
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Improving Efficiency and Quality of Data Collection with Machine Learning and Citizen
Science

Permalink
https://escholarship.org/uc/item/8m604636

Author
Khan, Fahim Hasan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8m604636
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

IMPROVING EFFICIENCY AND QUALITY OF DATA COLLECTION WITH
MACHINE LEARNING AND CITIZEN SCIENCE

A dissertation submitted in partial satisfaction
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

Fahim Hasan Khan

September 2024

The Dissertation of Fahim Hasan Khan
is approved:

Professor Alex Pang, Chair

Professor James Davis

Dr. Gregory Dusek

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Fahim Hasan Khan

2024

Table of Contents

List of Figures vii

List of Tables x

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1

2 Related Work 7
2.1 Previous Works . 8

2.1.1 Visual Data Collection . 11
2.1.2 Efficiency in Data Collection 13
2.1.3 Data Quality . 14

2.2 Comparison of My Work with Prior Research 17

3 Approach 19
3.1 ML and Data Collection . 20
3.2 Citizen Science . 23

3.2.1 Citizen Science for Data Collection 24
3.3 Synergy of ML and Citizen Science 26
3.4 Visual Data Collection Platforms . 27

3.4.1 Stationary or Fixed Camera Platforms 28
3.4.2 Mobile Camera Platforms . 29

3.5 Translating Approach to Systems . 31

iii

4 SmartCS: Enabling the Creation of ML-Powered Computer Vision Mobile
Apps for Citizen Science Applications without Coding 33
4.1 Introduction . 34
4.2 Motivation . 36
4.3 Related Works . 37

4.3.1 Citizen Science Platforms . 37
4.3.2 Citizen Science Apps with ML 38
4.3.3 Mobile App Creation Platforms 39
4.3.4 ML Models for Computer Vision on Mobile Devices 41

4.4 System Design of the Platform . 43
4.5 Implementation . 45

4.5.1 Dataset Creation . 47
4.5.2 ML Model Training . 47
4.5.3 Mobile App Building . 49

4.6 Results . 49
4.6.1 Use Case: Recycle This . 50
4.6.2 Use Case: RipSnap . 52

4.7 Feedback . 52
4.7.1 User Study 1: App Creators 53
4.7.2 User Study 2: App Users . 56
4.7.3 Qualitative Feedback . 56

4.8 Conclusion . 57

5 Citizen Science Tools with ML as a Pathway to Engage High School
Students in Research 66
5.1 Introduction . 67
5.2 Related Work . 69

5.2.1 Citizen Science in High School Education 69
5.2.2 ML in High School Education 70
5.2.3 ML and Citizen Science . 70

5.3 Methodology and Research Setting . 71
5.3.1 Participant Selection . 71
5.3.2 Structure . 72

5.4 Preliminary Results and Discussion 77
5.5 Conclusion and Future Work . 82

6 RipFinder: Real-Time Rip Current Detection on Mobile Devices 84
6.1 Introduction . 85
6.2 Related Work . 89

6.2.1 Realtime Object Detection . 89
6.2.2 Rip Current Detection with ML 91

6.3 System Design and Methods . 92

iv

6.3.1 System Architecture . 92
6.3.2 Mobile Apps . 96
6.3.3 Client-side ML Models . 97
6.3.4 Server-side ML Models . 99

6.4 Implementation . 101
6.4.1 Dataset . 101
6.4.2 ML Model Training . 102
6.4.3 Client Apps and Server . 103

6.5 Results . 103
6.5.1 Performance Analysis of ML models 103
6.5.2 Evaluation and Selection . 106
6.5.3 Model Performance Evaluation 107
6.5.4 Analysis for Client-Side Model Selection 108

6.6 Conclusion . 109

7 RipScout: Realtime ML-Assisted Rip Current Detection and Automated
Data Collection using UAS 111
7.1 Introduction . 112
7.2 Related Works . 115

7.2.1 Lightweight ML Models for Drones 115
7.2.2 Field Tested Drone Applications with ML 117
7.2.3 Rip Current Detection with ML 118

7.3 System Architecture . 120
7.3.1 Devices and Hardware . 121
7.3.2 Software Components . 124

7.4 Datasets . 126
7.4.1 Training Data . 126
7.4.2 Automated Data Collection . 130

7.5 Field Testing . 132
7.6 Evaluation . 134

7.6.1 ML Model Performance . 136
7.6.2 Efficiency of RipScout . 140
7.6.3 Accuracy in the Field Tests . 141

7.7 Conclusion . 143

8 Automated Data Collection from Network Cameras using ML 145
8.1 Introduction . 145
8.2 System Design and Implementation 147
8.3 Future Improvements . 153

9 Conclusion 154
9.1 Summary of Contributions . 155
9.2 Future Work . 157

v

A List of Related Publications 160

Bibliography 164

vi

List of Figures

2.1 Diverse data sources collect large amounts of data stored in data centers. 12

3.1 The circular relationship between data and ML models is illustrated
here. Some examples of “Other Applications” include person
identification, plant and animal detection and counting, autonomous
driving, image recognition, and segmentation. 21

3.2 This dissertation hypothesizes that integrating ML with citizen science
enhances data quality by guiding volunteers, reducing label noise and
errors, and validating submitted data, with the systems described in
later chapters designed to test this hypothesis. 26

3.3 Visual data collection platforms used in this dissertation: (1) Stationary
(left), and (2) Mobile (middle and right). 27

4.1 Overview and workflow of the components of our open-source citizen
science app creation platform. 43

4.2 Server-side (left) vs client-side (right) ML models. We used client-side
ML models in our implementation, which provided real-time object
detection without any network connectivity or server-side processing
requirements. 45

4.3 The web version of the platform was created for easy access and uses
different feasible computational resources for different steps. 46

4.4 This figure illustrates the type of materials that the “Recycle This” app
can detect papers, aluminum cans, plastic containers, and glass bottles. . 50

4.5 Appearance of the RipSnap app with examples of rip currents detected
by the app. The location of the rip current is visualized using the red
bounding box with the label and the confidence score of detection. . . . 51

4.6 Summary of scores from the user study by app creators. Participants
were asked to rate their experience of using the platform on a 5-point
Likert scale from “Poor” (a score of 1) to “Excellent” (a score of 5). . . 53

vii

4.7 Summary of scores from the user study by users of three apps.
Participants were asked to rate their experience of using the platform
on a 5-point Likert scale from “Poor” (a score of 1) to “Excellent” (a
score of 5). 55

4.8 The TidalNow App is shown here. Similar to other apps, this app
(a) shows the detected object using a bounding box, (b) the selected
template has a built-in pull-up panel that was customized to present
additional information about the detected objects. 59

4.9 (a)-(c) Demonstrates that the "Sk.in" App can detect bacterial infection,
allergy, and viral infection. (d)-(e) Shows example results from the sea
lions and seals detection and differentiation app, where detected seals
are highlighted using green bounding boxes and sea lions are shown
using magenta bounding boxes. 61

4.10 The vehicle object detection app is shown here. The app is used for
collecting vehicle data by mounting it on the windshield of a car. 62

5.1 The graphical user interface of SmartCS facilitates the three steps
required to create an ML-powered citizen science mobile app. 71

5.2 Some of the apps created by the high school students include: (a)
Tidepool species identification, (b) Recyclable object detection, (c)
Skin infection identification, and (d) Blood cell type identification. . . . 73

5.3 Summary of feedback from users on their experience of using the apps.
Here, in the statements, “the apps” refer to the two selected apps created
by the students. 81

6.1 The high-level system architecture of RipFinder. 89
6.2 GUI of RipFinder App (a) Main menu, (b) Real-time detection from

live camera view, (c) Detection from single image, (d) Data uploader
for citizen science contribution. 93

6.3 Some examples from our training dataset. The images from on the first
column are from the dataset by [53]. The images on the second and
third column are from the dataset we collected using a drone and a
wireless rip activity monitoring camera respectively. 95

6.4 Some examples of detected rip currents from our test videos. 95

7.1 (Left) The high level architecture of the realtime ML-assisted data
collection system using RipScout, (Right) Diagram of per frame
processing by the mobile app. 121

7.2 Graphical user interface for planning data collection mission. (a) The
interactive map interface for selecting flight plans. (b) The interface
to define data collection action plan. (c) Visualization of detected rip
current from the live video feed. 123

viii

7.3 Pipeline showing how drone video is processed by (choice of) ML
model to generate detections in realtime. 127

7.4 Some examples labeled images from the dataset with two types
of rip currents: channel rips (top three images) and sediment rips
(bottom three images). These images demonstrate the distinct visual
characteristics of each type, highlighting the need for separate datasets
to train an accurate model. 129

7.5 Sediment rips are more obvious from a higher elevation (left) than
lower elevation (right). 130

7.6 When RipScout detects a rip between two waypoints, it can be
programmed to perform a combination of data collection actions such
as (a) hover in place and record a video of pre-specified duration, or
go to user specified height before hovering in place and recording the
video, then resuming flight from its original height, (b) record a video
from user specified radius and height with the detection location as the
center. 131

7.7 Here are some examples of realtime automatic detections of two types
of rip currents using RipScout: sediment rips (top row) and channel
rips (bottom row). As shown in the top-left image, RipScout can detect
multiple rip currents in a single frame. The two images in the bottom
row demonstrate that RipScout can detect rip currents from both side
and top views. 135

8.1 The camera is deployed at the Walton Lighthouse near Seabright State
Beach and Twin Lakes State Beach in Santa Cruz, CA, USA. 147

8.2 System Design and Implementation of the camera at Walton Lighthouse. 148
8.3 Automated rip current data collection and shoreline segmentation from

wireless network camera. 153

ix

List of Tables

4.1 This table presents a summary of the ML models tested and supported
on our platform. 63

5.1 Summary of Learning Activities by Phases and Steps. 75
5.2 List of projects created by the high school students. 79

6.1 Comparison of the detection accuracy of the SOTA methods to select
the best options for the client and server application. 100

6.2 Comparison of ML Models: Performance Metrics and Resource
Utilization. 103

7.1 Comparison of detection accuracy, model size, and processing speed of
three ML models when trained on a single class: either channel rip or
sediment rip. 136

7.2 Comparison of detection accuracy, model size, and processing speed of
three ML models when trained to detect and distinguish between two
classes: either channel rip or sediment rip. 137

7.3 Field test comparison of rip current detection efficiency using drones
with (RipScout) vs without (human only) the aid of ML. 140

8.1 Materials and Specifications for the System. 149

x

Abstract

Improving Efficiency and Quality of Data Collection with Machine Learning and

Citizen Science

by

Fahim Hasan Khan

Working with data is a fundamental and essential aspect of computer science,

particularly in machine learning (ML), data science, AI applications, scientific

analysis, and decision-making. Efficiency in data collection is crucial, as many

scientific investigations, including those in computer science, rely on large volumes

of data. Additionally, data quality significantly influences the overall effectiveness and

performance of systems and algorithms. Citizen science facilitates public participation

in scientific research, contributing to data collection, analysis, and reporting. This

dissertation addresses two main challenges in the data collection process: improving

efficiency and ensuring data quality. To tackle these challenges, I propose an approach

that integrates ML with citizen science to enhance data collection. This synergy

can improve data collection efficiency and quality, as ML algorithms assist citizen

science participants in accurately identifying relevant data, filtering out label noise, and

validating gathered data. Primarily, I focus on the potential of using computer vision

ML models to guide and automate the collection process of visual data, such as images

and videos. In this dissertation, I introduce a set of systems designed to improve the

xi

data collection process, including SmartCS, a platform for creating ML-powered citizen

science applications without writing code; RipFinder, a mobile application that uses

ML to guide the collection of rip current data; and RipScout, a drone-based system for

the automated collection of rip current data. These systems address data quality earlier

in the collection pipeline, rather than gathering and cleaning data afterward. Another

contribution of my dissertation is engaging the general public in scientific research,

demonstrated through my work on involving young students in research through these

systems. Overall, my approach and developed systems advance the state of the art

in modern data collection processes by uniquely combining citizen science and ML,

demonstrating their significance in enhancing data quality and efficiency.

xii

To My Parents and My Family

xiii

Acknowledgments

I express my deepest gratitude to my dissertation Reading Committee, Professor

Alex Pang, Professor James Davis, and Dr. Gregory Dusek, for their invaluable

guidance, insightful feedback, and unwavering support throughout my research. Their

time, expertise, and encouragement have been instrumental in shaping the direction and

quality of this work. I also sincerely appreciate the Computer Science and Engineering

Department and Graduate Division at the University of California, Santa Cruz (UCSC),

for fostering a supportive and enriching academic environment.

This research was made possible by the generous funding and support from the

Southeast Coastal Ocean Observing Regional Association (SECOORA) through a sub-

award from NOAA (NA20NOS0120220), the US Coastal Research Program (USCRP)

administered by the US Army Corps of Engineers (USACE), Department of Defense,

through a Sea Grant (NA23OAR4170121), and the UCSC Center for Coastal Climate

Resilience. The contents, findings, and conclusions are those of the author and do not

necessarily reflect the views, positions, or policies of SECOORA, NOAA, UCSC, or

the government, and no official endorsement should be inferred. I also acknowledge

the support from the Google Cloud and AWS Cloud Credit for Research programs.

I am fortunate to have had the support of my colleagues Dr. Akila de Silva, Dr.

Emily Lovell, Jiahao Luo, Donald Stewart, Issei Mori, Minghao Liu, Mona Zhao,

Marzia Binta Nizam, and Vanshika Vats. Their collaboration, insights, and feedback

played a significant role in bringing this work to fruition. I thank all my collaborators,

xiv

interns, volunteers, and participants who contributed to various projects as part of my

research. I also thank the peer reviewers for providing valuable feedback on my papers.

I also acknowledge the creators of the writing and editing tools, specifically Grammarly,

Overleaf, and GPT-4, which I used to improve the readability and formatting of this

dissertation.

Lastly, and most importantly, I wish to express my profound appreciation to my

family, especially my parents and my wife, for their unwavering love, patience, and

encouragement. Their belief in me has inspired my journey, and their support has been

my greatest source of strength through every challenge.

The text of this dissertation includes reprints of the following previously published

material:

• Khan, Fahim Hasan, Akila de Silva, Gregory Dusek, James Davis, and

Alex Pang. “SmartCS: Enabling the Creation of Machine Learning–Powered

Computer Vision Mobile Apps for Citizen Science Applications without

Coding.” Citizen Science: Theory and Practice 9, no. 1 (2024).

• Khan, Fahim Hasan, Emily Lovell, Akila de Silva, Gregory Dusek, James

Davis, and Alex Pang. “WIP: Citizen Science Tools with Machine Learning as a

Pathway to Engage High School Students in Research.” In 2024 IEEE Frontiers

in Education Conference (FIE), pp. 1-5. IEEE, 2024.

The co-author listed in these publications directed and supervised the research,

which forms the basis for the dissertation.

xv

Chapter 1

Introduction

Working with data is a basic and important aspect of computer science and

engineering, modern scientific research, and technological innovation. Data collection

is the systematic process of gathering and measuring information from different sources

to obtain a thorough and precise understanding of a specific subject. It supports

critical processes in scientific analysis, decision-making, and various other modern

scientific endeavors, such as building machine learning (ML) models and artificial

intelligence (AI) applications. Efficient and high-quality data collection is essential for

the advancement of these fields. However, it presents various challenges that require

innovative solutions.

Efficiency in data collection refers to the ability to gather accurate and reliable data

swiftly and with minimal resource expenditure. It involves optimizing processes to

reduce time, costs, and effort while maintaining high-quality results. Data quality

1

relates to the accuracy, reliability, and relevance of data in fulfilling its intended

purpose. High-quality data is complete, consistent, and error-free, facilitating effective

decision-making and analysis.

Efficient collection of high-quality data is challenging for various reasons, such

as the complexities of handling large volumes of different types of data from diverse

sources, ensuring data integrity, and managing real-time data streams. Maintaining

accuracy and completeness of data while minimizing latency in real-time applications

requires sophisticated technology and systems. Resource constraints, including cost

and the need for skilled personnel, increase these challenges. Additionally, ensuring

user engagement, managing device and computational limitations, and addressing legal,

ethical, and environmental considerations add further complexity to the data collection

process. All these factors combined make collecting high-quality data efficiently

complex and challenging.

The motivation for my work is driven by the need to use new technologies to

solve the challenges of collecting data, which is a crucial part of modern science

and innovation. As the need for high-quality data grows, especially in fields like ML

and AI, it has become very important to make data collection methods more efficient

and accurate. My dissertation focuses on using citizen science and ML to make data

collection easier and more accessible for everyone, not just experts. By creating new

tools and methods, this work aims to get more people involved in scientific research,

make the data collected more reliable, and apply these improvements to real-world

2

issues like detecting dangerous rip currents, thereby contributing to scientific progress.

To address the data collection challenges, a primary focus of this work is

the development and implementation of SmartCS, a novel platform designed to

enable the creation of ML-powered computer vision mobile apps for citizen science

applications without requiring any coding or programming skills. SmartCS leverages

the computational capabilities of modern mobile devices to perform complex computer

vision tasks using ML to guide non-expert participants in collecting high-quality visual

data in various research fields. This platform addresses the challenges faced by citizen

scientists, including the need for accurate data labeling and the limitations of server-

dependent ML systems in remote locations.

Additionally, this dissertation investigates the role of ML in engaging the general

public in research activities through the development of citizen science tools. We

selected a group of high school students as a representative sample of the general

public. The high school students were chosen for this study due to their availability,

eagerness to learn, and status as good representatives of lay users, given their early stage

of learning. Moreover, by integrating ML within these tools, students gain hands-on

experience with advanced technologies, fostering their interest in Science, Technology,

Engineering, and Mathematics (STEM) careers and enhancing their understanding of

scientific methods. This approach benefits the students and contributes valuable data to

ongoing research projects.

While data collection is essential for many applications in various fields, this

3

dissertation focuses on a specific application to implement and evaluate our methods.

It concentrates on the application of ML for rip current detection and automated

data collection, an area of critical importance due to the significant dangers these

currents pose to beachgoers worldwide. Rip currents are dangerous, strong, and fast-

moving currents that can pull even experienced swimmers away from the shore, often

leading to drownings and fatalities. Identifying rip currents from an ML and computer

vision perspective involves object detection and segmentation. Developing an effective

rip current detection application necessitates real-time, often on-device, processing.

Additionally, rip currents are challenging to detect due to their amorphous and transient

nature, making them difficult for even advanced computer vision algorithms to identify.

Because of these challenges and design considerations, the proposed solutions in this

dissertation can be easily translated and applied to other data collection problems across

various domains.

Among the proposed approaches, the development of the mobile application

RipFinder, an expansion of a SmartCS app, illustrates the practical use of ML for

real-time, client-side detection of rip currents, providing a tool that operates effectively

even without internet connectivity. Additionally, this dissertation introduces RipScout,

a drone-based system designed for the automated collection of rip current data.

Furthermore, it presents the design and deployment of a WiFi camera-based system for

automated rip current data collection, demonstrating the usefulness and effectiveness

of ML in enhancing environmental monitoring and safety.

4

Given the extensive challenges associated with data collection and the scarcity of

focused research on improving its efficiency and quality, we defined two key research

questions (RQs) based on the literature review (Chapter 2).

• RQ 1: How can efficiency in large-scale data collection be improved through the

integration of advanced technologies and methodologies?

• RQ 2: How can we ensure and enhance the quality and integrity of data

throughout the collection, processing, and utilization stages?

The contributions of this dissertation are summarized below:

• SmartCS, A platform for creating ML-powered citizen science applications that

enables users to develop applications without writing code.

• Investigating strategies to engage high school students (as a representative group

for the general populace) in research through the use of SmartCS and other tools

to create ML-enhanced citizen science apps.

• RipFinder, A mobile application that utilizes ML to guide the collection of rip

current data.

• RipScout, A drone-based system designed for the automated collection of rip

current data.

• The design and implementation of a wireless network camera-based system for

automated data collection.

5

In this dissertation, Chapter 2 discusses previous works and challenges on

data collection. Chapter 3 presents the overview of approach presented in this

dissertation. Chapter 4 introduces the SmartCS platform, with details of its design and

implementation for creating ML-integrated mobile apps for citizen science and some

user studies. Chapter 5 investigates the use of ML in citizen science tools to engage high

school students with case studies and user feedback. Chapter 6 focuses on RipFinder, a

mobile app for real-time rip current detection. Chapter 7 covers RipScout, a real-time

rip current detection and automated data collection system using drones or Uncrewed

Aircraft Systems (UAS). Chapter 8 presents the system design for real-time rip current

detection and automated data collection using a network camera in a remote location.

Finally, Chapter 9 provides concluding remarks and outlines planned future work.

Through these chapters, the dissertation aims to showcase the potential of

combining citizen science, mobile technology, and ML to enhance public participation

in scientific research, improve data collection processes, and provide educational

opportunities.

6

Chapter 2

Related Work

Data collection is fundamental to scientific research and decision-making processes

across various fields. Systematic data collection is essential for both qualitative and

quantitative research [267]. Analyzing these data allows researchers and decision-

makers to obtain insights, make predictions, and develop new technologies. High-

quality data collection ensures the reliability and validity of research findings,

facilitating advancements in science and technology [265]. Selecting appropriate data

collection methods and strategies is necessary to obtain relevant and accurate data for

specific research purposes [15, 121, 194, 233]. The careful approach to data collection

enables effective scientific research and technical development.

In computer science and engineering, data collection is a central focus. For

example, ML models depend heavily on large datasets to generate accurate predictions

and identify patterns. The quality and amount of data significantly impact the

7

performance and reliability of these models. Efficient and high-quality data collection

is crucial for the progression of AI and other data-driven technologies. The success

of ML algorithms is primarily related to the availability of large and well-curated

diverse datasets, which provide the necessary breadth and depth for training robust

models [123]. Furthermore, as highlighted in numerous studies, high-quality data

collection practices improve model performance and reduce biases [29, 93, 265]. By

focusing on developing better data collection methodologies, the field can continue

to address complex problems with innovative solutions with greater accuracy and

efficiency, further strengthening the critical role of data in technological advancement.

In this chapter, I provide a high-level and broad discussion of previous works

and the framing of data collection challenges, followed by more detailed and relevant

background work in the subsequent chapters.

2.1 Previous Works

As a foundational task in scientific research, data collection has long presented

significant challenges [267]. Over time, various strategies such as crowdsourcing [121],

automation, and mixed methods [15, 29] have been implemented to enhance the data

collection process. These challenges and strategies differ across research domains and

evolve with technological advancements. For example, the challenges and solutions in

medical research [165] may differ from those in environmental science [190].

Technological progress has continuously improved data collection methods [143],

8

enhancing both quality and efficiency, particularly with the advent of computer science

and digital tools [233] and ML. While ML has revolutionized the field, it also introduces

challenges in ensuring data quality and efficiency [211]. High-quality data is crucial for

training deep learning models, yet maintaining this quality remains a major obstacle

[269].

Data can be collected through various methodologies, including surveys,

interviews, observations, experiments, sensors, digital tools, and crowdsourcing,

tailored to meet specific research contexts and objectives [51, 192]. Recent

advancements in mobile and wearable technology, such as smartphones and fitness

trackers, have made real-time data collection possible, benefiting studies in healthcare,

environmental monitoring, and user behavior [191]. IoT devices and remote sensing

have further transformed fields like environmental science, allowing automated,

continuous data gathering for better analysis and decision-making [96].

For example, in agriculture, IoT devices and smart sensors are used for monitoring

soil moisture, temperature, air quality, and crop health, optimizing irrigation and

fertilization [251]. These types of applications also improve productivity and

sustainability in various other fields [259]. Systems developed using these technologies

allow for comprehensive and precise data collection, facilitating better analysis and

decision-making for environmental management and conservation efforts [101].

Social research has also advanced with online surveys and social media platforms

that gather data on public opinion and behavior [25]. Platforms like YouTube [88],

9

Instagram [108], and TikTok [226] provide rich visual data that can be used to study

cultural trends, communication patterns, and user engagement [103]. Collaborative

efforts like Wikipedia, OpenStreetMap, Google Street View, etc. rely on crowdsourcing

to enhance data accuracy [102]. Citizen science efforts make use of crowd participation

to gather large volumes of data from various locations [92]. The subsequent chapters

(Chapters 3 to 5) present a more comprehensive discussion of citizen science’s role in

data collection.

In technology development, data is essential for training ML models in computer

vision, natural language processing, and autonomous systems. Platforms like Amazon

Mechanical Turk and Google Colab make data gathering and labeling more accessible

[20, 30]. On the other hand, AI and ML also help automate data categorization, error

detection, and quality control, streamlining research processes and reducing errors

[185].

For instance, in healthcare, AI tools analyze patient data from medical records,

wearables, and imaging, enabling early diagnosis and personalized treatment plans

[247]. AI can also automate tasks such as transcribing audio recordings, analyzing

social media content, and categorizing images, thereby streamlining workflows and

reducing the time required for data processing [71]

10

2.1.1 Visual Data Collection

This dissertation centers on the collection of visual data, such as images and videos,

often supplemented with metadata like location and elevation [92]. Visual data is added

with observations and annotations to create comprehensive datasets that are widely used

in areas like biodiversity monitoring, autonomous driving, urban planning, and coastal

engineering. For example, in rip current studies, images, and videos are crucial for

detection and analysis [35, 53]. Metadata integration, such as GPS coordinates, further

enhances the contextual understanding of visual data for more accurate analysis [68].

The evolution of visual data collection began with early methods like remote

sensing, aerial photography, and video, which laid the foundation for today’s advanced

systems. Starting in the mid-20th century with technologies like Landsat 1 in

1972, continuous Earth monitoring became possible, driving progress in land use

and environmental analysis [249]. Aerial photography, initially used in military

reconnaissance, later found applications in environmental and urban studies [48].

Early applications in environmental monitoring include Cowardin et al.’s [49] wetland

classification using aerial photography. Integrating visual data into GIS in the 1980s

marked a major leap in spatial analysis, as highlighted by pioneers like Tomlinson

[245]. Lillesand and Kiefer’s work was a very useful resource on the use of visual data

for environmental monitoring [162]. However, one of the major limitations of these

early visual data collection systems was the need for more well-thought strategies to

ensure efficiency and quality in the data collection process.

11

Figure 2.1: Diverse data sources collect large amounts of data stored in data centers.

Recent advancements in high-resolution cameras, sensors, and computer vision

have transformed visual data collection. Drones, satellites, and other devices now

capture detailed imagery across vast areas, supporting diverse applications from

environmental monitoring to urban planning [181]. In healthcare, advances in medical

imaging, combined with AI and ML, enhance disease detection and patient monitoring

[165]. Similarly, autonomous systems depend heavily on visual data from cameras,

LiDAR, and radar for safe navigation and decision-making [159].

These technological advancements have greatly improved the accuracy and

efficiency of data collection. However, there remains a gap in research focused

on simultaneously improving both accuracy and efficiency in data collection. This

dissertation aims to develop innovative solutions and systems that contribute to closing

this gap.

12

2.1.2 Efficiency in Data Collection

Effective data collection is essential for handling the large volumes of data gathered

and produced in today’s digital age. (Figure 2.1). As organizations and researchers

increasingly rely on large datasets to derive meaningful insights, improving the

efficiency of data collection becomes even more critical. While there are various

challenges related to efficiency in data collection, a few challenges related to this

dissertation, identified through the literature review, are briefly discussed in the non-

exhaustive list below. These points are also relevant to Research Question 1 presented

in Chapter 1.

1. Data Variety and Complexity: The data collected comes in various formats

and complexities, making it difficult to manage and process efficiently. The

diversity of data types, from structured data in databases to unstructured data

such as text, images, and video, requires sophisticated methods to integrate and

analyze effectively [143]. A study by Katal et al. provides an overview of

tools and methodologies for handling complex and varied data in large-scale

collections [128].

2. Resource and Technological Constraints: Limited resources and outdated

technologies can obstruct data collection. The vast amount of data

collected rapidly and continuously requires scalable and modern technological

infrastructures to manage effectively [150]. Hilbert et al. highlight the constraints

and capacities of current technologies in managing large-scale data [104].

13

3. Real-Time Data Collection: Collecting data in real time requires robust systems

capable of handling continuous data streams. Real-time data analytics needs

systems that can process and analyze data on the fly, providing immediate insights

and responses [83]. A survey by Yasumoto et al. presents a system for real-time

stream processing, addressing the challenges of IoT data collection [278].

4. User Participation: Engaging users effectively to contribute data can be

challenging. Incentivizing and maintaining user engagement in citizen science

and crowdsourcing projects are critical for successful data collection efforts

[270]. Kittur et al. discuss methods to engage and motivate users in data

collection tasks [144].

5. Legal and Regulatory Compliance: Ensuring compliance with data protection

laws and regulations adds another layer of complexity. Understanding and

following laws and legal frameworks to ensure ethical data practices and protect

user privacy is crucial [282]. A study by Tene et al. discusses the regulatory

landscape and compliance strategies for large-scale data collection [241].

2.1.3 Data Quality

Maintaining data quality and integrity is essential for the reliability of research

results and technical applications. The importance of data quality is well-documented

in the literature, emphasizing the need for accurate, consistent, reliable, complete,

and usable data. Studies by Wang and Strong highlight that data quality is multi-

14

dimensional and that these key aspects are fundamental for effective decision-making

and operational efficiency [234, 265]. Other studies extensively discussed the critical

nature of these dimensions in ensuring data quality across various contexts and

applications [195, 202]. Some aspects of data quality relevant to this dissertation,

particularly in relation to Research Question 2 presented in Chapter 1, are briefly

discussed below.

1. Accuracy: Data should accurately represent the intended information without

errors or noises. Ensuring accuracy is vital, as inaccurate data can lead to

incorrect conclusions and faulty decision-making [265]. For example, Chen et

al. discuss methods for improving data accuracy through enhanced data analytics

and intelligence systems [38].

