusing notation, in the following discussion,

we refer to a path by the set of link labels in the path.

How can we count all cliques using the SCT? Every root to leaf path in the tree

corresponds to a clique, but not all cliques correspond to paths. This is distinct

from the standard recursion tree discussed earlier, where every clique corresponds

to a path from the root. Indeed, this is why the standard recursion trees (even

with degeneracy orientations) are large.

We prove the following remarkable “unique encoding" property. Within any

root to leaf path T , there is a subset of links P corresponding to the pivot calls.

Every clique C in the graph can be uniquely expressed as (T \ P) ∪ Q for some

Q ⊆ P (for a specific path T). The uniqueness is critical for global and local

counting, since we can simply write down formulas to extract all counts. Thus,

the SCT gives a unique encoding for every clique in the graph.

Intuitively, the source of compression can be seen in two different ways. The

simplest way is to see that pivoting prunes the tree, because recursive calls are

only made for a subset of vertices. But also, not every clique is represented by

79

(the link labels of) a path from the root. Thus, there are far fewer paths in the

SCT. The final algorithm is quite simple and the main work was coming up with

the above insight. Despite this simplicity, it outperforms even parallel methods

for exact clique counting by orders of magnitude.

Our main theorem follows. Basically, clique counts can be obtained in time

proportional to the size of the SCT. All the technical terms will be formally defined

in §5.3.1.

Theorem 5.2.1. Let G be an input graph with n vertices, m edges, and degeneracy

α. Let SCT (G) be the Succinct Clique Tree of graph G.

The procedure Pivoter(G) correctly outputs all global and local counts. For

global and per-vertex counts, the running time is O(α2|SCT (G)| + m + n). For

per-edge counts, the running time is O(α3|SCT (G)| + m + n). The storage cost

is O(m+ n).

Empirically, we observe that the SCT is quite small. In the

worst-case, |SCT (G)| = O(n3α/3), which follows from arguments by

Eppstein-Löeffler-Strash [98] and Tomita-Tanaka-Takahashi [238] (an exponential

dependence is necessary because of the NP-hardness of maximum clique). We give

a detailed description in §5.5

5.3 Main Algorithm

5.3.1 Preliminaries

We start with the mathematical formalism required to describe the main

algorithm and associated proofs. The input is a simple, undirected graph

G = (V,E), where |V | = n and |E| = m. It is convenient to assume that G

80

is connected. We use vertices to denote the elements of V (the term nodes will be

used for a different construct). We use the following notation for neighborhoods.

• N(v): This is the neighborhood of v.

• N(S, v): For any subset of vertices S, we use N(S, v) to denote N(v) ∩ S.

Alternately, this is the neighborhood of v in S.

We will use degeneracy orderings (or core decompositions) to reduce the recursion

tree. This is a standard technique for clique counting [61, 79, 105, 134]. This

ordering is obtained by iteratively removing the minimum degree vertex, and can

be computed in linear time [173]. Typically, one uses this ordering to convert

G into a DAG. The largest out-degree is the graph degeneracy, denoted α. We

state this fact as a lemma, which is considered a classic fact in graph theory and

network science.

Lemma 5.3.1. [173] Given a graph G = (V,E), there is a linear time algorithm

that constructs an ayclic orientation of G such that all outdegrees are at most α.

The most important construct we design is the Succinct Clique Tree (SCT)

T . The SCT stores special node and link attributes that are key to getting global

and local clique counts, for all values of k. The construction and properties of the

SCT are given in the next section. Here, we list out technical notation associated

with the SCT T .

Formally, T is a tree where nodes are labeled with subsets of V , with the

following properties.

• The root is labeled V .

• Parent labels are strict supersets of child labels.

• Leaves are labeled with the empty set ∅.

An important aspect of T are link labels. A link label is a pair with a vertex of

V and a “call type". The label is of the form (v, p) or (v, h), where p is shorthand

81

for “pivot" and h for “hold". For a link label (v, ·) of the link (S, S ′) (where S ⊃ S ′

is the parent), v will be an element of S.

Consider a root to leaf path T of T . We have the following associated set of

vertices. It is convenient to think of T as a set of tree links.

• H(T): This is the set of vertices associated with “hold" call types, among

the links of T . Formally, H(T) is {v|(v, h) is label of link in T}.

• P (T): This is the set of vertices with “pivot" calls. Formally P (T) is

{v|(v, p) is label of link in T}.

We now describe our algorithm. We stress that the presentation here is

different from the implementation. The following presentation is easier for

mathematical formalization and proving correctness. The implementation is a

recursive version of the same algorithm, which is more space efficient. This is

explained in the proof of Theorem6.3.1.

5.4 Building the SCT

We give the algorithm to construct the SCT. We keep track of various

attributes to appropriately label the edges. The algorithm will construct the

SCT T in a breadth-first manner. Every time a node is processed, the algorithm

creates its children and labels all the new nodes and links created.

As mentioned earlier, the child of the node labeled S has one child

corresponding to the pivot vertex p, and children for all non-neighbors of p.

Importantly, we label each “call" with p or h. This is central to getting unique

representations of all the cliques.

Now for our main theorem about SCT.

Theorem 5.4.1. Every clique C (in G) can be uniquely represented as H(T)∪Q,

82

Algorithm 16: SCTBuilder(G)
Output: SCT of G
1 Find degeneracy orientation of G, and let N+(v) denote the
outneighborhood of a vertex v.

2 Initialize tree T with root labeled V .
3 For every v ∈ V , create a child of root with node label N+(v). Set the edge
label to (v, h).

4 Insert all these child nodes into a queue Q.
5 While Q is non-empty:
6 Dequeue to get node γ. Let node label be S.
7 If S = ∅, continue.
8 Find p ∈ S with largest N(S, p) value.
9 Create child node of γ with vertex label N(S, p). Add this node to T
and set the link label (of the new link) to (p, p). Also, add this node to Q.

10 Let S \ (p ∪N(p)) = {v1, v2, . . . , v`} (listed in arbitrary order).
11 For each i ≤ `: create child node of γ labeled N(S, vi) \ {v1, v2, . . . , vi−1}.

Add this node to T and set link label to (vi, h). Also add this node to Q.
12 Return T .

where Q ⊆ P (T) and T is a root to leaf path in T . (Meaning, for any other root

to leaf path T ′ 6= T , ∀Q ⊆ P (T ′), C 6= H(T ′) ∪Q.)

We emphasize the significance of this theorem. Every root to leaf path T

represents a clique, given by the vertex set H(T) ∪ P (T). Every clique C is

a subset of potentially many such sets; and there is no obvious bound on this

number. So one can think of C “occurring" multiple times in the tree T . But

Theorem5.4.1 asserts that if we take the labels into account (H(T) vs P (T)), then

there is a unique representation or “single occurrence" of C.

Proof. (of Theorem5.4.1) Consider a node γ of T labeled S. We prove, by

induction on |S|, that every clique C ⊆ S can be expressed as H(T) ∪ Q, where

T is a path from γ to a leaf, and Q ⊆ P (T). The theorem follows by setting γ to

the root.

The base case is vacuously tree, since for empty S, all relevant sets are empty.

83

Now for the induction. We will have three cases. Let p be the pivot chosen in

Step 8. (If S is the root, then there is no pivot. We will directly go to Case (iii)

below.)

Case (i): p ∈ C. By construction, there is a link labeled (p, p) to a child of

γ. Denote the child β. The child β has label N(S, p). Observe that C \ p is a

clique in N(S, p) (since by assumption, C is a clique in S.) By induction, there

is a unique representation C \ p = H(T) ∪ Q, for path T from the child node

to a leaf and Q ⊆ P (T). Moreover there cannot be a representation of C by a

path rooted at β, since N(S, p) 63 p. Consider the path T ′ that contains T and

starts from γ. Note that H(T ′) = H(T) and P (T ′) = P (T) ∪ p. We can express

C = H(T ′) ∪ (Q ∪ p), noting that Q ∪ p ⊆ P (T ′). This proves the existence of a

representation. Moreover, there is only one representation using a path through

β.

We need to argue that no other path can represent C. The pivoting is critical

for this step. Consider any path rooted at γ, but not passing through β. It must

pass through some other child, with corresponding links labeled (vi, h), where

vi is a non-neighbor of p. Since C 3 p, a non-neighbor vi cannot be in C.

Moreover, for any path T̂ passing through these other children, T̂ must contain

some non-neighbor. Thus, T̂ cannot represent C.

Case (ii): C ⊆ N(S, p). The argument is essentially identical to the one above.

Note that C \ p = C, and by induction C \ p has a unique representation using a

path through β. For uniqueness, observe that C does not contain a non-neighbor

of p. The previous argument goes through as is.

Case (iii): C contains a non-neighbor of p. Recall that S \ (N(p) ∪ p) (the

set of non-neighbors in S) is denoted {v1, v2, . . . , v`}. Let i be the smallest index

i such that vi ∈ C. For any 1 ≤ j ≤ `, let Nj := N(S, vj) \ {v1, v2, . . . , vj−1}.

84

Observe that for all j, there is a child labeled Nj. Moreover, all the link labels

have h, so for path T passing through Nj, H(T) 3 vj. Thus, if T can represent

C, it cannot pass through Nj for j < i. Moreover, if j > i, then Nj 63 vi and no

path passing through this node can represent C.

Hence, if there is a path that can represent C, it must pass through Ni. Note

that C \ vi is a clique contained in Ni. By induction, there is a unique path T

rooted at Ni such that C \ vi = H(T)∪Q, for Q ⊆ P (T). Let T ′ be the path that

extends T to γ. Note that H(T ′) = H(T)∪vi, so C = H(T ′)∪Q. The uniqueness

of T implies the uniquesness of T ′.

5.5 Getting global and local counts

The tree T is succinct and yet one can extract fine-grained information from

it about all cliques.

The storage complexity of the algorithm, as given, is potentially

O(α2|SCT (G)|), since this is required to store the tree. In the proof of

Theorem6.3.1, we explain how to reduce the storage.

Proof. (of Theorem6.3.1) Correctness: By Theorem5.4.1, a root to leaf path

T of T represents exactly 2P (T) different cliques, with
(
P (T)
i

)
of size |H(T)| + i.

Moreover, over all T , this accounts for all cliques in the graph. This proves the

correctness of global counts.

Pick a vertex v ∈ H(T). For every subset of P (T), we get a different clique

containing v (that is uniquely represented by Theorem5.4.1). This proves the

correctness of Step 5. For a vertex v ∈ P (T), we look at all subsets containing v.

Equivalently, we get a different represented clique containing v for every subset of

P (T) \ v. This proves the correctness of Step 6.

85

Algorithm 17: Pivoter(G)
Output: Clique counts of G
1 Let T = SCTBuilder(G).
2 Initialize all clique counts to zero.
3 For every root to leaf path T in T :
4 For every 0 ≤ i ≤ |P (T)|, increment C|H(T)|+i by

(
P (T)
i

)
.

5 For every v ∈ H(T) and every 0 ≤ i ≤ |P (T)|, increment c|H(T)|+i(v) by(
P (T)
i

)
.

6 For every v ∈ P (T) and every 0 ≤ i ≤ |P (T)| − 1, increment
c|H(T)|+i+1(v) by

(
P (T)−1

i

)
.

7 For every edge e(u, v), u ∈ H(T), v ∈ H(T), u 6= v and every
0 ≤ i ≤ |P (T)|, increment c|H(T)|+i(e) by

(
P (T)
i

)
.

8 For every edge e(u, v), u ∈ P (T), v ∈ H(T) and every 0 ≤ i ≤ |P (T)| − 1,
increment c|H(T)|+i+1(e) by

(
P (T)−1

i

)
.

9 For every edge e(u, v), u ∈ P (T), v ∈ P (T), u 6= v and every
0 ≤ i ≤ |P (T)| − 2, increment c|H(T)|+i+2(e) by

(
P (T)−2

i

)
.

10 Output the sets of values {Ck}, {ck(v)} and {ck(e)}.

Pick an edge e = (u, v), u ∈ H(T), v ∈ H(T). For every subset of P (T), we

get a different clique containing e (that is uniquely represented by Theorem5.4.1).

This proves the correctness of Step 7. For an edge e = (u, v), u ∈ P (T), v ∈ H(T),

we look at all subsets of P (T) containing u. Equivalently, we get a different

represented clique containing e for every subset of P (T) \ u. This proves the

correctness of Step 8. For an edge e = (u, v), u ∈ P (T), v ∈ P (T), we look at

all subsets of P (T) containing both u and v. Equivalently, we get a different

represented clique containing e for every subset of P (T) \ v \ u. This proves the

correctness of Step 9.

Running time (in terms of |SCT (G)|): Consider the procedure

SCTBuilder(G). Note that the size of T is at least n, so we can replace any

running time dependence on n by |T |. The degeneracy orientation can be found in

O(m+n) [173]. For the actual building of the tree, the main cost is in determining

86

the pivot and constructing the children of a node. Suppose a non-root node

labeled S is processed. The above mentioned steps can be done by constructing

the subgraph induced on S. This can be done in O(|S|2) time. Since this is not

a root node, |S| ≤ α (this is the main utility of the degeneracy ordering). Thus,

the running time of SCTBuilder(G) = O(α2|T |) = O(α2|SCT (G)|).

Now we look at Pivoter. Note that the subsequent counting steps do not need

the node labels in T ; for all path T , one only needs P (T) and H(T). The paths

can be looped over by a DFS from the root. For each path, there are precisely

|P (T)|+1 updates to global clique counts, and at most |H(T)∪P (T)|×(|P (T)|+1)

updates to per-vertex clique counts. The length of T is at most α, and thus both

these quantities are O(α2). Thus, the total running time is O(α2|SCT (G)|) for

global and per-vertex clique counting.

Similarly, for each path, at most |H(T) ∪ P (T)|2 × (|P (T)| + 1) updates are

made to per-edge clique counts. This quantity is O(α3). Thus, the total running

time is O(α3|SCT (G)|).

Running time (in terms of n and α): One crucial difference between the

algorithm of Bron-Kerbosch and SCTBuilder is that in Bron-Kerbosch, the pivot

vertex can be chosen not only from S but also from a set of already processed

vertices. Hence, the tree obtained in Bron-Kerbosch can potentially be smaller

than that of Pivoter. Despite this difference, the recurrence and bound on the

worst case running time of SCTBuilder is the same as Bron-Kerbosch.

Theorem 5.5.1. Worst case running time of SCTBuilder is O(n3α/3).

Proof. Let T (s) be the worst case running time required by SCTBuilder to process

S where s = |S|.

Let R = S \ N(p). Let Tr(s) be the worst case running time of processing S

when |R| = r. Note that when S is being processed it creates a total of r child

87

nodes.

Thus, T (s) = max
r
{Tr(s)}.

Note that all steps other than Step 9 and Step 11 take time O(s2). Say, they

take time p1s
2, where p1 > 0 is a constant.

Thus, we have that:

Tr(s) ≤
∑
v∈R

T (|N(S, v)|) + p1s
2. (5.1)

Moreover,

|N(S, v)| ≤ s− r ≤ s− 1,∀v ∈ R. (5.2)

This is because p has the largest neighborhood in S and p’s neighborhood is

of size atmost s− r, and since |S| ≥ 1, s− r ≤ s− 1.

Thus, Lemma 2 and Theorem 3 from [238] hold, which implies that T (s) =

O(3s/3). Since there are n vertices and their outdegree is atmost α, the worst

case running time of SCTBuilder (which is also an upper bound for |sct(G)|) is

nT (α) = O(n3α/3) and hence, worst case running times of Pivoter for obtaining

global, per-vertex and per-edge clique counts are O(nα3α/3), O(nα23α/3) and

O(nα33α/3), respectively.

Storage cost: Currently, Pivoter is represented through two parts: the

construction of SCT (G) and then processing it to get clique counts. Conceptually,

this is cleaner to think about and it makes the proof transparent. On the other

hand, it requires storing SCT (G), which is potentially larger than the input graph.

A more space efficient implementation is obtained by combining these steps.

We do not give full pseudocode, since it is somewhat of a distraction. (The

88

details can be found in the code.) Essentially, instead of constructing SCT (G)

completely in breadth-first manner, we construct it depth-first through recursion.

This will loop over all the paths of T , but only store a single path at any stage.

The updates to the clique counts are done as soon as any root to leaf path is

constructed. The total storage of a path is the storage for all the labels on a

path. As mentioned earlier in the proof of Theorem6.3.1, all non-root nodes are

labeled with sets of size at most α. The length of the path is at most α, so the

total storage is O(α2). A classic bound on the degeneracy is α ≤
√

2m (Lemma 1

of [61]), so the storage, including the input, is O(m+ n).

Parallel version of Pivoter: While this is not central to our results, we can

easily implement a parallel version of Pivoter for global clique counts. We stress

that our aim was not to delve into complicated parallel algorithms, and merely to

see if there was a way to parallelize the counting involving minimal code changes.

