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Abstract
Background: For the purposes of finding and aligning noncoding RNA gene- and cis-regulatory
elements in multiple-genome datasets, it is useful to be able to derive multi-sequence stochastic
grammars (and hence multiple alignment algorithms) systematically, starting from hypotheses about
the various kinds of random mutation event and their rates.

Results: Here, we consider a highly simplified evolutionary model for RNA, called "The TKF91
Structure Tree" (following Thorne, Kishino and Felsenstein's 1991 model of sequence evolution
with indels), which we have implemented for pairwise alignment as proof of principle for such an
approach. The model, its strengths and its weaknesses are discussed with reference to four
examples of functional ncRNA sequences: a riboswitch (guanine), a zipcode (nanos), a splicing
factor (U4) and a ribozyme (RNase P). As shown by our visualisations of posterior probability
matrices, the selected examples illustrate three different signatures of natural selection that are
highly characteristic of ncRNA: (i) co-ordinated basepair substitutions, (ii) co-ordinated basepair
indels and (iii) whole-stem indels.

Conclusions: Although all three types of mutation "event" are built into our model, events of type
(i) and (ii) are found to be better modeled than events of type (iii). Nevertheless, we hypothesise
from the model's performance on pairwise alignments that it would form an adequate basis for a
prototype multiple alignment and genefinding tool.

Background
One of the promises of comparative genomics is to anno-
tate previously undetectable functional signals in
genomic sequence, by identifying and characterising evo-
lutionarily conserved elements. A principled way to
extract such signals is by fitting the data to probabilistic
models of the molecular evolutionary process. The logic
runs as follows: suppose there are various kinds of con-
served element x, y, z... (e.g. exons, bits of RNA, promot-
ers, etc) that might explain an observed sequence
homology. For each of these scenarios, we can construct a

probabilistic model Mx, My, Mz... and compare the likeli-
hood of the observed data under each of these models.
The model with the best fit indicates the type of functional
element present in the sequence.

A groundbreaking example of how this probabilistic
approach can be used is the QRNA program, designed as
a comparative RNA gene predictor [1]. The three types of
element considered by QRNA are noncoding RNA (called
RNA), protein-coding exons (called COD for codon), and
unidentified DNA homology (called OTH for other). The
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former (RNA) was modeled using a Pairwise Stochastic
Context-Free Grammar (Pair SCFG); the latter two (COD
and OTH) using Pairwise Hidden Markov Models (Pair
HMMs). The noncoding RNA predictions generated a
high yield of experimental hits, and offered an informa-
tion-theoretic glimpse into a modern-day RNA world [2].

It is natural to consider how such an approach might be
applied to a pairwise comparison where the evolutionary
"distance" between the two sequences can vary. One
approach, analogous to the BLOSUM series of BLAST
matrices for proteins [3], is to partition a set of training
alignments into an ad hoc number of bins based on the
percentage sequence identity. Alignments in the same bin
(i.e. having comparable sequence identity) then represent
pairs of sequences at approximately equivalent distances.
For example, the BLOSUM62 substitution matrix was esti-
mated from pairwise alignments with at least 62% iden-
tity. This sort of approach is used by the RIBOSUM
basepair substitution matrices developed for RSEARCH
[4], recent versions of QRNA, and the stemloc program in
the author's DART software package.

An alternative approach, analogous to the PAM series of
BLAST matrices [5], is to treat the "distance" as a time
measurement, by postulating an underlying evolutionary
stochastic process or continuous-time Markov chain whose
mutation rate parameters are constant over time (called
stationarity in stochastic process theory). This evolutionary
rate approach uses fewer parameters – and makes fuller
use of the data – than the dividing-into-bins approach,
since it postulates an infinitesimal generator for all time-
scales of the process. For the PAM series, this generator
takes the form of an instantaneous substitution rate matrix;
for a primary-sequence model, the generator is a condi-
tionally-normalized Pair HMM or transducer [6]; for an
RNA secondary-structure model, we will see that the gen-
erator is a Pair SCFG; and so on. Furthermore, the evolu-
tionary rate model is supremely compatible with
likelihood-based phylogenetic methods [7]. It's therefore
worth considering such evolutionary rate-based models,
although (since they're trickier to analyse mathematically)
they're less suited to quick software prototyping than the
"bin-by-percent-ID" approach.

With this in mind, we can consider the evolutionary rate-
based equivalents of the three pairwise grammars used in
QRNA. The OTH model, for noncoding DNA sequence, is
a Pair HMM with affine gaps; the closest evolutionary
equivalent is the "long indel" model [8,9]. The long indel
model incorporates multi-residue indels and single-resi-
due (point) substitutions; it is based on the TKF91 model,
which only allows single-residue indels [10]. In contrast,
the current best evolutionary versions of the COD [11]
and RNA [12] models do not attempt to model indels,

changes in exon/intron structure or changes in RNA sec-
ondary structure. These are deficiencies which must even-
tually be addressed; ultimately they will limit the
usefulness of the models. For example, the lack of a treat-
ment of indels means that these models can only be used
on a pre-generated alignment; they cannot, by themselves,
be used to align sequences. In this report we present a sim-
ple but improved model of RNA structure evolution,
called the TKF91 Structure Tree (Figure 1). This model
allows not just covariant point substitutions of nucle-
otides, but also covariant insertions and deletions of
bases, base-pairs, whole stems and multi-stem structures
(Figure 2). Although we have not, in this paper, applied
the Structure Tree to multiple alignment, or adapted it to
include "long indels", the similarity to existing models
[8,13] suggests very natural forms for such adaptations of
our model. Furthermore, the TKF91 Structure Tree is alge-
braically tractable, yielding SCFG-based scoring schemes
for simultaneous RNA alignment and structure prediction
(from which alignment algorithms naturally follow). To
our knowledge, this is the first such model for the evolu-
tion of RNA structure to be described within an evolution-
ary rate framework.

A computer program for simultaneous pairwise alignment
and secondary structure prediction using the TKF91 Struc-
ture Tree has been developed in C++. The potential of the
model for RNA sequence alignment has been demon-
strated by testing the pairwise aligner on four functional
elements from the RFAM database [14]: the purine ribos-
witch, the nanos translational control element, the U2
splicing factor and the bacterial nuclear RNase P gene. The
TKF91 Structure Tree is a very simple evolutionary model
lacking some "obvious" features, such as natural selection
to favour the thermodynamically stable overlap of π-
orbitals between adjacent stacked bases in RNA double
helices. The fact that the model appears to work reasona-
bly well, despite the exclusion of such features, suggests
that very simple models of RNA evolution may turn out to
be sufficient to uncover a surprisingly large proportion of
RNA sequence homology.

Methods
We begin by reviewing the TKF91 model [10]. This model
describes the evolution of a single sequence under the
action of two kinds of mutation event: (i) point substitu-
tion events, which act on a single residue only; and (ii)
single-residue indel events, which insert or delete a single
residue. The rates of both types of event are independent
of the neighboring sequence.

The TKF91 model, as defined by Thorne et al, is time-
reversible. This has the implication, called the pulley prin-
ciple by Felsenstein, that the position of an ancestral node
in a phylogenetic tree can be slid around like a pulley
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without changing the likelihood of the observed data [7].
Aligning a pair of observed present-day sequences is there-
fore identical to aligning an ancestral sequence with its
descendant, and we can talk about ancestor-descendant
alignment without loss of generality.

The TKF91 model can be analysed algebraically [10], and
the probability distribution function (PDF) over ancestor-
descendant alignments can be expressed as a Pair HMM
[13] and extended to multiple sequences (using a "Multi-
ple HMM") [13]. While it is straightforward to define a
more general "long indel" model allowing multi-residue
deletions and insertions [8], the only Pair HMMs for this
general model that have been described to date are
approximations, inspired by the form of the TKF91
model: so far there is no exact Pair HMM solution of the
long indel model [8,9,15,16]. In this paper, we will not be
considering such long-indel models.