2. Consistency: Data should be standard across different systems and formats,

ensuring reliable access and analysis. Consistent data facilitates smooth

integration and comparison [202]. Madnick et al. discuss the role of data

semantics in ensuring data consistency across different systems [172].

3. Reliability: Reliable data can be depended upon for making sound decisions

and conducting operations. Reliability is essential for trust in data, as noted by

Strong, Lee, and Wang [234]. Research by Fisher et al. highlights the importance

of reliable data in critical decision-making processes [79].

4. Completeness: Data should be complete and free of missing information that

15

could affect its usefulness. Incomplete data can lead to biased analyses and

compromised results [195]. For example, the DaQuinCIS Project focuses on

methods to ensure data completeness in information systems [217].

5. Usability: Data should be easy to understand, process, and use by its target

audience. Usability ensures that data can be effectively utilized for its intended

purpose, enhancing the overall value of the data [195]. Eppler et al. discuss

various approaches to enhancing data usability for different audiences [70].

Maintaining the quality of data presents significant challenges due to several factors:

the large volume of data generated and collected [150]; the diversity of data sources

[143]; human and system errors [202]; and data degradation over time [195]. First,

the vast amount of gathered data can be overwhelming, making the efforts to maintain

consistent quality across datasets complicated [150]. Large volumes can lead to data

quality issues due to several factors. For example, the increased complexity and

variety of data sources make it challenging to standardize and validate data effectively

[84, 143]. Additionally, as the volume of data grows, the likelihood of encountering

incomplete, duplicate, or erroneous data increases, making it harder to ensure accuracy

and consistency [41]. This can eventually reduce the overall data quality and the

reliability of any analyses performed on it [202]. Data degradation is a critical issue. As

data ages, it may become outdated or irrelevant, thereby decreasing its utility [195,265].

This trend is particularly relevant for time-sensitive data sources like financial market

data, weather information, and social media trends. For example, weather data becomes

16

obsolete quickly as new data updates are required for accurate forecasting [89]. Social

media data, used to understand public sentiment or trends, can also become irrelevant

quickly as public opinion changes fast [22, 250]. Finally, human and system errors

during data entry, collection, or processing can introduce inaccuracies, negatively

affecting data integrity and reliability. Overcoming these challenges is essential to

maintain data as a reliable basis for decision-making and analysis in scientific research.

2.2 Comparison of My Work with Prior Research

My research is different from previous related works because it focuses on

improving both the efficiency and quality of data collection simultaneously. Earlier

studies have generally concentrated on either advancing the technology for more

efficient data gathering or developing better methodologies to enhance data quality. For

example, as discussed earlier in this chapter, many research efforts have been aimed at

creating advanced sensors and automated systems that make the data collection process

faster and more efficient. Others have focused on engaging communities and creating

protocols to gather reliable data from non-experts. However, these approaches often

considered efficiency and quality as separate goals, addressing them independently

rather than as interconnected factors that can be optimized together.

In contrast, my work takes a more comprehensive approach by using the tools and

systems I developed to improve both efficiency and quality at the same time. This dual

focus not only speeds up the data collection process but also ensures high-quality data

17

through real-time validation and visual feedback mechanisms. The RipScout system is

a key example of this approach, integrating advanced ML models with practical tools

like drones. By considering efficiency and quality together, my research offers a novel

perspective and methodology, closing the gap left by previous works.

18

Chapter 3

Approach

In this dissertation, my approach uniquely integrates ML with citizen science to

create a scalable, cost-effective, and efficient data collection system. Unlike traditional

methods, this approach leverages the power of citizen science to involve a vast network

of volunteers, significantly increasing the scale of data collection without the need

for specialized training. Additionally, the SmartCS tool enables the creation of

ML-powered mobile apps without coding, reducing development costs and making

advanced data collection tools accessible to a broader audience [138]. By automating

data collection using ML-guided UAVs and an extensive network of cameras, my

approach reduces the need for human intervention, thus lowering operational costs.

The use of ML algorithms ensures higher data quality by filtering out noise and

validating submissions, improving the precision and dependability of the gathered

data. Furthermore, this approach fosters public engagement and education in scientific

19

research, adding a valuable dimension to the scientific and technical community [23].

Overall, my approach offers a novel alternative to traditional data collection methods

by being more effective in ensuring high-quality data.

3.1 ML and Data Collection

ML offers powerful tools for improving the efficiency and quality of data collection.

ML algorithms can automate the identification, categorization, extraction, and

prediction of valuable information from large datasets [146]. This automation enhances

efficiency and accuracy in data collection processes, particularly in tasks involving

complex pattern recognition and classification [154]. For example, convolutional

neural networks (CNNs) have shown remarkable success in image recognition and

classification tasks, significantly improving data annotation processes [147].

The relationship between ML models and data is inherently circular and symbiotic,

with each component continuously influencing and improving the other (Figure 3.1).

This relationship is characterized by a continuous feedback loop where high-quality,

diverse data are essential for training effective ML models, and in turn, these models

facilitate more efficient and accurate data collection and annotation [62, 123]. As ML

models learn from the data, they generate insights and predictions that highlight areas

needing improvement, leading to the refinement of data quality and quantity [98]. This

iterative process involves deploying models to interact with real-world data, which

generates new data that further trains and refines the models [220]. Consequently, as

20

Figure 3.1: The circular relationship between data and ML models is illustrated here.
Some examples of “Other Applications” include person identification, plant and animal
detection and counting, autonomous driving, image recognition, and segmentation.

models evolve and improve, they enable more advanced data collection and analysis

techniques, creating a cycle of mutual enhancement and progressive advancement in

ML [145]. Even though this concept was suggested in many of the previous works

referenced above, the novel aspect of my work is leveraging this circular relationship

between data and ML models in the systems I designed and implemented to improve

the data collection process, as explained in the following chapters.

A notable real-life example of this circular relationship is the Segment Anything

Model (SAM) developed by Meta AI [141]. SAM was trained on a dataset comprising

11 million images and 1.1 billion annotation masks, which were initially generated

using various ML models. A small sample of this dataset was then verified by human

experts to ensure accuracy. SAM’s primary application is to generate segmentation

masks from any image, facilitating tasks such as automated and ML-guided annotation

of data. Consequently, SAM is not only utilizing data for its training but also generating

21

new data that can be used to train additional ML models, perpetuating the cycle of

mutual enhancement between models and data.

Data Labeling: Data labeling is necessary for a range of applications, such as

computer vision, NLP (natural language processing), and speech recognition. For

example, when building a computer vision system, we first need to label images, pixels,

or key points or create a bounding box around a digital image to generate our training

dataset. Images can be classified by type (like product vs. lifestyle images), content, or

segmented at the pixel level. This labeled data can then be used to develop a computer

vision model capable of automatically classifying images, detecting object locations,

identifying key points in an image, or segmenting an image [9]. In ML, data labeling

involves tagging raw data (such as images, text files, videos, etc.) with one or more

descriptive labels to provide context that a ML model can learn from. For instance,

labels may specify whether a photo contains a bird or car, what words were spoken in

an audio recording, or if an x-ray shows signs of a tumor [9].

The quality of annotations is hard to control, and obtaining reliable labels from

citizen science platforms can be difficult due to label noise. Incorrect or mislabeled

data introduce label noise. Frénay et al. [81] provides a detailed survey on various types

of label noise, identifying sources such as insufficient information, expert mistakes,

subjective classification, and encoding or communication problems. Although “noise”

has different meanings in various branches of science, in this text, “label noise” refers

to observed labels that are classified incorrectly [81].

22

Another goals of this work is to improve data quality by reducing label noise

through the implementation of data collection systems with ML guidance and

automation. The ML guidance assists human data collectors in recognizing the correct

data and providing accurate labels, thereby reducing label noise and enhancing overall

data quality.

3.2 Citizen Science

Citizen science, a special form of crowdsourcing, involves the participation of

volunteers, often non-experts, in scientific research. These volunteers collect and/or

analyze data, contributing to a wide range of projects. Citizen science benefits both

researchers and participants. Researchers can collect data that they otherwise would not

be able to, while participants learn about the subject they are engaged with. Most citizen

science projects requires data collection. Considering the diverse range of projects,

providing some level of expertise or guidance for beginners can significantly enhance

the quality of the gathered data.

Many citizen science projects rely heavily on visual data, like photographs or

videos of various subjects. These data are often collected from all over the world,

including remote locations. For instance, with iNaturalist, a smartphone app available

to everyone, users can gather data and learn about various plant and animal species

[257].

Citizen science platforms are increasingly going mobile with emerging technologies

23

and shifting paradigms [180]. Modern smartphones, equipped with multiple cameras

and an array of sensors, can be used in combination to provide more information

than just photos and videos. Utilizing these additional capabilities of smartphones

can enhance data collection in citizen science projects. Additionally, the increasing

availability of low-cost UAS makes aerial imagery from public contributions a

possibility for researchers. Citizen science participation usually involves data

collection, annotation, classification, and other tasks. An example of a data collection

task is volunteers using smartphones to take photos of plant species in their local

area for a biodiversity project, then uploading the images to a central database for

further analysis. An annotation or labeling task involves identifying and labeling these

species in the images, often adding additional information or comments. Classification

entails categorizing the species to assist biologists in their studies. Another example

task is volunteers participating in a coastal cleanup event, recording the types and

quantities of trash collected, which are then analyzed to understand pollution patterns

and develop strategies for reducing marine debris. There is an opportunity to engage

participants more intimately by improving modeling or prediction through confirmation

or refutation.

3.2.1 Citizen Science for Data Collection

Data collection in citizen science projects has various objectives, such as monitoring

or performing analysis. In many cases, ML algorithms are used for post-collection

24

analysis of the data. For example, in the CoastSnap project, beachgoers take photos of

the coastline from fixed camera mounts and upload them to a central database [100].

After the data collection phase, ML algorithms are used to analyze these images.

The computer vision models can automatically detect and track changes in shoreline

position, identify features such as sand dunes and vegetation, and measure beach width

and slope over time. This post-collection analysis allows researchers to efficiently

process large volumes of visual data, monitor coastal erosion and accretion, and make

informed decisions about coastal management and preservation strategies.

As shown in Figure 3.1, data can also be used to further train the models used in

the citizen science platform to assist participants. However, traditional neural network

architectures struggle with catastrophic forgetting, making it challenging for them to

learn a series of tasks consecutively. Catastrophic forgetting is the phenomenon where

a neural network, when trained sequentially on multiple tasks, tends to forget the

knowledge learned from previous tasks as it learns new ones [82]. This happens because

the model parameters are updated to optimize the performance on the current task,

often at the expense of the performance on previous tasks. In summary, the network

overwrites its existing knowledge with new information, leading to a significant drop

in accuracy on earlier tasks. This challenge is particularly problematic in scenarios

where continuous learning from an evolving data stream is required, such as in lifelong

learning applications or when deploying models in dynamic environments [142]. Since

new data are continuously collected in citizen science projects, using these data

25

Figure 3.2: This dissertation hypothesizes that integrating ML with citizen science
enhances data quality by guiding volunteers, reducing label noise and errors, and
validating submitted data, with the systems described in later chapters designed to test
this hypothesis.

efficiently for ML training without forgetting previous training can be challenging [56].

3.3 Synergy of ML and Citizen Science

Combining ML with citizen science creates a powerful synergy for enhancing data

collection. ML algorithms can process and analyze the large volumes of data generated

by citizen scientists, identifying patterns and insights more quickly and accurately than

human analysts. The hypothesis of this dissertation is that integrating ML with citizen

science enhances data quality by providing guidance to volunteers, minimizing label

noise and errors, and validating the data they submit (Figure 3.2). The systems and

studies described in the subsequent chapters are designed to prove this hypothesis.

Furthermore, ML can enhance engagement and participation in citizen science

projects by providing tools for data visualization, real-time feedback, and personalized

experiences for participants. Conversely, the diverse and extensive data collected

26

Figure 3.3: Visual data collection platforms used in this dissertation: (1) Stationary
(left), and (2) Mobile (middle and right).

through citizen science initiatives are invaluable for training and refining ML models,

making them more robust and accurate.

Efficient data collection with ML and citizen science represents a modern approach

to scientific research and data gathering. It leverages cutting-edge technology and

widespread public engagement to tackle complex challenges in data collection, offering

scalable, cost-effective, and inclusive methods for gathering high-quality data. This

approach not only advances scientific research but also democratizes the process,

involving the public in meaningful scientific endeavors.

3.4 Visual Data Collection Platforms

The main focus of this dissertation is visual data (images, videos, etc.), which is the

primary type of data collected by the systems I have proposed and implemented based

on the concepts and hypotheses discussed in the previous sections. Typically, this type

of data is collected using various types of cameras mounted on different platforms, such

as smartphones, drones, satellites, microscopes, and standalone handheld cameras.

27

From the perspective of my research (Figure 3.3), visual data collection platforms

can be categorized into two types: (1) Stationary or fixed camera platforms (Chapter

8), and (2) Mobile camera platforms (Chapter 4, 6, and 7).

3.4.1 Stationary or Fixed Camera Platforms

Stationary or fixed visual data collection platforms can be deployed for various

applications. For instance, surveillance cameras are extensively used for security and

monitoring in public spaces, businesses, and residential areas [268]. Traffic cameras are

installed at intersections and along roadways to monitor traffic flow, capture violations,

and enhance safety. Webcams, typically linked to computers or networks, are used

for activities like live streaming, video calls, and remote surveillance [263]. Wildlife

cameras are strategically placed in natural habitats to observe and record wildlife

behavior and environmental changes [32]. Environmental monitoring stations use fixed

cameras to track weather conditions and pollution levels [151].

These fixed camera platforms share several common features. They are typically

deployed in fixed locations and are often part of remote or networked systems that

allow for continuous or periodic monitoring. The deployment of these cameras

requires careful planning to ensure they are positioned to effectively capture the desired

data, whether for security, traffic management, wildlife observation, environmental

monitoring, scientific research, or industrial processes. The effectiveness of these

systems depends on strategic placement and proper maintenance to ensure reliable data

28

collection over time.

3.4.2 Mobile Camera Platforms

Various mobile visual data collection platforms are utilized today, including

handheld cameras, smartphones, tablets, drones (UAS), body-worn cameras, wearable

devices like smart glasses and AR headsets, vehicle-mounted cameras, and robots.

Specifically, my research concentrates on two main types of mobile cameras: (1)

cameras integrated into smart devices (Chapters 4 and 6), and (2) cameras mounted

on UAS (Chapter 7). Although the systems presented in Chapters 6, 7, and 8 were

developed for rip current data collection, they can be easily adapted for a wide variety

of use cases. We selected rip current data collection as a pilot project to demonstrate

the application and capabilities of our approach and systems.

3.4.2.1 Smartphones and Smart Devices

Smartphones and smart devices have become essential tools for visual data

collection due to their widespread availability, portability, and advanced technological

capabilities. Equipped with high-resolution cameras, these devices enable users to

capture high-quality images and videos easily. The integration of additional sensors,

such as high-precision location/GPS sensors, accelerometers, gyroscopes, 3D/depth

cameras, and LiDAR, enhances the contextual data that can be collected alongside

visual information, making these devices highly versatile for a range of applications.

29

In research and citizen science projects, smartphones and smart devices allow users to

gather and share data in real-time, facilitating large-scale data collection efforts across

diverse geographical locations [18, 111, 183]. Furthermore, the expansion of user-

friendly applications such as CoastSnap [100], iNaturalist [183], and Pl@ntNet [196]

enables non-experts to participate in data collection, thereby democratizing access to

scientific research and fostering community engagement. With their ability to support

advanced functionalities, such as ML and augmented reality, smartphones and smart

devices are not only revolutionizing visual data collection but also expanding the

possibilities for analysis and interpretation of the collected data [33, 77, 257].

A common feature of smartphones and smart devices is their mobility and

flexibility, allowing data collection in various settings and conditions. However, they

often face constraints related to computational power and battery life, which can limit

the complexity of real-time data processing and analysis performed on the devices

themselves.

3.4.2.2 Uncrewed Aerial Systems (UAS)

Recent developments in UAS have made these platforms valuable for data

collection in inspection, surveillance, mapping, and 3D modeling [181]. They offer a

low-cost alternative to manned aerial photogrammetry, particularly in short- and close-

range domains. Rotary or fixed-wing UAS are much cheaper and easier to operate, even

by amateur pilots [260]. Most modern UAS can fly in manual, semi-automated, and

30

autonomous modes, and can be equipped with additional sensors beyond high-quality

cameras [61].

UAS can perform photogrammetric data acquisition with amateur or SLR digital

cameras, producing outputs like terrain models, elevation models, contour lines,

textured 3D models, and vector information for large areas [181]. Their accessibility

makes UAS ideal for a variety of citizen science projects [240, 273]. While some UAS

have basic object detection and obstacle avoidance features, adding customized ML-

assisted data collection capabilities can further extend their applications in specialized

projects [19, 58, 182, 244].

A key feature of UAS is their maneuverability and ability to access hard-to-reach

areas and perform data collection over large regions. However, like smartphones and

smart devices, they face constraints related to computational power and battery life,

limiting flight duration and the complexity of real-time data processing onboard.

3.5 Translating Approach to Systems

The subsequent chapters detail the application of this approach to various systems.

The next chapter introduces the SmartCS platform, which enables the development of

a citizen science app with integrated ML to enhance the efficiency and quality of data

collection. Following this, I assess the effectiveness of my approach by addressing

four research questions. The chapter on the RipFinder app advances this concept by

employing sophisticated techniques to combine ML and citizen science for efficient,

31

high-quality rip current data collection. The RipScout system builds upon RipFinder

by incorporating drones guided by ML to further improve the quality and efficiency

of rip current data collection. Finally, I present the implementation and development

of a versatile system designed to efficiently collect various types of high-quality data,

extending beyond rip current data.

32

Chapter 4

SmartCS: Enabling the Creation of

ML-Powered Computer Vision Mobile

Apps for Citizen Science Applications

without Coding

In this chapter, I introduce SmartCS, a platform that enables the creation of citizen

science apps with ML support quickly and without the need for coding skills [138].

Apps developed using SmartCS have client-side ML support, making them usable in

the field, even when there is no internet connection. The client-side ML helps educate

users to better recognize subjects, thereby enabling high-quality data collection and

accurate annotation, which reduces label noise. Several citizen science apps created

33

using SmartCS are also presented, some of which were conceived and developed by

high school students.

4.1 Introduction

Citizen science is a form of scientific research that involves the general public as

participants. The participants are typically not trained scientists, but rather individuals

who are interested in or concerned about a particular subject and want to contribute to

scientific knowledge [14, 97, 261]. Citizen science projects often involve monitoring

and collecting visual data, such as images or videos, of various subjects. Participants

may also be involved in designing experiments, analyzing results, and solving problems

related to the research project. In the rest of this article, the term “researchers” refers

to those who conduct the research projects, and “participants” refers to those who

contribute to research projects via a citizen science platform [67]. Citizen science

benefits both researchers and participants in terms of data collection and learning

experience. For example, the iNaturalist app allows participants to collect data while

learning about plant and animal species [257].

With emerging technologies and shifting paradigms, citizen science platforms are

also becoming mobile, making it easier for participants to collect visual data [180].

Mobile devices, such as smartphones and tablets, equipped with multiple cameras and

advanced processing capabilities, can perform complex computer vision (CV) tasks

using machine ML [197]. ML-enhanced customized mobile application software or

34

apps have the potential to significantly improve the effectiveness of citizen science

projects.

While anyone can engage in citizen science projects, some basic skills are necessary

for effective data collection. Often, participants need to accurately identify and label

objects, a task that can be challenging for non-experts. Mobile apps with integrated ML,

capable of detecting objects of interest, can assist participants in efficiently collecting

visual data and improving the data quality. This also opens the possibility of recruiting

more volunteers by educating people about new topics and growing new interests

among them [209].

Citizen science platforms such as Zooniverse [228], SPOTTERON [111], Anecdata

[59], etc., provide the service to build citizen science apps for crowdsourced research

projects [166]. While these platforms offer standardized purpose-specific tools and

features, ML guidance is largely unavailable. A few apps, such as iNaturalist, have ML

guidance through cloud servers. However, the required connectivity may be unavailable

in remote locations. Moreover, existing open source systems like iNaturalist and

Zooniverse are not designed to integrate with client-side ML [228]. Creating a new app

with ML guidance de novo for every similar citizen science project is not ideal. For

instance, “Seek by iNaturalist” was built from scratch to add client-side ML guidance

for classifying plant and animal species, despite iNaturalist having an existing ML

server [257].

This chapter introduces an ML-integrated citizen science mobile app creation

35

platform for faster app building and deployment without programming knowledge.

Developing apps for citizen science involves considering many factors, such as design

and technical build [158]. Furthermore, the investment required for app design and

development often spans from tens to hundreds of thousands of US dollars [184]. The

cost of crafting apps, especially those with an extensive range of features can hinder

innovation [107]. With SmartCS, users can bypass the complexities inherent in app

development. Our platform offers pre-built features and templates within a single

framework. This facilitates rapid prototyping and faster deployments. In addition to

helping participants capture better data, the apps created by this platform can serve as

educational tools to increase engagement in a wide variety of citizen science projects.

We validated our platform’s usefulness to “researchers” by asking a group of non-

programmers to create apps and measuring their success and comfort in doing so. We

further validate our platform’s usefulness to the “participants” by comparing success

at correctly identifying the subjects of data to be captured and through a survey of

participant engagement.

4.2 Motivation

Here, we discuss the challenges participants face in research data collection for

rip current detection [193]. Rip currents are strong, seaward flowing currents that can

occur on any beach with breaking waves, leading to an estimated 100 drownings a year

in the US [35, 86]. To answer questions like: “Which beaches have rip currents?”,

36

the researcher needs to gather and label imagery that contains rip currents from many

different geographic locations. While an expert can visually spot rip currents, it can

be challenging for non-experts [26]. However, various ML methods can detect rip

currents, as demonstrated by recent works [53, 54, 174]. Mobile apps empowered by

ML can assist non-expert data collectors by visually showing them the detected rip

currents using bounding boxes or similar visualization through the live camera feed.

The same concept as the example above applies to data collection in other fields,

such as biological sciences, marine life, geomorphology, weather related phenomena,

etc. The ML-empowered apps allow non-expert participants to learn and correctly

detect the subjects through on-the-field assistance in these data collection scenarios.

This is especially helpful for relatively hard-to-recognize or differentiate objects, such

as rip currents.

4.3 Related Works

4.3.1 Citizen Science Platforms

We examined several popular citizen science app creation platforms enabling

people-powered mobile app development [166]. Earlier, we mentioned Zooniverse,

which features projects from diverse domains [18,228]. One of the Zooniverse projects

is OceanEYEs [198], which seeks volunteers to count and label fish, if there are any,

in millions of unlabeled images collected from the ocean. Anecdata [60] is another

37

free platform like Zooniverse, where both are primarily web portals with companion

mobile apps. SPOTTERON [166] is a similar platform that exclusively functions

through mobile apps with a uniform, easily customizable graphical user interface (GUI)

for various projects. However, the base systems of these general-purpose citizen

science app creation platforms do not support complex operations like ML model

integration. The Citizen Science Association [46] also maintains a list of major citizen

science platforms, complete with a comparison table highlighting their most prominent

features. ML-assisted data collection is not included in this comparison, as this feature

is not common on these platforms [47, 52, 69, 115].

4.3.2 Citizen Science Apps with ML

Many custom-built citizen science applications have ML capabilities. We

previously mentioned that iNaturalist [257] has server-side ML capabilities and

functions like a social network to connect nature observers. Leafsnap [149], a mobile

app for automatic plant species identification, is another example of a citizen science

app that utilizes computer vision. Despite having many powerful features, Leafsnap’s

ML processing is performed on a cloud server, like iNaturalist, after the participants

upload their images. Leafsnap’s server-side ML processing took 5.4 seconds per image,

which is not fast enough to produce real-time results [149]. Although modern high-

end servers perform much faster ML operations, server-side ML is not feasible for

many real-time applications, especially citizen science apps intended for use in remote

38

locations. Wildme.org [271], Fathomnet [77, 129], and many other web-only citizen

science platforms also use server-side ML and have no mobile apps. Many existing

applications were not designed as general-purpose citizen science apps, so while some

are open source, developing a new app using any of them as a starting point would

require significant programming expertise. [136] presented a short paper discussing

the integration of ML into citizen science projects. However, their approach required

significant programming expertise to be effectively utilized at that time. A few apps,

such as Pl@ntNet, incorporate client-side ML [90, 196]. Pl@ntNet is one of the most

popular science apps and was also among the first to include client-side ML support,

allowing it to work without an internet connection. However, as it is specifically

designed for detecting plants, it cannot be used for other citizen science projects.

However, similar to Seek by iNaturalist, it is specifically designed for detecting plants

and cannot be used for other applications [257].

4.3.3 Mobile App Creation Platforms

The development of mobile apps involves a challenging process that includes

various phases such as platform selection, writing, debugging, optimizing code,

creating user interfaces, simulation, testing, and support [122]. Few customizable

mobile app creation and deployment platforms, such as App Movement [85], provide

generic templates for the community to build apps. Model-driven development (MDD)

[17] has been adopted for mobile app development to simplify the process, reducing

39

technical complexity and costs significantly. For example, [87] proposed an MDD

framework that enables novice app developers to model location-based apps by code

transformation. Although MDD has improved the app creation process for developers,

it does not support app customization and adding advanced features, such as ML,

without writing code. [160] proposed a platform to create mobile augmented reality

apps without programming, but none of these systems support the integration of ML

capabilities in the app.

Mobile applications are generally classified into three categories: native apps,

hybrid apps, and mobile web apps [112, 255]. Native mobile apps are created

specifically for a single platform (e.g., Google’s Android or Apple’s iOS) and leverage

the hardware and software of that platform to enhance the user experience. Hybrid apps,

on the other hand, run through web browsers after installing on devices like native apps

and are typically created like webpages. Hybrid apps are more capable of streamlining

the development process but are not as fast or reliable as native apps. Web apps are

adaptive websites that change layout, outlook, and accessibility when accessed from a

mobile device. Due to the technical complexity of integrating client-side ML models,

native apps are the most feasible option for creating ML-powered apps. ML model

training platforms such as Roboflow [45], Lobe.ai [168], Ultralytics HUB [254], etc.,

have basic app templates that can be used with the trained models. TensorFlow Lite [1]

provides similar simplified app templates. However, these templates are too basic

for creating any real app without writing code and making substantial modifications.

40

We explored various app-making platforms without coding available for mobile and

PC platforms [11, 31, 275, 276]. However, these platforms primarily function as GUI

makers with standard basic functionalities, such as text inputs and outputs, loading

graphics, maps, calendars, websites, accessing system camera apps, etc. Integrating the

complex process of loading ML models and providing computer vision functionalities

is not available on any of these platforms.

4.3.4 ML Models for Computer Vision on Mobile Devices

Typically, mobile devices have limited computational resources and power, which

are major constraints for running ML models on such devices. Many recent research

projects have focused on creating optimal models for computer vision tasks, in terms

of accuracy, speed, resource efficiency, scalability, robustness, and generalizability.

They employ deep learning models, which can be categorized into two types based

on their underlying structures: one-stage and two-stage. The trend discovered in the

current research describes how highly efficient one-stage paradigms will prioritize the

prediction speed in frames per second (FPS). In contrast, two-stage models strive to

achieve the best per-frame accuracy by employing a filtering stage and predicting

stage. Due to the limited computational resources of mobile devices, using two-stage

models can be costly. As a solution, employing lightweight one-stage models for data

collection and analysis on these devices can enable integration into a wider range of

mobile applications that have computational constraints [136].

41

Modern vision tasks, such as object detection, image classification, semantic

segmentation, etc., are mostly done using convolutional neural networks (CNN). As

the previously discussed categorization is about all ML models in general, specifically

for object detection, the two categories of CNN-based ML models to choose from

are (1) region-based detectors and (2) single-shot detectors (SSD). The computational

resource-intensive two-stage region-based detectors, such as Faster R-CNN [205], have

a region-proposal stage and a classifier stage. The limited computational power of

today’s mobile devices precludes their direct use. On the other hand, they have been

utilized for real-time object detection via remote GPU servers [155]. However, these

server-dependent systems are only suitable for deployment in locations with network

access. On the contrary, SSD attains object detection using a single-stage CNN [155].

YOLO [118], EfficientDet [239], and SSDs, such as SSD MobileNet [44, 216], are

designed to perform in realtime sacrificing some accuracy [109]. Additionally, Sun

et al. [235] empirically showed that the SSD MobileNetv2 required the least amount

of memory, thus making the SSD MobileNetv2 preferable for processing on mobile

platforms. Similarly, variants of YOLOv8 [254], EfficientNet [237], Inception [277],

and MobileNet [44] are optimized for real-time image classification on mobile devices.

Likewise, YOLOv8-seg (Ultralytics 2023), U-Net MobileNetv2 [227], MobileNetv2-

DeepLab-v3 [40], etc. provide real-time segmentation on portable devices. We select

and use the ML models most suitable for computer vision mobile apps for citizen

science applications.

42

Figure 4.1: Overview and workflow of the components of our open-source citizen
science app creation platform.

4.4 System Design of the Platform

Our citizen science app creation platform combines multiple technical components

to build the overall system. The main parts of our proposed system are three steps: (1)

Training dataset creation, (2) ML model training, and (3) Mobile app (iOS or Android)

building. The workflow of our system is presented in Figure 4.1. Furthermore, our

platform automates these steps.

The dataset consists of individual images or images extracted from videos to train

ML models for computer vision. The type of labels needed for the image data depends

on the type of task, such as object detection or image classification. The training

images are labeled using bounding boxes around the objects to train a model for object

43

detection. Labeling for image classification involves organizing the images into classes

and labeling each class. Our system provides the required tools with instructions for

formatting, labeling, and creating the training dataset.