The idea is simple, and is an easier variant of the parallelism in kCList [79].

Observe that the children of the root of SCT (G) correspond to finding cliques in

the sets N+(v), for all v. Clique counting in each of these sets can be treated as an

independent problem, and can be handled by an independent thread/subprocess.

Each subprocess maintains its own array of global clique counts. The final result

aggregates all the clique counts. The change ends up being a few lines of code to

the original implementation.

Note that this becomes tricky for local counts. Each subprocess cannot afford

(storage-wise) to store an entire copy of the local count data structure. The

aggregation step would be more challenging. Nonetheless, it should be feasible for

each subprocess to create local counts for N+(v), and appropriately aggregate all

counts. We leave this for future work.

89

Counting k-cliques for a specific k: Pivoter can be modified to obtain

clique counts upto a certain user specified k (instead of counting for all k).

Whenever the number of links marked h becomes greater than k in any branch

of the computation, we simply truncate the branch (as further calls in the branch

will only yield cliques of larger sizes).

5.6 Experimental results

Preliminaries: All code for Pivoter is available here:

https://bitbucket.org/sjain12/pivoter/. We implemented our algorithms in

C and ran our experiments on a commodity machine equipped with a 1.4GHz

AMD Opteron(TM) processor 6272 with 8 cores and 2048KB L2 cache (per

core), 6144KB L3 cache, and 128GB memory. We performed our experiments on

a collection of social networks, web networks, and infrastructure networks from

SNAP [49]. The graphs are simple and undirected (for graphs that are directed,

we ignore the direction). A number of these graphs have more than 10 million

edges, and the largest has more than 100 million edges. Basic properties of these

graphs are presented in Tab. 5.1.

The data sets are split into two parts, in Tab. 5.1. The upper part are instances

feasibly solved with past work (notably kClist40 [79]), while the lower part has

instances that cannot be solved with previous algorithm (even after days). We

give more details in §5.6.1.

Competing algorithms: We compare with (what we consider) are the state

of the art clique counting algorithms: Turán-Shadow (TS) [134] and kClist40 [79].

kClist40: This algorithm by Danisch-Balalau-Sozio [79] uses degeneracy

orientations and parallelization to enumerate all cliques. The kClist40 algorithm,

to the best of our knowledge, is the only existing algorithm that can feasibly

90

https://bitbucket.org/sjain12/pivoter/

compute all global counts for some graphs. Hence, our main focus is runtime

comparisons with kClist40.

We note that the implementation of kClist40 visits every clique, but only

updates the (appropriate) Ck. While it could technically compute local counts,

that would require more expensive data structure updates. Furthermore, there

would be overhead in combining the counts for independent threads, and it is not

immediately obvious how to distribute the underlying data structure storing local

counts. As a result, we are unaware of any algorithm that computes local counts

(at the scale of dataset in Tab. 5.1).

We perform a simple optimization of kClist40, to make counting faster.

Currently, when kClist40 encounters a clique, it enumerates every smaller clique

contained inside it. For the purpose of counting though, one can trivially count

all subcliques of a clique using formulas. We perform this optimization (to have

a fair comparison with kClist40), and note significant improvements in running

time.

In all our runs, for consistency, we run kClist with 40 threads. Note that we

compare the sequential Pivoter with the parallel kClist40.

TS: This is the approximate clique counting algorithm describe in 3 [134]. It

mines dense subgraphs (shadows) and samples cliques within the dense subgraphs

to give an estimate. For fast randomized estimates, it is arguably the fastest

algorithm. It runs significantly faster than a sequential implementation of kClist,

but is typically comparable with a parallel implementation of kClist. It requires

the entire shadow to be available for sampling which can require considerable

space.

91

Graph Vertices Edges Degen Max clique Pivoter
(Ck)

Pivoter
(ck(v))

Pivoter
(ck(e))

Pivoter
(Ck

parallel)
Feasible by previous algorithms

dblp-v5 1.56E+06 2.08E+06 15 10 7 7 8 19
dblp-v7 3.67E+06 4.18E+06 19 12 15 16 19 34

amazon0601 4.03E+05 2.44E+06 10 11 4 5 6 4
web-Google 8.76E+05 4.32E+06 44 44 8 9 15 9
youtube 1.13E+06 2.99E+06 51 17 7 8 11 9

cit-Patents 3.77E+06 1.65E+07 64 11 40 41 53 46
soc-pokec 1.63E+06 2.23E+07 47 29 68 75 93 44

Not feasible for previous algorithms
Stanford 2.82E+05 1.99E+06 71 61 5 5 38 3
BerkStan 6.85E+05 6.65E+06 201 201 25 26 237 9
as-skitter 1.70E+06 1.11E+07 111 67 120 200 9245 75
com-orkut 3.07E+06 1.17E+08 253 51 5174 8802 99389 3441
com-lj 4.00E+06 3.47E+07 360 - - - - 108000*

Table 5.1: Table shows the sizes, degeneracy, maximum clique size, and the time
taken (in seconds) by Pivoter to obtain global k−clique counts, per-vertex and
per edge k−cliques counts for all k. *For the com-lj graph, we were not able to
get all k−clique counts in 1 day so we tested for the maximum k we could count
in about a day. Pivoter was able to count the number of 9-cliques in 30 hours
whereas kClist40 had not terminated even after 6 days.

5.6.1 Running time and comparison with other algorithms

Running time for global counting: We show the running time results in

Tab. 5.1. For most of the graphs, Pivoter was able to count all k-cliques in

seconds or minutes. For the largest com-orkut graph, Pivoter ran in 1.5 hours.

This is a huge improvement on the state of the art. For the “infeasible" instances

in Tab. 5.1, we do not get results even in two days using previous algorithms.

(This is consistent with results in Table 2 of [79], where some of the graphs are

also listed as “very large graphs" for which clique counting is hard.)

A notable hard instance is com-lj where Pivoter is unable to get all clique

counts in a day. Again, previous work also notes this challenge, and only gives

counts of 7-cliques. We can get some partial results for com-lj, as explained later.

Feasible local counting: Notably, Pivoter can get per-vertex counts in

less than twice the time of global clique counting. Thus, we get results for more

92

Graph k=13,TS k=13, kClist40 all k, Pivoter
Stanford 230 12600 5
BerkStan 1198 > 172800 25
as-skitter 798 12480 120
com-orkut > 28800 > 172800 5174

Table 5.2: Time taken in seconds by the state-of-the-art randomized (TS, short
for TuránShadow) and parallel (kClist40) algorithms. Note that Pivoter obtains
all k−clique counts for these graphs in a fraction of the time taken by other
methods to count just 13-cliques.

k k-cliques kClist40 Pivoter
7 4.49E+15 2.2 hours 1.2 hours
8 1.69E+16 42.5 hours 6.4 hours
9 5.87E+17 > 6 days 30 hours
10 1.89E+19 > 6 days 5.9 days

Table 5.3: Table shows the time taken to count k-cliques for com-lj graph. For
k=9, Pivoter terminated in about 30 hours where kClist40 had not terminated
in 6 days.

107 108 109 1010

m

107

108

109

1010

N
um

no
de

s
in

S
C

T
tr

ee

Size of SCT vs. m

(a) Number of nodes in
SCT vs m

0 50 100
Clique size

100

105

1010

1015

1020

C
liq

ue
s

Trends in clique counts
amazon0601

cit-Patents

web-Google

soc-pokec

youtube

Stanford

as-skitter

orkut

(b) Trends in different
graphs

0 5 10
Clique size

100

103

106

109

C
liq

ue
s

Trends in clique counts for dblp
dblp-v5

dblp-v7

(c) Trends in dblp over
time.

Figure 5.2: Fig. 5.2a shows the number of nodes in the SCT vs the number
of edges (m) for different graphs. The running time of Pivoter is directly
proportional to the SCT size which seems to be roughly linear in the number
of edges. Fig. 5.2b shows the trends in clique counts for a number of graphs.
For some of the graphs, the complete distribution of their clique counts has been
obtained for the first time. Fig. 5.2c shows the trends in the clique counts of 2
different versions over time of the dblp graph.

graphs in a few minutes, and can process the com-orkut graph within 3 hours.

We consider this a significant achievement, given the combinatorial explosion of

93

clique counting.

Pivoter is also able to get per-edge clique counts, though it can take an order

of magnitude more time than global clique counting. Note that for obtaining the

per-vertex and per-edge k−clique counts, the result data structure can become

extremely large. Indeed, most of the time is spent in updating the data structure,

rather than in constructing the SCT. Nonetheless, for all but the as-skitter and

com-orkut graph, it runs in minutes.

Comparison with state of the art: We only focus on the “infeasible"

instances of Tab. 5.1. For all the other instances, both Pivoter and kClist40 get

results within two minutes. For space considerations, we do not report all the

running times for such instances. It is worth noting that the sequential Pivoter

is comparable to the parallel kClist40 (when they both terminate).

In Tab. 5.2, we report times on TS and kClist40 on the hard datasets. We

are unable to get all values of Ck using either of these two method. We run

these algorithms for up to 100 times the running time of Pivoter or two days,

whichever is shorter. We try to count the largest feasible clique count.

Let us focus on kClist40, where we cannot go beyond counting 13-cliques

(we note that this is consistent with results reported in [79]). Notably, in the

BerkStan graph, kClist40 needs more than 2 days to count 13-cliques, while

Pivoter gets all clique counts in a minute. As mentioned earlier, clique counting

on the large com-orkut graph is done in a few hours by Pivoter, while even

counting 13-cliques takes kClist40 more than two days.

TS also does not scale well for larger cliques and Pivoter is faster than TS.

For example, for the Stanford graph, TS required 230 seconds to estimate the

number of 13-cliques whereas Pivoter obtained all k−clique counts in 5 seconds.

Similar trends are observed with other graphs.

94

Parallel global clique counting: As mentioned in §5.5, we do a simple

parallelization of the global clique counting of Pivoter using 30 threads. It gives

moderate benefits for most instances, and about a factor two speedup for large

instances. For the challenging com-lj instances, the effect is much more dramatic.

We are able to count 7-cliques in an hour using the parallel Pivoter, while the

sequential version takes more than a day.

Performance on com-lj. This is a particularly challenging graph. The

sequential version of Pivoter for counting all k-cliques did not terminate within

a day, so we used the parallel version of our algorithm to show a comparison for

global counts upto k = 10. We can truncate the SCT to get cliques of some

fixed size. Tab. 5.3 shows the results. Even for this graph, the parallel version

of Pivoter is faster than kClist40 for k = 7 and beyond. kClist40 did not

terminate after six days, for k = 9 and beyond. We note the astronomical number

of 10-cliques (> 1019), which makes enumeration infeasible, but Pivoter was

able to get the exact count.

Size of SCT (G): In Fig. 5.2a, we plot the number of nodes of SCT (G) as a

function of the number of edges in G. We observe that for most graphs, the size

is quite close to m, explaining why Pivoter is efficient.

5.6.2 Demonstrations of Pivoter

Global and local cliques have numerous applications. It is outside the scope of

this work for detailed demonstrations, but we show a few examples in this section.

As mentioned earlier, local clique counts are an important aspect of graph

processing. In Fig. 5.1b and Fig. 5.1c, we plot the per-vertex clique distributions,

also called the graphlet degree distribution in bioinformatics [199] for the as-skitter

and web-Stanford graphs. We choose values of k = 5, 10, 15, 20, 25. Then, we plot

95

the function fk(b) that is the number of vertices that participate in b k-cliques.

We notice interesting trends. While the as-skitter graph has a nicely decaying fk

function, there is much more noise in web-Stanford. It would be interesting to

design models that can capture such behavior in the local clique counts.

In Fig. 5.2b, we plot the Ck values for a number of graphs. We notice, for

example, that the soc-pokec network has a “flatter" distribution of Ck for some

of the initial values, while the com-orkut graph looks much closer to a binomial

distribution. The latter suggests that the bulk of cliques are coming from the

maximum clique in the com-orkut graph, but not so in the soc-pokec graph.

In Fig. 5.2c, we plot the k-clique counts (vs k) for two different versions across

time for the DBLP citation network [236]. Interestingly, despite the later version

only having less than twice as many edges, the clique distribution (plotted in

semilog) has a much bigger difference. It appears that the graph is becoming

significantly dense in certain part. This sort of analysis may help in understanding

dynamic graphs.

5.7 Future work

The success of [79] in using parallelization for clique counting suggests

combining their ideas with our pivoting techniques. We may be able to come

up with an efficient parallel building of the SCT that is much faster than our

current implementation. Indeed, the results on the com-lj graph suggest that

even Pivoter has its limits for real data.

An orthogonal approach would be to exploit the sampling techniques in

the Turán-Shadow algorithm [134]. For many subgraph counting problems,

randomization has been the key to truly practical algorithms. We believe that

Pivoter could be made faster with these ideas.

96

Moreover, it also gives per-edge and per-vertex k−clique counts. This is the

first time that k−clique counts are known for many of the graphs we experimented

with and this will open doors for further use of cliques in generation and analysis

of graphs.

97

Chapter 6

Estimating the degree

distribution

6.1 Introduction

Continuing the theme of sampling, in this chapter, we explore how sampling

can be used to estimate some property of the graph when we have only query

access to the graph. Contrary to the setup of clique counting problems seen in

earlier chapters where we have access to the whole graph, in this setup, we have

access to only a part of the graph and the goal is to be able to relate the properties

of the part to the properties of the whole. In this work, the goal is to estimate

the degree distribution of the graph.

In domains as diverse as social sciences, biology, physics, cybersecurity, graphs

are used to represent entities and the relationships between them. This has led

to the explosive growth of network science as a discipline over the past decade.

One of the hallmarks of network science is the occurrence of specific graph

properties that are common to varying domains, such as heavy tailed degree

98

distributions, large clustering coefficients, and small-world behavior. Arguably,

the most significant among these properties is the degree distribution, whose study

led to the foundation of network science [29, 46, 101].

Given an undirected graph G, the degree distribution (or technically,

histogram) is the sequence of numbers n(1), n(2), . . ., where n(d) is the number

of vertices of degree d. In almost all real-world scenarios, the average degree is

small, but the variance (and higher moments) is large. Even for relatively large d,

n(d) is still non-zero, and n(d) typically has a smooth non-increasing behavior. In

Fig. 6.1, we see the typical degree distribution behavior. The average degree in a

Google web network is less than 10, but the maximum degree is more than 5000.

There are also numerous vertices with all intermediate degrees. This is referred

to as a “heavy tailed" distribution. The degree distribution, especially the tail, is

of significant relevance to modeling networks, determining their resilience, spread

of information, and for algorithmics [17, 52, 67, 85, 182, 184, 185, 192, 214].

With full access to G, the degree distribution can be computed in linear time,

by simply determining the degree of each vertex. Yet in many scenarios, we only

have partial access to the graph, provided through some graph samples. A naive

extrapolation of the degree distribution can result in biased results. The seminal

research paper of Faloutsos et al. claimed a power law in the degree distribution

on the Internet [101]. This degree distribution was deduced by measuring a power

law distribution in the graph sample generated by a collection of traceroute queries

on a set of routers. Unfortunately, it was mathematically and empirically proven

that traceroute responses can have a power law even if the true network does

not [5, 64, 156, 193]. In general, a direct extrapolation of the degree distribution

from a graph subsample is not valid for the underlying graph. This leads to the

primary question behind our work.

99

(a) amazon0601 copurchase network (b) web-Google web network

(c) cit-Patents citation network (d) com-orkut social network

Figure 6.1: The output of SADDLES on a collection of networks:
amazon0601 (403K vertices, 4.9M edges), web-Google (870K vertices, 4.3M
edges), cit-Patents (3.8M vertices, 16M edges), com-orkut social network (3M
vertices, 117M edges). SADDLES samples 1% of the vertices and gives accurate
results for the entire (cumulative) degree distribution. For comparison, we show
the output of a number of sampling algorithms from past work, each run with the
same number of samples. (Because of the size of com-Orkut, methods involving
optimization [270] fail to produce an estimate in reasonable time.)

How can we provably and practically estimate the degree distribution without

seeing the entire graph?

There is a rich literature in statistics, data mining, and physics on estimating

graph properties (especially the degree distribution) using a small subsample [8,

10, 13, 88, 158, 160, 167, 202, 229, 270]. Nonetheless, there is no provable algorithm

for the entire degree distribution, with a formal analysis on when it is sublinear

in the number of vertices. Furthermore, most empirical studies typically sample

10-30% of the vertices for reasonable estimates.

100

6.1.1 Problem description

We focus on the complementary cumulative degree histogram (often called

the cumulative degree distribution) or ccdh of G. This is the sequence {N(d)},

where N(d) = ∑
r≥d n(r) is the number of vertices of degree at least d. The

ccdh is typically used for fitting distributions, since it averages out noise and is

monotonic [65]. Our aim is to get an accurate bicriteria approximation to the

ccdh of G, at all values of d.

