
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Elastic Processing and Hardware Architectures for Machine Learning

Permalink
https://escholarship.org/uc/item/8m24h60t

Author
Liu, Liu

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8m24h60t
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Elastic Processing and Hardware Architectures for

Machine Learning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Liu Liu

Committee in charge:

Professor Yuan Xie, Co-Chair
Professor Yufei Ding, Co-Chair
Professor Timothy Sherwood
Professor William Yang Wang

June 2022



The Dissertation of Liu Liu is approved.

Professor Timothy Sherwood

Professor William Yang Wang

Professor Yufei Ding, Committee Co-Chair

Professor Yuan Xie, Committee Co-Chair

March 2022



Elastic Processing and Hardware Architectures for Machine Learning

Copyright © 2022

by

Liu Liu

iii



To my wife Yushan Huang,

for her love, encouragement, and support.

To our sons Ethan and Nathan,

for the love and joy they have been bringing to our family.

iv



Acknowledgements

Pursuing a Ph.D. cannot be done without the great help offered by so many people

in my journey. Firstly, I am extremely grateful to Professor Yuan Xie for many years

of guidance and support through my Ph.D. program. I have been very fortunate to

work under his supervision. He has been a role model for me in both work and life. I

appreciate the autonomy that he entrusted in me, allowing me to pursue my research

interests. More importantly, his positive criticism and visionary advice keep me staying

out of my comfort zone and advancing in my academic career.

I would also like to extend my deepest gratitude to my Ph.D. co-advisor, Professor

Yufei Ding, for her advice on my thesis research. She encouraged me to pursue a career

in academia and helped me in many aspects to secure a position. Her encouragement

and support motivate me to keep being proactive as a non-traditional researcher without

a strong CS background. I am very fortunate to have Yufei as my co-advisor.

I would like to express my deepest appreciation to my thesis committee members,

Professor Timothy Sherwood and Professor William Wang, for their invaluable feedback

on my research. Tim’s passion as a computer scientist working in hardware architecture

motivates my career. William is my first mentor in Natural Language Processing (NLP)

and Deep Learning. His foresight inspired my research projects on large-scale NLP model

acceleration.

I would like to thank my industry mentors for providing thoughtful guidance into my

research. Dr. Zhenyu Gu, Dr. Edward Yang, Dr. Jingwei Zhang, and Dr. Fei Sun all

gave me insightful suggestions and hands-on guidance during my summer internships at

Alibaba DAMO Academy. Dr. Shaoshan Liu helped me a lot on the collaborated project

during my early Ph.D. time. I am thankful for many academic collaborators on their

help, particularly, Prof. Guoqi Li, Prof. Chao Wang, and Prof. Yuanqing Cheng.

v



I have been fortunate to collaborate with many kind, intelligent, and diligent students

and postdoc researchers at UCSB Seal-Lab, especially Dr. Ping Chi, Dr. Shuangchen

Li, Dr. Maohua Zhu, Dr. Peng Gu, Dr. Dylan Stow Randall, Dr. Xing Hu, Dr. Lei

Deng, Ling Liang, Bangyan Wang, Zheng Qu, Jilan Lin, Zhaodong Chen, Yuke Wang,

and Dr. Fengbin Tu. Many thanks to my group comrades for those fun and insightful

discussions, including Jia Zhan, Itir Akgun, Abanti Basak, Wenqin Huangfu, Nan Wu,

Gushu Li, Xinfeng Xie, Tianqi Tang, and Guyue Huang. In this dissertation, Chapter 6

and Chapter 7 include equally-contributed work and co-authored publications with Jilan

Lin and Zheng Qu, respectively; some contents will also appear in their dissertations.

Finally, I would like to thank my family for their continuous support; especially my

dad, who has been and will always be my mentor and life coach. Countless and everlasting

thanks to my wife, Yushan Huang, for her love and support.

vi



Curriculum Vitæ
Liu Liu

Education

2022 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2015 M.S. in Electrical and Computer Engineering, University of Cali-
fornia, Santa Barbara.

2013 B.E. in Information Display and Optoelectronics, University of Elec-
tronic Science and Technology of China

Publications

[1] Jilan Lin∗, Ling Liang∗, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trin-
abh Gupta, Yufei Ding, Yuan Xie. “INSPIRE: In-Storage Private Information Retrieval
via Protocol and Architecture Co-Design.” In 2022 49th International Symposium on
Computer Architecture. (∗co-primary)

[2] Zheng Qu∗, Liu Liu∗, Fengbin Tu, Zhaodong Chen, Yufei Ding, Yuan Xie. “DOTA:
Detect and Omit Weak Attentions for Scalable Transformer Acceleration.” In 2022 27th
International Conference on Architectural Support for Programming Languages and Op-
erating Systems. (∗co-primary)

[3] Bangyan Wang, Lei Deng, Fei Sun, Guohao Dai, Liu Liu, Yu Wang, Yuan Xie. “A
One-for-All and O(V log(V ))-cost Solution for Parallel Merge Style Operations on Sorted
Key-Value Arrays.” In 2022 27th International Conference on Architectural Support for
Programming Languages and Operating Systems.

[4] Fengbin Tu, Zihan Wu, Yiqi Wang, Ling Liang, Liu Liu, Yufei Ding, Leibo Liu,
Shaojun Wei, Yuan Xie, Shouyi Yin. “A 28nm 15.59µJ/Token Full-Digital Bitline-
Transpose CIM-based Sparse Transformer Accelerator with Pipeline/Parallel Reconfig-
urable Modes.” In 2022 International Solid-State Circuits Conference.

[5] Zhaodong Chen∗, Zheng Qu∗, Liu Liu, Yufei Ding, Yuan Xie. “Efficient Tensor
Core-based GPU Kernels for Structured Sparsity under Reduced Precision.” In 2021
International Conference for High Performance Computing, Networking, Storage, and
Analysis. (∗co-primary)

[6] Liu Liu∗, Jilan Lin∗, Zheng Qu, Yufei Ding, Yuan Xie. “ENMC: Extreme Near-
Memory Classification via Approximate Screening.” In 2021 54th IEEE/ACM Interna-
tional Symposium on Microarchitecture. (∗co-primary)

[7] Liu Liu, Jie Tang, Shaoshan Liu, Bo Yu, Yuan Xie, Jean-Luc Gaudiot. “Π-RT: A
Runtime Framework to Enable Energy-Efficient Real-Time Robotic Vision Applications
on Heterogeneous Architectures.” IEEE Computer 54, no. 4 (2021): 14-25.

vii



[8] Liu Liu, Zheng Qu, Lei Deng, Fengbin Tu, Shuangchen Li, Xing Hu, Zhenyu Gu, Yufei
Ding, Yuan Xie. “DUET: Boosting Deep Neural Network Efficiency on Dual-Module
Architecture.” In 2020 53rd IEEE/ACM International Symposium on Microarchitecture.

[9] Liu Liu, Lei Deng, Zhaodong Chen, Yuke Wang, Shuangchen Li, Jingwei Zhang, Yi-
hua Yang, Zhenyu Gu, Yufei Ding, Yuan Xie. “Boosting Deep Neural Network Efficiency
with Dual-Module Inference.” In 2020 International Conference on Machine Learning.

[10] Fei Sun, Minghai Qin, Tianyun Zhang, Liu Liu, Yen-Kuang Chen, Yuan Xie. “Com-
putation on Sparse Neural Networks and its Implications for Future Hardware.” In 2020
57th ACM/IEEE Design Automation Conference.

[11] Liu Liu∗, Lei Deng∗, Xing Hu, Maohua Zhu, Guoqi Li, Yufei Ding, Yuan Xie.
“Dynamic Sparse Graph for Efficient Deep Learning.” In 2019 Seventh International
Conference on Learning Representations. (∗co-primary)

[12] Lei Deng, Ling Liang, Guanrui Wang, Liang Chang, Xing Hu, Xin Ma, Liu Liu,
Jing Pei, Guoqi Li, Yuan Xie. “Semimap: A Semi-Folded Convolution Mapping for
Speed-Overhead Balance on Crossbars.” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 39, no. 1 (2018): 117-130.

[13] Lei Deng, Zhe Zou, Xin Ma, Ling Liang, Guanrui Wang, Xing Hu, Liu Liu, Jing
Pei, Guoqi Li, Yuan Xie. “Fast Object Tracking on a Many-Core Neural Network Chip.”
Frontiers in neuroscience 12 (2018): 841.

[14] Shuang Wu, Guoqi Li, Lei Deng, Liu Liu, Dong Wu, Yuan Xie, Luping Shi. “L1-
Norm Batch Normalization for Efficient Training of Deep Neural Networks.” IEEE trans-
actions on neural networks and learning systems 30, no. 7 (2018): 2043-2051.

[15] Liu Liu, Ping Chi, Shuangchen Li, Yuanqing Cheng, Yuan Xie. “Building Energy-
Efficient Multi-Level Cell STT-RAM Caches with Data Compression.” In 2017 22nd Asia
and South Pacific Design Automation Conference.

[16] Shuangchen Li, Liu Liu, Peng Gu, Cong Xu, Yuan Xie. “NVSim-CAM: A Circuit-
Level Simulator for Emerging Nonvolatile Memory based Content-Addressable Memory.”
In 2016 IEEE/ACM International Conference on Computer-Aided Design.

[17] Peng Gu, Shuangchen Li, Dylan Stow, Russell Barnes, Liu Liu, Eren Kursun,
Yuan Xie. “Leveraging 3D Technologies for Hardware Security: Opportunities and Chal-
lenges.” In 2016 International Great Lakes Symposium on VLSI.

viii



Abstract

Elastic Processing and Hardware Architectures for Machine Learning

by

Liu Liu

Machine Learning (ML) techniques, especially Deep Neural Networks (DNNs), have

been driving innovations in many application domains. These breakthroughs are powered

by the computational improvements in processor technology driven by Moore’s Law.

However, the need for computational resources is insatiable when applying ML to large-

scale real-world problems. Energy efficiency is another major concern of large-scale ML.

The enormous energy consumption of ML models not only increases costs in data-centers

and decreases battery life of mobile devices but also has a severe environmental impact.

Entering the post-Moore’s Law era, how to keep up performance and energy-efficiency

with the scaling of ML remains challenging.

This dissertation addresses the performance and energy-efficiency challenges of ML.

The thesis can be encapsulated in a few questions. Do we need all the computations

and data movements involved in conventional ML processing? Does redundancy exist

at the hardware level? How can we better approach large-scale ML problems with new

computing paradigms? This dissertation presents how to explore the elasticity in ML pro-

cessing and hardware architectures: from the algorithm perspective, redundancy-aware

processing methods are proposed for DNN training and inference, as well as large-scale

classification problems and long-range Transformers; from the architecture perspective,

balanced, specialized, and flexible designs are presented to improve efficiency.
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Chapter 1

Introduction

Machine Learning (ML) algorithms, especially Deep Neural Networks (DNNs), have been

driving innovations in many application domains, including computer vision, speech

recognition, and natural language processing (NLP); potentially, more intelligent ap-

plications in autonomous and medical. These breakthroughs are powered by the com-

putational improvements in processor technology driven by Moore’s Law. However, the

need for computational resources is insatiable when applying ML to large-scale real-world

problems. Energy efficiency is another major concern of large-scale ML. The enormous

energy consumption of ML models not only increases costs in data-centers and decreases

battery life of mobile devices but also has a severe environmental impact. For example,

the training process of large-scale NLP models can emit carbon dioxide equivalent to

nearly five times the lifetime carbon footprint of an average American car. Entering the

post-Moore’s Law era, how to keep up performance and energy-efficiency with the scaling

of ML remains challenging.

This dissertation presents an software-hardware co-design approach to the perfor-

mance and energy-efficiency challenges. The thesis is how to explore elasticity in ML

methods and hardware to enhance efficiency, which can be encapsulated in a few ques-
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Introduction Chapter 1

tions: Do we need all the computations and data movements involved in conventional

ML processing? Does redundancy exist at the hardware architecture level? How can we

better approach large-scale ML problems with new computing paradigms?

1.1 Elastic Processing for Machine Learning

Machine Learning (ML) workloads demand high computational and representational

costs, from Convolutional Neural Networks (CNNs) and Recurrent Neural Networks

(RNNs), to large-scale classification workloads and Transformer-based models. On one

hand, ML training poses challenges on system-level memory capacity, compute capa-

bility, and network fabrics. On the other hand, serving ML models in resource-limited

platforms is challenging when having strict latency, energy, and reliability requirements.

However, conventional ML methods follow static and dense computational graphs and

ignore the elasticity in ML processing. Specifically, this dissertation shows that redun-

dant computations and representations exist in neural network activations. Depending

on the performance and quality requirements, elastic ML processing exhibits dynamic

and sparse computational graphs.

1.1.1 Boosting Efficiency with Dual-Module Inference

Serving DNN models in low latency and energy is critical not only for real-time in-

teraction but also for reducing costs in data-centers and increasing the endurance of

edge devices. However, in prior studies using model compression, all activations need

uniformly accurate computation. The Dual-Module Inference (DMI) work in Chapter

3 observes that noise-resilience commonly exists in the nonlinear activation functions

of DNNs. Leveraging the noise-resilience, we can use a lightweight little module that

approximates the original DNN layer, referred as the big module, to compute activa-

2
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tions that are more noise-resilient. Hence, we can save the expensive memory accesses

and computations of the original module when only a small portion of activations need

accurate results.

1.1.2 ML Training with Dynamic Sparse Graph

Neuron activations reflect the selectivity of the current stimulus and propagate layer-

by-layer, forming different representation levels. The Dynamic Sparse Graph (DSG)

work in Chapter 4 finds that redundancy exists in activations. For example, lots of

neuron activations for each stimulus sample are small and can be removed. Therefore,

the proposed method is to search for critical neurons for constructing a sparse graph

dynamically at every iteration. By activating only a small number of neurons with

a high selectivity, we can significantly save memory and computations with tolerable

quality degradation.

1.2 Elastic Hardware Architectures

Domain-Specific Architectures (DSAs) are pervasive with the end of Moore’s Law

and Dennard Scaling, addressing the inefficiencies in general-purpose processors such

as complex control logic and hardware-managed memory hierarchy. For example, in the

DNN domain, DSAs such as Google’s TPUs, NVIDIA’s Tensor Core, and many academic

proposals have been designed to improve the efficiency of DNN processing. However, prior

DSAs using a homogeneous processing design lack support for elastic processing, and all

DNN activations are computed as the same type. In other words, a lot of computations

and data movements are wasteful.

3
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1.2.1 Dual-Module Architecture Design

Motivated by elastic processing discussed in Chapter 3, Chapter 5 introduces the de-

sign of dual-module architecture (DUET) with a dedicated Speculator running approxi-

mate modules and an Executor running accurate modules. On one hand, the Speculator

could become the new bottleneck or increase critical path latency and degrade overall

performance. On the other hand, imbalanced workloads caused by neuron-wise dynamic

switching could lead to computing resources underutilized in the Executor. The proposed

design features fine-grained parallel processing to hide Speculator latency and balanced

execution in the Executor to improve utilization. Additionally, DUET can save expensive

memory accesses of accurate modules computed by the Executor.

1.2.2 Near-Memory Processing of Extreme Classification

Extreme classification is the essential component of large-scale Machine Learning for a

wide range of application domains, including image recognition, language modeling, and

product recommendation. As classification categories keep scaling in real-world applica-

tions, the classifier’s parameters could reach several thousands of Gigabytes, far exceed-

ing the on-chip memory capacity. With near-memory processing (NMP) architectures,

offloading the classification component onto NMP units could mitigate the memory-

intensive problem. However, naive NMP designs with limited area and power budget

cannot afford the computational complexity of full classification.

Chapter 6 approaches the problem by exploring the intrinsic elasticity in extreme

classification. The key motivation is that we can afford only the top probabilities from

classifiers to be accurate, while keeping the rest approximate. Therefore, Chapter 6

presents a novel screening method to reduce the computation and memory consumption

by efficiently approximating the classification output. With approximate results, we can

4
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screen out a small number of key candidates that require accurate results. Therefore, the

proposed design features an extreme-classification-tailored NMP architecture (ENMC),

to support both screening and candidates-only classification.

1.2.3 Dynamic Sparse Attention in Transformers

Transformers are the mainstream of NLP applications and are becoming increasingly

popular in other domains such as Computer Vision. Despite the improvements in model

quality, the enormous computation costs make Transformers difficult at deployment, es-

pecially when the sequence length is large in emerging applications. Processing attention

mechanism as the essential compute pattern of Transformers is the bottleneck of execu-

tion due to the quadratic complexity. Prior art explores sparse patterns in attention to

support long sequence modeling, but those pieces of work are on static or fixed patterns.

Chapter 7 demonstrates that the sparse patterns are dynamic, depending on input

sequences. Thus, the proposed Dynamic Sparse Attention (DSA) approach can efficiently

exploit the dynamic sparsity in the attention of Transformers. Compared with other

methods, DSA can achieve better trade-offs between accuracy and model complexity.

Moving forward, Chapter 7 identifies challenges and provides solutions to implement

DSA on existing hardware (GPUs) and specialized hardware, i.e., the DOTA project, to

achieve practical speedup and efficiency improvements for Transformer execution.

1.3 Organization

Chapter 2 introduces some preliminaries and related work. As shown in Figure 1.1,

this dissertation explores the elasticity in ML processing and hardware architectures.

From the algorithm perspective, Chapter 3 & 4 propose redundancy-aware processing

for DNN inference (DMI) and training (DSG); Chapter 6 tackles large-scale classifica-

5
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tion problems (ENMC); Chapter 7 aims at scalable acceleration for Transformer models

(DSA). From the architecture perspective, Chapter 5, Chapter 6, and Chapter 7 ex-

plore balanced, specialized, and flexible designs (DUET, ENMC, and DOTA) to improve

computational efficiency. Chapter 8 concludes the thesis and discusses future research.

Dissertation Organization

Chapter 6: ENMC

Chapter 4: DSG

Chapter 3: DMI

Chapter 7a: DSA

Chapter 5: DUET

Chapter 7b: DOTA

Elastic Processing & Architectures

Algorithm Innovation Hardware Specialization

Figure 1.1: The organization of this dissertation

This dissertation comprises work published elsewhere in conference papers:

• Chapter 3: Liu Liu, Lei Deng, Zhaodong Chen, Yuke Wang, Shuangchen Li, Jing-

wei Zhang, Yihua Yang, Zhenyu Gu, Yufei Ding, and Yuan Xie. “Boosting deep

neural network efficiency with dual-module inference.” In International Conference

on Machine Learning, pp. 6205-6215. PMLR, 2020. 1

• Chapter 4: Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei Ding, and

Yuan Xie. “Dynamic Sparse Graph for Efficient Deep Learning.” In International

Conference on Learning Representations. 2019. 2

• Chapter 5: ©2020 IEEE. Reprinted, with permission, from Liu Liu, Zheng Qu, Lei

Deng, Fengbin Tu, Shuangchen Li, Xing Hu, Zhenyu Gu, Yufei Ding, and Yuan Xie.