Next, an ML model compatible with our system needs to be selected from a list.

For each project, sufficient initial training data is needed to train a functioning model,

which can be later improved via further training as more data are collected [219]. For

a project with an adequate dataset, the researchers can immediately train a model and

quickly deploy the app. However, the project team must create a minimum training

dataset for a project without initial data. Our platform includes the option to add an

“Expert mode (No ML)” to the apps. This feature allows volunteers to contribute to

building up a dataset without relying on ML guidance. A back-end server collects

these data, which can then be curated. After quality control, feedback can be provided

to volunteers to facilitate learning, as well as for retraining models to improve their

accuracy. Our system provides built-in guidance to run the training process on a local

machine or a cloud server.

Finally, a template for the iOS or Android app needs to be selected from a collection

of templates to fit the requirements of various citizen science projects. The template can

be further customized to change GUI color, icon, logo, etc. Then, the app is built with

the trained ML model integrated into it. The app’s primary visual data collection tool

is like a camera app with a live view with image and video capture function, where

the detection results are shown using visualizations, such as bounding boxes and text

44

Figure 4.2: Server-side (left) vs client-side (right) ML models. We used client-side ML
models in our implementation, which provided real-time object detection without any
network connectivity or server-side processing requirements.

labels. These visualizations help participants identify and record data on objects of

interest. The models operate on mobile devices using native computational resources,

without any server support (Figure 4.2). A server is only necessary for uploading the

collected data. Tools for data uploading, user guides, and tutorials are also included in

the templates.

4.5 Implementation

We created a desktop and a web-based version of our app creation platform to

make it more accessible and versatile. For both versions, the apps are created through

the three simple guided steps. Our platform is implemented as an open-source tool,

utilizing other open-source software and tools such as AnyLabeling, TensorFlow,

PyTorch, and Colab Jupyter Notebook [1,253]. An important advantage of open-source

45

is that it enables users with programming skills to help improve the platform by writing

code to update and create new features, creating new templates, etc.

Figure 4.3: The web version of the platform was created for easy access and uses
different feasible computational resources for different steps.

The desktop version is convenient for the user who wants to download it and run all

the steps on a single machine capable of handling the ML training and app compilation.

We created the desktop version to run on Windows, macOS, and Linux. The web-based

version works as an online service, providing the user interface as a website, which can

be accessed through any device that has a standard web browser (Figure 4.3). Another

advantage of the web-based version is that different steps can run on different local, or

cloud machines optimized for the specific step. For example, data labeling can be done

on a laptop, as low computational resources are required. Then, the labeled data can be

transferred to a GPU-optimized local or cloud machine for ML training. Because of this

flexibility, the web-based version requires executing a few commands on the console

and some file transfer operations. On the desktop version, the steps can be performed

46

entirely by clicking some buttons and following the prompts, making it easy to be used

by computer users with any skill level. Neither version requires programming skills or

coding expertise.

4.5.1 Dataset Creation

The object detection ML model training process expects still images as training

data. We created a tool for extracting frames from the videos as still images if the

available training data consists of video files. The frame extraction rate can be adjusted

depending on the motion change rate of objects of interest. The data is labeled using

free, open-source tools such as LabelImg [253] or AnyLabeling (AI Curious 2023).

Our platform also supports converting labels obtained using Amazon’s Mechanical

Turk [189]. Additionally, we a provide some custom tools that we created using Python

for additional dataset formatting, such as image format conversion, annotation file

processing, etc. The datasets for the classification tasks are created by simply putting

the images for each class into separate directories, where each directory’s name works

as the class names. Our system provides a tool to split the data into three sets, training,

test, and evaluation, using a default ratio of 6:2:2 or user-defined splitting ratio [204].

4.5.2 ML Model Training

This next step allows the user to train the model on a local computer, a cloud

virtual machine, or a cloud Python notebook. Python notebooks available via Google

47

Colab provide access to free GPU resources. We use small and lightweight models

optimized for mobile devices from the TensorFlow Lite library for training [1]. Our

platform provides the options to select the most appropriate model based on the

information provided in Table 4.1 and the planned usage of the app [215]. Note that

detection accuracy of the utilized ML models is considered reliable based on its Mean

Average Precision (mAP) [186]. The models are then custom trained using the dataset

created in the previous step by the transfer learning process [8]. We provide tutorial

documentation and video for model training.

While the training runs, a console shows the loss function value for the current

training step. The lower the loss, the better a model has learned to detect the objects

[264]. The training needs to run until the model converges, which is indicated when the

loss function value drops below a certain threshold [6]. The training time depends

on many factors such as the ML model, hardware (CPU only or GPU, amount of

system memory, etc.) used for the training, and the training dataset (size, number of

classes, etc.) [123, 163]. Further discussion about guidance on setting up these training

parameters in the platform is included in the Supplemental Contents section at the end

of this chapter. ML model training for the case studies presented in this chapter took

about 2 to 3 days using inexpensive CPU-only machines, which can be done within a

few hours using more expensive GPU machines.

48

4.5.3 Mobile App Building

After training, the models are converted to TensorFlow Lite format, compatible with

the platform’s iOS and Android app templates. The app is built using the platform-

specific build tool (Xcode for iOS or Android Studio for Android) and uploaded to

digital distribution platforms for deployment. A paid developer account is required

for Android and iOS to distribute the apps publicly through the official app distribution

services. However, for initial app testing, it can be freely installed on a mobile device by

connecting it to the USB cable to the computer where it was built. For easy deployment

of apps on the Google Play Store and iOS App Store, we integrated Fastlane [132] into

our platform. Fastlane is an open-source platform that automates beta deployments and

releases for mobile Android and iOS apps.

For user accounts, citizen science projects, and app management on our platform,

we utilized Firebase Authentication [178], an open-source user account management

system. It facilitates managing user identities and authentication securely using various

sign-in methods, including email and password, anonymous, and federated identity

providers.

4.6 Results

This section presents a wide variety of citizen science apps created using SmartCS.

The apps use ML models to aid users in collecting data for citizen science projects

49

or as educational tools. Three apps, RipSnap, Seal vs. Sea Lion, and Vehicle Object

Detection, were created for university research projects. In contrast, three other apps,

Recycle This, TidalNow, and Sk.in, were created by high school students with no prior

programming experience. Due to space constraints, we provide details on two of these

example apps and briefly describe the other four use cases in the Supplemental Contents

section at the end of this chapter.

Figure 4.4: This figure illustrates the type of materials that the “Recycle This” app can
detect papers, aluminum cans, plastic containers, and glass bottles.

4.6.1 Use Case: Recycle This

The practice of recycling is essential for the environment and the future of our

planet [4]. Data collection on recyclable objects is necessary for optimizing recycling

processes. However, there is a lack of clarity about what and how to recycle, with

surveys showing that up to 62 percent of Americans lack recycling knowledge (Informa

Markets, 2019). The mobile app Recycle This, created by a high school student,

50

incorporates ML for real-time detection and collection of data on common household

recyclables (Figure 4.4). The project focused on classifying objects like glass bottles,

plastic containers, cardboard, paper, and aluminum cans. 2,500 training images were

sourced from the public image datasets [114, 125, 208]. In addition to being a data

collection tool, the app also acts as an educational tool by providing information

and clarification on the recyclability of everyday waste objects. With widespread

distribution, it can raise public awareness. SmartCS enabled the creation of the app

without writing codes, and subsequent studies were published as conference papers

[279].

Figure 4.5: Appearance of the RipSnap app with examples of rip currents detected by
the app. The location of the rip current is visualized using the red bounding box with
the label and the confidence score of detection.

51

4.6.2 Use Case: RipSnap

The importance of rip current detection was discussed earlier. The citizen science

app RipSnap is based on the idea of CoastSnap [100], where app users contribute

snapshots of coastlines from fixed docking stations to study coastal erosion and other

processes. RipSnap extends the idea of collecting ML-detected videos of rips with

location metadata. Data collected through RipSnap can help validate a rip current

forecast model [65]. The app’s primary aim is to enhance beach safety by educating

users about the presence of rip currents (Figure 4.5). A lightweight ML model

integrated into this app assists non-expert participants in identifying and collecting

these valuable rip current data. The training dataset consists of 3,360 labeled images

of two classes of rip currents, a combination of datasets from [53], and additional data

collected using drones and beach monitoring webcams.

4.7 Feedback

We collected user feedback from two user groups: (1) researchers who used the

platform to create their apps, and (2) beta testers who used the created apps. The

research questions and objectives are described before each study [152]. The main

goals of these user studies were usability testing of the app creation platform and

establishing the effectiveness of the created apps. The findings of the user studies are

discussed in this section.

52

Figure 4.6: Summary of scores from the user study by app creators. Participants were
asked to rate their experience of using the platform on a 5-point Likert scale from
“Poor” (a score of 1) to “Excellent” (a score of 5).

4.7.1 User Study 1: App Creators

Our research question for this user study is, “Will people without programming

experience be able to create citizen science apps using SmartCS?” The objective is

to collect feedback and evidence demonstrating that individuals without programming

experience can successfully create citizen science apps using SmartCS.

This study gathered insights from 10 high school students, with 5 male and 5

female participants, all of whom did not have prior programming experience and were

selected among science internship program participants by an independent committee.

These students, ranging in age from 14 to 17 years, engaged as researchers to develop

their own applications utilizing SmartCS. These students were tasked with individually

53

creating apps, a challenge that all except one were able to successfully complete. The

process of app creation took them between 1 to 2 weeks, a timeframe that varied

depending on the complexity of data labeling and the time required for ML model

training, which in turn was influenced by the number of available GPUs. More details

about the apps are provided in the Supplemental Contents section at the end of this

chapter.

For this study, we collected both quantitative and qualitative data from users.

Participants’ experiences and interactions with SmartCS were recorded using an online

form, facilitating the collection of quantitative data through Likert scales. Additionally,

the feedback form enabled the gathering of qualitative data through multiple open-

ended responses. We also carefully observed participants’ interactions with the system

to gain deeper insights into their user experience. We observed that users could easily

learn to use the platform by following the provided user guides and tutorials. Whenever

users required additional help beyond what was available in the existing resources,

we updated the guides and tutorials accordingly. Their main task was to learn how

to navigate the platform’s GUI. These observations helped us identify patterns and

challenges within the user interface and interaction design that were not immediately

apparent through quantitative feedback alone.

Figure 4.6 summarizes the quantitative user feedback on the app creation platform.

Despite the small sample size, we can obtain some insights from the survey. The users

were quite satisfied with the “Free to Use” aspect, as everyone gave it the highest rating.

54

The “Final App as Per Expectation” feature has the lowest mean score, indicating

the diversity of expectations among users. However, this may be due to the limited

templates and customization options available in the current version, as suggested by

the users’ qualitative feedback regarding their unmet expectations. Users expressed the

need for more application-specific features and customizations tailored to each app’s

unique purpose. However, providing such a high level of customization is challenging

with a general-purpose tool, requiring a balance between ease of use and flexibility.

This limitation can be partially addressed by providing more templates. The “No

Programming Skill Required” question has the highest variability, which may be due

to the different levels of computer exposure among the users. Overall, this feedback

suggests that the platform is user-friendly and convenient for non-expert users.

Figure 4.7: Summary of scores from the user study by users of three apps. Participants
were asked to rate their experience of using the platform on a 5-point Likert scale from
“Poor” (a score of 1) to “Excellent” (a score of 5).

55

4.7.2 User Study 2: App Users

The research question for user study 2 is, “Are the citizen science apps created using

SmartCS useful and easy to use?” The objective is to collect feedback and evidence

demonstrating that citizen science apps developed with SmartCS, featuring simple

designs and ML guidance, are both useful and easy to use. Three apps, RipSnap,

Recycle This, and Tidal-Now, underwent user testing with 38, 21, and 30 testers,

respectively. Participants provided feedback on their user experience through an online

form (Figure 4.7). Users generally found the apps easy to use. The GUI received the

lowest rating, likely due to their simplistic appearance. We plan to improve upon this

in future work. ML capabilities and usefulness were generally rated highly (either 4 or

5) across all three apps. These results indicate that apps created with SmartCS are user-

friendly and serve their intended purpose well. This study was conducted through an

online user study via open beta testing, where the apps were distributed using Apple’s

beta testing platform, TestFlight.

4.7.3 Qualitative Feedback

We gathered qualitative feedback from participants of both user studies through

open-ended comments and verbal interviews. A primary suggestion from users who

created apps was to provide more resources, help files, and video tutorials to guide

them through the process. A recurring observation across all study groups was the

simplicity and limited features of the user interface. However, this is more of a design

56

choice rather than a technical limitation. Most participants strongly agreed that they

appreciated the inclusion of ML for all citizen science use cases. They were impressed

with the apps’ ability to detect complex phenomena such as rip currents in real-time.

4.8 Conclusion

This article presents SmartCS, a platform for building mobile apps with client-

side ML-based guidance for citizen science without writing code. The apps created

using the platform enhance data collection quality and efficiency through ML-based

guidance, even without internet connectivity in the field. The ML guidance also allows

the apps to function as educational tools for participants who may not be familiar

with the subject of the data being collected. We demonstrate the use of the authoring

platform with six example use cases. We also present user studies to illustrate the

app creation platform’s usability and the effectiveness of the created apps for citizen

science applications, highlighting its potential to engage a broader audience in citizen

science activities. The feedback suggests areas for improvement, such as offering more

resources and enhancing the user interface, but overall, the platform received positive

feedback for its usability and the inclusion of ML capabilities.

The current apps enable expert users to utilize the apps without ML support, while

non-expert users can benefit from ML assistance for data collection. We plan to

facilitate a seamless transition between ML-supported and non-ML modes through in-

app guidance in future developments. It is important to note that the ML guidance used

57

in the apps is not infallible and can produce false positive and false negative detections.

It would be interesting to see if a collaborative approach between humans and ML can

perform even better than just with ML. In such an arrangement, the human will have

the option of overriding the ML detection in instances where they are confident and rely

on ML detections otherwise. We believe that it is possible to improve overall accuracy

and automate further the data collection process. Furthermore, the data collected when

humans overrode ML suggestions can be used to improve and refine the ML model

further, which we plan to investigate in the future.

Ethics and Consent

This research has been approved by the Office of Research Compliance

Administration (ORCA), University of California, Santa Cruz and informed consent

is obtained from all participants involved in the study.

Supplemental Contents

Other Use Cases

This section briefly describes the other apps created using our platform.

58

TidalNow

There are different dimensions of animal biodiversity (species richness, phyletic

richness, and functional diversity) in tide pools. Activities involving observation of

wild organisms in the tide pool can provide recreational and learning opportunities [74].

TidalNow is a citizen science mobile app developed by a high school student. The app

uses an ML model to identify different types of saltwater marine species in tide pools.

The ML model integrated into the app is trained to detect five different species: giant

green anemone, ochre stars, lined chiton, sea lemons, and black turban snails. The ML

model for this app was trained using about 600 images for each class. Although apps

like iNaturalist or Google Lens can recognize these specimens, they require server-side

processing and internet connectivity. However, many tide pools are located on beaches

with limited or no internet access. As this app works without internet connectivity, it

works perfectly fine in these remote locations (Figure 4.8).

Figure 4.8: The TidalNow App is shown here. Similar to other apps, this app (a) shows
the detected object using a bounding box, (b) the selected template has a built-in pull-up
panel that was customized to present additional information about the detected objects.

59

Sk.in

Skin conditions are more prevalent than other illnesses in all countries worldwide

[5]. Some skin diseases can be lethal [7]. Although the advancement of lasers and

photonics based medical technology has made it possible to diagnose skin diseases

much more quickly and accurately, the cost of such diagnosis is still very expensive

[5]. So, there is a lot of research interest in detecting skin diseases using ML-based

computer vision [5,201,224,231]. Even though some of these recent works demonstrate

very accurate skin disease detection using CNN, there are not many works that can do

this in real-time on mobile platforms. Sk.in is a mobile application that utilizes ML

object detection to categorize dermal conditions as bacterial, fungal, parasitic, viral

infections, or allergic reactions in real-time. Sk.in intends to increase the efficiency of

diagnosing and treating generalized skin conditions for the public and is designed for

everyday use. Developed primarily as an educational tool by a high school student, this

app also facilitates data collection on skin infections across a diverse demographic. The

ML model can also be trained to detect more skin diseases, such as melanoma and other

types of skin cancers [7]. Figure 4.9 (a)-(c) displays the app’s capability of detecting

bacterial infection, allergy, and viral infection.

Seal vs Sea Lion

Biodiversity analysis is important for many research groups, such as those with a

focus on biological science, aquaculture, marine biology, etc. Researchers may need

60

Figure 4.9: (a)-(c) Demonstrates that the "Sk.in" App can detect bacterial infection,
allergy, and viral infection. (d)-(e) Shows example results from the sea lions and
seals detection and differentiation app, where detected seals are highlighted using green
bounding boxes and sea lions are shown using magenta bounding boxes.

to collect data about some endangered species; other times, they need data to analyze

the biodiversity in some specific area [272, 273]. In this use case, we trained a model

with images of sea lions and seals to demonstrate our app’s usability for these types of

research projects. Many sea lion species are considered endangered [43] and collecting

data about them is needed for marine biology research and conservation groups [27].

However, differentiating between seals and sea lions can be challenging for non-

expert participants [273]. Using our ML-powered app, the participants can detect and

differentiate between these two species (Figure 4.9 (d-e)). With further training data

and re-training the model, this app can be modified to detect and differentiate among

various sub-species [99]. The same concept can be applied to create educational and

data collection apps about other animal species.

61

Figure 4.10: The vehicle object detection app is shown here. The app is used for
collecting vehicle data by mounting it on the windshield of a car.

Vehicle Object Detection

The vehicle detector is a citizen science mobile app for collecting video data about

road objects relevant to autonomous vehicle research. It was created as part of an

autonomous vehicle research project in collaboration between a university research

group and a company from two different countries. The app can be used for road

object detection and data collection by mounting the phone next to the windshield

of a car. Various standardized datasets exist for autonomous vehicle research, such

as Kitti, Waymo, NuScene, etc. [126]. However, these are collected using arrays of

advanced sensors mounted on specialized vehicles [117]. This app facilitates small-

scale experiments and data collection worldwide, employing a simple and inexpensive

mobile setup (Figure 4.10). Even using the app with multiple mobile devices to collect

multiview datasets would be much cheaper than using the traditional autonomous

vehicle data collection setup. Therefore, it can be used to collect data using citizen

science from different developing countries about various exotic vehicles, such as three-

wheelers, rickshaws, etc. These vehicles are not commonly seen in developed countries

62

and, thus, not present in the standard datasets [130].

The other apps developed with the platform include those for detecting plant leaf

diseases, identifying beach debris, recognizing types of building architecture, assessing

fingernail conditions, counting blood cells, and classifying ultrasound image types.

Summary of Used ML models

Table 4.1: This table presents a summary of the ML models tested and supported on
our platform.

Model Name Inference Speed

(ms)

mAP for COCO

objects

Mobile model size

(MB)

SSD MobileNet v1 48 29.1 5

SSD MobileNet v2 39 28.2 5

EfficientDet D0 39 33.6 6

EfficientDet D1 54 38.4 8

EfficientDet D2 67 41.8 11

YOLOv8m 32 50.2 49

The Table 4.1 lists the ML models tested on our platform, enabling app creators

to select the most appropriate model for training [1]. The information provided

here helps the app creators to select a model for training. The faster the inference

speed (second column), the app gains better real-time performance. The higher mean

average precision (mAP) in the third column represents better precision for detecting

objects. Comparing the second and third columns shows that higher precision requires

63

more inference time, leading to slower than real-time performance. The app creator

needs to decide about the trade-off between these two. The fourth column shows the

approximate final size of the converted trained model, which may impact performance

on older devices with lower computational resources.

In our platform’s current selection of compatible models for mobile devices released

up to 2023, YOLOv8m is the largest recommended model that runs smoothly on a

typical consumer mobile device, with a saved weight size of 49 MB. However, even

though YOLOv8m shows better performance metrics on benchmarks, we found that

EfficientDet D2 offers more stable performance overall during our testing with a few

current-generation smartphones (Apple’s iPhones and Google’s Pixels). Over time,

with the introduction of more powerful mobile devices and larger compatible models,

these can be included in our platform without significant modifications.

The number of images needed to train an object detection model can vary widely

depending on several factors, such as the complexity of the task, data quality, and model

architectures. Decent results can still be achieved even with hundreds of images per

class. [223] suggest an inflection point of around 150-500 images per class, beyond

which the earlier sharp performance gains start to level off. However, [21] argue that

for optimum accuracy, having at least 2000 different images for each class is desirable.

As a rough guideline, for a simple object detection task with a few object classes

and relatively consistent object appearances and backgrounds, a few hundred to a few

thousand images might suffice, especially if transfer learning is utilized. For more

64

complex tasks or a larger number of object classes, tens or even hundreds of thousands

of images might be needed.

The number of classes supported for training depends on the model type and

architecture. For instance, according to official documentation, EfficientDet can

support up to 999 classes [239], whereas YOLOv8 (Ultralytics, 2023) does not have a

defined hard limit for the number of classes. However, the choice of model determines

the number of classes; it is not a limitation of our platform, SmartCS, since we can

incorporate newer versions of models that support more classes.

Although transfer learning cannot be performed within the app due to technological

limitations and the resource constraints of mobile devices, which render model training

infeasible, models can be updated periodically with newly collected data by retraining

them using transfer learning on more powerful machines or cloud servers. Additionally,

we provide pre-trained models derived from well-known public image datasets, such as

MS-COCO, to serve as a starting point for training on new datasets via transfer learning.

The web-based version of SmartCS is available at https://smartctsc.github.io/SmartCS/.

The entire codebase is accessible as open source in a public repository located at

https://github.com/SmartCtSc.

65

https://smartctsc.github.io/SmartCS/
https://github.com/SmartCtSc

Chapter 5

Citizen Science Tools with ML as a

Pathway to Engage High School

Students in Research

Efficient data collection can be achieved by creating tools with ML guidance to

reduce incorrect data collection and label noise among a larger population. One

approach to accomplish this is to make the creation process of these tools easy enough

for non-programmer general user groups, such as high school students [139]. This

chapter outlines an approach to engage high school students in research using citizen

science tools embedded with ML models. In the context of fostering early engagement

in scientific research among high school students, this chapter explores SmartCS and

other supporting tools. Our experience suggests that this approach enabled students to

66

learn aspects of computer science and engineering, particularly in ML model training

and mobile application software development. It also allowed them to experience

firsthand the significant role citizen science can play in collecting and analyzing

scientific data.

5.1 Introduction

In recent years, there has been growing emphasis on integrating research

methodologies and scientific thinking into earlier stages of education, enriching high

school students’ learning experiences and preparing them for future academic and

professional challenges [258]. This engagement not only fosters a passion for science

and technology but also profoundly influences students’ academic paths, enhancing

critical thinking, problem-solving skills, and a sense of scientific contribution [248].

This chapter presents an approach that integrates citizen science applications with ML

techniques to actively involve high school students in meaningful research activities.

Citizen science allows the public to participate in research projects. In a typical

citizen science scenario, the public collects data using smartphone applications

(commonly known as apps), and professional researchers utilize this data in their

studies [148]. For example, apps can be developed to collect images of coastal sea life

for use by ocean science researchers, as well as apps for users to collect images of leaves

for use by botanists. These apps can be augmented with ML to provide automated

guidance for complex data collection tasks [136, 183]. By leveraging a platform

67

for the codeless creation of ML-enhanced apps, high school students can engage in

impactful citizen science research projects without needing extensive technical training

or programming knowledge.

This work focuses on developing citizen science apps that collect and analyze

visual data (images and videos), leveraging computer vision ML models [236]. This

approach provides students with hands-on, socially relevant, and impactful exposure to

ML. Recent advancements in large language models, such as Generative Pre-trained

Transformers (GPTs), have made them suitable for various applications, including

citizen science [80]. However, applying ML for computer vision-based guidance

presents greater challenges due to the subjectivity of visual data compared to linguistic

data. Object detection or identification using ML models is a fundamental technique in

computer vision [285], which can be especially useful in citizen science applications

where participants benefit from visual cues. To this end, we utilized the codeless

platform SmartCS [138] and its supporting tools to create citizen science apps with

object detection capabilities. This enables high school students to learn about ML

through the application of computer vision in creating citizen science tools while

engaging in research.

This chapter explores the following research questions (RQs):

1. RQ1: How does integrating ML within citizen science tools influence high

school students’ engagement and interest in scientific research?

2. RQ2: How effective is using a codeless platform in teaching high school

68

students complex concepts such as data curation, ML, and mobile application

development?

3. RQ3: What learning outcomes are observed among high school students who

develop ML-powered mobile applications through the SmartCS platform?

4. RQ4: What impact do student-developed ML-powered apps have on public

participation in citizen science projects?

5.2 Related Work

5.2.1 Citizen Science in High School Education

In the past, there have been various efforts to integrate citizen science into the

learning process at the high school level [222]. However, it is much less prevalent than

in higher education [106,230]. For high school students, citizen science offers learning

opportunities and engagement across various scientific fields [134]. It also serves as

an early introduction to and motivation for STEM careers [105]. Its benefits have been

demonstrated for students as young as those in the fifth [135] and eighth grades [188].

Also, there have been initiatives for driving innovation through project-based learning

for social good, participated in by middle and high school students [173]. This project

aims to further bridge the gap between high school education and advanced scientific

research by leveraging the power of citizen science.

69

5.2.2 ML in High School Education

Teaching fundamental AI concepts and techniques, including ML as a sub-field, has

traditionally been confined to higher education [214]. Recently, computing education

has begun to be included in high school curricula worldwide, incorporating some

advanced topics [133, 171]. For instance, [262] introduced a sandbox methodology

for teaching computing-based data science to high school students. However, computer

science course content at this educational level rarely covers AI or ML [110]. In the

last year, though, there has been an influx of GPT-4-based applications for education,

including those aimed at high school students [131]. Even though opportunities for

high school students to explore ML and its societal implications have been investigated,

approaches for teaching them about ML and its application in research remain very

limited [127]; this is something we strive to address with our work.

5.2.3 ML and Citizen Science

Limited but successful applications of ML have been observed in the field of Citizen

Science in the past, including mobile apps like iNaturalist [183], PlantNet [90], and

LeafSnap [149]. However, the untapped potential of using ML in citizen science

remains vastly unexplored [138]. Echeverria et al. [66] demonstrated that the citizen

science platform iNaturalist is a valuable tool for carrying out collaborative projects

in secondary education. Our work aims to build on past successes by integrating ML

to improve the accessibility of citizen science projects. This could potentially lead

70

Figure 5.1: The graphical user interface of SmartCS facilitates the three steps required
to create an ML-powered citizen science mobile app.

to a new paradigm in high school educational methodologies, making learning more

interactive and engaging.

5.3 Methodology and Research Setting

5.3.1 Participant Selection

The high school students were recruited through a summer science internship

program offered by an R1 institution. A research mentor, typically a graduate

student, provides the students with guidance throughout the project. It was clearly

communicated in the participant call that no programming skills were required for

participation in the project. We enrolled twelve participants, comprising seven male

and five female students, ranging in age from 14 to 17 years. These participants were

71

from diverse backgrounds, including individuals from both the USA and India.

5.3.2 Structure

Our initiative provided a comprehensive research experience in three phases: (1)

conceptualization of citizen science projects, (2) development, and (3) deployment of

mobile apps. Table 5.1 summarizes the learning goals and tools used in each phase.

5.3.2.1 Conceptualization Phase

In this phase, students explore the application of ML to citizen science and identify

potential research areas through an open-ended approach. Guided by mentors, students

define the scope and objectives of their projects—such as designing an app to detect

whether a given object is recyclable. The mentor ensured that the projects were feasible

to develop within the given two-month timeframe and that students were reviewing

relevant literature while ensuring they received sufficient information about the tasks

at hand. They learned how to conceptualize a science project by reviewing current

literature, identifying a research problem, and proposing a solution that integrates

computer vision, ML, and citizen science. Thus, this phase introduced them to research

methodology.

72

Figure 5.2: Some of the apps created by the high school students include: (a) Tidepool
species identification, (b) Recyclable object detection, (c) Skin infection identification,
and (d) Blood cell type identification.

73

5.3.2.2 Development Phase

The primary tool for developing ML-powered applications was the SmartCS App

Studio and its supporting tools. The development phase, guided by SmartCS, involves

three main steps: dataset creation, ML model training, and mobile app building (Figure

5.1). This phase includes training on ML basics, data collection and processing, and

app development. Examples of student-created apps are shown in Figure 5.2.

Dataset Creation: Students gathered and labeled data, ensuring it was appropriately

formatted for ML model training. For instance, for the tidepool species identification

app, this involved collecting many clear images of tidepool species suitable for

computer-vision-assisted identification. This step helped them understand the

importance of quality data and how it directly impacts the effectiveness of ML models.

Data was sourced from existing (often multiple) public datasets or collected manually,

depending on availability. Open-source tools, such as LabelImg and AnyLabeling, were

used to label images. If any conversion of dataset formats was needed, the free tool

Roboflow was used.

ML Model Training: This step teaches students the fundamentals of ML algorithms

and the model training process. Participants used prepared datasets to train at least

one lightweight ML model suitable for mobile devices, selecting from SSD-Mobilenet,

EfficientDet, and YOLO models [285]. Training was conducted on a local computer

or via a remote server using tools like Google Colab, Amazon Web Services, and

74

https://pypi.org/project/labelImg/
https://anylabeling.nrl.ai/
https://roboflow.com/
https://colab.google/
https://aws.amazon.com/

Table 5.1: Summary of Learning Activities by Phases and Steps.