Definition 6.1.1. The sequence {Ñ(d)} is an (ε, ε)-estimate of the ccdh if ∀d,

(1− ε)N((1 + ε)d) ≤ Ñ(d) ≤ (1 + ε)N((1− ε)d).

Computing an (ε, ε)-estimate is significantly harder than approximating the

ccdh using standard distribution measures. Statistical measures, such as the

KS-distance, χ2, `p-norms, etc. tend to ignore the tail, since (in terms of

probability mass) it is a negligible portion of the distribution. An (ε, ε)-estimate

is accurate for all d.

The query model: A formal approach requires specifying a query model for

accessing G. We look to the subfields of property testing and sublinear algorithms

within theoretical computer science for such models [111, 112]. Consider the

following three kinds of queries.

• Vertex queries: acquire a uniform random vertex v ∈ V .

• Neighbor queries: given v ∈ V , acquire a uniform random neighbor u of V .

• Degree queries: given v ∈ V , acquire the degree dv.

An algorithm is only allowed to make these queries to process the input. It has

to make some number of queries, and finally produce an output. We discuss two

query models, and give results for both.

The Standard Model (SM) All queries allowed: This is the standard

model in numerous sublinear algorithms results [90, 91, 111–113]. Furthermore,

101

most papers on graph sampling implicitly use this model for generating

subsamples. Indeed, any method involving crawling from a random set of vertices

and collecting degrees is in the SM. This model is the primary setting for our

work, and allows for comparison with rich body of graph sampling algorithms. It

is worth noting that in the SM, one can determine the entire degree distribution in

O(n log n) queries (the extra log n factor comes from the coupon collector bound of

finding all the vertices through uniform sampling). Thus, it makes sense to express

the number of queries made by an algorithm as a fraction of n. Alternately, the

number of queries is basically the number of vertices encountered by the algorithm.

Thus, a sublinear algorithm makes o(n) queries.

The Hidden Degrees Model (HDM) Vertex and neighbor queries

allowed, not degree queries: This is a substantially weaker model. In numerous

cybersecurity and network monitoring settings, an algorithm cannot query for

degrees, and has to infer them indirectly. Observe that this model is significantly

harder than the SM. It takes O((m+ n) log n) to determine all the degrees, since

one has to at least visit all the edges to find degrees exactly. In this model, we

express the number of queries as a fraction of m.

Regarding uniform random vertex queries: This is a fairly powerful query,

that may not be realizable in all situations. Indeed, Chierichetti et al. explicitly

study this problem in social networks and design (non-trivial) algorithms for

sampling uniform random vertices [62]. In a previous work, Dasgupta, Kumar,

and Sarlos study algorithms for estimating average degree when only random

walks are possible [81]. Despite this power, we believe that SM is a good testbed

for understanding when a small sample of a graph provably gives properties of the

whole. Furthermore, in the context of graph sampling, access to uniform random

vertices is commonly (implicitly) assumed [10, 88, 158, 160, 196, 202, 270]. The

102

vast majority of experiments conducted often use uniform random vertices.

As a future direction, we believe it is important to investigate sampling models

without random vertex queries.

6.1.2 Our contributions

Our main theoretical result is a new sampling algorithm, the Sublinear

Approximations for Degree Distributions Leveraging Edge Samples, or

SADDLES. This algorithm provably provides (ε, ε)-approximations for the ccdh.

We show how to design SADDLES under both the SM and the HDM. We apply

SADDLES on a variety of real datasets and demonstrate its ability to accurately

approximate the ccdh with a tiny sample of the graph.

• Sampling algorithm for estimating ccdh: Our algorithm combines a

number of techniques in random sampling to get (ε, ε)-estimates for the ccdh. A

crucial component is an application of an edge simulation technique, first devised

by Eden et al. in the context of triangle counting [90, 91]. This (theoretical)

technique shows how to get a collection of weakly correlated uniform random edges

from independent uniform vertices. SADDLES employs a weighting scheme on

top of this method to estimate the ccdh.

• Heavy tails leads to sublinear algorithms: The challenge in analyzing

SADDLES is in finding parameters of the ccdh that allow for sublinear query

complexity. To that end, we discuss two parameters that measure “heaviness" of

the distribution tail: the classic h-index and a newly defined z-index. We prove

that the query complexity of SADDLES is sublinear (for both models) whenever

these indices are large.

• Excellent empirical behavior: We deploy an implementation of

SADDLES on a collection of large real-world graphs. In all instances, we achieve

103

extremely accurate estimates for the entire ccdh by sampling at most 1% of the

vertices of the graph. Refer to Fig. 6.1. Observe how SADDLES tracks various

jumps in the ccdh, for all graphs in Fig. 6.1.

• Comparison with existing sampling methods: A number of graph

sampling methods have been proposed in practice, such as vertex sampling (VS),

snowball sampling (OWS), forest-fire sampling (FF), induced graph sampling

(IN), random walk (RWJ), edge sampling (ES) [10, 88, 158, 160, 196, 202, 270]. A

recent work of Zhang et al. explicitly addresses biases in these sampling methods,

and fixes them using optimization techniques [270]. We run head-to-head

comparisons with all these sampling methods, and demonstrate the SADDLES

gives significantly better practical performance. Fig. 6.1 shows the output of all

these sampling methods with a total sample size of 1% of the vertices. Observe

how across the board, the methods make erroneous estimates for most of the

degree distribution. The errors are also very large, for all the methods. This

is consistent with previous work, where methods sample more than 10% of the

number of vertices.

6.1.3 Theoretical results in detail

Our main theoretical result is a new sampling algorithm, the Sublinear

Approximations for Degree Distributions Leveraging Edge Samples, or

SADDLES.

We first demonstrate our results for power law degree distributions [29, 46,

101]. Statistical fitting procedures suggest they occur to some extent in the

real-world, albeit with much noise [65]. The classic power law degree distribution

sets n(d) ∝ 1/dγ, where γ is typically in [2, 3]. We build on this to define a power

law lower bound.

104

Definition 6.1.2. Fix γ > 2. A degree distribution is bounded below by a power

law with exponent γ, if the ccdh satisfies the following property. There exists a

constant τ > 0 such that for all d, N(d) ≥ bτn/dγ−1c.

The following is a corollary of our main result. For convenience, we will

suppress query complexity dependencies on ε and log n factors, using Õ(·).

Theorem 6.1.3. Suppose the degree distribution of G is bounded below by a power

law with exponent γ. Let the average degree be denoted by d. For any ε > 0, the

SADDLES algorithm outputs (with high probability) an (ε, ε)-approximation to

the ccdh and makes the following number of queries.

• SM: Õ(n1− 1
γ + n1− 1

γ−1d)

• HDM: Õ(n1− 1
2(γ−1)d)

In most real-world instances, the average degree d is typically constant. Thus,

the complexities above are strongly sublinear. For example, when γ = 2, we get

Õ(n1/2) for both models. When γ = 3, we get Õ(n2/3) and Õ(n3/4).

Our main result is more nuanced, and holds for all degree distributions. If the

ccdh has a heavy tail, we expect N(d) to be reasonably large even for large values

of d. We describe two formalisms of this notion, through fatness indices.

Definition 6.1.4. The h-index of the degree distribution is the largest d such that

there are at least d vertices of degree at least d.

This is the exact analogy of the bibliometric h-index [123]. As we show in the

§6.2.1, h can be approximated by mind(d + N(d))/2. A more stringent index is

obtained by replacing the arithmetic mean by the (smaller) geometric mean.

Definition 6.1.5. The z-index of the degree distribution is z =

mind:N(d)>0

√
d ·N(d).

105

Our main theorem asserts that large h and z indices lead to a sublinear

algorithm for degree distribution estimation. Theorem6.1.3 is a direct corollary

obtained by plugging in values of the indices for power laws.

Theorem 6.1.6. For any ε > 0, the SADDLES algorithm outputs (with high

probability) an (ε, ε)-approximation to the ccdh, and makes the following number

of queries.

• SM: Õ(n/h+m/z2)

• HDM: Õ(m/z)

6.1.4 Challenges and Main Idea

The heavy-tailed behavior of the real degree distribution poses the primary

challenge to computing (ε, ε)-estimates to the ccdh. As d increases, there are

fewer and fewer vertices of that degree. Sampling uniform random vertices is

inefficient when N(d) is small. A natural idea to find high degree vertices to pick

a random neighbor of a random vertex. Such a sample is more likely to be a high

degree vertex. This is the idea behind methods like snowball sampling, forest fire

sampling, random walk sampling, graph sample-and-hold, etc. [10, 88, 158, 160,

196, 202, 270]. But these lead to biased samples, since vertices with the same

degree may be picked with differing probabilities.

A direct extrapolation/scaling of the degrees in the observed graph does not

provide an accurate estimate. Our experiments show that existing methods always

miss the head or the tail. A more principled approach was proposed recently

by Zhang et al. [270], by casting the estimation of the unseen portion of the

distribution as an optimization problem. From a mathematical standpoint, the

vast majority of existing results tend to analyze the KS-statistic, or some `p-norm.

As we mentioned earlier, this does not work well for measuring the quality of the

106

estimate at all scales. As shown by our experiments, none of these methods give

accurate estimate for the entire ccdh with less than 5% of the vertices.

The main innovation in SADDLES comes through the use of a recent

theoretical technique to simulate edge samples through vertex samples [90, 91].

The sampling of edges occurs through two stages. In the first stage, the algorithm

samples a set of r vertices and sets up a distribution over the sampled vertices

such that any edge adjacent to a sampled vertex may be sampled with uniform

probability. In the second stage, it samples q edges from this distribution. While

a single edge is uniform random, the set of edges are correlated.

For a given d, we define a weight function on the edges, such that the total

weight is exactly N(d). SADDLES estimates the total weight by scaling up the

average weight on a random sample of edges, generated as discussed above. The

difficulty in the analysis is the correlation between the edges. Our main insight

is that if the degree distribution has a fat tail, this correlation can be contained

even for sublinear r and q. Formally, this is achieved by relating the concentration

behavior of the average weight of the sample to the h and z-indices. The final

algorithm combines this idea with vertex sampling to get accurate estimates for

all d.

The hidden degrees model is dealt with using birthday paradox techniques

formalized by Ron and Tsur [204]. It is possible to estimate the degree dv using

O(
√
dv) neighbor queries. But this adds overhead to the algorithm, especially for

estimating the ccdh at the tail. As discussed earlier, we need methods that bias

towards higher degrees, but this significantly adds to the query cost of actually

estimating the degrees.

107

6.1.5 Related Work

There is a rich body of literature on generating a graph sample that reveals

graph properties of the larger “true" graph. We do not attempt to fully survey

this literature, and only refer to results directly related to our work. The works

of Leskovec & Faloutsos [160], Maiya & Berger-Wolf [167], and Ahmed, Neville,

& Kompella [10, 13] provide excellent surveys of multiple sampling methods.

There are a number of sampling methods based on random crawls:

forest-fire [160], snowball sampling [167], and expansion sampling [160]. As

has been detailed in previous work, these methods tend to bias certain parts

of the network, which can be exploited for more accurate estimates of various

properties [160, 167, 202]. A series of papers by Ahmed, Neville, and Kompella [8–

10, 13] have proposed alternate sampling methods that combine random vertices

and edges to get better representative samples.

All these results aim to capture numerous properties of the graph, using a single

graph sample. Nonetheless, there is much previous work focused on the degree

distribution. Ribiero and Towsley [202] and Stumpf and Wiuf [229] specifically

study degree distributions. Ribiero and Towsley [202] do detailed analysis on

degree distribution estimates (they also look at the ccdh) for a variety of these

sampling methods. Their empirical results show significant errors either at the

head or the tail. We note that almost all these results end up sampling up to 20%

of the graph to estimate the degree distribution.

Zhang et al. observe that the degree distribution of numerous sampling

methods is a random linear projection of the true distribution [270]. They attempt

to invert this (ill-conditioned) linear problem, to correct the biases. This leads

to improvement in the estimate, but the empirical studies typically sample more

than 10% of the vertices for good estimates.

108

A recent line of work by Soundarajan et al. on active probing also has flavors

of graph sampling [226, 227]. In this setting, we start with a small, arbitrary

subgraph and try to grow this subgraph to achieve some coverage objective

(like discover the maximum new vertices, find new edges, etc.). The probing

schemes devised in these papers outperform uniform random sampling methods

for coverage objectives.

Some methods try to match the shape/family of the distribution, rather

than estimate it as a whole [229]. Thus, statistical methods can be used to

estimate parameters of the distribution. But it is reasonably well-established that

real-world degree distributions are rarely pure power laws in most instances [65].

Indeed, fitting a power law is rather challenging and naive regression fits on log-log

plots are erroneous, as results of Clauset-Shalizi-Newman showed [65].

The subfield of property testing and sublinear algorithms for sparse graphs

within theoretical computer science can be thought of as a formalization of graph

sampling to estimate properties. Indeed, our description of the main problem

follows this language. There is a very rich body of mathematical work in this area

(refer to Ron’s survey [203]). Practical applications of graph property testing

are quite rare, and we are only aware of one previous work on applications for

finding dense cores in router networks [114]. The specific problem of estimating

the average degree (or the total number of edges) was studied by Feige [103]

and Goldreich-Ron [112]. Gonen et al. and Eden et al. focus on the problem

of estimating higher moments of the degree distribution [91, 113]. One of the

main techniques we use of simulating edge queries was developed in sublinear

algorithms results of Eden et al. [90, 91] in the context of triangle counting and

degree moment estimation. We stress that all these results are purely theoretical,

and their practicality is by no means obvious.

109

On the practical side, Dasgupta, Kumar, and Sarlos study average degree

estimation in real graphs, and develop alternate algorithms [81]. They require

the graph to have low mixing time and demonstrate that the algorithm has

excellent behavior in practice (compared to implementations of Feige’s and the

Goldreich-Ron algorithm [103, 112]). Dasgupta et al. note that sampling uniform

random vertices is not possible in many settings, and thus they consider a

significantly weaker setting than SM or HDM. Chierichetti et al. focus on sampling

uniform random vertices, using only a small set of seed vertices and neighbor

queries [62].

We note that there is a large body of work on sampling graphs from a

stream [175]. This is quite different from our setting, since a streaming algorithm

observes every edge at least once. The specific problem of estimating the degree

distribution at all scales was considered by Simpson et al. [223]. They observe

many of the challenges we mentioned earlier: the difficulty of estimating the tail

accurately, finding vertices at all degree scales, and combining estimates from the

head and the tail.

6.2 Preliminaries

We say that the input graph G has n vertices and m edges and m ≥ n

(since isolated vertices are not relevant here). For any vertex v, let Γ(v) be

the neighborhood of v, and dv be the degree. As mentioned earlier, n(d) is the

number of vertices of degree d and N(d) = ∑
r≥d n(r) is the ccdh at d. We use

“u.a.r." as a shorthand for “uniform at random". We stress that the all mention of

probability and error is with respect to the randomness of the sampling algorithm.

There is no stochastic assumption on the input graph G. We use the shorthand

A ∈ (1±α)B for A ∈ [(1−α)B, (1 +α)B]. We will apply the following (rescaled)

110

Chernoff bound.

Theorem 6.2.1. [Theorem 1 in [83]] Let X1, X2, . . . , Xk be a sequence of iid

random variables with expectation µ. Furthermore, Xi ∈ [0, B].

• For ε < 1, Pr[|∑k
i=1Xi − µk| ≥ εµk] ≤ 2 exp(−ε2µk/3B).

• For t ≥ 2eµ, Pr[∑k
i=1Xi ≥ tk] ≤ 2−tk/B.

6.2.1 More on Fatness indices

The following characterization of the h-index will be useful for analysis. Since

(d+N(d))/2 ≤ max(d,N(d)) ≤ d+N(d), this proves that mind(d+N(d))/2 is a

2-factor approximation to the h-index.

Lemma 6.2.2. mind max(d,N(d)) ∈ {h, h+ 1}

Proof. Let s = mind max(d,N(d)) and let the minimum be attained at d∗. If there

are multiple minima, let d∗ be the largest among them. We consider two cases.

(Note that N(d) is a monotonically non-increasing sequence.)

Case 1: N(d∗) ≥ d∗. So s = N(d∗). Since d∗ is the largest minimum, for any

d > d∗, d > N(d∗). (If not, then the minimum is also attained at d > d∗.) Thus,

d > N(d∗) ≥ N(d). For any d < d∗, N(d) ≥ N(d∗) ≥ d∗ > d. We conclude that

d∗ is largest d such that N(d) ≥ d. Thus, h = d∗.

If s 6= h, then d∗ < N(d∗). Then, N(d∗ + 1) < N(d∗), otherwise the minimum

would be attained at d∗ + 1. Furthermore, max(d∗ + 1, N(d∗ + 1)) > N(d∗),

implying d∗ + 1 > N(d∗). This proves that h+ 1 > s.