Definition of the TKF91 model
The state of the TKF91 process is described by a TKF91 link
sequence: a permanent immortal link at the left end of the
sequence, followed by zero or more mortal links. Over

time, mortal links can be deleted, and new mortal links
can be inserted to the right of either immortal or mortal
links. This can be treated as a birth-death process (λ0, µ0)
with constant immigration (λ0), where "births" are iden-
tified with single-link insertions occuring to the immedi-
ate right of the parent mortal link. and "immigration"
with insertions immediately right of the immortal link.

A further site-independent labeling is introduced on mor-
tal links using the singlet nucleotide alphabet, Ω = {A, C, G,
U}. Each site's alphabet label evolves as an independent
four-state reversible continuous-time Markov chain (RCTMC)
with substitution rate R0(i, j) from state i to state j. Labels
for newly inserted mortal links are drawn from the equi-
librium distribution p0(i) of this substitution process. By
reading off the labels of mortal links, the state of the
TKF91 process can be equated to a sequence in Ω*.

Analysis of the TKF91 model
The following functions of (λn, µn) arise in analyses of
equilibrium and transition probabilities in the TKF91
model [10]. Here t is a time parameter.

A TKF91 Structure Tree, and the corresponding RNA secondary structure (inset)Figure 1
A TKF91 Structure Tree, and the corresponding RNA secondary structure (inset).
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Here exp(Rnt) ≡ exp(A) is the exponential of the matrix
with elements Aij = Rn(i, j)t.

The meaning of the above functions is as follows. αn is the
probability of non-deletion; βn, γn are the probabilities of
insertion, following (respectively) an insertion and a dele-
tion; κn is the probability of continuing the ancestral
sequence; and Mn(i, j) is the conditional substitution

probability from i to j. Note (1 - γn)κn(1 - αn) = βn (delete
→ delete and insert → insert transition probabilities are
equal). Note also limt→∞ βn = κn.

The equilibrium probability distribution over sequences
in the TKF91 model is a geometric distribution with
parameter κ0. The residues at individual positions of the
sequence are independently, identically distributed at
equilibrium and are sampled from the equilibrum distri-
bution of the point substitution process.

The TKF91 singlet grammar is shown in Figure 3. The
TKF91 pair grammar is shown in Figure 4. Note that two
alternate sets of rule probabilities, jointly and condition-
ally normalised, can be read off from Figure 4: the condi-
tional probabilities can be read off from column P(d|a),
while the joint probabilities can be found by multiplying
the expressions in columns P(a) and P(d|a) to obtain P(a,
d).

An example mutation path for a TKF91 Structure Tree, illustrating the instantaneous transitions of the processFigure 2
An example mutation path for a TKF91 Structure Tree, illustrating the instantaneous transitions of the process. In each figure 
(N), gray arrows indicate the sites of past mutations in step (N - 1) → (N), while black arrows indicate the sites of upcoming 
mutations in step (N) → (N + 1). The types of mutation are as follows. (1) → (2): Point substitution of unpaired nucleotides in 
loop sequences. (2) → (3): Point and/or covariant substitution of paired nucleotides in stem sequences. (3) → (4): Insertions of 
single unpaired nucleotides in loop sequences. (4) → (5): Deletions of single unpaired nucleotides in loop sequences. (5) → (6): 
Insertion and deletion of paired nucleotides in stem sequences. (6) → (7): Insertion of stems into loop sequences. (7) → (8): 
Deletion of stems from loop sequences.
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Extending the TKF91 model
Various extensions to TKF91 have been proposed [8,9,15].
The most tractable kind of extension changes the meaning
of a "link" but leaves the indel process on links intact [15].
Our RNA model is one such extension, allowing two
different kinds of TKF91 model that can be mutually
nested to form loop and stem regions.

Consider the following extension to the TKF91 model,
which we call the TKF91 Structure Tree, and which is
shown in Figures 1 and 2. This model uses the fact that an
RNA secondary structure (excluding pseudoknots, kissing
loops and other "tertiary" interactions) can be identified
with a tree. The state of our stochastic process can thus be
described by a rooted tree: every node in this tree is either
a singlet, paired, loop or stem node. The tree can be broken
into overlapping loop sequences and stem sequences, which
correspond to strands of unpaired RNA (loops) or double
helices of basepaired RNA (stems). Loops are allowed to
contain unpaired nucleotides, and can also serve as a
branching-off point for nested stems. Stems, on the other
hand, are allowed to contain paired nucleotides, and are
terminated by a loop (this reflects the smallest unit of
RNA structure, which is a stem terminated by a loop). The
tree is rooted by a loop sequence. The above description
will now be made more precise.

Definition of the TKF91 Structure Tree
The state of the TKF91 Structure Tree is described by a
rooted tree where each node has degree ≤ 3.

There are four basic kinds of node in the tree: singlet,
paired, loop and stem.

Singlet and paired nodes correspond to observable nucle-
otides. Singlet nodes (labeled from Ω) represent inde-
pendently evolving nucleotides, as in TKF91. Paired nodes
(labeled from Ω2) represent covariant basepairs.

Loop and stem nodes determine the tree structure (Figure
1). Loop nodes (labeled L), of which the root node is one,
are present at the beginning of loop sequences, which
contain singlet and stem nodes and are written horizon-
tally. Stem nodes (labeled S) are present at the beginning
of stem sequences, which contain paired nodes, are termi-
nated by a loop node, and are written vertically.

The set of loop and stem node labels is written Φ. The full
set of node labels is Ω ∪ Ω2 ∪ Φ.

Φ = {L, S}

Ω = {A, C, G, U}

Ω2 = {AA, AC, AG, AU, CA, CC, CG, CU, GA, GC, GG, GU,
UA, UC, UG, UU}

Loop sequences
A loop sequence is very similar to a TKF91 link sequence:
as with TKF91, we have a leftmost immortal loop link fol-
lowed by zero or more mortal loop links. The mortal links
are inserted and deleted with rates λ1 and µ1, in the style
of TKF91. Each link is also a node in the Structure Tree.

Links are labeled from Ω ∪ Φ: the immortal loop link is
labeled L, while the mortal loop links are labeled from {A,
C, G, U, S}. As with the TKF91 model, the alphabet labe-
ling of each mortal link evolves as an independent five-
state RCTMC with substitution rate R1(i, j) from i to j and
equilibrium probability p1(i) of being in state i, plus the
additional restriction that R1(X, S) = R1(S, X) = 0 for all X
∈ Ω: in other words, embedded stems can't interconvert
with singlet nucleotides. See step 1 → 2 of Figure 2 for
examples of single-nucleotide substitution in loop
sequences, and steps 3 → 4 and 4 → 5 for single-nucle-
otide insertion and deletion.

The S-labeled links possess an independently evolving
embedded stem sequence that can be considered to "nest"
inside the loop sequence. If the S-link is deleted, then the
embedded stem (and all its children) is deleted with it.
Conversely, when a new S-link is inserted, it is inserted
with a complete subtree that is sampled from the equilib-
rium distribution over Structure Trees. See steps 6 → 7 and
7 → 8 of Figure 2 for examples of substructure insertion
and deletion.

Since a loop sequence is effectively a TKF91 sequence with
a special "fifth nucleotide" character representing an
embedded stem (the S link), it obeys the same statistics as
a TKF91 sequence. In particular, the probability distribu-
tion over loop lengths at equilibrium is a geometric distri-
bution with parameter κ1.

An SCFG with nonterminals {L} and terminals Ω for generat-ing the equilibrium distribution over TKF91 sequencesFigure 3
An SCFG with nonterminals {L} and terminals Ω for generat-
ing the equilibrium distribution over TKF91 sequences. Here 
X ∈ Ω is a generic terminal symbol.

