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I. INTRODUCTION

In this study three approximate theories governing axisymmetric
motions in transversely isotropic rods are developed. In choosing
to develop these theories, we have taken the lead from isotropic rods
for which three approximate theories have proved to be most useful.

The first is the classical theory which, while it accurately rep-
resents the motion for only a small range of wave lengths and frequen-
cies, is very simple in form. It is used to advantage in much research
such as building a theory of one-dimensional wave propagation in visco-
elastic materials and for determining material functions (creep and
relaxation functions) by means of experiments. The second is the
classical theory with a term added representing radial inertia. This
theory was suggested by Rayleigh[l] and developed by Love,[2] and is
the simplest theory which reflects geometric dispersion in a rod. It
is used much the same as classical theory but when somewhat more
accuracy is desirable. When any substantial frequency range is recuired,
such as in transient wave propagation, a more sophisticated approximate
theory is necessary. Such a theory for isotropic elastic rods is due
to Mindlin and McNiven[S] and is valid for frequencies that range from
zero to a frequency just below the cut-off fregquency of the second
axial shear mode. Such detail requires that this approximate theory
is much more complex than the first two.

The derivation of the classical theory is brief as there is nothing

new in it. It is based on the assumption that plane cross sections

remain plane. By neglecting radial inertia the surviving equation has



the form of the classical wave equation. In this equation the phase
velocitj is given in terms of four elastic constants and the mass
density. .

The second theory which includes the term representing radial
inertia is not developed exactly as Love[2] developed the comparable
theory for isotropic rods. We choose to derive the governing equation
by describing a potential energy functional and then requiring that the

value of the functional be a minimum.

The bulk of the paper is devoted to the third theory. Before
beginning, it was necessary to ascertain, at least for a limited number
of transversely isotropic materials, how' many modes such an approximate
theory should contain. This judgment could only be made after examining
the cut-off freauencies derived from the exact three-dimensional theory.
This theory was developed in an earlier paper[4] and the frequency
equation was explored numerically for two separate transversely iso-
tropic materials; a fiber reinforced material and magnesium. Study
of both materials indicated that a three-mode approximate theory was
the most sensible when choosing a theory that extends beyond the funda-
mental mode. This conclusion is dictated by the fact that the second
and third cut-off freguencies are é;ose to one another, resulting in
strong coupling between the two modes, whereas the cut-off frequency
of the fourth mode is much higher indicating that the influence of this
mode and all higher modes on the lowest three—spectral lines would be
much less pronounced.

The actual development of the theory needs little discussion as

it follows in many respects the method used by Mindlin and McNiven in



developing their theory for isotropic rods. We do, however, make one
significant departure. After defining the generalized displacements
and generalized strains we derive_the equilibrium and constitutive
equations and the kinematic relations using a variational theorem

due to Hu and Washizu.[S] For completeness the theorem is stated in
the body of the derivation of the theory.

To improve the approximate theory, we introduce adjustment factors
into the theory and establish the values of the factors by ﬁatching, as
did Mindlin and McNiven, the cut off frequencies and curvatures at
cut-off of the second and third modes derived from both the approxi-
mate and exact theories. As it is the long wavelength motions that
will be predominant when the rod is excited, it is logical to do the
matching where the wavelength is infinite, but it is by no means the
only way the matching could have been accomplished. Suggestions have
been made, regarding the isotropic rod, that an alternate match could
be made by equating the asymptotic phase velocity of the fundamental
spectral line to the Rayleigh velocity or that points could be matched
on the complex branch. In spite of these suggestions, the two theories
were matched at cut-off for two reasons; first, the matching is easiest,
and second, with such matching the two fundamental lines match extremely
well, as do the complex branches at the frequency of the 'end mode,"
at least for isotropic rods.

After the theory is developed, trial solutions are adopted which
lead to a freguency equation. This eguation is explored numerically for

the two separate materials. Sufficient roots are established to show



the three spectral lines on the frequency-wave propagation constant plane
on which the propagation constant is real. These lines are shown in
Figs. 1 and 2 on which are shown the same spectral lines from the exact
theory. Inspection of the figures shows that the three spectral lines
from the approximate theory match very closely those from the exact.
It is interesting to note that for magnesium, the second branch displays
the peculiar shape that it did for isotropic materials but that for fiber
reinforced material the second branch has a positive curvature at cut-off
and is a minimum there.

Finally, we present an Appendix A in which two things are estab-
lished. First, the conditions under which the solution of the approxi-
mate theory will be unique, and second, the orthogonality conditions for

mode shapes of free vibrations of finite rods are established.



II. DEVELOPMENT OF APPROXIMATE THEORIES

The rod is referred to a cylindrical coordinate system (r, 6, z) so
that the origin lies on the axis of the rod and so that the =z axis and
the axis of the rod coincide. Further, we orient the material of the

rod so that axes of isotropy are parallel to the axis of the rod. The
rod is solid and of radius "a."