Case 2: d∗ > N(d∗). So s = d∗. For d > d∗, N(d) ≤ N(d∗) < d∗ < d. For

d < d∗, N(d) ≥ d∗ > d (if N(d) < d∗, then d∗ would not be the minimizer). Thus,

d∗ − 1 is the largest d such that N(d) ≥ d, and h = d∗ − 1 = s− 1.

111

The h-index does not measure d vs N(d) at different scales, and a large

h-index only ensures that there are “enough” high-degree vertices. For instance,

the h-index does not distinguish between two different distributions whose ccdh

N1 and N2 are such that N1(100) = 100 and N1(d) = 0 for d > 100, and

N2(100, 000) = 100 and N2(d) = 100 for all other values of d ≥ 100. The h-index

in both these cases is 100.

The h and z-indices are related to each other.

Claim 6.2.3.
√
h ≤ z ≤ h.

Proof. Since N(d) is integral, if N(d) > 0, then N(d) ≥ 1. Thus, for all N(d) > 0,√
max(d,N(d)) ≤ d · N(d) ≤ max(d,N(d)). We take the minimum over all d to

complete the proof.

To give some intuition about these indices, we compute the h and z index for

power laws. The classic power law degree distribution sets n(d) ∝ 1/dγ, where γ

is typically in [2, 3].

Claim 6.2.4. If a degree distribution is bounded below by a power law with

exponent γ, then h = Ω(n
1
γ) and z = Ω(n

1
2(γ−1)).

Proof. Consider d ≤ τn1/γ, where τ is defined according to Definition 6.1.2. Then,

N(d) ≥ bτn/(τ 1/γn(γ−1)/γ)c = Ω(n1/γ). This proves the h-index bound.

Set d∗ = (τn)
1

γ−1 . For d ≤ d∗, N(d) ≥ 1 and d·N(d) ≥ (τ/2)n/dγ−2 = Ω(n
1

γ−1).

If there exists no d > d∗ such that N(d) > 0, then z = Ω(n
1

2(γ−1)). If there does

exist some such d, then z = Ω(
√
d∗) which yields the same value.

Plugging in values, for γ = 2, both h and z are Ω(
√
n). For γ = 3, h = Θ(n1/3)

and z = Θ(n1/4).

112

6.2.2 Simulating degree queries for HDM

The Hidden Degrees Model does not allow for querying the degree dv of a

vertex v. Nonetheless, it is possible to get accurate estimates of dv by sampling

u.a.r. neighbors (with replacement) of v. This can be done by using the birthday

paradox argument, as formalized by Ron and Tsur [204]. Roughly speaking, one

repeatedly samples neighbors until the same vertex is seen twice. If this happens

after t samples, t2 is a constant factor approximation for dv. This argument can be

refined to get accurate approximations for dv using O(
√
dv) random edge queries.

Theorem 6.2.5. [Theorem 3.1 of [204], restated] Fix any α > 0. There is an

algorithm that outputs a value in (1± α)dv with probability > 2/3, and makes an

expected O(
√
dv/α

2) u.a.r. neighbor samples.

For the sake of the theoretical analysis, we will simply assume this theorem. In

the actual implementation of SADDLES, we will discuss the specific parameters

used. It will be helpful to abstract out the estimation of degrees through

the following corollary. The procedure DEG(v) will be repeatedly invoked

by SADDLES. This is a direct consequence of setting α − ε/10 and applying

Theorem ?? with δ = 1/n3.

Corollary 6.2.6. There is an algorithm DEG that takes as input a vertex v, and

has the following properties:

• For all v: with probability > 1−1/n3, the output DEG(v) is in (1±ε/10)dv.

• The expected running time and query complexity of DEG(v) is

O(ε−2√dv log n).

We will assume that invocations to DEG with the same arguments use the

same sequence of random bits. Alternately, imagine that a call to DEG(v, ε)

stores the output, so subsequent calls output the same value. For the sake of

113

analysis, it is convenient to imagine that DEG(v) is called once for all vertices v,

and these results are stored.

Definition 6.2.7. The output DEG(v) is denoted by d̂v. The random bits used

in all calls to DEG is collectively denoted Λ. (Thus, Λ completely specifies all

the values {d̂v}.) We say Λ is good if ∀v ∈ V , d̂v ∈ (1± ε/10)dv.

The following is a consequence of conditional probabilities.

Claim 6.2.8. Consider any event A, such that for any good Λ, Pr[A|Λ] ≥ p.

Then Pr[A] ≥ p− 1/n2.

Proof. The probability that Λ is not good is at most the probability that for some

v, DEG(v) /∈ (1±ε/10). By the union bound and Corollary 6.2.6, the probability

is at most 1/n2.

Note that

Pr[A] ≥ ∑Λgood Pr[Λ] Pr[A|Λ] ≥ pPr[Λ is good]. Since Λ is good with probability

at least 1− 1/n2, Pr[A] ≥ (1− 1/n2)p ≥ p− 1/n2.

For any fixed Λ, we set N̂Λ(d) to be |{v|d̂v ≥ d}|. We will perform the analysis

of SADDLES with respect to the N̂Λ-values.

Claim 6.2.9. Suppose Λ is good. For all v, N̂Λ(v) ∈ [N((1 + ε/9)d), N((1 −

ε/9)d)].

Proof. Since Λ is good, ∀u, d̂u ∈ (1 ± ε/10)du, Furthermore, if du ≥ (1 + ε/9)d,

then d̂u ≥ (1 − ε/10)(1 + ε/9)d ≥ d. Analogously, if du ≤ (1 − ε/9)d, then

d̂u ≤ (1 + ε/10)(1 − ε/9)d ≤ d. Thus, {u|du ≥ d(1 + ε/9)} ⊆ {u|d̂u ≥ d} ⊆

{u|du ≥ d(1− ε/9)}.

114

6.3 The Main Result and SADDLES

We begin by stating the main result, and explaining how heavy tails lead to

sublinear algorithms. Note that D refers to a set of degrees, for which we desire

an approximation to N(d).

Theorem 6.3.1. There exists an algorithm SADDLES with the following

properties. Let c be a sufficiently large constant. Fix any ε > 0, δ > 0. Suppose

that the parameters of SADDLES satisfy the following conditions: r ≥ cε−2n/h,

q ≥ cε−2m/z2, ` ≥ c log(n/δ), τ ≥ cε−2.

Then with probability at least 1 − δ, for all d ∈ D, SADDLES outputs an

(ε, ε)-approximation of N(d).

The expected number of queries made depends on the model, and is independent

of the size of D.

• SM: O((n/h+m/z2)(ε−2 log(n/δ))).

• HDM: O((m/z)(ε−4 log2(n/δ))).

Observe how a larger h and z-index lead to smaller running times. Ignoring

constant factors and assuming m = O(n), asymptotically increasing h and

z-indices lead to sublinear algorithms.

We now describe the algorithm itself. The main innovation in SADDLES

comes through the use of a recent theoretical technique to simulate edge samples

through vertex samples [90, 91]. The sampling of edges occurs through two

stages. In the first stage, the algorithm samples a set of r vertices and sets up a

distribution over the sampled vertices such that any edge adjacent to a sampled

vertex may be sampled with uniform probability. In the second stage, it samples

q edges from this distribution.

For each edge, we compute a weight based on the degrees of its vertices and

generate our estimate by averaging these weights. Additionally, we use vertex

115

sampling to estimate the head of the distribution. Straightforward Chernoff bound

arguments can be used to determine when to use the vertex sampling over the

edge sampling method.

The same algorithmic structure is used for the Standard Model and the Hidden

Degrees Model. The only difference is the use the algorithm of Corollary 6.2.6

to estimate degrees in the HDM, while the degrees are directly available in the

Standard Model.

The core theoretical bound: The central technical bound deals with the

properties of each individual estimate Ñ(d)[t].

Theorem 6.3.2. Suppose r ≥ cε−2n/h, q ≥ cε−2m/z2, τ = cε−2. Then, for all

d ∈ D, with probability ≥ 5/6, Ñ(d)[t] ∈ [(1− ε/2)N((1 + ε/2)d), (1 + ε/2)N((1−

ε/2)d].

The proof of this theorem is the main part of our analysis, which appears in

the next section. Theorem6.3.1 can be derived from this theorem, as we show

next.

Proof. (of Theorem6.3.1) First, let us prove the error/accuracy bound. For a fixed

d ∈ D and t ≤ `, Theorem6.3.2 asserts that we get an accurate estimate with

probability ≥ 5/6. Among the ` independent invocations, the probability that

more than `/3 values of Ñ(d)[t] lie outside [(1−ε/2)N((1+ε/2)d), (1+ε/2)N((1−

ε/2)d] is at most exp(−`/100) (by the Chernoff bound of Theorem6.2.1). By the

choice of ` ≥ c log(n/δ), the probability is at most δ/n. Thus, with probability

> 1 − δ/n, the median of Ñ(d)[t] gives an (ε, ε) estimate of N(d). By a union

bound over all (at most n) d ∈ D, the total probability of error over any d is at

most δ.

116

Algorithm 18: SADDLES(D, r, q, `, τ)
Inputs:
D: set of degrees for which N(d) is to be computed
r: budget for vertex samples
q: budget for edge samples
`: boosting parameter
τ : cutoff for vertex sampling
Output:
{N ′(d)}: estimated {N(d)}
1 For t = 1, . . . , `:
2 For i = 1, . . . , r:
3 Select u.a.r. vertex v and add it to multiset R.
4 In HDM, call DEG(v) to get d̂v. In SM, set d̂v to dv.
5 For d ∈ D:
6 If d̂v ≥ d, set Xid = 1. Else, Xid = 0.
7 Let d̂R = ∑

v∈R d̂v and D denote the distribution over R where v ∈ R is
selected with probability d̂v/d̂R.

8 For i = 1, . . . , q:
9 Sample v ∼ D.

10 Pick u.a.r. neighbor u of v.
11 In HDM, call DEG(u) to get d̂u. In SM, set d̂u to du.
12 For d ∈ D:
13 If d̂u ≥ d, set Yid = 1/d̂u. Else, set Yid = 0.
14 For d ∈ D:
15 If ∑i≤rXid ≥ τ :
16 Ñ(d)[t] = n

r

∑
i≤rXid.

17 else Ñ(d)[t] = n
r
· d̂R
q

∑
i≤q Yid.

18 For d ∈ D:
19 N ′(d) = median{Ñ(d)}
20 Return {N ′(d)}

117

Now for the query complexity. The overall algorithm is the same for both

models, involving multiple invocations of SADDLES. The only difference is in

DEG, which is trivial when degree queries are allowed. For the Standard Model,

the number of graph queries made for a single invocation of SADDLES is simply

O(`(r + q)) = O(ε−2(n/h+m/z2) log(n/δ)).

For the Hidden Degrees Model, we have to account for the overhead of

Corollary 6.2.6 for each degree estimated. The number of queries for a single

call to DEG(d) is O(ε−2√dv log n). The total overhead of all calls in Step 4 is

E[∑v∈R
√
dv(ε−2 log n)]. By linearity of expectation, this is O((ε−2 log n)rE[

√
dv],

where the expectation is over a uniform random vertex. We can bound rE[
√
dv]

≤ rE[dv] = O(ε−2n(m/n)/h) = O(ε−2n/h).

The total overhead of all calls in Step 11 requires more care. Note that when

DEG(v) is called multiple times for a fixed v, the subsequent calls require no

further queries. (This is because the output of the first call can be stored.) We

partition the vertices into two sets S0 = {v|dv ≤ z2} and S1 = {v|dv > z2}.

The total query cost of queries to S0 is at most O(qz) = O((ε−2 log n)m/z).

For the total cost to S1, we directly bound by (ignoring the ε−2 log n factor)∑
v∈S1

√
dv = ∑

v∈S1 dv/
√
dv ≤ z−1∑

v dv = O(m/z). All in all, the total query

complexity is O((ε−4 log2 n)(n/h+m/z)). Sincem ≥ n and z ≤ h, we can simplify

to O((ε−4 log2 n)(m/z)).

6.4 Analysis of SADDLES

We now prove Theorem6.3.2. There are a number of intermediate claims

towards that. We will fix d ∈ D and a choice of t. Abusing notation, we use

Ñ(d) to refer to Ñ(d)[t]. The estimate of Step 16 can be analyzed with a direct

Chernoff bound.

118

Claim 6.4.1. The following holds with probability > 9/10. If SADDLES(r, q)

outputs an estimate in Step 16 for a given d, then Ñ(d) ∈ (1± ε/10)N̂Λ(d). If it

does not output in Step 16, then N̂Λ(d) < (2c/ε2)(n/r).

Proof. Each Xi is an iid Bernoulli random variable, with success probability

precisely N̂Λ(d)/n. We split into two cases.

Case 1: N̂Λ(d) ≥ (c/10ε2)(n/r). By the Chernoff bound of Theorem6.2.1,

Pr[|∑i≤rXi − rN̂Λ(d)/n| ≥ (ε/10)(rN̂Λ(d)/n)] ≤ 2 exp(−(ε2/100)(rN̂Λ(d)/n) ≤

1/100.

Case 2: N̂Λ(d) ≤ (c/10ε2)(n/r). Note that E[∑i≤rXi] ≤ c/10ε2 ≤ (c/ε2)/2e.

By the upper tail bound of Theorem6.2.1, Pr[∑i≤rXi ≥ c/ε2] < 1/100.

Thus, with probability at least 99/100, if an estimate is output in Step 16,

N̂Λ(d) > (c/10ε2)(n/r). By the first case, with probability at least 99/100, Ñ(d)

is a (1 + ε/10)-estimate for N̂Λ(d). A union bound completes the first part.

Furthermore, if N̂Λ(d) ≥ (2c/ε2)(n/r), then with probability at least 99/100,∑
i≤rXi ≥ (1 − ε/10)rN̂Λ(d)/n ≥ c/ε2 = τ . A union bound proves (the

contrapositive of) the second part.

We define weights of ordered edges. The weight only depends on the second

member in the pair, but allows for a more convenient analysis. The weight of

〈v, u〉 is the random variable Yi of Step 13.

Definition 6.4.2. The d-weight of an ordered edge 〈v, u〉 for a given Λ (the

randomness of DEG) is defined as follows. We set wtΛ,d(〈v, u〉) to be 1/d̂u if

d̂u ≥ d, and zero otherwise. For vertex v, wtΛ,d(v) = ∑
u∈Γ(v) wtΛ,d(〈v, u〉).

The utility of the weight definition is captured by the following claim. The

total weight is an approximation of Ñ(d), and thus, we can analyze how well

SADDLES approximates the total weight.

119

Claim 6.4.3. If Λ is good, ∑v∈V wtΛ,d(v) ∈ (1± ε/9)N̂Λ(d).

Proof.

∑
v∈V

wtΛ,d(v) =
∑
v∈V

∑
u∈Γ(v)

1d̂u≥d/d̂u

=
∑

u:d̂u≥d

∑
v∈Γ(u)

1/d̂u =
∑

u:d̂u≥d

du/d̂u (6.1)

Since Λ is good, ∀u, d̂u ∈ (1 ± ε/10)du, and du/d̂u ∈ (1 ± ε/9). Applying in

(??), ∑v∈V wtΛ,d(v) ∈ (1± ε/9)N̂Λ(d).

We come to an important lemma, that shows that the weight of the random

subset R (chosen in Step 3) is well-concentrated. This is proven using a Chernoff

bound, but we need to bound the maximum possible weight to get a good bound

on r = |R|.

Lemma 6.4.4. Fix any good Λ and d. Suppose r ≥ cε−2n/d. With probability at

least 9/10, ∑v∈R wtΛ,d(v) ∈ (1± ε/8)(r/n)N̂Λ(d).

Proof. Let wt(R) denote ∑v∈R wtΛ,d(v). By linearity of expectation, E[wt(R)]

= (r/n)· ∑v∈V wtΛ,d(v) ≥ (r/2n)N̂Λ(d). To apply the Chernoff bound, we need

to bound the maximum weight of a vertex. For good Λ, the weight wtΛ,d of any

ordered pair is at most 1/(1− ε/10)d ≤ 2/d. The number of neighbors of v such

that d̂u ≥ d is at most N̂Λ(d). Thus, wtΛ,d(v) ≤ 2N̂Λ(d)/d.

By the Chernoff bound of Theorem6.2.1 and setting r ≥ cε−2n/d,

Pr [|wt(R)− E[wt(R)]| > (ε/20)E[wt(R)]]

< 2 exp
(
−ε

2 · (cε−2n/d) · (N̂Λ(d)/2n)
3 · 202 · 2N̂Λ(d)/d

)
≤ 1/10

With probability at least 9/10, wt(R) ∈ (1 ± ε/20)E[wt(R)]. By the arguments

120

given above, E[wt(R)] ∈ (1 ± ε/9)(r/n)N̂Λ(d). We combine to complete the

proof.

Now, we determine the number of edge samples required to estimate the weight

wtΛ,d(R).