Phase Step Learning Goals Tools Learned

Conceptualization - Study literature and

state-of-the-art to

conceptualize the

idea of a project

Google Scholar

Development

Dataset Creation Creating a dataset or

repurposing a public

dataset

SmartCS, LabelImg,

AnyLabeling,

Roboflow

ML Model Training Training an ML

model using local

PC/cloud computing

SmartCS, Google

Colab, AWS,

Ultralytics Hub

Mobile App

Building

Building an app for

iOS and/or Android

phones

SmartCS, Xcode,

Android Studio

Deployment - Recruit users,

distribute the apps,

and collect user

feedback

TestFlight, Google

Drive, Google

Forms

75

Ultralytics Hub. This experience introduced students to ML concepts within the context

of computer vision applications.

Mobile App Building: Students integrated their trained ML models into an iOS

and/or Android mobile app, using pre-developed templates provided by SmartCS. The

learning objective here was to comprehend how ML models can be applied in real-

world applications through mobile app development. This step also served as students’

introduction to software engineering. They either used Xcode for iOS app creation, or

Android Studio for Android app creation (Figure 5.2). In this step, students’ visions for

their apps came to life. For example, an app could allow a user to identify a tidepool

species in real-time using their smartphone camera, with the image then uploaded for

further research use.

5.3.2.3 Deployment Phase

The mobile apps were distributed among beta tester users, and students collected

and analyzed user feedback. This served as their introduction to software testing,

teaching them how to gather user feedback and use it to refine their projects. They

also gained exposure to the human-computer interaction process.

76

https://www.ultralytics.com/hub
https://developer.apple.com/xcode/
https://developer.android.com/studio

5.4 Preliminary Results and Discussion

Here, we reflect on our preliminary observations as guided by the RQs. We

evaluated outcomes through observations of student learning during the program,

informal student comments, measures of project completion success, and beta testing

of two student apps.

RQ1: How does integrating ML within citizen science tools influence high school

students’ engagement and interest in scientific research?

We observed that integrating ML within citizen science tools significantly boosts

high school students’ engagement and interest in scientific research, perhaps by making

learning more interactive and impactful. We hypothesize that the ML-enhanced

app’s real-time feedback using object identification to enable learning and guide data

collection makes the scientific process more exciting and understandable. This unique

approach to designing science projects may help maintain the curiosity and excitement

of the students creating the apps. Moreover, hands-on application of cutting-edge

technology like ML exposes them to modern scientific methods, potentially sparking

a lasting interest in STEM careers. By contributing to real-world research through

state-of-the-art yet user-friendly ML tools (as listed in Table 5.1), students can see the

practical impact of their work, enhancing their sense of contribution and the relevance

of their educational activities.

77

RQ2: How effective is using a codeless platform in teaching high school

students complex concepts such as data curation, ML, and mobile application

development?

We hoped that using a codeless platform to teach high school students complex

concepts would enable them to rapidly plan and engage in meaningful scientific

research without requiring extensive background knowledge. The number of functional

applications students have created, as summarized in Table 5.2, suggests this may

indeed be a successful approach. This direct engagement with technology may

enhance students’ understanding through experiential learning. By making these tools

accessible, students from diverse backgrounds can develop crucial digital age skills

such as data curation, understanding ML algorithms, and gaining app development

experience.

Qualitative feedback from participants also underscores the program’s value. For

instance, Student S7 remarked, “I really enjoyed the program as it was beginner-

friendly. Having never done any ML work previously, it showed the benefits and

possibilities, while making it easy to label, create, and turn models into apps.” S9

commented, “The app creation platform expedited the process of creating the ML app

and allowed me to easily deploy the ML models trained to perform real time detection.

Furthermore, the app creation platform allowed us to control various parameters,

which would improve the model performance.” We find it especially noteworthy that

students effectively used ML terminology to describe their experiences.

78

Table 5.2: List of projects created by the high school students.

Student Project
ML

Model

Phone

App
Publication

S1 Tidepool species identification Yes Yes -

S2 Recyclable object detection Yes Yes Yes

S3 Skin infection identification Yes Yes -

S4 Road vehicle type recognition Yes Yes -

S5 Plant disease detection Yes - -

S6 Beach debris identification Yes Yes -

S7 Building architecture identification Yes Yes -

S8 Fingernail conditions assessment Yes Yes -

S9 Blood cell type identification Yes Yes Yes

S10 Ultrasound images type classification Yes - -

S11, S12 Differentiate between seals and sea lions Yes Yes -

79

RQ3: What learning outcomes are observed among high school students who

develop ML-powered mobile applications through the SmartCS platform?

High school students who participated in developing ML-powered mobile

applications using the SmartCS platform were expected to achieve several key learning

goals and learn some crucial software tools, as listed in Table 5.1. For example, using

AnyLabeling, which allows data labeling with AI support from YOLO and Segment

Anything, students can learn how ML models support real-life computer vision tasks.

Additionally, the process fosters critical thinking, problem-solving, collaboration, and

communication skills. These competencies enhance academic aptitude and prepare

students for future STEM careers.

The apps successfully created by the students (Table 5.2) suggest that students have

likely met the learning goals, including having developed the skills to use the tools

outlined in Table 5.1. Notably, two students published their work at IEEE conferences

following the two-month program [116, 279]. Publishing was not an intended goal of

our initiative, as it is uncommon for high school students to publish, so this is especially

suggestive of a transformative learning experience. This highlights both the long-term

positive impact of our initiative and the potential of high school students to contribute to

scientific research. Additionally, it is notable that five out of twelve students who have

since graduated high school have already enrolled in STEM undergraduate programs.

80

https://docs.ultralytics.com/models/yolov8/
https://segment-anything.com/
https://segment-anything.com/

RQ4: What impact do student-developed ML-powered apps have on public

participation in citizen science projects?

To explore this RQ, we pilot tested the usability of two selected apps. This usability

testing aimed to demonstrate the effectiveness of ML-based object detection apps in

helping participants capture useful data. We recruited 20 participants, consisting of 10

males and 10 females, aged between 18 to 54. They were asked to use student-created

apps to conduct (1) tidepool species identification and (2) recyclable object detection.

We conducted this test in a lab, which enabled us to determine the participants’ success

rates and collect their feedback.

Figure 5.3: Summary of feedback from users on their experience of using the apps.
Here, in the statements, “the apps” refer to the two selected apps created by the students.

Feedback from app users (Figure 5.3) indicates that ML guidance improved

participants’ experiences. They acknowledged the positive impact of ML-powered

81

apps on citizen science, highlighting the object identification feature as helpful for

data collection. Additionally, participants viewed these apps as educational tools

that provide interactive learning experiences, suggesting that ML-powered apps can

significantly enhance public participation in citizen science by making data collection

more accessible and engaging.

5.5 Conclusion and Future Work

This chapter demonstrates early effectiveness of integrating citizen science and

ML to engage high school students in scientific research. A codeless platform, such

as SmartCS, proved to be a valuable tool to this end, enabling students to create

meaningful projects that contributed to both their educational growth and the scientific

community.

Our future work will include formal evaluations of each RQ through rigorous user

studies. We also plan to expand the scope of citizen science projects to various domains

and ML applications beyond object identification. Additionally, we aim to explore

applying this approach to younger students, including those in middle and elementary

schools.

82

Ethics and Consent

This research has been approved by the Office of Research Compliance

Administration (ORCA), University of California, Santa Cruz and informed consent

is obtained from all participants involved in the study.

83

Chapter 6

RipFinder: Real-Time Rip Current

Detection on Mobile Devices

In this chapter, we introduce RipFinder, a mobile app with ML models trained to

detect multiple types of rip currents. Chapter 3 briefly discussed RipSnap, an app

created using SmartCS with a similar application; however, its features are limited to

the templates provided by SmartCS. Additionally, the functionality of RipSnap and any

other apps created by SmartCS is designed to be limited to client-side operations only.

In contrast, we propose RipFinder as a more advanced client-server ML model-based

computer vision system designed to leverage both small client-side models and large

server-side models. While an app such as RipSnap can be created without knowing how

to write code, developing the advanced features for RipFinder requires more advanced

knowledge of programming, ML, and other aspects of computer science. Unlike

84

the basic data collection app RipSnap, the advanced data collection app RipFinder

enhances rip current detection accuracy by utilizing multiple ML models such as

EfficientDet and YOLO on the client side and larger models like Vision Transformers

(ViT) on the server side. This approach leads to more efficient data collection and

significantly reduces label noise, ensuring higher precision in identifying rip currents.

This chapter presents RipFinder’s overall design and discusses the challenges inherent

to the rip current detection system.

6.1 Introduction

Rip currents are dangerous, strong, fast-moving currents that pull swimmers away

from the shore, often leading to drownings and fatalities. They pose a significant

hazard to beachgoers and can easily overpower even strong, experienced swimmers.

Rip currents are a global issue, affecting coastlines around the world [179,206,283]. In

the United States alone, they account for an estimated 100 drownings a year [86]. Rip

currents can form suddenly and without obvious signs, which can catch swimmers off

guard. While there are general conditions that can lead to their formation, predicting

exactly when and where they will appear is challenging. Furthermore, rip currents

are created through various mechanisms and, as a result, exhibit different visual

characteristics. This complexity of occurrence and variability in appearance makes

them difficult to identify [35]. Consequently, many beachgoers lack the essential

knowledge and awareness needed to recognize and avoid these perilous currents.

85

Rip current detection techniques are significantly important because of their

potential to save lives. As a public safety issue, the implications extend beyond

swimmers. Lifeguards, rescue teams, and even bystanders who try to help can also be

put in danger. If rip currents could be detected reliably, then beachgoers and lifeguards

could be alerted to the dangers in real time. This would likely result in a significant

decrease in the number of rip current-related incidents and fatalities. By providing

more accurate information about rip currents, the general public could make more

informed decisions about when it is safe to enter the water, thereby enhancing overall

public safety. The development and deployment of tools, such as rip current prediction

models [65] or mobile apps that can detect and provide real-time alerts and tips about

rip currents, could be instrumental in these efforts.

While rip currents can often be visually identified by experienced swimmers,

surfers, lifeguards, and coastal scientists, traditional detection and data collection

methods typically involve in-situ instrumentation, such as GPS-equipped drifters and

current meters [153, 170]. However, recent studies have demonstrated that images and

video can also be used for detecting rip currents. These approaches leverage computer

vision and ML models for object detection to spot and identify these potentially

dangerous phenomena [53, 55, 64, 174, 177, 193, 199, 200].

However, detecting and segmenting rip currents with high accuracy using ML

methods presents unique challenges due to their amorphous and ephemeral nature.

Given the potentially fatal nature of dangerous rip currents, their detection is a matter

86

of life and death. Thus, high accuracy and reliability are crucial for any rip current

detection tool for issuing warnings and taking preventive actions to decrease the number

of rip current-related incidents. Providing such capability for real-world use i.e. on

mobile platforms adds another layer of technical challenge.

Many object detection ML models can detect rip currents, but the challenge lies

in deploying these models in real time on mobile devices with limited power and

computational resources. More accurate yet computationally resource-intensive, ML

models cannot run directly on mobile devices. By sending the visual input for object

detection to a remote server, it can be achieved on mobile devices. However, this

approach is not always feasible, especially in beach locations where server connectivity

is unavailable. Alternatively, mobile-optimized ML models can feasibly run using the

limited computational resources of portable devices without server connectivity but at

the cost of sacrificing accuracy.

To address these challenges, we introduce a mobile application, or app, designed

to detect rip currents using ML models for computer vision. Users can identify

potential rip currents in real-time by simply aiming their phone’s camera toward the

ocean. We propose a client-server system of object detection models to balance

the trade-off between computational speed and accuracy. Depending on the mobile

device’s available computational resources and internet connectivity, this app employs

one or more ML models to identify rip currents. If the device is relatively new

with adequate computational resources, our app runs two different types of mobile-

87

optimized ML models to enhance the reliability of rip current detection. For older,

resource-constrained devices, only one ML model is used. Moreover, when internet

connectivity is available, part of the visual data is transmitted to a server for further

verification of the detection using a more accurate large model. Our system combines

client-server architecture with multiple ML model-based computer vision to enhance

the accuracy and reliability of rip current detection. The novelty of our solution lies

in its implementation of this combined system, allowing the app to function both with

and without internet connectivity. Our app’s versatility is especially invaluable in areas

where lifeguards are absent or internet access is limited, establishing it as a crucial tool

for public safety.

In addition to rip current detection, our app places a strong emphasis on educating

users about the dangers of rip currents through informative in-app content and links

to additional resources. Our aim is to empower beach enthusiasts with the knowledge

necessary to make informed decisions, protecting themselves and others from these

hazardous rip currents. Moreover, our app includes a citizen science feature, enabling

users to contribute to scientific knowledge. This is done by encouraging them to record

and share data such as geotagged images and videos, along with additional information

about detected rip currents. Harnessing the collective power of app users, we can gather

valuable data that improves our understanding of rip currents and helps verify existing

rip current forecast models. Ultimately, this leads to the development of more effective

safety measures and strategies.

88

Figure 6.1: The high-level system architecture of RipFinder.

The contributions of this chapter are as follows:

• Introduction of RipFinder: a mobile app designed for real-time, vision-based rip

current detection.

• Development of a client-server system tailored for the ML models utilized in the

rip current detection app.

• A comprehensive analysis and comparison of state-of-the-art ML models for rip

detection.

6.2 Related Work

6.2.1 Realtime Object Detection

Developing a mobile application for effectively and reliably identifying rip currents

necessitates real-time object detection capabilities. Deep learning has revolutionized

the field of object detection, as well as other computer vision tasks. Convolutional

neural networks (CNNs) have become the standard method for these applications.

89

Numerous large and intricate models, such as Faster R-CNN—a two-stage region-based

detector [205]—and DETR (Detection Transformers)—an object detector based on the

Transformer architecture [34]—offer remarkable accuracy in object detection tasks. For

instance, Faster R-CNN has been adeptly used for real-time object detection in drones

by connecting to a remote GPU server [156]. However, these detectors often bear

significant computational complexity, rendering them difficult to deploy on mobile or

embedded platforms for real-time performance. An earlier server-based system named

Glimpse, offering continuous, real-time object recognition for mobile devices, was

introduced by Chen et al. [42]. Nonetheless, server-reliant systems prove impractical

in locations devoid of internet connectivity.

Achieving accurate and reliable real-time object detection on mobile devices

without depending on servers presents inherent challenges. Numerous efforts have

been directed towards integrating deep learning methods on mobile devices by creating

compact, mobile-optimized ML models. Typically, streamlined architectures, like one-

stage CNNs, render the models lightweight, allowing them to function swiftly on

mobile devices—making them an ideal choice for real-time object detection. The

primary compromise for such efficiency is a minor decrease in accuracy relative to

their more elaborate counterparts [109]. We scrutinized a range of mobile-optimized

ML models to ascertain the best fit for our system. SSD-MobileNetV2 [216] stood

out as one of the earliest trustworthy models tailored for mobile platforms. Among

the contemporary one-stage models refined for mobile devices are variants of RT-

90

DETR [169], EfficientDet [239], and YOLO [120]. Our investigation encompassed

a comprehensive evaluation of potential ML models suitable for real-time rip current

detection using computer vision on mobile platforms.

6.2.2 Rip Current Detection with ML

Given its impact on public safety, the problem of automated rip current detection has

been approached using various methods, some of which predate the emergence of deep

learning techniques. For example, Philip et al. (2016) utilized optical flow on video

sequences to discern the predominant flow towards the sea, aiding human observers

in rip current detection [193]. Maryan et al. (2019) employed modified Haar cascade

methods to detect rip currents from time-averaged images [174]. The concept of rip

current detection via deep learning-based methods is not entirely new either. De Silva

et al. (2021) were among the early adopters of deep learning methods for rip current

detection, employing Faster R-CNN, a large model that achieved high accuracy [53].

They introduced a frame aggregation technique that bolstered detection accuracy for

fixed-position cameras, but this technique was not suitable for moving cameras. Mori

et al. (2022) offered a flow-based method to accentuate and depict rip currents for

human observers [177]. However, this approach also demands a stationary camera

and serves as a visualization tool rather than an automated detection system. In recent

years, there have been several scholarly works about new deep learning model-based

rip current detection techniques. For instance, Rashid et al. (2021) and Zhu et al.

91

(2022) presented RipDet [200] and YOLO-Rip [286], respectively. These lightweight

rip current detection models, rooted in Tiny-YOLOv3 and YOLOv5s, belong to the

smaller members of the YOLO family and are adept for environments with limited

computational power. Rampal et al. (2022) showcased that the mobile-optimized,

single-stage model SSD-MobileNetV2 can achieve performance metrics comparable

to Faster R-CNN [199]. Furthermore, Dumitriu et al. (2023) explored and compared

various iterations of YOLOv8 for rip current segmentation [64]. De Silva et al.

(2023) unveiled RipViz, an innovation that examines 2D vector fields and interprets

pathline behaviors to pinpoint rip currents [55]. Like that of Dumitriu et al. (2023),

this method highlights the rip region’s shape but identifies currents based on water

movement rather than water appearance. Yet, while there is an assortment of effective

rip current detection methods employing ML, a real-world application—such as a

mobile app—primed for public safety and enhancing awareness for tangible societal

impact remains elusive. This work endeavors to fill that void by devising a deployable

mobile device-based real-time system for rip current detection.

6.3 System Design and Methods

6.3.1 System Architecture

Figure 6.1 presents an overview of the RipFinder system architecture. Our

comprehensive system, designed to effectively identify and alert users of rip currents is

92

Figure 6.2: GUI of RipFinder App (a) Main menu, (b) Real-time detection from live
camera view, (c) Detection from single image, (d) Data uploader for citizen science
contribution.

organized into two primary components:

1. The client mobile app serves as the primary user interface. Within this app, we

have integrated four ML models, each tailored specifically for mobile devices.

As the device processes real-time visual input, these models evaluate the data

and issue warnings if rip currents are detected. Depending on the device’s

processing power, the app can deploy either one or two ML models for detection.

More modern devices with substantial resources can utilize two types of mobile-

optimized ML models simultaneously, enhancing the reliability of rip current

detection. In contrast, older devices with limited resources might default to a

single model. Nevertheless, the ultimate decision to use one or two models

rests with the user. When feasible, the app suggests users employ two models

for optimal detection, but they retain the freedom to choose only one from the

93

available options if preferred.

2. Our system’s server side employs complex ML models that demand significant

computational resources and GPU capabilities, ensuring rip currents are detected

with high accuracy. When a user captures an image or video via our mobile

app, this data is sent to the server for in-depth analysis. After the server-side

models process the data, the detection results are relayed back to the mobile

app. Additionally, we offer the option to execute multiple models on the server,

depending on its capabilities (number of CPUs and GPUs, system memory, etc.),

enhancing reliability through redundancy.

Our system attempts to improve the reliability of rip current detection in a two-fold

way. The use of two models enhances detection reliability on the client app, even

though it demands more computational resources. Server-side models, being complex

and larger, boast superior accuracy, thus ensuring that server-aided rip current detection

is more reliable when internet access is available. The client-side model, meanwhile,

operates using the on-device computational resources without the need for an internet

connection. The results section further elaborates on the justification behind these two

design choices. Thus, our system’s design allows it to operate both online and offline.

Training datasets are essential for training both client-side and server-side ML

models. We developed our dataset by utilizing the existing dataset from [53] and

supplementing it with a large amount of our own data. Further details on the dataset

and the ML model training process are explained in the implementation section.

94

Figure 6.3: Some examples from our training dataset. The images from on the first
column are from the dataset by [53]. The images on the second and third column
are from the dataset we collected using a drone and a wireless rip activity monitoring
camera respectively.

Figure 6.4: Some examples of detected rip currents from our test videos.

95

6.3.2 Mobile Apps

Figure 6.2 provides a visual representation of our mobile app’s user interface,

offering an intuitive, user-friendly environment. We created both an Android and iOS

version of the mobile app. The application’s design caters to a variety of user needs and

includes the following features:

6.3.2.1 Live Camera and Visualization Tool.

The app offers a live camera feature to capture the seashore and serves as a real-time

visualizer, placing bounding boxes around detected rip currents in the view, thus acting

as an immediate warning system (Figure 6.2 (b)).

6.3.2.2 ML Model Selection.

From the in-app menu, users can choose the ML model for real-time rip current

detection. On devices with higher computational resources, users have the option to

turn on or off the use of two models in parallel for increased reliability.

6.3.2.3 Image and Video Recording.

The app enables real-time rip current detection and the recording of images and

videos, letting users document and share potential rip currents with other beachgoers

and rip current researchers.

96

6.3.2.4 Rip Current Detection Tool for Existing Images.

RipFinder app analyzes existing images on the phone to identify rip currents,

offering retrospective insights to users (Figure 6.2 (c)).

6.3.2.5 Educational Resources.

Our app features an educational hub with resources on rip currents, accessible via

a pull-up and help menu, ensuring users always have information at hand (Figure 6.2

(b)).

6.3.2.6 Data Upload Tool.

We integrated a data upload tool (Figure 6.2 (d)) for users to share geo-tagged rip

current images and observations, fostering community collaboration and enhancing our

dataset for improved algorithm refinement.

6.3.3 Client-side ML Models

In our application, RipFinder, we integrate several mobile-optimized ML models,

all trained on a rip current dataset for client-side detection. These models have been

tailored to ensure swift and efficient performance on mobile devices, which facilitates

real-time rip current detection. The current version of RipFinder incorporates the

following models:

97

6.3.3.1 YOLOv8n and YOLOv8m.

YOLOv8, the latest in the YOLO series known for fast object detection [119, 203],

includes variants like YOLOv8n (nano) and YOLOv8m (medium) optimized for mobile

devices. Its architecture facilitates single-pass detections, making it ideal for real-time

applications such as rip current detection.

6.3.3.2 EfficientDet D0 and EfficientDet D2.

EfficientDet, known for its object detection prowess [239], has a unique scalable

architecture that adjusts to computational resources, making it ideal for mobile use; it

offers eight variants, D0 to D7, based on image size.

Of the four ML models at our disposal, the app selects one or two mobile-

optimized models for rip current detection, contingent upon a device’s computational

prowess and internet connectivity. Modern, high-end devices employ two models,

while the older, resource-constrained devices resort to just one. YOLOv8n and

EfficientDet D0, due to their lesser computational demand, are ideally deployed as

standalone models or in conjunction on dated or less competent mobile devices. In

contrast, YOLOv8m and EfficientDet D2 are better aligned with newer devices boasting

significant computational strength.

98

6.3.4 Server-side ML Models

Server-side, we engage a collection of high-performance ML models tailored for

more resource-intensive computations. Given their demanding computational needs,

these models are perfectly positioned for server-side deployment, capitalizing on robust

hardware resources, including GPUs. For the server-side, we’ve selected:

6.3.4.1 YOLOv8l and YOLOv8x.

The YOLOv8 ‘l’ (large) and ‘x’ (extra-large) variants [119] are more complex

than their mobile-optimized versions, offering higher accuracy but requiring greater

computational power, ideal for situations demanding utmost accuracy with ample

resources.

6.3.4.2 RT-DETR (Real-Time Detection Transformer).

RT-DETR, a real-time adaptation of the DETR transformer-based object detection

model [34, 169], maintains DETR’s accuracy while ensuring faster performance. We

trained its large and extra-large versions, RT-DETR-L and RT-DETR-X, for server-side

use.

By leveraging these server-side models that can deliver high accuracy, we bolster

the final verification of detected rip currents, reinforcing the reliability of our rip current

detection tool.

99

Table 6.1: Comparison of the detection accuracy of the SOTA methods to select the
best options for the client and server application.

Test Videos

Client Side Models Server Side Models

EfficientDet YOLOv8 RT-DETR

D0 D1 D2 n s m l x L X

Rip_test_video_1 1.00 1.00 1.00 0.94 0.72 0.99 0.99 0.93 1.00 1.00

Rip_test_video_2 0.99 0.86 1.00 0.01 0.01 0.05 0.20 0.05 1.00 0.99

Rip_test_video_3 0.86 0.84 0.79 0.58 0.30 0.71 0.46 0.53 0.90 0.93

Rip_test_video_4 0.27 0.79 0.72 0.00 0.00 0.04 0.00 0.00 0.85 0.89

Rip_test_video_5 0.73 0.91 1.00 0.76 0.50 1.00 1.00 1.00 1.00 1.00

Rip_test_video_6 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.86 1.00

Rip_test_video_7 0.99 1.00 1.00 0.19 0.35 0.93 1.00 1.00 1.00 1.00

Rip_test_video_8 0.70 0.71 0.71 0.00 0.00 0.00 0.15 0.29 0.76 0.80

Rip_test_video_9 1.00 1.00 1.00 0.21 0.24 0.62 0.71 0.63 1.00 1.00

Average Accuracy 0.73 0.79 0.91 0.30 0.24 0.48 0.50 0.49 0.93 0.96

100

6.4 Implementation

The various components of our system were implemented using the latest available

technology.

6.4.1 Dataset

Our training dataset distinguishes between two types of rip currents based on their

visual features. The first, termed bathymetry-controlled rip, is characterized by areas

devoid of breaking waves, presenting as darker and calmer regions flanked by brighter

waves. The second, known as transient rip, is identified by water discoloration due to

sediment plumes that extend beyond the breaking waves. Though both classes represent

rip currents, their visual features differ significantly. Detecting one type of rip current

with an ML model trained on data from another type is unfeasible. Treating these two

types as a single class compromises the effectiveness of the trained model. The label

correlograms depicted in the figure illustrate the distinctions between the two classes

based on the labeled regions of images from each class.

For the bathymetry-controlled rip current category, we utilized a dataset consisting

of 1780 images made publicly available by [53]. For the transient rip current category,

we curated a new dataset comprising 7565 labeled images. These were selectively

extracted from videos captured by a drone, which focused on the visual signature of

transient rip currents, and a Wi-Fi camera set up specifically for monitoring rip currents.

We combined both datasets to train our model in the detection of the two rip current

101

types. This dataset was then divided in an 80:20 split for training and validation, with

80% allocated for training purposes and the remaining 20% used for validation. The

efficacy of the trained models was assessed using a series of test videos. Figure 6.3

showcases a selection of images from our dataset.

6.4.2 ML Model Training

We conducted ML model training on an AWS cloud server equipped with 8 vCPUs,

61 GB of memory, and an NVIDIA Tesla V100 GPU boasting 16 GB of video memory.

The EfficientDet models were trained using the TensorFlow library, while the YOLOv8

and RT-DETR models were trained with the Ultralytics library, which is based on

PyTorch. All model trainings were initialized with a maximum of 500 epochs. For

all versions of YOLOv8 and RT-DETR, a patience parameter of 50 was set. The

patience parameter defines the number of epochs to wait before halting training via

early stopping if there’s no improvement in performance on a validation datasetSince

the EfficientDet models do not allow for the definition of a patience parameter, we

monitored convergence through TensorBoard and manually terminated the training

once convergence was observed. All models converged within 300 epochs. We trained

all models from scratch, instead of using transfer learning with MS COCO pretrained

models from the ML libraries, to prevent negative transfer [266]. This decision was

made because our rip current class data domain is distinct from any of the classes in the

MS COCO2017 dataset [164].

102

Table 6.2: Comparison of ML Models: Performance Metrics and Resource Utilization.

ML Model Properties E
ffi

ci
en

tD
et

D
0

E
ffi

ci
en

tD
et

D
2

Y
O

L
O

v8
n

Y
O

L
O

v8
m

Y
O

L
O

v8
l

Y
O

L
O

v8
x

R
T-

D
E

T
R

-L

R
T-

D
E

T
R

-X

Model Size on Server (MB) 13.70 18.50 6.00 49.60 83.60 130.40 63.00 129.00

Avg. FPS on Server 37 21 127 106 86 79 47 35

Model Size on Phone (MB) 4.23 7.04 6.00 49.60 83.60 130.40 63.00 129.00

Avg. FPS on iPhone 12 Pro 48 15 25 17 NA NA NA NA

Avg. FPS on Pixel 6 26 8 29 18 NA NA NA NA

6.4.3 Client Apps and Server

We developed the iOS version of the app in Swift using XCode, and wrote the

Android version in Java with Android Studio. We tested the integrated mobile ML

models on an iPhone 12 Pro and a Google Pixel 6. The server-side components were

programmed in Python. We evaluated the server-side ML models on a desktop server

equipped with a 16-core Intel Core i9 3.2 GHz CPU, 30 GB of memory, and an NVIDIA

RTX3080 GPU boasting 10 GB of video memory.

6.5 Results

6.5.1 Performance Analysis of ML models

In this section, we present a performance analysis and comparison of state-of-the-

art (SOTA) object detection models tailored for rip current detection. We compared

ML models including EfficientDet D0, EfficientDet D1, EfficientDet D2, YOLOv8n,

103

YOLOv8s, YOLOv8m, YOLOv8l, YOLOv8x, RT-DETR-l, and RT-DETR-x. To gauge

the accuracy of these models, we utilized nine test videos equipped with ground truth

data. Four of these videos were selected for their relevance to our rip current detection

objectives from the test set introduced by [53]. Additionally, three videos were drone-

captured, while the last two originated from a wireless camera dedicated to rip current

monitoring. Our accuracy assessment followed the methodology described in [53],

where:

accuracy = correct_labels

total_frames

Frames were considered classified as correct if the detected bounding boxes had

an Intersection over Union (IoU) score versus ground truth bounding boxes above 0.3.

IoU is calculated as:

IoU = area_of_intersection

area_of_union

The comparison results are presented in Table 6.1 and some examples of detected

rip currents are shown in Figure 6.4. Based on these results, we can justify the following

two design choices we made.