In the development which follows, when it is appropriate, we use
indicial notation and all the rules that apply to its use. Because the
field equations for transversely isotropic elasticity are common to all
three theories, we begin by setting down these equations.

As the deformations are axisymmetric and toréionless, and because

the axes of material isotropy are parallel to the axis of the rod, we

may assume the displacement field in the form

ur = ur(r,z,t)

u =u (r,z,t) (1)
z z

ue =0

It follows that the strain-displacement relations in cylindrical coordinates

become
€r ~ Ur'r ‘€ 0
666 - %5 €z © % (u e T ur’z) @)
€ =u €

l
(=}

zZ z'z Bz =



The constitutive relation for transversely isotropic materials is

given by
T =c¢ .€ (,B =1 - 86) (3)
o QB B ’B H
where
(Ta) = (Trr’ Toe" T2z’ Toz' Tar’ Tre)
= 4
(ea) (err, €56’ 55 Zeez, zezr, zere) ) 4)
and
‘i1 %2 G3 O© 0 0
012 c11 013 0 0 0
c c c 0 0 0
(CQB) - 13 13 33 ‘ . (5)
0 0 0 044 0 0
0 0 0 0 044 0
0 0 0 0 0 é(°11’°12)
!

For all elastic materials the coefficient matrix c

of
is symmetric, i.e.,
co[B = cBa , (6)
and it is positive definite in the sense
caevavez 0 (7)

for all six-dimensional vectors Va , where equality is satisfied only
when Vv_=0 .,
o

We note that for a transversely isotropic material there are five



independent elastic constants, namely, 011, 012, 013, 033, 644, and that

the necessary and sufficient conditions for positive definiteness of the

c ar
oB e
c >|c | (c +c__)c > 2c 2 c >0. (8)
11 121 11 12 33 13 ’ 44
From Egs. (1-5) we see that Tre = Tez =0 , so that the stress
equations of motion, without body forces, become
T - T
T’ +T +—rI_‘_ee=pu
rr'r rz z r r
9
Trz @
T +T , +—=—=pu_,
rz r z2Z°2 r z
where ( .) = aét ) and p 1is the mass density. The third equation

is satisfied identically.

I1-1. Classical Theory

The classical theory begins with the kinematical assumption that

u =u (z,t) , (10)
z z

i.e., during deformation plane sections remain plane. Furthermore, we
neglect all the stresses except Tzz . If we make use of the constitu-
tive equations and strain-displacement relations, the above assumptions

concerning kinematical variables and state of stress imply that

u ==Tru, (11)

where

13
11 12



If we neglect radial inertia, .the first of stress equations of
motion, Eg. (9), will be satisfied, whereas the second of Eq. (9)
together with the constitutive equations and strain-displacement relations

leads to the governing equation of the classical theory:

U, 12)

where

2¢2 :
C -
| %33€11 * 1) T %3
e p(cll + 012)

The frequency equation corresponding to Eq. (12) is

”

w=V o, (13)

where « is the wave propagation constant and W the angular frequency.

In dimensionless form Eq. (13) is written

Q= Vec ’ (14)
where

Q= l
\s .
ul

c=% as)

. Ve

vV = — .

e Gns :

6 G
ns

is the first axial shear cut-off frequency,

In Eas.(15): ui =



(&
=24 :

ns is the shear-wave velocity and &6 is a constant defined

as the first non-zero root of Jl(ém) = 0 , where Jq is the Bessel

function of the first kind.

As Ge is a constant, Eq. (14) represents a straight line on the
Q - C plane emanating from the origin. As this line is tangent at the
origin to the fundamental spectral line of the exact theory (see Ref. 4),
it represents the correct relationship between 2 and { for a small
neighborhood of the origin only (Figs. 1-2)., It accommodates no dispersion.

I1I-2, One-Dimensional Theory with Radial Inertia Correction

In this section the classical theory is improved by the inclusion of
a term representing radial inertia. The resulting equation will be equiva-
lent to that suggested by Rayleigh for isotropic rods. The theory is
based on the same assgmpﬁigng_concerﬁing_tgg kinematical variables and the
stress field as t?e classical theory and“the radial inertia term is intro-
duced using a theorem of minimum potential energy. For completeness, the

statement of the theorem is recorded here.