“DUET: Boosting deep neural network efficiency on dual-module architecture.” In

1http://proceedings.mlr.press/v119/liu20c.html
2https://arxiv.org/abs/1810.00859
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2020 53rd IEEE/ACM International Symposium on Microarchitecture (MICRO),

pp. 738-750, doi: 10.1109/MICRO50266.2020.00066.

• Chapter 6: Liu Liu, Jilan Lin, Zheng Qu, Yufei Ding, and Yuan Xie. 2021. ENMC:

Extreme Near-Memory Classification via Approximate Screening. In MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

’21 ). Association for Computing Machinery, New York, NY, USA, 1309–1322.

DOI:https://doi.org/10.1145/3466752.3480090

• Chapter 7: Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei Ding, and

Yuan Xie. 2022. DOTA: detect and omit weak attentions for scalable trans-

former acceleration. In Proceedings of the 27th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems (AS-

PLOS 2022 ). Association for Computing Machinery, New York, NY, USA, 14–26.

DOI:https://doi.org/10.1145/3503222.3507738

7



Chapter 2

Background and Related Work

Firstly, this chapter summarizes the background on Transformer neural networks and

large-scale ML classification. Secondly, the chapter introduces emerging computing

paradigms. Lastly, the chapter discusses related work on both efficient processing meth-

ods and hardware acceleration.

2.1 Transformer Neural Networks

A typical Transformer model is composed of stacked encoder (decoder) blocks as

shown in Figure 2.1. At the beginning, the input sentence with n tokens is first trans-

formed into an embedding matrix X ∈ Rn×d. Then, the input embedding matrix is pro-

cessed by blocks of encoders. Each encoder can be separated into three stages, namely

Linear Transformation, Multi-Head Attention, and Feed-Forward Network (FFN). In the

transformation stage, three matrix multiplications transform the input into Query (Q),

Key (K), and Value (V) as:

Q,K, V = XWQ, XWK , XWV . (2.1)

8
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Token Embedding & Positional Embedding

Encoder Block-n

Head Split

Linear

FC

Head Concat
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Self-Attention

Query Key ValueQuery Key Value

Figure 2.1: Transformer model architecture.

After linear transformation, the attention weights A ∈ Rn×n is defined as

A = SoftMax(
QKT

√
dk

), (2.2)

where SoftMax(·) is computed row-wise. Finally, the output values are generated by

multiplying attention weights A with the projected values V as

Z = AV. (2.3)

The output of the Multi-Head Attention is added with the encoder’s input through

a residue connection, and a layer normalization is applied afterwards. Finally, a Feed-

Forward Network (FFN) containing two fully-connected (FC) layers, followed by another

9
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residual connection and layer normalization is applied to generate the output of the

encoder. As presented in Figure 2.1, the same encoder structure is repeated and stacked

for multiple times in a single Transformer. Usually, a classifier is added at the end to

make predictions.

2.2 Extreme Classification

The Extreme Classification problem refers to multi-class or multi-label classification

with extremely large category volume. Many large-scale NLP and recommendation ap-

plications can be modeled as a feature extraction part with an extreme classifier. For

example, in NLP applications, the typical sequence-to-sequence modeling consists of a

stack of encoders, a stack of decoders, and a final classification layer [1, 2, 3].

Encoder 

Encoder

<BOS> <EOS>xnx1 …

…

…

Decoder

Decoder

<BOS> ymy1 …

…

…

ym-1

Linear & Softmax

At
te

nt
io

n

y1 y2 ym <EOS>

Context

Source Target

Figure 2.2: Basic components of sequence-to-sequence modeling.

Figure 2.2 illustrates the basic components of sequence-to-sequence modeling for neu-

ral machine translation. Each encoder and decoder is a type of DNN layer, such as

Transformer layers [4] and recurrent neural networks [2]. The encoders process input
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embeddings into hidden representations repeatedly. The decoders that attend over all

hidden states from the encoder stack process queries from the previous decoder layer

and output decoded hidden vectors. The final classification layer turns the hidden vector

from the last decoder layer into a translated word as in translation tasks or probabili-

ties as in language modeling tasks. The classification layer consists of a large linear layer

followed by a softmax layer. One way to interpret the linear layer is performing the inner-

products of the hidden vector from the decoder stack and a number of weight vectors,

which correspond to the target vocabulary size. The softmax function then normalizes

the inner-products into probabilities.

Also, in large-scale recommendation systems such as commodity product recommen-

dation and web-page recommendation, extreme classification refers to the problem of

multi-class prediction [5, 6, 7]. First, the hidden layers, e.g., DNNs, take dense features

and sparse features from users as input. Then, the classification layer maps the out-

put of the last hidden layer, usually through SoftMax normalization, to a probability

distribution. For real-world scenarios and next-generation applications, the final classifi-

cation layer is becoming even more challenging as the computational complexity and the

memory usage grows linearly with the category size.

2.3 Emerging Computing Paradigms

Domain-Specific Architectures (DSAs) are pervasive at the end of Moore’s Law and

Dennard Scaling, addressing the inefficiencies in general-purpose processors such as com-

plex control logic and hardware-managed memory hierarchy [8]. For example, in the DNN

domain, DSAs such as Google’s TPUs [9], NVIDIA’s Tensor Core, and many academic

proposals have been designed to improve the efficiency of DNN processing. However, prior

DSAs using a homogeneous processing design lack support for elastic processing, and all
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DNN activations are computed as the same type. In other words, a lot of computations

and data movements are wasteful.

2.3.1 Emerging System Architecture

GPUs and domain-specific accelerators are widely used to process compute-intensive

models in the front-end, such as CNNs, RNNs, and Transformers [4]. In contrast,

for memory-intensive front-ends like recommendation models and embedding look-ups,

CPUs are more favored because of the larger memory capacity. In these scenarios, the

processing units (CPU/GPU/accelerator) typically allocate the classification parameters

in the local memory, as shown in the Figure 2.3(a).

CPU

DIMM 0

DIMM 1

DIMM 0

DIMM 1
CH 0 CH 1

CXL / Gen-Z / OpenCAPI Fabric

CPU GPU Accelerator

DIMM 0

DIMM 1

DIMM 0

DIMM 1

DIMM 0

DIMM 1

DIMM 0

DIMM 1

Media Controller

(a) (b)

Figure 2.3: The system architecture of classification workloads: (a) Host-only system;
(b) A pooled memory architecture to extend the memory capacity.

As discussed in the Section 2.2, the tremendous classification categories essentially

need enormous memory capacity. For example, the largest dataset in an academic ex-

treme classification repository [10] consists of 3 million categories, while industries have

reported 50 million to 100 million categories used in classification [7, 5]. With the hid-

den size of 512, the memory usage of classification alone is reaching 190GB. The need

for memory is increasing with the scaling of problem size in applications, easily exceeds
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the device memory capacity and even system memory capacity. Therefore, employing a

memory pool in the system architecture to store classification parameters can be useful,

as shown in Figure 2.3(b). Facilitated by emerging memory protocols such as Gen-z [11],

GPUDirect [12], CXL [13], etc., the pooled memory could easily stack from 1TB to 10TB

DRAMs to tackle the application requirement.

2.3.2 Near-Memory Processing

As DNNs now appear to overwhelm almost every domain in our daily life and such

applications are increasingly bandwidth-hungry, near-memory processing (NMP) tech-

nique is getting growing attention to accelerate these workloads. As shown in Figure

2.4, leveraging the large internal bandwidth provided by rank parallelism or inside the

memory chips, conventional NMPs put customized computation logic beside the data

and saves the system bandwidth and memory access latency.

1

Processor

NMP DIMM

Memory Controller
NMP Extension

NMP DIMM

NMP DIMM

NMP DIMM

Rank.0
Rank.1

NMP Logic

DIMM.0

BW ~ # Memory Channels 

(~50-100GB/s)

BW ~ # Memory Channels 

(~200-800GB/s)

Figure 2.4: Near-Memory Processing offers large bandwidth (BW).

Different NMP techniques can be categorized by the distance between the computa-

tion logic and DRAM cell array. Here we generally refer two types of NMP techniques

for a DRAM-based memory subsystem: intrusive and non-intrusive NMP. The intrusive
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NMP hacks the architecture inside the DRAM device, and the computation logic could

be placed at the logic die for a 3D-stacking DRAM module [14, 15, 16, 17, 18], or directly

beside the DRAM banks to gain higher bandwidth [19, 20, 21, 22, 23]. The non-intrusive

NMP makes use of the rank-level parallelism in the current memory hierarchy. It tries

to leverage commodity DRAM chips and places the processing unit at each rank on the

DIMM, and thus higher bandwidth can be achieved with multiple ranks in a memory

channel [24, 25, 26]. The ENMC design in Chapter 6 takes the non-intrusive NMP ap-

proach since it requires minimized hardware changes in existing DRAM technology and

does not need the support from the DRAM vendors.

2.4 Related Work on Efficient Methods

This section surveys the literature for related methods on redundancy elimination,

classified into static redundancy and dynamic redundancy. These two types of redun-

dancy elimination approaches are compatible and can be combined together to further

reduce redundant computations and data movements.

2.4.1 Methods on Static Redundancy Elimination

Model compression techniques are commonly used to eliminate static redundancy in

Deep Neural Networks (DNN). Compressing DNN models via data quantization, weight

sparsity, and knowledge distillation is promising to deliver efficient deployment for infer-

ence. Quantization methods on weights and activations have been proposed to reduce

model size and operation precision [27, 28, 29, 30, 31]. Weight pruning has been proposed

to reduce the parameters of a pre-trained model [32, 33]. While fine-grained pruning

could reduce the number of parameters [34, 27, 35], indexing irregular non-zero weights

causes extra memory cost and would offset the benefits from reducing parameter size;
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it is hard to gain practical acceleration on general-purpose hardware or need hardware

specialization [36]. Although structural pruning [37] and knowledge distillation [38] could

achieve speedup, the applicability on more complicated tasks such as NMT on large-scale

datasets is unstudied; besides, those methods require extensive and iterative retraining

via regularization that would increase the training cost and difficult to find a solution.

Many work consider different granularity levels of sparse patterns. In contrast to

the fine-grain compression, coarse-grain sparsity was further proposed to optimize the

execution speed. Channel-level sparsity was gained by removing unimportant weight

filters [39, 40], training penalty coefficients [41, 42, 43], or solving optimization problem

[44, 45, 46, 47]. Other medium-grain, i.e., row-wise and column-wise, and coarse-grain,

i.e., filter-wise and layer-wise, sparse patterns can be obtained via a L2-norm group-lasso

optimization method [48] or Taylor expansion for neuron-wise pruning [49]. However,

they just benefit the inference acceleration, and the extra solving of the optimization

problem usually makes the training more complicated.

2.4.2 Methods on Dynamic Redundancy Elimination

Other than model compression techniques, many studies propose to skip compu-

tations dynamically based on certain criterion such as layer-wise early exit [50] and

ReLU -induced sparsity prediction in CNNs. The prediction can be achieved through

low-precision computation [51, 52] or auxiliary computation [53, 54, 55]. One limitation

of these methods is the restricted use case in ReLU -based CNNs.

The special cell structure and the temporal input similarity have enabled computation

and update skipping in RNNs [56, 57, 58]. However, those methods depend on certain

applications and lack of evaluation on NLP tasks such as language modeling and machine

translation.
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Leveraging dynamic redundancy in training to reduce computations is more challeng-

ing. The randomized hashing method is proposed to predict the important neurons and

save computations of unimportant neurons [59]. However, the hashing-based method

aims at finding neurons whose weight bases are similar to the input vector, which can-

not estimate the inner product accurately thus will probably cause significant accuracy

loss on large models. A straightforward top-k pruning is proposed to apply on the back

propagated errors for training acceleration [60]. But only the backward pass of small

fully-connected layers is applied and presented results. Furthermore, the BN compati-

bility problem that is very important for large-model training still remains untouched.

Pruning gradients to accelerate distributed training focuses on multi-node communica-

tion but misses the single-node scenario [61].

2.4.3 Efficient Transformers

Transformers with the use of self-attention mechanism are difficult to scale with se-

quence length because of the quadratic time and memory complexity. Chapter 7 focuses

on the exploration of sparse attention patterns in Transformers. Other orthogonal ap-

proaches such as parameters sharing [62] can mitigate the issue. Readers can find a

survey paper for a more comprehensive view of efficient Transformers [63].

Static Sparse Patterns. A straightforward way to exploit attention sparsity is to

set static or fixed sparse patterns, such as local windows, block-wise, dilated patterns, or

a combination of static patterns [64, 65, 66]. However, as the sparse attention patterns

are inherently dynamic depending on input sequences, those work lack the capability of

capturing dynamic sparse patterns. As shown in our evaluation, the sparsity-saving trade-

offs of representative methods using static sparse patterns are worse than our dynamic

sparse attention approach.
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Clustering-based methods. Building upon static block-sparse patterns, another

line of research is to group similar tokens into chunks and perform local attention within

chunks [67, 68, 69]. The similarity function used to group tokens can be hashing, clus-

tering, or learned sorting. However, those methods are designed for training memory

reduction and impractical at inference time when operating on each sequence. The qual-

ity of grouping, e.g., convergence of clustering, is not guaranteed at long sequences, and

the overhead of on-the-fly clustering is not acceptable.

Approximation methods. Recent work proposes to replace standard attention

with forms of approximation of the attention weights [70, 71, 72, 73]. While Chpater

7 provides a comparison in evaluation, those work are out the scope of our discussion

for exploring sparsity in (standard) attention. Whether using a form of approximation

to replace standard attention or as we suggest to predict sparse patterns explicitly is a

design choice leaving up to practitioners.

2.5 Related Work on Hardware Acceleration

Academia and industry have proposed various architectures for the acceleration of

DNNs [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 9, 84, 85]. The focus of this dissertation is

on algorithm-architecture co-design to reduce computations and data movements.

Many hardware acceleration work have been designed to support sparsity from static

redundancy elimination. Fine-grained weight sparsity was integrated into DNN acceler-

ators through compressed storage and computation skipping of zero weights [33, 86, 87,

88, 89, 90]. Coarse-grained weight sparsity was further proposed to mitigate the indexing

overhead and irregular access [91, 92, 93, 94].

Other studies propose dynamic redundancy elimination based on certain criteria. One

scenario is leveraging ReLU -induced activation sparsity as either input sparsity detection
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[33, 95, 17, 96, 97, 98, 90, 99, 94] or output sparsity prediction [100, 101]. Exploiting

ReLU -induced activation sparsity is only a special case of the dual-module processing dis-

cussed in Chapter 3. The approximate results are useful in the insensitive regions instead

of only for prediction and then discarded. Besides neuron-wise computation skipping,

channel-wise feature map suppressing and gating can reduce computations leveraging the

multi-channel feature of CONV layers [91, 54, 102]. However, those studies are limited

to saving computations of CONV layers while our design can also save memory access of

FC and RNN layers.

Attention and Transformer Accelerators Recent work adopt algorithm and

hardware co-design to reduce the cost of attention mechanism. MnnFast [103] proposes

to skip the computations of A × V based on the magnitude of the calculated attention

scores. This method can only benefit the second GEMM of attention layer. A3 [104]

introduces attention approximation to prune the unimportant attentions. However, A3

involves expensive online sorting, which causes significant performance and energy over-

head. ELSA [105] uses sign random projection to estimate the attention weights, making

the approximation much more hardware efficient, but the model quality is hurt due to

inaccurate approximation. In Chapter 7, DSA addresses these limitations by simultane-

ously considering approximation accuracy and efficiency. Finally, SpAtten [106] proposes

cascade token pruning and head pruning to reduce the cost of both self-attention block

and subsequent layers. While removing several rows and columns of the attention matrix

makes the operation regular and hardware-friendly, this constraint can be too aggressive

as the locality of attention weights usually exists in small granularity.
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Chapter 3

Dual-Module Inference

This chapter discusses the applicability of elastic processing on Deep Neural Networks

inference. Elastic processing in this scenario is essentially leveraging dynamic sparsity

obtained from identifying critical vs. trivial neurons.

3.1 Introduction

Deep neural networks (DNNs) play a critical role in many areas like image classifi-

cation [107, 108, 109], natural language processing (NLP) [110, 2, 111, 112, 113], and

graph processing [114, 115, 116, 117]. While the DNN models are usually trained in

data-centers, the pre-trained models can be deployed in both data-centers for cloud-

based service and edge devices. During inference, there are primary concerns including

latency and energy consumption: low latency is critical for real-time interaction, and

low energy can help companies reduce cost in data-centers and increase the endurance of

edge devices.

In recent years, extensive studies have shown that quantization and pruning are two

effective ways to reduce latency and energy consumption of DNNs [32, 33, 34, 27, 35, 118].
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However, most existing studies apply pruned and quantized models to compute all the

output activations; the overall pruning or quantization ratio is limited by the accuracy

loss.

This Chapter presents the observation that most popular activation functions like

ReLU in convolutional neural networks (CNNs) and sigmoid, tanh in recurrent neural

networks (RNNs) demonstrate noise resilience in particular regions, i.e., the negative

region of ReLU and the saturation regions of sigmoid, tanh. With theoretical and

experimental evidences, we can see that the noise caused by pruning and quantization

in these regions is less influential. This observation motivates the application of more

aggressive pruning and quantization to these insensitive regions.

Leveraging the noise resilience of DNNs, the proposed big-little dual-module inference

(DMI) algorithm, regarding the original pre-trained module as the big module, uses a

little module that has fewer parameters and lower bit-width to approximate the results

of the big module in the insensitive regions. Executing one DNN layer at inference time

takes the following steps: (1) quantize the input activations and forward them through

the little module; (2) predict which output neurons belong to the sensitive region based

on results from the little module; (3) compute the output activations of the big module

in the predicted sensitive region; (4) combine the outputs of the little module in the

insensitive region and the outputs of the big module with in the sensitive region.

The weight matrix of the little module is constructed as follows. Assuming the weight

matrix of big model WHH is an n×d dense matrix, we first randomly initialize a smaller

n×k quantized dense matrix WLL where k ≪ d. Then, we multiply it with a k×d random

projection matrix P so that WLLP and WHH have the same size. Because P is very

sparse and its entries are either ±1 or 0, the projection doesn’t influence the bit-width

of WLL. Therefore, WLLP is a sparse and quantized matrix that has the shape of WHH .

The weights of the little module are trained in a knowledge-distilling way by mimicking
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the behaviors of the big module. Specifically, as discussed in prior work [119], we minimize

the Frobenius norm of the difference between the flows of the solution procedure (FSP)

matrix of the big and little modules. To accurately predict which output neurons belong

to the insensitive region, we minimize the Kullback-Leibler (KL) divergence between the

output distributions of the big and little modules. Our theoretical analysis reveals that

both targets can be achieved by minimizing the reconstruction error, i.e., mean-squared

error, between the output feature maps of the big and little modules.

