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Application of the Water Cycle Algorithm to the Optimal
Operation of Reservoir Systems

Omid Bozorg Haddad1; Mojtaba Moravej2; and Hugo A. Loáiciga3

Abstract: Water resources, in time, place, and quantity, are often poorly matched to the needs of humanity. This disparity tends to be more
accentuated in arid and semiarid regions, predominant in Iran. Reservoir systems are a common means to control and manage water resources.
Due to limited resources and the increasing demands for water, these systems must be optimally operated to maximize the efficiency of water
use. Evolutionary optimization algorithms provide reliable and simple methods for solving complex optimization problems. One of those
methods, the water cycle algorithm (WCA), is used in this paper to find optimal operation strategies for the Karon-4 reservoir and a
four-reservoir system in Iran. The results demonstrate the high efficiency and reliability of the WCA in solving reservoir operation problems.
DOI: 10.1061/(ASCE)IR.1943-4774.0000832. © 2014 American Society of Civil Engineers.

Author keywords: Optimization; Water cycle algorithm; Reservoir operation; Reservoir system.

Introduction

The ever-increasing growth of water needs in the agricultural,
energy, industrial, and municipal sectors has stressed the water
resources available to humanity. Moreover, aggravating factors
as climate change phenomena have exacerbated the water stress
in many parts of the world, especially in arid and semiarid climates.
More profound present and future water shortages call for greater
attention and more actions towards sustainable development. In
many dry and semidry regions of the world, including most parts
of Iran, the precipitation is not well-matched to the needs of water
users in terms of quantity, time, and place. For this reason it is
necessary to engage in management actions to fulfill consumer
needs to achieve sustainable development and maximize benefits.
Reservoirs are one of the most important management tools for
the control and management of water resources in river basins.
Considering the limited water resources in Iran, and the increase
of water needs, using optimization methods in designing, imple-
menting, and operating reservoirs is indispensable.

Various optimization methods are used in the operation of
reservoirs; (1) linear programming (LP), and (2) dynamic program-
ming (DP) could be mentioned as two classical optimization
methods; e.g., Loáiciga and Mariño (1986). With the increase in
the computational capacity of computers in recent years, new meta-
heuristic methods, which are mainly inspired by natural phenom-
ena, have gained prominence relative to the classical methods.

Metaheuristic and evolutionary methods have been proposed as
a useful tool in the optimization of complex water resources sys-
tems in the past two decades. Using the deterministic dynamic pro-
gramming (DDP) method, Karamouz and Houck (1982) generated
monthly and annual reservoir operation rules. Karamouz and
Houck (1987) made a comparison between DDP and stochastic
dynamic programming (SDP) ability to generate operating rule
of reservoirs. Using energy management and maintenance analysis
(EMMA) and successive linear programming (SLP), Reznisek and
Simonovic (1989) deduced different scenarios for the optimal
operation of Manitoba’s (Canada) compound power plant. The ob-
jective function maximized the system revenue and minimized its
production costs. Their results showed that SLP had a better per-
formance than the EMMA. Arunkumar and Jothiprakash (2012)
developed an optimal operation for the Koyna reservoir, India
that improved the hydroelectrical production and met agricultural
needs by means of nonlinear programming (NLP). Wardlaw and
Sharif (1999) applied the genetic algorithm (GA) to a four-reservoir
system and demonstrated that real-value coding has better
solution efficiency than binary coding. Jalali et al. (2007) added
pheromone reinitiations (PRIs) and partial path replacement
(PPR) to ant colony optimization (ACO), and successfully applied
this algorithm to the optimization of single and multireservoir op-
eration. Bozorg Haddad et al. (2011a) studied the efficiency of
honey bee mating optimization (HBMO) algorithm in optimal op-
eration of four-reservoir and 10-reservoir systems, in continuous
and discrete domains. Their results indicated high capability of
the HBMO algorithm in solving the optimization of reservoir
operation.

Recently, many evolutionary and metaheuristic optimization al-
gorithms have been developed and applied in all aspects of water
resources systems such as reservoir operation (Bozorg Haddad et al.
2008b, c, 2009; Afshar et al. 2010; Fallah-Mehdipour et al. 2011b,
2012), cultivation rules (Moradi-Jalal et al. 2007; Noory et al.
2012), pumping scheduling (Bozorg Haddad and Mariño 2007;
Rasoulzadeh-Gharibdousti et al. 2011; Bozorg Haddad et al.
2011b), water distribution networks (Bozorg Haddad et al.
2008a; Soltanjalili et al. 2011; Fallah-Mehdipour et al. 2011a;
Seifollahi-Aghmiuni et al. 2011; Ghajarnia et al. 2011;
Sabbaghpour et al. 2012), operation of aquifer systems (Bozorg
Haddad and Mariño 2011), and site selection of infrastructures
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(Karimi-Hosseini et al. 2011). None of these works dealt with the
application of the water cycle algorithm (WCA) to the optimal
operation of water resources systems.