Given: A volume V completely bounded by a surface S . A body

=

force per unit of mass fi is specified in V , tractions ti =t, are

=1

specified over part of the boundary ST , and displacements ui = i are
specified over the remaining boundary Su . We introduce the functional
u,{ = U - dv - I E,u,d . 1
JPE{ 1} J { (eij) Pfiui} A RCE (16)
v ST

In Eq. (16) the u, are thelstgtewvarigblgs'and U is the strain energy
density. 1Implicit in Eq. (16) are the relations Tij = BU/Beij ,

2¢. . =u.,. +u.,. and the symmetry of the temnsor T, .
1) 1] J 1 1]
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Theorem: Among all of the states satisfying the boundary condition

uy = Gi on Su , the state which will satisfy the equilibrium equation
/X . (du/3d¢, ) + pf =0 in V andthe boundary condition t_ = t. on S
3 ij i i i T
is the same state as the one which will make the JpE stationary, i.e.,
6 JPE =0, 17)

where ©§ denotes the first variation. We note that the positive definite-
ness of U implies that the stationary value here is the minimum value.

We now proceed by applying to this theorem the state of stress and
kinematical variables adopted in the development of the classical theory.

When we do so we obtain

2
U= % TZZ€ZZ B é ECuZ’Z

(18)
fiui = f\.zuz - Tk‘f uz,z ’

where

2

c c c - 2c

£ - 3311 * “12) 13
C Cll + 012

If we substitute Egqs. (18) into Eq. (16) and carry out integration with

1"

respect to the area of the cross section "A," we find
%2
J. = J {- 3EA u, 4 pPFu - pMF u , }dz
PE c z'z z z rz'z
%1 19)

+ boundary condition terms,
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where
F = ff dA
z Z
A (20)
F = Irf dA .
r r
A

When we take the first variation of Egq. (19), from the require-

ment that 6JPE = 0 we obtain

ECA uz,zz + o] FZ + pT] Fr;z =0. (21)

In order to find the equation of motion for the dynamic case we use

D'Alambert's principle, i.e., we let

z z (22)

Using Eqs.i29;22), Eq.(21) can be written as

=u_ - Iﬁﬁf.ﬁ ’ . (23)

u
e z'zz z 2 z'zz

In the governing equation, Egq. (23), the last term on the right hand
side represents the radial inertia correction to the classical theory.

The corresponding frequency equation of Eq. (23) is

of = 2 , (24)

or in dimensionless form
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1 + Iﬁgi c2

(25)

To get a feeling for the improvement over the classical theory, the
spectral line representing solutions of Eq. (25) is shown in Figs. 1-2.
It can be seen that it matches the line representing the exact theory
over a somewhat more extensive length than did the classical theory.
However, the range of frequencies for which the theory can be considered
to be applicable is still quite limited. The principle advantage of this
theory is that it introduces some dispersion, that is some nonlinearity

in the relationship between frequency and wave length.

11-3. Three Mode Theory

From the above discussions, we have seen that the classical one-
dimensional theory approximates the fundamental mode of the exact theory
with a straight line whereas the one~dimensional theory with the radial
inertia correction brings some improvement to it for small wave propaga-
tion constants and introduces some dispersion, but it does not represent
the fundamental mode for large wave propagation constants and does not
take into account higher modes and coupling between them. In this sec-
tion we develop a three-mode theory which reproduces the first three
modes of the exact theory remarkably well for a reasonable range of
frequencies and wave propagation constants.

The choice of a three-mode theory is ar:ived at after a study of
the exact three—diﬁensignal theory developed in Reference 4. 1In that

study we found that, for two sets of elastic constants assumed there, the
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cut-off frequencies of the second and third mode are close to one
another meaning there will be a high degree of coupling between these
two modes and that both of these spectral lines are low enough to have

a pronounced influence on the fundamental spectral line. However, the
cut~off frequency of the fourth mode (Q; = 1,83)is high up on the spectrum
indicating that its influence and the influence of the still higher

modes, while present, will be much less pronounced.

In developing this theory, the method used by Mindlin and McNiven
for isotropic rods will be closely followed except that, at the eppro-
priate place in the development,a variational theoremwill be used. The

choice is to use a Vvariational theorem due to Hu and Washizu[5]

which will be reviewed here.
Given: A volume V completely bounded by a surface S. A body
force fi is specified in V, tractions t i = :Ei are specified over part of

the boundary ST’ and displacements u; =uy; are specified over the re-~

maining boundary Su. We introduce the following functional

JHW(Ti,j’ €550 Yo ti} =L{pfiui - U(sij) + Ty5€i5 Tijui’j} av

+f tyu.ds +f ti(ui - ui)dS .
S S
T u

(26)

In Eq. (26) Tij s & 3 uy and ti are state variables., We define an
admissible state as one in which Tij and € 3 are symmetric,

Theorem: Among all admissible states, the state which will satisfy the
field equations of linear elasticity in V and boundary conditions

ti = ti on ST’ u; = uy on 5, is the same state as the one which will



14

make JHw stationary, i.e.,

éJ,.. = 0. 27

We begin developing the approximate theory by expressing the
radial and axial components of the displacement vector in series of Jacobi

polynomials in the radisl coordinate:

(-]
o = Z U (Fu (2, ©)
n=0
0
u, = z wn(r)wn(z, t) (28)
n=0
uGEO ’
where
T-I
==,
and
U(F) =F, UF)=F -%?3 s eees
(29)
n
(n + 2)
_ - k 2k+l
0, =F+ ) e ()T
- - —2
wo(r)-l, W(I‘)=l"2r 9 eesy
(30)
(n+1)
wn('z'-) =1+ -15‘@ k 22k ,
k=1

in which
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an(n-l) ves {n = k + 1)

ki

(B), =B(B +1)(B +2) ... (B+x-1), (B),=1 .
The polynomials Un and. Wn have the properties

3 1
l(n + 1) [ TUUE = o
e

1
2(2n + 1) [ FUWAF =6
v O

where amn is the usual Kroneker delta.

Each term in the series, Eqs. (28) represents a mode of motion.
We retain in our theory only the first three modes: namely, the longi-
tudinal, first radial, and first axial shear. The displacements appro-
priate to this theory are derived from Egs. (28)1 » and (28), .
As there is only one mode having radial motions, we retain only the
first term in Eq. (28); and we retain the first two terms of
Eq. (28)2 repres;anting the longitudinal and first axial shear modes.

The displacements are

u, = Tu(z, t)
u_ =w(z, t) + (L - 572)y(z, t) @D
uy = 0o,



where

From Egs.

16

, Por strain-displacement relations we get

&
I
ole

00

+

~~

|
1

),

)

EZZ (32)

€
rz

B
iRl
/7 N\ N
e
A"}
N
]
o &=

L}
(33
n
(@]
*

e92

If we introduce the following generalized strains

then, Egs.

o
]
p i

ar ]
n
=

(33)

(32) become

rr r

|
o]

€90 = 'r
(34)

M
]
e
+
L)
[N
]
R

ZZ

rz
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Now, we proceed to apply the Hu-Washizu variational theorem to

the problem. Using Egs. (31) , (34) we obtain

=L
U(si,j) =3 Sp%%p
=—{2(c +c. )2 4 he I [T + (1 - ZF)L,]
2 1" %2l ty 13'rtz o
2 —2 2.2
+ogalle + (1 - )L, + (1 - 27°) ]
2. 2
Tijei.j - Trrrr * TBerr * Tzz[rz + (- 2?2)[‘4:] rr Trzrrz

e

N u . o 7 L
Ti5%'5 " Trr a * Toga * Tam [Wog t (@-2r )q”z] TE Ty (u’z a q’>

- —2
fiu; =T £ u+ [w+ (L -2F )tb]fz .
We note that Egqs. (35) are written in cylindrical coordinates
using physical components of the tensors involved. If we assume that on the

lateral surface of the rod, only the tractions T and Tz are specified,

then the functional, Eq. (26) takes the form

o 1 22 : _ -
T = 2ne AL {pfiui - U(eij) + Ty5845 " Tijui’,j} r dzdr
1

(36).
2-2 _
+ 2na f tiuidz + end boundary condition terms.
%
At this stage of the development we introduce adjustment factors

Ki(i =1 - 4) for the following reason. It may be observed that w, ¥
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are the smplitudes of uniform and quadratic distributions of axial dis-
placement, and u is that of a linear distribution of radial displacement
along a radius of the rod. Omission of the higher-order terms limits
the applicability, of what is left, to relatively long wave lengths. In
this range, the uniform distribution of axial displacement, whose ampli-
tude is w, is a good approximation to the distribution of u, found in
the lowest mode of the exact solution for waves in an infinite rod. In
fact the latter distribution approaches uniformity as the wave length
approaches infinity. The linear and quadratic distributions of the
other two displacements, i.e., those with amplitudes of u and }, are
only fair spproximations of the Bessel-function distributions found in
the second and third modes of the exact theory54] even at very long wave
lengths., It is advisable, therefore, to introduce means for compensating
for the omission of the polynomials of higher degree. To this end, we
replace Fr by Klrr, rrz by K2rrz’ u by K3u and ¢ by Ku¢ in Egs. (35)1
and (35)4 vhere the K, are constants whose values will be determined
so that the three spectral lines of the approximate theory match more
closely the lowest three branches of the exact theory. Then, substi-
tuting Eqs: (35) into the functional, Eq. (36) , and carrying out

integration with respect to T, we find

T = [ “2 {2na2[pf(g, 3) - B() + ™®, L)
Ve
1

37
- 8(p, A)] + 2na.B(§)} dz + e.b.c.t.,

where
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F(F, U) = KFu+ Fow+ KF ¥

c
24

[¢] (o]
2 Ly 2
o) %{‘é(cu + 0 )y + 2o LT, + A Ty * % S rrz}
™e, L) = P +P;[T, + Pl * pqu, (38)
4
8(B, 4) = F, 1-a.,‘ tPW, Ptbq"z * P (u’z - :'9

