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Growth factor delivery using extracellular matrix-mimicking substrates for 
musculoskeletal tissue engineering and repair 
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A B S T R A C T   

Therapeutic approaches for musculoskeletal tissue regeneration commonly employ growth factors (GFs) to in
fluence neighboring cells and promote migration, proliferation, or differentiation. Despite promising results in 
preclinical models, the use of inductive biomacromolecules has achieved limited success in translation to the 
clinic. The field has yet to sufficiently overcome substantial hurdles such as poor spatiotemporal control and 
supraphysiological dosages, which commonly result in detrimental side effects. Physiological presentation and 
retention of biomacromolecules is regulated by the extracellular matrix (ECM), which acts as a reservoir for GFs 
via electrostatic interactions. Advances in the manipulation of extracellular proteins, decellularized tissues, and 
synthetic ECM-mimetic applications across a range of biomaterials have increased the ability to direct the pre
sentation of GFs. Successful application of biomaterial technologies utilizing ECM mimetics increases tissue 
regeneration without the reliance on supraphysiological doses of inductive biomacromolecules. This review 
describes recent strategies to manage GF presentation using ECM-mimetic substrates for the regeneration of 
bone, cartilage, and muscle.   

1. Introduction 

Musculoskeletal (MSK) disease affects more than half of people aged 
18 and over, and nearly three out of four over the age of 65 [1]. Given 
that more than 20% of Americans will be over 65 by 2030 [2], the 
magnitude and impact of MSK disease is profound. The occurrence far 
outstrips the penetration of circulatory or respiratory diseases, and the 
costs of treatment are enormous. Recent data reveal the financial toll of 
MSK disease on the American economy. In 2016, MSK disorders were the 
aggregated health category with the highest modeled spending at an 
estimated $380.9 billion [3]. These costs were greater than spending on 
diabetes, urogenital, blood, and endocrine disorders ($309.1 billion) 
and cardiovascular diseases ($255.1 billion). 

Tissue engineering is an exciting approach to treat MSK disorders 
and address the shortcomings of existing clinical approaches such as 
tissue grafting. Tissue engineering requires effective strategies to influ
ence the behavior of cells to migrate, proliferate, and differentiate to
ward a desired phenotype to construct a functional tissue subunit or 

structure. Cell behavior can be regulated using an array of methods 
including controlling the biophysical properties of the substrate [4,5], 
co-culture with accessory cells [6,7], genetic manipulation [8,9], and 
acute, intermittent, or sustained presentation of inductive macromole
cules such as growth factors (GFs) [10,11]. 

GFs are naturally occurring proteins that stimulate cell division and 
differentiation and are important to tissue development and repair [12]. 
Delivery methods for GFs have been under investigation for more than 
three decades to capture the potent effect of these stimuli on tissue 
regeneration, particularly for MSK applications. However, the trans
lational success of GFs for clinical application has been underwhelming, 
primarily driven by the high cost of synthesis using recombinant tech
nologies, limited spatiotemporal control, and the supraphysiological 
doses necessary to overcome protein instability that leads to detrimental 
side effects [13–15]. In the context of this review, spatiotemporal con
trol is defined as the engineered regulation of the location and effect 
time of a pharmacological agent or bioactive material. Indeed, many 
current approaches are hindered by low affinity materials used to 
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deliver the GF payload, providing an opportunity to improve upon the 
efficacy of pharmacological approaches in tissue engineering. 

Endogenous extracellular matrix (ECM) plays a key role in tissue 
formation and repair, serving as a scaffold for cell adhesion and prolif
eration, providing structure and mechanical robustness to the tissue, and 
also binding and presenting GFs secreted by neighboring cells to regu
late cell survival, proliferation, and differentiation [16–18]. Among 
other roles, the ECM regulates the retention and presentation of GFs 
through electrostatic interactions while also controlling other events 
such as integrin clustering that regulates GF signaling. Thus, many tissue 
engineering platforms seek to mimic the characteristics of the ECM using 
synthetic materials or ECM-derived proteins and tissues combined with 
other biomaterials to deliver GFs for MSK tissue regeneration (Fig. 1). In 
this review, we will highlight various strategies used to deliver GFs for 
MSK tissue repair with a particular focus on methods that mimic or 
incorporate ECM-based interactions. We describe the use of engineered 
ECMs and dynamic control systems to regulate the release of GFs. 
Finally, we will identify major challenges with current approaches and 
potential future directions for investigation by the field. 

1.1. Impact of musculoskeletal injuries 

The MSK organ system includes bone, muscle, cartilage, tendon, 
ligament, and accessory tissues that support the body. MSK organs are 
comprised of a tissue-specific ECM that is essential for proper function. 
Both injury and age-related matrix degeneration significantly impact 
mobility and the capacity for pain free articulation of joints. Bone 
fracture, osteoarthritis and muscle injury are among the most prevalent 
MSK conditions contributing to disability across the world. 

Nearly 8 million fractures occur each year in the United States, with 
3.7 million traumatic fractures reported in 2017 [19,20]. While bone 
tissue has a remarkable capacity for regeneration, many bone defects 
such as slow-healing fractures or non-unions require surgical interven
tion to bridge the fracture site and enable tissue repair. In the elderly, 
fractures are highly susceptible to delayed union due to the compro
mised bone structure, reduced vascularity, dysfunctional state of chronic 
inflammation, reduced number of progenitor cells in the periosteum, 
and the decreased production and responsiveness of tissues to growth 
factors [21–26]. 

Similar to age-related bone loss that occurs in osteoporosis, cartilage 

tissue is naturally lost as we age. This degradation can be accelerated 
through high impact blows experienced in some sports or trauma and 
through excessive joint loading, which is common in obese individuals 
[27]. Osteoarthritis, a functional outcome of reduced cartilage tissue, 
was diagnosed in more than 52 million Americans in 2012, and the 
number of diagnosed arthritis cases in the US is projected to balloon to 
78 million by 2040 [28]. 

Skeletal muscle injury commonly results from high impact traumatic 
collisions, surgical procedures, or sports-related muscle contusions. The 
robust healing capacity of skeletal muscle is capable of regenerating 
tears and contusions without intervention. The loss of 20% or more of 
skeletal muscle mass exhausts this natural healing capacity and requires 
intervention, typically in the form of an autologous tissue graft [29]. 
Sarcopenia, the natural loss of muscle mass due to age, is associated with 
an annual cost of $18.5 billion in the United States alone [30]. 