TKF91 singlet rules

Rule lhs → rhs P (a)

1. L → XL κ0p0(X)
2. | ε 1 − κ0
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Stem sequences
A stem sequence is also derived from a TKF91 link
sequence. Unlike the TKF91 link sequence or the loop
sequence, however, it is written vertically (rather than hor-
izontally) in Figure 1. It consists of a topmost immortal
stem link, zero or more mortal stem links, and a bottom-
most, terminating loop link. Again, each link is also a node
in the Structure Tree.

Links are labeled from Ω2 ∪ Φ: the immortal stem link is
labeled S (this is the node in the parent loop sequence),
the mortal links are labeled with the paired nucleotide
alphabet Ω2 (each with an independent sixteen-state
RCTMC modeling covariant pair substitution along RNA
stems, with substitution rate matrix R2(i, j) and equilib-
rium p2(i)), and the terminating loop link is labeled L. The
mortal stem links experience TKF91-style insertion and
deletion with rates λ2 and µ2 (although, in the diagram-
matic form of Figure 1, newly inserted links are placed
immediately under their parent link, rather than immedi-
ately to the right). The terminating loop link L does not
contribute to insertion or deletion (so is effectively
immortal but inert) but possesses an independently
evolving loop sequence. See step 2 → 3 of Figure 2 for

examples of covariant basepair substitution in stem
sequences, and step 5 → 6 for covariant basepair insertion
and deletion.

Note that the immortal stem link, S, is only immortal
from the point of view of the stem sequence beneath it.
The S is itself a mortal link in a parent loop sequence, and
may be deleted as that sequence evolves. In this event, the
loop link L will also be deleted, along with all its children
(step 7 → 8, Figure 2). Thus, the only truly immortal link
is the loop node at the root of the Structure Tree, which
has no parents to deal death from above.

As with the loop sequence, a stem sequence is effectively a
TKF91 sequence with minor modifications, and it obeys
the same statistics as a TKF91 sequence. The probability
distribution over stem lengths at equilibrium is a geomet-
ric distribution with parameter κ2.

Analysis of the TKF91 Structure Tree
Figure 5 shows the SCFG for generating the TKF91 Struc-
ture Tree at equilibrium. There are two nonterminals, Φ,
and four terminals, Ω.

A Pair SCFG with nonterminals {L1, L2} and terminals Ωa ∪ Ωd for generating pairwise alignments of TKF91 sequences for an ancestor and a descendantFigure 4
A Pair SCFG with nonterminals {L1, L2} and terminals Ωa ∪ Ωd for generating pairwise alignments of TKF91 sequences for an 
ancestor and a descendant. Here X, Y ∈ Ω are generic terminal symbols.

TKF91 pair rules

Rule lhs → rhs P (a) P (d|a)

1. L1 → XaYdL1 κ0p0(X) (1− β0)α0M0(X,Y )

2. | YdL1 1 β0p0(Y )

3. | XaL2 κ0p0(X) (1− β0)(1− α0)

4. | ε 1− κ0 1− β0

5. L2 → XaYdL1 κ0p0(X) (1− γ0)α0M0(X,Y )

6. | YdL1 1 γ0p0(Y )

7. | XaL2 κ0p0(X) (1− γ0)(1− α0)

8. | ε 1− κ0 1− γ0
Page 6 of 23
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Figure 6 shows the pair stochastic context-free grammar
for an ancestor and descendant sequence separated by
evolutionary time t. Again, conditional and joint proba-
bilities can both be read from the figure. Nonterminals are
Φ1234; terminals are Ωa for the ancestor and Ωd for the
descendant.

Φ1234 = {L1, L2, L3, L4, S1, S2, S3, S4}

Ωa = {Aa, Ca, Ga, Ua}

Ωd = {Ad, Cd, Gd, Ud}

Dynamic programming alignment of sequences to these
grammars has the typical complexity for single-sequence
[17] and pairwise [18] SCFGs. That is, for Figure 5, the
time complexity is O(L3) and the memory complexity
O(L2), while for Figure 6, the time complexity is O(L3M3)
and the memory complexity O(L2M2), where L and M are
sequence lengths. This is also the complexity of the single-
sequence and two-sequence Sankoff algorithm [19], for
which SCFGs may be regarded as a probabilistic scoring
scheme. The time and memory complexity may be
reduced by the use of "banding" techniques [20,21], that
restrict the dynamic programming computation to the
(typically) highest-scoring central diagonal band of the
dynamic programming matrix, or by more flexible con-
straints on the DP iteration [18].

Grammar transformations
We now describe some transformations of Figures 5,6 per-
formed before implementing the grammar parsers.

Null cycles
The presence in a grammar of "null cycles" – sequences of
production rules which cause no net change – complicates
the parsing algorithms for that grammar. Generally, null
cycles are avoided by programmers designing SCFGs or
HMMs for sequence analysis [17]. However, in the gram-
mars derived automatically for the TKF91 Structure Tree,
null cycles arise naturally due to the possibility of zero-
length loop or stem sequences in the model.

There are several classes of null cycle in the grammars for
the Structure Tree model, shown in Table 1.

Degeneracies
As well as null cycles, there are other undesirable degener-
acies in the Structure Tree grammars. Grammatical degen-
eracy occurs when more than one parse has the same
meaning, so parses are degenerate rather than unique. Most
stochastic grammars useful for bioinformatics are degen-
erate in the sense that there are always many folds or
alignments consistent with the observed sequence data;
this sort of degeneracy is technically called ambiguity. We
are more concerned with other forms of degeneracy, such
as structural degeneracy (multiple parses denote a single
pattern of basepairing) and alignment degeneracy (multiple
parses denote a single alignment).

TKF91, in effect, skirts alignment degeneracy by assigning
meaning to the ordering of deletions and insertions in an
alignment, but alignment degeneracies arise in the Struc-
ture Tree model because there are multiple ways to delete
and insert things (e.g. deleting a whole stem, versus delet-
ing all its elements individually). There are also structural
degeneracies arising from "silent" (i.e. non-emitting)
loops or stems. In addition to the null cycles described
above, these include (for the singlet grammar) the unde-
sirable "loop bifurcation" L → LL and the "silent bulge" S
→ S (a null cycle). A full list of degeneracies for the singlet
and pair grammars is shown in Table 1.

Prevention of zero-length stems
The null cycles all involve zero-length stems and can be
broken (NB not marginalised; the likelihood is discarded)

by adding extra nonterminals  before the correspond-
ing Sk, copying all outgoing rules except the nonemitting
Sk → Lk. This also removes the loop bifurcations, but

leaves silent bulges of the form Sk → . The silent bulges

can be removed by adding nonterminals  before Lk,
copying all outgoing rules except Lk → ε, changing

 to  so as to prevent escape from 
without an unpaired emission, and adding new rules of

An SCFG with nonterminals Φ and terminals Ω for generat-ing the equilibrium distribution over Structure TreesFigure 5
An SCFG with nonterminals Φ and terminals Ω for generat-
ing the equilibrium distribution over Structure Trees. Here 
W, X ∈ Ω are generic terminal symbols.

Structure Tree singlet rules

Rule lhs → rhs P (a)

1. L → XL κ1p1(X)
2. | SL κ1p1(S)
3. | ε 1 − κ1

4. S → WSX κ2p2(WX)
5. | L 1 − κ2

Sk
’

Sk
’

Lk
’

L S Lk k k
’ ’→ L S Lk k k

’ ’ ’→ Lk
’

Page 7 of 23
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:166 http://www.biomedcentral.com/1471-2105/5/166
A Pair SCFG with nonterminals Φ1234 and terminals Ωa ∪ Ωd for generating pairwise alignments of Structure Trees for an ancestor and a descendantFigure 6
A Pair SCFG with nonterminals Φ1234 and terminals Ωa ∪ Ωd for generating pairwise alignments of Structure Trees for an 
ancestor and a descendant. Here W, X, Y, Z ∈ Ω are generic terminal symbols.