6.5.1.1 Running two ML models to increase accuracy.

While running multiple models demands more computational resources, it enhances

reliability. This design decision stems from the understanding that ML models

104

with varying architectures possess distinct strengths and shortcomings. Research by

Mekhalfi et al. [175] indicates that models from the YOLO family tend to identify more

objects, even if their precision varies. In contrast, EfficientDet provides more stable and

accurate detection. In many cases, one of the models might not detect specific instances

of rip currents, even if they were trained using the same data. For instance, although the

rip current in “Rip test video 6” can be detected by EfficientDet D2, it isn’t identified by

any other mobile models. Thus, deploying two models ensures that a challenging-to-

detect rip current is more likely to be detected on a more capable device. Additionally,

since rip current detection pertains to safety, minimizing false negatives is more crucial

than avoiding excessive false positives. Therefore, while employing two models might

seem redundant for general applications, it is beneficial for the purpose of rip current

detection.

6.5.1.2 Running ML models on both the client and server side.

More advanced and complex models, such as RT-DETR-L and RT-DETR-X,

achieve higher accuracy but are limited to server execution. Thus, when an internet

connection is available, server-assisted rip current detection becomes more reliable.

The client-side models serves as the primary object detection mechanism, ensuring that

rip current detection operates at the highest possible accuracy both with and without

internet connectivity.

105

6.5.2 Evaluation and Selection

Among the ten (10) models highlighted in Table 6.1, we chose eight (8) for further

evaluation. From the less accurate EfficientDet D0 and D1 variants, we selected only

D0 because of smaller size. YOLOv8s was similarly excluded due to its poor accuracy.

We evaluated the chosen models on a server equipped with a single GPU, an iPhone

12 Pro, and a Google Pixel 6 to determine the best-fit models for each platform. Our

benchmarking of each model’s performance focused on two primary metrics:

1. We evaluated the real-time responsiveness of each model by measuring the

frames processed per second (FPS). This metric offers insights into the model’s

speed and its ability to detect rip currents in real-time scenarios. EfficientDet-

D0 and YOLOv8n exhibited higher FPS on mobile devices, marking them as

optimal choices for devices with limited computational capabilities. Meanwhile,

the enhanced accuracy of EfficientDet-D2 positions it as a dependable option

while still upholding real-time performance.

2. Each model’s storage footprint need to be considered for embedding them in a

mobile app, given that mobile devices have diverse storage capabilities and may

also be running other apps simultaneously. Assessing a model’s storage needs

ensures that the application remains streamlined and does not overtax the device’s

memory. While the compactness of EfficientDet-D0 and YOLOv8n earmarks

them as ideal for devices with resource constraints, the relatively small size and

superior performance of EfficientDet-D2 make it a trustworthy option.

106

6.5.3 Model Performance Evaluation

EfficientDet-D0 and D2

• EfficientDet-D0: This model stood out for its high FPS, making it highly

responsive on mobile devices. However, it occasionally struggled with

identifying transient rip currents in complex backgrounds, leading to some false

negatives.

• EfficientDet-D2: While slightly slower than D0, D2 provided higher accuracy,

especially in distinguishing rip currents from similar-looking water patterns. This

made it a more reliable option for detailed analysis despite its larger storage

footprint.

YOLOv8 Variants

• YOLOv8n: This model demonstrated excellent real-time performance due to its

compact size and speed. It was particularly adept at detecting well-defined rip

currents but sometimes missed more subtle, transient currents.

• YOLOv8m: Balanced between speed and accuracy, this model handled both

bathymetry-controlled and transient rips well. Its moderate storage requirements

and consistent detection accuracy made it a strong candidate for mobile

deployment.

• YOLOv8l and YOLOv8x: These larger models, used server-side, provided

107

superior accuracy, identifying even the faintest rip currents. However, their large

size and computational demands limited their use to server environments.

• YOLOv8s: Excluded due to poor accuracy, especially in complex detection

scenarios.

RT-DETR Variants

• RT-DETR-L and RT-DETR-X: These models, designed for server use, delivered

high accuracy and reliability. They excelled in differentiating rip currents from

similar patterns like wave shadows and sandbars. Their complex architecture,

however, required substantial computational resources, justifying their server-

side deployment.

6.5.4 Analysis for Client-Side Model Selection

Two Models vs. Three or More: The decision to use two models on the client-

side was based on a balance between accuracy, computational resource demands, and

processing time. While running more than two models could theoretically increase

detection accuracy through model ensemble techniques, the incremental benefits were

marginal compared to the substantial increase in resource consumption and latency.

• Resource Consumption: Each additional model significantly increased the

server’s CPU and GPU load, leading to higher operational costs and potential

delays in processing, especially during peak usage times.

108

• Latency: Adding more models introduced additional latency, which could hinder

the real-time aspect of rip current detection, a critical feature for user safety.

• Redundancy and Reliability: Using two models already provides a robust

redundancy mechanism, ensuring reliable detection even if one model

underperforms. The combination of YOLOv8l for broad detection and RT-

DETR-L for detailed analysis offered a well-rounded approach.

Based on the comprehensive evaluation, EfficientDet-D2 and YOLOv8n were

chosen for mobile deployment due to their balance of speed, accuracy, and compact

size. For server-side implementation, YOLOv8l and RT-DETR-L were selected to

maximize detection accuracy and reliability, ensuring that the system could effectively

operate both online and offline.

Table 6.2 offers a comprehensive review of our findings from these cross-platform

assessments. By juxtaposing results across platforms, we pinpointed models that meet

both hardware constraints and app requirements to guarantee the most proficient rip

current detection.

6.6 Conclusion

In this chapter, we introduce Ripfinder, a mobile app equipped with an ML-

based computer vision tool designed to mitigate the safety hazards associated with

rip currents, which are a leading cause of drownings globally. Ripfinder features

109

a sophisticated system that ensures rip current detection even in the absence of

internet connectivity, making it indispensable in regions without lifeguards or reliable

internet coverage. This capability is crucial for enhancing beach safety in remote and

underserved areas.

Beyond its detection capabilities, Ripfinder enriches user knowledge with in-app

informational content and videos about rip currents, helping users understand the

dangers and how to avoid them. This educational component is vital for raising

awareness and promoting safe behaviors at the beach. A standout feature of Ripfinder

is its inclusion of citizen science. By inviting users to share data about identified rip

currents, the app not only enhances scientific understanding but also fosters community

engagement. This participatory approach leverages the collective efforts of users to

contribute valuable data that can be used for further research and analysis, ultimately

improving the overall understanding of rip current patterns and behaviors.

Ripfinder’s integration of public safety, education, and scientific progress

underscores its multifaceted approach to ensuring safer beach outings. By combining

advanced technology with user engagement and educational resources, Ripfinder aims

to create a comprehensive solution that addresses both immediate safety concerns

and long-term scientific goals. The app exemplifies how modern technology can be

harnessed to address real-world problems, making beaches safer and more enjoyable

for everyone.

110

Chapter 7

RipScout: Realtime ML-Assisted Rip

Current Detection and Automated

Data Collection using UAS

This chapter presents RipScout, a system for real-time rip current detection and data

collection using UAS or drones equipped with ML models. In contrast to RipSnap and

RipFinder from the previous chapters, RipScout addresses more complex challenges

such as deploying lightweight ML models suited for the limited computing resources

of drones, ensuring stable data collection while in motion, and managing flight paths

for optimal data coverage. Although the concept originated with RipSnap, designing

an application for UAS involves significant optimization to meet constraints like real-

time processing, limited power, and computational resources. UAS offer higher vantage

111

points, access to remote areas, versatile data collection angles, and real-time processing

capabilities, enhancing the scope and quality of data collected. With RipScout, when

a rip is detected along a flight path, the drone hovers in place and collects a video clip

of a predefined length, followed by circling around the detected rip using pre-specified

radii and heights to collect video samples from different vantage points and elevations.

An important benefit is that the collection of rip current data can be performed by

drone operators who are not familiar with rip currents, thereby reducing label noise.

This integration of drones into the broader goals of this dissertation exemplifies the

innovative use of advanced technologies to improve data collection efficiency and

quality, aligning with the dissertation’s emphasis on efficient data collection systems.

7.1 Introduction

This chapter introduces RipScout, an ML-assisted system designed for efficient

field data collection of rip currents using drones. Rip currents are dangerous, fast-

moving currents that can take people out to sea, leading to an estimated 100 drownings

a year in the United States [86]. It is important to monitor beaches for the presence

of these rip currents to improve beach safety. Data collected about rip currents are

also important for validation studies of rip forecast models [65]. While traditional rip

current data collection involves in-situ instrumentation such as GPS-equipped drifters

and current meters [153, 170], recent work has demonstrated that rip currents can be

detected from images and video [53, 55, 64, 174, 177, 193, 199, 200]. Since cameras are

112

more widely available than specialized instruments, these methods have the potential

to greatly expand the amount of rip current data collected.

Uncrewed aerial vehicles (UAVs) such as drones have been widely used to perform

visual data gathering tasks for environmental monitoring, search and rescue, and target

tracking because they allow free-form flight maneuverability and thus versatile camera

placement [19,260]. Cameras on drones also have a distinct advantage of spotting rips

from a higher elevation since some rips are difficult to spot from a lower elevation. This

chapter investigates the question whether it is possible to create a system to detect and

collect data about rip currents using drones that can perform as well as a domain expert

e.g., lifeguard and/or as well as the leading rip detection algorithms today.

We first identify the technical challenges imposed by a mobile drone platform.

These challenges include the ability to detect rip currents in realtime in order to

support field deployment. The detection system must be lightweight and run on

limited computational resources available on mobile platforms. Beaches are often

remote with no internet connectivity, so sending images to a server for processing

may not be possible. Given that battery capacity of consumer grade drones is typically

in the 15-25 minute range per charge, data collection needs to be efficient. And to be

of value, the rip detection must have sufficient accuracy.

We then designed a system that seeks to address these technical challenges. In

our design, the mounted camera on the drone streams image data to a mobile phone.

The mobile phone performs rip current detection and sends flight control signals

113

to the drone. When a rip current is detected, the drone is directed to take the

desired data collection activity, such as recording 30 seconds of video from several

different altitudes and/or video recording of the rip from different angles and elevations.

Our proposed system architecture is practical and portable, leveraging the increasing

availability of high-quality drones [176] and the ubiquity of smartphones. The system

is described in System Architecture and Datasets Sections.

The system is then field tested and evaluated on how well it met its goal of accurate

rip current detection and efficient data collection. To do so, we first narrowed down

the choice for a base ML detection model (see Related Works Section). Those that

required powerful Graphics Processing Units (GPUs) that are not available on mobile

platforms were either removed from further consideration or modified to run on Central

Processing Units (CPUs). There were three ML detection models that were evaluated

and the best performing one selected for RipScout. Our tests show that the proposed

system can perform as well as a domain expert in terms of accuracy and efficiency.

As designed, the system is also agnostic to specific ML models as long as it can run

within the resource constraints. Hence, the ML model employed for rip detection can

be replaced with a better one in the future. The field tests, selection, and evaluations

are described in the Field Testing and Evaluation Sections.

• The primary contribution of this chapter is a drone-based system architecture

called RipScout that allows efficient rip current data detection and data collection

in a resource-constrained environment.

114

• The rip current data that were collected during field experiments are valuable for

further rip current research.

7.2 Related Works

7.2.1 Lightweight ML Models for Drones

We review recent literature to look for candidate ML models that are potential

candidates for use in rip current detection. A series of VisDrone challenges [33, 63,

75, 287] have focused on improving the accuracy and speed of object detection and

tracking. The deep learning models in those papers can be divided into one-stage

and two-stage structures. Recent trends in the VisDrone-DET 2019-21 challenges

[33,63,75] show that one-stage models prioritize prediction speed in frames per second

(FPS), while two-stage models strive for the best per-frame accuracy but incur higher

computational costs.

The two-stage region-based detectors, such as Faster R-CNN [205] (Region

Convolutional Neural Network), typically include a region-proposal stage followed by

a classifier. However, one major drawback of these detectors is their computational

complexity, which makes them challenging to deploy on embedded platforms. For

instance, Faster R-CNN has been successfully used for realtime object detection with

drones by connecting to a remote GPU server [156]. However, this approach is not

practical in locations without internet connectivity.

115

In contrast, one-stage techniques employ a single CNN to perform end-to-end

object detection [167]. This single CNN architecture render the models lightweight

and able to run quickly on mobile devices, making it an ideal choice for realtime

object detection applications. The main trade-off for this speed is a decrease in

accuracy compared to more complex models [109]. Sun et al. [235] demonstrated that

single CNN architectures designed for mobile devices also require the least amount of

memory compared to other CNNs.

As such, we focus our review on the latest one-stage ML models to determine

suitable candidates for our system. We found SSD-MobileNetV2 [216] as one of

the first reliable models that work well for mobile systems. However, the top choices

from the most recent one-stage models optimized for mobile devices are EfficientDet

[239], and You Only Look Once (YOLO) [120]. Detection Transformers (DETR) [34]

was also briefly considered but was found to have a significantly slower inference

speed and require a server with GPU. A comparative study by Mekhalfi et al. [175]

demonstrated that EfficientDet is the more stable and offers good generalization

capability for applications with aerial imagery. Even though the newest YOLOv8

(2023) improved over its predecessor in accuracy, EfficientDet still provides more

stability while achieving similar or higher accuracy [243].

116

7.2.2 Field Tested Drone Applications with ML

Field testing is needed to ensure that results from experiments in controlled

lab settings transfer and actually perform in real-world scenarios. In many drone

applications, it is crucial to have a model that can process and predict data quickly,

approaching the speed at which the drone transmits video. For example, the DJI

Phantom Pro 4 V2.0 transmits images at 30 frames per second [61]. However, few

research papers address the challenge of embedding models in real-world settings

[37, 288]. For example, while frame accuracy of an ML model may appear very good

when compared against known ground truths, deployment in real-world where other

factors such as fog, haze, glare, vibrations, etc., come into play may be quite different.

Although some studies [182, 274] do present empirical studies on embedded UAVs

to perform realtime visual object detection and tracking, they have not been validated

through field tests, which are crucial for evaluating the performance of such systems in

real-world environments.

In recent times, several projects have utilized ML models to process drone images.

However, these projects vary in terms of where the processing takes place. For instance,

Rohan et al. [212] presented a drone-based system that employed a lightweight SSD

model on a desktop system equipped with a high-end GPU. Nevertheless, their system

is not feasible for field deployment, and they only conducted tests indoors. On the other

hand, Deng et al. [58] deployed a similar lightweight model on the Nvidia Jetson TX2

Board, a specialized embedded platform that can be mounted on a drone. While this

117

platform offers suitable performance, it is not as widely accessible as mobile phones,

thus limiting its user base. Similarly, another project utilized the same GPU board

for a UAV-based warning system with realtime object detection [244]. However, both

of these projects did not conduct real-world field deployment and instead tested their

system using existing drone footage.

Vajgl et al. [256] described a pattern-matching algorithm for drone control that runs

on a mobile device and tested it to detect simple objects in a lab setting. None of

these projects attempted to perform complex tasks such as realtime object detection

for data collection in real-world settings. The differences in processing locations and

the limitations in real-world deployment highlight the need for a more versatile and

accessible approach to drone image processing and object detection.

In this chapter, we evaluated our proposed system with several field tests described

in the Field Testing Section.

7.2.3 Rip Current Detection with ML

There has been a growing interest in remote detection of rip currents using images

and/or video in recent years. We review and organize the literature by how suitable the

approach might be for deployment on a mobile platform. In particular, we consider if

images/videos from a stable platform are required and whether the ML model requires

significant computing power i.e., GPU.

The problem of rip current detection has been addressed using various methods,

118

including approaches predating the emergence of deep learning techniques. Philip

et al. [193] employed optical flow on video sequences to identify the predominant

flow towards the sea, assisting human observers in rip current detection. Maryan et

al. [174] utilized modified Haar cascade methods to detect rip currents from time-

averaged images. de Silva et al. [53] were among the early adopters of deep learning

methods for rip current detection, employing Faster R-CNN, a two-stage model that

achieved high accuracy. They also proposed a frame aggregation technique that

improved detection accuracy for fixed-position cameras, which is not applicable to

moving cameras like those mounted on drones. [177] proposed a non-ML, flow-based

method for highlighting and visualizing rip currents by showing the behavior of a set of

virtual buoys (pathlines and timelines). Similarly, RipViz [55] analyzes 2D vector fields

and uses ML to learn pathline behavior and automatically identify rip currents. This

method highlights the shape of the rip region. Detection is based on water movement

behavior rather than on the appearance of the water state. The methods above all require

video from a stable platform and hence are not directly applicable for analyzing drone

videos.

Rashid et al. [200] and Zhu et al. [286] introduced RipDet and YOLO-Rip,

lightweight rip current detection models based on Tiny-YOLOv3 and YOLOv5s

respectively. These are smaller models in the YOLO family and well-suited for running

with limited computational resources. These models have since been superceded by

YOLOv8. In fact, [64] utilized and compared various versions of YOLOv8 for rip

119

current segmentation. While YOLOv8 can theoretically run in realtime on both desktop

and mobile system, Dumitriu et al. [64] did not discuss an implementation on a mobile

system. Rampal et al [199] demonstrated that the mobile-optimized single-stage model

SSD-MobileNetV2 can achieve comparable accuracy to Faster R-CNN. However, they

used an Nvidia P100 GPU which has a maximum power draw of 250W and has a large

form factor and therefore cannot be used in any smartphone. Further investigation

revealed that it is possible to implement MobileNetV2 to run on a CPU with real-time

results.

The models investigated by these latter sets of papers as well as the findings by

Mekhalfi et al. [175] narrowed our field to three candidate models namely: SSD-

MobileNetV2, YOLOv8, and EfficientDet D2. In the Evaluation Section, we present

comparisons among these models.

7.3 System Architecture

Our objective is to design a drone-based system capable of realtime rip current

detection and efficient data collection. The high-level architecture of our system is

presented in Figure 7.1(left), which includes specific hardware components, as well

as software components. This section provides a detailed discussion of the necessary

hardware components required for our system, such as the drone and mobile device,

and the critical software components, including the mobile application and ML model

utilized for rip current detection.

120

Figure 7.1: (Left) The high level architecture of the realtime ML-assisted data
collection system using RipScout, (Right) Diagram of per frame processing by the
mobile app.

7.3.1 Devices and Hardware

We have two main hardware components: a drone with an integrated camera and

an associated physical controller, and a mobile device with a touchscreen display

physically connected to the controller using a data cable.

7.3.1.1 Drone Hardware Selection

We used a DJI Phantom 4 Pro V2.0 quadcopter, a relatively low-cost professional

drone. This model was selected because of our design goal to be widely deployable.

DJI has the largest share of the drone market in the world and offers a wide range of

models suitable for various purposes [61, 281]. The specific model we chose has many

advanced features useful for conducting data collection missions, such as improved

121

electronic speed controllers, expanded flight autonomy, and obstacle avoidance using a

multicamera and infrared sensing system.

It has an onboard gimbal camera featuring a 1-inch 20MP CMOS sensor and a

mechanical shutter, eliminating rolling shutter distortion. The camera has a 70-degree

field of view, making it a good choice for computer vision tasks.

The drone is controlled by a physical remote controller that receives a live video

feed from the drone camera at a maximum resolution of 1920 × 1080 and 30 FPS [61].

We use this feed as input for our ML model, while the camera records 4k resolution

videos to an onboard microSD card for later scientific analysis. While we showcase our

work using the DJI Phantom 4 Pro V2.0, it is important to note that our system is built

using the DJI Mobile SDK (Software Development Kit) [61], making it compatible

with all DJI drones. Additionally, our code is open-source and can be adapted to work

with any drone that provides similar functionalities to the DJI Mobile SDK. This makes

our system highly adaptable and customizable.

7.3.1.2 Mobile Devices

The physical drone controller has the option of using a smartphone or a tablet to

show the live camera feed and other system status. Either of these options would satisfy

our need for a portable system. However, we also require realtime and accurate

rip current detection. Thus, we opted to use a smartphone as it provides adequate

processing power to run the ML models and process videos from drone camera in

122

Figure 7.2: Graphical user interface for planning data collection mission. (a) The
interactive map interface for selecting flight plans. (b) The interface to define data
collection action plan. (c) Visualization of detected rip current from the live video feed.

realtime. We tested our system with an iPhone 12 Pro. While much less powerful than

a desktop workstation or server, the A14 Bionic chip on the iPhone 12 Pro is relatively

powerful for a mobile device.

One alternate design choice would have been to deploy ML rip current detection

directly on the drone. However, one of the major constraints of using drones is

the short flight time due to the limited battery power. For the drone we used, each

battery lasts a maximum of 30 minutes [61] with 15-25 minutes being a more realistic

figure. Delegating detection to a separate mobile device prevents the ML module from

depleting battery power and reducing flight time.

123

7.3.2 Software Components

We implemented the software components of our system as a mobile application.

This app includes the graphical user interface (GUI), ML model for rip current

detection, and drone control and communication.

The app receives the live video feed from the drone through the DJI Mobile SDK.

The video feed serves as input for the ML detection module, which produces detection

output in the form of bounding boxes. Upon detecting rip currents, the application

initiates specific drone control commands to capture relevant scientific data. Figure 7.1

(right) shows the flowchart of the software process.

7.3.2.1 The Drone App

The system functionality is presented to the user through a GUI. The GUI supports

different aspects of a field data collection mission, including flight planning, providing

feedback to the operator when a rip is detected, and specifying data collection actions

to take when a rip is detected. There is also a button to enable or disable the background

ML process when object detection is not necessary, such as during take-off, landing, or

return to home. Figure 7.2 shows the GUI of the RipScout app.

The flight planning screen features an interactive map that allows the user to define

the flight path by long-pressing on the map and dropping pins to mark waypoints.

Additionally, the user can specify the altitude for each waypoint on this screen. Moving

to the next screen, the user is presented with options to select the type of data collection

124

action to be performed when a rip current is detected. These actions may include

recording videos of predefined lengths from one or more fixed altitudes, capturing

footage from different camera angles along circular paths around the detected rip

current, or a combination of these options for each detected rip current. Upon starting

the mission on the subsequent screen, the user is provided with a live camera feed.

Throughout the flight, if a rip current is detected, the locations of these rip currents are

indicated by bounding boxes displayed on the live video feed. Furthermore, this screen

also shows the status of the ongoing intelligent data collection activities.

Collecting data from various altitudes, angles, and viewpoints of a rip current

through circular flights involves three distinct processes. First, the ML model running

on the connected mobile device needs to detect the rip current. Second, once the

location is identified, the mobile app sends the drone controller the circular flight path

information with the detected rip current location at the center, along with user-defined

parameters for radius and altitude. Third, as the camera operates independently with its

singular gimbal axis, a separate set of camera control data is transmitted to the drone to

specify the camera angle and drone heading, ensuring it captures video footage in the

correct direction. Note that although apps such as DJI Go and other third-party apps

offer features such as "follow me" or "circle around," these functionalities are primarily

designed for common objects such as cars, bicycles, or individuals. Detection and

tracking of rip currents are not supported.

125

7.3.2.2 ML for Rip Current Detection

The rip detector is a separate plug and play module where different ML models

can be substituted. We compared three such models in the Evaluation. Video from the

drone is transmitted as a one-dimensional array and converted to image frame buffers

as input for the CNN of these ML models. Fig 7.3 shows a general architecture of

these models. High level features extracted from the CNN are further processed to

generate the detection results i.e., bounding boxes, class labels, and confidence scores.

An overlay image is then generated using the detection results and superimposed over

the input image to generate the output image.

7.4 Datasets

The datasets associated with this work can be classified into two distinct categories:

(1) the initial dataset manually collected for training the rip current detection models,

and (2) the data automatically collected by RipScout for subsequent scientific analysis

and various other applications.

7.4.1 Training Data

There are several mechanisms that give rise to rip currents resulting in different

types of rip currents [35]. For an ML model to detect rip currents, it needs to be trained

with many different examples of their visual signature. The models we investigated

126

Figure 7.3: Pipeline showing how drone video is processed by (choice of) ML model
to generate detections in realtime.

were designed to detect two types of rip currents. Distinction between rip current

types is based on visual appearance, which in itself does not completely indicate the

underlying morphological or hydrodynamic mechanisms causing a rip current. The

first type considered in this chapter is visually characterized by a darker, calmer region

of water flanked by brighter breaking waves [53]. We shall refer to this type of rip as

channel rips. This type of rips are typically associated with bathymetry-controlled rip

currents [35]. The second type is visually characterized by discolorations caused by

sediment-laden water as they are carried away from shore, often forming a plume that

extends beyond the breaking waves. We shall refer to this type of rip as sediment rips.

Sediment rips are typically associated with transient or hydrodynamically controlled

rip currents [35]. It is not the goal of this chapter to classify detected rips based on how

a rip was formed but rather how the rip appears visually. It is also important to note that

there are rips that have different visual characteristics aside from the two that are studied

in this work. For example, presence of rips can be indicated by white foam or water

127

heading offshore. Taking spatial context into consideration, rips can also be indicated

based on the wave direction and water texture next to natural and man-made structures.

These other types of rips are not considered in this work. In terms of performance of

ML detection, each type of rip is considered a different class. Usually, accuracy will

drop slightly as more classes are considered. Hence, having more than one class allows

us to study how well different ML models perform when there is one, or when there are

two classes.

To ensure that our model could accurately detect both types of rip currents, we

recognized the need for a separate dataset for sediment rips, in addition to the existing

dataset of channel rip images from [53]. As shown in Figure 7.4, there are significant

visual differences between these two types of rips. These differences are so pronounced

that a model trained on one type of rip data would be unable to detect the other type.

However, obtaining data for sediment rips is a challenging task, and no existing

datasets are available. Hence, we collected a new dataset of sediment rip images by

manually flying our drone over the water surface along the shoreline and recording

videos. This involved capturing data at different times of day and in various weather

conditions, as the appearance of sediment plumes can vary depending on environmental

factors. For creating the dataset, we extracted one frame per second from the drone

video and manually labeled the frames that contained sediment rip currents. As the

visual characteristics of a sediment rip involve water discoloration due to sediment

plumes, we identified and labeled the frames that have this visual signature. In some

128

Figure 7.4: Some examples labeled images from the dataset with two types of rip
currents: channel rips (top three images) and sediment rips (bottom three images).
These images demonstrate the distinct visual characteristics of each type, highlighting
the need for separate datasets to train an accurate model.

129

cases, a single frame contained multiple sediment rips, which we labeled accordingly

(Figure 7.4 top three images).

We generated a new dataset of 2555 labeled images selectively extracted from 73

videos collected using the drone that captured the visual signature of sediment rip

currents. This dataset was combined with the existing dataset of 1780 channel rip

images from de Silva et al. [53] to train our model to detect both types of rip currents.

The dataset was divided into an 80:20 ratio for training and testing, with 80% of the

images allocated for training and 20% for testing. This split ratio is commonly used in

ML [124]. Examples of the resulting datasets are displayed in Figure 7.4.

Figure 7.5: Sediment rips are more obvious from a higher elevation (left) than lower
elevation (right).

7.4.2 Automated Data Collection

While channel rips can be identified by darker channels of calm water flanked by

breaking waves even from ground level, sediment rips are much harder to identify from

a lower elevation (see Figure 7.5). An ML model trained with the manually collected

130

Figure 7.6: When RipScout detects a rip between two waypoints, it can be programmed
to perform a combination of data collection actions such as (a) hover in place and record
a video of pre-specified duration, or go to user specified height before hovering in place
and recording the video, then resuming flight from its original height, (b) record a video
from user specified radius and height with the detection location as the center.

131

sediment rip data described above was used with RipScout to automatically collect

new data of sediment rips from different angles and elevations (see Figure 7.6). Such a

dataset not only serves purposes for beach monitoring, lifeguard support, and validating

rip forecast models, e.g. Dusek and Seim’s model [65], but can also be utilized to

train models capable of detecting rips observed from lower elevations. Models that

are trained on datasets with multiple vantage points can be employed for rip current

detection on lower elevation platforms such as web cameras and smartphones.

7.5 Field Testing

We collected data and conducted extensive field tests of our system on six public

beaches in California. Our field tests were meant to validate the suitability of

RipScout for automated data collection. Each field test consisted of multiple drone

flights, all of which were performed by a licensed drone pilot certified by the Federal

Aviation Administration (FAA). We obtained permits from federal and state authorities,

including the California State Park System and the Monterey Bay Marine Sanctuary, to

ensure compliance with all relevant regulations. Over a period of 18 months, from

January 2022 to June 2023, we performed a total of 36 drone flight missions to collect

training data and test our system in real-world conditions. All flights were conducted

in strict adherence to FAA rules and guidance [73]. Our field test received approval

from the Office of Research Compliance Administration at the University of California,

Santa Cruz, as an exempt Human Ethics Study and was conducted in accordance with

132

the approved guidelines.

Figure 7.6 illustrates a typical data collection scenario when using the system in

the field. The drone flies from Point A to Point B following a predefined flight plan.

During the flight, the ML model runs on the mobile device connected to the controller

and processes the live video feed from the drone camera. If a rip current is detected,

the drone automatically stops and performs a data collection activity, such as recording

a video clip for 30 seconds at several altitudes or flying in a circle to capture the rip

from multiple angles. When at least one rip current is present, the app is instructed to

send control information to the drone to capture a high-quality 4K video of a predefined

length and save it on the onboard microSD card. The quality of this recorded video is

much higher than the quality of the live feed used for realtime ML processing, as it

is intended for further analysis, research, and archival purposes. The location of the

rip current is shown on the app’s preview screen using bounding boxes. Once the data

capture is completed, the drone returns to its original flight plan. The drone pilot always

has full control over the drone and can manually override such programmed behavior

at any time.