Taken together these MSK tissue injuries and diseases represent a 
significant burden to the individual and the US healthcare system. There 
remains an unmet clinical need to improve outcomes by discovering 
methodologies to promote MSK tissue regeneration. Currently there are 
few clinically-approved treatments that employ locally applied recom
binant GFs to stimulate repair or regeneration despite their critical role 
in the endogenous spatiotemporal cascade of tissue regeneration [12]. 

1.2. Contribution of growth factors toward musculoskeletal tissue 
development and repair 

The temporal cascade of MSK repair has been thoroughly investi
gated and detailed in previous reviews [31–33]. A brief synopsis of the 
MSK tissue healing process post-injury can be broadly divided into five 
stages: development of a hematoma, inflammation, progenitor cell 
recruitment, matrix deposition, and matrix remodeling [34,35]. Devel
opment of a hematoma and inflammation results in rapid infiltration of 
macrophages into the injury site, driven by the increased expression of 
monocyte chemotactic proteins, platelet-derived growth factor 
(PDGF-BB), and inflammatory factors such as interleukin-1 (IL-1) and 
IL-6 [36–38]. 

Bone tissue regeneration occurs through one of two mechanisms: 
intramembranous (direct) or endochondral (indirect) ossification. Both 
mechanisms rely upon the initial recruitment and differentiation of 
mesenchymal stromal cells (MSCs), a multipotent progenitor cell 

Fig. 1. (A) A sampling of methods for GF delivery 
used to influence transplanted or host cells for tissue 
engineering. Various biomaterials have been utilized 
for tissue engineering applications, driven by appli
cation or tissue type. ECM components are commonly 
utilized for their cell instructive nature and capacity 
for GF retention. Materials can be further altered to 
tune the presentation of GFs and increase their 
effectiveness. (B) Combinations of these biomaterials, 
either synthetic or naturally derived, coupled with an 
ECM component regulate spatiotemporal GF presen
tation. Inclusion of ECM improves molecular feed
back between cells and the matrix by engaging 
integrin signaling which may potentiate GF signaling.   
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population capable of differentiating into cartilage forming chon
drocytes and bone forming osteoblasts. MSCs migrate from the perios
teum and endosteum of the bone to the fracture site upon stimulation by 
PDGF-BB, fibroblast growth factor-2 (FGF-2), transforming growth fac
tor-α (TGF-α), stem cell-derived factor 1 (SDF1), and hypoxia inducible 
factor-1 (HIF-1) [39–42]. Intramembranous repair, characterized by the 
direct differentiation of MSCs into osteoblasts, is the pathway of healing 
in fractures fixed with absolute rigidity and for cranial bones in the skull. 
The majority of fractures heal predominantly through endochondral 
ossification, in which MSCs differentiate first to chondrocytes prior to 
transforming to osteoblasts that form the new bone [43]. There are a 
number of GFs critical to defining the differentiation patterns of these 
MSCs during repair. Osteogenic differentiation is regulated by tran
scriptional activation of Runx2 and Sp7 (Osterix), which are direct 
downstream targets of bone morphogenetic proteins (BMPs) and ca
nonical Wnt GFs [44–46]. Fate specification of MSCs into chondrocytes 
occurs through transcriptional activation of Sox 9, which can be robustly 
stimulated by transforming growth factor-β1 (TGF-β1) [47,48]. In order 
for chondrocytes to mature to osteoblasts, they must undergo hyper
trophic differentiation, marked by the expression of the matrix molecule 
collagen X and ~20-fold increase in size [49]. Hypertrophic chon
drocytes are highly bioactive and secrete both angiogenic, vascular 
endothelial growth factor (VEGF) [50,51] and placental derived growth 
factor (PlGF) [52] and osteogenic proteins (BMPs) [53] that bind to the 
matrix and regulate vascular invasion into the cartilage callus and 
mineralization of the matrix. 

Articular cartilage lacks sufficient vascularization and progenitor cell 
content to facilitate robust tissue regeneration after damage. The gen
eration of articular cartilage is dependent upon the chondrogenic dif
ferentiation of MSC populations into chondrocytes that are identified by 
their high expression of Noggin, TGF-β receptor 2, and growth differ
entiation factor 5 (GDF-5) [33]. Several members of the TGF-β super
family are highly expressed by mesenchymal condensations during 
cartilage formation, which are responsive to TGF-β1 [47,48]. Following 
chondrogenic differentiation, FGFs retained in the cartilage matrix play 
a critical role in regulating the balance between a catabolic or anabolic 
cellular state. Upon cartilage damage, FGF-2 is released from the ECM 
and induces catabolic degradation of the matrix [55]. Conversely, the 
release of FGF-18 from the ECM promotes generation of cartilage ECM 
by chondrocytes through FGF receptor 3 signaling [55,56]. 

Skeletal muscle generation is initiated by the activation and prolif
eration of satellite stem cells, the primary progenitor population for 
muscular tissue. Hepatocyte growth factor (HGF) released from muscle 
tissue post-injury induces migration and proliferation of satellite stem 
cells to the site of tissue damage [57]. The sequential expression of in
sulin like growth factor 1 (IGF-1) and − 2 by myocytes and macrophages 
stimulate myoblast proliferation and differentiation in damaged 
muscular tissue, while TGF-β1 inhibits differentiation [58,59]. The 
modification and remodeling of the matrix proteins of regenerated 
muscle tissue is coordinated primarily by matrix metalloproteinases 
(MMPs), namely MMP-2 and -9 [60]. The repair process is concluded by 
remodeling of the deposited ECM toward a functional tissue architecture 
for homeostasis. 

As described above, MSK tissue formation and regeneration is a 
highly complex process that is coordinated by the presentation and 
availability of numerous GFs produced by neighboring cells (Table 1). 
As this sequence of events is well-characterized, tissue engineers seek to 
capitalize on this knowledge and present these cues using engineered 
materials to accelerate or enhance MSK tissue regeneration. 