Structure Tree pair rules

Rule lhs → rhs P (a) P (d|a)

1. L1 → XaYdL1 κ1p1(X) (1− β1)α1M1(X,Y )

2. | YdL1 1 β1p1(Y )

3. | XaL2 κ1p1(X) (1− β1)(1− α1)

4. | S1L1 κ1p1(S) (1− β1)α1

5. | S4L1 1 β1p1(S)

6. | S3L2 κ1p1(S) (1− β1)(1− α1)

7. | ε 1− κ1 1− β1

8. S1 → WaYdS1ZdXa κ2p2(WX) (1− β2)α2M2(WX,Y Z)

9. | YdS1Zd 1 β2p2(Y Z)

10. | WaS2Xa κ2p2(WX) (1− β2)(1− α2)

11. | L1 1− κ2 1− β2

12. L2 → XaYdL1 κ1p1(X) (1− γ1)α1M1(X,Y )

13. | YdL1 1 γ1p1(Y )

14. | XaL2 κ1p1(X) (1− γ1)(1− α1)

15. | S1L1 κ1p1(S) (1− γ1)α1

16. | S4L1 1 γ1p1(S)

17. | S3L2 κ1p1(S) (1− γ1)(1− α1)

18. | ε 1− κ1 1− γ1

19. S2 → WaYdS1ZdXa κ2p2(WX) (1− γ2)α2M2(WX,Y Z)

20. | YdS1Zd 1 γ2p2(Y Z)

21. | WaS2Xa κ2p2(WX) (1− γ2)(1− α2)

22. | L1 1− κ2 1− γ2

23. L3 → XaL3 κ1p1(X) 1

24. | S3L3 κ1p1(S) 1

25. | ε 1− κ1 1

26. S3 → WaS3Xa κ2p2(WX) 1

27. | L3 1− κ2 1

28. L4 → YdL4 1 κ1p1(Y )

29. | S4L4 1 κ1p1(S)

30. | ε 1 1− κ1

31. S4 → YdS4Zd 1 κ2p2(Y Z)

32. | L4 1 1− κ2
Page 8 of 23
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the form  to allow escape if there is a genuine
bifurcation.

A more careful analysis, marginalising null cycles and
silent bulges rather than simply ignoring them, is almost
certainly possible.

Transformation to canonical form
Figures 7 and 8 show the singlet and pairwise grammars
with null cycles and silent bulges removed, in the canoni-
cal form used by the DART software package [18]. As well
as the new sets of nonterminals described above (Φ' for

singlet,  for pair) the grammar includes nontermi-

nals dedicated to bifurcations (  for singlet,  for

pair) and emissions (  for singlet,  for pair). The
separation of the nonterminals into null, bifurcation and
singlet/pair emission sets puts the grammar in the form
understood by the DART library [18]. The full
nonterminal alphabets are Ψ for singlet states and Ψ1234

for pair states.

The asymptotic complexity of the dynamic programming
recursions implied by these grammars is unchanged by
the transformation to DART form. For Figure 7, the time
complexity is O(L3) and the memory complexity O(L2),
while for Figure 8, the time complexity is O(L3M3) and the
memory complexity O(L2M2), where L and M are
sequence lengths. Again, the complexity may be reduced
by the use of "banding" [20,21] or other [18] constraints.

Parameterisation of the TKF91 Structure Tree
The Expectation Maximisation (EM) algorithm is often
used for training BLOSUM-like models, e.g. estimating
emission and transition probabilities for Pair HMMs [17]
or Pair SCFGs [1]. It is also useful for training evolutionary
rate models, which have roughly the same number of
parameters and can make use of larger training sets (since
the training data don't have to be "binned" by percent
identity).

Table 1: Classes of degeneracy in the Structure Tree grammars. Permutations and combinations of these cycles are also possible.

Degeneracy Figure Nonterminal sequence Rule sequence Comment

Null cycle 5 L → S → L 2,3,5
6 L1 → ... → L1 4,7,11 via S1L1

5,32,30 via S4L1
L2 → ... → L2 17,27,25
L1 → L2 ... 6,27,25
...L2 → L1 15,11,7 via S1L1

16,32,30 via S4L1
L3 → S3 → L3 24,25,27
L4 → S4 → L4 29,30,32

Loop bifurcation 5 L → LL 2,5
6 L1 → L1L1 4,11

L2 → L1L1 15,11
L3 → L3L3 24,27
L4 → L4L4 29,32

Silent bulge 5 S → L → S 5,3,2 Cyclic permutation of L → S → L
6 S2 → L1 → S1 22,4,7

S1 → L1 → S1 11,4,7 Cyclic permutation of L1 → S1 → L1
S3 → L3 → S3 27,24,25 Cyclic permutation of L3 → S3 → L3
S4 → L4 → S4 32,29,30 Cyclic permutation of L4 → S4 → L4

L S S Lk k k k
’ ’ ’→

Φ134
’

 1234

 1234

Φ

Ψ Φ Φ

Φ

’ ’ ’

’

’

’ ’ ’

{ , }

{ , , }

{ , }

{ , ,

=

=

=

= ∪ ∪ ∪

=

L S

B B C

L S

L L L

a a




 

 
 

134 1 3 4
’’ ’ ’ ’

’ ’ ’

, , , }

{ , , , , , , , ,

S S S

B B B B B B B B C

1 3 4

1234 41 32 11 33 44 11 33 44 = 111 33 44

1234 1 1 2 3 4 1 1 2 3

, , }

{ , , , , , , , , ,

C C

L L L L L S S S Sad d a a d ad d a a d = SS4

1234 1234 134 1234 1234

}
’Ψ Φ Φ= ∪ ∪ ∪ 
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The EM algorithm for the TKF91 Structure Tree can be sep-
arated into two parts, one for the substitution process and
one for the indel process. Earlier work [22] showed how
to estimate the maximum-likelihood substitution rate
matrix Rn using the EM algorithm, given the following suf-
ficient statistics:

, the expected number of insertions of state d;

, the expected number of aligned sites with ancestral

state a and descendant state d.

A forthcoming paper describes how to estimate the maxi-
mum-likelihood indel rates λn, µn for a TKF91 model
using the EM algorithm, given the following sufficient
statistics:

, the expected number of deleted links not followed
by an insertion;

, the expected number of surviving links not fol-
lowed by an insertion;

, the expected number of deleted links followed by
an insertion;

, the expected number of surviving links followed by
an insertion.

We can calculate all the above update statistics simultane-
ously from data (the E-step) using a constrained version of
the Inside-Outside algorithm [18] for the grammar in Fig-
ure 8, as follows. Assume the joint normalisation, P(d, a),

and suppose that  is the posterior expectation of the
number of times rule m of Figure 8 was applied, as
returned by the Inside-Outside algorithm. For emit rules,

let  be the expected number of times rule m was used
to emit the specific nonterminals X, Y ... ∈ Ω. Then

A DART-form SCFG with nonterminals Ψ and terminals Ω for generating ancestral Structure TreesFigure 7
A DART-form SCFG with nonterminals Ψ and terminals Ω for generating ancestral Structure Trees. Here W, X, Y, Z ∈ Ω are 
generic terminal symbols.