The DMI algorithm can be applied to various types of neural networks, as being eval-

uated on CNNs, LSTM, and GRU. For the memory-bound RNNs, with overall memory

accesses reduced by 40% on a commodity CPU-based server platform, the DMI method

can achieve 1.54x to 1.75x wall-clock time speedup with negligible impact on model qual-

ity. In addition, the DMI method can reduce the operations of the compute-bound CNNs

by 3.02x, with only a 0.5% accuracy drop.

3.2 Motivation

This section discusses the noise resilience of popular activation functions in DNNs

including tanh, sigmoid, and ReLU . For clarity, we denote the pre-activation and the

noise by x and δ, respectively. Generally, an activation function f is resilient to a noise

δ when we have |f(x + δ) − f(x)| < θ, where θ is a threshold.

For tanh, when |x| ≫ 0, we have

|tanh(x + δ) − tanh(x)| ≈ 2e−2|x||δ|. (3.1)
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Similarly, for sigmoid, when |x| ≫ 0 we have

|sigmoid(x + δ) − sigmoid(x)| ≈ e−|x||δ|. (3.2)

While for ReLU , we have

|ReLU(x + δ) −ReLU(x)|

 = 0 x ≤ −|δ|

≤ |δ| otherwise
. (3.3)

We define the sub-domain of f that is resilient to the noise δ as the insensitive region

of f . For a given θ, the insensitive regions of the above three activations are listed as

follows 
tanh : |x| > 1

2
ln 2|δ|

θ

sigmoid : |x| > ln |δ|
θ

ReLU : x < θ − |δ|

. (3.4)

While the insensitivity of ReLU is quite straightforward, we can obtain similar con-

clusions on sigmoid and tanh with a single LSTM layer for language modeling over PTB

dataset. The baseline perplexity (PPL) is 80.64. For each gate, we consider two cases:

adding Gaussian noise to the pre-activations before passing through the gate in the sen-

sitive region; in contrast, adding Gaussian noise to the insensitive region. The sensitive

regions have 50% of activations based on the magnitudes; vice verse, for the insensitive

regions.

Table 3.1 lists the PPL results on the testing set and the average cosine similarity

between the activations of the baseline model and the noise-introduced model. Before

applying the nonlinear activation functions, the cosine similarity of two cases – adding

noise in the sensitive region or the insensitive region – are at the same level. However,
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Table 3.1: Comparison of adding Gaussian noises to the sensitive or insensitive region
of LSTM gates.

Case
Cosine similarity before gates Cosine similarity after gates

PPL
input forget cell output input forget cell output

Sensitive 0.953 0.859 0.952 0.932 0.934 0.946 0.882 0.940 85.70
Insensitive 0.944 0.929 0.943 0.947 0.968 0.987 0.969 0.977 81.79

we can observe that after the nonlinear gates, the cosine similarity in the insensitive case

is much closer to one, i.e., fewer output errors, than that in the sensitive case. When

comparing the PPL results of these two cases, we can further observe that introducing

noise in the insensitive region causes little quality degradation.

The selection of which output neurons should be in the (in)sensitive region is dynamic

and input-dependent. Unlike the static weight sparsity that we can prune the ineffectual

connections offline in advance, the dynamic region speculation requires a very lightweight

criterion for real-time processing. Taking all these into account, the proposed dual-model

inference (DMI) algorithm can efficiently determine (in)sensitive region and significantly

save the memory accesses and computations.

3.3 Approach

First, we explain the DMI algorithm by taking a fully-connected (FC) layer as an

example and then extend it to LSTM, GRU, and CNN. For an FC layer with batch size

of one, the operation is typically formulated as z = φ(y), y = Wx + b, where W is a

weight matrix (W ∈ Rn×d), x is an input vector (x ∈ Rd), b is a bias vector (b ∈ Rn), y

is a pre-activated output vector (y ∈ Rn), z is an activated output vector (z ∈ Rn), and

φ is an activation function.
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3.3.1 Overview of Dual-module Philosophy

Section 3.2 shows that not all values in z need accurate computation, and those

belonging to the insensitive region can afford some extent of approximation. In other

words, we only need accurate computations and expensive memory accesses in the sen-

sitive region of y and can skip the ones in the insensitive region. With that, we still

need approximated results in the insensitive region. Therefore, the proposed method

is to learn a lightweight little module from the original trained layer, referred as the big

module. Essentially, the little module has low-volume parameters and low bit-width, thus

termed as LL module; in contrast, the original big module has high-volume parameters

and high precision is called HH module. Let the outputs from these two modules be

yLL and yHH , respectively. If the LL module approximates the HH module well, the

final output vector – a mixture of results from the HH and the LL modules – can be

assembled by

y = yHH ⊙m + yLL ⊙ (1 −m) (3.5)

where m ∈ {0, 1}n is a binary mask vector for the output switching. mi equals 1 in the

sensitive region while it switches to 0 in the insensitive region. The overall saving comes

from skipping memory accesses and computations of the big module while paying smaller

overhead in accessing and computing the little module.

Applying dual-module inference introduces two challenges: first, how to efficiently

construct the LL module; second, how to predict which output neurons belong to the

(in)sensitive regions.

3.3.2 Construct the LL Module

As the HH module is the original pre-trained layer, we only need to construct an

extra LL module. Delivering a lightweight little module at inference time is crucial to
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achieving real wall-clock time speedup. Two objectives need to consider when designing

the LL module: firstly, achieving much lower overhead in terms of computation and

memory access than the HH module; secondly, approximating the outputs of HH module

accurately.

Lightweight Linear Transformation. Making WHH sparse and using low bit-

width data are the two ways to construct a lightweight approximation of WHHx. Inspired

by random projection, a common technique for dimension reduction while preserving the

distances in Euclidean space [120, 121, 122, 123], we first initialize a smaller dense matrix

WLL ∈ Rn×k where k < d, and then we transform it by multiplying it with a k×d sparse

random projection matrix P in which

Pij =

√
3

k
×


+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

. (3.6)

In other words, WHHx is replaced with WLLPx. The original layer takes O(n×d) MACs

(multiply-and-accumulate operations), while the sparse kernel only needs O(1
3
× k× d +

n× k) MACs. Therefore, using a smaller k can greatly reduce the memory and compute

costs.

However, there still should be a lower bound of k (i.e. inf(k)) to maintain the ap-

proximation accuracy. The hypothesis is that the minimum number of parameters in

WLL is approximate to the minimum number of parameters in WHHP T that preserves

the Euclidean distance between WHH ’s row vectors. The intuition behind is that while

each row vector in WHH defines the linear transformation of each output channel, once

the Euclidean distance is not preserved, there might be fewer effectual channels, which

hurts the accuracy.
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According to the Theorem 1.1 in prior work [120], given constant β and ϵ, as long as

k satisfies

k > k0 =
4 + 2β

ϵ2/2 − ϵ3/3
log(n) (3.7)

with probability at least 1 − n−β, for all row vectors u, v ∈ Row(WHH), we have

(1 − ϵ)||uT − vT ||22≤||uP T − vP T ||22≤(1 + ϵ)||uT − vT ||22. (3.8)

The optimal ϵ and β can be obtained experimentally on validation set. As increasing

β is somehow equivalent with decreasing ϵ, we simplify Equation (3.7) as follows

k =
4

ϵ2/2 − ϵ3/3
log(n). (3.9)

To further reduce the complexity, we also apply the quantization technique to reduce

the bit-width of parameters. Specifically, we apply a one-time uniform quantization on

WLL and bLL to avoid complicated calculations. Although some other accurate quantiza-

tion methods are available as well, we find that one-time quantization works well in our

DMI. Besides, the input x is also quantized to xQ during run-time to reduce the compute

cost.

Knowledge Distillation. Training the LL module to be a good approximation

of the HH module is critical. The Knowledge Distillation method is helpful to obtain

effective approximation by taking the HH module as the teacher network and the LL

module as a student network. Transferring the distilled knowledge as the flow of the

solution procedure (FSP) matrix between two layers can increase the convergence rate

and get better performance [119].

Let the outputs of two layers be x and z. The FSP matrix is in the form: G = xyT

[119]. In order to transfer the knowledge, we want the FSP matrix of the student network

26



Dual-Module Inference Chapter 3

Gs to approximate to the FSP matrix of teach network Gt. The loss function is defined

as

L = ||Gt −Gs||2F . (3.10)

In the DMI method, we have

Gt = x
(
yHH

)T
, Gs = x

(
yLL
)T

,

||Gt −Gs||2F = Tr
(
xxT

)
||yHH − yLL||22.

(3.11)

As a result, during fine-tuning, the parameters of the HH module (i.e., WHH and

bHH ) are kept frozen while the parameters of the LL module (i.e., WLL and bLL) are

updated by stochastic gradient descent (SGD) to minimize the following loss function:

L =
1

S

∑
s

||yHH − yLL||22 =

1

S

∑
s

||(WHHx + bHH) − (WLLPx + bLL)||22,
(3.12)

where S is the mini-batch size.

Insensitive Region Prediction. Whether a pre-activation belongs to the insensi-

tive region is predicted based on whether yLLi is in the insensitive region. Without loss of

generality, we can assume that ∀i, yHH
i follows some distribution pHH with a probability

density function pHH(x). As the yLL is the output of an FC layer, according to the central

limit theorem, we can then assume that each of its entries follow Gaussian distribution

as follows

pLL = N(yLLµ , σ2
LL) (3.13)

where σLL is a constant value and yLLµ gives the prediction of the mean. Similarly, the

probability density function is pLL(x).
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The difference between these two distributions can be measured by their Kullback-

Leibler (KL) divergence, i.e.,

DKL(pHH ||pLL) =

∫ ∞

−∞
pHH(x)ln

(
pHH(x)

pLL(x)

)
dx

= Ex∼pHH
[ln (pHH(x)) − ln (pLL(x))]

(3.14)

where E represents the expectation. To make an accurate estimation, we can minimize

the above KL divergence, which is equivalent to maximizing Ex∼pHH
[ln(pLL(x))], and we

have

Ex∼pHH
[ln(pLL(x))]=E

[
ln

(
1

σLL

√
2π

e
−

(yHH−yLL
µ )2

2σ2
LL

)]

≈ −ln(σLL) − 1

2
ln(2π) − 1

2σ2
LL

E
[(
yHH−yLLµ

)2]
.

(3.15)

Because of

E
[(
yHH−yLLµ

)2]≈ 1

S

S∑
i=1

(
yHH
i −yLLi

)2
= ||yHH − yLL||22, (3.16)

DKL(pHH ||pLL) can be equivalently minimized by minimizing ||yHH − yLL||22 that is just

the loss function used in training the LL model (see Equation (3.12)).

3.3.3 Determine the Insensitive Region

Given yLL, the binary mask m in Equation (3.5) is generated by predicting which

output neurons belong to the insensitive region. Specifically, based on Section 3.2, we

have 
sigmoid/tanh : if |yLLi | > θth, mi = 0; else mi = 1

ReLU : if yLLi < θth, mi = 0; else mi = 1

(3.17)

where θth is the threshold can be obtained in the ways as follows.
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Fixed Threshold. We can simply assign a constant value to θth and tune it on

validation set.

Adaptive Filter. With a global fixed threshold θ like the fixed threshold, we can

assign a threshold adaptive to each layer based on Equation (3.4), i.e.,

θth =


1
2

ln 2|δ|
θ

for tanh

ln |δ|
θ

for sigmoid

θ − |δ| for ReLU

. (3.18)

|δ| is approximated by 1
n
||yHH − yLL||2, where n is the length of yLL. Compared with

fixed threshold, the adaptive filter can allow more aggressive thresholds.

Top-K Mask. We can also specifically control the acceleration ratio by taking

exactly K elements out of output neurons, where K can be a hyper-parameter tuned on

validation set. Intuitively, these K output neurons should be taken from the sensitive

region, so we have

θth =

 topK(|yLL|) for tanh/sigmoid

topK(yLL) for ReLU
. (3.19)

We introduce an insensitive ratio as the number of outputs using the results of the

little module over the entire outputs. The ratio can be interpreted as the zero ratio

in the binary mask m. The higher insensitive ratio will have fewer computations and

memory accesses in the big module. The choice of an accurate ratio determines the

model inference quality, and it is a knob to trade-off the inference quality vs. latency at

run-time.
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3.3.4 Overview of the Dual-Module Algorithm

Figure 3.1 summarizes the overall implementation of our dual-module algorithm dur-

ing fine-tuning and inference.
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Figure 3.1: Overview of the Dual-Module Algorithm. (a) Fine-tuning: the LL module
is trained with the loss function in Equation (3.12). (b) Inference: first, the quantized
input activation xQ is injected into the LL module to generate yLL; second, mask m is
obtained based on yLL and the threshold θth; third, based on m, the elements in yHH

are selectively computed to produce yHH ⊙m; at last, y is obtained using Equation
(3.5).

Fine-tuning. As illustrated in Figure 3.1(a), the LL modules in different layers are

fine-tuned individually with the loss function in Equation (3.12). The detailed imple-

mentation is in Algorithm 1.

Algorithm 1: Dual-Module Fine-tuning Algorithm

Data: HH module parameters WHH , bHH ; random projection matrix P ; input
batch X = [x1, ..., xS].

Result: quantized LL module parameters: WLL
Q and bLLQ .

1 for it ∈ all iterations do
2 XQ = Q(X);

3
[
yLL1 , ..., yLLS

]
= WLL

Q PXQ + bLLQ ;

4
[
yHH
1 , ..., yHH

S

]
= WHHX + bHH ;

5 LMSE = 1
S

∑
s ||yHH

s − yLLs ||22;
6 update WLL

Q , bLLQ with SGD(minLMSE);

7 end

Inference. The dual-module inference (DMI) is illustrated in Figure 3.1(b) based

on Algorithm 2. After obtaining fine-tuned WLL
Q and bLLQ , dual-module inference takes

30



Dual-Module Inference Chapter 3

Algorithm 2: Dual-Module Inference Algorithm

Data: HH module parameters WHH , bHH ; quantized LL module parameters
WLL

Q , bLLQ ; threshold θth to determine m; random projection matrix P ;
current input x.

Result: Final output y
1 (1) xQ = Q(x);
2 (2) yLL = WLL

Q PxQ + bLLQ ;

3 (3) Generating m according to Section 3.3.3;
4 (4-5) foreach mi ∈ m do
5 if mi == 1 then yi = yHH

i = φ(WHH [i, :]x + bHH
i );

6 else yi = yLLi ;

7 end

the following steps: (1) quantize input x with xQ = Q(x), where Q(·) is a quantization

function; (2) obtain the approximated output yLL by performing yLL = WLL
Q PxQ + bLLQ ;

(3) generate the binary mask m according to Section 3.3.3; (4) calculate the elements

yHH
i s.t. mi = 1 with yHH

i = WHH [i, :]x+ bHH
i ; (5) produce the final output y according

to the assembling in Equation (3.5).

3.3.5 Apply to Various Types of Neural Networks

The above example on FC layer can easily generalize to various types of neural net-

works, such as LSTM and CNNs.

Recurrent Neural Networks. There are two major differences between an LSTM

layer and an FC layer: (1) the computation of each gate involves two GEMV operations;

(2) there is an additional temporal dimension in LSTM. For the former, we can apply

the lightweight linear transformation in Section 3.3.2 to both GEMVs. For the latter,

we can modify the loss function to guarantee the approximation performance of the LL

module at all time-steps. Taking the forget gate as an example, the loss function LMSE
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in Algorithm 1 is modified to

LMSE =
1

ST

∑
s

∑
t

||yHH
f (t) − yLLf (t)||22,

yLLf (t)=bLLfQ+WLL
fxQPxxQ(t)+WLL

fhQPhhQ(t− 1),

yHH
f (t)=bf + Wfxx(t) + Wfhh(t− 1).

(3.20)

Convolutional Neural Networks. For a CONV layer, we can apply the dual-

module algorithm to CNN by first doing the im2col transformation on input tensor

[124]. Then, the input and output become matrices rather than vectors, but the overall

algorithm is the same as in Section 3.3.4.

Batch Normalization. Batch normalization (BN) [125] is widely applied in DNNs.

During inference, BN normalizes the input activations with

x̂ = γ(
x− µ

σ
) + β, (3.21)

where γ and β are trainable parameters, and µ and σ are the moving average of the mean

and standard deviation of activations collected during training.

The dual-module algorithm is compatible with BN. When BN is applied before the

activation function [126], i.e., φ(BN(Wx + b)), BN can be merged into the linear trans-

formation as follows

φ (BN (Wx + b))=φ
(γ
σ
Wx+

(
b+β− γ

σ
µ
))

. (3.22)

We can have Ŵ = γ
σ
W and b̂ = b + β − γ

σ
µ, then the DMI algorithm is directly applica-

ble. When BN is applied after the activation function, the φ (Wx + b) structure is not

influenced by BN.
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3.4 Evaluation

The dual-module inference (DMI) method is generally applicable to both RNNs and

CNNs to improve the inference efficiency. The evaluation part is on a representative

set of RNN and CNN models to demonstrate the effectiveness of the DMI method. In

Appendix B, more extensive results, as well as evaluation methodology and experimental

settings, can strengthen the conclusion. Training the little module and evaluating for

the inference quality uses the PyTorch framework. When training the little module, the

parameters of the big module are frozen, i.e., excluded from training process, and the

same training set and validation set are used to run the SGD optimization.

3.4.1 Experimental Results on RNNs

As memory access is the bottleneck in RNN-based inference, DMI focuses on reducing

overall memory access while keeping the overhead of executing the little module small.

As shown in Figure 3.2, compared with parameters and operations of the single-module,

i.e., the baseline case, using a set of LSTM and GRU layers, the little module needs much

fewer parameters and operations. On average, the little module accounts only 8% memory

overhead and 35% operation overhead compared with the baseline. Note that we count

the number of operations in Figure 3.2 regardless of precision. The computation overhead

of the little module can be further reduced using a low-precision implementation.

The DMI method is evaluated on CPU-based server platform (Intel(R) Xeon(R) CPU

E5-2698 v4) as most inference workloads run on CPUs [127]. The baseline implementation

is the PyTorch CPU version with Intel MKL (version 2019.4) as the back-end BLAS kernel

library. The custom implementation uses a multi-threaded MKL dot-product kernel at

BLAS level-1 to perform the big module instead of BLAS level-2 or level-3 kernels. The

kernel implementation does not explicitly generate masks, but it directly compares little
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Figure 3.2: Comparison of the amount of accesses and operations between baseline
layers and the little module of dual-module enhanced RNN-based models.

module results with predetermined thresholds in OpenMP parallel-for loops. The kernel-

wise performance is measured as wall-clock time and averaged with 1000 runs, assuming

cold cache at the execution of each RNN cell. Accessing weights from off-chip memory

at each time-step represents the real-world cases, for example, the decoder execution of

sequence-to-sequence modeling.

Language Modeling. The implementations of LSTMs/GRUs are adapted from the

word-level language modeling example from PyTorch using the same hyper-parameters

to train baseline models. Word-level perplexity (PPL) is the measure of model quality.

Table 3.2 lists the quality-performance trade-off by varying the insensitive ratio. The

larger insensitive ratio indicates more results are from the little module and less memory

overhead to perform the big module. As the insensitive ratio increases, we can observe

the degradation of quality as the PPL increases during a gradual reduction in execution

time. When the insensitive ratio is 50%, the PPL is slightly increased to 81.36, which is

negligible in language modeling tasks, while resulting in 1.67x inference speedup.