The WCAwas introduced by Eskandar et al. (2012). They used
it to solve several engineering optimization problems. They
compared the results of the WCA with some other metaheuristic
algorithms such as GA, particle swarm optimization (PSO) algo-
rithm, harmony search, bee colony, and differential evolution. Their
results showed that the WCA is a suitable method for solving con-
strained optimization problems and has the ability to compete with
other metaheuristic algorithms. Eskandar et al. (2013) illustrated
the application of the WCA by solving the problem of designing
truss structures and compared the results with those of other meta-
heuristic algorithms such as GA, PSO, mine blast algorithm
(MBA), and so on. The results of their comparison demonstrated
the high capability of the WCA algorithm to find optimal solutions
and its rapid convergence.

Because of its high capacity to find optimization solutions
close to the global optimum efficiently, the WCA algorithm is
implemented in the research reported in this paper to assess its per-
formance in solving reservoir operation problems with applications
to reservoir systems in Iran.

Water Cycle Algorithm

The WCA was described by Eskandar et al. (2012). The WCA is
based on the water cycle of the real world. Streams and rivers flow
downhill toward the sea. Water moves downhill in the form of
streams and rivers, starting from high up in the mountains, and dis-
charging to the sea and lakes. Streams and rivers collect water from
rain and other streams on their way downhill. Some of the water
forms rivers and lakes evaporate. Then, clouds are generated when
the evaporated water is carried in the atmosphere. These clouds
condense in the colder atmosphere and release the water back in
the form of rain, creating new streams and rivers. The WCA is de-
scribed in detail in the subsequent subsections.

Create the Initial Population

In order to solve an optimization problem using population-based
metaheuristic methods, it is necessary that the values of the problem
variables be formed as an array. In GA and PSO terminologies such
array is called chromosome and particle position, respectively. In the
WCA it is called raindrop for a single solution. In an Nvar dimen-
sional optimization problem (where Nvar is the number of design var-
iables), a raindrop is an array of size 1 × Nvar. This array is defined as

Raindrop ¼ ½x1; x2; x3; ...; xNvar
� ð1Þ

To start the optimization algorithm, a candidate representing a
matrix of raindrops of size Npop × Nvar is generated (where Npop is
the number of populations of raindrops, initial population). Hence,
the matrix X which is generated randomly is given as (rows and
columns are the number of populations, and the number of design
variables, respectively)

Populations of raindrops ¼

2
6664

Raindrop1
Raindrop2
Raindrop3

:
RaindropNpop

3
7775 ð2Þ

Each of the decision variable values ðx1; x2; x3; : : : ; xNvar
Þ can

be represented as floating point number (real values) or as a

predefined set for continuous and discrete problems, respectively.
The cost of a raindrop is obtained by the evaluation of a cost func-
tion (C) is

Ci ¼ costi ¼ fðxi1; xi2; xi3; : : : ; xiNvar
Þ i ¼ 1; 2; 3; : : : ; Npop

ð3Þ
In the first step,Npop raindrops are created. A numberNsr [the sum-
mation of number of rivers (which is a user parameter) and a single
sea as per Eq. (4)] from the best individuals (minimum values) are
selected as sea and rivers. The raindrop which has the minimum
value among others is considered as a sea. The rest of the
population (raindrops form the streams which flow to the rivers
or may directly flow to the sea) is calculated using Eq. (5)

Nsr ¼ Number of riversþ 1|{z}
sea

ð4Þ

Nraindrops ¼ Npop − Nsr ð5Þ

Eq. (6) is used to designate/assign raindrops to the rivers and sea
depending on the intensity of the flow

NSn ¼ round

 ���� costnPNsr
i¼1 costi

���� × Nraindrops

!
; n ¼ 1; 2; ...;Nsr ð6Þ

where round = function that rounds the value of the function within
the parentheses to the closest integer number; and NSn = number of
streams which flow to the specific rivers or sea.

How Does a Stream Flow to the Rivers or Sea

The streams are created from the raindrops and join each other to
form new rivers. Some of the streams may also flow directly to the
sea. All rivers and streams discharge to the sea (best optimal point).
A stream flows to a river along the connecting line between them
using a randomly chosen distance is

X ∈ ð0;C × dÞ; C > 1 ð7Þ
where C = value between 1 and 2 (near to 2; the best value for C
may be chosen as 2); d = current distance between stream and river;
and X = distributed random number (uniformly, or may be any ap-
propriate distribution) between 0 and (C × d). The value of C being
greater than 1 enables streams to flow in different directions to-
wards the rivers.

The concept behind Eq. (7) involving the flow of streams to
rivers may also be used for the flow of rivers to the sea. Therefore,
the new position for streams and rivers may be given as

Xiþ1
stream ¼ Xi

stream þ ½rand × C × ðXi
river − Xi

streamÞ� ð8Þ

Xiþ1
river ¼ Xi

river þ ½rand × C × ðXi
sea − Xi

riverÞ� ð9Þ
where rand is a uniformly distributed random number between 0
and 1. If the solution given by a stream is better than its connecting
river, the positions of river and stream are exchanged (i.e., stream
becomes river and river becomes stream). Such exchange can
similarly happen for rivers and sea.