Lemma 6.4.5. Let Ñ(d) be as defined in Step 17 of SADDLES. Assume Λ

is good, r ≥ cε−2n/d, and q ≥ cε−2m/(dN̂Λ(d)). Then, with probability > 7/8,

Ñ(d) ∈ (1± ε/4)N̂Λ(d).

Proof. We define the random set R selected in Step 3 to be sound if the following

hold. (1) wt(R) = ∑
v∈R wtΛ,d(v) ∈ (1 ± ε/8)(r/n)N̂Λ(d) and (2) ∑v∈R dv ≤

100r(2m/n). By Lemma6.4.4, the first holds with probability > 9/10. Observe

that E[∑v∈R dv] = r(2m/n), since 2m/n is the average degree. By the Markov

bound, the second holds with probability > 99/100. By the union bound, R is

sound with probability at least 1− (1/10 + 1/100) > 8/9.

Fix a sound R. Recall Yi from Step 13. The expectation of Yi|R

is ∑v∈R Pr[v is selected]· ∑u∈Γ(v) Pr[u is selected]wtΛ,d(〈v, u〉). We plug in the

probability values, and observe that for good Λ, for all v, d̂v/dv ∈ (1± ε/10).

E[Yi|R] =
∑
v∈R

(d̂v/d̂R)
∑

u∈Γ(v)
(1/dv)wtΛ,d(〈v, u〉)

= (1/d̂R)
∑
v∈R

(d̂v/dv)
∑

u∈Γ(v)
wtΛ,d(〈v, u〉)

∈ (1± ε/10)(1/d̂R)
∑
v∈R

∑
u∈Γ(v)

wtΛ,d(〈v, u〉)

∈ (1± ε/10)(wt(R)/d̂R) (6.2)

Note that Ñ(d) = (n/r)(d̂R/q)
∑
i≤q Yi and (n/r)(d̂R/q)E[∑i≤q Yi|R] ∈ (1 ±

ε/10)(n/r)wt(R). Since R is sound, the latter is in (1 ± ε/4)N̂Λ(d). Also, note

121

that

E[Yi|R] = E[Y1|R] ≥ qwt(R)
2d̂R

≥ (r/n)N̂Λ(d)
4(100r(2m/n) = N̂Λ(d)

800m (6.3)

By linearity of expectation, E[∑i≤q Yi|R] = qE[Y1|R]. Observe that Yi ≤ 1/d.

We can apply the Chernoff bound of Theorem6.2.1 to the iid random variables

(Yi|R).

Pr[|
∑
i

Yi − E[
∑
i

Yi]| > (ε/100)E[
∑
i

Yi]|R]

≤ 2 exp
(
− ε2

3 · 1002 · d · qE[Y1|R]
)

(6.4)

We use (??) to bound the (positive) term in the exponent is at least

ε2

3 · 1002 ·
cε−2m

N̂Λ(d)
· N̂Λ(d)

800m ≥ 10.

Thus, if R is sound, the following bound holds with probability at least 0.99. We

also apply (??).

N̂Λ(d) = (n/r)(d̂R/q)
q∑
i=1

Yi

∈ (1± ε/100)(n/r)(d̂R/q)qE[Yi|R]

∈ (1± ε/100)(1± ε/10)(n/r)wt(R) ∈ (1± ε/4)Ñ(d)

The probability that R is sound is at least 8/9. A union bound completes the

proof.

The bounds on r and q in Lemma6.4.5 depend on the degree d. We now bring

in the h and z-indices to derive bounds that hold for all d. We also remove the

conditioning over a good Λ.

Proof. (of Theorem6.3.2) We will first assume that Λ is good. By Claim 6.2.9,

122

N̂Λ(d) ∈ [N((1 + ε/9)d,N((1− ε/9)d)].

Suppose N̂Λ(d) = 0, so there are no vertices with d̂v ≥ d. By the bound above,

N((1 + ε/9)d) = 0, implying that N((1 + ε/2)d) = 0. Furthermore Ñ(d) = 0,

since the random variables Xi and Yi in SADDLES can never be non-zero. Thus,

Ñ(d) = N((1 + ε/2)d), completing the proof.

We now assume that N̂Λ(d) > 0. We split into two cases, depending on

whether Step 16 outputs or not. By Claim 6.4.1, with probability > 9/10, if

Step 16 outputs, then Ñ(d) ∈ (1 ± ε/9)N̂Λ(d). By combining these bounds, the

desired bound on Ñ(d) holds with probability > 9/10, conditioned on a good Λ.

Henceforth, we focus on the case that Step 16 does not output. By Claim 6.4.1,

N̂Λ(d) < 2cε−2(n/r). By the choice of r and Claim 6.2.9, N̂Λ((1 + ε/9)d) < h.

By the characterization of h of Lemma6.2.2, z2 ≤ max(N̂Λ((1 + ε/9)d), (1 +

ε/9)d) = (1 + ε/9)d. This implies that r ≥ cε−2n/d. By the definition of z,

z2 ≤ N(min(dmax, (1 + ε/9)d)) ·min(dmax, (1 + ε/9)d). By the Claim 6.2.9 bound

in the first paragraph, N̂Λ(d) ≥ N((1 + ε/9)d). Since N̂Λ(d) > 0, N̂Λ(d) ≥

N̂Λ(dmax). Thus, z2 ≤ N̂Λ(d) · (1 + ε/9)d. and hence, m ≤ cε−2m/(dN̂Λ(d)).

The parameters satisfy the conditions in Lemma6.4.5. With probability > 7/8,

Ñ(d) ∈ (1± ε/4)N̂Λ(d), and by Claim 6.2.9, Ñ(d) has the desired accuracy.

All in all, assuming Λ is good, with probability at least 7/8, Ñ(d) has the

desired accuracy. The conditioning on a good Λ is removed by Claim 6.2.8 to

complete the proof.

6.5 Experimental Results

We implemented our algorithm in C++ and performed our experiments on a

MacBook Pro laptop with 2.7 GHz Intel Core i5 with 8 GB RAM. We performed

our experiments on a collection of graphs from SNAP [159], including social

123

networks, web networks, and infrastructure networks. The graphs typically have

millions of edges, with the largest having more than 100M edges. Basic properties

of these graphs are presented in Table 6.1. We ignore direction and treat all edges

as undirected edges.

6.5.1 Implementation Details

For the HDM, we explicitly describe the procedure DEG(v), which estimates

the degree of a given vertex (v). In the algorithm DEG, a “pair-wise

Algorithm 19: DEG(v)
1 (Initialize S = ∅.) Repeatedly add u.a.r. vertex to S, until the number of
pair-wise collisions is at least k = 25.

2 Output
(
|S|
2

)
/k as estimate d̂v.

collision" refers to a pair of neighbor samples that yield the same vertex. The

expected number of pair-wise collisions is
(
|S|
2

)
/dv. We simply reverse engineer

that inequality to get the estimate d̂v. Ron and Tsur essentially prove that this

estimate has low variance [204].

Setting the parameter values. The boosting parameter ` is simply set to

1. (In some sense, we only introduced the median boosting for the theoretical

union bound. In practice, convergence is much more rapid that predicted by the

Chernoff bound.)

The threshold τ is set to 100. The parameters r and q are chosen to be typically

around 0.005n. These are not “sublinear" per se, but are an order of magnitude

smaller than the queries made in existing graph sampling results (more discussion

in next section).

We set D = {b1.1ic}, since that gives a sufficiently fine-grained approximation

at all scales of the degree distribution.

124

Table 6.1: Graph properties: #vertices (n), #edges (m), maximum degree,
h-index and z-index. The last column indicates the median number of samples
over 100 runs (as a percentage of m) required by SADDLES under HDM, with
r + q = 0.01n.

max. avg. Perc. edge
graph #vertices #edges degree degree H-index Z-index samples for HDM
loc-gowalla 1.97E+05 9.50E+05 14730 4.8 275 101 7.0
web-Stanford 2.82E+05 1.99E+06 38625 7.0 427 148 6.4
com-youtube 1.13E+06 2.99E+06 28754 2.6 547 121 11.7
web-Google 8.76E+05 4.32E+06 6332 4.9 419 73 6.2
web-BerkStan 6.85E+05 6.65E+06 84230 9.7 707 220 5.5
wiki-Talk 2.39E+06 9.32E+06 100029 3.9 1055 180 8.5
as-skitter 1.70E+06 1.11E+07 35455 6.5 982 184 6.7
cit-Patents 3.77E+06 1.65E+07 793 4.3 237 28 5.6
com-lj 4.00E+06 3.47E+07 14815 8.6 810 114 4.7
soc-LiveJournal1 4.85E+06 8.57E+07 20333 17.7 989 124 2.4
com-orkut 3.07E+06 1.17E+08 33313 38.1 1638 172 2.0

Code for all experiments is available here1.

6.5.2 Evaluation of SADDLES

Accuracy over all graphs: We run SADDLES with the parameters

discussed above for a variety of graphs. Because of space considerations, we do

not show results for all graphs in this version. (We discovered the results to be

consistent among all our experiments.) Fig. 6.1 show the results for the SM for

some graphs in Tab. 6.1. For all these runs, we set r + q to be 1% of the number

of vertices in the graph. Note that the sample size of SADDLES in the SM is

exactly r + q. For the HDM, we show results in Fig. 6.2. Again, we set r + q

to be 1%, though the number of edges sampled (due to invocations of DEG(v))

varies quite a bit. The required number of samples are provided in Tab. 6.1. Note

that the number of edges sampled is well within 10% of the total, except for the

com-youtube graph.

Visually, we can see that the estimates are accurate for all degrees, in all

graphs, for both models. This is despite there being sufficient irregular behavior
1https://sjain12@bitbucket.org/sjain12/saddles.git

125

https://sjain12@bitbucket.org/sjain12/saddles.git

in N(d). Note that the shape of the various ccdhs are different and none of them

form an obvious straight line. Nonetheless, SADDLES captures the distribution

almost perfectly in all cases by observing 1% of the vertices.

(a) as-skitter (b) loc-gowalla

(c) web-google (d) wiki-Talk

Figure 6.2: The result of runs of SADDLES on a variety of graphs, for the
HDM. We set r+ q to be 1% of the number of vertices, for all graphs. The actual
number of edges sampled varies, and is given in Tab. 6.1.

Convergence: To demonstrate convergence, we fix the graph com-orkut, and

run SADDLES only for the degrees 10, 100, and 1000. For each choice of degree,

we vary the total number of samples r+ q. (We set r = q in all runs.) Finally, for

each setting of r + q, we perform 100 independent runs of SADDLES.

For each such run, we compute an error parameter α. Suppose the output of

a run is M , for degree d. The value of α is the smallest value of ε, such that

M ∈ [(1− ε)N((1 + ε)d), (1 + ε)N((1− ε)d)]. (It is the smallest ε such that M is

an (ε, ε)-approximation of N(d).)

Fig. 6.3 shows the spread of α, for the 100 runs, for each choice of r + q.

126

Observe how the spread decreases as r+ q goes to 10%. In all cases, the values of

α decay to less than 0.05. We notice that convergence is much faster for d = 10.

This is because N(10) is quite large, and SADDLES is using vertex sampling to

estimate the value.

(a) d = 10 (b) d = 100

(c) d = 1000 (d) d = 10000

Figure 6.3: Convergence of SADDLES: We plot the values of the error
parameter α (as defined in §6.5.2) for 100 runs at increasing values of r + q.
We have a different plot for d = 10, 100, 1000, 10000 to show the convergence at
varying portions of the ccdh.

Large value of h and z-index on real graphs: The h and z-index of

all graphs is given in Tab. 6.1. Observe how they are typically in the hundreds.

Note that the average degree is typically an order of magnitude smaller than

these indices. Thus, a sample size of n/h + m/z2 (as given by Theorem6.3.1,

ignoring constants) is significantly sublinear. This is consistent with our choice of

r + q = n/100 leading to accurate estimates for the ccdh.

127

6.5.3 Comparison with previous work

There are several graph sampling algorithms that have been discussed in [13,

88, 158, 160, 196, 202, 270]. In all of these methods we collect the vertices and

scale their counts appropriately to get the estimated ccdh. We describe these

methods below in more detail, and discuss our implementation of the method.

• Vertex Sampling (VS, also called egocentric sampling) [10, 88, 158, 160,

196, 202]: In this algorithm, we sample vertices u.a.r. and scale the ccdh obtained

appropriately, to get an estimate for the ccdh of the entire graph.

• Edge Sampling (ES) [10, 88, 158, 160, 196, 202]: This algorithm samples

edges u.a.r. and includes one or both end points in the sampled network. Note

that this does not fall into the SM. In our implementation we pick a random end

point.

• Random walk with jump (RWJ) [10, 88, 160, 196, 202]: We start a random

walk at a vertex selected u.a.r. and collect all vertices encountered on the path in

our sampled network. At any point, with a constant probability (0.15, based on

previous results) we jump to another u.a.r. vertex.

• One Wave Snowball (OWS) [10, 88, 158]: Snowball sampling starts with

some vertices selected u.a.r. and crawls the network until a network of the desired

size is sampled. In our implementation, we usually stop at the first level since

that accumulates enough vertices.

• Forest fire (FF) [10, 88, 160]: This method generates random sub-crawls

of the network. A vertex is picked u.a.r. and randomly selects a subset of its

neighbors (according to a geometric distribution). The process is repeated from

every selected vertex until it ends. It is then repeated from another u.a.r. vertex.

We run all these algorithms on the amazon0601, web-Google, cit-Patents,

and com-orkut networks. To make fair comparisons, we run each method until

128

it selects 1% of the vertices. The comparisons are shown in Fig. 6.1. Observe

how none of the methods come close to accurately measuring the ccdh. (This is

consistent with previous work, where typically 10-20% of the vertices are sampled

for results.) Naive vertex sampling is accurate at the head of the distribution, but

completely misses the tail. Except for vertex sampling, all other algorithms are

biased towards the tail. Crawls find high degree vertices with disproportionately

higher probability, and overestimate the tail.

Note that our implementations of FF, OWS, RWJ assume access to u.a.r.

vertices. Variants of these algorithms can be used in situations where we only

have access to seed vertices, however, one would typically have to sample many

more edges to deal with larger correlation among the vertices obtained through

the random walks. Despite this extra capability to sample u.a.r. vertices in our

implementation of these algorithms, they show significant errors, particularly in

the tail of the distribution.

Inverse method of Zhang et al [270]: An important result of estimating

degree distributions is that of Zhang et al [270], that explicitly points out the

bias problems in various sampling methods. They propose a bias correction

method by solving a constrained, penalized weighted least-squares problem on

the sampled degree distribution. We apply this method for the sampling methods

demonstrated in their paper, namely VS, OWS, and IN (sample vertices u.a.r. and

only retain edges between sampled vertices). We show results in Fig. 6.1, again

with a sample size of 1% of the vertices. Observe that no method gets even close

to estimating the ccdh accurately, even after debiasing. Fundamentally, these

methods require significantly more samples to generate accurate estimates.

The running time and memory requirements of this method grow superlinearly

with the maximum degree in the graph. The largest graph processed by [270] has

129

a few hundred thousand edges, which is on the smaller side of graphs in Tab. 6.1.

SADDLES processes a graph with more than 100M edges in less than a minute,

while our attempts to run the [270] algorithm on this graph did not terminate in

hours.

6.6 Future work

We presented an algorithm, SADDLES that is able to estimate the degree

distribution of real world graphs by sampling only 1% of the graph which is an

order of magnitude less then most other methods. While this is a first step towards

understanding what can be accomplished when we do not have access to the whole

graph, the ability to be able to sample vertices u.a.r. is arguably, too powerful an

assumption for most real world setups. It would be interesting to see what can

be accomplished when we do not have access to u.a.r. vertices but only to some

seed vertices in the graph.

130

Chapter 7

Conclusion and future work

Clique counting is an important but challenging problem with many

applications. In this thesis, we presented several different tools and techniques

to address this problem. All existing methods were too slow and did not scale for

cliques larger than 5 vertices. As a first step towards more efficient algorithms,

we presented TuránShadow - a randomized algorithm based on Turán’s theorem

that was able to count cliques upto 10 vertices and was much faster and more

accurate in estimating the number of cliques than existing methods.

While TuránShadow provided the first significant improvement in clique

counting, it had it’s limitations. Specifically, it required us to store the entire

shadow - a set of small subgraphs of the given graph. For large graphs with

billions of edges, the amount of space required to store the shadow can become

prohibitively large. The heuristic introduced in Inverse-TS gives an estimator

based on TuránShadow that is able to sample and estimate the count of cliques

without requiring to store the entire shadow. This results in significant savings in

space.

We also explored how the efficient mining and counting of cliques can help us

in mining and counting other clique-like structures called near-cliques. Generic

131

pattern-finding algorithms fail to utilize the clique like structure of near-cliques

and Inverse-TS gives orders of magnitude improvement over them. Using

Inverse-TS we were able to estimate the counts of near-cliques (cliques missing

atmost 2 edges) of upto 10 vertices in several graphs with millions of vertices and

edges which was not possible using previous methods.