1.3. Clinical application of growth factors for musculoskeletal repair 

Cytokines and GFs induce chemotaxis of responsive cells, regulate 
differentiation, and play a critical role in tissue development and repair. 
Due to the potency of these factors, there is an emphasis on the devel
opment of effective strategies to use GFs when tissue cannot be healed 

through other established methods. Several GFs have been approved by 
the United States Food and Drug Administration (FDA) to facilitate tis
sue regeneration. Regranex® (Novartis) utilizes recombinant PDGF-BB 
to accelerate the healing of diabetic foot ulcers [61,62]. Leukine® 
(Partner Therapeutics, Inc.) and Leucomax® (Schering-Plough) release 
granulocyte-macrophage colony stimulating factor (GM-CSF) to stimu
late the immune system of patients receiving chemotherapy but have 
also accelerated the healing of diabetic ulcers when applied topically 
[57]. BMP-2 is the only FDA-approved GF for adjuvant MSK regenera
tion and has elicited broad investigation for use in tissue engineering 
applications (Table 2) [63,64]. With annual sales of over $750 million, 
INFUSE® Bone Graft (Medtronic) is widely used by orthopedic surgeons 
to stimulate bone formation for spinal fusion and promote fracture 
repair in patients with a high risk for non-union. The BMP-2 loaded 
collagen carrier of the INFUSE® system can be used alone or in com
bination with other treatment techniques (e.g., bone marrow aspirate) 
to increase bone regeneration and lower failure rates in spinal fusion and 
tibial fracture repair [65,66]. However, high dosages of BMP-2 (12–30 
mg per implant) can result in significant complications including 
inflammation, heterotopic ossification, hematoma, and myelopathy that 
require additional revision procedures [15,67]. These adverse effects are 
attributable to the supraphysiological levels of BMP-2 required and the 
low affinity of proteins for collagen, with as much as 80% of the BMP-2 
released from the collagen sponge in 6 days [68,69]. Thus, delivery 
methods possessing higher affinity for GFs may decrease these adverse 
effects. ECM mimetics that retain spatiotemporal control while 
increasing bioavailability of GFs can increase the effectiveness of 
treatments and reduce the supraphysiological dose of GFs currently 
used. 

1.4. Generation and content of musculoskeletal ECM 

The ECM is a complex mixture of matricellular and structural pro
teins secreted by cells into the extracellular space that provides the 
supportive architecture on which cells adhere, migrate, and regulate 
tissue development [86]. The composition of the ECM is tissue depen
dent, and each tissue has components that interact with tissue-specific 
GFs [87,88]. 

Collagens are the most prevalent structural protein, comprising 30% 
of all proteins, which imbue tensile strength and facilitate cellular 
adhesion to the ECM [89]. There are 16 identified fibrillar collagen 
subtypes, with collagen I as the most prevalent collagen in bone and 
muscle tissue, and cartilage tissue being enriched in collagen II [90,91]. 
The use of collagenous materials in tissue engineering has been 
bolstered by its biocompatibility and the capacity to tune the degrada
tion mechanics of the material [92,93]. 

Glycosaminoglycans (GAGs) are highly negative, unbranched 

Table 1 
Growth factors implicit in regeneration of MSK tissue. Regeneration is depen
dent on the temporal cascade of GFs along with other cytokines, macromole
cules, and enzymes 
Key: bone morphogenetic protein (BMP), transforming growth factor (TGF), 
vascular endothelial growth factor (VEGF), placental growth factor (PlGF), 
growth differentiation factor 5 (GDF-5), fibroblast growth factor 18 (FGF-18), 
hepatocyte growth factor (HGF), insulin like growth factor 1,2 (IGF-1,2).  

Tissue type Growth Factor Citation 

Bone BMPs [44–46] 
TGF-β1 [47,48]  
VEGF [51,54] 
PlGF [52]  
BMPs [53] 

Cartilage GDF-5 [33]  
TGF-β1 [47,48]  
FGF-18 [55,56] 

Muscle HGF [57]  
IGF-1,2 [58]  
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polysaccharide chains found in all MSK tissues, with the four primary 
GAGs being heparan sulfate, chondroitin sulfate, keratan sulfate, and 
hyaluronic acid [94]. These hydrophilic GAGs, which are highly 
expressed in cartilaginous tissues, generate significant structural support 
for tissue architecture and load distribution by drawing fluid into the 
matrix [95–97]. Due to the enriched presence of acidic sugars and sul
fate groups, GAGs are highly electronegative and interact readily with 
circulating proteins [98]. Proteoglycans are GAGs covalently bound to a 
core protein. Proteoglycans achieve similar functional outputs depend
ing on the associated GAGs and represent how most GAGs are presented 
physiologically [99]. 

Hydroxyapatite (HAp) constitutes 70% of bone tissue, is the promi
nent inorganic component of mature bone, and is precipitated by oste
oblasts upon the incorporation of phosphoproteins [100–102]. When 
implanted ectopically, HAp exhibits osteoinductive and osteoconductive 
potential [103–105]. HAp is biocompatible and does not elicit an 
immunogenic response yet is mechanically brittle and must typically be 
incorporated with other materials in tissue engineered constructs 
[106–108]. 

These ECM constituents increase cell adhesion, differentiation, and 

host integration when evaluated for MSK tissue repair [109–113]. 
However, the regenerative potential of these materials is limited and 
incapable of repairing large tissue defects on their own, motivating the 
use of GFs to bridge the gap. Numerous biomaterials have been devel
oped to leverage the endogenous interactions of GFs with native tissues 
and promote MSK regeneration. The presentation of GFs from various 
platforms is dependent upon the composition of the vehicle, as well as 
the affinity of GFs for the underlying substrate. In the sections that 
follow, we will highlight the utility and mechanism of common delivery 
platforms for the localized presentation of GFs for MSK tissue 
regeneration. 

2. Monolithic delivery systems 

Monolithic biomaterial delivery systems use a single biocompatible 
material or are complexed with other platforms to localize GFs at the 
target site for diffusion-based control over macromolecule presentation. 
Monolithic materials take many forms including bulk aggregates, mi
croparticles, hydrogels, electrospun scaffolds, and even metals. Mono
lithic platforms have remained popular for four decades due to the 
relative ease to manufacture and simple chemistry. However, the 
simplicity of these devices results in limited spatiotemporal control 
necessary for the efficacious presentation of GFs. Through recent ad
vances in controlling the mechanical and degradation characteristics of 
polymers, monolithic systems have increased efficacy for GF delivery. 