Table 3.2 further reports the results using single-layer GRUs on word-level language

modeling tasks. Using dual-module method on GRUs expresses the similar quality-

performance trade-off as on LSTMs.

Neural Machine Translation. Given the promising results on language modeling,
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Table 3.2: RNN quality and execution time (ms). Ln means a LSTM layer with h
hidden units; G is short for GRU.

Insensitive LM, L1500 LM, G1500 GNMT, L1024
Ratio PPL Diff. Time Speedup PPL Diff. Time Speedup BLEU Diff. Time Speedup

Baseline 80.64 n/a 1.477 1.00x 85.48 n/a 1.182 1.00x 24.32 n/a 0.838 1.00x
10% 80.72 -0.08 1.315 1.12x 85.62 -0.14 1.024 1.15x 24.33 0.01 0.679 1.23x
30% 80.56 0.08 1.095 1.35x 86.01 -0.53 0.869 1.36x 24.18 -0.14 0.541 1.55x
50% 81.36 -0.72 0.885 1.67x 88.73 -3.25 0.726 1.63x 23.73 -0.59 0.480 1.75x
70% 87.48 -6.83 0.641 2.30x 98.09 -12.61 0.545 2.17x 21.92 -2.40 0.360 2.33x
90% 109.37 -28.73 0.380 3.89x 122.75 -37.27 0.350 3.38x 11.77 -12.55 0.243 3.45x

Neural Machine Translation (NMT) is further investigated, which is a popular end-to-

end learning approach for automated translation [2] and a standard benchmark model

for inference as in MLPerf1. The experiments show the de-tokenized BLEU score to

measure the model quality on the public WMT16 English-German dataset. The base

model2 consists of a four-layer stacked LSTM in both the encoder and the decoder of the

sequence-to-sequence modeling. The focus is on the speedup of the decoder since it is

the most memory intensive and the most time-consuming part (about 95%).

The DMI-enabled LSTM layers can replace the standard LSTM layers in the decoder.

Similar to the single-layer LSTM results, using the little module computed results in the

insensitive region can reduce the overall memory access while maintaining the model

quality. As listed in Table 3.2, the DMI method can achieve imperceptible BLEU score

degradation while accelerating inference by 1.75x. When compromising more translation

quality, e.g., decreasing the BLEU score by 2.4, the DMI method can achieve more than

2x speedup.

1https://mlperf.org/inference-overview/
2From https://github.com/NVIDIA/DeepLearningExamples

35



Dual-Module Inference Chapter 3

3.4.2 Experimental Results on CNNs

Using DMI on CNNs can be regarded as pursuing output sparsity. Table 3.3 compares

the classification accuracy and FLOPs reduction of the DMI method with other state-

of-the-art methods on predicting ReLU -induced output sparsity when ResNet-18 is used

for ImageNet classification. The results show that DMI outperforms other methods in

delivering better trade-off between the accuracy drop and the FLOPs reduction. With

accuracy degrading only 0.5%, the DMI method can achieve 3.02x FLOPs reduction.

Table 3.3: Comparison of the Top-1 accuracy and FLOPs reduction of our method
with prior work on dynamic sparsity. The baseline model is ResNet-18 on ImageNet.

Method Acc. (%) Diff. (%) FLOPs reduction

Dense (torchvision) 69.7 n/a 1.00x
LCL [53] 66.3 -3.4 1.53x
FBS [54] 68.2 -1.5 1.98x

SeerNet [52] 69.3 -0.4 1.67x
CGNet [55] 68.8 -0.9 1.93x

DMI (Ours) 69.2 -0.5 3.02x

Pixel-wise dynamic output sparsity can be accelerated by either customized GEMM

kernel [128] or specialized hardware [101]. Using commodity processors or hardware

accelerators could translate the FLOPs reduction on CNNs by DMI to practical speedup.

Energy efficiency is another important criterion to evaluate any CNN inference execution,

especially for mobile and edge devices. The energy consumption of DMI is shown here,

normalized to the energy of running the baseline dense layers of each residual block in

ResNet-18. The purpose of Figure 3.3 is to estimate the energy consumption with a

focus on the portion of MAC operations which consume the majority of total energy

in compute-bound CNNs. The methodology is multiplying the total number of MAC

operations of big/little modules with the energy (J) per MAC operation accordingly.

The energy/op numbers are from synthesized hardware evaluation. As shown in Figure
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3.3, the energy efficiency improvement of using DMI is from 1.7x to 4.9x; on average, the

DMI method can improve the energy efficiency by 2.9x.

Figure 3.3: Energy efficiency of each residual block in ResNet-18.

3.4.3 Discussion on Dimension Reduction

Dimension reduction is an integral part of the DMI method to reduce the number of

parameters of the little module. Here shows a study on the impact of different levels of

dimension reduction on the model quality and performance. Experiments are conducted

on language modeling using a single-layer LSTM of 1500 hidden units. The little module is

quantized to INT8 and reduced in terms of hidden dimension from 1500 to three different

levels, which are calculated by Equation (3.9). The insensitive ratio is fixed at 50% across

this set of experiments. As in Table 3.4, the higher dimension of the little module, the

better approximation the little module can perform. More aggressive dimension reduction

can further gain more speedup at the cost of more quality degradation: hidden dimension

reduced to 417 and 266 can have 1.67x and 1.71x speedup but increase the PPL by 0.72

and 2.87, respectively.

The overhead of performing the computations of the little module is discussed here.

The last two columns in Table 3.4 measure the execution time of computing the little
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Table 3.4: Sensitivity study on dimension reduction.

Dimension PPL Speedup little big

1500 (baseline) 80.64 1.00x 0% 100%
966 (ϵ = 0.3) 80.40 1.37x 22% 44%
417 (ϵ = 0.5) 81.36 1.67x 12% 47%
266 (ϵ = 0.7) 83.51 1.71x 8% 46%

module and the operation-reduced big module. The execution time is normalized to the

baseline case, i.e., the execution time of the standard LSTM, to highlight the percentage

of overheads. When the hidden dimension is reduced to 966, the overhead of the little

module accounts 22% while the execution time of the big module is cut off by half3. In the

experiments, ϵ = 0.5 is chosen as the default parameter as it demonstrates good trade-off

between quality and speedup in this study. When further reducing the hidden dimension

to 266, there is only a slight improvement on speedup compared with the hidden size of

417 in the little module, where the overhead of the little module is already small enough,

but the quality drop is significant.

3.4.4 Discussion on Quantization

Weight quantization of the little module is another integral part of constructing the

little module, showing the impact of different quantization levels on the model quality

and the parameter size. After training the little module, using the same settings as in

Section 3.4.1, we can quantize the weights to lower precision to reduce the memory access

on top of the dimension reduction. As listed in Table 3.5, more aggressive quantization

leads to smaller parameter size that can reduce the overhead of computing the little

module; on the other hand, the approximation of the little module is compromised by

3The execution time is measured with multi-threading.
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quantization. The little module can be quantized down to INT4 without significant

quality degradation. Using lower precision would degrade the quality while decreasing

the parameter size. Normally, using INT8 as the quantization level is a good choice for

CPU-based implementations when leveraging off-the-shelf INT8 GEMM kernel in MKL.

We can expect more speedup once the little module overhead can be further reduced by

leveraging INT4 compute kernels or running on specialized hardware.

Table 3.5: Inference quality and parameter size comparison under different levels of
quantization on the little module

Precision Base FP32 INT16 INT8 INT4 INT2

PPL 80.64 81.28 81.18 81.36 81.47 82.43
MSE n/a 0.408 0.425 0.444 0.451 0.68

Params. 68.7 19.1 9.6 4.8 2.4 1.2

3.5 Conclusion

This Chapter describes the big-little dual-module inference (DMI) method to boost

the execution efficiency of DNNs. Leveraging the noise resilience of nonlinear activation

functions, DMI consists a lightweight little module to compute for the insensitive region

and using the big module with skipped memory access and computation to compute

for the sensitive region. The DMI method can reduce overall memory access by near

half for the memory-bound RNNs and achieve 1.54× to 1.75× wall-clock time speedup

without significant degradation on model quality. For the compute-bound CNNs, DMI

can achieve 3.02× operation reduction with only a 0.5% accuracy drop.
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Chapter 4

Dynamic Sparse Graph

This Chapter presents the application of elastic processing in DNN training. The hy-

pothesis is similar with what discussed in Chapter 3 but in a different context: we can

also find critical vs. trivial neurons during DNN training.

4.1 Introduction

DNN training, which demands much more hardware resources in terms of both mem-

ory capacity and computation volume, is far more challenging than inference. Firstly,

activation data in training will be stored for back-propagation, significantly increasing

the memory consumption. Secondly, iterative training updates model parameters using

mini-batched stochastic gradient descent. We almost always expect larger mini-batches

for higher throughput (Figure 4.1(a)), faster convergence, and better accuracy [129].

However, memory capacity is often the limitation factor (Figure 4.1(b)) that may cause

performance degradation or even make large models with deep structures or targeting

high-resolution vision tasks hard to train [130, 131].

It is difficult to apply existing sparsity techniques towards inference phase to training
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phase because of the following reasons: 1) Prior arts mainly compress the pre-trained and

fixed weight parameters to reduce the off-chip memory access in inference [33, 86], while

instead, the dynamic neuronal activations turn out to be the crucial bottleneck in training

[132], making the prior inference-oriented methods inefficient. Besides, during training

we need to stash a vast batched activation space for the backward gradient calculation.

Therefore, neuron activations creates a new memory bottleneck (Figure 4.1(c)). In this

Chapter, we will sparsify the neuron activations for training compression. 2) The existing

inference accelerations usually add extra optimization problems onto the critical path [48,

49, 41, 44, 46, 133, 47, 43, 42], i.e., “complicated training ⇒ simplified inference”, which

embarrassingly complicates the training phase. 3) Moreover, previous studies reveal

that batch normalization (BN) is crucial for improving accuracy and robustness (Figure

4.1(d)) through activation fusion across different samples within one mini-batch for better

representation [134, 125]. BN almost becomes a standard training configuration; however,

inference-oriented methods seldom discuss BN and treat BN parameters as scaling and

shift factors in the forward pass. We further find that BN will damage the sparsity due

to the activation reorganization (Figure 4.1(e)). Since this Chapter focuses on training,

the BN compatibility problem should be addressed.

From the view of information representation, the activation of each neuron reflects its

selectivity to the current stimulus sample [134], and this selectivity dataflow propagates

layer by layer forming different representation levels. Fortunately, there is much represen-

tational redundancy, for example, lots of neuron activations for each stimulus sample are

so small and can be removed (Figure 4.1(f)). Motivated by above comprehensive analysis

regarding memory and compute, this work proposes to search critical neurons for con-

structing a sparse graph at every iteration. By activating only a small amount of neurons

with a high selectivity, we can significantly save memory and simplify computation with

tolerable accuracy degradation. Because the neuron response dynamically changes under
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Comprehensive motivation illustration. (a) Using larger mini-batch size
helps improve throughput until it is compute-bound; (b) Limited memory capacity
on a single computing node prohibits the use of large mini-batch size; (c) Neuronal
activation dominates the representational cost when mini-batch size becomes large; (d)
BN is indispensable for maintaining accuracy; (e) Upper and lower one are the feature
maps before and after BN, respectively. However, using BN damages the sparsity
through information fusion; (f) There exists such great representational redundancy
that more than 80% of activations are close to zero.

different stimulus samples, the sparse graph is variable. The neuron-aware dynamic and

sparse graph (DSG) is fundamentally distinct from the static one in previous work on

permanent weight pruning since we never prune the graph but activate part of them each

time. Therefore, we can maintain the model expressive power as much as possible. A

graph selection method, dimension-reduction search, is designed for both compressible

activations with element-wise unstructured sparsity and accelerative vector-matrix mul-

tiplication (VMM) with vector-wise structured sparsity. Through double-mask selection

design, it is also compatible with BN. We can use the same selection pattern and extend

the DSG approach to inference. In a nutshell, this Chapter presents a compressible and

accelerative DSG approach supported by dimension-reduction search and double-mask

selection. It can achieve 1.7-4.5x memory compression and 2.3-4.4x computation reduc-
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tion with minimal accuracy loss. The work presented in this Chapter simultaneously

pioneers the approach towards efficient online training and offline inference, which can

benefit the deep learning in both the cloud and the edge.

4.2 Approach

The proposed method constructs computational graphs dynamically for different in-

puts, being accelerative and compressive, as shown in Figure4.2(a). On the one hand,

choosing a small number of critical neurons to participate in computation, DSG can re-

duce the computational cost by eliminating calculations of non-critical neurons. On the

other hand, it can further reduce the representational cost via compression on sparsified

activations. Different from previous methods using permanent pruning, the proposed

approach does not prune any neuron and the associated weights; instead, it activates a

sparse graph according to the input sample at each iteration. Therefore, DSG does not

compromise the expressive power of the model.

(a) (b) (c)
W xy

Low-dimensional Space

CONV/FC

Mask

Batch Norm.

Mask

DRS

Compressible

Accelerative

Figure 4.2: (a) Illustration of dynamic and sparse graph (DSG); (b) Dimension-reduc-
tion search for construction of DSG; (c) Double-mask selection for BN compatibility.
‘DRS’ denotes dimension-reduction search.

Constructing DSG needs to determine which neurons are critical. A naive approach

is to select critical neurons according to the output activations. If the output neurons

have a small or negative activation value, i.e., not selective to current input sample, they
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can be removed for saving representational cost. Because these activations will be small

or absolute zero after the following ReLU non-linear function (i.e., ReLU(x) = max(0,

x)), it’s reasonable to set all of them to be zero. However, this naive approach requires

computations of all VMM operations within each layer before the selection of critical

neurons, which is very costly.

4.2.1 Dimension-reduction Search

To avoid the costly VMM operations in the mentioned naive selection, we propose an

efficient method, i.e., dimension reduction search, to estimate the importance of output

neurons. As shown in Figure4.2(b), we first reduce the dimensions of X and W, and

then execute the lightweight VMM operations in a low-dimensional space with minimal

cost. After that, we estimate the neuron importance according to the virtual output

activations. Then, a binary selection mask can be produced in which the zeros represent

the non-critical neurons with small activations that are removable. We use a top-k

search method that only keeps largest k neurons, where an inter-sample threshold sharing

mechanism is leveraged to greatly reduce the search cost 1. Note that k is determined by

the output size and a pre-configured sparsity parameter γ. Then we can just compute

the accurate activations of the critical neurons in the original high-dimensional space

and avoid the calculation of the non-critical neurons. Thus, besides the compressive

sparse activations, the dimension-reduction search can further save a significant amount

of expensive operations in the high-dimensional space.

In this way, a vector-wise structured sparsity can be achieved, as shown in Figure

4.3(b). The ones in the selection mask (marked as colored blocks) denote the critical

neurons, and the non-critical ones can bypass the memory access and computation of

their corresponding columns in the weight matrix. Furthermore, the generated sparse

1Implementation details are shown in Appendix B.
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Figure 4.3: Compressive and accelerative DSG. (a) Original dense convolution; (b)
Converted accelerative VMM operation; (c) Zero-value compression.

activations can be compressed via the zero-value compression [135, 136, 137] (Figure

4.3(c)). Consequently, it is critical to reduce the vector dimension but keep the activations

calculated in the low-dimensional space as accurate as possible, compared to the ones in

the original high-dimensional space.

4.2.2 Sparse Random Projection for Efficient Dimension-reduction

Search

Notations : Each CONV layer has a four dimensional weight tensor (nK , nC , nR, nS),

where nK is the number of filters, i.e., the number of output feature maps (FMs); nC is

the number of input FMs; (nR, nS) represents the kernel size. Thus, the CONV layer

in Figure 4.3(a) can be converted to many VMM operations, as shown in Figure 4.3(b).

Each row in the matrix of input FMs is the activations from a sliding window across

all input FMs (nCRS = nC × nR × nS), and after the VMM operation with the weight

matrix (nCRS × nK) it can generate nK points at the same location across all output

FMs. Further considering the nPQ = nP ×nQ size of each output FM and the mini-batch

size of m, the whole nPQ ×m rows of VMM operations has a computational complexity

of O(m × nPQ × nCRS × nK). For the FC layer with nC input neurons and nK output

neurons, this complexity is O(m × nC × nK). Note that here we switch the order of

BN and ReLU layer from ‘CONV/FC-BN-ReLU’ to ‘CONV/FC-ReLU-BN’, because it’s
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hard to determine the activation value of the non-critical neurons if the following layer is

BN (this value is zero for ReLU). As shown in previous work, this reorganization could

bring better accuracy [138].

For the sake of simplicity, we just consider the operation for each sliding window

in the CONV layer or the whole FC layer under one single input sample as a basic

optimization problem. The generation of each output activation yj requires an inner

product operation, as follows:

yj = φ(⟨Xi,Wj⟩) (4.1)

where Xi is the i-th row in the matrix of input FMs (for the FC layer, there is only

one X vector), Wj is the j-th column of the weight matrix W , and φ(·) is the neuronal

transformation (e.g., ReLU function, here we abandon bias). Now, according to equation

(4.1), the preservation of the activation is equivalent to preserve the inner product.

A dimension-reduction lemma is introduced, namely Johnson-Lindenstrauss Lemma

(JLL) [139], to implement the dimension-reduction search with inner product preserva-

tion. This lemma states that a set of points in a high-dimensional space can be embedded

into a low-dimensional space in such a way that the Euclidean distances between these

points are nearly preserved. Specifically, given 0 < ϵ < 1, a set of N points in Rd (i.e.,

all Xi and Wj), and a number of k > O( log(N)
ϵ2

), there exists a linear map f : Rd ⇒ Rk

such that

(1 − ϵ)∥Xi −Wj∥2 ≤ ∥f(Xi) − f(Wj)∥2 ≤ (1 + ϵ)∥Xi −Wj∥2 (4.2)

for any given Xi and Wj pair, where ϵ is a hyper-parameter to control the approximation

error, i.e., larger ϵ ⇒ larger error. When ϵ is sufficiently small, one corollary from JLL
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is the following norm preservation:

P [ (1 − ϵ)∥Z∥2 ≤ ∥f(Z)∥2 ≤ (1 + ϵ)∥Z∥2 ] ≥ 1 −O(ϵ2) (4.3)

where Z could be any Xi or Wj, and P denotes a probability. It means the vector norm

can be preserved with a high probability controlled by ϵ. Given these basics, we can

further get the inner product preservation:

P [ |⟨f(Xi), f(Wj)⟩ − ⟨Xi,Wj⟩| ≤ ϵ ] ≥ 1 −O(ϵ2). (4.4)

The detailed proof can be found in Appendix A.1.