Finally, in a completely different approach to clique counting, we used pivoting

to massively cut down the search space of cliques resulting in a tremendous

improvement over all existing clique counting methods. For a graph with 100

million edges, Pivoter was able to count all k−cliques (largest k for this

graph was 61) exactly in less than 2 hours, where other methods (including

TuránShadow) was unable to count even in days. Remarkably, it was also able to

give per-edge and per-vertex counts which no other existing methods have been

able to get for graphs with millions of edges. Using Pivoter, local as well as

global clique counting has become feasible for a lot of graphs for which it was

infeasible before.

One of the salient features of these techniques is that they did not involve

the use of parallelism. It would be useful and interesting to see how we can

further push the boundaries of what is feasible using parallelism and specialized

hardware like that of MapReduce. While these paradigms require different

thinking when designing algorithms for them, we believe that the ideas presented

here can be applied in the parallel setup and that will definitely lead to significant

improvements. This would be especially useful for addressing clique counting for

graphs like com-lj whose size and structure make clique counting difficult even

for Pivoter.

It would be also useful to investigate why these algorithms do not show

worst-case behaviour on real-world graphs and infact run efficiently, and what

132

that implies about the structure of these graphs. The fact that these algorithms

run efficiently on real-world graphs is very telling and understanding this behavior

can possibly lead to faster algorithms for other tasks on graphs.

Over the years, there has been a trend of looking at bigger patterns

and incorporating the information of higher order structures in techniques for

visualizing and analyzing graphs, and we hope that the tools provided here will

open the doors for greater use of cliques and near-cliques, leading to more useful

and meaningful insights.

133

Bibliography

[1] http://en.wikipedia.org/wiki/Scale-free_network.

[2] Proceedings IEEE CSE’09, 12th IEEE International Conference on
Computational Science and Engineering, August 29-31, 2009, Vancouver,
BC, Canada. IEEE Computer Society, 2009. 153

[3] 30th IEEE International Conference on Distributed Computing Systems
Workshops (ICDCS 2010 Workshops), 21-25 June 2010, Genova, Italy.
IEEE Computer Society, 2010. 148

[4] http://facebook.com/press/info.php?statistics, 2012.

[5] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of
traceroute sampling: Or, power-law degree distributions in regular graphs.
Journal of the ACM, 56(4), 2009. 99

[6] Alex T Adai, Shailesh V Date, Shannon Wieland, and Edward M Marcotte.
Lgl: creating a map of protein function with an algorithm for visualizing
very large biological networks. Journal of molecular biology, 340(1):179–190,
2004. 36

[7] Foto N. Afrati, Dimitris Fotakis, and Jeffrey D. Ullman. Enumerating
subgraph instances using map-reduce. In International Conference on Data
Engineering (ICDE), pages 62–73, 2013. 17

[8] N. Ahmed, J. Neville, and R. Kompella. Space-efficient sampling from social
activity streams. In SIGKDD BigMine, pages 1–8, 2012. 100, 108

[9] Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella.
Graph sample and hold: A framework for big-graph analytics. In SIGKDD,
pages 1446–1455. ACM, ACM, 2014.

[10] Nesreen K Ahmed, Jennifer Neville, and Ramana Kompella. Network
sampling: From static to streaming graphs. TKDD, 8(2):7, 2014. 100,
102, 104, 106, 108, 128

134

http://en.wikipedia.org/wiki/Scale-free_network
http://facebook.com/press/info.php?statistics

[11] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield.
Efficient graphlet counting for large networks. In Proceedings of
International Conference on Data Mining (ICDM), 2015. 3, 17, 30

[12] Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, and Nick Duffield.
Efficient graphlet counting for large networks. 2015.

[13] N.K. Ahmed, J. Neville, and R. Kompella. Reconsidering the foundations
of network sampling. In WIN 10, 2010. 100, 108, 128

[14] Kook J. Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches:
sparsification, spanners, and subgraphs. In Principles of Database Systems,
pages 5–14, 2012.

[15] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and
Anthony Wirth. Correlation clustering in data streams. In ICML, 2015.

[16] E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs.
SIAM J. Comput., 2:1–6, 1973. 17, 77

[17] Sinan G. Aksoy, Tamara G. Kolda, and Ali Pinar. Measuring and modeling
bipartite graphs with community structure. Journal of Complex Networks,
2017. to appear. 99

[18] Noga Alon, T. Kaufman, and Michael Krivelevich. Testing triangle-freeness
in general graphs. In Proceedings of the 17th Annual Symposium on Discrete
Algorithms (SODA), 2006.

[19] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity
of approximating the frequency moments. J. Comput. Syst. Sci.,
58(1):137–147, 1999.

[20] Noga Alon, Raphy Yuster, and Uri Zwick. Color-coding: A new method for
finding simple paths, cycles and other small subgraphs within large graphs.
In Symposium on the Theory of Computing (STOC), pages 326–335, 1994.
9, 16, 17, 18, 46, 76

[21] J Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro
Vespignani. Large scale networks fingerprinting and visualization using the
k-core decomposition. In Advances in neural information processing systems,
pages 41–50, 2006. 4, 39

[22] R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds.
In Workshop on Algorithms and Models for the Web-Graph (WAW), pages
25–37, 2009. 25, 46

135

[23] L. Arge, M.T. Goodrich, and N. Sitchinava. Parallel external memory graph
algorithms. In Parallel Distributed Processing Symposium (IPDPS), pages
1 –11, april 2010.

[24] S. M. Arifuzzaman, M. Khan, and M. Marathe. Patric: A parallel algorithm
for counting triangles and computing clustering coefficients in massive
networks. Technical Report 12-042, NDSSL, 2012.

[25] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding
dense subgraphs. Discrete Applied Mathematics, 121(1-3):15–26, 2002.

[26] Haim Avron. Counting triangles in large graphs using randomized matrix
trace estimation. In KDD workshon Large Scale Data Mining, 2010.

[27] László Babai, editor. Proceedings of the 36th Annual ACM Symposium on
Theory of Computing, Chicago, IL, USA, June 13-16, 2004. ACM, 2004.
138

[28] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming
algorithms, with an application to counting triangles in graphs. In
Symposium of Discrete Algorith,s, pages 623–632, 2002.

[29] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286:509–512, October 1999. 99, 104

[30] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In KDD’08, pages
16–24, 2008. 2, 16, 46

[31] A. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of
complex networks. Science, 353(6295):163–166, 2016. 3, 72, 75

[32] Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss.
Space-optimal heavy hitters with strong error bounds. ACM Trans.
Database Syst., 35(4):26, 2010.

[33] J. Berry, L. Fosvedt, D. Nordman, C. A. Phillips, and A. G. Wilson. Listing
triangles in expected linear time on power law graphs with exponent at least
7
3 . Technical Report SAND2010-4474c, Sandia National Laboratories, 2011.

[34] Jonathan W. Berry, Luke K. Fostvedt, Daniel J. Nordman, Cynthia A.
Phillips, C. Seshadhri, and Alyson G. Wilson. Why do simple algorithms
for triangle enumeration work in the real world? In Proceedings of the
5th Conference on Innovations in Theoretical Computer Science, ITCS ’14,
pages 225–234, New York, NY, USA, 2014. ACM.

136

[35] Jonathan W. Berry, Bruce Hendrickson, Randall A. LaViolette, and
Cynthia A. Phillips. Tolerating the community detection resolution limit
with edge weighting. Phys. Rev. E, 83:056119, May 2011. 2, 75

[36] J.W. Berry, B. Hendrickson, S. Kahan, and P. Konecny. Software and
algorithms for graph queries on multithreaded architectures. In Parallel
and Distributed Processing Symposium (IPDPS), pages 1 –14, march 2007.

[37] Nadja Betzler, René van Bevern, Michael R. Fellows, Christian
Komusiewicz, and Rolf Niedermeier. Parameterized algorithmics for finding
connected motifs in biological networks. IEEE/ACM Trans. Comput.
Biology Bioinform., 8(5):1296–1308, 2011. 18, 76

[38] M. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan. Guise:
Uniform sampling of graphlets for large graph analysis. In Proceedings of
International Conference on Data Mining, pages 91–100, 2012. 18

[39] M. A. Bhuiyan and M. Al Hasan. Mirage: An iterative mapreduce based
frequent subgraph mining algorithm. Technical report, arXiv, 2013. http:
//arxiv.org/pdf/1307.5894.pdf.

[40] Mansurul A Bhuiyan, Mahmudur Rahman, Mahmuda Rahman, and
Mohammad Al Hasan. Guise: Uniform sampling of graphlets for large graph
analysis. In 2012 IEEE 12th International Conference on Data Mining,
pages 91–100. IEEE, 2012.

[41] Etienne Birmel. Detecting local network motifs. Electron. J. Statist.,
6:908–933, 2012.

[42] I. Bordino, D. Donata, A. Gionis, and S. Leonardi. Mining large networks
with subgraph counting. In Proceedings of International Conference on Data
Mining, pages 737–742, 2008. 46

[43] Jacqueline Bourdeau, Jim Hendler, Roger Nkambou, Ian Horrocks, and
Ben Y. Zhao, editors. Proceedings of the 25th International Conference
on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016.
ACM, 2016. 142

[44] Vladimir Braverman and Rafail Ostrovsky. Approximating large frequency
moments with pick-and-drop sampling. In APPROX, pages 42–57. Springer,
2013.

[45] Marco Bressan, Flavio Chierichetti, Ravi Kumar, Stefano Leucci, and
Alessandro Panconesi. Motif counting beyond five nodes. ACM Transactions
on Knowledge Discovery from Data (TKDD), 12(4):48, 2018. 46

137

http://arxiv.org/pdf/1307.5894.pdf
http://arxiv.org/pdf/1307.5894.pdf

[46] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer
Networks, 33:309–320, 2000. 99, 104

[47] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM, 16(9):575–577, September 1973. 17

[48] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an
undirected graph. Commun. ACM, 16(9):575–577, September 1973. 73, 77,
78

[49] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto
Marchetti-Spaccamela, and Christian Sohler. Counting triangles in data
streams. In Principles of Database Systems, pages 253–262, 2006.

[50] R. Burt. Structural holes and good ideas. American Journal of Sociology,
110(2):349–399, 2004. 2, 17

[51] Venkatesan T. Chakaravarthy, Michael Kapralov, Prakash Murali, Fabrizio
Petrini, Xinyu Que, Yogish Sabharwal, and Baruch Schieber. Subgraph
counting: Color coding beyond trees. CoRR, abs/1602.04478, 2016.

[52] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws,
generators, and algorithms. ACM Computing Surveys, 38(1), 2006. 99

[53] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-MAT: A
recursive model for graph mining. In SDM ’04, pages 442–446, 2004.

[54] Dhruva R. Chakrabarti, Prithviraj Banerjee, Hans-J. Boehm, Pramod G.
Joisha, and Robert S. Schreiber. The runtime abort graph and its
application to software transactional memory optimization. In International
Symposium on Code Generation and Optimization, pages 42–53, 2011.

[55] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent
items in data streams. In Automata, Languages and Programming, pages
693–703. Springer, 2002.

[56] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Linear FPT
reductions and computational lower bounds. In Babai [27], pages 212–221.
3, 14, 17, 30, 76

[57] Jie Chen and Yousef Saad. Dense subgraph extraction with application
to community detection. IEEE Transactions on knowledge and data
engineering, 24(7):1216–1230, 2010. 4, 39

138

[58] H. Chernoff. A measure of asymptotic efficiency for test of a hypothesis
based on the sum of observations. Annals of mathematical statistics,
23:493–507, 1952.

[59] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Annals of Mathematical Statistics,
23(4):493–507, 1952.

[60] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia,
Darren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph
algorithms. In Symposium on Discrete Algorithms (SODA), pages 139–149,
1995.

[61] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM J. Comput., 14:210–223, 1985. 9, 12, 17, 18, 19, 25,
29, 46, 66, 76, 81, 89

[62] F. Chierichetti, A. Dasgupta, R. Kumar, S. Lattanzi, and T. Sarlos. On
sampling nodes in a network. In World Wide Web (WWW), 2016. 102, 110

[63] S. Chu and J. Cheng. Triangle listing in massive networks and its
applications. In Knowledge Data and Discovery (KDD), pages 672–680,
2011.

[64] A. Clauset and C. Moore. Accuracy and scaling phenomena in internet
mapping. Phys. Rev. Lett., 94:018701, 2005. 99

[65] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Review, 51(4):661–703, 2009. 101, 104, 109

[66] Jonathan Cohen. Graph twiddling in a MapReduce world. Computing in
Science & Engineering, 11:29–41, 2009.

[67] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet
to random breakdowns. Phys. Rev. Lett., 85(4626âĂŞ8), 2000. 99

[68] J. Coleman. Social capital in the creation of human capital. American
Journal of Sociology, 94:S95–S120, 1988.

[69] Robert L Cook, Thomas Porter, and Loren Carpenter. Distributed ray
tracing. In ACM SIGGRAPH computer graphics, volume 18, pages 137–145.
ACM, 1984.

[70] Graham Cormode and Donatella Firmani. A unifying framework for
`0-sampling algorithms. Distributed and Parallel Databases, 32(3):315–335,
2014.

139

[71] Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in
data streams. VLDB, 1(2):1530–1541, 2008.

[72] Graham Cormode, Flip Korn, S Muthukrishnan, and Divesh Srivastava.
Diamond in the rough: Finding hierarchical heavy hitters in
multi-dimensional data. In ACM SIGMOD, pages 155–166. ACM, 2004.

[73] Graham Cormode and S Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005.

[74] Graham Cormode and S. Muthukrishnan. Space efficient mining of
multigraph streams. In SIGACT-SIGMOD-SIGART, pages 271–282, 2005.

[75] Graham Cormode and S Muthukrishnan. What’s hot and what’s not:
tracking most frequent items dynamically. TODS, 30(1):249–278, 2005.

[76] Graham Cormode, S Muthukrishnan, and Irina Rozenbaum. Summarizing
and mining inverse distributions on data streams via dynamic inverse
sampling. In VLDB, pages 25–36. VLDB Endowment, 2005.

[77] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a
good basis for counting small subgraphs. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, pages 210–223. ACM,
2017. 46

[78] Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques
in sparse real-world graphs. In Proceedings of the 2018 World Wide Web
Conference on World Wide Web, pages 589–598. International World Wide
Web Conferences Steering Committee, 2018.

[79] Maximilien Danisch, Oana Denisa Balalau, and Mauro Sozio. Listing
k-cliques in sparse real-world graphs. In World Wide Web (WWW), pages
589–598, 2018. 12, 33, 46, 71, 72, 74, 76, 78, 81, 89, 90, 92, 94, 96

[80] Apurba Das, Michael Svendsen, and Srikanta Tirthapura. Change-sensitive
algorithms for maintaining maximal cliques in a dynamic graph. CoRR,
abs/1601.06311, 2016.

[81] A. Dasgupta, R. Kumar, and T. Sarlos. On estimating the average degree.
In World Wide Web (WWW), pages 795–806, 2014. 102, 110

[82] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. Frequency
estimation of internet packet streams with limited space. In Proc. of ESA
2002, pages 348–360. Springer, 2002.

140

[83] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis
of Randomised Algorithms. Cambridge University Press, 2012. 111

[84] Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for
the Analysis of Randomized Algorithms. Cambridge University Press, 2009.
23, 49

[85] N. Durak, T.G. Kolda, A. Pinar, and C. Seshadhri. A scalable null model for
directed graphs matching all degree distributions: In, out, and reciprocal.
In Network Science Workshop (NSW), 2013 IEEE 2nd, pages 23–30, April
2013. 99

[86] N. Durak, A. Pinar, T. G. Kolda, and C. Seshadhri. Degree relations of
triangles in real-world networks and graph models. In CIKM’12, 2012.

[87] David A. Van Dyk and Max Welling, editors. Proceedings of the Twelfth
International Conference on Artificial Intelligence and Statistics, AISTATS
2009, Clearwater Beach, Florida, USA, April 16-18, 2009, volume 5 of
JMLR Proceedings. JMLR.org, 2009. 152

[88] Peter Ebbes, Zan Huang, Arvind Rangaswamy, Hari P Thadakamalla, and
ORGB Unit. Sampling large-scale social networks: Insights from simulated
networks. In 18th Annual Workshop on Information Technologies and
Systems, Paris, France, 2008. 100, 102, 104, 106, 128

[89] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers
hidden thematic layers in the World Wide Web. Proceedings of the National
Academy of Sciences (PNAS), 99(9):5825–5829, 2002.