Evaporation Condition

Evaporation is one of the most important factors that can prevent
the algorithm from rapid convergence (immature convergence). As
can be seen in nature, water evaporates from rivers and lakes. The
evaporated water is carried into the atmosphere to form clouds

© ASCE 04014064-2 J. Irrig. Drain Eng.
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which then condenses in the colder atmosphere, releasing the water
back to earth in the form of rain. The rain creates the new streams
and rivers, and the water cycle procedure continues. In the WCA,
the evaporation process causes the sea water to evaporate as rivers/
streams flow to the sea. This assumption is considered in order to
avoid being trapped in local optima. The subsequent commands
show how to determine whether or not a river flows to the sea

IfjXi
sea − Xi

riverj < dmaxi ¼ 1,2; 3; : : : ;Nsr − 1

Evaporation and raining process End ð10Þ
where dmax = small number (close to zero). Therefore, if the
distance between a river and the sea is less than dmax, it indicates
that the river has reached/joined the sea. In this situation, the
evaporation process is applied and as seen in nature, after sufficient
evaporation the precipitation will start. A large value for dmax
reduces the search while a small value encourages the search
intensity near the sea. Therefore, dmax controls the search intensity
near the sea (the optimum solution). The value of dmax decreases
adaptively as

dmaxiþ1 ¼ dmaxi − dmaxi

max iteration
ð11Þ

Raining Process

After satisfying the evaporation process, the raining process is
applied. In the raining process, the new raindrops form streams
at different locations (acting similar to mutation operator in
GA). For specifying the new locations of the newly formed streams

Xnew
stream ¼ LBþ ½rand × ðUB − LBÞ� ð12Þ

where LB and UB = lower and upper bounds defined by the given
problem, respectively. Again, the best newly formed raindrop is
considered as a river flowing to the sea. The rest of new raindrops
are assumed to form new streams which flow to the rivers or may
directly flow to the sea.

In order to enhance the convergence rate and computational
performance of the algorithm for constrained problems, Eq. (13)
is used only for the streams that flow directly to the sea.
Eq. (13) encourages the generation of streams flow directly to
the sea in order to improve the search near sea (the optimum
solution) in the feasible region of constrained problems

Xnew
stream ¼ Xsea þ ½ ffiffiffiμp

× randnð1;NvarÞ� ð13Þ
where μ = coefficient which shows the range of the search region
near the sea; and rand n = normally distributed random number. A
larger value for μ increases the possibility to exit from the feasible
region. On the other hand, the smaller value for μ leads the
algorithm to search in smaller regions near the sea. A suitable value
for μ is set to 0.1. From a mathematical viewpoint, the termffiffiffiffi
μ

p
represents the SD and accordingly μ captures the concept

of variance. Using these concepts, the generated individuals with
variance μ are distributed around the best obtained optimum point
(sea). The steps of WCA can be found at Eskandar et al. (2012).
Fig. 1 shows the flowchart of WCA.

Evaluate the WCA with Mathematical Benchmark
Functions

The (1) sphere, (2) Rosenbrock, and (3) Bukin6 benchmark
functions (Bhattacharya 2010) were selected in the research

reported in this paper with the purpose of evaluation the perfor-
mance of the WCA. Table 1 shows details of these functions, where
d represents the dimension of the functions; d ¼ 20.

For comparison, the GA was also applied to obtain optimum
solutions for the three selected benchmark functions. The
evolutionary algorithms generally, and the WCA specifically, start
from a set of random solutions, so an individual run does not show
the capability or weakness of the algorithm. Therefore to test the
effect of initial starting points, 10 different runs for both GA and
WCA were performed in the research reported in this paper.
Figs. 2(a–c) show the maximum and minimum of the benchmark
functions [(1) sphere, (2) Rosenbrock, and (3) Buckin6] evaluated
with the WCA. Figs. 3(a–c) depict the convergence rate of the three
benchmark functions achieved with the GA and the WCA. Fig. 3
shows rapid convergence of the WCA in comparison with the
GA. The WCA converges faster than the GA for all benchmark
functions. Also it converges closer to global optima than the GA.

Figs. 4(a–c) show variables of best solution obtained by NLP
(global optimum), WCA, and GA. Fig. 4 shows that values
resulting from WCA are the closest to the global optimum. The
GA results diverge from it. Table 2 shows summary results of
the 10 different runs. The low values of SD indicate high reliability
of the WCA compared to the GA.

Reservoir Operation

Fig. 5 shows the schematic of a reservoir and its variables. The
storage in a reservoir is calculated as

Stþ1 ¼ St þQt − Lt − SPt − Rt ð14Þ
in which Stþ1 = reservoir storage at the start of period of tþ 1; St =
reservoir storage at the start of period of t; Qt = inflow to reservoir
in period t; Lt = net evaporation in period t, which can be calculated
using Eq. (15) as per LoÆiciga (2002); SPt = spill from reservoir in
period t, which is defined by Eq. (16); and Rt = release from
reservoir in period t. The variables appearing in Eq. (14) are
volumetric

Lt ¼ ðEt − PtÞAt ð15Þ

SPt ¼
�

0 if St ≤ Smax

St − Smax if St > Smax

�
ð16Þ

in which Et = evaporation depth in time period t; Pt = precipitation
depth in period t; At = average area of reservoir lake in period t; and
Smax = maximum of reservoir storage or reservoir capacity.
Eqs. (15) and (16) the values of inflow, evaporation depth, and
precipitation depth are available from historical data or simulation
models. In multireservoir operation, inflow to each reservoir may
include releases from upper reservoirs. Storage release is a decision
variable in reservoir optimization. Reservoir storage is a state
variable.