Polymer microspheres and hydrogels remain some of the most pop
ular biomaterial systems used for GF presentation intended for MSK 
repair [114,115]. Poly(lactic-co-glycolic acid) (PLGA) has been widely 
used to form numerous substrates such as microspheres, fibers, and 
scaffolds. The release of macromolecules from PLGA is dependent on the 
molecular weight and the relative amounts of lactic and glycolic com
ponents to influence degradation by hydrolysis [116–118]. GFs such as 
VEGF and BMP-2 can be readily incorporated into PLGA substrates to 
increase osteogenic phenotype and bone formation [119,120], while the 
release of IGF-1 from PLGA substrates improved cartilage generation in 
a rabbit growth plate model [121], thereby demonstrating the retention 
of bioactivity and spatiotemporal control. The formation of polymer 
nanofibers through electrospinning recapitulates the nanostructure of 
the ECM, which has broad tissue engineering applications. PLGA elec
trospun fibers exhibited sustained bFGF release over 14 days and were 
evaluated when inserted into a damaged site of a chronic rotator cuff 
tear model [122]. The insertion of bFGF-loaded fibers increased collagen 
and GAG content within repair tissue while also increasing the stiffness 
and ultimate load of regenerated tissue in the tear space, demonstrating 
the potential for this approach to restore the required biomechanics of 
damaged muscle [123]. 

Hydrogels are water swollen polymeric networks that become 
insoluble and mechanically stable upon ionic or covalent crosslinking. 
GFs can be efficiently incorporated into hydrogels while retaining 
bioactivity, yet hydrogels offer limited temporal control of GF release 
without alteration of degradation or mesh size to regulate diffusion from 
the scaffold [124–127]. Alginate is a polysaccharide that is commonly 
used to form hydrogels for GF delivery due to its biocompatibility, ease 
of use, and tunability of mechanical properties through the addition of 
divalent cations [128,129]. However, alginate does not degrade natu
rally, necessitating alternative means to induce degradation for control 
over GF release or to give way to tissue formation. Gamma irradiation 
shortens the alginate polymer chains prior to crosslinking, while 
oxidation of the polymer generates acetal groups that facilitate hydro
lysis, both of which accelerate disintegration of alginate hydrogels 
[130]. BMP-2 was entrapped in alginate irradiated with 5 Gy and 
exhibited sustained release of BMP-2 over 21 days, with nearly 99% of 
the total protein released in the first 7 days. The sustained presentation 
of BMP-2 increased bone generation and functional torque when used to 
treat a critically sized rat femoral defect [131]. Recently, published data 
confirm the necessity of facilitating reinnervation in muscle tissue for 

Table 2 
Biomaterial systems presenting bone morphogenetic protein 2 (BMP-2) for 
musculoskeletal tissue regeneration. Applications in vivo resulted in increased 
tissue generation, mechanical properties, or both, while applications in vitro lead 
to enhanced osteogenesis.  

Carrier Delivery Method Dose Model (species/ 
cell line) 

Citation 

Porous titanium 
oxide 

Surface 
adsorption 

5–20 
μg 

Subcutaneous 
(rat) 

[70] 

PLGA microspheres Entrapment 1 mg Femoral defect 
(rat) 

[71] 

Alginate hydrogel Entrapment 5 μg Femoral defect 
(rat) 

[72] 

Electrospun silk/ 
poly(ethylene 
oxide) 

Entrapment N/A In vitro (MSC) [73] 

Sintered PLA 
microparticles 

Entrapment N/A In vitro (C2C12) [74] 

Laponite-loaded 
alginate/ 
methylcellulose 
hydrogel 

Surface 
adsorption and 
entrapment. 

200 
ng/ 
mL 

Femoral defect 
(rat) 

[75] 

PLGA scaffold Entrapment 100 
μg 

Osteochondral 
defect (rabbit) 

[76] 

PLL polyelectrolyte 
capsules in 
alginate gels 

Electrostatic 
interaction 
(ionic) 

5.2 
mg/ 
m2 

Subcutaneous 
(mouse) 

[77] 

PAA polyelectrolyte 
coated PCL/TCP 
scaffolds 

Electrostatic 
interaction 
(ionic) 

6 μg Femoral defect 
(rat) 

[78] 

Heparin- 
conjugated 
fibrinogen 

Electrostatic 
interaction 
(ECM) 

1 μg Intramuscular 
(rat) 

[79] 

Heparin- 
functionalized 
alginate 

Electrostatic 
interaction 
(ECM) 

1 μg Subcutaneous 
(mouse) 

[80] 

Heparin 
methacrylamide 
microparticles in 
alginate 

Electrostatic 
interaction 
(ECM) 

30 μg Femoral defect 
(rat) 

[81] 

PEA coated PCL 
tubes coated with 
fibronectin 

Electrostatic 
interaction 
(ionic) 

15 ng Segmental 
radius defect 
(mouse) 

[82] 

Biotinylated BMP-2 
in collagen 
sponge 

Electrostatic 
interaction 
(ionic) 

0.5 μg Subcutaneous 
(mouse) 

[83] 

Decellularized 
ECM-coated PCL 

Electrostatic 
interaction 
(ECM) 

50 
μg/ 
mL 

Subcutaneous 
(mouse) 

[84] 

Heparin-coated PCL 
microthreads 

Covalent 
immobilization 

5.1 
ng/ 
cm2 

In vitro (MSC) [85]  

R.C.H. Gresham et al.                                                                                                                                                                                                                          



Bioactive Materials 6 (2021) 1945–1956

1949

increasing functional output. Alginate hydrogels containing IGF-1, 
VEGF, or both were inserted into the tibialis anterior (TA) muscle of 
mice with transected hind limb sciatic nerves [132]. Animals treated 
with IGF-1 or VEGF exhibited increased toe spread, an indicator of 
improved sciatic nerve functionality, while animals treated with both 
GFs exhibited the best restoration of nerve function. 

Collagen and gelatin, hydrolyzed collagen, are common biopolymers 
that have broad applications for protein delivery [133]. TGF-β1 released 
from gelatin microspheres induced chondrogenesis in periosteum cell 
micromasses better than free TGF-β1 [134]. IGF-1 and HGF released 
from gelatin microspheres in the TA muscle of rats increased the infil
tration of cells positive for Pax 7, a marker for muscle progenitor cells 
[135]. Muscles treated with GFs exhibited increased infiltration and new 
muscle fibers over 2 weeks that far exceeded the number of 
Pax7-positive cells infiltrating control gelatin microspheres. Vitrigel, a 
high density collagen network containing 25–33% w/v collagen fibrils 
[136], is also effective as a TGF-β1 delivery platform for chondrogenesis 

[137]. Vitrigel constructs coated with TGF-β1 released GF over 14 days, 
with 40% released over the first 2 days. Upon implantation into the 
murine trochlear groove, tissues treated with TGF-β1-coated constructs 
exhibited more tissue and improved weight distribution compared to 
tissues treated with uncoated collagen. 