For four of our field tests, we explicitly compared the performance of our ML-

assisted system with the performance of drone pilots on an unaugmented drone. A total

of ten drone pilots, who are not experts in rip current detection, participated in these

comparison trials. The 10 participants were recruited by snowball sampling through

our network in academia, and informed consent was obtained from them. The field

133

tests were performed at a state beach in California where sediment rip currents are

prevalent to provide enough data samples for comparison. In each case, days and times

were decided based on weather, tidal, and wave conditions in which rip currents were

likely to be present. Before the field trips, participants were provided with tutorials on

how to detect rip currents. The drone’s flight path was preprogrammed to fly through

a set of waypoints at a predefined altitude overlooking the shoreline. At the beginning

of each field test, an initial flight pass was performed to collect an overview of the

location for future review by rip current experts. The next round of flight followed

the same path while running RipScout. Guided by the ML, every time a rip current

was detected, the drone stopped and recorded a high-resolution video. In subsequent

rounds, participants flew the drone manually through the same trajectory, and every

time they visually determined the presence of a rip current, they manually triggered

recording a high-resolution video. RipScout and participants were compared in terms

of accuracy in locating rip currents, as well as the rate at which data samples could be

collected.

7.6 Evaluation

We analyze two critical aspects of our system. First, we compare the accuracy,

processing speed, and resource utilization of three ML models for rip current detection.

Second, we compare the efficiency of our system for collecting rip current data via a

series of field tests using drones with and without ML support.

134

Figure 7.7: Here are some examples of realtime automatic detections of two types of
rip currents using RipScout: sediment rips (top row) and channel rips (bottom row). As
shown in the top-left image, RipScout can detect multiple rip currents in a single frame.
The two images in the bottom row demonstrate that RipScout can detect rip currents
from both side and top views.

135

7.6.1 ML Model Performance

Table 7.1: Comparison of detection accuracy, model size, and processing speed of three
ML models when trained on a single class: either channel rip or sediment rip.

ML Model SSD-MobileNetV2 YOLOv8m EfficientDet D2

Accuracy (Channel rip) 82.1% 87.3% 94.8%

Accuracy (Sediment rip) 76.06% 92.6% 92.9%

Saved weight of ML model

(Megabytes)

4.5 49.6 7.0

Training time (Channel rip) 10 hours 4 hours 5 hours

Training time (Sediment rip) 9 hours 3.5 hours 5 hours

Processing speed in frame per

second

33 25 17

We analyze the detection accuracy of the three models when tasked with detecting

one class of object only (either channel rips or sediment rips) in Table 7.1. We also

analyzed the impact on detection accuracy when the three models are tasked with

detecting rips from one of two classes in Table 7.2. For all comparisons, models

were trained on a desktop with a GPU, and tested on CPU-based implementation

running on an iPhone 12 Pro. Conversion of an implementation using a GPU to a CPU

implementation to run on a smartphone involves conversion to a FlatBuffer format [94].

All the detection accuracy figures are based on our implementation of the three ML

models. Training and testing were done on the same dataset described in the Datasets

Section.

136

Table 7.2: Comparison of detection accuracy, model size, and processing speed of three
ML models when trained to detect and distinguish between two classes: either channel
rip or sediment rip.

ML Model SSD-MobileNetV2 YOLOv8m EfficientDet D2

Average Accuracy 78.45% 88.3% 93.1%

Accuracy (Channel rip) 80.83% 84.8% 93.6%

Accuracy (Sediment rip) 76.06% 91.8% 92.6%

Saved weight of ML model

(Megabytes)

4.5 49.6 7.0

Training time 14 hours 5 hours 8 hours

Processing speed in frame per

second

33 25 17

We were not able to exactly replicate the detection accuracy for SSD-MobileNetV2

as reported by Rampal et al. [199], likely due to the conversion to CPU implementation

and differences in dataset (no code or data were shared). Likewise, the detection

accuracy for Dumitriu et al. [64] are different as they used YOLOv8 for segmentation

while we used it for detection. Additionally, a different accuracy metric was used.

Among the five variations of YOLOv8, we selected YOLOv8m based on the benchmark

performed by Dumitriu et al. [64]. There are eight variants of EfficientDet to select

from, starting with EfficientDet D0 with expected input size 512 × 512 to EfficientDet

D7 with expected input size 1536 × 1536. We selected EfficientDet D2 as it takes

768 × 768 as input, the closest to the 1280 × 720 resolution video transmitted from the

drone while providing realtime processing speed.

137

Looking at Table 7.1, we see that EfficientDet D2 has the highest detection accuracy

for detecting channel rips (when trained with channel rip dataset). EfficientDet D2 also

narrowly edged out YOLOv8m in detecting sediment rips (when trained with sediment

rip dataset). Note that model sizes are all reasonably small to run on most smartphone.

EfficientDet D2 runs approximately about half as fast as SSD-MobileNetV2, but is still

acceptable for realtime detection when every other frame from the drone is dropped.

As expected, all three methods incurred a slight drop in detection accuracy when a

second class of objects was added (see Table 7.2). This can be seen when comparing the

detection accuracy for channel rips amongst the three models in Tables 7.1 and 7.2. The

same is true for sediment rips. The only exception is SSD-MobileNetV2 for sediment

rips where accuracy remains unchanged. Since each of the three different models were

presented with an equal number of test cases for channel and sediment rips, the average

accuracy is the simple average of the detection accuracy for each type of rip. The top

performer in terms of accuracy EfficientDet D2. Its model size and processing speed

are within the requirements for a lightweight mobile app and realtime processing.

Training times are included for completeness. Training was performed using

TensorFlow on a desktop machine equipped with an Intel Core(TM) i7 2.60 GHz

microprocessor, 16 Gigabyte main memory, and an Nvidia RTX 2070 GPU with 8

Gigabyte video memory. After completing the training, we converted the models into

the optimized FlatBuffer format for integration into both iOS and Android apps.

Figure 7.7 showcases the realtime detection of the two types of rip currents by

138

RipScout fitted with an EfficientDet D2 detector. Sediment rips are highlighted in cyan

bounding boxes while channel rips are highlighted in green bounding boxes. RipScout

can detect multiple rip currents in a single frame, as illustrated by the presence of

multiple bounding boxes.

The tables present the accuracy of rip current detection on the test dataset and

ground truth published by de Silva et al. [53], along with additional video clips

containing sediment rips that we collected using the drone. Accuracy is calculated

using the same method as de Silva et al. [53], where:

accuracy = correct_labels

total_frames

Frames were considered classified as correct if the detected bounding boxes had

an Intersection over Union (IoU) score versus ground truth bounding boxes above 0.3.

IoU is calculated as:

IoU = area_of_intersection

area_of_union

Apart from evaluating the accuracy of each model, we also assessed their memory

storage requirements and average processing time per frame.

Our findings indicate that all three models are suitable for realtime processing and

have memory requirements close to the average iOS size of 35MB.

139

Table 7.3: Field test comparison of rip current detection efficiency using drones with
(RipScout) vs without (human only) the aid of ML.

Field Test
Average Time to Capture

Each Rip Current (Seconds)

Data Collection Speed

Improved (Times faster)

Human User RipScout

1 118.50 29.60 4.00

2 148.17 34.00 4.36

3 102.71 32.00 3.21

4 179.60 42.00 4.28

Overall 137.24 34.40 3.99

7.6.2 Efficiency of RipScout

In this section, we compare the efficiency of data collection using RipScout fitted

with EfficientDet D2 to traditional data collection involving human participants without

ML assistance. Our comparison is based on several field tests, each involving multiple

drone flights as described in the Field Testing Section. We only considered data from

a field test if there were more than one rip current present at that time. Table 7.3

presents a summary and comparison of the average time required to capture each rip

current by RipScout and human participants. Our results show that RipScout had a

significantly lower average time of 34.40 seconds to capture a rip current compared to

137.24 seconds for human participants. Additionally, the overall flight time required

by human participants was approximately four times greater than that of RipScout.

140

This finding indicates that the use of RipScout can provide more coverage and/or

extended monitoring. This is noteworthy given that the flight time of each battery

is approximately 15-25 minutes depending on weather conditions and operational use

(e.g. whether recording or not).

While our field tests utilized the EfficientDet D2 model, one could also replace

it with other models such as those presented in Table 7.1 and 7.2. We would expect

similar efficiency gains of ML assisted detection and collection versus humans only,

with the corresponding reduction in detection accuracy, or an improvement if a better

lightweight model becomes available in the future.

In addition to comparing RipScout with non-expert human participants, we also

evaluated our system and collected feedback from an experienced lifeguard. Lifeguards

are much more experienced in detecting rip currents than our other participants. The

detection performance of lifeguards averaged 34.2 seconds per rip, on par with that of

RipScout. In terms of accuracy, RipScout was also able to detect all the rips that the

lifeguard expert found. Although we only have one expert validation point at this time,

the accuracy result was reassuring that RipScout performed satisfactorily.

7.6.3 Accuracy in the Field Tests

The accuracy metric presented in Tables 7.1 and 7.2 ignores false positives (rips

that are not present but flagged as present) and false negatives (rips that are present but

not detected). We looked for false positives and false negatives on the videos from the

141

field trip with the help of a rip current expert. In our analysis, we found that human

participants had a 31% false positive rate, whereas RipScout has a 17% false positive

rate. On the other hand, there were no general instances of false negatives for both

human participants and RipScout. For the human participants, we believe the nature

of the task (i.e., asking them to look for rip currents) led them to be more cautious

and erred on flagging something as a rip when it is not. Hence, false negative rate

was negligible. For RipScout, indeed there are frames where a rip was present but was

not detected. However, at our sampling rate of 30fps, the same rip would always be

detected in other frames, but necessarily all the frames. Hence, we marked the rip as

being detected, leading to no false negative detection of the rip.

For the purpose of using RipScout for automated data collection, we considered

the 17% false positive rate acceptable since we want to gather as much data as possible

during each drone flight. The collected data can later be cleaned up using human experts

(e.g. relabel the 17% false positive detections) or with a higher accuracy and more

compute intensive two-stage ML model.

Moreover, we can further reduce the false positive and false negative rate by

employing common ML model optimization techniques such as data augmentation,

increasing the amount and quality of training data, and tuning the model’s parameters.

These techniques are widely used in the field of ML to improve a deep learning models’

accuracy continuously [93].

142

7.7 Conclusion

In summary, RipScout is a system for rip current data collection, which integrates

ML rip current detection into the flight control process. The ML system is carefully

designed to work well under limited computational constraints, and we show that rip

current detection accuracy of EfficientDet D2 is almost 5% better than its closest rival.

Actual field tests show that this system is effective, allowing data to be collected almost

four times faster than without RipScout, alleviating the need for domain experts to be

present with the drone operator. Furthermore, with further validation, RipScout can be

used to improve beach safety by providing rapid and wide coverage of beach monitoring

for rips, helping to reduce fatigue of lifeguarding operations, especially in communities

where they are understaffed.

RipScout highlights the locations of rips with bounding boxes. This not only helps

users identify rip currents quickly, but it also serves as an effective tool for learning. We

observed that after using the system, users improved their rip current detection skills

even without the assistance of the ML model. This suggests that the system can serve

as a training tool for beachgoers to learn how to spot rip currents and improve their

overall beach safety awareness.

During our field tests, we observed that RipScout can readily detect rip currents

in bright daylight where it is difficult for the human eyes to spot rip currents due to

insufficient brightness and the small display of mobile devices. This helps make data

collection less error prone. However, in poor lighting conditions including dense fog

143

or extreme glare in the video stream from the drone, the ML detection model will have

difficulty finding rips. We plan to improve RipScout by augmenting our training data

with additional data obtained in such conditions, as well as using generative AI to add

these effects on our existing training data. Likewise, any ML detection model can only

recognize rips that they were trained on. We plan to collect training data of rip currents

with other types of visual signatures to further enhance RipScout.

While our focus has been on rip currents, we believe the proposed system

architecture generalizes to other applications which require drone search over large

areas to locate specific conditions and then collect image-based data. Examples might

include biodiversity monitoring or search and rescue operations.

To encourage the use of this system for rip current data collection and other

applications, the software code and all specifications are available as an open-

source project at https://sites.google.com/ucsc.edu/ripscout/codes. To encourage

research on rip currents using visual data, our datasets, including the new dataset

of 2555 frames of sediment rip currents, are also available in the repository

https://sites.google.com/ucsc.edu/ripscout/dataset.

144

https://sites.google.com/ucsc.edu/ripscout/codes
https://sites.google.com/ucsc.edu/ripscout/dataset

Chapter 8

Automated Data Collection from

Network Cameras using ML

8.1 Introduction

Webcams are prevalent in today’s world, commonly used to monitor traffic, prevent

crime, and observe public activities. Businesses like Surfline have capitalized on the

extensive deployment of webcams, building services around real-time video feeds for

surfers and beach-goers. Scientists can also harness the power of webcams for various

research purposes. In coastal science, numerous coastal webcams are available that

can be used to monitor changes in the shoreline, detect beach hazards, and study

coastal erosion. This integration of webcams into scientific research ties directly into

the broader context of data collection in my work. By utilizing existing webcam

145

infrastructure, valuable scientific data can be gathered efficiently and continuously.

This approach demonstrates how readily available technologies can be repurposed to

collect significant scientific data, much like how citizen scientists contribute through

their observations and recordings. It highlights the potential for random coastal cams

to provide useful data for scientific research, thus expanding the toolkit available for

data collection and analysis in coastal science.

As introduced in the previous chapters, by leveraging network cameras installed

along coastlines, it is possible to continuously monitor beach conditions and

automatically identify rip currents in real time, thereby enhancing the efficiency and

accuracy of rip current detection. This approach not only facilitates the collection of

valuable data for further research and analysis but can also extend to other applications

such as shoreline monitoring using segmentation methods and beach crowd level

monitoring through people detection.

This work focuses on the development of a real-time rip current detection system

using network cameras. The system integrates advanced computer vision techniques

and ML models to analyze live video feeds and identify rip currents as they form.

Additionally, the automated data collection capability of the system allows for the

continuous accumulation of visual and environmental data, which can be used to

improve the detection algorithms and enhance our understanding of rip current

dynamics.

By implementing this real-time detection system, we aim to develop a robust and

146

Figure 8.1: The camera is deployed at the Walton Lighthouse near Seabright State
Beach and Twin Lakes State Beach in Santa Cruz, CA, USA.

scalable solution that can be deployed across various coastal regions, significantly

contributing to public safety and beach management efforts. This chapter details the

technical specifications of an instance of such network camera installation and ML

application deployment.

8.2 System Design and Implementation

The selected location for deploying the network camera is the top of the Walton

Lighthouse in Santa Cruz, CA, USA. This location was chosen due to its elevated

vantage point, which provides a clear view of large areas on two different beaches,

Seabright State Beach and Twin Lakes State Beach (Figure 8.1), facilitating effective

rip current monitoring, detection, and data collection. However, there are challenges

associated with deploying the camera at this site, including the lack of power and

147

Figure 8.2: System Design and Implementation of the camera at Walton Lighthouse.

internet connectivity. The camera is part of WebCOOS, or the Webcam Coastal

Observation System, a project implemented by SECOORA (Southeast Coastal Ocean

Observing Regional Association) and funded by NOAA, aimed at developing a network

of low-cost webcams for coastal observation to provide valuable data for scientific

analysis, public safety, and resource management. The project focuses on standardizing

data processing methodologies to make webcam data actionable for stakeholders and

plans to expand these methodologies nationwide, enhancing the overall capability for

coastal monitoring and management in the US.

The design of the system encompasses both hardware and software components

(Figure 8.2). For the implementation of this system, we made various design choices

based on the location and setup of the deployment, budget, logistics, and availability

of equipment. In this section, we discuss the design choices specific to this instance,

providing knowledge that can be useful for reproducibility and any future deployments

148

in different locations. A list of materials used in the system is provided in Table 8.1.

The key components of the system are explained below.

Table 8.1: Materials and Specifications for the System.

Materials Specifications

Generic Outdoor Camera PTZ (Pan, Tilt, and optical Zoom) features

Waterproof

WiFi connectivity

RTSP network protocol support

Solar panels 2 X 100W Monocrystalline Solar Panels

MPPT (Maximum Power Point Tracker) controller with

Bluetooth connectivity

Battery pack LiFePO4 Battery 12V 100AH Lithium Battery

Built-in 100A BMS (Battery Management System)

Waterproof battery box

Parabolic Antenna Kit Support for 2.4GHz WiFi signal

20-23 dBi of gain

WiFi router WiFi router with port for external antenna connectivity

Mini PC for streaming Dimensions: 4.9 x 4.4 x 1.6 inches

CPU: AMD Ryzen 5 2.10 GHz

Main memory: 16 GB

Cables and connectors Various power cables and connectors as needed

Various network cables and connectors as needed

149

Camera: A camera equipped with pan, tilt, and zoom (PTZ) capabilities collects

input data as a video stream of sufficient quality for ML processing. Since the camera is

deployed outdoors near the ocean, the selected model is designed to withstand adverse

weather conditions such as rain and storms. The camera features both wired (RJ45

interface) and WiFi wireless network connectivity. WiFi connectivity was selected

due to the lack of wired network connectivity in the lighthouse. In locations with

wired internet, a wired network connection can be used without changing any other

component of the overall system. The camera has a 5-megapixel image sensor and 30x

optical zoom capabilities. The PTZ capability enables coverage of a large area for rip

current data collection. To cover a large area, the camera is programmed to alternate

between two viewpoints, covering Seabright State Beach and Twin Lakes State Beach

for a predefined period. As an alternative to the WiFi wireless network camera, a

wireless 4G/5G cellular PTZ camera can be used. Another more recent alternative

is using a satellite internet service connected to the camera.

Power: As there is no electric power source available in the lighthouse, we installed

a power system utilizing two 100-watt solar panels and a 100Ah battery pack. The

choice of two 100-watt solar panels is based on the power consumption of the camera

and the assumption that the system needs to operate continuously, even during periods

of low sunlight. The camera typically draws about 20 watts during regular operation

and up to 35 watts during physical panning or optical zooming. With an average daily

runtime of 12 hours, the system requires approximately 300 watt-hours per day. The

150

100Ah battery provides 1,200 watt-hours of stored energy, which, coupled with the

solar panels, ensures that the system can continue to operate for up to three days without

significant sunlight. To save power, the camera is programmed to operate only during

the daytime and turn off at night. A programmable WiFi switch is used for that purpose.

For implementing a similar system at sites with readily available power, this component

is not necessary.

Long-range Directional Antenna: As there is no wired internet connectivity in

the lighthouse and no preexisting WiFi network coverage, a long-range directional

parabolic antenna is used to provide a WiFi signal to the network camera, facilitating

the required bandwidth for the real-time transmission of the video stream. The antenna

is installed on a rooftop building in the most feasible location with wired network

connectivity on the shore, approximately 1,000 feet away from the lighthouse. This

component is not necessary for implementing a similar system at sites with readily

available power.

Local Streaming Server: A low-powered mini PC serves as a local streaming server

near the location. This server transmits the live video stream to the WebCOOS server. It

is installed in the same building as the long-range directional antenna and connected to

the same network. The server configuration includes an AMD Ryzen 5 2.10 GHz CPU

and 16 GB of main memory. As this server is a low-powered, GPU-less, small form

factor device, it is dedicated solely to streaming. No edge computing or ML processing

151

is performed here due to limited computational resources.

ML Processing Server: A remote computer with a GPU, capable of processing the

video stream and running the ML algorithms in real time, receives the videos from

the streaming server. One or more large ML models run on this server. The server

specifications include an Intel Core i9 3.2 GHz CPU, 32 GB of main memory, and a

Nvidia GeForce RTX 3080 GPU with 10 GB of memory, capable of processing each

frame of the video stream with a large ML model in approximately 18 ms. This server

performs tasks of automated data collection, data labeling, and reducing label noise.

ML models: Currently, two advanced object detection ML models—YOLOv8x

[119] and RT-DETR [169]—are deployed within the system. These models are

implemented using Python scripts and have been optimized for real-time performance.

They are trained to detect both bathymetry rip currents and transient rip currents.

The initial training dataset was compiled using the RipScout system described in

the previous chapter and subsequently augmented with data collected directly via the

network camera.

Website: A public-facing website has been developed to display the processed video

feed, enhanced with visualizations derived from the ML outputs (Figure 8.3). These

include bounding boxes that identify detected rip currents and segmentation masks that

delineate the shoreline, offering an intuitive interface for stakeholders to monitor and

analyze coastal conditions.

152

Figure 8.3: Automated rip current data collection and shoreline segmentation from
wireless network camera.

8.3 Future Improvements

Future improvements could involve deploying low-powered, single-board

computers with integrated GPUs, such as the NVIDIA Jetson Nano, at the camera site

to process data locally using edge computing. This advancement would eliminate the

need for a remote GPU server and enable on-site ML processing.

To enhance the overall quality of data collection and processing, future

improvements should focus on methods that ensure the scientific value of the data. This

underscores the importance of robust data processing techniques and methodological

rigor in scientific data collection.

153

Chapter 9

Conclusion

Even though data is an essential component in scientific research and various

applications, efficiently collecting high-quality data is challenging. In my dissertation,

I explore strategies to improve the efficiency of the data collection process and

enhance the quality of the gathered data from a novel perspective with a focus on

visual data. This work is driven by my hypothesis that integrating citizen science

with mobile technology and ML contributes to a significant advancement in the data

collection process. Toward this goal, I have designed and implemented a few innovative

platforms and tools, such as SmartCS, RipFinder, and RipScout, which empower

the general public (including students) to participate in scientific data collection and

analysis actively. I developed these tools to address the challenges of data collection

efficiency and quality highlighted in the two key research questions (Chapter 1).

By guiding and supporting the non-experts through the combined power of ML and

154

citizen science in the data collection process, the contribution of this work significantly

enhances the overall data collection processes. Furthermore, the tools I created work

towards maintaining data quality at the collection stage rather than relying on post-

processing for corrections and filtering. This approach improves the effectiveness of

data-dependent scientific investigations. It contributes to a better understanding and

appreciation of science among the general public, advancing the state of the art in

modern data collection processes.

9.1 Summary of Contributions

SmartCS Platform: The SmartCS platform is a user-friendly tool that enables the

creation of ML-powered computer vision mobile apps for citizen science applications

without requiring programming knowledge. By providing pre-built features and

templates within a single framework, SmartCS facilitates rapid prototyping and

deployment of mobile apps with ML guidance that can operate without internet

connectivity. I validated the platform’s effectiveness through a few user studies that

demonstrated its usability and the quality of data collected by non-experts. This work

highlights the potential of SmartCS to revolutionize citizen science by making advanced

smartphone apps with ML capabilities accessible to a broader audience, enabling them

to contribute with high-quality data.

155

Engaging High School Students in Research: Integrating ML within citizen science

tools has proven effective for engaging high school students in meaningful research

activities, as demonstrated in Chapter 5. Using a codeless platform like SmartCS,

students can develop ML-powered mobile applications that contribute to real-world

research projects. Chapter 5 investigates the educational benefits of this approach

through the four research questions. The apps developed by the students illustrate my

approach’s positive and transformative impact on the students’ learning experiences

and their interest in STEM careers. As high school students were selected as a

representative group of the general public, many lessons learned from this investigation

also apply to them.

RipFinder - Real Time Rip Current Detection: The development of RipFinder, a

smartphone app for real-time rip current detection, is an excellent example of using

an ML-powered app for public safety issues. The main idea behind the app is to use

multiple client-side and server-side ML models to detect the rip current with higher

accuracy and collect data, even in remote locations without internet connectivity. The

app’s capability to detect rip currents in real time demonstrates the application of ML-

powered mobile apps for impactful use cases such as public safety while contributing

valuable data for scientific research.

RipScout - Real Time Data Collection using UAS: I present the design and

implementation of RipScout, a real-time rip current detection and automated data

156

collection system using drones or UAS. The details of system architecture, the selection

of ML models, and the various challenges faced during the deployment of this system

are discussed based on some field test results and benchmarks. The RipScout system

shows the potential to integrate ML with drones in practical, real-world applications

such as environmental monitoring, providing valuable insights and data previously

challenging to obtain. It also showcases the usefulness of ML guidance with UAS

for collecting specialized field data by non-experts.

Automated Data Collection Using Network Cameras: I discuss implementing and

deploying a system for real-time rip current detection and automated data collection

using network cameras deployed in a remote location. The details of the design

choices and technical aspects of installing and maintaining such a system, including the

advancements achieved through the integration of ML, challenges posed by the remote

environment, and the need for reliable data transmission and processing, are examined

in Chapter 8. The goal is to investigate the methods and techniques that can be used

to successfully deploy a system for applications similar to a rip current detection and

automated data collection system from an engineering perspective.

9.2 Future Work

Based on the lesson learned from this work, several future directions and next steps

can be taken, including expanding the scope and addressing the identified limitations

157

presented in the previous chapters.

Even though the SmartCS platform works well for the codeless creation of

smartphone apps with ML, the features and customization options of the platform can

be improved to make it better and allow the development of a broader range of citizen

science applications. One such potential expansion of features can be enabling the

support for integrating ML models for tasks such as semantic and instance segmentation

and the continuous inclusion of newer ML models. Furthermore, providing additional

data visualization and analysis tools will enable users to create sophisticated and

effective apps.

The work investigating the impact of involving high school students in research

through ML-power citizen science tools can progress further to learn valuable insights

about the efficacy of this learning approach. Understanding how these experiences

influence students’ academic and career paths can help develop, improve, and expand

such programs.

The combination of modern citizen science, ML, and mobile technology presents

the opportunity to improve the data collection process to advance scientific research,

enhance public engagement, and provide meaningful learning experiences. While the

works based on this concept presented in this dissertation primarily focus on the rip

current detection application, the same methodologies and systems can be translated

and broadly applied to other areas such as environmental monitoring, biodiversity

assessment, urban planning, autonomous vehicle research, and medical applications.

158

For instance, environmental monitoring can benefit from deploying citizen science

applications similar to CoastSnap or SandSnap, allowing for large-scale data collection

on coastal changes, erosion, pollution levels, etc. Biodiversity assessment can

leverage applications like iNaturalist to document and monitor species distribution

and abundance, contributing valuable data to research and conservation efforts. ML

on mobile devices can be deployed for urban planning, understanding traffic patterns,

and improving transportation systems. Autonomous vehicle research relies heavily on

data to train ML models to work in various driving conditions, which can be enhanced

through community-sourced data. Medical applications can employ these technologies

for real-time health monitoring and diagnostics.

Based on the foundation of my work, we can look forward to a future where data

collection is more effortless for the general public, enabling them to contribute to

various research projects, thereby making scientific advancement a collaborative and

inclusive endeavor accessible to all.

159

Appendix A

List of Related Publications

The following is a list of publications, either published or under peer review,

contributed by the author and directly or indirectly related to this dissertation.

Publications directly related to this dissertation

The following publications are directly related to this dissertation. The text of this

dissertation includes reprints of some of the materials listed here.

1. Khan, Fahim Hasan, Emily Lovell, Akila de Silva, Gregory Dusek, James

Davis, and Alex Pang. “WIP: Citizen Science Tools with Machine Learning as a

Pathway to Engage High School Students in Research.” In 2024 IEEE Frontiers

in Education Conference (FIE), pp. 1-5. IEEE, 2024.

2. Khan, Fahim Hasan, Akila de Silva, Gregory Dusek, James Davis, and

160

Alex Pang. “SmartCS: Enabling the Creation of Machine Learning–Powered

Computer Vision Mobile Apps for Citizen Science Applications without

Coding.” Citizen Science: Theory and Practice 9, no. 1 (2024).

3. Khan, Fahim Hasan, Akila de Silva, Gregory Dusek, James Davis, and Alex

Pang. “Authoring platform for mobile citizen science apps with client-side

ml.” In Companion Publication of the 2021 Conference on Computer Supported

Cooperative Work and Social Computing, pp. 89-94. 2021.

4. Jain, Nihar, and Fahim Hasan Khan. “Blood Cell Detection Using

Deep Learning on Mobile Platforms.” In 2023 International Conference on

Computational Science and Computational Intelligence (CSCI), pp. 1289-1293.

IEEE, 2023.

5. Yeh, Chelsea, and Fahim Hasan Khan. “Citizen Science Mobile Apps with

Machine Learning for Recyclable Objects.” In 2022 International Conference on

Computational Science and Computational Intelligence (CSCI), pp. 1539-1542.

IEEE, 2022.

6. Khan, Fahim Hasan, Akila de Silva, Ashleigh Palinkas, Gregory Dusek, James

Davis, and Alex Pang. “RipFinder: Real time Rip Current Detection on Mobile

Devices.” (Manuscript under review).

7. Khan, Fahim Hasan, Akila de Silva, Ashleigh Palinkas, Gregory Dusek, James

Davis, and Alex Pang. “RipScout: Realtime ML-Assisted Rip Current Detection

161

and Automated Data Collection using UAVs.” (Manuscript under review).

Publications indirectly related to this dissertation

Below is a list of publications that are not directly related to this dissertation;

however, the knowledge gained from them was relevant and supportive of the research

conducted.

1. de Silva, Akila, Mona Zhao, Donald Stewart, Fahim Hasan Khan, Gregory

Dusek, James Davis, and Alex Pang. “RipViz: Finding Rip Currents by Learning

Pathline Behavior.” IEEE Transactions on Visualization and Computer Graphics

(2023).

2. Luo, Jiahao, Fahim Hasan Khan, Issei Mori, Akila de Silva, Eric Sandoval

Ruezga, Minghao Liu, Alex Pang, and James Davis. “How much does input

data type impact final face model accuracy?.” In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 18985-18994.

2022.

3. Luo, Jiahao, Fahim Khan, Issei Mori, Akila de Silva, Eric Ruezga, and James

Davis. “Face Models: How Good Does My Data Need To Be?.” In 2021 IEEE

International Conference on Image Processing (ICIP), pp. 3188-3192. IEEE,

2021.

162

4. Khan, Fahim Hasan, Akila de Silva, Jayanth Yetukuri, and Narges Norouzi.

“Sequential Image Synthesis for Human Activity Video Generation.” In

Image Analysis and Recognition: 16th International Conference, ICIAR 2019,

Waterloo, ON, Canada, August 27–29, 2019, Proceedings, Part II 16, pp. 129-

133. Springer International Publishing, 2019.

163

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris

Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal

Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and

Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org.