Constraints on releases are

Rminit
≤ Ri

t ≤ Rmaxit
ð17Þ

Constraints on storages are

Sminit
≤ Sit ≤ Smaxit

ð18Þ

Carry over constraint is

Si1 ¼ SiTþ1 ð19Þ

© ASCE 04014064-3 J. Irrig. Drain Eng.
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in which Rminit
and Rmaxit

= minimum and maximum release from
reservoir i in period t, respectively; Ri

t = release from reservoir i in
period t; Sminit

and Smaxit
= minimum and maximum storage of res-

ervoir i at the start of period t, respectively; Sit = storage of reservoir
i at the start of period t; Si1 = storage of reservoir i at the start of the
first period; SiTþ1 = storage of reservoir i at the start of period
T þ 1; and T = total number of operation periods of the reservoir

system. A fixed penalty is applied to the objective function in case
of constraint violations.

Optimal Operation of the Karon-4 Reservoir System

The objective function of the reservoir optimization problem is
defined by Eq. (20), which minimizes the sum of the squared

Start
Choose the 

initial 
parameter

Generate random 
initial population 
(initial streams, 
rivers and seas)

Calculate the 
cost of each 

raindrop

Determine 
the intensity 

of flow

Flow streams 
to the rivers

Flow rivers 
to the sea

Does the
 stream have a
lower function 

value than 
corresponding

 river?

Exchange the position of 
the stream with the 
corresponding river

Yes

Does
 the river have a

lower function value 
than sea?

No

Exchange the 
position of 

the river with 
the  sea

Yes

Is the evaporation 
condition satisfied?

No

Create clouds 
and then start 

raining 
process

Yes

Decrease the 
value of the 

dmax

Is the
convergence 

criteria 
satisfied?

No

End 

Yes

No

Fig. 1. Flowchart of the WCA

Table 1. Definition of the Mathematical Benchmark Functions

Row Function name Equation Search space Global optimum

1 Sphere fðxÞ ¼Pd
i¼1 x

2
i −5.12 ≤ xi ≤ 5.12 fmin ¼ 0 at (0,0, : : : ,0)

2 Rosenbrock fðxÞ ¼Pd−1
i¼1 ½ð1 − xiÞ2 þ 100ðxiþ1 − x2i Þ2� −5 ≤ xi ≤ 10 fmin ¼ 0 at (1,1, : : : ,1)

3 Bukin6 fðx; yÞ ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy − 0.01x2j

p
þ 0.01jxþ 10j −15 ≤ x ≤ −5

−3 ≤ y ≤ 3

fmin ¼ 0 atð−10,1Þ

© ASCE 04014064-4 J. Irrig. Drain Eng.
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normalized differences between power generated and installed
generating capacity, subject to constraints [Eqs. (14)–(19)]
presented in the previous section

Min Z ¼
XT
t¼1

�
1 − Pt

PPC

�2

ð20Þ

where Z = objective function; Pt = power generated by
hydroelectric plant in period t (W) as defined by Eq. (21);
and PPC = total capacity of hydroelectric plant (W) equal to
1,000 (106 W)

Pt ¼ Min

��
g × η × Rt

PF

�
×

�
ht

1,000

�
; PPC

�
ð21Þ

ht ¼
�
Ht þ Htþ1

2

�
− TWL ð22Þ

where g = gravitational acceleration (9.81 m2=s); η = efficiency of
the hydroelectric plant; PF = plant factor; ht = effective head of
hydroelectric plant; Ht = elevation of water reservoir at the start
of period t; Htþ1 = elevation of water reservoir at the start of
period tþ 1; and TWL = downstream (tailwater) elevation of
the hydroelectric plant.

The global optimum of this problem was obtained with
produced with NLP solver of LINGO 8.0 and is equal to
1.2132. The WCA was applied to this problem with initial param-
eters value of 70, 35, 2.7, and 1,000 for Npop, Nsr, dmax, and max
iteration, respectively. Therefore 70,070 function evaluations were
performed. Table 3 presents results of 10 different runs of the WCA
and the GA, showing of the maximum (worst), minimum (best),
average, SD, and coefficient of variation of these 10 runs.

The best result obtained from the 10 different runs of the WCA
produced optimum close to 97% of the global optimum. On the
other hand, the GA converged to 79% of the global optimum. Fig. 6
shows the maximum and minimum of the objective function in
each function evaluation employing the WCA. Fig. 7 shows the
average solution over the 10 runs of the GA and WCA.