Composites of monolithic platforms are useful to enable the pre
sentation of multiple GFs with unique temporal requirements. For 
example, BMP-2 was loaded into PLGA microparticles that were subse
quently loaded into a gelatin hydrogel containing VEGF [71]. Due to its 
sensitivity to temperature, the gelatin hydrogel degraded quickly, 
resulting in a rapid release of VEGF that was no longer detected in the 
implant by day 10. Due to the slower degradation rate of PLGA 
compared to gelatin, BMP-2 was retained at the implant site for 8 weeks. 
Sequential presentation of GFs (i.e., burst release of VEGF with sustained 
BMP-2 presentation) increased bone tissue volume and vessel density in 
a murine femoral defect model [71]. In another example, BMP-2 (2.5 or 
5 μg) or TGF-β1 (50 ng) was entrapped in PLGA microspheres and then 

Fig. 2. Representative GF release profiles from monolithic, ionic, and ECM-based delivery systems. Monolithic carriers release GFs by diffusion, while ionic and ECM- 
based GF delivery leverage the interaction of positively charged proteins with negatively charged substrates for sustained presentation. Release profiles are drawn to 
reflect the relative release profile of each mechanism. 
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suspended in alginate for retention at the implantation site [138]. More 
than 20% of each GF was retained in the articular femoral defect of New 
Zealand rabbits over 14 days. Tissue generation was improved for both 
groups compared to unloaded microspheres, with defects treated with 
BMP-2 exhibiting a dose-dependence on cartilage formation at 2 weeks. 
Spatiotemporal control of GFs has been successfully employed to pro
mote the repair of osteochondral tissues as well. TGF-β1 was released 
from a conical chitosan-gelatin hydrogel, while BMP-2 was released 
from PLGA to induce bone formation and generate osteochondral tissue 
[76]. The combined polymer constructs exhibited unique GF release 
profiles, with the faster degrading gelatin hydrogel initially releasing a 
higher percentage of encapsulated TGF-β1 until day 10, when BMP-2 
concentration was greater. Upon implantation in a rabbit knee defect, 
the scaffolds induced a tissue gradient of positive staining for collagen 
type II to osteocalcin, indicating the expected tissue gradient of cartilage 
to bone found in the osteochondral knee tissue. 

There is a need for materials that model the heterogeneous tissue 
gradients found within the body to promote repair of interfacial tissues 
[128]. The presentation of GFs using 3D printing offers precise control 
over material distribution and GF location. VEGF and BMP-2 were 
entrapped in 3D printed methylcellulose-irradiated alginate bioinks 
containing clay nanoparticles and then deposited into polycaprolactone 
(PCL) scaffolds. Bioinks were spatially organized within the scaffolds to 
create a VEGF loaded core surrounded by BMP-2 at increasing concen
trations on the scaffold periphery. These composite scaffolds increased 
bone formation in a critically sized rat femoral bone defect compared to 
gradient scaffolds presenting either growth factor alone [75]. 

Collectively, these data demonstrate the utility of monolithic systems 
to promote repair of MSK tissues, even with relatively simple delivery 
devices. However, most of these approaches are limited by the rate of GF 
diffusion from the vehicle, which is dependent upon material degrada
tion (Fig. 2). Hence, other approaches to present GFs in a more bio
mimetic manner are necessary to provide additional opportunities to 
improve tissue formation. 

3. Growth factor delivery controlled by ionic interactions 

The endogenous tissue ECM regulates the retention and presentation 
of native GFs primarily through electrostatic interactions. Electronega
tive components within the ECM (e.g., GAGs, HAp, etc.) have a high 
affinity for the positively charged amine groups of GFs. In an effort to 
model endogenous interactions and achieve improved spatiotemporal 
control, the field has prioritized the generation of biomaterials with 
increased electronegative charge to mimic the high affinity of GFs for 
the endogenous ECM. 

Polyelectrolyte (PE) films have been used to model the charge-based 
interactions of ECM and proteins. PE coatings arranged on composite 
systems impart a high negative electrostatic charge that retain macro
molecules [139]. PE films deposited on the surface of polylactic acid 
(PLA) and PLGA were used to form a six-layer construct through 
layer-by-layer (LBL) deposition of electrostatically retained materials for 
implantation [77]. The presentation of BMP-2 and TGF-β1 from multi
layer LBL scaffolds induced osteogenic differentiation of human em
bryonic bodies upon implantation. In another example, BMP-2 and 
VEGF were released from LBL constructs of PCL/β-tricalcium phosphate 
(TCP) [78]. Upon subcutaneous implantation, constructs releasing both 
GFs induced greater bone mineral density and trabecular thickness 
compared to those releasing only BMP-2. This approach leverages the 
ionic interactions of proteins with other substrates in a spatially 
controlled manner to enable the controlled release of multiple GFs. 

Biomaterial systems that are amenable to alterations in surface 
charge facilitate tuning of the affinity of GFs for the substrate, thereby 
improving spatiotemporal control and retention of these instructive 
biomacromolecules. Carboxymethyl cellulose (CMC) is a synthetic 
plant-derived polymer that is readily sulfated, increasing the surface 
electronegativity that mimics the electrostatic properties of GAGs [140]. 

Sulfation increased retention of TGF-β1 in peroxide-gelled CMCs. Con
trol CMC hydrogels released 20–30% of TGF-β1 within 2 days, while 
sulfated CMC hydrogels released only 1–2% of TGF-β1 over the same 
duration. Local TGF-β1 delivery using sulfated CMC hydrogels induced 
similar collagen II, aggrecan, and chondroitin sulfate production by MSC 
populations as free protein, highlighting the retained bioactivity of GFs 
with this delivery mechanism. 

In contrast to traditional hydrogels, self-assembling peptide amphi
philes (PA) possess increased affinity to GFs such as TGF-β1 [141]. PA 
hydrogels formed from peptides with asparagine-to-aspartic acid mu
tations released TGF-β1 25% slower than groups without the aspartic 
acid substitution. The delayed presentation time was due to increased 
fibrillar formations with the asparagine that reduced the binding 
availability of TGF-β1, while the aspartic acid mutation reduced fibrillar 
formations. The prolonged presentation of GF increased GAG production 
and expression of chondrogenic genes by ATDC5 cells. 