Structure Tree singlet rules

Rule lhs → rhs P (a)

1. L → aL κ1

2. | B κ1p1(S)

3. | ε 1 − κ1

4. S → aS κ2

5. | L′ 1 − κ2

Bifurcation rules

Rule lhs → rhs P (a)

11. B → S′L 1

12. B′ → S′L′ 1

13. C → S′S′ 1

Null cycle-breaking rules

Rule lhs → rhs P (a)

6. L′ → aL κ1

7. | B′ κ1p1(S)

8. | C κ2

1
p1(S)2(1 − κ1)

10. S′ → aS κ2

Emission rules

Rule lhs → rhs P (a)

14. aL → XL p1(X)

15. aS → WS2X p2(WX)

ˆ ( )Nd
n

ˆ
,

( )Na d
n

ˆ ( )N n

ˆ ( )N n
•

ˆ ( )N n
•

ˆ ( )N n
••

r̂m

ˆ ...rm
XY
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A DART-form Pair SCFG with nonterminals Ψ1234 and terminals Ωa ∪ Ωd for generating pairwise alignments of Structure Trees for an ancestor and a descendantFigure 8
A DART-form Pair SCFG with nonterminals Ψ1234 and terminals Ωa ∪ Ωd for generating pairwise alignments of Structure Trees 
for an ancestor and a descendant. Here W, X, Y, Z ∈ Ω are generic terminal symbols.

Structure Tree pair rules

Rule lhs → rhs P (a) P (d|a)

1. L1 → adL1 κ1 (1 − β1)α1

2. | dL1 1 β1

3. | aL2 κ1 (1 − β1)(1 − α1)

4. | B11 κ1p1(S) (1 − β1)α1

5. | B41 1 β1p1(S)

6. | B32 κ1p1(S) (1 − β1)(1 − α1)

7. | ε 1 − κ1 1 − β1

8. S1 → adS1 κ2 (1 − β2)α2

9. | dS1 1 β2

10. | aS2 κ2 (1 − β2)(1 − α2)

11. | L′

1
1 − κ2 1 − β2

12. L2 → adL1 κ1 (1 − γ1)α1

13. | dL1 1 γ1

14. | aL2 κ1 (1 − γ1)(1 − α1)

15. | B11 κ1p1(S) (1 − γ1)α1

16. | B41 1 γ1p1(S)

17. | B32 κ1p1(S) (1 − γ1)(1 − α1)

18. | ε 1 − κ1 1 − γ1

19. S2 → adS1 κ2 (1 − γ2)α2

20. | dL1 1 γ2

21. | aL2 κ2 (1 − γ2)(1 − α2)

22. | L′

1
1 − κ2 1 − γ2

23. L3 → aL3 κ1 1

24. | B33 κ1p1(S) 1

25. | ε 1 − κ1 1

26. S3 → aS3 κ2 1

27. | L′

3
1 − κ2 1

28. L4 → dL4 1 κ1

29. | B44 1 κ1p1(S)

30. | ε 1 1 − κ1

31. S4 → dS4 1 κ2

32. | L′

4
1 1 − κ2

Bifurcation rules

Rule lhs → rhs P (a) P (d|a)

51. B11 → S′

1
L1 1 1

52. B41 → S′

4
L1 1 1

53. B32 → S′

3
L2 1 1

54. B33 → S′

3
L3 1 1

55. B44 → S′

4
L4 1 1

56. B′

11
→ S′

1
L′

1
1 1

57. B′

33
→ S′

3
L′

3
1 1

58. B′

44
→ S′

4
L′

4
1 1

59. C11 → S′

1
S′

1
1 1

60. C33 → S′

3
S′

3
1 1

61. C44 → S′

4
S′

4
1 1

Null cycle-breaking rules

Rule lhs → rhs P (a) P (d|a)

33. L′

1
→ adL1 κ1 (1 − β1)α1

34. | dL1 1 β1

35. | aL2 κ1 (1 − β1)(1 − α1)

36. | B′

11
κ1p1(S) (1 − β1)α1

37. | B41 1 β1p1(S)

38. | B32 κ1p1(S) (1 − β1)(1 − α1)

39. | C11 κ2

1
(1 − κ1) (1 − β1)

3α2

1

×p1(S)2

40. S′

1
→ adS1 κ2 (1 − β2)α2

41. | dS1 1 β2

42. | aS2 κ2 (1 − β2)(1 − α2)

43. L′

3
→ aL3 κ1 1

44. | B′

33
κ1p1(S) 1

45. | C33 κ2

1
(1 − κ1) 1

×p1(S)2

46. S′

3
→ aS3 κ2 1

47. L′

4
→ dL4 1 κ1

48. | B′

44
1 κ1p1(S)

49. | C44 1 κ2

1
(1 − κ1)

×p1(S)2

50. S′

4
→ dS4 1 κ2

Emission rules

Rule lhs → rhs P (a) P (d|a)

62. adL1 → XaYdL1 p1(X) M1(X,Y )

63. dL1 → YdL1 1 p1(Y )

64. aL2 → XaL2 p1(X) 1

65. aL3 → XaL3 p1(X) 1

66. dL4 → YdL4 1 p1(Y )

67. adS1 → WaYdS1ZdXa p2(WX) M2(WX,Y Z)

68. dS1 → YdS1Zd 1 p2(Y Z)

69. aS2 → WaS2Xa p2(WX) 1

70. aS3 → WaS3Xa p2(WX) 1

71. dS4 → YdS4Zd 1 p2(Y Z)
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The terms in parentheses are to be omitted if the condi-
tional normalisation, P(d|a), is used.

The relationship between the expected insert and match

usage ,  and the expected start, wait and transi-

tion usage  of the previous work [22] is as

follows

where  is defined as in the previous work [22]

Results
The pairwise aligner for the TKF91 Structure Tree is dis-
tributed as part of the DART package at the following URL:

http://www.biowiki.org/

The aligner is based on the Stochastic Context-Free Gram-
mars (SCFGs) shown in Figures 7 and 8, as explained in
the Methods section. The specific implementation uses a
general Pair SCFG dynamic programming (DP) engine
with accelerating heuristics, to be described in a later
paper (manuscript in preparation).

To test the performance of the model at aligning and pre-
dicting structure of RNA sequence, we considered pairs of
RNA sequences from four different families, with varying
degrees of homology at the level of secondary structure.
The four families were the purine riboswitch (Figure 9),
the nanos translational control element (TCE) from Dro-
sophila (Figure 10), the U2 spliceosomal factor (Figure 11)
and bacterial nuclear RNase P (Figure 12).
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Alignment of purine riboswitches from Bacillus halodurans (AP001509.1) and Streptococcus pneumoniae (AE007476.1)Figure 9
Alignment of purine riboswitches from Bacillus halodurans (AP001509.1) and Streptococcus pneumoniae (AE007476.1).

AP001509.1 UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC.UCAAUAUGG.GAUGAGGGUCUCUAC.AGGUA.CCGUAAA.UACCU

.................<<<<<<<<.....<<.<<........>>.>>...........<<<<<.........>>>>>

AE007476.1 AAAAUUGAAUAUCGUUUUACUUGUUUAU.GUCGUGAAU.UGG.CACGA.CGUUUCUACAAGGUG.CCGG.AA.CACCU

.................<<<<<<<<.....<<.<<........>>.>>...........<<<<<.........>>>>>

Stem # .................00000000.....11111........11111...........22222.........22222

AP001509.1 AGCUACGAAAAGAAUGCAGUUAAUGU

...>>>>>>>>...............

AE007476.1 AACAAUAAGUAAGUCAGCAGUGAGAU

...>>>>>>>>...............

Stem # ...00000000...............
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For a given family, denote the two sequences in the family
by A, B. The following computations were performed:

(1A), (1B) For each of the two sequences (A, B) taken
individually, the secondary structure was predicted with-

out the aid of comparative information from the other
sequence, using the single-sequence SCFG of Figure 7.

Alignment of nanos TCEs from Drosophila virilis (DVU24695) and Drosophila melanogaster (DRONANOS)Figure 10
Alignment of nanos TCEs from Drosophila virilis (DVU24695) and Drosophila melanogaster (DRONANOS).

Alignment of U2 splicing factors from Tetrahymena thermophila (X63784.1) and Leptomonas collosoma (X56455.1)Figure 11
Alignment of U2 splicing factors from Tetrahymena thermophila (X63784.1) and Leptomonas collosoma (X56455.1).