The best result obtained with the WCAwas equal to 97% of the
global optimum solution while GA algorithm provided a solution

equal to 79%. The average achieved solution from the WCA is also
closer to the global optimum solution than from the GA for the
reservoir operation problem. In addition, the small amount of
coefficient of variation obtained with the WCA demonstrates the
superior ability of the algorithm to reach a solution near the global

Table 2. Summarized Results of Mathematical Benchmark Functions from 10 Different Runs of the GA and the WCA

Statistics

GA WCA

Sphere Rosenbrock Bukin6 Sphere Rosenbrock Bukin6

Maximum 0.0458702 1.7 × 10−6 0.016755 6.98976 × 10−14 1.23286 × 10−13 0.013086
Minimum 0.133336 0.00031 0.074314 2.70579 × 10−11 4.72781 × 10−12 0.015884
Average 0.08050554 0.000105 0.046036 3.26398 × 10−12 1.29206 × 10−12 0.014323
SD 0.027254698 0.000111 0.017238 8.39956 × 10−12 1.58748 × 10−12 0.000875
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Fig. 5. Schematic view of reservoir storage and its variables

Table 3. Results of 10 Different Runs of Karon-4 Problem Using the GA
and the WCA

Number of run

Objective function value

GA WCA

1 1.67 1.289
2 1.54 1.269
3 1.86 1.287
4 1.75 1.260
5 1.98 1.289
6 1.75 1.285
7 1.93 1.281
8 1.56 1.279
9 1.84 1.286
10 1.52 1.262
Global optimum 1.213
Maximum, worst 1.98 1.289
Minimum, best 1.52 1.260
Average 1.74 1.279
SD 0.16 0.010
Coefficient of variation 0.09 0.008
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Fig. 6. Maximum and minimum of the objective function of the
Karon-4 reservoir system in term of the number of functional evalua-
tions by the WCA
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Fig. 7. Convergence rate of the objective function of Karon-4 reservoir
system in terms of the number of functional evaluations by the GA and
WCA
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optimum solution of the reservoir problem. Fig. 6 shows the
maximum, average, and minimum of the WCA objective function
in terms of the number of functional evaluation, and Fig. 7
compares the convergence rates of the WCA and the GA. Fig. 6
shows that the maximum, minimum, and average values of the
objective function converge to each other as with increasing num-
ber of functional evaluations, which demonstrates the high reliabil-
ity of the WCA.

Figs. 8–10 show reservoir releases, reservoir storage, and power
generated in each period of operation (month), respectively.
Figs. 8–10 show that all defined constraints in the reservoir opti-
mization problem have been satisfied. Moreover, the compatibility
of the WCA results with the global optimum solution can be
observed (Figs. 8–10). The GA results, on the other hand, show
deviations from the global optimum solution. This finding is more
pronounced for reservoir release and generated power (Figs. 8
and 10, respectively).

Optimal Operation of a Four-Reservoir System

The considered four-reservoir system was first formulated by Chow
and Cortes-Rivera (1974), and was reutilized by Murray and
Yakowitz (1979). A global optimum of 308.26 units was reported
by Chow and Cortes-Rivera (1974). Fig. 11 shows the schematic of
this problem. Water released from these reservoirs is utilized to

meet hydropower and agricultural functions. The objective function
of this problem is defined as

Max B ¼
Xn
i¼1

XT
t¼1

bit × Ri
t − P ð23Þ

where B = total benefits from all reservoirs; i = reservoir number;
n = total number of reservoirs; bit = benefit function in time period t
for reservoir i; and P = penalty function as defined in Eqs. (24)–
(26). Other parameters were defined previously

P ¼
Xn
i¼1

Ci þ
Xn
i¼1

XT
t¼1

SLi
t ð24Þ

Ci ¼
�
k1ðSiTþ1 − Si1Þ2 for ∀ i ¼ 1; ...; nSi1 > SiTþ1

0 for ∀ i ¼ 1; ...; nSi1 ≤ SiTþ1

�
ð25Þ

SLi
t ¼

2
664
k2ðSmini − SitÞ2 for ∀ i ¼ 1; ...; nSit < Smini

k3ðSit − SmaxiÞ2 for ∀ i ¼ 1; ...; nSit > Smaxi

0 for ∀ i ¼ 1; ...; nSmini ≤ Sit ≥ Smaxi

3
775
ð26Þ

where Ci = penalty of violation of Eq. (19); SLi
t = penalty of

violating minimum and maximum of reservoir storage; k1 = con-
stant of penalty Ci; k2 is a constant of penalty for violating con-
straint on minimum reservoir storage; and k3 = constant of penalty
for violating constraint of maximum reservoir storage. The connec-
tivity of releases between the reservoirs of this system (Fig. 11) is
determined by the matrix M, defined by Eq. (27). The constraint
parameters for this problem are set to (1) Rmin ¼ 0.005, Smin ¼ 1,
and Smax ¼ 10 for all reservoirs; (2) Rmax ¼ 4.0 for Reservoir 1, 4.5
for Reservoirs 2 and 3, and 8 for Reservoir 4; and (3) S1 ¼ 6 for
Reservoirs 1–3, and 8 for Reservoir 4. In this problem, the penalty
constant of k1 was considered equal to 20, and penalty constants of
k2 and k3 were considered equal to 40. A penalty constant of 40
was previously used by Heidari et al. (1971) and Bozorg Haddad
et al. (2011a)
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Fig. 8. Monthly optimal releases from Karon-4 reservoir
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Fig. 11. Layout of the four-reservoir system
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M ¼