B(u) =2(w - ¥) + Ru

In Bas. (38):

1
F =f Trf & (39)
w

_. (40)
1l
Py = fo T, (1 - FIFE
1
-2
P 'L/; Tt &
Z= Trzlr-a.
(41)
R= Trrlr-a ’
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and

I

= (El’ ‘_129 33) = (u, w, ¢)

I

= (Fl’ F2’ F3) = (Fus Fws F‘l’)
Be= (Pl’ P2’ P3’ P&) = (Pr’ Pz’ Pq,s Prz) (42)

L= (rl’ 1"2, ['3, rl&) = (rra rz’ r!ll’ rrz)

-~

A= (A]_, A2’ A3’ Aus AS) = (u, Wiy ‘l’:z’ Uy, 9 y) .

If we teke the first variation of Eq. (37) s and integrate by parts

using Eq. (38)4 and the last of Eqs. (42) , we find

z
wmgaﬂa?-j 2{p;§_-§_+;£_ o
2, N & & X

m

+ (grp— - % dPB} dz
8

+ e,b.c.t. ,

P
S, w = <;.£ - Przﬁz) PP (Pq:’z * %. Prz> V.o @9

From the requirement dJ_. = O, we obtain

HW



21

2 [e4

=0 (the equilibrium equations)

+
0 L

i ¥

°

[

(the copstitutive equations) (45)

A
%
f
o

%—- - %— = 0 (the kinematic relations)
8 8
(m=1,2,3; 8=1,2,3, 4 .
If we use Egqs. (42) and substitute Eqs.(38, 44) into Eqs. (45)
we find

(a) the equilibrium equations:

Pr R
px3ru'?+Prz’.z+'E=°

ﬂ;+rﬂz+%=o (46)
b 4
pxhrw+P¢!z+aPrz-a=° ’

(b) the comstitutive equations:
Pr = ’ﬁ(cll * °12)1"r + chl3rz

47)
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(¢) the kinematic relations:

u
rr s a
rz =Wy
(48)
Ty = ¥sg
- 4
[‘rz = u,z - a tlJ .

In order to find the equations of motion, we use D'Alembert's principle,

i.e., we let

fr=-{ir=-K3rl£

(49)
=D\ e
fz=-ﬁz=-ﬂ-(l-2r)l(hq1 .
Then, from Eq@s. (39) we have
Fug-h ﬂ
1
F,=-3W (50)
K
u'.
Fq,=-g-q’-

Substituting Egs. (50) into Egs. (46) we obtain the stress equa-

tions of motion in the form

Pr R ;23
Porz "a ta=°fh U

Pz?z+%=%" . 6D
p, +2p 2. S
2z a'rz a pg V-
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Using Eqs. (47, 48) we can write the equations of motion in terms of

the generalized displacements, i.e.,

c,.‘).._lé(u,gg - h\b,g) - kl(:zL(cll + cla)u - hl(lcl3w,£ 4+ L4aR = pa.zl(gﬁ

e a2
<:33w,£E + 2L.L°l3u’£ + 2aZ = pa ¥ (52)

c33‘p,€€ + 60@1(2(“’5 - uq’) - 6aZ = 93'2 ll-:l; ’
where
4
& =%

Egs. (62) constitute the second order approximate theory.
It should be noted here that when the material is reduced to an

isotropic one by letting

= A3 ¢

11 - ¢

cl2 = c13 33 = A+ 2n chh =
Egs. (52) reduce, as they should, to the corresponding equations

obtained by Mindlin and McNiven for isotropic rods.

The Frequency Bquation
In order to find the frequency equation corresponding to the

three mode approximate theory, we substitute

u = Hl cos uzej‘“’t

w= 32 sin qzemt

(53)

= 113 sin uzei“’t

R=2=0
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into Egs. (52) . Thgn, the condition for having a nontrivial. solution

give_s &1 &2 a]3
&, 8y 0 =0 , . (54)
vhere s
= dzxgg + hK._aL - xgd

2022 | 2
ay, = 26 (Ync; - Q%)
ay3 = 6 652 + 245 - daxﬁna} | (55)

Yc
8, = ¥ F ¥
Ym

_and

B o 11 11
Eq. . (54) gowns the relationship between the normalized frequency @

and the dimensionless propagation constant ¢ for the three modes in-

cluded in the spproximate theory.

The Adjustment Factors K:I.
The adjustment factors Ki are introduced into the theory as
undetermined coefficients so that they may be used to make the three

spectral lines of the approximate theory match more close the corresponding
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three from the exact. As there are four factors, four properties of one
set can be made to match fqur properties of the other. Which four
properties should be chosen for matching is a subject for speculation.
There is no clear rationale to dictate the choice. 1In making the choice,
we anticipate the immediate use that we jintend to make of the approximate
theory. It will be used tu get the transient response in a rod to a time
dependént input on its end. It appears that in such a response, the long
waves will predominate, so that the approximate theory should match the
exact as closely as possible at the long wave length end of the spectrum,
that is where { 1is zero.