PEGylation of highly branched amine terminal polyamidoamine 
(PAMAM) dendrimers resulted in a cationic construct that could quickly 
penetrate anionic cartilage tissue without toxicity [142]. IGF-1 cova
lently conjugated to this PEG/PAMAM construct retained bioactivity 
and maintained extended residence in the articular space. Moreover, the 
application of IGF-1 functionalized to PEG/PAMAM dendrimers rescued 
cartilage from degeneration in an induced osteoarthritis model. This 
nanocarrier-based ionic interaction is an exciting approach to overcome 
previous challenges in delivering therapeutics to cartilage with a dense 
matrix that impairs drug delivery. Unfortunately, ionic tethering often 
involves complex chemistries to generate charged species that are 
non-specific, which enable endogenous proteins to bind to available 
sites and compete with the GF of interest. The retention of charge and 
bioactivity over long periods of time is unlikely and reduces the likeli
hood of many of these methods to be used as an off-the-shelf solution for 
clinical application unless new methods can be developed to stabilize 
the formulations. 

While ionic interactions are an effective approach to transiently link 
GFs to biomaterials for local delivery, long-term presentation and sta
bility of GFs may be better achieved by direct conjugation to matrices. 
The biotin-avidin interaction is among the strongest naturally occurring 
non-covalent bonds and has been used to immobilize proteins on mul
tiple surfaces [143]. Biotinylation of BMP-2 and FGF-2 to gelatin 
nanofibers increased GF retention and osteogenic gene expression of 
adipose-derived stromal cells [144,145]. In another approach, PDGF 
was covalently conjugated to fibrin via an activated Factor XIII (FXIII) 
transglutaminase. PDGF was released over 71 h in response to plasmin 
cleavage from the fibrin gel. When evaluated in a murine ischemic 
epigastric flap model, defects treated with PDGF-conjugated fibrin 
exhibited increased muscle tissue production and perfusion compared to 
PDGF-loaded control fibrin [146]. 

The development of fully synthetic mimetics of GF adhesion sites and 
GF receptors provide another opportunity to link GFs to underlying 
materials. FGF-2 was covalently functionalized to block copolymers of 
styrene-sulfonate/PEG/vinyl-sulfonate, exhibiting similar retention of 
FGF-2 as that of a heparan sulfate control [147]. Interestingly, the 
conjugation of low concentrations of FGF-2 to the block copolymer 
generated a higher number of fibrillar nodes and fibrillar structures in 
human umbilical vein endothelial cells and human dermal fibroblasts 
than the FGF-2 presented by heparan sulfate, indicating the cell pop
ulations exhibited increased responsiveness to the synthetic presenta
tion of FGF-2. 

As these data illustrate, charged substrates that mimic the electro
negative interactions of the native ECM facilitate increased spatiotem
poral control of GFs for MSK tissue applications. However, many of these 
methods require complex chemical interactions and extended material 
synthesis times, reducing the possibility of translation to the clinic. 
Therefore, techniques that utilize the ECM to direct cellular response 
and increase spatiotemporal GF control may be more widely available 
and have been identified as an avenue to translation. 
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4. Extracellular matrix-based scaffolds 

The ECM is a complex mixture of matricellular proteins and GAGs 
that provide complementary sites for cell adhesion, GF retention, and 
activation of cell signaling pathways (Fig. 3). Many GFs are character
ized as heparan-binding, in which GFs associate with the heparan sulfate 
proteoglycans of the endogenous ECM with high affinity [148]. Such 
interactions promote GF retention, enabling the ECM to serve as an 
endogenous depot of GFs for on-demand release for tissue homeostasis 
or to participate in tissue repair. In an effort to capture tissue specific 
matrix microenvironments, ECM has been decellularized and used to 
functionalize monolithic substrates [149–151]. ECM derived from 
porcine pericardia was decellularized and used as a hydrogel for bFGF 
delivery [152]. The sulfate and sugar groups in the ECM retained bFGF, 
releasing 27.8% of bFGF by the fifth day versus 73.5% of bFGF released 
from a collagen gel control. These data provide evidence that the ECM 
derived from native tissues can be harnessed for GF delivery. 

Decellularized cell-secreted ECMs are generated by controlling as
pects of the microenvironment during cell culture including cell density, 
duration of culture, and inclusion of inductive cues in the culture media 
[87,153–155]. Dermagraft® (Organogenesis) is an FDA-approved sub
strate used clinically for healing of diabetic foot ulcers and is generated 
by human neonatal dermal fibroblasts on a bioresorbable mesh [156]. 
The therapeutic efficacy of this product is due to the sequestered 
endogenous GFs from fibroblasts that are retained in the ECM upon 
removal of the cells [157]. This approach represents an exciting strategy 
for GF retention that may influence the differentiation of multipotent 
cell populations for MSK tissue repair. The retention of exogenous GFs 
within decellularized cell secreted matrices can be modulated through 
refinement of the culture conditions. MSCs cultured in osteogenic media 
(OM) prior to decellularization formed an ECM with more HAp but 
lower GAG content [84]. The resulting ECM increased retention of 
exogenous BMP-2, likely due to ionic adsorption to HAp. When exam
ined in vivo, bone volume was higher in the OM-induced ECM group with 
adsorbed BMP-2 than BMP-2 adsorbed to ECM produced in growth 
media [84]. These data demonstrate the importance of the culture 
microenvironment on ECM composition and resultant GF affinity. 

PLGA and PLLA alone are electrically neutral and do not support 
ionic interactions. To enhance the affinity of GFs for these commonly 
used aliphatic polyesters, heparin was covalently conjugated to decel
lularized ECM (dECM) secreted by human fibroblasts [158]. When 
deposited on PLGA/PLLA meshes, heparinized dECM increased reten
tion of TGF-β1 nearly three-fold compared to control scaffolds, resulting 
in increased MSC aggregation and collagen II staining when implanted 
in a rabbit articular cartilage defect. Similarly, TGF-β3 was adsorbed to 
multilayers of decellularized porcine chondrocyte-generated ECM. 
TGF-β3 was effectively retained within the ECM, and rabbit articular 

cartilage defects treated with TGF-β3-loaded constructs exhibited the 
greatest cartilage regeneration compared to free protein [159]. Simi
larly, heparinized decellularized bovine meniscus (DBM) demonstrated 
increased retention of PDGF-BB [160]. PDGF-BB was retained for over 2 
weeks on heparinized DBM, promoting cellular infiltration and 
increased meniscus integration compared unmodified DBM. 