2
64
−1 0 0 0

0 −1 0 0

0 1 −1 0

1 0 1 −1

3
75 ð27Þ

For comparison purposes, the nonlinear programming solution
of linear programming was also obtained with the LINGO soft-
ware; the solution equals 308.29, which is similar to the solution
reported by Bozorg Haddad et al. (2011a). Initial parameters value
of 100, 50, 1 × 10−5, and 5,000 for Npop, Nsr, dmax, and max iter-
ation, respectively. were taken into account for solving the problem
of optimal operation of the example four-reservoir system using the
WCA. Table 4 shows the results obtained with the (1) GA, and
(2) WCA. Table 4 summarizes the maximum, minimum, average,
SD, and coefficient of variation from 10 different runs of the two
algorithms.

The best solution achieved with the WCA is 306.920, which has
a 0.4% difference with the global optimum solution of the problem.
Fig. 12 summarizes the maximum, minimum, and average values
obtained with the WCA in terms of the number of functional
evaluations. The latter results and the small coefficient of variation
resulted from the 10 different runs (0.006) establish that WCA-
derived results are slightly dependent on the stochastically selected

values of the initial population. Furthermore, the results are very
near the global optimum solution. This trait is clearly a favorable
strength of the WCA.

The average amount attained with the algorithm exhibits 1%
difference with the global optimum solution of the problem, which
indicates high accuracy of the WCA and its capacity to achieve
near-optimal global solutions. Fig. 13 shows the comparison of
convergence rates of the GA and WCA, which shows that the
convergence of the WCA is faster than that of the GA.

This reservoir optimization problem was solved by Bozorg
Haddad et al. (2011a) using the HBMO algorithm. On the one
hand, 14 million functional evaluations yielded an objective
function value equal to 308.24 units, which is very close to the
global optimum. On the other hand, 1.1 million WCA functional
evaluations yield a value of 307.50 units, which is even closer to the
global optimum (306.920).

Table 4. Results of 10 Different Runs of the Four-Reservoir Problem
Using the GA and the WCA

Number of run

Objective function value

GA WCA

1 300.42 306.83
2 298.89 302.40
3 300.09 303.65
4 300.47 303.60
5 298.46 302.38
6 300.00 306.01
7 299.22 304.05
8 299.87 306.75
9 299.20 306.63
10 300.35 306.92
Global optimum 308.29
Maximum, best 300.47 306.92
Minimum, worst 298.46 302.38
Average 299.70 304.92
SD 0.705 1.887
Coefficient of variation 0.002 0.006
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Fig. 12.Maximum and minimum of the objective function of the four-reservoir system in terms of the number of functional evaluations by the WCA
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Fig. 13. Convergence rate of objective function of four-reservoir
system terms of the number of functional evaluations by the GA
and the WCA
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Fig. 14. Monthly optimal releases from the four-reservoir system
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Figs. 14 and 15 show monthly reservoir releases and reservoir
storages. The maximum and minimum were met by the optimized
releases and storages. Additionally, reservoir storage is the same
at the beginning and end of the operation period. Figs. 14
and 15 show the high compatibility of the WCA solution with
the global optimum solution, whereas the GA results exhibits
noticeable deviations from the optimal solution.

Concluding Remarks

The WCA has been advanced as a method for solving optimization
problems. It provides a fast convergence rate to a near-optimal sol-
ution, as well. In the research reported in this paper, the application
of this algorithm was discussed in the context of the solution of
water resources management problems. First, the algorithm was
assessed with several benchmark functions and its performance
was examined. Afterwards, optimal operation of the Karon-4 res-
ervoir and a four-reservoir system were solved using this algorithm.
The results confirmed the high capacity of the WCA in solving the
type of reservoir optimization problems considered in this paper.
The algorithm averaged solutions that are 96 and 99% of the global
optimum solution, in the Karon-4 reservoir and in the four-reservoir
system, respectively. The performance of the WCA established its
superior convergence to near-optimal solutions, faster convergence
rate, and higher reliability than those exhibited by several leading
competing solution algorithms.

References

Afshar, A., Shafii, M., and Bozorg Haddad, O. (2010). “Optimizing
multi-reservoir operation rules: An improved HBMO approach.”
J. Hydroinform., 13(1), 121–139.

Arunkumar, R., and Jothiprakash, V. (2012). “Optimal reservoir operation
for hydropower generation using non-linear programming model.”
J. Inst. Eng. India Ser., 93(2), 111–120.

Bhattacharya, M. (2010). “An investigation on two surrogate-based EAs.”
Aust. J. Intell. Inform. Process. Syst., 12(2), 7–12.

Bozorg Haddad, O., Adams, B. J., and Mariño, M. A. (2008a). “Optimum
rehabilitation strategy of water distribution systems using the HBMO
algorithm.” J. Water Supply Res. Technol. AQUA, 57(5), 327–350.