Accordingly we choose to match, as did Mindlin and McNiven, the
cut-off frequencies of the second and third modes and the curvatures of
these same two modes at the cut-off frequencies. The fundamental modes
match near the origin with no adjustment, as do the slopes, at cut-off,
of the second and third modes.

The matching is most easiiy achieved if we formulate from Eq. (54)
frequency equations that are valid for the three branches in the neighbor-

hood of cut-off. That is if we take { << 1, Eq. (54) can be written

Q

V¢

o

(56)

O
n
=
4
LS o
ar
o

where
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3
K 2K (2 - vy
8= V1 = T =— LA (57)
Y &, © K87,

The same formulation for the lowest three branches for the exact

theory was made in Reference (4). These equations are

Q

B
<
[ a)

o]
]
=
+
-
(@]

]
Y

(58)

O
B
P
+
[T
(@}
MY

where

r
Q =x/6v, (59)

and Y 1is the first root of

X JO(X)

—EI?YF— = Yk s (60)

and the expressions for the curvatures Cs and Cr are given in
Refereﬁce 4,
To get the first two equations governing the Ki’s we equate the

cut of frequencies ({ = 0) of the second and third mode from each of

Egs. (56) and (58). This leads to the equations

61)
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After this matching, the curvatures of the second and third branches

at cut-off from the approximate theory become

2 2
c =6Yi _1_+K_2 6
24 2 2 2 2
° Ka ¥1 %@ - % 5 -5
x> ¥
m
(62)
2
ST RN .
r Yy 2 - v) 2 2 2
m k X Kl 8 ﬁf _ 62
m

The third and fourth equdtions governing the Ki's are obtained by
equating the curvatures of the second and third branches at cut-off

from the two theories. The curvatures will match if

c =¢c , C =Cc_ .- (63)
r r s S

Egs. (61) and (63) fix the four coefficients Ki as functions

of the CO!B .

I1I. NUMERICAL RESULTS

We present the numerical results for two kinds of materials which
were also used for numerical analysis of the exact frequency eguation
(Reference 4). The first is for a fiber reinforced rod and the second
is for a rod made of magnesium. The choice was made because we are
particularly interested in fiber reinforced materials or ''filament resins”
and because magnesium is a common material whose elastic constants differ

considerably from the first.
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A set of constants for a filament resin was not readily available,
The values we adopted were extracted from a paper by L. R. Herrmann and
K. S. Pister[G]. Some modifications were necessary as Herrmann and Pister
studied a material in which the filaments are laid down in rows on layers
which results in a material that is tetragonal. It appears that when
circular rods are made the filaments will be laid. out symmetrically about
the axis of the rod which would result in a transversely isotropic
material.

To get an accurate set of constants for a transversely isotropic
filament-resin one should treat the material as an independent one and
derive the constants as Herrmann and Pister did. However, the concern
here is not to get an accurate description of such a material but to get
a set of constants which would be reasonable for such a material.
Accordingly, the constants suggested by Herrmann and Pister are used and
they are modified rather crudely to represent a transversely isotropnic
filament resin. As the normalized form of the frequency equation will
be studied here the relationship between normalized freqguency and dimen-

sionless propagation constant is influenced by only four constants.

These are taken as

(&) c

22 =0.472 ; 2 =0.165 ;
33 33
©64)
[+ (4]
=076 ; 2 =0.100 .
33 33

The elastic constants representing magnesium were readily available and

in terms of the appropriate ratios are as follows:
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C C
le = 0.954 ; 313 = 0.390 ;
33 33
(65)
[&] C
319 = 0.326 ; Eﬁi = 0.277
33 33

Using a digital computer, the adjustment factors are evaluated according

to the method which was described in the previous section. They are

(a) for fiber reinforced rod

2
K, = 0.88287 ; Kz = 0.89350 ;
(66)
2 2
K. =1.10376 ; K, = 1.46056 ,
3 4
(b) for magnesium rod
2 2
Kl = 0.53161 ; KZ = 0.83557 ;
67
2
K3 = 0.67051 ; Ki = 1.36587

For these values of adjustment factors the frequency equation cor-
responding to the three mode approximate theory, Eg. (54), is solved and
its solution in the form of three spectral lines is _shown in Figs. 1-2
(dotted lines).

Examination of Figs. 1-2 shows that all three lines o1 the approxi-
mate theory match quite well the same three lines irom ihe exact. The
fundamental spectral lines match exceptionaliy wes... naving such a

comparison it is possible to outline a region vz the (- { plane where

the approximate theory could be considered to be valid.