DVU24695 G........UGGAA...GAAGCUCUGGCAGCUUU...UUAAGCGUUUAUAUA

<........<<<<<...<<<<<<.....>>>>>>.......<<<<<<<<<<<

DRONANOS AAUCCAGCUCUGGAGCAGAGGCUCUGGCAGCUUUUGC...AGCGUUUAUAUA

<<<<<<<<<<<<<<<<<<<<<<<.....>>>>>>>>>....<<<<<<<<<<<

Stem # 00000000001111222222222.....222222222....33333333333

DVU24695 A.GAGUUAUAUAUAUGCGCG.UUCC....A........C

........>>>>>>>>>>>..>>>>....>........>

DRONANOS ACAUGAAAUAUAUAUACGCAUUCCGAUCAAAGCUGGGUU

........>>>>>>>>>>>..>>>>....>>>>>>>>>>

Stem # ........33333333333..1111....0000000000

X63784.1 AUACCUUCUCGGCCUUUUGGCUAAGAUCAAGUGUAGUAUCUGUUCUUAUCAGUGUGAAAACUGAUACUGUCCCUACUAGG

......<<<.<<<<....>>>>.>>>....................<<<<<<........>>>>>>.<<<<<<<...>>>

X56455.1 AUAUCUUCUCGGCUUUUUAGCUAAGAUCAUGUUUUUAAAAUGUUCUUAUCAGAGUAACUCCUGAUAUUUGCCU..UC.GG

......<<<.<<<<....>>>>.>>>....................<<<<<<........>>>>>>.<<<<<<.....>>

Stem # ......000.1111....1111.000....................222222........222222.333333.....33

X63784.1 GACAUGUGGUUUCACAUUAAUUUUUCACAGGGGUCGGAUUCACUAGUGGCUUGCCCUAGUCCCGACGC.GGUUGCCCUUG

>>>>............................<<<<<<......<<.<<<..>>>>>...>>>>>>...<<<<<<<<<<<

X56455.1 GCAAUUAGGAAU..ACGAAAUCUUUGAUCAC...................................GCGAGUUUUCCUGG

>>>>.................................................................<<<<<<<<<<<

Stem # 3333............................444444......55.666..66655...444444...77777788888

X63784.1 GCCUGCACGCUACUAAGGAGCGGCUACCCCUG

<...........>>>>>>.>>>>>>.......

X56455.1 AGUUCCACUCUUUCCAGGCGAAGCUCGCCCUU

<...........>>>>>>.>>>>>>.......

Stem # 8...........888888.777777.......
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(2) The two sequences (A, B) were then aligned using the
TKF91 model, without making use of any model of RNA
structure, using the Pair HMM of Figure 4.

(3) Finally, the two sequences (A, B) were aligned using
the TKF91 Structure Tree model introduced in this paper,
using the Pair SCFG of Figure 8.

These computations allow a comparison between the
TKF91 model, the single-sequence SCFG of Figure 7 and
the TKF Structure Tree. The results, including structure and
alignment predictions, are illustrated in a compact visual
representation that we call a "fold/alignment dotplot".
The key to interpreting the fold/alignment dotplot is
shown in Figure 13. The subregions labeled a-f have the
following meaning:

(a) This triangular dotplot illustrates the single-sequence
structure prediction for sequence A of computation (1A).
The pixel color at co-ordinates (x, y) represents the poste-
rior probability that residues x and y of A are base-paired,
in the absence of any information from sequence B.

(b) This triangular dotplot illustrates the single-sequence
structure prediction for sequence B of computation (1B).
The pixel color at co-ordinates (x, y) represents the poste-
rior probability that residues x and y of B are base-paired,
in the absence of any information from sequence A.

(c) This rectangular dotplot illustrates the structure-free
pairwise alignment of computation (2). The pixel color at
co-ordinates (x, y) represents the posterior probability
that residue x of A is homologous to residue y of B, in the

Alignment of nuclear RNase P genes from Pichia canadensis (AF186219.1) and Clavispora opuntiae (AF186216.1)Figure 12
Alignment of nuclear RNase P genes from Pichia canadensis (AF186219.1) and Clavispora opuntiae (AF186216.1).

AF186219.1 UCCCUCCAAAGUCUGUAUUUUACCUGCCUACAAAAGGAGGAGUCCCCGGCGGACUUCCUCAGUAUUCGCAGGUGGGAAAU

.....................<<<<...........<<<<<.<<<.....>>>..>>>>>.........>>>>.......

AF186216.1 ................................................................................

................................................................................

Stem # .....................0000...........11111.222.....222..11111.........0000.......

AF186219.1 UCGGUGAAAUCGCUCUGCCCACCAGGGAAAAGGUAAAACUCUCCCUGGUCCUUGGAAGGACUUGUCCUUCUGAGUCUCGU

...........<....<<<<.....................................................<<<<<..

AF186216.1 ......GUU.CUCCCCAUCCCUCUCUGGGUGCUUCUGCAUUCAGAGCGAUAUAA...................UGCUCUU

...........<....<<<<.....................................................<<<<<..

Stem # ...........3....4444.....................................................55555..

AF186219.1 GAGAGAUGC...CAAGCGUGGAGACGCUAGGGUGGUCGCCAUAAGAAACUUCA.........ACAGGUCACACUGUU...

..>>>>>.....<<<<<<<....>>>>>>>...<<<<<<<........................................

AF186216.1 GAGAGCUUCCUGGGCGUAGAUAGUUACGCCGGGCGUCGCCAUCAGAAA.AACAGCAGAGCUAC........G....CUUU

..>>>>>.....<<<<<<<....>>>>>>>...<<<<<<<........................................

Stem # ..55555.....6666666....6666666...7777777........................................

AF186219.1 ..AUGGGAGGCGCCACGGGCAGUUGGUCCCUUUGCAUCCAGAAGGAAGCUUUGGGGCUGUUGAGUGCAAUAUACAGAGCG

........>>>>>>>.>>>>..>......................................................<<<

AF186216.1 GCAUGGGAGGCGGCGCGGAUGGUUGGUCUUUCAAUACGAGG..........AAAGGCUGUUGAGUGCAAUUUGCGGCC..

........>>>>>>>.>>>>..>......................................................<..

Stem # ........7777777.4444..3......................................................888

AF186219.1 CUAGAAGGAGUCCUUCCUUCUACGCGUAA

<<<<<.............>>>>.>>>>..

AF186216.1 ..........UUUG............GCA

..........................>..

Stem # 89999.............9999.8888..
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absence of any structural information from the two
sequences.

(d) This triangular dotplot illustrates the comparative
structure prediction for sequence A of computation (3).
The pixel color at co-ordinates (x, y) represents the mar-

Fold-alignment dotplot keyFigure 13
Fold-alignment dotplot key. These plots compare separate and integrated methods for RNA alignment and folding. Regions (a) 
and (b) use the single-sequence SCFG of Figure 7; region (c) use the TKF91 pair HMM of Figure 4; and regions (d), (e) and (f) 
use the pair SCFG of Figure 8, which is based on the TKF91 Structure Tree (see Results section).

Sequence B...... Sequence A...

S
equence B

...
S

equence A
...

(f)

(a)
(c)

(b)

(e)

Predicted basepairs in B

Alignment of A (horiz.) to B (vert.)

Alignment of B (horiz.) to A (vert.)
Predicted basepairs in A

Predicted basepairs in B

(non−comparative)

(non−comparative) 

(ignoring structure, primary sequence alignment only)

(taking structure into consideration)

(by comparison with A)

(by comparison with B)
Predicted basepairs in A

(d)
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ginal posterior probability that residues x and y of A are
base-paired, summed over all alignments to sequence B.