Bozorg Haddad, O., Afshar, A., and Mariño, M. A. (2008b). “Design-
operation of multi-hydropower reservoirs: HBMO approach.” Water
Resour. Manage., 22(12), 1709–1722.

Bozorg Haddad, O., Afshar, A., and Mariño, M. A. (2008c). “Honey-bee
mating optimization (HBMO) algorithm in deriving optimal operation
rules for reservoirs.” J. Hydroinform., 10(3), 257–264.

Bozorg Haddad, O., Afshar, A., and Mariño, M. A. (2009). “Optimization
of non-convex water resource problems by honey-bee mating
optimization (HBMO) algorithm.” Eng. Comput., 26(3), 267–280.

Bozorg Haddad, O., Afshar, A., and Mariño, M. A. (2011a). “Multireser-
voir optimisation in discrete and continuous domains.” Proc. Inst. Civ.
Eng. Water Manage., 164(2), 57–72.

Bozorg Haddad, O., and Mariño, M. A. (2007). “Dynamic penalty function
as a strategy in solving water resources combinatorial optimization
problems with honey-bee optimization (HBMO) algorithm.” J. Hydro-
inform., 9(3), 233–250.

Bozorg Haddad, O., and Mariño, M. A. (2011). “Optimum operation of
wells in coastal aquifers.” Proc. Inst. Civ. Eng. Water Manage.,
164(3), 135–146.

Bozorg Haddad, O., Moradi-Jalal, M., and Mariño, M. A. (2011b).
“Design-operation optimisation of run-of-river power plants.” Proc.
Inst. Civ. Eng. Water Manage., 164(9), 463–475.

Chow, V. T., and Cortes-Rivera, G. (1974). “Application of DDDP in water
resources planning.” Research Rep., Dept. of Civil Engineering, Univ.
of Illinois, Urbana-Champaign, IL.

Eskandar, H., Sadollah, A., and Bahreininejad, A. (2013). “Weight optimi-
zation of truss structures using water cycle algorithm.” Int. J. Civ. Eng.,
3(1), 115–129.

Eskandar, H., Sadollah, A., Bahreininejad, A., and Hamdi, M. (2012).
“Water cycle algorithm—A novel metaheuristic optimization method
for solving constrained engineering optimization problems.” Comput.
Struct., 110, 151–166.

Fallah-Mehdipour, E., Bozorg Haddad, O., Beygi, S., and Mariño, M. A.
(2011a). “Effect of utility function curvature of Young’s bargaining
method on the design of WDNs.” Water Resour. Manage., 25(9),
2197–2218.

Fallah-Mehdipour, E., Bozorg Haddad, O., and Mariño, M. A. (2011b).
“MOPSO algorithm and its application in multipurpose multireservoir
operations.” J. Hydroinform., 13(4), 794–811.

Fallah-Mehdipour, E., Bozorg Haddad, O., and Mariño, M. A. (2012).
“Real-time operation of reservoir system by genetic programming.”
Water Resour. Manage., 26(14), 4091–4103.

Ghajarnia, N., Bozorg Haddad, O., and Mariño, M. A. (2011). “Perfor-
mance of a novel hybrid algorithm in the design of water networks.”
Proc. Inst. Civ. Eng. Water Manage., 164(4), 173–191.

Heidari, M., Chow, V. T., Kokotovic, P. V., and Meredith, D. D. (1971).
“Discrete differential dynamic programming approach to water resour-
ces system optimization.” Water Resour. Res., 7(2), 273–282.

Jalali, M. R., Afshar, A., and Mariño, M. A. (2007). “Multi-reservoir
operation and adaptive pheromone re-initiated ant colony optimization
algorithm.” Int. J. Civ. Eng., 5(4), 284–301.

Karamouz, M., and Houck, M. H. (1982). “Annual and monthly reservoir
operating rules generated by deterministic optimization.”Water Resour.
Res., 18(5), 1337–1344.

Karamouz, M., and Houck, M. H. (1987). “Comparison of stochastic and
deterministic dynamic programming for reservoir operating rule
generation.” Water Resour. Bull., 23(1), 1–9.

Karimi-Hosseini, A., Bozorg Haddad, O., and Mariño, M. A. (2011). “Site
selection of raingauges using entropy methodologies.” Proc. Inst. Civ.
Eng. Water Manage., 164(7), 321–333.

LINGO 8.0 [Computer software]. Chicago, IL, Lindo.
Loáiciga, H. A. (2002). “Reservoir design and operation with variable lake

hydrology.” J. Water Resour. Plann. Manage., 10.1061/(ASCE)0733-
9496(2002)128:6(399), 399–405.

Loáiciga, H. A., and Mariño, M. A. (1986). “Risk analysis for reservoir
operation.” Water Resour. Res., 22(4), 483–488.

Moradi-Jalal, M., Bozorg Haddad, O., Karney, B. W., and Mariño, M. A.
(2007). “Reservoir operation in assigning optimal multi-crop irrigation
areas.” Agric. Water Manage., 90(1–2), 149–159.