[2] Ayat Abourashed, Laura Doornekamp, Santi Escartin, Constantianus JM

Koenraadt, Maarten Schrama, Marlies Wagener, Frederic Bartumeus, and

Eric CM van Gorp. The potential role of school citizen science programs

in infectious disease surveillance: A critical review. International Journal of

Environmental Research and Public Health, 18(13):7019, 2021.

164

[3] Cemal Aker and Sinan Kalkan. Using deep networks for drone detection. In

2017 14th IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS), pages 1–6. IEEE, 2017.

[4] SM Al-Salem, Paola Lettieri, and Jan Baeyens. Recycling and recovery routes

of plastic solid waste (psw): A review. Waste management, 29(10):2625–2643,

2009.

[5] Nawal Soliman ALKolifi ALEnezi. A method of skin disease detection using

image processing and machine learning. Procedia Computer Science, 163:85–

92, 2019.

[6] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep

learning via over-parameterization. In International Conference on Machine

Learning, pages 242–252, USA, 2019. PMLR.

[7] Viswanatha Reddy Allugunti. A machine learning model for skin disease

classification using convolution neural network. International Journal of

Computing, Programming and Database Management, 3(1):141–147, 2022.

[8] Oscar Alsing. Mobile object detection using tensorflow lite and transfer learning.

Master’s thesis, KTH, School of Electrical Engineering and Computer Science

(EECS), 2018.

[9] EC Amazon. Amazon web services. Available in: http://aws. amazon.

com/es/ec2/(November 2012), page 39, 2015.

165

[10] Apple Inc. Apple iPhone 12 Pro - technical specifications.

[11] appsgeyser.com. Appsgeyser: Free app maker | create an app without code.

https://appsgeyser.com/, 2022. (Accessed on 09/15/2022).

[12] JL Araújo, C Morais, and JC Paiva. Student participation in a coastal

water quality citizen science project and its contribution to the conceptual and

procedural learning of chemistry. Chemistry Education Research and Practice,

23(1):100–112, 2022.

[13] José Luís Araújo, Carla Morais, and João Carlos Paiva. Students’ attitudes

towards science: The contribution of a citizen science project for monitoring

coastal water quality and (micro) plastics. Journal of Baltic Science Education,

20(6):881–893, 2021.

[14] Maria Aristeidou and Christothea Herodotou. Online citizen science: A

systematic review of effects on learning and scientific literacy. Citizen Science:

Theory and Practice, 5(1):1–12, 2020.

[15] William G Axinn and Lisa D Pearce. Mixed method data collection strategies.

Cambridge University Press, 2006.

[16] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo,

Vinicius B Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M

Paixao, Filipe Mutz, et al. Self-driving cars: A survey. Expert Systems with

Applications, 165:113816, 2021.

166

https://appsgeyser.com/

[17] Florence T Balagtas-Fernandez and Heinrich Hussmann. Model-driven

development of mobile applications. In 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, pages 509–512, USA, 2008.

IEEE.

[18] Samuel T Barber. The zooniverse is expanding: crowdsourced solutions to the

hidden collections problem and the rise of the revolutionary cataloging interface.

Journal of Library Metadata, 18(2):85–111, 2018.

[19] Mesay Belete Bejiga, Abdallah Zeggada, and Farid Melgani. Convolutional

neural networks for near real-time object detection from UAV imagery in

avalanche search and rescue operations. In 2016 IEEE International Geoscience

and Remote Sensing Symposium (IGARSS), pages 693–696. IEEE, 2016.

[20] Ekaba Bisong and Ekaba Bisong. Google colaboratory. Building machine

learning and deep learning models on google cloud platform: a comprehensive

guide for beginners, pages 59–64, 2019.

[21] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.

Yolov4: Optimal speed and accuracy of object detection. arXiv preprint

arXiv:2004.10934, 2020.

[22] Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock

market. Journal of computational science, 2(1):1–8, 2011.

167

[23] Rick Bonney, Tina B Phillips, Heidi L Ballard, and Jody W Enck. Can citizen

science enhance public understanding of science? Public understanding of

science, 25(1):2–16, 2016.

[24] Alex Bowyer, Chris Lintott, Greg Hines, Campbell Allen, and Ed Paget.

Panoptes, a project building tool for citizen science. In Proceedings of the AAAI

Conference on Human Computation and Crowdsourcing (HCOMP’15). AAAI,

San Diego, CA, USA, pages 1–2, 2015.

[25] Danah M Boyd and Nicole B Ellison. Social network sites: Definition, history,

and scholarship. Journal of computer-mediated Communication, 13(1):210–230,

2007.

[26] Christian Brannstrom, Heather Lee Brown, Chris Houser, Sarah Trimble, and

Anna Santos. “you can’t see them from sitting here”: Evaluating beach user

understanding of a rip current warning sign. Applied Geography, 56:61–70,

2015.

[27] Robin F Brown, Bryan E Wright, Matthew J Tennis, and Steven Jeffries.

California sea lion (zalophus californianus) monitoring in the lower columbia

river, 1997–2018. Northwestern Naturalist, 101(2):92–103, 2020.

[28] Widodo Budiharto, Alexander AS Gunawan, Jarot S Suroso, Andry Chowanda,

Aurello Patrik, and Gaudi Utama. Fast object detection for quadcopter drone

168

using deep learning. In 2018 3rd International Conference on Computer and

Communication Systems (ICCCS), pages 192–195. IEEE, 2018.

[29] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s

mechanical turk: A new source of inexpensive, yet high-quality, data?

Perspectives on psychological science, 6(1):3–5, 2011.

[30] Michael Buhrmester, Tracy Kwang, and Samuel D Gosling. Amazon’s

mechanical turk: A new source of inexpensive, yet high-quality data?

Perspectives on Psychological Science, 6:3–5, 2016.

[31] buildfire.com. App builder | industry leading app maker for ios & android mobile

apps. https://buildfire.com/, 2022. (Accessed on 09/15/2022).

[32] A Cole Burton, Eric Neilson, Dario Moreira, Andrew Ladle, Robin Steenweg,

Jason T Fisher, Erin Bayne, and Stan Boutin. Wildlife camera trapping: a review

and recommendations for linking surveys to ecological processes. Journal of

applied ecology, 52(3):675–685, 2015.

[33] Yaru Cao, Zhijian He, Lujia Wang, Wenguan Wang, Yixuan Yuan, Dingwen

Zhang, Jinglin Zhang, Pengfei Zhu, Luc Van Gool, Junwei Han, et al. VisDrone-

DET2021: The vision meets drone object detection challenge results. In

Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 2847–2854, 2021.

169

https://buildfire.com/

[34] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander

Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers.

In European conference on computer vision, pages 213–229. Springer, 2020.

[35] B Castelle, T Scott, RW Brander, and RJ McCarroll. Rip current types,

circulation and hazard. Earth-Science Reviews, 163:1–21, 2016.

[36] B. Castelle, T. Scott, R.W. Brander, and R.J. McCarroll. Rip current types,

circulation and hazard. Earth-Science Reviews, 163:1–21, 2016.

[37] Changrui Chen, Yu Zhang, Qingxuan Lv, Shuo Wei, Xiaorui Wang, Xin Sun, and

Junyu Dong. RRNet: A hybrid detector for object detection in drone-captured

images. In Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV) Workshops, pages 0–0, Oct 2019.

[38] Hsinchun Chen, Roger HL Chiang, and Veda C Storey. Business intelligence

and analytics: From big data to big impact. MIS quarterly, pages 1165–1188,

2012.

[39] Jonathan H Chen and Steven M Asch. Machine learning and prediction in

medicine—beyond the peak of inflated expectations. The New England journal

of medicine, 376(26):2507, 2017.

[40] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional

170

nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017.

[41] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks

and applications, 19:171–209, 2014.

[42] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and

Hari Balakrishnan. Glimpse: Continuous, real-time object recognition on

mobile devices. In Proceedings of the 13th ACM Conference on Embedded

Networked Sensor Systems, SenSys ’15, page 155–168, New York, NY, USA,

2015. Association for Computing Machinery.

[43] B Louise Chilvers and Stefan Meyer. Conservation needs for the endangered

new zealand sea lion, phocarctos hookeri. Aquatic Conservation: Marine and

Freshwater Ecosystems, 27(4):846–855, 2017.

[44] Yu-Chen Chiu, Chi-Yi Tsai, Mind-Da Ruan, Guan-Yu Shen, and Tsu-Tian Lee.

Mobilenet-SSDv2: An improved object detection model for embedded systems.

In 2020 International Conference on System Science and Engineering (ICSSE),

pages 1–5, 2020.

[45] Floriana Ciaglia, Francesco Saverio Zuppichini, Paul Guerrie, Mark McQuade,

and Jacob Solawetz. Roboflow 100: A rich, multi-domain object detection

benchmark. arXiv preprint arXiv:2211.13523, 2022.

171

[46] citizenscience.org. Platforms for hosting participatory science projects

- citizen science association. https://citizenscience.org/

platforms-for-hosting-participatory-science-projects/,

2023. (Accessed on 10/17/2023).

[47] citsci.org. Citizen science association: Building the field of citizen science.

https://citsci.org/, 2022. Accessed: 2022-10-16.

[48] Robert N. Colwell. Manual of Remote Sensing. American Society of

Photogrammetry, 1983.

[49] Lewis M. Cowardin, Virginia Carter, Francis C. Golet, and Edward T. LaRoe.

Classification of wetlands and deepwater habitats of the united states. Technical

report, U.S. Fish and Wildlife Service, 1979.

[50] cpu monkey.com. Apple A14 bionic - benchmark, test und technical

specifications.

[51] John W Creswell and J David Creswell. Research design: Qualitative,

quantitative, and mixed methods approaches. Sage publications, 2017.

[52] cybertracker.org. Cybertracker: The most efficient way of field data collection.

https://cybertracker.org/, 2022. Accessed: 2022-10-16.

[53] Akila de Silva, Issei Mori, Gregory Dusek, James Davis, and Alex Pang.

172

https://citizenscience.org/platforms-for-hosting-participatory-science-projects/
https://citizenscience.org/platforms-for-hosting-participatory-science-projects/
https://citsci.org/
https://cybertracker.org/

Automated rip current detection with region based convolutional neural

networks. Coastal Engineering, 166:103859, 2021.

[54] Akila de Silva, Mona Zhao, Donald Stewart, Fahim Hasan, Gregory Dusek,

James Davis, and Alex Pang. Ripviz: Finding rip currents by learning pathline

behavior. IEEE Transactions on Visualization and Computer Graphics, 2023.

[55] Akila de Silva, Mona Zhao, Donald Stewart, Fahim Hasan, Gregory Dusek,

James Davis, and Alex Pang. RipViz: Finding rip currents by learning pathline

behavior. IEEE Transactions on Visualization and Computer Graphics, pages

1–13, 2023.

[56] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales

Leonardis, Greg Slabaugh, and Tinne Tuytelaars. A continual learning survey:

Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2021.

[57] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[58] Jianing Deng, Zhiguo Shi, and Cheng Zhuo. Energy-efficient real-time UAV

object detection on embedded platforms. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 39(10):3123–3127, 2020.

173

[59] Jane Disney, Duncan Bailey, Anna Farrell, and Ashley Taylor. Next generation

citizen science using anecdata. org. Maine Policy Review, 26(2):70–79, 2017.

[60] Jane Disney, Duncan Bailey, Anna Farrell, Ashley Taylor, and Bridie McGreavy.

Anecdata. org: An online citizen science platform for building climate resilient

communities. In OCEANS 2018 MTS/IEEE Charleston, pages 1–4, USA, 2018.

IEEE.

[61] DJI. Phantom 4 pro v2.0 - specifications - dji. https://www.dji.com/

phantom-4-pro-v2/specs, 2023. (Accessed on 09/14/2023).

[62] Pedro Domingos. A few useful things to know about machine learning.

Communications of the ACM, 55(10):78–87, 2012.

[63] Dawei Du, Pengfei Zhu, Longyin Wen, Xiao Bian, Haibin Lin, Qinghua Hu, Tao

Peng, Jiayu Zheng, Xinyao Wang, Yue Zhang, et al. VisDrone-DET2019: The

vision meets drone object detection in image challenge results. In Proceedings of

the IEEE/CVF International Conference on Computer Vision Workshops, pages

0–0, 2019.

[64] Andrei Dumitriu, Florin Tatui, Florin Miron, Radu Tudor Ionescu, and Radu

Timofte. Rip current segmentation: A novel benchmark and YOLOv8 baseline

results. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, pages 1261–1271, June 2023.

174

https://www.dji.com/phantom-4-pro-v2/specs
https://www.dji.com/phantom-4-pro-v2/specs

[65] G Dusek and H Seim. A Probabilistic Rip Current Forecast Model. Journal of

Coastal Research, 29(4):909 – 925, 2013.

[66] Andres Echeverria, Idoia Ariz, Judit Moreno, Javier Peralta, and Esther M

Gonzalez. Learning plant biodiversity in nature: The use of the citizen–science

platform inaturalist as a collaborative tool in secondary education. Sustainability,

13(2):735, 2021.

[67] Melissa V Eitzel, Jessica L Cappadonna, Chris Santos-Lang, Ruth Ellen Duerr,

Arika Virapongse, Sarah Elizabeth West, Christopher Kyba, Anne Bowser,

Caren Beth Cooper, Andrea Sforzi, et al. Citizen science terminology matters:

Exploring key terms. Citizen Science: Theory and Practice, 2(1):1–20, 2017.

[68] Sarah Elwood, Michael F Goodchild, and Daniel Z Sui. Researching volunteered

geographic information: Spatial data, geographic research, and new social

practice. Annals of the association of American geographers, 102(3):571–590,

2012.

[69] epicollect.net. Epicollect5: Free and easy-to-use mobile data collection.

https://five.epicollect.net/, 2023. Accessed: 2022-10-16.

[70] Martin J Eppler. Managing information quality: Increasing the value of

information in knowledge-intensive products and processes. Springer Science

& Business Media, 2006.

175

https://five.epicollect.net/

[71] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov,

Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and

Jeff Dean. A guide to deep learning in healthcare. Nature medicine, 25(1):24–29,

2019.

[72] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,

and Andrew Zisserman. The pascal visual object classes (voc) challenge.

International journal of computer vision, 88(2):303–338, 2010.

[73] FAA. FAA unmanned aircraft systems (UAS), Mar 2022.

[74] Tom P Fairchild, Mike S Fowler, Sabine Pahl, and John N Griffin. Multiple

dimensions of biodiversity drive human interest in tide pool communities.

Scientific reports, 8(1):1–11, 2018.

[75] Heng Fan, Dawei Du, Longyin Wen, Pengfei Zhu, Qinghua Hu, Haibin Ling,

Mubarak Shah, Junwen Pan, Arne Schumann, Bin Dong, et al. VisDrone-

MOT2020: The vision meets drone multiple object tracking challenge results.

In European Conference on Computer Vision, pages 713–727. Springer, 2020.

[76] Fastlane-community. Fastlane: The easiest way to automate beta deployments

and releases for your ios and android apps, 2023. Accessed: insert date.

[77] fathomnet.org. Fathomnet. https://fathomnet.org/fathomnet,

2022. (Accessed on 09/15/2022).

176

https://fathomnet.org/fathomnet

[78] Xin Feng, Youni Jiang, Xuejiao Yang, Ming Du, and Xin Li. Computer vision

algorithms and hardware implementations: A survey. Integration, 69:309–320,

2019.

[79] Craig W Fisher and Bruce R Kingma. Criticality of data quality as exemplified

in two disasters. Information & Management, 39(2):109–116, 2001.

[80] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and

consequences. Minds and Machines, 30:681–694, 2020.

[81] Benoît Frénay and Michel Verleysen. Classification in the presence of label

noise: a survey. IEEE transactions on neural networks and learning systems,

25(5):845–869, 2013.

[82] Robert M French. Catastrophic forgetting in connectionist networks. Trends in

cognitive sciences, 3(4):128–135, 1999.

[83] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid

Bouchachia. A survey on concept drift adaptation. ACM computing surveys

(CSUR), 46(4):1–37, 2014.

[84] Amir Gandomi and Murtaza Haider. Beyond the hype: Big data concepts,

methods, and analytics. International journal of information management,

35(2):137–144, 2015.

[85] Andrew Garbett, Rob Comber, Edward Jenkins, and Patrick Olivier. App

177

movement: A platform for community commissioning of mobile applications. In

Proceedings of the 2016 CHI conference on human factors in computing systems,

pages 26–37, 2016.

[86] Victor A. Gensini and Walker S. Ashley. An examination of rip current fatalities

in the united states. Natural Hazards, 54(1):159–175, Jul 2010.

[87] Mohammadali Gharaat, Mohammadreza Sharbaf, Bahman Zamani, and

Abdelwahab Hamou-Lhadj. Alba: a model-driven framework for the automatic

generation of android location-based apps. Automated Software Engineering,

28(1):1–45, 2021.

[88] Fabio Giglietto, Luca Rossi, and Davide Bennato. The open laboratory: Limits

and possibilities of using facebook, twitter, and youtube as a research data

source. Journal of technology in human services, 30(3-4):145–159, 2012.

[89] Tilmann Gneiting and Matthias Katzfuss. Probabilistic forecasting. Annual

Review of Statistics and Its Application, 1(1):125–151, 2014.

[90] Hervé Goëau, Pierre Bonnet, Alexis Joly, Vera Bakić, Julien Barbe, Itheri

Yahiaoui, Souheil Selmi, Jennifer Carré, Daniel Barthélémy, Nozha Boujemaa,

et al. Pl@ ntnet mobile app. In Proceedings of the 21st ACM international

conference on Multimedia, pages 423–424, 2013.

[91] Gregory R. Goldsmith. The field guide, rebooted. Science, 349(6248):594–594,

2015.

178

[92] Michael F Goodchild. Citizens as sensors: the world of volunteered geography.

GeoJournal, 69:211–221, 2007.

[93] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

[94] Google. Flatbuffers: Flatbuffers. https://flatbuffers.dev/.

(Accessed on 07/08/2023).

[95] Google. Firebase Authentication Documentation. Google, 2023.

[96] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu

Palaniswami. Internet of things (iot): A vision, architectural elements, and future

directions. Future generation computer systems, 29(7):1645–1660, 2013.

[97] Mordechai Muki Haklay, Daniel Dörler, Florian Heigl, Marina Manzoni,

Susanne Hecker, Katrin Vohland, et al. What is citizen science? the challenges

of definition. The science of citizen science, 13, 2021.

[98] Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable

effectiveness of data. IEEE intelligent systems, 24(2):8–12, 2009.

[99] Courtney H Hann, Lei Lani Stelle, Andrew Szabo, and Leigh G Torres. Obstacles

and opportunities of using a mobile app for marine mammal research. ISPRS

International Journal of Geo-Information, 7(5):169, 2018.

179

https://flatbuffers.dev/

[100] Mitchell Harley, Michael Kinsela, Elena Sánchez Sánchez-García, and Kilian

Vos. Coastsnap: Crowd-sourced shoreline change mapping using smartphones.

In AGU Fall Meeting Abstracts, volume 2018, pages EP52D–26, USA, 2018.

SAO/NASA Astrophysics Data System.

[101] Jane K Hart and Kirk Martinez. Environmental sensor networks: A revolution

in the earth system science? Earth-Science Reviews, 78(3-4):177–191, 2006.

[102] Christian Heipke. Crowdsourcing geospatial data. ISPRS Journal of

Photogrammetry and Remote Sensing, 65(6):550–557, 2010.

[103] Tim Highfield and Tama Leaver. Instagrammatics and digital methods: Studying

visual social media, from selfies and gifs to memes and emoji. Communication

research and practice, 2(1):47–62, 2016.

[104] Martin Hilbert and Priscila López. The world’s technological capacity to store,

communicate, and compute information. science, 332(6025):60–65, 2011.

[105] Suzanne E Hiller and Anastasia Kitsantas. The effect of a horseshoe crab citizen

science program on middle school student science performance and stem career

motivation. School Science and Mathematics, 114(6):302–311, 2014.

[106] Colleen Hitchcock, Heather Vance-Chalcraft, and Maria Aristeidou. Citizen

science in higher education. Citizen science: Theory and practice, 6(1), 2021.

[107] Leif Howard, Charles B van Rees, Zoe Dahlquist, Gordon Luikart, and Brian K

180

Hand. A review of invasive species reporting apps for citizen science and

opportunities for innovation. NeoBiota, 71:165–188, 2022.

[108] Yuheng Hu, Lydia Manikonda, and Subbarao Kambhampati. What we

instagram: A first analysis of instagram photo content and user types. In

Proceedings of the international AAAI conference on web and social media,

volume 8, pages 595–598, 2014.

[109] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,

Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama,

and Kevin Murphy. Speed/accuracy trade-offs for modern convolutional object

detectors. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 0–0, July 2017.

[110] Peter Hubwieser, Michal Armoni, and Michail N Giannakos. How to implement

rigorous computer science education in k-12 schools? some answers and many

questions. ACM Transactions on Computing Education (TOCE), 15(2):1–12,

2015.

[111] Philipp Hummer and Christine Niedermeyer. Don’t walk alone: Synergy effects

for citizen science created through adaptive platform design in spotteron. In

Austrian Citizen Science Conference 2018, page 66, 2018.

[112] Ngu Phuc Huy and Do Vanthanh. Evaluation of mobile app paradigms.

181

In Proceedings of the 10th International Conference on Advances in Mobile

Computing & Multimedia, pages 25–30, USA, 2012. ACM.

[113] Ayaz Hyder and Andrew A May. Translational data analytics in exposure science

and environmental health: A citizen science approach with high school students.

Environmental Health, 19:1–12, 2020.

[114] images.cv. Images.cv: Your machine learning and data science community.

https://images.cv/, 2023. Accessed: 2022-10-16.

[115] ispotnature.org. ispot nature: Your place to share nature. https://www.

ispotnature.org/, 2022. Accessed: 2022-10-16.

[116] Nihar Jain and Fahim Hasan Khan. Blood cell detection using deep learning on

mobile platforms. In 2023 International Conference on Computational Science

and Computational Intelligence (CSCI), pages 1289–1293. IEEE, 2023.

[117] Joel Janai, Fatma Güney, Aseem Behl, Andreas Geiger, et al. Computer vision

for autonomous vehicles: Problems, datasets and state of the art. Foundations

and Trends® in Computer Graphics and Vision, 12(1–3):1–308, 2020.

[118] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Yolo by ultralytics.

ORCID: https://orcid.org/0000-0001-5950-6979, https:

//orcid.org/0000-0002-7603-6750, https://orcid.org/

0000-0003-3783-7069.

182

https://images.cv/
https://www.ispotnature.org/
https://www.ispotnature.org/
https://orcid.org/0000-0001-5950-6979
https://orcid.org/0000-0002-7603-6750
https://orcid.org/0000-0002-7603-6750
https://orcid.org/0000-0003-3783-7069
https://orcid.org/0000-0003-3783-7069

[119] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLOv8, 2023.

[120] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, Yonghye Kwon,

Kalen Michael, Jiacong Fang, Zeng Yifu, Colin Wong, Diego Montes, et al.

ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation.

Zenodo, 2022.

[121] Burke Johnson and F Turner. Data collection strategies. Handbook of mixed

methods in social and behavioural research. Thousand Oaks: Sage, pages 297–

315, 2003.

[122] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. Real challenges

in mobile app development. In 2013 ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement, pages 15–24, USA, 2013.

IEEE.

[123] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives,

and prospects. Science, 349(6245):255–260, 2015.

[124] V. Roshan Joseph. Optimal ratio for data splitting. Statistical Analysis and Data

Mining: The ASA Data Science Journal, 15(4):531–538, 2022.

[125] kaggle.com. Kaggle: Your machine learning and data science community.

https://www.kaggle.com/, 2022. Accessed: 2022-10-16.

[126] Yue Kang, Hang Yin, and Christian Berger. Test your self-driving algorithm: An

183

https://www.kaggle.com/

overview of publicly available driving datasets and virtual testing environments.

IEEE Transactions on Intelligent Vehicles, 4(2):171–185, 2019.

[127] Magnus Høholt Kaspersen, Karl-Emil Kjær Bilstrup, Maarten Van Mechelen,

Arthur Hjort, Niels Olof Bouvin, and Marianne Graves Petersen. High

school students exploring machine learning and its societal implications:

Opportunities and challenges. International Journal of Child-Computer

Interaction, 34:100539, 2022.

[128] Avita Katal, Mohammad Wazid, and Rayan H Goudar. Big data: issues,

challenges, tools and good practices. In 2013 Sixth international conference

on contemporary computing (IC3), pages 404–409. IEEE, 2013.

[129] Kakani Katija, Eric Orenstein, Brian Schlining, Lonny Lundsten, Kevin Barnard,

Giovanna Sainz, Oceane Boulais, Megan Cromwell, Erin Butler, Benjamin

Woodward, et al. Fathomnet: A global image database for enabling artificial

intelligence in the ocean. Scientific reports, 12(1):15914, 2022.

[130] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya

Takeda, and Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE

Micro, 35(6):60–68, 2015.

[131] Gloria Ashiya Katuka, Yvonika Auguste, Yukyeong Song, Xiaoyi Tian, Amit

Kumar, Mehmet Celepkolu, Kristy Elizabeth Boyer, Joanne Barrett, Maya Israel,

and Tom McKlin. A summer camp experience to engage middle school learners

184

in ai through conversational app development. In Proceedings of the 54th ACM

Technical Symposium on Computer Science Education V. 1, pages 813–819,

2023.

[132] Doron Katz. Continuous delivery for mobile with fastlane: automating mobile

application development and deployment for iOS and Android. Packt Publishing

Ltd, 2018.

[133] Gurmeher Kaur, Kris Jordan, and Jasleen Kaur. Using foundational cs1 curricula

for middle school & early high school computer programming education. In

Proceedings of the 54th ACM Technical Symposium on Computer Science

Education V. 1, pages 827–833, 2023.

[134] Julia Kelemen-Finan, Martin Scheuch, and Silvia Winter. Contributions from

citizen science to science education: an examination of a biodiversity citizen

science project with schools in central europe. International Journal of Science

Education, 40(17):2078–2098, 2018.

[135] Ruth Kermish-Allen, Karen Peterman, and Christine Bevc. The utility of citizen

science projects in k-5 schools: measures of community engagement and student

impacts. Cultural Studies of Science Education, 14(3):627–641, 2019.

[136] Fahim Hasan Khan, Akila de Silva, Gregory Dusek, James Davis, and Alex

Pang. Authoring platform for mobile citizen science apps with client-side ml.

185

In Companion Publication of the 2021 Conference on Computer Supported

Cooperative Work and Social Computing, pages 89–94, 2021.

[137] Fahim Hasan Khan, Akila de Silva, Gregory Dusek, James Davis, and Alex

Pang. Authoring platform for mobile citizen science apps with client-side ML.

In Companion Publication of the 2021 Conference on Computer Supported

Cooperative Work and Social Computing, CSCW ’21, page 89–94, New York,

NY, USA, 2021. Association for Computing Machinery.

[138] Fahim Hasan Khan, Akila de Silva, Gregory Dusek, James Davis, and Alex Pang.

Smartcs: Enabling the creation of machine learning–powered computer vision

mobile apps for citizen science applications without coding. Citizen Science:

Theory and Practice, 9(1), 2024.

[139] Fahim Hasan Khan, Emily Lovell, Akila de Silva, Gregory Dusek, James Davis,

and Alex Pang. Wip: Citizen science tools with machine learning as a pathway

to engage high school students in research. In 2024 IEEE Frontiers in Education

Conference (FIE), pages 1–5. IEEE, 2024.

[140] Tae Kyun Kim. T test as a parametric statistic. Korean journal of anesthesiology,

68(6):540–546, 2015.

[141] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland,

Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen

186

Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 4015–4026, 2023.

[142] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho,

Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting

in neural networks. Proceedings of the national academy of sciences,

114(13):3521–3526, 2017.

[143] Rob Kitchin. Big data, new epistemologies and paradigm shifts. Big data &

society, 1(1):2053951714528481, 2014.

[144] Aniket Kittur, Jeffrey V Nickerson, Michael Bernstein, Elizabeth Gerber,

Aaron Shaw, John Zimmerman, Matt Lease, and John Horton. The future of

crowd work. In Proceedings of the 2013 conference on Computer supported

cooperative work, pages 1301–1318, 2013.

[145] Pang Wei Koh and Percy Liang. Understanding black-box predictions via

influence functions. In International conference on machine learning, pages

1885–1894. PMLR, 2017.

[146] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. Supervised machine

learning: A review of classification techniques. Emerging artificial intelligence

applications in computer engineering, 160(1):3–24, 2007.

187

[147] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information

processing systems, 25, 2012.

[148] Christopher Kullenberg and Dick Kasperowski. What is citizen science?–a

scientometric meta-analysis. PloS one, 11(1):e0147152, 2016.

[149] Neeraj Kumar, Peter N Belhumeur, Arijit Biswas, David W Jacobs, W John

Kress, Ida C Lopez, and João VB Soares. Leafsnap: A computer vision system

for automatic plant species identification. In Computer Vision–ECCV 2012: 12th

European Conference on Computer Vision, Florence, Italy, October 7-13, 2012,

Proceedings, Part II 12, pages 502–516. Springer, 2012.

[150] Doug Laney et al. 3d data management: Controlling data volume, velocity and

variety. META group research note, 6(70):1, 2001.

[151] A Lapresta-Fernández and LF Capitán-Vallvey. Environmental monitoring using

a conventional photographic digital camera for multianalyte disposable optical

sensors. Analytica chimica acta, 706(2):328–337, 2011.

[152] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research methods

in human-computer interaction. Morgan Kaufmann, 2017.

[153] Stephen B Leatherman. Rip current measurements at three south florida beaches.