(e) This triangular dotplot illustrates the comparative
structure prediction for sequence B of computation (3).
The pixel color at co-ordinates (x, y) represents the mar-
ginal posterior probability that residues x and y of B are
base-paired, summed over all alignments to sequence A.

(f) This rectangular dotplot illustrates the structural pair-
wise alignment of computation (3). The pixel color at co-
ordinates (x, y) represents the marginal posterior proba-
bility that residue x of B is homologous to residue y of A,
summed over all secondary structures of sequences A and
B. Note that the orientation of this plot is flipped
(reflected about the diagonal axis) relative to (c).

In addition, the "true" (published) structures and align-
ments are overlaid on the computational results as blue
squares (or blue dots, on the larger images).

The rate parameters used for the TKF91 Structure Tree
were obtained by maximum likelihood training from a
random selection of structurally-annotated RFAM align-
ments, as follows:

λ1 = 0.027, µ1 = 0.03; λ2 = 0.007, µ2 = 0.01; p1(S) = 0.01.
The substitution rate parameters were taken from the
PFOLD program [12]. The evolutionary "time" between
the two sequences was set to 1 in each case. In the case of
the RNase P and U2 genes, the DP algorithms were con-
strained to a band along the main diagonal of the DP
matrix; this constraint was imposed due to limited mem-
ory. No such constraint was imposed for the purine ribos-
witch computations.

The posterior probabilities of folding and alignment (dot-
plots a-f) obtained by DP on these three classes of element
are shown in Figure 14 (for the purine riboswitches), Fig-
ure 15 (for the nanos TCEs), Figure 16 (for the U2
snRNAs) and Figure 17 (for the bacterial nuclear RNase P
genes). In all cases, the Pair SCFG sharply resolves the
most probable stems in the sequences; for the nanos, U2
and RNase P sequences, it also resolves the pairwise
alignment.

Purine riboswitch
The purine riboswitches are a class of cis-acting regulatory
elements that specifically bind adenine or guanine and are
involved in the post-translational regulation of purine
transport and biosynthesis [23]. Figure 9 shows the align-
ment of the two riboswitch sequences, from Bacillus halo-
durans and Streptococcus pneumoniae, which was taken
from the RFAM database [14]. The two secondary struc-

tures of this pair are exactly identical, although the pri-
mary sequences are considerably diverged.

Figure 14 shows the posterior dotplots for the purine
riboswitches. This is an easy case for the model, with a
strong signal and few gaps. The TKF91 Structure Tree
grammar (Figure 8) is able to identify all stems correctly,
with some slight uncertainty over the alignment. The pri-
mary-sequence TKF91 grammar (Figure 4) is similarly
able to find the correct alignment, although the singlet
folding grammar (Figure 7) has difficulty resolving the
stems (note that this grammar does not model basepair
stacking effects).

Nanos translational control element
The translational control element (TCE) is a regulatory
sequence from the 3' untranslated region of the Drosophila
nanos gene, involved in post-translational degradation
and transport of nanos mRNA, which localises to the pos-
terior of oocytes and other cell lines [24]. Figure 10 shows
the alignment of the two TCE sequences, from Drosophila
virilis and Drosophila melanogaster, which was curated by
hand from the description by Gavis et al [24]. The two sec-
ondary structures of this pair share the same overall
bifurcating-stem structure, but with some changes in stem
length.

Figure 15 shows the posterior dotplots for the nanos
TCEs. This time the TKF91 Structure Tree grammar (Figure
8) does considerably better than the primary-sequence
TKF91 grammar (Figure 4) at finding the correct align-
ment, probably due to the gaps at the end (the TKF91
grammar in Figure 4 is effectively a global aligner with lin-
ear gaps, so that the alignments it produces tend to form
a continuous line from corner to corner of the DP matrix,
without major discontinuities, as can be seen in region (c)
of Figure 15). Again, the Structure Tree does much better
than the singlet folding grammar (Figure 7) at distinguish-
ing real stems from background noise, since it is able to
use covariation of basepaired residues as a clue.

U2 snRNA
The U2 small nuclear RNA recognizes and binds the
branch point region of introns in pre-mRNA [25]. Figure
11 shows the alignment of the two splicing factors, from
Tetrahymena thermophila and Leptomonas collosoma, was
taken from the RFAM database [14]. The secondary
structures of the two sequences are quite similar, but the
Leptomonas U2 has a deletion of roughly 35 bp that elim-
inates an entire stem (stems 4–6 on Figure 11).

Figure 16 shows the posterior dotplots for the U2 snRNAs.
As before, the Structure Tree's stem predictions (regions
(d) and (e), above the main diagonal of Figure 16) are far
more specific than the singlet grammar's predictions
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(regions (a) and (b), below the main diagonal). The pri-
mary-sequence TKF91 grammar (Figure 4) is, again,
hampered by its global alignment and linear gap penalty,

and the alignment in region (c) is stretched and also
uncertain. However, the Pair SCFG (Figure 8) manages to
identify the 35-bp deletion and correctly finds stem 4 of

Fold-alignment dotplot of purine riboswitches (see Figure 13 for key)Figure 14
Fold-alignment dotplot of purine riboswitches (see Figure 13 for key). From a wide range of potential stems (faint red diagonal 
lines, plots a-b), the Pair SCFG clearly resolves the three strongest (sharp white diagonal lines, plots d-e). In this case, the pri-
mary sequence alignment is relatively clear (plot c) and so little alignment clarity is gained by including structural information 
(plot f).
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Figure 11, though stems 5–6 have a lower probability
(when predicting the structure of this deleted region, the

Pair SCFG is unable to use covariation and must rely on
basepairing information alone).

Fold-alignment dotplot of nanos translational control elements (see Figure 13 for key)Figure 15
Fold-alignment dotplot of nanos translational control elements (see Figure 13 for key). From a range of potential stems (faint 
red diagonal lines, plots a-b), the Pair SCFG resolves the three true stems sharply using the comparative signal (white diagonal 
lines, plots d-e). Some uncertainty in the primary sequence alignment (parallel blurred red lines, plot c) is resolved by including 
structural information, including a deletion in the outermost stem (broken diagonal line, plot f).
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Bacterial nuclear RNase P
Nuclear RNase P is a class of endoribonuclease ribozyme
involved in the production of mature 5' ends of transfer

RNAs during tRNA biosynthesis [26]. Figure 12 shows the
alignment of the two ribozyme sequences, from Pichia
canadensis and Clavispora opuntiae, which was taken from

Fold-alignment dotplot of U2 splicing factors (see Figure 13 for key)Figure 16
Fold-alignment dotplot of U2 splicing factors (see Figure 13 for key). From a range of potential stems (faint red diagonal lines, 
plots a-b), the Pair SCFG resolves the true stems sharply using the comparative signal (white diagonal lines, plots d-e). The pri-
mary sequence alignment is highly uncertain (blurred red lines, plot c) but this uncertainty, including the deletion of a whole 
stem, is resolved by including structural information (broken diagonal line, plot f).
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the RFAM database [14]. The secondary structures of the
two sequences are quite different, with major change in

stem length and deletion of whole stem structures, charac-
teristic of this gene family (stems 0–2 and 8–9 of Figure

Fold-alignment dotplot of nuclear RNase P genes (see Figure 13 for key)Figure 17
Fold-alignment dotplot of nuclear RNase P genes (see Figure 13 for key). From a wide range of potential stems (faint red diag-
onal lines, plots a-b), the Pair SCFG resolves several sharply using the comparative signal (sharp white diagonal lines, plots d-e). 
Uncertainty in the primary sequence alignment (wide red lines, plot c) ?? is also resolved by including structural information 
(arrow white line, plot f).
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12). Figure 17 shows the posterior dotplots for the RNase
P genes. This family is one of the most mutable in RFAM,
and the TKF91 Structure Tree performs poorly on this
case. Both the Pair HMM (Figure 4; region (c) of Figure
17) and the Pair SCFG (Figure 8; region (f) of Figure 17)
get the alignment almost entirely wrong, except for a
region toward the 3' end that doesn't contain any stems
(the region just before stem 8 of Figure 12). As a
consequence, the Pair SCFG also fails to predict any stems
correctly; the singlet SCFG (Figure 7) does no better.
Region (f) of Figure 17 displays the continuous-line align-
ment from corner-to-corner, that is characteristic of global
aligners with linear gaps: unlike the case of the U2 align-
ment, the structural signal here is insufficient to compen-
sate for the indel-modeling deficiencies of the TKF91
Structure Tree.