Murray, D. M., and Yakowitz, S. J. (1979). “Constrained differential
dynamic programming and its application to multi-reservoir control.”
Water Resour. Res., 15(5), 1017–1027.

Noory, H., Liaghat, A. M., Parsinejad, M., and Bozorg Haddad, O. (2012).
“Optimizing irrigation water allocation and multicrop planning using
discrete PSO algorithm.” J. Irrig. Drain. Eng., 10.1061/(ASCE)IR
.1943-4774.0000426, 437–444.

Rasoulzadeh-Gharibdousti, S., Bozorg Haddad, O., and Mariño, M. A.
(2011). “Optimal design and operation of pumping stations using
NLP-GA.” Proc. Inst. Civ. Eng. Water Manage., 164(4), 163–171.

0

5

10

15

20

1 3 5 7 9 11 13 2 4 6 8 10 12 1 3 5 7 9 11 13 2 4 6 8 10 12

St
or

ag
e

Time (month)

Max
LP
GA
WCA
Min

Reservoir 4

Reservoir 3

Reservoir 2

Reservoir 1

Fig. 15. Monthly optimal storage of the four-reservoir system

© ASCE 04014064-9 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 2015, 141(5): 04014064 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://dx.doi.org/10.2166/hydro.2010.061
http://dx.doi.org/10.1007/s40030-012-0013-8
http://dx.doi.org/10.2166/aqua.2008.151
http://dx.doi.org/10.1007/s11269-008-9249-5
http://dx.doi.org/10.1007/s11269-008-9249-5
http://dx.doi.org/10.2166/hydro.2008.018
http://dx.doi.org/10.1108/02644400910943617
http://dx.doi.org/10.1680/wama.900077
http://dx.doi.org/10.1680/wama.900077
http://dx.doi.org/10.2166/hydro.2007.025
http://dx.doi.org/10.2166/hydro.2007.025
http://dx.doi.org/10.1680/wama.1000037
http://dx.doi.org/10.1680/wama.1000037
http://dx.doi.org/10.1680/wama.2011.164.9.463
http://dx.doi.org/10.1680/wama.2011.164.9.463
http://dx.doi.org/10.1016/j.compstruc.2012.07.010
http://dx.doi.org/10.1016/j.compstruc.2012.07.010
http://dx.doi.org/10.1007/s11269-011-9802-5
http://dx.doi.org/10.1007/s11269-011-9802-5
http://dx.doi.org/10.2166/hydro.2010.105
http://dx.doi.org/10.1007/s11269-012-0132-z
http://dx.doi.org/10.1680/wama.1000028
http://dx.doi.org/10.1029/WR007i002p00273
http://dx.doi.org/10.1029/WR018i005p01337
http://dx.doi.org/10.1029/WR018i005p01337
http://dx.doi.org/10.1111/jawr.1987.23.issue-1
http://dx.doi.org/10.1680/wama.2011.164.7.321
http://dx.doi.org/10.1680/wama.2011.164.7.321
http://dx.doi.org/10.1061/(ASCE)0733-9496(2002)128:6(399)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2002)128:6(399)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2002)128:6(399)
http://dx.doi.org/10.1029/WR022i004p00483
http://dx.doi.org/10.1016/j.agwat.2007.02.013
http://dx.doi.org/10.1029/WR015i005p01017
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000426
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000426
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000426
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000426
http://dx.doi.org/10.1680/wama.1000044


Reznicek, K. K., and Simonovic, S. P. (1989). “Practical application of
successive linear programming for reservoir operations at Manitoba
Hydro.” Closing Gap Theory Pract., 180, 251–262.

Sabbaghpour, S., Naghashzadehgan, M., Javaherdeh, K., and Bozorg
Haddad, O. (2012). “HBMO algorithm for calibrating water distribution
network of Langarud city.” Water Sci. Technol., 65(9), 1564–1569.

Seifollahi-Aghmiuni, S., Bozorg Haddad, O., Omid, M. H., and
Mariño, M. A. (2011). “Long-term efficiency of water networks with

demand uncertainty.” Proc. Inst. Civ. Eng. Water Manage., 164(3),
147–159.

Soltanjalili, M., Bozorg Haddad, O., and Mariño, M. A. (2011). “Effect of
breakage level one in design of water distribution networks.” Water
Resour. Manage., 25(1), 311–337.

Wardlaw, R., and Sharif, M. (1999). “Evaluation of genetic algorithm for
optimal reservoir system operation.” J. Water Resour. Plann. Manage.,
10.1061/(ASCE)0733-9496(1999)125:1(25), 25–33.

© ASCE 04014064-10 J. Irrig. Drain Eng.

 J. Irrig. Drain Eng., 2015, 141(5): 04014064 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://dx.doi.org/10.2166/wst.2012.045
http://dx.doi.org/10.1680/wama.1000039
http://dx.doi.org/10.1680/wama.1000039
http://dx.doi.org/10.1007/s11269-010-9701-1
http://dx.doi.org/10.1007/s11269-010-9701-1
http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:1(25)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:1(25)