Journal of Coastal Research, 33(5):1228–1234, 2017.

188

[154] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[155] Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović, and Geoffrey

Fox. Real-time, cloud-based object detection for unmanned aerial vehicles. In

2017 First IEEE International Conference on Robotic Computing (IRC), pages

36–43, USA, 2017. IEEE.

[156] Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović, and Geoffrey

Fox. Real-time, cloud-based object detection for unmanned aerial vehicles. In

2017 First IEEE International Conference on Robotic Computing (IRC), pages

36–43, 2017.

[157] Kyung Mog Lee. Design of a smart phone application controlling agricultural

watering system with a drone. In Lecture Notes in Engineering and Computer

Science: Proceedings of The World Congress on Engineering, 2018.

[158] Rob Lemmens, Vyron Antoniou, Philipp Hummer, and Chryssy Potsiou. Citizen

science in the digital world of apps. The Science of Citizen Science, 461, 2021.

[159] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren

Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards

fully autonomous driving: Systems and algorithms. In 2011 IEEE intelligent

vehicles symposium (IV), pages 163–168. IEEE, 2011.

189

[160] Yiqun Li, Aiyuan Guo, and Ching Ling Chin. A platform for mobile augmented

reality app creation without programming. In SIGGRAPH Asia 2015 Mobile

Graphics and Interactive Applications, pages 1–1. ACM, USA, 2015.

[161] Yiting Li, Qingsong Fan, Haisong Huang, Zhenggong Han, and Qiang Gu. A

modified yolov8 detection network for uav aerial image recognition. Drones,

7(5):304, 2023.

[162] Thomas M. Lillesand and Ralph W. Kiefer. Remote Sensing and Image

Interpretation. John Wiley & Sons, 1979.

[163] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A comparison of prediction

accuracy, complexity, and training time of thirty-three old and new classification

algorithms. Machine learning, 40(3):203–228, 2000.

[164] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common

objects in context. In European conference on computer vision, pages 740–755.

Springer, 2014.

[165] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram

Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical image

analysis. Medical image analysis, 42:60–88, 2017.

190

[166] Hai-Ying Liu, Daniel Dörler, Florian Heigl, and Sonja Grossberndt. Citizen

science platforms. In The Science of Citizen Science, pages 439–459. Springer,

Cham, Switzerland, 2021.

[167] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. SSD: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[168] lobe.ai. Machine learning made easy, 2022.

[169] Wenyu Lv, Shangliang Xu, Yian Zhao, Guanzhong Wang, Jinman Wei, Cheng

Cui, Yuning Du, Qingqing Dang, and Yi Liu. DETRs beat YOLOs on real-time

object detection, 2023.

[170] Jamie MacMahan, Ad Reniers, Jenna Brown, Rob Brander, Ed Thornton, Tim

Stanton, Jeff Brown, and Wendy Carey. An introduction to rip currents based on

field observations. Journal of Coastal Research, 27(4):iii–vi, 2011.

[171] Tia C Madkins, Jakita O Thomas, Jessica Solyom, Joanna Goode, Frieda

McAlear, and S Grover. Learner-centered and culturally relevant pedagogy.

Computer science in K-12: An A-to-Z handbook on teaching programming,

pages 125–129, 2020.

[172] Stuart Madnick and Hongwei Zhu. Improving data quality through effective use

of data semantics. Data & Knowledge Engineering, 59(2):460–475, 2006.

191

[173] Gayathri Manikutty, Sreejith Sasidharan, and Bhavani Rao. Driving innovation

through project based learning: A pre-university steam for social good initiative.

In 2022 IEEE Frontiers in Education Conference (FIE), pages 1–8. IEEE, 2022.

[174] Corey Maryan, Md Tamjidul Hoque, Christopher Michael, Elias Ioup, and

Mahdi Abdelguerfi. Machine learning applications in detecting rip channels

from images. Applied Soft Computing, 78:84–93, 2019.

[175] Mohamed Lamine Mekhalfi, Carlo Nicolò, Yakoub Bazi, Mohamad

Mahmoud Al Rahhal, Norah A. Alsharif, and Eslam Al Maghayreh. Contrasting

YOLOv5, Transformer, and EfficientDet detectors for crop circle detection in

desert. IEEE Geoscience and Remote Sensing Letters, 19:1–5, 2022.

[176] Rico Merkert and James Bushell. Managing the drone revolution: A systematic

literature review into the current use of airborne drones and future strategic

directions for their effective control. Journal of Air Transport Management,

89:101929, 2020.

[177] Issei Mori, Akila de Silva, Gregory Dusek, James Davis, and Alex Pang. Flow-

based rip current detection and visualization. IEEE Access, 10:6483–6495, 2022.

[178] Laurence Moroney and Laurence Moroney. Using authentication in firebase. The

Definitive Guide to Firebase: Build Android Apps on Google’s Mobile Platform,

pages 25–50, 2017.

192

[179] Luigi Mucerino, Luca Carpi, Chiara F Schiaffino, Enzo Pranzini, Eleonora

Sessa, and Marco Ferrari. Rip current hazard assessment on a sandy beach in

liguria, nw mediterranean. Natural hazards, 105:137–156, 2021.

[180] Greg Newman, Andrea Wiggins, Alycia Crall, Eric Graham, Sarah Newman,

and Kevin Crowston. The future of citizen science: emerging technologies and

shifting paradigms. Frontiers in Ecology and the Environment, 10(6):298–304,

2012.

[181] Francesco Nex and Fabio Remondino. Uav for 3d mapping applications: a

review. Applied geomatics, 6:1–15, 2014.

[182] Paraskevi Nousi, Ioannis Mademlis, Iason Karakostas, Anastasios Tefas, and

Ioannis Pitas. Embedded UAV real-time visual object detection and tracking.

In 2019 IEEE International Conference on Real-time Computing and Robotics

(RCAR), pages 708–713. IEEE, 2019.

[183] Jill Nugent. inaturalist: citizen science for 21st-century naturalists. Science

Scope, 41(7):12–15, 2018.

[184] Sten Odenwald. Smartphone sensors for citizen science applications:

Radioactivity and magnetism. Citizen Science: Theory and Practice, 4(1), 2019.

[185] Boris Otto. Quality and value of the data resource in large enterprises.

Information Systems Management, 32(3):234–251, 2015.

193

[186] Rafael Padilla, Sergio L Netto, and Eduardo AB Da Silva. A survey on

performance metrics for object-detection algorithms. In 2020 international

conference on systems, signals and image processing (IWSSIP), pages 237–242.

IEEE, 2020.

[187] Rafael Padilla, Wesley L. Passos, Thadeu L. B. Dias, Sergio L. Netto, and

Eduardo A. B. da Silva. A comparative analysis of object detection metrics

with a companion open-source toolkit. Electronics, 10(3), 2021.

[188] Kathryn Paige, Robert Hattam, and Christopher B Daniels. Two models

for implementing citizen science projects in middle school. The Journal of

Educational Enquiry, 14(2), 2015.

[189] Gabriele Paolacci, Jesse Chandler, and Panagiotis G Ipeirotis. Running

experiments on amazon mechanical turk. Judgment and Decision making,

5(5):411–419, 2010.

[190] Elise Paradis, Bridget O’Brien, Laura Nimmon, Glen Bandiera, and

Maria Athina Martimianakis. Design: Selection of data collection methods.

Journal of graduate medical education, 8(2):263–264, 2016.

[191] Shyamal Patel, Hyung Park, Paolo Bonato, Leighton Chan, and Mary Rodgers.

A review of wearable sensors and systems with application in rehabilitation.

Journal of neuroengineering and rehabilitation, 9:1–17, 2012.

194

[192] Michael Quinn Patton. Qualitative research & evaluation methods: Integrating

theory and practice. Sage publications, 2014.

[193] Shweta Philip and Alex Pang. Detecting and visualizing rip current using optical

flow. In EuroVis (Short Papers), pages 19–23, 2016.

[194] Patricia Pulliam Phillips and Cathy A Stawarski. Data collection: Planning for

and collecting all types of data. John Wiley & Sons, 2008.

[195] Leo L Pipino, Yang W Lee, and Richard Y Wang. Data quality assessment.

Communications of the ACM, 45(4):211–218, 2002.

[196] plantnet.org. Plantnet: The plant identification app. https://plantnet.

org/, 2022. Accessed: 2022-10-16.

[197] Zheng Qin, Zeming Li, Zhaoning Zhang, Yiping Bao, Gang Yu, Yuxing Peng,

and Jian Sun. Thundernet: Towards real-time generic object detection on mobile

devices. In Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), October 2019.

[198] Hana Ra, Benjamin L. Richards, Audrey Rollo, Dianna Miller-Greene, and

Jeremy Taylor. Keeping track of hawaii’s bottomfish populations with the help

of citizen scientists. Fisheries, n/a(n/a), 2022.

[199] Neelesh Rampal, Tom Shand, Adam Wooler, and Christo Rautenbach.

195

https://plantnet.org/
https://plantnet.org/

Interpretable deep learning applied to rip current detection and localization.

Remote Sensing, 14(23), 2022.

[200] Ashraf Haroon Rashid, Imran Razzak, Muhammad Tanveer, and Antonio

Robles-Kelly. RipDet: A fast and lightweight deep neural network for rip

currents detection. In 2021 International Joint Conference on Neural Networks

(IJCNN), pages 1–6. IEEE, 2021.

[201] Jainesh Rathod, Vishal Waghmode, Aniruddh Sodha, and Praseniit

Bhavathankar. Diagnosis of skin diseases using convolutional neural networks.

In 2018 second international conference on electronics, communication and

aerospace technology (ICECA), pages 1048–1051, USA, 2018. IEEE.

[202] Thomas C Redman. The impact of poor data quality on the typical enterprise.

Communications of the ACM, 41(2):79–82, 1998.

[203] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 779–788, 2016.

[204] Zuzana Reitermanova et al. Data splitting. In WDS, volume 10, pages 31–36,

Prague, Czechia, 2010. Matfyzpress Prague.

[205] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:

Towards real-time object detection with region proposal networks. Advances

in neural information processing systems, 28, 2015.

196

[206] Arry Retnowati, Muh Aris Marfai, and JT Sri Sumantyo. Rip currents signatures

zone detection on alos palsar image at parangtritis beach, indonesia. Indonesian

Journal of Geography, 43(2):12–27, 2012.

[207] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid,

and Silvio Savarese. Generalized intersection over union: A metric and a loss

for bounding box regression. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 658–666, 2019.

[208] roboflow.com. Roboflow: Give your software the power to see objects in images

and video. https://roboflow.com/, 2023. Accessed: 2022-10-16.

[209] Joseph Roche, Laura Bell, Cecília Galvão, Yaela N Golumbic, Laure Kloetzer,

Nieke Knoben, Mari Laakso, Julia Lorke, Greg Mannion, Luciano Massetti,

et al. Citizen science, education, and learning: Challenges and opportunities.

Frontiers in Sociology, 5:613814, 2020.

[210] Nicole M Rodriguez, Alisa Arce, Alice Kawaguchi, Jenna Hua, Bonnie

Broderick, Sandra J Winter, and Abby C King. Enhancing safe routes to school

programs through community-engaged citizen science: two pilot investigations

in lower density areas of santa clara county, california, usa. BMC public health,

19:1–11, 2019.

[211] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection

197

https://roboflow.com/

for machine learning: a big data-ai integration perspective. IEEE Transactions

on Knowledge and Data Engineering, 33(4):1328–1347, 2019.

[212] Ali Rohan, Mohammed Rabah, and Sung-Ho Kim. Convolutional neural

network-based real-time object detection and tracking for parrot AR drone 2.

IEEE Access, 7:69575–69584, 2019.

[213] Holly Rosser and Andrea Wiggins. Tutorial designs and task types in

zooniverse. In Companion of the 2018 ACM Conference on Computer Supported

Cooperative Work and Social Computing, CSCW ’18, page 177–180, New York,

NY, USA, 2018. Association for Computing Machinery.

[214] Algeir P Sampaio, Paulo CMA Farias, and Roberto A Bittencourt. A case

study of using machine learning in k-12 education. In 2023 IEEE Frontiers

in Education Conference (FIE), pages 1–8. IEEE, 2023.

[215] SA Sanchez, HJ Romero, and AD Morales. A review: Comparison of

performance metrics of pretrained models for object detection using the

tensorflow framework. In IOP Conference Series: Materials Science and

Engineering, volume 844, page 012024, Bristol, United Kingdom, 2020. IOP

Publishing.

[216] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In

198

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

4510–4520, Los Alamitos, CA, USA, 2018. IEEE Computer Society.

[217] Monica Scannapieco, Antonino Virgillito, Carlo Marchetti, Massimo Mecella,

and Roberto Baldoni. The daquincis architecture: a platform for exchanging and

improving data quality in cooperative information systems. Information systems,

29(7):551–582, 2004.

[218] Jennifer Schneiderhan-Opel and Franz X Bogner. How fascination for biology

is associated with students’ learning in a biodiversity citizen science project.

Studies in Educational Evaluation, 66:100892, 2020.

[219] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-

Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress

& compress: A scalable framework for continual learning. In International

Conference on Machine Learning, pages 4528–4537, USA, 2018. PMLR.

[220] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and

Dan Dennison. Hidden technical debt in machine learning systems. Advances in

neural information processing systems, 28, 2015.

[221] SECOORA. Webcams for coastal observations and operational support.

[222] Harsh R Shah and Luis R Martinez. Current approaches in implementing

199

citizen science in the classroom. Journal of microbiology & biology education,

17(1):17–22, 2016.

[223] Saleh Shahinfar, Paul Meek, and Greg Falzon. “how many images do i

need?” understanding how sample size per class affects deep learning model

performance metrics for balanced designs in autonomous wildlife monitoring.

Ecological Informatics, 57:101085, 2020.

[224] T Shanthi, RS Sabeenian, and R Anand. Automatic diagnosis of skin

diseases using convolution neural network. Microprocessors and Microsystems,

76:103074, 2020.

[225] Viktor B Shapovalov, Yevhenii B Shapovalov, Zhanna I Bilyk, Anna P

Megalinska, and Ivan O Muzyka. The google lens analyzing quality: an analysis

of the possibility to use in the educational process. environment, 2:3, 2019.

[226] Aliaksandra Shutsko. User-generated short video content in social media. a

case study of tiktok. In Social Computing and Social Media. Participation,

User Experience, Consumer Experience, and Applications of Social Computing:

12th International Conference, SCSM 2020, Held as Part of the 22nd HCI

International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020,

Proceedings, Part II 22, pages 108–125. Springer, 2020.

[227] Nahian Siddique, Sidike Paheding, Colin P Elkin, and Vijay Devabhaktuni. U-

200

net and its variants for medical image segmentation: A review of theory and

applications. Ieee Access, 9:82031–82057, 2021.

[228] Robert Simpson, Kevin R Page, and David De Roure. Zooniverse: observing the

world’s largest citizen science platform. In Proceedings of the 23rd international

conference on world wide web, pages 1049–1054, USA, 2014. ACM.

[229] Kylie Soanes, Kate Cranney, Marie C Dade, Amy M Edwards, Ravindra

Palavalli-Nettimi, and Tim S Doherty. How to work with children and animals:

A guide for school-based citizen science in wildlife research. Austral Ecology,

45(1):3–14, 2020.

[230] Caterina Solé, Digna Couso, and María Isabel Hernández. Citizen science

in schools: A systematic literature review. International Journal of Science

Education, Part B, pages 1–17, 2023.

[231] Parvathaneni Naga Srinivasu, Jalluri Gnana SivaSai, Muhammad Fazal Ijaz,

Akash Kumar Bhoi, Wonjoon Kim, and James Jin Kang. Classification of

skin disease using deep learning neural networks with mobilenet v2 and lstm.

Sensors, 21(8):2852, 2021.

[232] Lars St, Svante Wold, et al. Analysis of variance (anova). Chemometrics and

intelligent laboratory systems, 6(4):259–272, 1989.

[233] Zachary R Steelman, Bryan I Hammer, and Moez Limayem. Data collection in

the digital age. MIS quarterly, 38(2):355–378, 2014.

201

[234] Diane M Strong, Yang W Lee, and Richard Y Wang. Data quality in context.

Communications of the ACM, 40(5):103–110, 1997.

[235] Chenfan Sun, Wei Zhan, Jinhiu She, and Yangyang Zhang. Object detection

from the video taken by drone via convolutional neural networks. Mathematical

Problems in Engineering, 2020, 2020.

[236] Richard Szeliski. Computer vision: algorithms and applications. Springer

Nature, 2022.

[237] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for

convolutional neural networks. In International conference on machine learning,

pages 6105–6114, USA, 2019. PMLR.

[238] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling

for convolutional neural networks. In Kamalika Chaudhuri and Ruslan

Salakhutdinov, editors, Proceedings of the 36th International Conference on

Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 6105–6114. PMLR, 09–15 Jun 2019.

[239] Mingxing Tan, Ruoming Pang, and Quoc V Le. EfficientDet: Scalable and

efficient object detection. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 10781–10790, 2020.

[240] Suriyon Tansuriyavong, Hideto Koja, Motoki Kyan, and Takashi Anezaki. The

development of wildlife tracking system using mobile phone communication

202

network and drone. In 2018 International Conference on Intelligent Informatics

and Biomedical Sciences (ICIIBMS), volume 3, pages 351–354. IEEE, 2018.

[241] Omer Tene and Jules Polonetsky. Big data for all: Privacy and user control in

the age of analytics. Nw. J. Tech. & Intell. Prop., 11:239, 2012.

[242] Tensorflow. Tensorflow 2 detection model zoo, May 2021.

[243] Juan Terven and Diana Cordova-Esparza. A comprehensive review of YOLO:

From YOLOv1 to YOLOv8 and beyond. arXiv preprint arXiv:2304.00501,

2023.

[244] Nils Tijtgat, Wiebe Van Ranst, Toon Goedeme, Bruno Volckaert, and Filip

De Turck. Embedded real-time object detection for a UAV warning system.

In Proceedings of the IEEE international conference on computer vision

workshops, pages 2110–2118, 2017.

[245] Roger F. Tomlinson. Current and potential uses of geographical information

systems: The north american experience. International Journal of Geographical

Information Systems, 1(3):203–218, 1987.

[246] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus Shahabi. Spatial

crowdsourcing: a survey. The VLDB Journal, 29:217–250, 2020.

[247] Eric J Topol. High-performance medicine: the convergence of human and

artificial intelligence. Nature medicine, 25(1):44–56, 2019.

203

[248] Jennifer Tsan, David Weintrop, Donna Eatinger, and Diana Franklin. Learner

ideas and interests expressed in open-ended projects in a middle school computer

science curriculum. In Proceedings of the 54th ACM Technical Symposium on

Computer Science Education V. 1, pages 820–826, 2023.

[249] Compton J. Tucker, John R. Townshend, and T. E. Goff. African land-cover

classification using satellite data. Science, 227(4685):369–375, 1985.

[250] Andranik Tumasjan, Timm Sprenger, Philipp Sandner, and Isabell Welpe.

Predicting elections with twitter: What 140 characters reveal about political

sentiment. In Proceedings of the international AAAI conference on web and

social media, volume 4, pages 178–185, 2010.

[251] David P Turner, Warren B Cohen, Robert E Kennedy, Karin S Fassnacht,

and John M Briggs. Relationships between leaf area index and landsat tm

spectral vegetation indices across three temperate zone sites. Remote sensing

of environment, 70(1):52–68, 1999.

[252] Tzutalin. Labelimg is a graphical image annotation tool and label object

bounding boxes in images, 2015.

[253] Tzutalin. A curated list of awesome data labeling tools, 2019.

[254] Ultralytics. Yolov8: A new state-of-the-art computer vision model, 2023.

Accessed: 2023-07-15.

204

[255] Eric Umuhoza and Marco Brambilla. Model driven development approaches for

mobile applications: A survey. In International Conference on Mobile Web and

Information Systems, pages 93–107, USA, 2016. Springer.

[256] Marek Vajgl, Petr Hurtik, and Petra Števuliáková. Drone real-time control based

on pattern matching. In 2017 Joint 17th World Congress of International Fuzzy

Systems Association and 9th International Conference on Soft Computing and

Intelligent Systems (IFSA-SCIS), pages 1–6. IEEE, 2017.

[257] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex

Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist

species classification and detection dataset. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 8769–8778, 2018.

[258] Maarten Van Mechelen, Rachel Charlotte Smith, Marie-Monique Schaper,

Mariana Tamashiro, Karl-Emil Bilstrup, Mille Lunding, Marianne

Graves Petersen, and Ole Sejer Iversen. Emerging technologies in k–12

education: A future hci research agenda. ACM Transactions on Computer-

Human Interaction, 30(3):1–40, 2023.

[259] Cor N Verdouw, J Wolfert, AJM Beulens, and Agathe Rialland. Virtualization

of food supply chains with the internet of things. Journal of Food Engineering,

176:128–136, 2016.

[260] Bas Vergouw, Huub Nagel, Geert Bondt, and Bart Custers. Drone

205

technology: Types, payloads, applications, frequency spectrum issues and future

developments. In The future of drone use, pages 21–45. Springer, 2016.

[261] Katrin Vohland, Anne Land-Zandstra, Luigi Ceccaroni, Rob Lemmens, Josep

Perelló, Marisa Ponti, Roeland Samson, and Katherin Wagenknecht. The science

of citizen science. Springer Nature, 2021.

[262] Justice T Walker, Amanda Barany, Alex Acquah, Sayed Mohsin Reza, Alan

Barrera, Karen Del Rio Guzman, and Michael A Johnson. Coding like a data

miner: A sandbox approach to computing-based data science for high school

student learning. In 2023 IEEE Frontiers in Education Conference (FIE), pages

1–5. IEEE, 2023.

[263] Chen Wang, Aibek Musaev, Pezhman Sheinidashtegol, and Travis Atkison.

Towards detection of abnormal vehicle behavior using traffic cameras. In Big

Data–BigData 2019: 8th International Congress, Held as Part of the Services

Conference Federation, SCF 2019, San Diego, CA, USA, June 25–30, 2019,

Proceedings 8, pages 125–136. Springer, 2019.

[264] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of loss

functions in machine learning. Annals of Data Science, 9(2):187–212, 2022.

[265] Richard Y Wang and Diane M Strong. Beyond accuracy: What data quality

means to data consumers. Journal of management information systems, 12(4):5–

33, 1996.

206

[266] Zirui Wang, Zihang Dai, Barnabas Poczos, and Jaime Carbonell. Characterizing

and avoiding negative transfer. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), June 2019.

[267] Susan C Weller and A Kimball Romney. Systematic data collection, volume 10.

Sage publications, 1988.

[268] Brandon C Welsh and David P Farrington. Public area cctv and crime prevention:

an updated systematic review and meta-analysis. Justice quarterly, 26(4):716–

745, 2009.

[269] Steven Euijong Whang and Jae-Gil Lee. Data collection and quality challenges

for deep learning. Proceedings of the VLDB Endowment, 13(12):3429–3432,

2020.

[270] Andrea Wiggins and Kevin Crowston. From conservation to crowdsourcing: A

typology of citizen science. In 2011 44th Hawaii international conference on

system sciences, pages 1–10. IEEE, 2011.

[271] wildme.org. Home | wild me. https://www.wildme.org, 2022.

(Accessed on 09/15/2022).

[272] Marco Willi, Ross T Pitman, Anabelle W Cardoso, Christina Locke, Alexandra

Swanson, Amy Boyer, Marten Veldthuis, and Lucy Fortson. Identifying animal

species in camera trap images using deep learning and citizen science. Methods

in Ecology and Evolution, 10(1):80–91, 2019.

207

https://www.wildme.org

[273] Sarah A Wood, Patrick W Robinson, Daniel P Costa, and Roxanne S Beltran.

Accuracy and precision of citizen scientist animal counts from drone imagery.

PloS one, 16(2):e0244040, 2021.

[274] Xin Wu, Wei Li, Danfeng Hong, Ran Tao, and Qian Du. Deep learning for

unmanned aerial vehicle-based object detection and tracking: A survey. IEEE

Geoscience and Remote Sensing Magazine, 10(1):91–124, 2021.

[275] www.andromo.com. Andromo - mobile app builder for android and ios.

https://www.andromo.com/, 2022. (Accessed on 09/15/2022).

[276] www.appypie.com. No code app development & workflow automation platform.

https://www.appypie.com/, 2022. (Accessed on 09/15/2022).

[277] Xiaoling Xia, Cui Xu, and Bing Nan. Inception-v3 for flower classification. In

2017 2nd International Conference on Image, Vision and Computing (ICIVC),

pages 783–787, USA, 2017. IEEE.

[278] Keiichi Yasumoto, Hirozumi Yamaguchi, and Hiroshi Shigeno. Survey of

real-time processing technologies of iot data streams. Journal of Information

Processing, 24(2):195–202, 2016.

[279] Chelsea Yeh and Fahim Hasan Khan. Citizen science mobile apps with

machine learning for recyclable objects. In 2022 International Conference on

Computational Science and Computational Intelligence (CSCI), pages 1539–

1542. IEEE, 2022.

208

https://www.andromo.com/
https://www.appypie.com/

[280] Chelsea Yeh and Fahim Hasan Khan. Citizen science mobile apps with

machine learning for recyclable objects. In 2022 International Conference on

Computational Science and Computational Intelligence (CSCI), pages 1539–

1542, 2022.

[281] Maryam Yousef, Farkhund Iqbal, and Mohammed Hussain. Drone forensics: A

detailed analysis of emerging DJI models. In 2020 11th International Conference

on Information and Communication Systems (ICICS), pages 066–071. IEEE,

2020.

[282] Tal Z Zarsky. Incompatible: The gdpr in the age of big data. Seton Hall L. Rev.,

47:995, 2016.

[283] Yao Zhang, Wanru Huang, Xunan Liu, Chi Zhang, Guodong Xu, and Bin Wang.

Rip current hazard at coastal recreational beaches in china. Ocean & Coastal

Management, 210:105734, 2021.

[284] Yu Zhang, Yun Wang, Haidong Zhang, Bin Zhu, Siming Chen, and Dongmei

Zhang. Onelabeler: A flexible system for building data labeling tools. In

Proceedings of the 2022 CHI Conference on Human Factors in Computing

Systems, CHI ’22, New York, NY, USA, 2022. Association for Computing

Machinery.

[285] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection

209

with deep learning: A review. IEEE transactions on neural networks and

learning systems, 30(11):3212–3232, 2019.

[286] Daoheng Zhu, Rui Qi, Pengpeng Hu, Qianxin Su, Xue Qin, and Zhiqiang Li.

YOLO-Rip: A modified lightweight network for rip currents detection. Frontiers

in Marine Science, 9, 2022.

[287] Pengfei Zhu, Longyin Wen, Dawei Du, Xiao Bian, Haibin Ling, Qinghua

Hu, Qinqin Nie, Hao Cheng, Chenfeng Liu, Xiaoyu Liu, et al. VisDrone-

DET2018: The vision meets drone object detection in image challenge results.

In Proceedings of the European Conference on Computer Vision (ECCV)

Workshops, pages 0–0, 2018.

[288] Xingkui Zhu, Shuchang Lyu, Xu Wang, and Qi Zhao. TPH-YOLOv5: Improved

YOLOv5 based on transformer prediction head for object detection on drone-

captured scenarios. In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 2778–2788, 2021.

210

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Related Work
	Previous Works
	Visual Data Collection
	Efficiency in Data Collection
	Data Quality

	Comparison of My Work with Prior Research

	Approach
	ML and Data Collection
	Citizen Science
	Citizen Science for Data Collection

	Synergy of ML and Citizen Science
	Visual Data Collection Platforms
	Stationary or Fixed Camera Platforms
	Mobile Camera Platforms

	Translating Approach to Systems

	SmartCS: Enabling the Creation of ML-Powered Computer Vision Mobile Apps for Citizen Science Applications without Coding
	Introduction
	Motivation
	Related Works
	Citizen Science Platforms
	Citizen Science Apps with ML
	Mobile App Creation Platforms
	ML Models for Computer Vision on Mobile Devices

	System Design of the Platform
	Implementation
	Dataset Creation
	ML Model Training
	Mobile App Building

	Results
	Use Case: Recycle This
	Use Case: RipSnap

	Feedback
	User Study 1: App Creators
	User Study 2: App Users
	Qualitative Feedback

	Conclusion

	Citizen Science Tools with ML as a Pathway to Engage High School Students in Research
	Introduction
	Related Work
	Citizen Science in High School Education
	ML in High School Education
	ML and Citizen Science

	Methodology and Research Setting
	Participant Selection
	Structure

	Preliminary Results and Discussion
	Conclusion and Future Work

	RipFinder: Real-Time Rip Current Detection on Mobile Devices
	Introduction
	Related Work
	Realtime Object Detection
	Rip Current Detection with ML

	System Design and Methods
	System Architecture
	Mobile Apps
	Client-side ML Models
	Server-side ML Models

	Implementation
	Dataset
	ML Model Training
	Client Apps and Server

	Results
	Performance Analysis of ML models
	Evaluation and Selection
	Model Performance Evaluation
	Analysis for Client-Side Model Selection

	Conclusion

	RipScout: Realtime ML-Assisted Rip Current Detection and Automated Data Collection using UAS
	Introduction
	Related Works
	Lightweight ML Models for Drones
	Field Tested Drone Applications with ML
	Rip Current Detection with ML

	System Architecture
	Devices and Hardware
	Software Components

	Datasets
	Training Data
	Automated Data Collection

	Field Testing
	Evaluation
	ML Model Performance
	Efficiency of RipScout
	Accuracy in the Field Tests

	Conclusion

	Automated Data Collection from Network Cameras using ML
	Introduction
	System Design and Implementation
	Future Improvements

	Conclusion
	Summary of Contributions
	Future Work

	List of Related Publications
	Bibliography