Utilization of decellularized matrices for MSK tissue regeneration 
leverages the diverse protein constituents of the ECM, increasing GF 
retention, cellular adhesion, and synergistic integrin activation. The 
complexity of the ECM recapitulates the physiological environment 
during cellular proliferation and differentiation. However, the difficulty 
in defining the ECM content and generation of consistent materials for 
repeated studies limits the translation of this method to clinical appli
cation. The lack of GF specificity impedes the expansion of ECM-based 
materials for the temporal expression of multiple GFs, as occurs dur
ing native tissue regeneration. Isolated ECM components that have high 
affinity for GFs and modulate the cellular response are a tantalizing 
mechanism for increasing MSK tissue regeneration. 

4.1. Natural substrates to present growth factors 

As described above, native ECM retains GFs through ionic in
teractions and presents these GFs in a physiologically relevant manner 
while also facilitating cellular adhesion. Unfortunately, naturally 
derived materials suffer from substantial batch-to-batch variability, 
thereby limiting widespread adoption and reproducibility of this 
approach. As with most natural biomaterials, the differences in biolog
ically sourced tissues are not readily overcome, and the use of cultured 
cells to generate ECM is limited by the extended culture time for matrix 
generation, high reagent costs, and potential for contamination. Addi
tionally, differences in decellularization methods translate to variability 
in DNA and GF retention, as well as structural integrity that confounds 
efficacy during clinical evaluation [161]. Due to these challenges, the 
utilization of individual ECM proteins with high GF affinity and bene
ficial cellular interactions have been extensively investigated. 

Matricellular proteins and proteoglycans are transiently present in 
the ECM of MSK tissues but are critical to development and tissue 
regeneration [162]. Biomacromolecules such as tenascin C, decorin, 
heparan sulfate, and chondroitin sulfate bind GFs and provide an envi
ronment to direct cellular phenotype [163,164]. Chondroitin sulfate has 
high affinity for heparin binding GFs such as PDGF-BB, TGF-β1, and 
TGF-β3 and retains the bioactivity of these GFs when complexed with 
other biomaterials [165,166]. The inclusion of chondroitin sulfate into 
PEG hydrogels increased the retention of TGF-β3, increasing the 
expression of chondrogenic markers from MSCs and generating higher 
amounts of collagen when compared to the non-chondroitin sulfate gels 
[167]. Decorin, a leucine-rich proteoglycan containing a single GAG that 

Fig. 3. The ECM acts as a reservoir for the retention 
of GFs necessary for musculoskeletal tissue repair. 
Endogenous GFs are commonly sequestered by 
heparan-binding proteoglycans within the ECM. Cells 
engage the surrounding ECM via integrin engagement 
with specific ligands present in matricellular proteins. 
This interaction may also enable GF receptor clus
tering on the cell surface, further promoting activa
tion of the targeted cell signaling pathway and 
resultant changes in cell phenotype.   

R.C.H. Gresham et al.                                                                                                                                                                                                                          



Bioactive Materials 6 (2021) 1945–1956

1952

regulates GF activity and collagen fibrillogenesis [168], was incorpo
rated into collagen hydrogels to increase retention and efficacy of BMP-2 
[169]. BMP-2 retention was moderately extended, with 28% of the 
loaded BMP-2 released by day 20 from the decorin-collagen composite 
compared to 35% released from the collagen hydrogel. The BMP-2 
loaded decorin-collagen composite hydrogel successfully bridged a 
critically sized rat composite bone-muscle injury by 12 weeks. Addi
tionally, ECM proteins have been engineered to modulate the GF 
response of cell populations. A synthetic decorin mimetic, termed 
DS-SILY, exhibited comparable affinity to collagen I as native decorin. 
DS-SILY has high affinity and retention for IFN-γ and PDGF, GFs with 
known inflammatory effects that induce hyperplasia in smooth muscle 
cells. The retention of IFN-γ and PDGF by DS-SILY in vitro reduced the 
inflammatory phenotype of smooth muscle cells by sequestering them 
from cellular interactions [170,171]. 

Heparin is a large, electronegative protein with high affinity for 
many GFs and can be conjugated to materials through carbodiimide 
chemistry [79,172]. Heparin was conjugated to fibrinogen to create 
fibrin gels for BMP-2 delivery, releasing 90% of BMP-2 over 13 days 
compared to a similar quantity over only 3 days from unmodified fibrin 
hydrogels, which resulted in improved calcium deposition when 
implanted ectopically [79]. This work showed the potential for cova
lently linking heparin without requiring an intermediate peptide linker 
[173]. Heparin can also be chemically modified for more efficient in
clusion into implantable constructs for improved tissue regeneration. 
Heparin-methacrylate microspheres displayed a dose-dependent reten
tion of BMP-2 at a subcutaneous injection site compared to free BMP-2 
post-injection [81]. When implanted in a femoral bone defect, 
heparin-methacrylate microspheres loaded with BMP-2 and suspended 
in RGD-modified alginate hydrogels improved bone tissue regeneration 
with decreased heterotopic bone volume compared to alginate gels 
containing free BMP-2. 

Hydroxyapatite (HAp) is an osteoconductive constituent of the bone 
ECM that facilitates rapid adsorption of GFs to its negatively charged 
surface [174]. BMP-2 adsorbed to HAp granules was encapsulated in 
MSC spheroids, resulting in a more robust osteogenic response 
compared to exogenous BMP-2 presented in solution [175]. Impor
tantly, the spatial distribution of osteogenic markers within MSC 
spheroids was dramatically improved by incorporation of 
BMP-2-adsorbed HAp, while expression of osteogenic markers was 
restricted to the spheroid periphery when treated with free BMP-2. In 
another example, incorporation of HAp into 3D printed methyl
cellulose/alginate bioinks increased the retention of BMP-2 and VEGF, 
resulting in increased bone tissue generation [75]. 