ACKNOWLEDGMENT

The authors wish to acknowledge that the rescarch was supported
by the National Science Foundation through a research grant to the

University of California at Berkeley.

30



31

References

Lord Rayleigh, Theory of Sound, Dover Publication, New York (1945).
A.E.H. Love, Theory of Elasticity, Dover Publication, New York (1944).
R. D. Mindlin and H. D. McNiven, J. Appl. Mech., 82E, 145 (1960).

H. D. McNiven and Y. Mengi, to be published.

K. Washizu, Variational Methods in Elasticity and Plasticity,
Pergamon Press (1968).

L. R. Herrmann and K. S. Pister, Composite Properties of Filament-
Resin Systems, ASME Publication (63-WA-239) (1963).



Fig. 1.

Fig. 2.

Captions for Figures

Frequency spectra from the exact and approximate
theories for a fiber reinforced rod.

Frequency spectra from the exact and approximate theories
for a magnesium rod.

32



Al

APPENDIX A: UNIQUENESS AND ORTHOGONALITY

Uniqueness

In what follows the conditions under which the solution of the
governing equations of the three mode approximate theory is unique will
be established.

Consider two systems of generalized displacements, strains
stresses which satisfy the generalized strain displacement relations,
Egqs. (48) , generalized stress-strain relations, Egs. (47) , and
stress equations of motion, Eqs. (51) . Define the difference system
as the one which is the difference of the two systems. Let K¥, U¥ be
the kinetic and strain energy densities per unit of length, and K; 8 be
the total kinetic and strain energies of the difference system at time t.

Then one has in a system where the energy is conserved,

t Z
K+8=Ko+ao+f dtfa(i(*+f}*)dz s (a-1)
0o z -
1

where KO and no are the initial values of xk and g at time t = O.
Using Egs. (35)1, , and introducing adjustment factors, one

obtains for the strain energy density per unit of length,
2n a
o =f def U(e, Jrar
. 0 0
= na® {ﬁ(cn + °12)rf- + 2K e, I T, (a-2)
c S, e c
33 2 2 4y 2 2
R Sk o A

Differentiating Eq. (A-2) with respect to time and using generalized

stress-strain and strain-displacement relations, Eqs. (47, 48) , one gets
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o 2 {1 . . u. .

Similarly, the kinetic energy density per unit of length is given
by

K# = d9 f p(u + U )rdr
(A-4)
2 K
= na.zp (11"; Kgﬁa + -gf + ‘é-l* q;z)
Differentiating Eq. (A-4) with respect to time one gets
K
K*=2nap<ﬂl§uu+-w+g—q,q,) (a-5)

When U%*, Kk* given by Eqs. (A-3, 5) are substituted into Eq. (a-1)
and the terms involving partial derivatives of z are integrated by

parts, one has

K+8=KO+BO

ot [ [ {1 )i
K2
TGS TOLEICIRE £ o gt b) i e

t
+21ta.2f (Pw+PY+P_ u)
0 z V] rz

Finally, when the stress equations of motion, Eqs. (51) , are

used Eq. (A-6) can be put into the form
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K+8=’-Ko+ﬂo

+21ta.2h/;tdrh/‘z:.2{%ﬁ+%("f‘\.l’)}dz (a-7)

Z2
z

t
2 . L]
+ 2na L (p,w + Pqﬁ: + Przu) ar .

1

If
(1)  throughout the rod the initial velues of (u, w, ¥) and (u, ¥, ¥),
(ii) throughout the rod one member of each of the producss Ru and

z(w - ¥),
(41i) at each end of the rod one member of each of the products

PV, Bi¥, Pu
are specified, the right hand of Eq. (A-7) will vanish. Then from the
positive definiteness of K* and U* and from the condition that (u, w, ¥)

are specified initially it follows that the solution will be unique.

Orthonogality
In the following discussion the orthogonality conditions for mode

shapes of free vibrations of finite rods, governed by the three mode
approximate theory, are  established. This knowledge can be used
when one studies forced vibrations of a finite rod by means of a mode
superposition technique.

When one puts R = Z = O, the displacement equations of motion,

Bq. (52) , can be put into the form

+Cidﬁ -D,u, =0 . (a-8)

AiUpree ¥ Big¥ye 3 " Pag¥y

(1, § =1, 2, 3)



A4
In Eq. (A-8)

(619 sz 53) = (u, w, §)

(Aid) =| 0 6c33 0
_O 0 2c33_
- -
0 -12K,¢, 5 -12c,mx§
(Bij) =l12Kec,, O 0
12"141;‘2 0 0 (a-9)
-lﬂé(cll-i-cm) o 0
(cij) = o o o
0 (o] '%CMKEJ
- =
3pa21§ 0 (o}
(D:Ld) =|0 6pa2 0
0 0 29321(,2*

Note that Ai:j’ cij’ and Di,j are symmetric whereas Bi,j is anti-

symmetric.