[90] T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting
triangles in sublinear time. pages 614–633, 2015. 101, 103, 107, 109, 115

[91] T. Eden, D. Ron, and C. Seshadhri. Sublinear time estimation of degree
distribution moments: The degeneracy connection. In GRS11, editor,
International Colloquium on Automata, Languages, and Programming
(ICALP), pages 614–633, 2017. 101, 103, 107, 109, 115

[92] Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C Seshadhri. Provable
and practical approximations for the degree distribution using sublinear
graph samples. In Proceedings of the 2018 World Wide Web Conference,
pages 449–458, 2018. 7

[93] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed
parameter clique and dominating set. Theoretical Computer Science,
326(1):57 – 67, 2004.

141

[94] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G. Dimakis. Beyond triangles: A distributed framework for
estimating 3-profiles of large graphs. In Knowledge Data and Discovery
(KDD), pages 229–238, 2015.

[95] Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G. Dimakis. Distributed estimation of graph 4-profiles. In
Bourdeau et al. [43], pages 483–493. 11

[96] Ethan R Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and
Alexandros G Dimakis. Distributed estimation of graph 4-profiles. In
Proceedings of the 25th International Conference on World Wide Web, pages
483–493. International World Wide Web Conferences Steering Committee,
2016. 46

[97] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal
cliques in sparse graphs in near-optimal time. In International Symposium
on Algorithms and Computation, pages 403–414. Springer, 2010. 17, 77

[98] David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal
cliques in large sparse real-world graphs. ACM Journal of Experimental
Algorithmics, 18, 2013. 73, 77, 80

[99] P. Erdős. On the number of complete subgraphs and circuits contained in
graphs. Casopis Pest. Mat., 94:290–296, 1969. 15, 18, 21

[100] G. Fagiolo. Clustering in complex directed networks. Phys. Rev. E,
76:026107, Aug 2007.

[101] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of
the internet topology. In SIGCOMM, pages 251–262, 1999. 99, 104

[102] K. Faust. A puzzle concerning triads in social networks: Graph constraints
and the triad census. Social Networks, 32(3):221–233, 2010. 2

[103] U. Feige. On sums of independent random variables with unbounded
variance and estimating the average degree in a graph. SIAM Journal on
Computing, 35(4):964–984, 2006. 109, 110

[104] W. Feller. An Introduction to probability theory and applications: Vol I.
John Wiley and Sons, 3rd edition, 1968.

[105] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. Clique counting
in mapreduce: Algorithms and experiments. ACM Journal of Experimental
Algorithmics, 20, 2015. vi, x, 14, 15, 17, 18, 25, 31, 32, 46, 50, 71, 72, 73,
76, 78, 81

142

[106] Peter Floderus, MirosÅĆaw Kowaluk, Andrzej Lingas, and Eva-Marta
Lundell. Induced subgraph isomorphism: Are some patterns substantially
easier than others? Theoretical Computer Science, 605:119 – 128, 2015.

[107] Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim
Batzoglou. Motifcut: regulatory motifs finding with maximum density
subgraphs. Bioinformatics, 22(14):e150–e157, 2006. 4, 39

[108] Christos Giatsidis, Fragkiskos Malliaros, Dimitrios M Thilikos, and Michalis
Vazirgiannis. Corecluster: A degeneracy based graph clustering framework.
In IAAA: Innovative Applications of Artificial Intelligence, 2014. 25

[109] Michelle Girvan and Mark EJ Newman. Community structure in social
and biological networks. Proceedings of the national academy of sciences,
99(12):7821–7826, 2002.

[110] David F. Gleich and C. Seshadhri. Vertex neighborhoods, low conductance
cuts, and good seeds for local community methods. In Knowledge Data and
Discovery (KDD), 2012.

[111] O. Goldreich and D. Ron. Property testing in bounded degree graphs.
Algorithmica, pages 302–343, 2002. 101

[112] O. Goldreich and D. Ron. Approximating average parameters of graphs.
32(4):473–493, 2008. 101, 109, 110

[113] M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other small
subgraphs in sublinear-time. 25(3):1365–1411, 2011. 101, 109

[114] Mira Gonen, Dana Ron, Udi Weinsberg, and Avishai Wool. Finding a
dense-core in jellyfish graphs. Computer Networks, 52(15):2831–2841, 2008.
109

[115] Mira Gonen and Yuval Shavitt. Approximating the number of network
motifs. Internet Mathematics, 6(3):349–372, 2009.

[116] Donald P Greenberg, Kenneth E Torrance, Peter Shirley, James Arvo,
Eric Lafortune, James A Ferwerda, Bruce Walter, Ben Trumbore, Sumanta
Pattanaik, and Sing-Choong Foo. A framework for realistic image synthesis.
In Proceedings of the 24th annual conference on Computer graphics
and interactive techniques, pages 477–494. ACM Press/Addison-Wesley
Publishing Co., 1997.

[117] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 855–864. ACM,
2016. 36

143

[118] Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge
connectivity in dynamic graph streams. In PODS, pages 241–247, 2015.

[119] David Hales and Stefano Arteconi. Motifs in evolving cooperative networks
look like protein structure networks. NHM, 3(2):239–249, 2008.

[120] Guyue Han and Harish Sethu. Waddling random walk: Fast and accurate
mining of motif statistics in large graphs. In Data Mining (ICDM), 2016
IEEE 16th International Conference on, pages 181–190. IEEE, 2016. 46

[121] Robert A. Hanneman and Mark Riddle. Introduction to social network
methods. University of California, Riverside, 2005. http://faculty.ucr.
edu/~hanneman/nettext/. 3, 17

[122] Paul S Heckbert. Adaptive radiosity textures for bidirectional ray tracing.
ACM SIGGRAPH Computer Graphics, 24(4):145–154, 1990.

[123] J. E. Hirsch. An index to quantify an individual’s scientific research output.
Proceedings of the National Academy of Sciences, 102(46):16569âĂŞ16572,
2005. 105

[124] Tomaž Hočevar and Janez Demšar. Combinatorial algorithm for counting
small induced graphs and orbits. PloS one, 12(2):e0171428, 2017. 46

[125] W. Hoeffding. Probability inequalities for sums of bounded random
variables. J. American Statistical Association, 58:13–30, 1963.

[126] P. Holland and S. Leinhardt. A method for detecting structure in sociometric
data. American Journal of Sociology, 76:492–513, 1970. 2, 16, 46

[127] F. Hormozdiari, P. Berenbrink, N. Przulj, and S. Cenk Sahinalp. Not all
scale-free networks are born equal: The role of the seed graph in ppi network
evolution. PLoS Computational Biology, 118, 2007. 2, 18

[128] Joseph J. Pfeiffer III, Timothy La Fond, Sebastián Moreno, and Jennifer
Neville. Fast generation of large scale social networks while incorporating
transitive closures. In International Conference on Privacy, Security, Risk
and Trust (PASSAT), pages 154–165, 2012. 2

[129] Piotr Indyk and David P. Woodruff. Optimal approximations of the
frequency moments of data streams. In STOC, pages 202–208, 2005.

[130] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for
mining frequent substructures from graph dat. In Proceedings of Pacific-Asia
KDD, pages 13–23, 2000.

144

http://faculty.ucr.edu/~hanneman/nettext/
http://faculty.ucr.edu/~hanneman/nettext/

[131] Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo, Michael
Itzkovitz, and Uri Alon. Coarse-graining and self-dissimilarity of complex
networks. 71(016127), January 2005.

[132] Matthew O. Jackson. Social and Economic Networks. Princeton University
Press, 2010. 3, 17

[133] Matthew O. Jackson, Tomas Rodriguez-Barraquer, and Xu Tan. Social
capital and social quilts: Network patterns of favor exchange. American
Economic Review, 102(5):1857?1897, 2012. 17

[134] Shweta Jain and C Seshadhri. A fast and provable method for estimating
clique counts using turán’s theorem. In Proceedings of the 26th International
Conference on World Wide Web, pages 441–449. International World Wide
Web Conferences Steering Committee, 2017. 6, 71, 72, 73, 76, 78, 81, 90,
91, 96

[135] Shweta Jain and C Seshadhri. A fast and provable method for estimating
clique counts using turán’s theorem. In Proceedings of the 26th International
Conference on World Wide Web, pages 441–449. International World Wide
Web Conferences Steering Committee, 2017. 46, 69

[136] Shweta Jain and C Seshadhri. The power of pivoting for exact clique
counting. In Proceedings of the 13th International Conference on Web Search
and Data Mining, pages 268–276, 2020. 7

[137] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A fast and provable
method for estimating 4-vertex subgraph counts. In World Wide Web
(WWW), pages 495–505, 2015. 3, 14, 17, 18, 30, 46, 76

[138] Madhav Jha, C Seshadhri, and Ali Pinar. A space efficient streaming
algorithm for triangle counting using the birthday paradox. In SIGKDD,
pages 589–597. ACM, 2013.

[139] Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming
algorithm for triangle counting using the birthday paradox. In Knowledge
Data and Discovery (KDD), 2013.

[140] H. Jowhari and M. Ghodsi. New streaming algorithms for counting triangles
in graphs. In Computing and Combinatorics Conference (COCOON), pages
710–716, 2005.

[141] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for
lp samplers, finding duplicates in streams, and related problems. In
SIGMOD-SIGACT-SIGART, PODS, pages 49–58, 2011.

145

[142] James T Kajiya. The rendering equation. In ACM Siggraph Computer
Graphics, volume 20, pages 143–150. ACM, 1986.

[143] Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting
arbitrary subgraphs in data streams. In International Colloquium on
Automata, Languages, and Programming, pages 598–609. Springer, 2012.
46

[144] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting
arbitrary subgraphs in data streams. In International Colloquium on
Automata, Languages, and Programming (ICALP), pages 598–609, 2012.

[145] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal
algorithm for the distinct elements problem. In Prof. of PODS, pages 41–5,
2010.

[146] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating
matching size from random streams. In SODA, pages 734–751, 2014.

[147] Richard M Karp, Scott Shenker, and Christos H Papadimitriou. A simple
algorithm for finding frequent elements in streams and bags. TODS,
28(1):51–55, 2003.

[148] Ton Kloks, Dieter Kratsch, and Haiko MÃĳller. Finding and counting small
induced subgraphs efficiently. Information Processing Letters, 74(3):115 –
121, 2000.

[149] Tamara G. Kolda, Ali Pinar, Todd Plantenga, C. Seshadhri, and Christine
Task. Counting triangles in massive graphs with MapReduce. SIAM Journal
of Scientific Computing, 2013. To appear.

[150] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. Tsourakakis. Efficient
triangle counting in large graphs via degree-based vertex partitioning. In
WAW’10, 2010.

[151] Flip Korn, S Muthukrishnan, and Yihua Wu. Modeling skew in data
streams. In SIGMOD, pages 181–192. ACM, 2006.

[152] Flip Korn, S. Muthukrishnan, and Yihua Wu. Modeling skew in data
streams. In SIGMOD, pages 181–192. ACM, 2006.

[153] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew
Tomkins. Trawling the web for emerging cyber-communities. Computer
networks, 31(11-16):1481–1493, 1999. 4, 39

[154] Jérôme Kunegis. The koblenz network collection. http://konect.
uni-koblenz.de, 2015.

146

http://konect.uni-koblenz.de
http://konect.uni-koblenz.de

[155] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network
or a news media? In WWW, 2010.

[156] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in IP
topology measurements. In Proceedings of INFOCOMM, volume 1, pages
332–341, 2003. 99

[157] M. Latapy. Main-memory triangle computations for very large (sparse
(power-law)) graphs. Theoretical Computer Science, 407:458–473, 2008.

[158] Sang Hoon Lee, Pan-Jun Kim, and Hawoong Jeong. Statistical properties
of sampled networks. Physical Review E, 73(1):016102, 2006. 100, 102, 104,
106, 128

[159] Jure Leskovec. Snap stanford network analysis project. http://snap.
standord.edu, 2015. 30, 45, 62, 123

[160] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In
Knowledge Data and Discovery (KDD), pages 631–636. ACM, 2006. 100,
102, 104, 106, 108, 128

[161] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1, 2007.

[162] Ying Li, Bing Liu, and Sunita Sarawagi, editors. Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008. ACM, 2008.

[163] Guimei Liu and Limsoon Wong. Effective pruning techniques for mining
quasi-cliques. In Joint European conference on machine learning and
knowledge discovery in databases, pages 33–49. Springer, 2008. 4, 39

[164] Thomas Locher. Finding heavy distinct hitters in data streams. In
Proceedings of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures, pages 299–308. ACM, 2011.

[165] L. Lovász and M. Simonovits. On the number of complete subgraphs of a
graph II, pages 459–495. Birkhäuser Basel, Basel, 1983.

[166] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. Community detection
in complex networks via clique conductance. Scientific reports, 8(1):5982,
2018. 3, 72

[167] A. S. Maiya and T. Y. Berger-Wolf. Benefits of bias: Towards better
characterization of network sampling. In Knowledge Data and Discovery
(KDD), pages 105–113, 2011. 100, 108

147

http://snap.standord.edu
http://snap.standord.edu

[168] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts
over data streams. In VLDB, pages 346–357. VLDB Endowment, 2002.

[169] George Manoussakis. The clique problem on inductive k-independent
graphs. CoRR, abs/1410.3302, 2014.

[170] George Manoussakis. Listing all maximal cliques in sparse graphs in optimal
time. CoRR, abs/1501.01819, 2015.

[171] Dror Marcus and Yuval Shavitt. Efficient counting of network motifs. In
ICDCS Workshops [3], pages 92–98. 3

[172] Shawn Martin, W Michael Brown, and Brian N Wylie. Dr. l: Distributed
recursive (graph) layout. Technical report, Sandia National Laboratories,
2007. 36

[173] David W Matula and Leland L Beck. Smallest-last ordering and clustering
and graph coloring algorithms. Journal of the ACM (JACM), 30(3):417–427,
1983. 9, 25, 27, 56, 81, 86

[174] Andrew McGregor. Finding graph matchings in data streams. In APPROX
and RANDOM, pages 170–181, 2005.

[175] Andrew McGregor. Graph stream algorithms: A survey. SIGMOD,
43(1):9–20, 2014. 110

[176] M. Meiss, F. Menczer, S. Fortunato, A. Flammini, and A. Vespignani.
Ranking web sites with real user traffic. In WSDM, pages 65–75. ACM,
2008.

[177] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In Database
Theory-ICDT 2005, pages 398–412. Springer, 2005.

[178] T. Milenkovic and N. Przulj. Uncovering Biological Network Function via
Graphlet Degree Signatures. arXiv, q-bio.MN, January 2008. 2

[179] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298(5594):824–827, 2002. 2, 16, 45

[180] Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr,
Inbal Ayzenshtat, Michal Sheffer, and Uri Alon. Superfamilies of evolved
and designed networks. Science, 303(5663):1538–1542, 2004.

148

[181] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel,
and Bobby Bhattacharjee. Measurement and analysis of online social
networks. In IMC’07, pages 29–42. ACM, 2007.

[182] M. Mitzenmacher. A brief history of generative models for power law and
lognormal distributions. Internet Mathematics, 1(2):226–251, 2003. 99

[183] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E.
Tsourakakis, and Shen Chen Xu. Scalable large near-clique detection in
large-scale networks via sampling. In SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 815–824, 2015. 3

[184] M. E. J. Newman. The structure and function of complex networks. SIAM
Review, 45(2):167–256, 2003. 99

[185] M. E. J. Newman, S. Strogatz, and D. Watts. Random graphs with arbitrary
degree distributions and their applications. Physical Review E, 64:026118,
2001. 99

[186] R. Pagh and C. Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112:277–281, 2012.

[187] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pages 601–610. ACM, 2017. 46

[188] Panos M Pardalos and Steffen Rebennack. Computational challenges with
cliques, quasi-cliques and clique partitions in graphs. In International
Symposium on Experimental Algorithms, pages 13–22. Springer, 2010.

[189] Panos M. Pardalos and Steffen Rebennack, editors. Experimental Algorithms
- 10th International Symposium, SEA 2011, Kolimpari, Chania, Crete,
Greece, May 5-7, 2011. Proceedings, volume 6630 of Lecture Notes in
Computer Science. Springer, 2011.

[190] Jeffrey Pattillo, Nataly Youssef, and Sergiy Butenko. Clique relaxation
models in social network analysis. In Handbook of Optimization in Complex
Networks, pages 143–162. Springer, 2012. 4, 39

[191] A. Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung
Wu. Counting and sampling triangles from a graph stream. PVLDB,
6(14):1870–1881, 2013.