Random projection [140, 141] is widely used to construct the linear map f(·). Specif-

ically, the original d-dimensional vector is projected to a k-dimensional (k ≪ d) one,

using a random k × d matrix R. Then we can reduce the dimension of all Xi and Wj

by

f(Xi) =
1√
k
RXi ∈ Rk, f(Wj) =

1√
k
RWj ∈ Rk. (4.5)

The random projection matrix R can be generated from Gaussian distribution [140].

The work discussed here adopts a simplified version, termed as sparse random projection

[141, 121, 122] with

P (Rpq =
√
s) =

1

2s
; P (Rpq = 0) = 1 − 1

s
; P (Rpq = −

√
s) =

1

2s
(4.6)

for all elements in R. This R only has ternary values that can remove the multipli-

cations during projection, and the remained additions are very sparse. Therefore, the

projection overhead is negligible compared to other high-precision operations involving

multiplication. Here we set s = 3 with 67% sparsity in statistics.
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(a) (b)

Figure 4.4: Structured selection via dynamic dimension-reduction search for producing
sparse pattern of neuronal activations.

Equation (4.4) indicates the low-dimensional inner product ⟨f(Xi), f(Wj)⟩ can still

approximate the original high-dimensional one ⟨Xi,Wj⟩ in equation (4.1) if the reduced

dimension is sufficiently high. Therefore, it is possible to calculate equation (4.1) in

a low-dimensional space for activation estimation, and select the important neurons.

As shown in Figure 4.3(b), each sliding window dynamically selects its own important

neurons for the calculation in high-dimensional space, marked in red and blue as two

examples. Figure 4.4 visualizes two sliding windows in a real network to help understand

the dynamic process of dimension-reduction search. Here the neuronal activation vector

(nK length) is reshaped to a matrix for clarity. Now For the CONV layer, the computa-

tional complexity is only O[ m× nPQ × nK × (k + (1 − γ) × nCRS) ], which is less than

the original high-dimensional computation with O(m × nPQ × nCRS × nK) complexity

because we usually have [ k + (1 − γ) × nCRS ] ≪ nCRS. For the FC layer, we also have

O[ m× nK × (k + (1 − γ) × nC) ] ≪ O(m× nC × nK).

4.2.3 Double-mask Selection for BN Compatibility

To deal with the important but intractable BN layer, we propose a double-mask

selection method presented in Figure 4.2(c). After the dimension-reduction search based

importance estimation, we produce a sparsifying mask that removes the unimportant

neurons. The ReLU activation function can maintain this mask by inhibiting the negative

activation (actually all the activations of the CONV layer or FC layer after the selection
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mask are positive with reasonably large sparsity). However, the BN layer will damage

this sparsity through inter-sample activation fusion. To address this issue, we copy the

same selection mask before the BN layer and directly use it on the BN output. It

is straightforward but reasonable because we find that although BN causes the zero

activation to be non-zero (Figure 4.1(f)), these non-zero activations are still very small

and can also be removed. This is because BN just scales and shifts the activations that

won’t change the relative sort order. In this way, we can achieve fully sparse activation

dataflow. The back propagated gradients will also be forcibly sparsified every time they

pass a mask layer.

4.3 Evaluation

The overall training algorithm is presented in Appendices A.1. Going through the

dataflow where the red color denotes the sparse tensors, a widespread sparsity in both

the forward and backward passes is demonstrated. The projection matrices are fixed

after a random initialization at the beginning of training. The projected weights in the

low-dimensional space are updated every 50 iterations to reduce the projection over-

head. The detailed search method and the computational complexity of the dimension-

reduction search are provided in Appendix A.1. The evaluation network models include

LeNet [142] and a multi-layered perceptron (MLP) on small-scale FASHION dataset

[143], VGG8 [144, 145]/ResNet8 (a customized ResNet-variant with 3 residual blocks

and 2 FC layers)/ResNet20/WRN-8-2 [146] on medium-scale CIFAR10 dataset [147],

VGG8/WRN-8-2 on another medium-scale CIFAR100 dataset [147], and AlexNet [148]/VGG16

[149]/ResNet18, ResNet152 [130]/WRN-18-2 [146] on large-scale ImageNet dataset [150]

as workloads. The programming framework is PyTorch and the training platform is

based on NVIDIA Titan Xp GPU. The zero-value compression method [135, 136, 137]
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is used for memory compression and MKL compute library [151] on Intel Xeon CPU for

acceleration evaluation.

4.3.1 Accuracy Analysis

This section provides a comprehensive analysis regarding the influence of sparsity on

accuracy and explore the robustness of MLP and CNN, the graph selection strategy, the

BN compatibility, and the importance of width and depth.

Accuracy using DSG. Figure 4.5(a) presents the accuracy curves on small and

medium scale models by using DSG under different sparsity levels. Three conclusions

are observed: 1) The proposed DSG affects little on the accuracy when the sparsity is

<60%, and the accuracy will present an abrupt descent with sparsity larger than 80%.

2) Usually, the ResNet model family is more sensitive to the sparsity increasing due

to fewer parameters than the VGG family. For the VGG8 on CIFAR10, the accuracy

loss is still within 0.5% when sparsity reaches 80%. 3) Compared to MLP, CNN can

tolerate more sparsity. Figure 4.5(b) further shows the results on large scale models

on ImageNet. Because training large model is time costly, here only presents several

experimental points. Consistently, the VGG16 shows better robustness compared to the

ResNet18, and the WRN with wider channels on each layer performs much better than

the other two models. The topics of width and depth are discussed later.

Graph Selection Strategy. To investigate the influence of graph selection strategy,

we repeat the sparsity vs. accuracy experiments on CIFAR10 under different selection

methods. Two baselines are used here: the oracle one that keeps the neurons with top-k

activations after the whole VMM computation at each layer, and the random one that

randomly selects neurons to keep. The results are shown in Figure 4.5(c), in which we

can see that the dimension-reduction search and the oracle one perform much better
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than the random selection under high sparsity condition. Moreover, dimension-reduction

search achieves nearly the same accuracy with the oracle top-k selection, which indicates

the proposed random projection method can find an accurate activation estimation in

the low-dimensional space. In detail, Figure 4.5(d) shows the influence of parameter ϵ

that reflects the degree of dimension reduction. Lower ϵ can approach the original inner

product more accurately, that brings higher accuracy but at the cost of more computation

for graph selection since less dimension reduction. With ϵ = 0.5, the accuracy loss is

within 1% even if the sparsity reaches 80%.

ResNet-18 WRN-18-2 VGG-16

w/ BN, double mask

(a)
(b) (c)

(d) (e) (f)

Figure 4.5: Comprehensive analysis on sparsity v.s. accuracy. (a) & (b) Accuracy
using DSG; (c) Influence of the graph selection strategy; (d) Influence of the dimen-
sion-reduction degree; (e) Influence of the double-mask selection for BN compatibil-
ity; (f) Influence of the network depth and width. DRS denotes dimension-reduction
search.

BN Compatibility. Figure 4.5(e) focuses the BN compatibility issue. Here we use

dimension-reduction search for the graph sparsifying, and compare three cases: 1) remov-

ing the BN operation and using single mask; 2) keeping BN and using only single mask

(the first one in Figure 4.2(c)); 3) keeping BN and using double masks (i.e. double-mask
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selection). The one without BN is very sensitive to the graph ablation, which indicates the

importance of BN for training. Comparing the two with BN, the double-mask selection

even achieves better accuracy since the regularization effect. This observation indicates

the effectiveness of the proposed double-mask selection for simultaneously recovering the

sparsity damaged by the BN layer and maintaining the accuracy.

Width or Depth. Furthermore, we investigate an interesting comparison regarding

the network width and depth, as shown in Figure 4.5(f). On the training set, WRN with

fewer but wider layers demonstrates more robustness than the deeper one with more but

slimmer layers. On the validation set, the results are a little more complicated. Under

small and medium sparsity, the deeper ResNet performs better (1%) than the wider one.

While when the sparsity increases substantial (>75%), WRN can maintain the accuracy

better. This indicates that, in medium-sparse space, the deeper network has stronger

representation ability because of the deep structure; however, in ultra-high-sparse space,

the deeper structure is more likely to collapse since the accumulation of the pruning error

layer by layer. In reality, we can determine which type of model to use according to the

sparsity requirement. In Figure 4.5(b) on ImageNet, the reason why WRN-18-2 performs

much better is that it has wider layers without reducing the depth.

Convergence. DSG does not slow down the convergence speed, which can be seen

from Figure A.2(a)-(b) in Appendix A.3. This owes to the high fidelity of inner product

when using random projection to reduce the data dimension, as shown in Figure A.2(c).

Interestingly, Figure A.3 (also in Appendix A.3) reveals that the selection mask for each

sample also converges as training goes on, however, the selection pattern varies across

samples. To save the selection patterns of all samples is memory consuming, which is

the reason why we do not directly suspend the selection patterns after training but still

do on-the-fly dimension-reduction search in inference.
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4.3.2 Representational Cost Reduction

This section presents the benefits from DSG on representational cost, measured by

the memory consumption over five CNN benchmarks on both the training and inference

phases. The zero-value compression algorithm [135, 136, 137] is used for data com-

pression. Figure 4.6 shows the memory optimization results, where the model name,

mini-batch size, and the sparsity are provided. In training, besides the parameters, the

activations across all layers should be stashed for the backward computation. Consistent

with the observation mentioned above that the neuron activation beats weight to domi-

nate memory overhead, which is different from the previous work on inference. We can

reduce the overall representational cost by average 1.7x (2.72 GB), 3.2x (4.51 GB), and

4.2x (5.04 GB) under 50%, 80% and 90% sparsity, respectively. If only considering the

neuronal activation, these ratios could be higher up to 7.1x. The memory overhead for

the selection masks is minimal (<2%).

(a)

AlexNet
(1024)

VGG-16
(64)

ResNet-18
(384)

ResNet-152
(48) WRN-18-2

(192)

AlexNet
(1024)

VGG-16
(64)

ResNet-18
(384)

ResNet-152
(48)

WRN-18-2
(192)

(b)

Figure 4.6: Memory footprint comparisons for (a) training and (b) inference.

During inference, only memory space to store the parameters and the activations of

the layer with maximum neuron amount is required. The benefits in inference are rela-

tively smaller than that in training since weight is the dominant memory. On ResNet152,

the extra mask overhead even offsets the compression benefit under 50% sparsity, whereas,

we can still achieve up to 7.1x memory reduction for activations and 1.7x for overall

53



Dynamic Sparse Graph Chapter 4

memory. Although the compression is limited for inference, it still can achieve noticeable

acceleration that will be shown in the next section. Moreover, reducing costs for both

training and inference is the major contribution.

4.3.3 Computational Cost Reduction

Here shows the results on reducing the computational cost for both training and

inference. As shown in Figure 4.7, both the forward and backward pass consume much

fewer operations, i.e., multiply-and-accumulate (MAC). On average, 1.4x (5.52 GMACs),

1.7x (9.43 GMACs), and 2.2x (10.74 GMACs) operation reduction are achieved in training

under 50%, 80% and 90% sparsity, respectively. For inference with only forward pass,

the results increase to 1.5x (2.26 GMACs), 2.8x (4.22 GMACs), and 3.9x (4.87 GMACs),

respectively. The overhead of the dimension-reduction search in the low-dimensional

space is relatively larger (<6.5% in training and <19.5% in inference) compared to the

mask overhead in memory cost. Note that the training demonstrates less improvement

than the inference, which is because the acceleration of the backward pass is partial. The

error propagation is accelerative, but the weight gradient generation is not because of the

irregular sparsity that is hard to obtain practical acceleration. Although the computation

of this part is also very sparse with much fewer operations 2, we do not include its GMACs

reduction for practical concern.

Finally, the execution time on CPU is evaluated using Intel MKL kernels ([151]).

Figure 4.8(a) evaluates the execution time of these layers after the dimension-reduction

search on VGG8. Comparing to VMM baselines, the DSG approach can achieve 2.0x,

5.0x, and 8.5x average speedup under 50%, 80%, and 90% sparsity, respectively. When

the baselines change to GEMM (general matrix multiplication), the average speedup de-

creases to 0.6x, 1.6x, and 2.7x, respectively. The reason is that DSG generates dynamic

2See Algorithm 5 in Appendices A.2
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Figure 4.7: Computational complexity comparisons for (a) training and (b) inference.
‘DRS’ denotes dimension-reduction search.

vector-wise sparsity, which is not well supported by GEMM. A potential way to improve

GEMM-based implementation, at workload mapping and tiling time, is reordering execu-

tions at the granularity of vector inner-product and grouping non-redundant executions

to the same tile to improve local data reuse.

On the same network, DSG is further compared with smaller dense models which

could be another way to reduce the computational cost. As shown in Figure 4.8(b),

comparing with dense baseline, DSG can reduce training time with little accuracy loss.

Even though the equivalent smaller dense models with the same effective nodes, i.e.,

reduced MACs, save more training time, the accuracy is much worse than the DSG

approach. Figure A.4 in Appendix A.4 gives more results on ResNet8 and AlexNet.

(a) (b)

Figure 4.8: On VGG8: (a) Layer-wise execution time comparison; (b) Validation
accuracy v.s. training time of different models: large-sparse ones and smaller-dense
ones with equivalent MACs.
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4.4 Conclusion

This Chapter discusses DSG (dynamic and sparse graph) structure for efficient DNN

training and inference through a dimension-reduction search based sparsity forecast for

compressive memory and accelerative execution and a double-mask selection for BN

compatibility without sacrificing model’s expressive power. It can be easily extended

to the inference by using the same selection pattern after training. The experiments

over various benchmarks demonstrate significant memory saving (up to 4.5x for training

and 1.7x for inference) and computation reduction (up to 2.3x for training and 4.4x for

inference). Through significantly boosting both forward and backward passes in training,

as well as in inference, DSG promises efficient deep learning in both the cloud and edge.
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Chapter 5

Dual-Module Architecture

Chapter 3 presents the dual-module inference method for computational savings of DNNs.

This Chapter introduces a dedicated dual-module accelerator named DUET, to enable the

proposed dual-module processing scheme with better performance and energy efficiency.

The architecture of DUET is further devised to support different dataflow and mapping

strategies optimized for CNNs and RNNs.

5.1 Architecture Design

The top-level block diagram of DUET is shown in Figure 5.1. Overall, the accelerator

consists of three major components: an on-chip global buffer (GLB), a specialized 2D PE

array called the Executor, and a decoupled Speculator to handle approximate module

processing. In general, the Speculator and the Executor run in parallel. On the one hand,

the Speculator uses outputs from the Executor to perform speculation, i.e., running

approximate modules in the Speculator, generating approximate results and dynamic

switching maps. On the other hand, Executor leverages the switching maps to reduce

computations as well as memory access. The decoupled architecture of Executor and
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Figure 5.1: Overall architecture with an Executor running accurate modules and a
Speculator running approximate modules.

Speculator further enables a fine-grained pipeline design of the dataflow, which will be

demonstrated in Section 5.2.

Control: DUET has two-level of control logic. The global control configures the

whole system and is responsible for handling traffic between on-chip GLB and off-chip

DRAM, traffic between GLB and Executor, and traffic between GLB and Speculator.

The lower-level control consists of the control logic inside each PE and the Speculator,

which runs independently.

Global Buffer: DUET has a 1MB GLB that can communicate with both the off-chip

DRAM module and with the on-chip computation resources (Executor and Speculator)

through the NoC. Besides the data needed for computation (input, weight, and output),

GLB also stores the data required and generated by the Speculator. These data include

the weights for the Speculator, the switching maps to be used to reduce computations for

both CNNs and RNNs), the mapping configuration to balance PE workloads for CNNs

(see Section 5.2.1) and finally the approximate speculation results (only for RNNs, see

Section 5.2.2). GLB provides a total bandwidth of 512B/cycle to feed the Executor and

the Speculator sufficiently. The parameters are chosen through design space exploration

and are validated via a cycle-accurate simulator.
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Network-on-Chip: As shown in Figure 5.1, the NoC in DUET applies a similar

design as appeared in Eyeriss [84], which has two dimensions: Y-bus and X-bus. The

vertical Y-bus interacts 17 X-buses, with 16 for the Executor and one for the Speculator.

Each PE in the Executor has a reconfigurable (row, col) ID, and different X-buses or

PEs have the same ID if they are receiving the same data. During the data transmission,

each data loaded from the GLB is given a specific (row, col) ID. In order to correctly

deliver the data to its destination, 17 Multi-cast Controllers (MC) as shown in Figure 5.1

are used to compare the row ID with the row ID of each X-buses. Another 16 MCs will

match the col ID of the data with the destination’s col ID tag. The unmatched X-buses

and PEs are deactivated to save energy.

5.1.1 Hardware Efficient Speculator Design

Figure 5.2 shows the overall architecture of the Speculator. The design target of the

Speculator is – with small area and energy consumption – to provide sufficient throughput

for generating approximate results and switching maps that supply the Executor to reduce

computations with negligible loss of model quality. Each index in the switching map is

one-bit, indicating whether a specific neuron should use the approximate results or need

to be updated later by the accurate results from the Executor. In other words, the

Executor only needs to compute the output neurons with switching index equals to 1 in

the switching map.

As discussed in Chapter 3 and illustrated in Figure 5.2, the dual-module processing

method introduces three auxiliary steps to generate switching maps before the layer

execution: the quantization step, the dimension reduction step, and the speculation step.

The first two steps together make the speculation computation to be both low-dimension

and low precision (INT4). The approximate results will be further passed through the
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Figure 5.2: Illustration of the Speculator that runs approximate modules. The Switch-
ing Map Generator computes the dynamic switching indices for computation skipping
in the Executor while balance workloads.

Multi-Function Unit (MFU) to perform non-linear activation (e.g., ReLU , tanh, and

sigmoid) and generate final approximate results. Speculation output that falls in the

sensitive region will be considered as important output and have its switching index

set to one in the switching map. Finally, after generating switching maps, an optional

analyzing step called adaptive mapping is added afterward to process the information.

This step is essential for CNN execution to help balance the PEs’ workloads (See Section

5.2.1). We can find the process of the Speculator step by step below.

Pre-Step: Data preparing. At the beginning of running the Speculator, the

ternary projection matrix P and quantized & dimension-reduced (QDR) weights are

loaded into on-chip buffers, i.e., the Projection Matrix buffer and the QDR Weight Buffer

as shown in Figure 5.2.

Step 1: Quantization. The Executor’s high-dimensional execution uses 16-bit

fixed-point data, where the fixed-point data are essentially INT16 with a scale in FP32.

Therefore, the output of the Executor will also be the same format. In order to use

these results as the input activation and multiply them with the low-precision QDR

weights, we need to first quantize them from INT16 to INT4 values with the Quantizer

and then stash them into the Activation Buffer. The conversion from 16-bit to 4-bit is

realized by simply truncating the 12 least-significant bits (LSBs) and keeping the four

most-significant bits (MSBs). Accordingly, the scaling factor also needs to be increased
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by 4096 (212) to maintain the same quantization range. The rounding error caused

by 16b-to-4b quantization is inevitable, but such aggressive quantization applied in the

Speculator has negligible impact on model quality as the values are only used in the

insensitive regions.