We assume that the solution of Eq. (A-8) has the form

(u, w, ¥) =(uP’ wp’ ‘I’P)eiwpt s

and substituting it into Eq. (A-8) one gets

=P 2 P
w, +wD u =0
J J ’

—p —p
A gByoee * BygUyoe * Cyy pP1j
(no sum on p)

or

—p =P _
Li:ju.j + wgpidud 0 (no sum on p) »

where

_ . =P =p =D _
Ly g0 = Ay, + By ul,e + €y = 0

Note that (uf, wP, (*) are functions of £ only.

Y

Let V 3

1’

A5

(A-10)

(a-11)

(a-12)

(a-13)

be two vectors satisfying the same homogeneous end

boundary conditions (displacement or stress or mixed-mixed), and define

E2
(vi’ Yi) =f ViYidﬁ ’
El
then, using Eq. (A-13) one obtains

2 v &
Vys 2ygty) 'j;l Valhay Yyogg * Byg¥yog * Cy¥y)

&2 &2 &
i 1“13’{3’&'5 " Voghylyl, * VPl
1 1 1

&2
+L (Ai'jvi,eE - Bi:jvi’E + cuvi)YJ‘E .
1

(A-1h)
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Since Vi ’ Yi satisfy the same homogeneous end boundary conditions,
the first three terms in Eq. (A-lh)2 vanish. Teking into account the
symmetry of Aid and ci,j’ and antisymmetry of Bij’ Eq. (A-14) can be

written as

is Bygty) f (RyiVyoge * ByaViog * C3aV)%,%
(a-15)
“ LV, L)

From Eq. (A-15) one concludes that the operator L, j is self

adjoint,

Let i s TJ}I satisfy the same homogeneous boundary conditions and
2

be solutions of Eq. (A-12) with v  and wﬁ(wp #u ) respectively,

i.e., Tfi satisfies Eq. (A-12), and Tx’: satisfies the equations

Lu+waD

If Eq. (A-12) is multiplied by E’; and Eq. (A-16) by 711; and they

are integrated with respect to £ over the interval [El, .‘,'2], one has
(G, Ly 89) + w3(Ty, D a7) = 0
(a-17)
(Ez, 13 J) + (ui, Di:l :j) .

Noting that from Eq. (A-15) one has (ﬁ“‘ L Jug (ﬁz 3 J)

and D, ., is symmetric, subtraction of Eq. (A-l7)l from Eq. (1\-17)2

ij
gives

(mf1 - wf))(ﬁ‘;, D, up) =0 . (A-18)
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Since v # w,, one concludes that

('ﬁ‘;‘, D, J'ﬁ?) =0 for m#p . (a-19)

Using Egs. (A--9)l and (A—9)5, the orthogonality condition,

Eq. (A-19), can be written in expanded form as

/; %2 (3K§umup + 68 + zxﬁ‘pqup)dg =0 (A-20)
"5

for m # p.
Now we investigate the sign of the eigenvalues wlz) in Eq. (A-12).
For this Bq. (A-12) will be multiplied by '1'1"1; and integrated with respect
to £ over the interval [81, &2]. Then one obtains
P

» T, Ly 5
w SR e W L4

. . (A-Zl)
P (u};, D, Jag)

But Di j is a positive definite matrix; hence

(5, Dy Jﬁg’) > 0 for Ef #0 . (A-22)

The sign of ws therefore depends on the sign of the numerator

of Eq. (A-21).
The numerator of Eq. (A-21) can be written in expanded form as

3
('ﬁf.:, Lijﬁg) =L/; 2 ﬁg(“ﬁﬁg’gg + Bi:jl_x?,s + cijﬁ‘j’)dg . (a-23)
1

Now, let

B, , = Bg) + Bg) , (A-24)
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where

FO -1215_013 O-

(Bg')) = |0 0 0
_121(2cm+ 0 )

(a-25)

0 0 -lﬂ(ﬁcm

(B(z)) = J.2I'E1c]_3 0 0
| 0 o o i

Then, integrating by parts Eq. (A-23) can be put into the form

=D =P (2)—p
(W Ly ) = WA ls WPy o :—;l
- W, -26

- W B f(m)—p* AL

When the integrand of the last term in Eq. (A-26) is expanded,
it can be shown that it is proportional to the strain energy density per
unit length and is opposite in sign. In Eq. (A-26), the first two terms
will vanish because Tx? satisfies homogeneous end boundary conditions
(displacement or stress or mixed-mixed); and because of the positive

definiteness of the strain energy, the integral will have a negative



value for E‘i’ # 0. Thus the numerator of Eq. (A-21) will be negative.

Then it follows that eigenvalues wla) will be positive for TJ.‘I; # 0.

A9
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