Other techniques capitalize upon the ability of surfaces to prefer
entially organize matricellular proteins for increased growth factor 
retention and integrin activation. In one such study, fibronectin (FN) 
was deposited on poly (ethyl acrylate) (PEA) films, resulting in FN 
spreading and connected networks of this matricellular protein, whereas 
PEA-free surfaces resulted in globular FN deposition [82]. The spread 
networks of FN increased BMP-2 adsorption and integrin binding sites 
via fibronectin III9-10 modules, synergistically increasing the bioactivity 
of BMP-2 and generating more bone tissue in rat femoral and radial 
defect models [82,176]. Muscle repair is enhanced by using substrates 
with isotropic alignment to guide cell morphology and arrangement. 
Myoblasts seeded on HGF-loaded crosslinked fibrin microthreads 
exhibited improved infiltration and cell proliferation compared to 
non-crosslinked microthreads and fibrin controls [177]. When applied 
to the treatment of TA muscle defects, HGF-loaded crosslinked fibrin 
microthreads resulted in increased twitch force, decreased defect size, 
and increased myogenin-positive nuclei compared to non-crosslinked 
and non-loaded controls. 

5. Conclusions and future directions 

GF-based treatments are promising for MSK tissue regeneration, and 

advances in the design of systems that can achieve local and sustained 
GF release hold enormous potential in improving the efficacy of this 
approach. Clinical GF applications rely upon supraphysiological doses of 
the biomacromolecules and low affinity carriers that result in rapid 
release and undesirable detrimental effects. In order to address this 
challenge, biomaterial systems that mimic the ECM architecture, affin
ity, or charge distribution have been developed to increase the binding 
efficiency and efficacy of associated GFs. Many of the technologies 
highlighted herein depend upon passive biomaterial characteristics for 
the control of GFs that cannot be altered post-fabrication. As an alter
native, we posit that there is enormous promise in improving the affinity 
of GFs for the delivery vehicle. For example, the insertion of the 
123–144 domain of PlGF-2 into VEGF-A, BMP-2, and PDGF-BB increased 
the affinity of those GFs for an array of matrix proteins [178]. Similarly, 
functionalization of PDGF-BB and VEGF-A with the globular domain of 
the laminin-α1 chain, which has high affinity for syndecan, enhanced 
growth factor binding and morphogenesis [179]. This increased affinity 
resulted in greater tissue generation from the altered GFs outperforming 
as compared to the non-altered controls. 

Strategies to tailor GF release post-implantation would provide a 
substantial advantage compared to current approaches that are depen
dent upon diffusion or degradation of the carrier. In one approach, light 
was used to initiate payload release by degradation or polarity changes, 
with near infrared light inducing the release of entrapped molecules 
from hyaluronic acid hydrogels containing gold nanorods [146,180]. 
Self-healing hydrogels, hydrogels that can recover from damage, offer 
another opportunity for sustained GF presentation [84]. Self-healing 
PLGA hydrogels were used to release an antimicrobial agent while 
retaining the controlled release of bFGF [181]. Yet another approach 
includes the dynamic release of payloads from force sensitive materials. 
PLGA microparticles sensitive to osmotic annealing were used to release 
payloads upon mechanical stimulation [182]. 

Upon injury, MMPs are secreted by invading somatic and progenitor 
cells and macrophages during tissue regeneration and are an effective 
mechanism for inducing localized and cell-mediated GF release from 
biomaterial systems [183]. IGF-1 conjugated to PEG with an 
MMP-sensitive peptide linker (PL) was formulated to respond to 
increased MMP activity in wound sites [184]. The release of IGF-1 from 
the PEG-PL was induced by multiple MMPs. However, released IGF-1 
diminished cell proliferation and intracellular internalization, suggest
ing that IGF-1 bioactivity was impaired. MMP-sensitive crosslinkers in 
transglutaminase crosslinked chondroitin sulfate (CS) PEG hydrogels 
retained BMP-2 through electrostatic interactions with CS, while 
MMP-sensitive crosslinker concentration influenced cellular response 
[185]. MSC viability and speed of migration in the CS-PEG hydrogel was 
increased with higher concentrations of the MMP-sensitive crosslinker. 
In another example, BMP-2-loaded acrylamide nanoparticles fabricated 
with MMP-sensitive crosslinkers increased bone tissue volume in a rat 
tibial fracture model [186]. Collectively, these data provide evidence 
that cell-mediated degradation of substrates is a key parameter for 
cellular activity, and this activity can be leveraged to maximize GF 
availability for responsive cells. 

As an alternative to allowing cells mediate localized GF release, 
targeting the biomaterial to a specific tissue is another underexplored 
strategy for overcoming potential ectopic effects of the bio
macromolecule. Strategies that modify GFs or drugs themselves with 
bone-targeting ligands to enable systemic delivery were recently 
reviewed [187] and suggest similar approaches could be taken to in
crease specificity of biomaterials carrying GF payloads. In one successful 
example, a peptide with high affinity for tartrate-resistant acid phos
phatase (TRAP), a protein deposited by osteoclasts on bone resorptive 
surfaces, was applied to the surface of poly (styrene-alt-maleic 
anhydride)-b-poly (styrene) nanoparticles to achieve preferential de
livery of a Wnt activating drug to fractured bones [188]. Other strategies 
to direct nanoparticles towards diseased or injured blood vessels by 
adding vascular “zip codes” could also help achieve a tissue specific 
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delivery of GFs [189]. 
An emerging alternative to delivering GFs themselves is delivering 

the messenger RNA (mRNA) that encodes the desired GF [190]. Ther
apeutically, this approach transfects single stranded mRNA into a pop
ulation of cells that will then be transcribed to temporarily synthesize 
the protein encoded by the mRNA without the risk of genomic inte
gration. This technology has recently, and famously, been utilized to 
develop a highly effective and safe COVID19 vaccine that utilizes mRNA 
to encode for the coronavirus spike protein that is found on the surface 
of the SARS-CoV-2 virus [191]. In addition to its application for vac
cines, mRNA-mediated production of lipidated proteins may be partic
ularly effective for therapeutic production of these GFs in a desired cell 
population, as hydrophobic proteins are both costly to manufacture and 
difficult to deliver. A potential downside of mRNA therapies is that they 
are typically short lived. Thus, it is particularly important to utilize 
biomaterials for sustained and local delivery for regenerative applica
tions [192]. Interestingly, mineral-based particles are effective at pro
longing and enhancing delivery of both cDNA and mRNA [193,194]. As 
such, mineralization of ECM-based biomaterials could potentiate 
mRNA-based approaches to stimulate localized GF production. 

Increased spatiotemporal control of GFs is necessary to elevate their 
application as MSK tissue repair solutions out of the lab and into the 
clinic. Biomaterial systems that incorporate both the spatiotemporal 
control of the ECM and interactive functionality to induce GF release 
may offer the best mechanism to translate GF-based solutions for 
treating MSK tissue injuries. 
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