Step 2: Dimension reduction. The dimension-reduction step multiplies the quan-

tized input activation with the projection matrix P to further reduce the dimension. Since

all the values in P come from the set {−1, 0, 1}, we can efficiently implement this step in

hardware with addition and accumulation instead of using multipliers. As shown in Fig-

ure 5.2, the Alignment Units first change the signs of input activations according to the

element values of P. Then the Adder Trees perform the accumulation of sign-modified

input activations. This carry-save-adder tree structure operating in pipeline provides

high throughput for dimension reduction. The dimension-reduced inputs are buffered in

QDR Input Buffer for the next step.

Step 3: Speculation computation & Switching map generation. As shown

in Figure 5.2, after quantization and dimension-reduction, the inputs and weights in low

dimension and low precision are stored in QDR Input Buffer and QDR Weight Buffer.

We can then conduct the INT4 inner-product operations using a 16 × 32 Systolic Array.

The Speculator uses systolic array rather than another 2D PE array to perform regular

dense GEMM operation because systolic array designs achieve better energy efficiency

with simple control. The size of the systolic array is searched based on design space

exploration in Section 5.3.6. The results from the Systolic Array will be accumulated

with the partial sum and sent to the Multi-Function Unit (MFU) to calculate the final

activated output. The MFU implements different activation functions, including ReLU ,

tanh and sigmoid.

Dynamic Switching. Given the results (y
′
) from the approximate module and

accurate results (y). The final output vector – a mixture of results from approximate
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and accurate modules – can be assembled by

y = y ⊙m + y
′ ⊙ (1 −m) (5.1)

where m ∈ {0, 1}n is the switching map for determining which output activations belong

to the insensitive region, and ⊙ is point-wise multiplication. We have


sigmoid/tanh : if |y′

i| > θth, mi = 0; else mi = 1

ReLU : if y
′
i < θth, mi = 0; else mi = 1

(5.2)

where θth is the threshold can be obtained by tuning with the training or validation set

to reach targeted saving.

Equation (5.2) represents how to generate the switching map, and we further compare

these approximate results with the predetermined thresholds from the fine-tuning phase.

All the values that fall within the sensitive region will have their switching indices to be

one.

Step 4: Adaptive Mapping. As mentioned above, with the switching maps and

speculation results, the Executor only needs to compute a small portion of accurate

activations. However, processing with sparsity information causes different PEs to have

imbalanced workloads for CNNs [90, 100]. To tackle this problem, we further propose the

Adaptive Mapping strategy to change the order of the computation between different

output channels so that output tiles with similar workloads are computed together. Such

reordering is very hardware efficient that can be handled directly inside the Speculator

using a dedicated Reordering Unit. Section 5.2.1 will further demonstrate the proposed

approach. As for RNNs, the designed dataflow guarantees that there is no workload

imbalance between different PEs, and we can bypass the reordering operation. How-
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ever, we do need to store the results for approximate activations; these 4-bit results are

dequantized to 16-bit data with the Speculator’s dequantizer and sent to GLB.

To sum up, the Speculator produces three types of information: firstly, the switching

maps indicating which output can be skipped by the Executor; secondly, the reordered

filter ID that the Executor follows when computing the output feature map; thirdly,

the approximate activations required by RNN models. With decoupled Speculator and

Executor design and the fine-grained pipeline between these two components, we can

hide the latency of speculation as much as possible to increase the overall performance.

The hardware efficient quantization and dimension reduction also greatly reduces the

area and energy overhead to process approximate modules.

5.1.2 Specialized Executor Design

The Executor processes accurate modules using 16-bit fixed-point arithmetic. Overall,

the Executor applies a typical spatial 2D PE architecture to explore different data reuse

types. Furthermore, we add specialized hardware components inside each PE to leverage

the dynamic switching maps to reduce computation and memory access. As shown

in Figure 5.3, each PE consists of dedicated buffers for different types of data, a 16-bit

pipelined multiplier and adder, and a local multiply-accumulate micro-instruction lookup

table (MAC Instruction LUT) which is the key of skipping unnecessary computations.

On the PE level, we can regard processing DNNs as orchestrating and executing mul-

tiple MAC operations. Each MAC operation requires two loads for input and weight

values, one load for partial sum, and one store for the updated partial sum. As illus-

trated in Figure 5.3, the MAC operations are represented with micro-instructions (µinst)

that stored in the MAC Instruction LUT. Each µinst contains the input activation (IA)

index, weight (W) index, and output activation (OA) index indicating the address of the
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Figure 5.3: Specialized Processing Element that handles dynamic switching to skip
computations. MAC operations are stored into a dedicated instruction Lookup Table.
OMap and IMap are the switching maps which help to assign validation Tags to each
MAC instruction. Instructions with Tag value to be 0 will be skipped.

load/store operations. Besides, an extra tag-bit is added to enable computation saving.

MAC operations with tag bit being zero will be directly skipped. We only use the indices

to locate the relative positions of the values in the input/weight/output tile. As long

as the tile’s shape is kept the same, these indices do not change. For a given NN layer,

the PEs are processing a static shape of input, weight, or output tile. Therefore, the

µinst’s indices only need to be generated once at the beginning of layer configuration,

and remain unchanged and shared by all the PEs throughout the execution of the whole

layer. The dynamic switching maps will be used to configure the tag bits for different

tiles to enable computation skipping.

We can further use a simple example of CNN to demonstrate how the PE utilizes

switching maps to skip unnecessary computations. As for RNNs, the case is even simpler.

In the example shown in Figure 5.3, every step the PE is processing a 3×5×1 input tile,
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and a 3× 3× 1 filter tile to generate a 1× 3× 1 psum in the ofmap. Therefore, each PE

is mapped with 3 × 3 × 3 = 27 MAC operations for each step. To configure the tag-bit,

the Executor loads the corresponding IMap and OMap from GLB and stored them in

PE’s local buffer. The OMap shows whether an output activation needs to be computed

by the executor, and IMap shows whether the input activation is zero or not. We only

mentioned output switching maps (OMap) in the previous content, but for CNNs, the

ineffectual neurons are set to zero, making the OMap become the input sparsity maps

(IMap) for the next layer. In this way, we only need to pay the overhead of dynamic

switching once, but the switching map is used twice for the current layer’s OMap and

the next layer’s IMap. Besides, if a predicted effectual neuron turns out to be ineffectual

after ReLU , we will update the switching index of that neuron from 1 to 0 and then send

it to the GLB. With this correction step, when the OMap is loaded as IMap for next

layer, it will have even higher sparsity to save more computations.

Based on the switching maps, we can easily decide whether a specific instruction

can be skipped or not. For example, as shown in Figure 5.3, the OMap shows that

only the first element in the 1 × 3 × 1 output tile needs to be computed. Therefore, all

the MAC operations related to the other two output neurons can be discarded, leaving

only nine necessary MAC operations. Moreover, since the IMap shows that 2/3 of the

input activations are zero, we can further reduce six MAC operations. Finally, each

MAC operation is augmented with a 1-bit tag using simple Boolean logic. PE’s local

control will locate the valid MAC operation in the instruction buffer to perform necessary

computation.
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5.2 Dataflow and Mapping

DUET is able to support both CNNs and RNNs with a unified architecture. The

efficient hardware design presented in Section 5.1 guarantees that different units can well

handle their required tasks. However, to achieve the expected performance speedup and

energy saving, we still need to have fine-grained dataflow design and hardware mappings.

Essentially, we decouple the Speculator with the Executor so that they can run in parallel

and let switching maps to be generated prior to run the Executor. Nevertheless, the data

dependencies between the current layer’s output and the next layer’s run-ahead approx-

imate module execution makes it challenging to orchestrate the execution dataflow of

the Executor and the Speculator in pipeline. Therefore, this Section separately describes

how DUET handles CNN models and RNN models while addressing different bottlenecks

during the run-time.

5.2.1 Processing CNNs with Balanced Execution

DUET computes a CNN model layer by layer. The accelerator is configured once for

each layer to sequentially process batches of ifmap. The configuration bits are generated

offline based on the layer structure and hardware constraints. During runtime, they are

loaded as a long scan chain to configure the accelerator to process a layer in a certain

tiling shape and set up the mappings for the Executor and the Speculator.

Overall Pipeline For illustrative purposes, suppose we have a CNN layer with a 5 ×

5 × 3 ifmap and six 3 × 3 × 3 filters, as shown in Figure 5.4(a). Therefore, the ofmap

would be of size 3 × 3 × 6, assuming no padding. In this example, the Executor consists

of 3 × 3 = 9 PEs. Each line of PEs will together computes a specific channel of the

ofmap. Within the same PE line, different PE loads different tiles of ifmap and filter
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that contribute to the same area in a specific ofmap channel. Thus, the output partial

sum will be horizontally accumulated. Since different lines of PEs compute different

output channels, input feature maps are shared vertically within the same column of

PEs.
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Figure 5.4: Illustration of (a) CNN Dataflow and (b) Adaptive Mapping Strategy.
Ifmap data are shared vertically in Executor, and each PE-row computes for a spe-
cific ofmap channel. The Speculator uses the Executor’s output to perform output
speculation for the next layer. After generating switching maps, the Speculator di-
rectly performs adaptive mapping to balance PE’s workload before execution.

During the execution, the ofmap is computed step by step. Each step the PE array

generates a 1 × 3 × 3 output tile, each line generates a 1 × 3 × 1 tile. Therefore, it

takes 6 steps to finish computing the ofmap. After finishing a step, we first move along

the channel dimension of the ofmap to compute the next tile. In this example, after

the first tile is generated, we then compute the red tile as shown on the ofmap in

Figure 5.4(a). In this way, when these two tiles are sent to the Speculator as input

activations to perform speculation, the speculation results using tile1 and tile2 can be

further accumulated together. Otherwise, if tile1 and tile2 are different areas in the

same channel, the speculation output of tile1 and tile2 will be also at different areas that

cannot be accumulated. This will increase the memory footprint of the speculation.

Therefore, the Executor computes each layer’s output tile by tile, while the Speculator

uses computed tiles to perform sparsity speculation for the next layer. In this way, we can

pipeline the speculation with execution, hiding the latency of speculation while lowering
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the memory overhead. In the example shown in Figure 5.4, while the Executor is still

computing layer L’s output, the Speculator is already using existing results to generate

switching maps for layer L+1. Therefore, when the accelerator start to process layer

L+1, it already has the OMap to be used to skip a considerable amount of unnecessary

computations. Also, as mentioned above, the OMap of the previous layer will be updated

by the Executor and serve as the IMap for the next layer to further reduce computations.

Adaptive Mapping for Balanced Execution The key challenge of computation

skipping in CNNs is the workload imbalance caused by irregular sparsity distribution,

which further results in PE under utilization and performance degradation. Specifically,

different PEs can have different numbers of necessary MAC operations in the same com-

putation step. Therefore, PEs with less computations will finish earlier and have to wait

for the other PEs.

Depending on the sparsity type, there have been several ways to balance the work-

loads. Prior work like [88, 90]focus on input and weight sparsity. Since the weight sparsity

is static and generated offline during the training phase, they adopt offline sorting based

on the weight density to reorder the computation sequence prior to the inference. This

idea is not suitable for dynamic output switching (OS), as the switching map is gener-

ated dynamically during run-time. Online sorting will incur longer latency and energy

consumption.

Other work [101, 100] target on output sparsity. These work are based on a coupled

executor/predictor design with early termination mechanism. Specifically, the prediction

is indeed part of the execution process. If the prediction results indicate the output to be

zero, the execution will be stopped here. Otherwise it will be completed. To tackle the

workload imbalance caused by output sparsity, they mainly use two approaches. The first

idea is to enable asynchronous PE execution, so that whenever a PE finishes its current
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computation, it can initiate a new computation step. However, this approach causes

significantly design and energy overhead due to extra memory access and complicated

NoC/buffer design. The second idea is to apply an empirical approach by expecting

the computations to be evened out along a certain input dimension. For instance in

Predict [100], the authors claim that the summation of the computations with the same

coordinate across different ofmap channels is nearly the same. However, in order to

achieve this balance, they need to increase the tile size of each computation step, which

requires larger local buffer and memory footprint. We believe these approaches are sub-

optimal and energy inefficient, and the reason is because their dataflow is based on single-

module architecture which cannot generate the switching maps prior to the execution.

DUET solves the imbalance issue by the decoupled speculation/execution and hard-

ware efficient dynamic adaptive mapping. The decoupled design ensures the switching

maps to be generated prior to its execution, which also gives us extra time to perform on-

line sorting using the proposed adaptive mapping. A dedicated Reorder Unit is designed

in the hardware to reduce the mapping latency.

Figure 5.4(b) demonstrates the proposed approach. Suppose in each step, we can

generate two 2 × 2 switching maps corresponded to two ofmap channels. Besides, the

Executor has 4 PEs that are organized in a 2 × 2 square. In the normal dense case,

output channel 0 and 2 will be mapped to row 0 (PE0&1), and output channel 1 and 3

will be mapped to row 1 (PE2&3). Therefore, Channel 0 and 1 will be later processed

at the same time, while channel 2 and 3 are computed together. However, due to output

sparsity, the workload of these channel are unbalanced as shown in the figure. Thus,

such naive mapping strategy will cause different row of PEs to be under-utilized within

the same step. In this case, a better computation sequence would be to compute 0 and

3 first, followed by channel 1, 2.

Therefore, DUET achieves more balanced PE workloads by changing the order of
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computing different ofmap channels. Since the switching maps are generated in advance,

we can examine the total workloads for different output channels within several tiles.

Based on these numbers, we can further group the output channels that have comparable

operations together. After this, a new sequence of ofmap channel is generated. Later

when the accelerator processes next layer, the Executor will load filter weights according

to this new sequence to have balanced computation time.

Note that, adaptive mapping only changes the order of computing the ofmap channels.

In other words, it only affects the sequence of loading the filter data, while the ifmap

access and data reuse pattern are not influenced. Also, the output are sequentially stored

in the GLB according to their original sequence. For example, even though Channel 0,3

are computed together at first, and Channel 1,2 comes later, in the GLB they are still

stored as Channel 0,1,2,3. In this way we can keep the ID unchanged for the next layer

when loading the ifmap data.

The adaptive mapping only considers the imbalance issue caused by output sparsity

so that different rows of PEs are balanced. Inside each row, there will still be imbalance

within the PEs due to input sparsity. However, we can observe in the experiments that,

it is negligible compared with output imbalance. Besides, further enabling more compli-

cated mapping and reordering strategy will considerably increase the sorting overhead.

Architecture Support for Adaptive Mapping In DUET design, the adaptive map-

ping is done inside the Speculator’s Reorder Unit. As tiles of switching maps are sequen-

tially generated, we send them to the Reorder Unit in addition to writing them back to

the GLB. The design of the Reorder Unit is shown in Figure 5.5, it consists of multiple

1-bit adder trees that will sum up all the switching indices corresponded to a specific

output channel. Each output channel will have a total count of estimated computations.

Note that, this number does not represent the workloads for the whole channel, but for
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Figure 5.5: Reorder Unit implements adaptive mapping for balanced execution. The
output switching maps for different channels are summed up separately and divided
into several groups. The IDs of different filters with similar workloads are stored
together in a same bucket and sent out together.

the tile that will be processed within one computation step. Then, we compare the sum

with preset interval thresholds and write the channel IDs to the corresponding buffers,

i.e., Buckets shown in Figure 5.5.

Using the same example in Figure 5.4(b), each of the four output channels will have a

sum indicating its computation quantity. In this case, the sums are 4, 1, 2, 4 for channel

0, 1, 2, 3. Since there are two PE lines in the Executor, there will be two Buckets in the

Reorder Unit. In this case, the channel that has more than two valid output elements will

be stored in Bucket0, and others that contain less valid output will be stored in Bucket1.

To do so, we only need to compare the four sums with a preset threshold 2, and channel

ID 0, 3 are grouped together, while ID 1, 2 will be stored in the second Bucket. During

execution, the Executor will load the filter data in the order of Bucket0, Bucket1, which

gives us the optimal computation sequence as demonstrate above.

5.2.2 Reducing Memory Accesses and Computations on RNNs

Finally, we can see how DUET handles RNN models. Compared with CNN models,

processing RNNs is more memory-bound. For instance, given an input vector of length
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Executing GEMV with reduced computations and memory access. We apply a gate
level speculation/execution pipeline to hide the speculation latency. Each PE-row in
the Executor is mapped with a dot product between a row of weight matrix and the
input vector. Each PE-row will finally generate a single output value. Therefore, if
the switching index is zero, we can directly skip a complete dot-product operation.

1024, the weight matrix used for computing each gate in an RNN cell would be 1024 ×

1024, which requires a 2MB of memory space. Furthermore, although the weights are

shared between different input elements, the recurrent data dependency requires us to

compute the previous hidden state before we can process the next one. Therefore, during

the execution, we have to constantly and cyclically load each weight matrix from the

off-chip DRAM. This motivates us to focus on reducing the off-chip memory access with

the proposed mechanism, while keeping the dataflow simple enough to ease the control

overhead and avoid workload imbalance.

Overall Dataflow For illustrative purpose, we consider an LSTM network with two

recurrent LSTM Cells L1, L2 and an input sequence with 3 elements x1, x2, x3, as shown in

Figure 5.6(a). The inference is executed element by element and then layer by layer. To

be more specific, as demonstrated by Figure 5.6(b), for the first element x1, the weights

of L1 are fetched from DRAM. Due to the limited on-chip memory capacity, each time

we can only load part of the weight matrix corresponded to a specific gate. After the first

hidden state of L1 is computed, we use the results and x2 to compute the second hidden
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state. To do so, we need to reload L1’s weight from DRAM. Finally, after all three input

elements are passed through L1, the same process is repeated for L2.

Inside each layer, the computation is also handled in a sequential pattern. Using

the same example in Figure 5.6(b), suppose we are passing x1 through L1. We can first

compute the input gate i and then the forget gate f , followed by the update gate g to

compute cell state C, and finally, we compute the output gate o to get the hidden state

h. The computation is mainly matrix-vector multiplication and vector accumulation and

activation functions.

Gate-level Dual-Module Pipeline With the baseline dataflow, we further introduce

how to utilize the Speculator to perform speculations for RNN models and hide the

speculation latency. In DUET, we speculate the output of each gate before its execution.

As illustrated by Figure 5.6(b), we start with x1 and L1 and perform quantization and

dimension reduction for the input gate i. Similar to CNN, this will give us a binary

switching map indicating the important neurons that need to be updated with accurate

results from the Executor. What’s different is that, apart from the switching maps, we

also store the approximated results for those ineffectual output neurons in the GLB.

After the sparse high-precision computation for gate i is finished in the Executor, we

add the two vectors together. As a result, in the final output vector, the approximate

activations are generated by the Speculator, while the effectual activations are computed

in the Executor. With the switching maps, for the weight matrix and bias vector, only

the rows related to the accurate output activations need to be fetched from DRAM. Our

approach saves memory accesses and computations.

During the Executor’s execution of input gate i, the Speculator can start the spec-

ulation for the forget gate f , since we only need x1 and h0 as our input to perform the

speculation. Similarly, the speculation of the other gates can also be hidden with the
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Executor’s computation. Throughout the processing of each layer, only the speculation

for input gate i cannot be hidden due to data dependencies.