The log-odds score of the "true" alignment (Figure 12)
under the Structure Tree model is highly negative (-547
bits), suggesting that the model is poorly adapted for this
example. Compare this with the scores for the previous
examples: Figure 9 scored 2 bits, Figure 10 scored -82 bits
and Figure 11 scored 35 bits. The low score for the nanos
TCEs (Figure 10) was due primarily to the deletions in the
outermost stem; the score rose to -5 bits with judicious
trimming and careful choice of the "time" parameter.

Discussion
We have described a reversible continuous-time Markov
chain, called the "TKF91 Structure Tree", that describes
both (i) covariant substitutions and indels in RNA
sequence contingent upon a particular secondary
structure, and (ii) changes in the underlying RNA second-
ary structure, corresponding to gain and loss of substruc-
tures. A pairwise alignment algorithm based on the model
has been implemented in C++ and tested on four
homologous pairs of RNA functional element from RFAM
[14]. As with the TKF91 model on which the TKF91 Struc-
ture Tree is based [10], it should be possible, systemati-
cally, to design corresponding algorithms for multiple
sequences, using either exhaustive dynamic programming
[6,27] or Markov Chain Monte Carlo [13].

It should be noted that the present implementation of the
TKF91 Structure Tree is not designed to be a direct com-
petitor to programs like FOLDALIGN [20], DYNALIGN
[21] or CARNAC [28]. Such pairwise alignment programs
are optimized for criteria like alignment accuracy and sen-
sitivity. The TKF91 Structure Tree, on the other hand, was
designed as an expository evolutionary model, ultimately
aimed at phylogenetic analysis of multiple RNA
sequences in an evolutionary likelihood context. The pair-
wise alignment program reported in this paper was imple-
mented to demonstrate the potential of this evolutionary
model, rather than for use as a practical alignment tool.

The author's STEMLOC program, which is similarly based
on Pair SCFGs, has been optimized for practical
applications (preferring short-term performance advan-
tages over long-term design considerations) and may be
freely downloaded from http://www.biowiki.org/.

The results of our tests on pairwise alignments from RFAM
reveal the strengths and weaknesses of our model. When
RNA structure is very strongly conserved and indels are
few, as with the purine riboswitches selected for this
comparison (Figure 14), the TKF91 Structure Tree per-
forms well at both structure prediction and alignment. On
such alignments, the model is expected to be similar to
PFOLD [12], which uses an SCFG and an evolutionary
substitution model but lacks an evolutionary treatment of
gaps. When the alignment has numerous indels in loops
and stems, as in the selected nanos TCEs (15), or even
minor rearrangements of structure, as in the selected U2
splice factors (16), the Structure Tree still seems to work
well. However, beyond a certain level of structural change,
as in the selected RNase P alignment (17), the model
performs poorly and leaves considerable room for
improvement.

In view of the room for improvement, we can identify a
number of weaknesses of the TKF91 Structure Tree that
could be improved in future models:

• Sources of degeneracy such as zero-length stems and
loops were removed "by hand" from the Pair SCFG (Table
1). These degeneracies could have beeen specifically
excluded from the evolutionary model, but with the
apparent cost of making an exact solution much harder to
find. One might expect the nondegenerate grammars of
Figures 7 and 8 to approximate the transition probabili-
ties of such a nondegenerate model.

• Indel rates for whole stems/multistems are same as for
unpaired residues. In nature, stem gain and loss is much
slower than unpaired residue insertion/deletion, since the
former is a structural change while the latter is not.

• Multiple-residue indel events, and hence affine gap pen-
alties, are not allowed. Again, the poor performance on
the RNase P alignment may in part be due to this: the
alignment generated has many small gaps scattered
throughout, whereas the "true" alignment has fewer,
longer gaps. This is a characteristic artefact of using a point
indel model (linear gap penalty) where a multi-residue
indel model (affine penalty) would be more appropriate.

• Stems cannot be deleted without deleting all their "chil-
dren" as well (i.e. all stems nested inside). Empirical
inspection of alignments in RFAM, however, reveals many
structures where an outer stem has been deleted or trun-
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cated, while inner stems are preserved. Again, perhaps an
affine gap penalty for covariant indels (i.e. indels in
stems) would address this. Alternatively, one might con-
trive some kind of "ragged-end" local alignment model,
e.g. by embedding the finite TKF91 Structure Tree in an
infinite, unobserved Structure Tree (c.f. [8]), though this
may not be the ideal way to model such effects.

• The equilibrium distribution over structures is highly
simplified. For example, there is currently no modeling of
fine-scale energetics such as basepair stacking propensities
due to π-orbital conjugation. Mathematically, the com-
plexities of modeling such effects are somewhat similar to
those involved in modeling nearest-neighbor substitution
biases in DNA (such as methylation-induced CpG deami-
nation). Since recent progress has been made with such
models [29,30] we might eventually expect inclusion of
stacking effects in models of covariant RNA substitution,
as well.

• Bulges cannot be inserted into stems, except via the fol-
lowing awkward mechanism: the insertion of a bulge into
a stem requires the pre-existence of a null S → L → S tran-
sition, where the L is empty. To fix this, L nodes could be
allowed in stem sequences, just as S nodes are allowed in
loop sequences (in fact, one should probably introduce
"left" and "right" L-nodes, corresponding to left & right
bulges). However, this would increase the potential for
degeneracies.

• We have assumed that all stems and loops evolve at the
same rate, whereas empirical inspection of RFAM of
suggests otherwise. It is known that the analogous
assumption in proteins (that all sites evolve at the same
rate) can skew phylogenetic distance estimation [31], and
perhaps a similar correction to the discretized gamma pri-
ors used in proteins could be applied here [32].

• There is no special treatment of structural features such
as triloops, tetraloops, triple-A platforms, U-turns and the
like. Such features are often observed to be evolutionary
conserved [33,34] and seem likely to be involved in
intermolecular interactions [35,36]. It would be relatively
easy to incorporate such features into the TKF91 Structure
Tree, as special classes of L- or S-branch.

• While the lengths of stem sequences are geometrically
distributed in the TKF91 Structure Tree, due to their roots
in the TKF91 model, empirical observations of real RNA
structures suggest that real stem lengths follow a fairly
tight length distribution. Such approximations in mode-
ling stem lengths could conceivably contribute to poorer
performance of the model. (In practise, we have not
observed unnaturally long stems in the output of the
TKF91 Structure Tree aligner, but the existence of a long,

perfect inverted repeat in the sequence could conceivably
bring out this problem.)

Despite these drawbacks, the results of our preliminary
benchmark suggest that the TKF91 Structure Tree may be
useful for aligning (at least the better-conserved) RNA
functional elements. Given the recent growth of RNA
sequence and structure databases such as RFAM [14] and
SCOR [34], it would be interesting to carry out a broad-
scale, empirical study of the mutations of RNA structures.
This could then be used as a starting point for systemati-
cally designing and benchmarking an improved
evolutionary model for RNA. In the meantime, the results
presented here suggest new ways of designing evolution-
ary grammars that recognise higher-level structural change
as well as point substitutions and indels, offering new
ways of using high-throughput comparative sequencing
to interpret the contents of genomes.
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