[192] D. Pennock, G. Flake, S. Lawrence, E. Glover, and C. L. Giles. Winners
don’t take all: Characterizing the competition for links on the web.
Proceedings of the National Academy of Sciences, 99(8):5207–5211, 2002.
99

149

[193] T. Petermann and P. Rios. Exploration of scale-free networks. European
Physical Journal B, 38:201–204, 2004. 99

[194] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently
counting all 5-vertex subgraphs. In Proceedings of the 26th International
Conference on World Wide Web, pages 1431–1440. International World
Wide Web Conferences Steering Committee, 2017. 3

[195] Ali Pinar, C Seshadhri, and Vaidyanathan Vishal. Escape: Efficiently
counting all 5-vertex subgraphs. In Proceedings of the 26th International
Conference on World Wide Web, pages 1431–1440. International World
Wide Web Conferences Steering Committee, 2017. 46

[196] Ali Pinar, Sucheta Soundarajan, Tina Eliassi-Rad, and Brian Gallagher.
Maxoutprobe: An algorithm for increasing the size of partially observed
networks. Technical report, Sandia National Laboratories (SNL-CA),
Livermore, CA (United States), 2015. 102, 104, 106, 128

[197] Todd Plantenga. Inexact subgraph isomorphism in mapreduce. Journal of
Parallel and Distributed Computing, (0), 2012.

[198] Alejandro Portes. Social capital: Its origins and applications in modern
sociology. Annual Review of Sociology, 24(1):1–24, 1998.

[199] Nataša Pržulj. Biological network comparison using graphlet degree
distribution. Bioinformatics, 23(2):e177–e183, 2007. 45, 95

[200] Natasa Przulj, Derek G. Corneil, and Igor Jurisica. Modeling interactome:
scale-free or geometric?. Bioinformatics, 20(18):3508–3515, 2004. 2

[201] M. Rahman, M. A. Bhuiyan, and M. Al Hasan. Graft: An efficient graphlet
counting method for large graph analysis. IEEE Transactions on Knowledge
and Data Engineering, PP(99), 2014. 11, 16, 18

[202] Bruno Ribeiro and Don Towsley. On the estimation accuracy of degree
distributions from graph sampling. In Annual Conference on Decision and
Control (CDC), pages 5240–5247. IEEE, 2012. 100, 102, 104, 106, 108, 128

[203] Dana Ron. Algorithmic and analysis techniques in property testing.
Foundations and Trends in Theoretical Computer Science, 5(2):73–205,
2010. 109

[204] Dana Ron and Gilad Tsur. The power of an example: Hidden set
size approximation using group queries and conditional sampling. ACM
Transactions on Computation Theory, 8(4):15:1–15:19, 2016. 107, 113, 124

150

[205] Ryan A Rossi, David F Gleich, and Assefaw H Gebremedhin. Parallel
maximum clique algorithms with applications to network analysis. SIAM
Journal on Scientific Computing, 37(5):C589–C616, 2015. 17, 46

[206] Rahmtin Rotabi, Krishna Kamath, Jon M. Kleinberg, and Aneesh Sharma.
Detecting strong ties using network motifs. In World Wide Web (WWW),
pages 983–992, 2017. 75

[207] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng,
and Ben Y. Zhao. Measurement-calibrated graph models for social network
experiments. In World Wide Web (WWW), pages 861–870, 2010. 2

[208] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek.
Finding the hierarchy of dense subgraphs using nucleus decompositions.
pages 927–937, 2015. 3, 17, 25, 46, 72, 75

[209] Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek.
Finding the hierarchy of dense subgraphs using nucleus decompositions. In
Proceedings of the 24th International Conference on World Wide Web, pages
927–937. International World Wide Web Conferences Steering Committee,
2015. 4, 39

[210] Thomas Schank and Dorothea Wagner. Approximating clustering coefficient
and transitivity. Journal of Graph Algorithms and Applications, 9:265–275,
2005.

[211] Thomas Schank and Dorothea Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In Experimental and
Efficient Algorithms, pages 606–609. Springer Berlin / Heidelberg, 2005.

[212] Daniel Schwabe, Virgílio A. F. Almeida, Hartmut Glaser, Ricardo A.
Baeza-Yates, and Sue B. Moon, editors. 22nd International World Wide
Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013.
International World Wide Web Conferences Steering Committee / ACM,
2013.

[213] Stephen B. Seidman. Network structure and minimum degree. Social
Networks, 5(3):269–287, 1983. 18, 25

[214] C. Seshadhri, Tamara G. Kolda, and Ali Pinar. Community structure
and scale-free collections of Erdös-Rényi graphs. Physical Review E,
85(5):056109, May 2012. 2, 17, 46, 99

[215] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. Fast triangle counting
through wedge sampling. In Proceedings of the SIAM Conference on Data
Mining, 2013. 14, 30

151

[216] C. Seshadhri, Ali Pinar, and Tamara G. Kolda. Wedge sampling for
computing clustering coefficients and triangle counts on large graphs.
Statistical Analysis and Data Mining, 7(4):294–307, 2014. 76

[217] C. Seshadhri and Srikanta Tirthapura. Scalable subgraph counting: The
methods behind the madness: WWW 2019 tutorial. In Proceedings of the
Web Conference (WWW), 2019. 2, 75

[218] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn,
and Karsten M. Borgwardt. Efficient graphlet kernels for large graph
comparison. pages 488–495, 2009. 2

[219] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn,
and Karsten M. Borgwardt. Efficient graphlet kernels for large graph
comparison. In Dyk and Welling [87], pages 488–495.

[220] R. Sherwin. Introduction to the graph theory and structural balance
approaches to international relations. World Event/Interaction Survey,
1971. https://apps.dtic.mil/dtic/tr/fulltext/u2/a080476.pdf.

[221] Françis X Sillion, James R Arvo, Stephen H Westin, and Donald P
Greenberg. A global illumination solution for general reflectance
distributions. In ACM SIGGRAPH Computer Graphics, volume 25, pages
187–196. ACM, 1991.

[222] Miguel EP Silva, Pedro Paredes, and Pedro Ribeiro. Network motifs
detection using random networks with prescribed subgraph frequencies. In
Workshop on Complex Networks CompleNet, pages 17–29. Springer, 2017.
46

[223] Olivia Simpson, C Seshadhri, and Andrew McGregor. Catching the head,
tail, and everything in between: a streaming algorithm for the degree
distribution. pages 979–984. IEEE, 2015. 110

[224] Ann Sizemore, Chad Giusti, and Danielle S. Bassett. Classification of
weighted networks through mesoscale homological features. Journal of
Complex Networks, 10.1093, 2016. 3, 17, 46, 75

[225] S. Son, A. Kang, H. Kim, T. Kwon, J. Park, and H. Kim. Analysis of context
dependence in social interaction networks of a massively multiplayer online
role-playing game. PLoS ONE, 7(4):e33918, 04 2012. 2

[226] Sucheta Soundarajan, Tina Eliassi-Rad, Brian Gallagher, and Ali Pinar.
Maxreach: Reducing network incompleteness through node probes. pages
152–157, 2016. 109

152

https://apps.dtic.mil/dtic/tr/fulltext/u2/a080476.pdf

[227] Sucheta Soundarajan, Tina Eliassi-Rad, Brian Gallagher, and Ali Pinar. ε
- WGX: adaptive edge probing for enhancing incomplete networks. In Web
Science Conference, pages 161–170, 2017. 109

[228] Alina Stoica and Christophe Prieur. Structure of neighborhoods in a large
social network. In CSE (4) [2], pages 26–33.

[229] Michael PH Stumpf and Carsten Wiuf. Sampling properties of random
graphs: the degree distribution. Physical Review E, 72(3):036118, 2005.
100, 108, 109

[230] Michael PH Stumpf, Carsten Wiuf, and Robert M May. Subnets of scale-free
networks are not scale-free: sampling properties of networks. Proceedings
of the National Academy of Sciences of the United States of America,
102(12):4221–4224, 2005.

[231] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse
of the last reducer. In Proceedings of the 20th International Conference on
World Wide Web, WWW ’11, pages 607–614, New York, NY, USA, 2011.
ACM.

[232] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of
the last reducer. In World Wide Web (WWW), pages 607–614, 2011.

[233] M. Szell, R. Lambiotte, and S. Thurner. Multirelational organization of
large-scale social networks in an online world. Proceedings of the National
Academy of Sciences, 107:13636–13641, 2010.

[234] M. Szell and S. Thurner. Measuring social dynamics in a massive multiplayer
online game. Social Networks, 32:313–329, 2010.

[235] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
Arnetminer: Extraction and mining of academic social networks. In
KDD’08, pages 990–998, 2008. 67

[236] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
Arnetminer: Extraction and mining of academic social networks. In
KDD’08, pages 990–998, 2008. 96

[237] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
Arnetminer: Extraction and mining of academic social networks. In
KDD’08, pages 990–998, 2008.

[238] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The Worst-Case
Time Complexity for Generating All Maximal Cliques, pages 161–170.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. 17, 77, 80, 88

153

[239] Amanda L Traud, Peter J Mucha, and Mason A Porter. Social structure of
facebook networks. Physica A: Statistical Mechanics and its Applications,
391(16):4165–4180, 2012. 36

[240] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser
than the densest subgraph: Extracting optimal quasi-cliques with quality
guarantees. In Knowledge Data and Discovery (KDD), 2013. 25, 40, 46

[241] C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos.
Spectral counting of triangles in power-law networks via element-wise
sparsification. In ASONAM’09, pages 66–71, 2009. 10

[242] C. Tsourakakis, M. N. Kolountzakis, and G. Miller. Triangle sparsifiers. J.
Graph Algorithms and Applications, 15:703–726, 2011. 10, 18

[243] C.E. Tsourakakis. Fast counting of triangles in large real networks without
counting: Algorithms and laws. In International Conference on Data Mining
(ICDM), pages 608–617, 2008.

[244] Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In
Proceedings of the Conference on World Wide Web WWW, pages 1122–1132,
2015. 3, 17, 46, 72, 75

[245] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller, and Christos
Faloutsos. Doulion: counting triangles in massive graphs with a coin. In
Knowledge Data and Discovery (KDD), pages 837–846, 2009. 10, 14, 16, 18

[246] Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher.
Scalable motif-aware graph clustering. In World Wide Web (WWW), pages
1451–1460, 2017. 3, 72, 75

[247] Charalampos E. Tsourakakis, Jakub W. Pachocki, and Michael
Mitzenmacher. Scalable motif-aware graph clustering. CoRR,
abs/1606.06235, 2016. 3, 46

[248] Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok,
48(436-452):137, 1941. 15, 18, 21

[249] Johan Ugander, Lars Backstrom, and Jon M. Kleinberg. Subgraph
frequencies: mapping the empirical and extremal geography of large graph
collections. In WWW, pages 1307–1318, 2013. 2, 46, 75

[250] Virginia Vassilevska. Efficient algorithms for clique problems. Information
Processing Letters, 109(4):254 – 257, 2009. 17, 76

[251] J. Vitter. Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), 11(1):37–57, 1985.

154

[252] John R Wallace, Michael F Cohen, and Donald P Greenberg. A two-pass
solution to the rendering equation: A synthesis of ray tracing and radiosity
methods, volume 21. ACM, 1987.

[253] Pinghui Wang, John Lui, Bruno Ribeiro, Don Towsley, Junzhou Zhao, and
Xiaohong Guan. Efficiently estimating motif statistics of large networks.
ACM Transactions on Knowledge Discovery from Data (TKDD), 9(2):8,
2014. 46

[254] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng
Cheng, John C. S. Lui, Don Towsley, Jing Tao, and Xiaohong Guan.
MOSS-5: A fast method of approximating counts of 5-node graphlets in
large graphs. 30(1):73–86, 2018. 76

[255] Pinghui Wang, Junzhou Zhao, Xiangliang Zhang, Zhenguo Li, Jiefeng
Cheng, John CS Lui, Don Towsley, Jing Tao, and Xiaohong Guan. Moss-5:
A fast method of approximating counts of 5-node graphlets in large graphs.
IEEE Transactions on Knowledge and Data Engineering, 30(1):73–86, 2018.
46

[256] Gregory J Ward, Francis M Rubinstein, and Robert D Clear. A ray tracing
solution for diffuse interreflection. ACM SIGGRAPH Computer Graphics,
22(4):85–92, 1988.

[257] S. Wasserman and K. Faust. Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994.

[258] D. Watts and S. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998. 2

[259] B. Welles, A. Van Devender, and N. Contractor. Is a friend a friend?:
Investigating the structure of friendship networks in virtual worlds. In
CHI-EA’10, pages 4027–4032, 2010. 2

[260] Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM
Trans. Comput. Biology Bioinform., 3(4):347–359, 2006. 46

[261] Elisabeth Wong, Brittany Baur, Saad Quader, and Chun-Hsi Huang.
Biological network motif detection: principles and practice. Briefings in
Bioinformatics, 13(2):202–215, 2012.

[262] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern
mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining, ICDM ’02, pages 721–, Washington, DC, USA, 2002. IEEE
Computer Society.

155

[263] Hao Yin, Austin R. Benson, and Jure Leskovec. Higher-order clustering in
networks. Phys. Rev. E, 97:052306, 2018. 75

[264] Hao Yin, Austin R. Benson, and Jure Leskovec. The local closure coefficient:
A new perspective on network clustering. pages 303–311, 2019. 3, 72, 75

[265] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local
higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
555–564. ACM, 2017. 4, 39, 46

[266] Jin-Hyun Yoon and Sung-Ryul Kim. Improved sampling for triangle
counting with MapReduce. In Convergence and Hybrid Information
Technology, volume 6935, pages 685–689. 2011.

[267] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein.
Predicting interactions in protein networks by completing defective cliques.
Bioinformatics, 22(7):823–829, 2006. 4, 39

[268] Raphael Yuster. Finding and counting cliques and independent sets in
r-uniform hypergraphs. Information Processing Letters, 99(4):130 – 134,
2006.

[269] Cyber situational awareness: The netops perspective. Available
at http://www.disa.mil/News/Conferences-and-Events/
DISA-Mission-Partner-Conference-2012/~/media/Files/DISA/News/
Conference/2012/Cyber_Situational_Awareness_NetOps.pdf.

[270] Yaonan Zhang, Eric D Kolaczyk, and Bruce D Spencer. Estimating network
degree distributions under sampling: An inverse problem, with applications
to monitoring social media networks. The Annals of Applied Statistics,
9(1):166–199, 2015. ix, 100, 102, 104, 106, 108, 128, 129, 130

[271] Z. Zhao, G. Wang, A. Butt, M. Khan, V. S. Anil Kumar, and M. Marathe.
Sahad: Subgraph analysis in massive networks using hadoop. In Proceedings
of International Parallel and Distributed Processing Symposium (IPDPS),
pages 390–401, 2012. 18, 76

[272] Petabyte scale data at facebook. available at http://www-conf.slac.
stanford.edu/xldb2012/talks/xldb2012_wed_1105_DhrubaBorthakur.
pdf.

156

http://www.disa.mil/News/Conferences-and-Events/DISA-Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/Cyber_Situational_Awareness_NetOps.pdf
http://www.disa.mil/News/Conferences-and-Events/DISA-Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/Cyber_Situational_Awareness_NetOps.pdf
http://www.disa.mil/News/Conferences-and-Events/DISA-Mission-Partner-Conference-2012/~/media/Files/DISA/News/Conference/2012/Cyber_Situational_Awareness_NetOps.pdf
http://www-conf.slac.stanford.edu/xldb2012/talks/xldb2012_wed_1105_DhrubaBorthakur.pdf
http://www-conf.slac.stanford.edu/xldb2012/talks/xldb2012_wed_1105_DhrubaBorthakur.pdf
http://www-conf.slac.stanford.edu/xldb2012/talks/xldb2012_wed_1105_DhrubaBorthakur.pdf

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Contributions
	TuránShadow
	PEANUTS
	Pivoter
	SADDLES

	Preliminaries and State of the art
	TuránShadow
	Introduction
	Problem Statement
	Main contributions
	Related Work

	Main Ideas
	Main theorem and significance

	Turán's Theorem
	Clique shadows
	Constructing saturated clique shadows
	Putting it all together
	The shadow size

	Experimental results
	Comparison with other algorithms
	Details about Turán-shadow

	Demonstration of clique sampling
	Future work

	Counting near-cliques
	Introduction
	Problem description
	Our contributions
	Related Work

	Main ideas
	Preliminaries
	Main algorithm
	Inverse-TS

	Counting cliques and near-k-cliques
	Counting (k,1)-cliques
	Counting Type 1, (k,2)-cliques
	Counting Type 2 (k,2)-cliques

	Experimental Results
	Near-cliques in practice

	Missteps and practical insights
	Future Work

	Pivoter
	Introduction
	Problem Statement
	Main contributions
	Related Work

	Main Ideas
	Main Algorithm
	Preliminaries

	Building the SCT
	Getting global and local counts
	Experimental results
	Running time and comparison with other algorithms
	Demonstrations of Pivoter

	Future work

	Estimating the degree distribution
	Introduction
	Problem description
	Our contributions
	Theoretical results in detail
	Challenges and Main Idea
	Related Work

	Preliminaries
	More on Fatness indices
	Simulating degree queries for HDM

	The Main Result and SADDLES
	Analysis of SADDLES
	Experimental Results
	Implementation Details
	Evaluation of SADDLES
	Comparison with previous work

	Future work

	Conclusion and future work