Reducing Off-chip Memory Access and On-chip Computations with OMap

As shown by Figure 5.6(c)&(d), each PE line in the Executor is mapped with a specific

row of the weight matrix to be multiplied with the input vector to generate a single

output value. Therefore, if the switching map indicates that a specific output neuron is

ineffectual, then we can completely skip the computations related to this neuron during

the execution. More importantly, there is no need to load the corresponding row in the

weight matrix from the DRAM. Saving weight data access is especially crucial as the pro-

filing results show that off-chip memory access greatly influences the overall performance

and energy consumption. With the proposed dual-module processing mechanism, we can

directly reduce the amount of data to be loaded from DRAM to GLB and from GLB

to Executor. The overall computation complexity and processing time are also reduced,

further boosting the performance of executing RNN models.

5.3 Evaluation

This section presents the evaluation of the dual-module processing algorithm and the

supporting accelerator architecture of DUET co-design for improved inference efficiency

of DNNs. At the algorithm level, we present the trade-off between inference quality and

efficiency in terms of FLOPs reduction and data access reduction. At the architecture

level, we demonstrate the improved efficiency with DUET and compare DUET with

state-of-the-art DNN accelerators with computation skipping.
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Figure 5.7: Model inference quality vs. savings. Dual-module processing of DUET
achieves better quality and saving trade-off and supports a wide range of DNN models.

5.3.1 Algorithm Evaluation

Benchmarks. The evaluation uses a set of machine learning tasks: AlexNet, ResNet18,

and ResNet50 to perform image classification on the ImageNet dataset; RNN-based mod-

els on language modeling with LSTM and GRU using the PTB dataset and machine

translation with GNMT using the WMT16 en-de dataset.

Quality and Efficiency trade-off. The dual-module processing method provides

a trade-off model inference quality with improved efficiency. With acceptable quality

degradation, DUET can boost DNN execution efficiency that could be critical in latency

and energy-constrained application scenarios. Figure 5.7 (a) and (b) show the FLOPs

reduction at different levels of accuracy loss in both top-1 and top-5. With 1% top-1 ac-

curacy loss according to MLPerf, the method can reduce operations by 3.33x and 5.15x
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using AlexNet and ResNet18, respectively. Comparing with prior methods computa-

tion skipping in CNNs, namely SnaPEA [101], FBS [54], and CGNet [55], the proposed

approach can achieve better quality and operation reduction trade-off.

As shown in Figure 5.7(c), the method can reduce off-chip weight data access by

1.89x while achieving negligible quality degradation with one perplexity increase from

baseline. Similarly, as shown in Figure 5.7(d), serving online translation with GNMT is

latency-sensitive because of the memory-bound nature of accessing weights of different

LSTM layers at each time-step. With unnoticeable translation quality by users such as

one BLEU score loss, our method can achieve 2.22x reduction on off-chip weight data

access of the four-layer decoder in GNMT.

5.3.2 Architecture Evaluation Methodology
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Figure 5.8: (a) Overall performance speedup and energy efficiency; (b) Comparison
with other accelerators.

The evaluation of DUET design uses a cycle-level simulator based on the architec-

ture as in the state-of-the-art CNN accelerator [84]. Because dual-module processing is

data-dependent, we adopt a hybrid simulation methodology: we integrate the cycle-level

simulator with a deep learning framework, i.e., PyTorch. The input data to the simulator,
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Figure 5.9: Breakdown analysis for DUET. (a) Layer-wise speedup improvement ap-
plying different techniques in DUET. (b) Layer-wise MAC utilization improvement.
(c) Latency comparison between the Executor, the Speculator, and the baseline single
Executor design. (d) Memory and compute latency for RNN models. (e) Overall
energy breakdown (w/ off-chip memory access). (f) On-chip energy breakdown (w/o
off-chip memory access).

including input activations, model parameters for Executor, and Speculator parameters,

are all extracted from PyTorch. We use results from RTL synthesis by DesignCompiler

under 45nm technology for DUET control logic. We use CACTI and Micron Power Cal-

culators for SRAM and DRAM estimation. Table 5.1 lists the area of major components

in DUET design. The primary area consumption comes from the on-chip memory buffers,

while the Executor accounts for 40.0% of the total chip area, and the Speculator only

accounts for 6.6% of the area.

Comparison baselines. Firstly, single-module architecture with only the Executor

is the baseline architecture. DUET is compared with state-of-the-art accelerators in terms

of performance, energy consumption, and energy-delay-product (EDP), when running

the same workloads. Specifically, the developed simulator is extended and validated to

support Eyeriss[84], Cnvlutin[95], SnaPEA[101], and Prediction[100]. These architectures

span over dataflow optimization and computation skipping of sparse activations, which
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sufficiently supports the evaluation of DUET. As illustrated here, neuron sparsity causes

imbalanced execution and the proposed adaptive mapping can mitigate it. The proposed

dual-module architecture design outperforms other sparsity-oriented designs.

5.3.3 Performance speedup analysis

Overall speedup. Figure 5.8(a) shows the overall speedup. Compared with the

single-module baseline design, DUET achieves 2.24x average speedup on typical CNN

and RNN models. The performance improvements mainly come from three aspects:

firstly, total computations are reduced with dual-module processing; secondly, hardware-

efficient adaptive mapping ensures balanced execution and high PE utilization in the

Executor; finally, advanced switching map generation greatly reduced off-chip memory

access for memory-bound workloads.

Layer-wise breakdown for different techniques. To further give more insights

to the evaluation results, we provide a layer-wise breakdown for the CONV layers of

AlexNet and ResNet18, and we show the effectiveness of our schemes in four stages.

The comparison baseline is to only use the Executor with the same mapping and basic

dataflow. As shown in Figure 5.9(a), skipping computations given output switching

map (OS) without adaptive mapping can only obtain 1.20x speedup on average due to

imbalanced execution. Enhanced by adaptive mapping, i.e., Balanced Output Switching

(BOS), the performance speedup can achieve 1.93x. Moreover, with integrated input

and output switching maps (IOS), the performance can be boosted to 2.36x as more

computations can be skipped. Finally, the integrated input and output switching maps

(DUET) design with adaptive mapping can achieve a 3.05x average speedup.

Figure 5.9(b) uses the layer-wise MAC utilization of CONV layers, from AlexNet and

VGG16, as the metrics to evaluate execution efficiency. For example, CONV5 in AlexNet
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has 65.5% computation sparsity when using OS, which could have 2.9x speedup, yet only

achieves 1.36x. The gap between actual speedup and theoretical computation reduction

indicates the severe imbalanced execution caused by coupled OS speculation. The aver-

age MAC utilization of OS only is less than 50%, again, due to imbalanced execution.

While integrating the input sparsity with output sparsity (IOS) could have more com-

putation reduction than using OS only, PEs are more under-utilized – on average, 30%

in Figure 5.9(b). We can observe higher speedups on CONV layers with more channels.

DUET can have more balanced execution with output switching and adaptive mapping.

Compared with imbalanced OS, the average utilization of balanced OS can be improved

from 47% to 76%; the average performance speedup is increased from 1.20x to 1.93x.

Similarly, IOS boosted with our adaptive mapping (DUET ), the average MAC utiliza-

tion and the speedup of CONV layers increase from 30% to 39% and from 2.36 to 3.05x,

respectively.

As Executor and Speculator compute for critical neurons and trivial neurons, respec-

tively, to deliver final activated results, balancing the processing time of Executor and

Speculator is critical to achieving better performance rather than having the Speculator

become the new bottleneck. The latency results of Executor and Speculator are shown

in Figure 5.9(c). Compared with baseline Executor without computation skipping en-

abled by the dynamic switching from Speculator, DUET can reduce Executor average

latency from 1.06 ms to 0.29 ms with dynamic switching and adaptive mapping. On

average, Speculator latency is 0.20 ms that can be hidden with the latency of Executor

with pipelined processing.

For memory-bound RNN layers, we focus on the latency of off-chip memory access and

on-chip computations. As shown in Figure 5.9(d), BASE processing is severely bounded

by accessing weight data from off-chip memory. Enabled by dynamic switching in DUET,

the off-chip weight data accessing latency is reduced to 0.30 ms from 0.65 ms.
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5.3.4 Energy efficiency analysis

Overall energy savings. As shown in Figure 5.8(a), DUET can achieve 1.95x

energy saving on average using Executor-Speculator dual-module processing compared

with baseline single-module processing. The energy saving is achieved by cutting on-

chip computations and buffer access as well as cutting off-chip data access. Specifically,

for Executor, the computations and local buffer access are greatly reduced by taking

advantage of the prepared switching maps. For the Speculator, although we need to load

QDR weights and store the computed approximate data, we make sure the computations

are low-dimension and low-precision, which keeps the cost of these extra memory accesses

as low as possible. Besides, the approximated results for the insensitive activations are

reused to save energy consumption further.

Energy Breakdown. To further interpret the energy efficiency of DUET, Fig-

ure 5.9(e) and (f) show the layer-wise energy breakdown. For compute-bound layers

such as CONV layers, the energy saving benefits are mostly from the reduction of MAC

computations and local buffer accesses in the Executor. For memory-bound layers such

as RNNs, reducing weight data accesses from off-chip memory enabled by DUET helps

energy efficiency. These results support the above analysis and demonstrated our initial

optimization targets. Figure 5.9(f) shows the on-chip energy breakdown. The Specu-

lator’s energy consumption only consumes a small portion, ranging from 3.5% to 6.3%

for CONV layers and less than 1% for RNNs compared with the total on-chip energy of

baseline.

5.3.5 Comparison with SOTA CNN Accelerators

A special case of dua-module processing is ReLU-based output sparsity prediction

typically appeared in CNNs. While the focus of DUET is supporting computation and
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Table 5.1: Area breakdown.

Units Parameters Area (mm2)

Global Buffer 1MB 5.655
Executor 256 (16-bit) 4.236
Speculator 0.699

Align. & Adder Trees 4096 (4-bit) 0.378
Systolic Array 16x32 (4-bit) 0.318
Activation Buffer 8KB 0.023
Projection Buffer 32KB 0.090
QDR Input Buffer 4KB 0.011
QDR Weight Buffer 128KB 0.352
QDR Output Buffer 4KB 0.011
Multi-Func. Unit 16 (4-bit) 0.034
Reorder Unit 16 Buckets (32B) 0.014

memory accesses reduction in general DNN models, we compare with state-of-the-art

CNN accelerators, i.e., Eyeriss [84], Cnvlutin [95], SnaPEA [101], and Predict [100], with

computation skipping to demonstrate the benefits of DUET’s architecture design choices.

All designs are scaled to have the same number of MACs and similar on-chip memory

size, and all resul are normalized to DUET, as shown in Figure 5.8(b). DUET achieves

better results in terms of latency, energy, and energy-delay-product (EDP).

Performance comparison. Performance-wise speaking, Eyeriss equals a dense

baseline as it only supports power-gating to save energy but computation skipping to

improve performance; thus, it has the worst latency among others. Equipped with either

input sparsity detection or output sparsity prediction mechanisms, Cnvlutin, SnaPEA,

and Predict can reduce processing latency from computation skipping, the performance

improvements are limited by only single-source computation skipping from either input

or output. The workload imbalance caused by irregular sparse activations as in Cnvlutin

and SnaPEA compromises the performance.

Energy efficiency comparison. Cnvlutin, SnaPEA, and Prediction use only one
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level of on-chip buffer and have no local data reuse, thus those designs consume 1.77x,

2.21x, and 2.21x more energy than DUET, as shown in Figure 5.8(b). Even though those

three designs support computation skipping, the energy consumption is at the same level

as Eyeriss. Since buffer accessing is the major source of on-chip energy consumption [84],

accelerators without data reuse at the local buffer level would inevitably consume much

more energy to access global buffer. DUET uses the same two-level on-chip memory

hierarchy as in Eyeriss with local data reuse to improve energy efficiency.

Energy-delay-product comparison. To better compare different architectures,

Figure 5.8(b) show the comparison on energy-delay-produce (EDP). The EDP of SnaPEA

and Predict are 3.98x and 2.21x more than DUET, respectively. While other designs with

computation skipping from both input and output activations, i.e., Predict+Cnvlutin, can

achieve comparable performance, DUET demonstrates 1.81x and 2.03x better in energy

efficiency and EDP, respectively.

5.3.6 Design Space Exploration
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Figure 5.10: Design space exploration of (a) Speculator size and (b) Speculator Precision.

Speculator Size. Here we investigate the impact on performance when choosing

different sizes of the Speculator while fixing the size of the Executor. Specifically, when
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modifying the systolic array size, other components in the Speculator are scaled accord-

ingly. The two benchmarks used are AlexNet and ResNet18. As shown in Figure 5.10(a),

when the Speculator is small, e.g. 8x8, 8x16, the performance improvements are sub-

optimal. This is because the Speculator cannot provide sufficient throughput to support

the Executor, processing of Speculator becomes the performance bottleneck. Besides,

when increasing the size of Speculator to 32x32, the performance merely improves, mean-

ing the latency of the Speculator is already hidden by the Executor. We need to increase

the size of Executor if we want to have more speedups. Therefore, the chose systolic

array size is 16x32.

Speculator Precision. We also study how compute precision affects the approxi-

mation quality of the Speculator, which helps us decide the trade-off between hardware

consumption and model accuracy. With the same benchmarks, as shown in Figure 5.10,

INT4 is a preferred precision with negligible accuracy loss indicating good approximation

quality. With 4-bit data representation and computation, we are able to achieve area

and energy-efficient approximation, as demonstrated above.

5.4 Conclusion

This chapter presents an algorithm-architecture co-design to boost the execution ef-

ficiency of DNNs. Firstly, as discussed in Chapter 3, the dual-module processing uses

lightweight approximate modules to compute insensitive activations and seeks to accurate

modules to compute sensitive activations with skipped computations and data accesses.

Secondly, the DUET design with specialized and decoupled Executor and Speculator

supports balanced execution and memory accesses reduction. Compared with standard

single-module processing, DUET can achieve 2.24x performance speedup and 1.97x en-

ergy efficiency improvement.
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Chapter 6

Near-Memory Classification

Extreme classification is the essential component of large-scale ML models for a wide

range of application domains, including image recognition, language modeling, and prod-

uct recommendation. This Chapter presents a study on the memory-intensive problem of

extreme classification and demonstrates that elastic processing in the form of candidate-

level redundancy can greatly improve the performance on near-memory architectures.

6.1 Introduction

Recent advances in many machine intelligence areas, such as natural language process-

ing (NLP) [152, 1, 153], image recognition [5, 7, 154], and recommendation[155, 156, 6],

involve tackling the extreme classification problem, where classification category size is

extreme large. For example, in the NLP domain, making predictions is basically clas-

sifying the words with high probabilities. Similarly, for image recognition tasks and

recommendation tasks, the features generated from hidden neural network layers need to

go through the classification layer to output predictions. As shown in Figure 6.1, extreme

classification is the essential component to deal with large-scale problems.
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Figure 6.1: Extreme Classification serves as the common component of large-scale
Deep Learning applications. The classifier processes with hidden representations from
application-specific hidden layers and generates predictions as used in recognition,
language, and recommendation.

As classification categories keep scaling in real-world applications, the classifier’s pa-

rameters could reach hundreds of gigabytes, far beyond the on-chip memory capacity.

For large-scale NLP models, the vocabulary sizes are in the range of hundreds of thou-

sands, contributing hundreds of megabytes data [1, 4]. For recommendation systems,

using commodity datasets to solve industry-level problems would require classification

on the scale of 100M categories [7, 5], consuming around 190GB memory.

Due to the large memory footprint of extreme classification, accessing system memory

for the classifier’s weight data becomes the bottleneck of system performance. This work

characterizes the state-of-the-art Transformer-based language model [157] and shows that

the final classification layer consumes 50% of overall model inference time. While GPUs

and specialized accelerators can boost the performance of DNN layers [9, 84], they suffer

from inter-device data movements when executing the memory-intensive classification

layer, as the memory usage exceeds device memory capacity.

Emerging Near-Memory Processing (NMP) technologies [25, 24] have the potential

to address the memory-bound problem of extreme classification. However, naive NMP
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designs cannot support the computational complexity of full classification due to the

area and power limitations. Even the classifier weight data are stored and processed

near-memory, the low operational intensity of linear transformation, which is basically

matrix-vector multiplication, is still causing performance degradation when accessing

weight data from DRAM modules.
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Figure 6.2: The overview of our Approximate Screening algorithm and NMP architec-
ture co-design. Instead of full classification, ENMC co-design essentially performs can-
didates-only classification, where the candidates are based on the screening method.
ENMC’s NMP architecture design features a Screener and an Executor to collabora-
tively process candidates-only classification.

Therefore, this chapter presents the first end-to-end solution to address the memory-

bound problem of extreme classification with NMP architecture. Figure 6.2 gives an

overview of the proposed software and hardware co-design. The proposed approximate

screening algorithm directly reduces the required computations and data accesses in-

volved in linear transformations. As demonstrated in Figure 6.2, given the extracted

feature vectors from the application front-end, a learned lightweight classifier firstly per-

forms approximate classification to efficiently identify the set of important candidates in

the category space. Afterwards, the classifier will trigger candidates-only computation

to generate accurate classification results, while the rest can directly utilize the approxi-

mate results computed from the screening phase. Therefore, a large amount of computa-

tions and data loading of classification are saved. Experimental results in Section 6.6.1

show that the proposed screening method achieves better trade-off for classification accu-
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racy and computation saving, compared with conventional low-rank approximation-based

method [153].

Fully leveraging the approximate screening method further motivates the design of

the Extreme Near-Memory Classification architecture, namely ENMC. Here lists the key

features of the ENMC design:

Firstly, as shown in Figure 6.2, ENMC has a dual-module architecture that contains

a Screener module and an Executor module that run in parallel. The Screener performs

approximate screening efficiently, as described in Section 6.4, and predicts the classifica-

tion candidates in advance. For each candidate selected in a batch, the ENMC controller

will generate instructions for accurate computations handled by the Executor. The com-

puting modules are deployed at rank-level such that there is no need to invade the DRAM

chips.

Secondly, the ENMC instruction set facilitates the workloads accommodation between

host processor and ENMC, and it supports the communications between the Screener

and the Executor. The instruction format that is defined by leveraging the reserved

command space is compatible with the commodity DDR interface. Thus, the ENMC

DIMM can also support regular memory requests.

Finally, the system-level design, including application workflow and program compiler

support, makes the ENMC architecture cooperate with the software framework. The

design could be easily extended no matter the host processors are CPUs, GPUs, or

domain-specific accelerators.

6.2 Motivation

As discussed in Section 2.2, the classification layer is the essential component in NLP

tasks and large-scale recommendation systems. Figure 6.3 shows the breakdown of model

87



Near-Memory Classification Chapter 6

parameters and operations into classification and non-classification, i.e., input embedding

and hidden layers. For the three NLP tasks, classifiers consume a significant amount of

parameters and operations. When classification category sizes scale to millions as in

large-scale recommendation, classification layers become the major bottleneck. We can

observe similar breakdown on execution time.
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Figure 6.3: The breakdown of parameters and operations into classification and non–
classification. Classification layers consume a large portion and become the bottleneck
when categorize sizes scale.

6.2.1 Opportunity

The root cause for extreme classification being the bottleneck is from the large mem-

ory footprint and the low operational intensity. As shown in Figure 6.4(a), classifiers

consume memory in the order of hundreds megabytes or even gigabytes, far beyond the

on-chip memory capacity of modern GPUs or NPUs. The execution time of classification

increases linearly with category size and hidden dimensions. From the perspective of DL

practitioners and algorithm developers, using larger vocabulary or category and hidden

dimensions is almost always a way to improve model quality. However, the increasing

memory usage will worsen the memory-bounded execution problem. For recommenda-

tion systems, the increasing need for an enormous number of items results in even more

challenging requirement to accommodate the classifier.
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layers scale linearly with the number of categories. (b) Roofline analysis of the major
components. Darker color indicates larger batch size.

Opportunity of approximation: In extreme classification, outputs from classifier

are probabilities. While we should compute all the outputs of the linear transformation

using all classifier parameters, many applications require only the probabilities of the

most top words. For example, in neural machine translation, we only use the top-K

values of softmax-normalized probabilities to select the translated words, where K is the

beam search size when applied. Therefore, we could have only the top-K probabilities

to be accurate, then having the rest to be approximate, aiming at significantly reduced

computations and data accesses. The next section explores the opportunity of using

approximation to achieve efficient extreme classification.

Opportunity of NMP: Although approximation can greatly reduce the com-

putation amount in extreme classification, approximate screening is still bounded by

the memory bandwidth. Figure 6.4(b) plots the data points for approximate screening,

candidate-only classification, and front-end neural networks in a CPU’s roofline model.

Both screening and classification exhibit low operation intensity after eliminating re-

dundant computations and reducing hidden dimensions. Candidate-only classification

presents sparsity characteristics due to the random candidate lookup within a batch

(similar to embedding lookup in recommendation model), and thus also locate at the
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memory-bound region in the roofline. Therefore, different from the front-end models that

are often bounded by computation capability, approximate screening and candidate-only

classification can benefit from the large bandwidth of NMP architectures.

6.2.2 Limitations of Existing NMP

As mentioned above, due to the memory-bounded execution pattern of classification,

NMP-enabled systems could leverage the near-data capability to avoid significant amount

of off-chip memory traffic. However, existing NMPs often employ a homogeneous archi-

tecture equipped with unified floating-point and integer compute units [158, 159, 25]. The

proposed screening method explores a heterogeneous computation pattern that includes

a low-precision approximate screening phase and a full-precision candidate-only classifi-

cation phase. Therefore, the NMP architecture features a dedicate resource management

of both phases and a customized pipeline design.

6.3 Approach

Section 6.2 discusses the potential of using NMP to alleviate the memory pressure of

executing extreme classification. However, the limited computing capability of NMP logic

cannot afford the computations of extreme classification. In other words, the execution

of full classification on NMP core becomes the bottleneck.

We can find that not all computations in classification are useful. In fact, only a

small portion of classification results contribute to model predictions. For example, in

language modeling tasks, only output probabilities of the most important words need

to be accurate. Thus, the proposed efficient approximation method can estimate the

subset of output probabilities that need accurate computations and then populate the

rest probabilities with approximate results. Similarly, for other classification-involved
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tasks, we only need accurate computations for a small number of key candidates and use

approximate results for the remaining outputs.

6.3.1 Screening Method Overview

Given a d-dimensional vector (h ∈ Rd) from hidden DNN layers, where d is the hidden

dimension, the softmax classification transforms the hidden vector h to a l-dimensional

probability space. he output probability vector is denoted as z ∈ Rl, where l is the

vocabulary size. The transformation is essentially matrix-vector multiplication as

z = Wh + b (6.1)

where W ∈ Rl×d is the classifier weight matrix and b ∈ Rl is the bias vector. Then, the

softmax function normalize the output vector z into probability distribution as

pi = softmax(zi) =
exp(zi)∑
j exp(zj)

(6.2)

where pi is the i-th element of output probability vector p. The probability vector is then

used to perform next word predictions as in language modeling or translation. While

softmax is the most common normalization function used in classification, the method is

capable to other non-linear functions used in classification such as sigmoid [6].

As discussed in Section 6.2, the memory-intensive transformation is a good candidate

of NMP architectures. However, the computational complexity is not affordable for

NMP. ENMC seeks redundancy in extreme classification and uses low-cost approximated

computations to mitigate the computational burden. The introduced low-dimensional

and low-precision screening module can approximate the original classifier. Next, we will

discuss how to reduce computations at inference time given the screening module. After
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Figure 6.5: Illustration of approximate screening: (1) the screener learns from full
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candidates; (4) only the corresponding vectors in the full classification weights are
used to compute candidates-only accurate results; (5) the final results before softmax
normalization combine both approximate and accurate results.

that, we can see the details of the learning process that obtains the screening module.

6.3.2 Inference Process

As shown in Figure 6.5(a), the standard classification is essentially matrix-vector

multiplication followed by softmax normalization. The execution is bounded by accessing

W from DRAM modules.

We can construct the approximate screening module with a projection matrix P

and a reduced-hidden-dimension weight matrix W̃ . The initialization of the projection

matrix is according to standard sparse random projection [141], and the overhead is
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negligible (less than 0.1%) compared with classifier weights as the projection matrix P

can be represented in 2-bit format. The process of computing approximate results can

be expressed as

z̃ = W̃Ph + b̃ (6.3)

where W̃ ∈ Rl×k and P ∈
√

3
k
· {−1, 0, 1}k×d.

Figure 6.5(b) illustrates the process: the d-dimensional hidden vector h is first pro-

jected to a lower k-dimensional space, and the low-dimensional vector multiplies W̃ to

get approximated output z̃. Compared with full classification, the accessed approximate

weight volume is significantly reduced since k << d. Furthermore, we can reduce the

precision of running the screening module to further reduce accessed data.

After obtaining the approximate results, i.e., z̃, we can estimate the importance

of all l values and select the most important m values, referred as candidates, that

require accurate computations. The estimation can be done with top-m searching or

thresholding, where the threshold value can be tuned on validation sets.

Only for the candidates that need accurate computations, the proposed method then

need to access full classifier weights W , i.e., a small portion of totally l weight vectors.

These weight vectors then multiply with the original hidden vector to produce the ac-

curate results for the candidates, as shown in Figure 6.5(c). The final outputs before

softmax function is a mixed vector with approximate values from screening and accurate

values from full W .

6.3.3 Learning Algorithm

Here, we discuss the learning procedure to obtain screening module. The goal for

screening is to approximate the classifier well. Therefore, the outputs z from full classifier

is regarded as the learning target and train the screening module weights W̃ to fit. The
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Algorithm 3: Training algorithm for the parameters of the Screener

Data: Batched context vectors {hi}Si=1, where hi ∈ Rd from hidden layers;
trained classifier weights W ∈ Rl×d and bias b ∈ Rl; projection matrix P .

Result: Screener weights W̃ ∈ Rl×k and bias b̃ ∈ Rl.

1 Initialize projection matrix P ∈
√

3
k
· {−1, 0, 1}k×d;

2 for it ∈ all iterations do
3 Compute loss according to Eq. (6.4);

4 Update W̃ , b̃ with SGD(min Loss);

5 end

optimization objective function is

L =
1

s

∑
s

||(Wh + b) − (W̃Ph + b̃)||22 (6.4)

where s is the mini-batch size of training samples. During training, the classifier param-

eters, i.e., W and b, as well as the parameters of hidden layers are fixed and will not

be changed. We only update the screening module’s parameters W̃ and b̃. The projec-

tion matrix P is constructed and initialized before distillation and stays constant during

distillation and inference.

The learning algorithm uses the default training and validation datasets and does not

need extra training data. The convergence happens in a several training epochs, much

faster than original model training. Algorithm 3 gives the overall training of screening

parameters.

6.4 Architecture

This section introduces the architecture design of the ENMC: firstly, a glimpse of the

design overview, followed by the micro-architecture details; then, the ENMC instruction

set and system-level design.
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6.4.1 Design Overview

We have yet exploited the opportunity of eliminating the redundancy in the extremely-

large weight and forecasting the classification results with much smaller overhead using

lightweight screening algorithm. Although the computation bottleneck is alleviated with

our proposed approximate screening framework, the tremendous classification dimension

is still bandwidth-hungry, and conventional processor-memory systems are hardly able to

overcome the memory throughput wall. Therefore, this section further presents the co-

design the near-data processing subsystem, Extreme Near-Memory Classifier (ENMC),

that can facilitate the processor computing the extreme classification. The design goal

of such near-data architecture is to leverage the large bandwidth provided by rank-level

parallelism in a DRAM channel, and process the classification in data stream through

dedicate on-DIMM hardware.

Specifically, here highlights the features of the ENMC design: First, a dual-module

architecture is used that contains a Screener module and an Executor module that runs

in parallel. The Screener performs fixed-point screening as described in Section 6.3,

and predicts the classification candidates in advance. Since the classification weight is

low-dimensional and quantized, the Screener is able to process the data in a streaming

manner, such that the large rank-level bandwidth can be leveraged. For each candidate

found in a batch, the ENMC Controller will generate instructions for further full-precision

computations which are completed by the Executor. We can put these computation logic

at the rank level such that there is no need to invade the DRAM chips.

Second, the ENMC instruction set is designed to facilitate the workloads accommo-

dation from host processors and support the communications between the Screener and

Executor modules. The instruction format is defined by leveraging the unused address

line and data line in the PRECHARGE command to ensure the compatibility with the
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commodity DDR interface. Thus, regular memory requests can also be served with our

ENMC DIMM.

Third, the system-level design is provided, including the program compiler support

and application workflow, to make the ENMC architecture cooperate with the software

framework. Our design could be easily extended to support different scenarios where the

host processors could be CPU, GPU, or domain-specific accelerators.

6.4.2 ENMC Micro-architecture

We now introduce the micro-architecture of ENMC using the design overview, fol-

lowed by the implementation details of each component.
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Figure 6.6: The architecture overview of an ENMC DIMM. The ENMC logic is lo-
cated at each rank to leverage the large rank-level bandwidth. The ENMC mainly
consists of a controller to decode instructions, a DRAM controller to generate DDR
C/A commands, a screener to perform approximation, and an executor to process
full-precision classification.

Overview. ENMC is on the DIMM board between the DRAM devices and the

DDR PHY, such that the host processor could interface with ENMC through standard

memory channels. Figure 6.6 illustrates the details of the proposed ENMC architecture.

The host processor contains several memory channels, which are deployed as the ENMC

DIMMs. The ENMC logic locates at each rank of a ENMC DIMM, and thus enjoys
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scaling bandwidth offered by larger number of ranks. The on-DIMM ENMC architec-

ture consists of a ENMC controller, a DRAM controller, and two processing units: the

Executor and the Screener. The ENMC controller buffers the instruction from the host

processor for approximate screening. It also generates instructions for full-precision com-

putation according to the candidate indices provided by the Screener. Then, it decodes

the formatted instructions to generate control signals for data access, computation, and

output transmission. The DRAM controller works as a simplified memory controller

that processes data access requests in ENMC instructions and generates the standard

DDR C/A signals to the DRAM chips. The Screener and Executor take charge of the

approximate screening and the full-precision computation as described in Section 6.3.2,

respectively. The Screener performs dimension-reduced INT4 computations to efficiently

approximate the classifier’s output. A preloaded threshold is used to filter out the impor-

tant candidates based on the approximate results. Apart from floating-point arithmetic,

the Executor is also equipped with a special-function unit to process the non-linear ac-

tivation in the final layer. The two computation modules works in parallel and write

results to the output buffer that returns them to the host processor asynchronously.

ENMC Controller. The ENMC controller has two main functionalities: process-

ing the instructions from host processor (i.e., screening computation) and generating

instructions for the Executor (i.e., candidate-only computation). It is made of status

register files, an instruction buffer, an instruction decoder, and an instruction generator.

The status register files are used for ENMC initialization and stores information such as

addresses and sizes of input features, vocabulary, and screening weight. It also includes

the instruction counter. The instruction buffer is a FIFO, and both the host processor

and instruction generator could push instructions into it. The instruction decoder se-

quentially reads from the FIFO and generates control signals to corresponding ENMC

components. For example, an instruction of accessing a piece of tiled screening weight
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would result in a read request to the DRAM controller and a select signal to the top

DEMUX that chooses the integer weight buffer. Meanwhile, a full-precision computation

instruction would lead to a triggering signal to the floating-point MAC array, which reads

data from two input buffers and writes results to the partial sum (PSUM) buffer. The

instruction generator receives the indices of classification candidates from the Screener

(batch id, candidate id) , and then reads the constant reg to generate corresponding

instruction for candidate-only computation in full-precision.

DRAM Controller. The DRAM controller employs a similar architecture as the

host-side memory controller and consists of a request queue, a command generator, and an

address generator. The request buffer takes memory request from the ENMC controller.

The command and address generators initiate standard DDR4 C/A signals that are sent

to all the DRAM chips. For hardware simplicity, we do not deploy unnecessary features

like queue prioritizing, request coalescing, etc.

Screener. The Screener processes the approximate screening phase in the approx-

imate screening algorithm with fixed-point precision. We put two input buffers (fea-

ture buffer and screening weight buffer), a fixed-point multiply-accumulate (MAC) ar-

ray, a partial sum (PSUM) buffer, a threshold filter, and an instruction translator in

the Screener. The MAC array performs the screening computation over the two input

buffers and accumulates with the intermediate results in the PSUM buffer. After a tiled

screening is finished, the data in the PSUM buffer are filtered with a comparator array.

The indices of values larger than the threshold are buffered and later sent to the ENMC

controller.

Executor. The Executor computes candidate-only classification under full-precision.

Compared with the Screener, it applies floating-point MAC array and has an extra

special-function unit that performs the non-linear activation such as Softmax and Sig-

moid. An output buffer placed below the special-function unit caches both the results
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from the Screener and the Executor. The output buffer keeps the state of the data with

status reg files and notifies the ENMC controller (by pushing a RETURN instruction)

when finishing a batched/tiled data.

6.4.3 ENMC Instruction Set

The design goal of the ENMC instruction set is to make the host processor able to

communicate with ENMC DIMM through standard DDR4 memory channels. Inspired

by FIRDRAM [22], we can issue ENMC instructions from the memory controller with

PRECHARGE command combining special addresses and data. For example, according

to the DDR4 JEDEC specification, for a 4Gb DIMM with 8 ×8 DRAM chips, the row

address space consumes 14 bits, i.e., A0-A13 in the C/A bus, and the data bus is 64-bit.

Normal PRECHARGE command sets all the row address bits to be low, since no row

information is needed. Therefore, an ENMC instruction could be accommodated with

sending a PRECHARGE command but turning on the row address signals. Given this

insight, the ENMC instructions are formatted in 13-bit command and 64-bit data that

transmits through signal A0-A12 and D/Q bus.

Table 6.1: The ENMP instruction set
ENMC Instruction Set
Type Instruction Description
Initialization INIT reg, data Initialize the ENMC module by writing a particular register

Data Transfer
LDR buffer, addr
STR buffer, addr
MOVE buffer1, buffer2

load/store the quantized feature data into/from the INT4 feature buffer
(weight buffer, with specified address addr

Compute

ADD INT4 buffer1, buffer2
MUL INT4 buffer1, buffer2
ADD FP32 buffer1, buffer2
MUL FP32 buffer1, buffer2

add/multiply the data in two specified buffer buffer1, buffer2

MUL ADD INT4
MUL ADD FP32

multiply the data in feature buffer and weight buffer, and accumulate
they with the partial sum buffer

FILTER buffer filter the data in the specific buffer and write the results to the index buffer

SIGMOID, SOFTMAX
special functions such as Sigmoid and Softmax that run on specialized hardware
for the data in the FP32 partial sum buffer

Control BARRIER, NOP
synchronization and bubble instruction to let the controller wait for memory
accesses, compute operation, data movement, etc.

QUERY reg query the value in the specific reg
RETURN return the data in the output buffer
CLR clear and reset all buffers and registers
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Opcode=2 BufferID=0 BufferID=1

Opcode=9 RegID=7RD

MUL_ADD_FP32 buffer_0, buffer_1

QUERY reg_7

Opcode=9 RegID=7WT

INIT reg_7, v

5-bit 4-bit

5-bit

4-bit

5-bit1-bit

5-bit 5-bit1-bit

DATA

Figure 6.7: Instruction Format

Instruction Specification. As shown in Table 6.1, the ENMP instruction set con-

sists of four types of instructions: Initialization, Data Transfer, Compute, and Control.

(a) Initialization. The initialization instruction is used to write the status reg files in the

ENMC controller, in order to initiate the parameters of a classification task. It specifies

which reg to write and the corresponding value. (b) Data Transfer. The data transfer

instructions are used to access the on-DIMM buffers, such as loading data to the in-

put feature buffer or writing back the results to the PSUM buffer with specific addresses.

Also, the MOVE instruction is used to transfer data in two buffers, such as storing results

in the PSUM buffer to the output buffer. (c) Compute. The compute instructions corre-

sponds to the computation operations in the two computing units, including ADD, MUL,

MUL ADD, and denotes the operation precision. FILTER instruction is used to filter out

the candidates. There are also instruction for special functions such as SOFTMAX and

SIGMOID that operate on the PSUM buffer in the Executor. (d) Control. The control

instructions include BARRIER for synchronization, NOP for stalling, RETURN to send
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back the output buffer data, and CLR to reset the ENMC. The QUEUE instruction is

designed for the host processor to pull the status counters in each component.

Instruction Format. As shown in the Figure 6.7, a typical ENMC command

without data or address takes 13 bits, where the opcode is 5 bits and the rest 8 bits

are used to specify which buffer to operate on. For example, Figure 6.7(a) shows the

instruction format for performing multiply-accumulate in the Screener. For the status

register accessing instruction, QUERY and INIT shares the same opcode, and they use

one bit after opcode to specify the read or write operation, and 5 bits to specify the

register index, as shown in Figure 6.7(b). Moreover, for instructions that involves values

(i.e., data or address) that exceeds the length of row addresses, the DQ bus is further

utilized. For example, when the host processor tries to write the status reg in the ENMC

controller, the command address bus specifies the write operand and the ID of target

regwith INIT instruction, and the DQ bus transmits the desired data in burst manner

following the ENMC command.

6.4.4 System Design

Here further shows how to architect the system-level design to facilitate existing

software solutions running on the ENMC memory. Firstly, the programming support

can wraps up ENMC instructions into high-level APIs such that a program could call

the ENMC kernels directly. Secondly, the execution flow demonstrates how the host

processor interacts with the ENMC DIMM.

Programming Support. Following previous NMP solutions [24, 25], we divide the

application code into kernels running on the host processor and ENMC in a heteroge-

neous manner. Therefore, the host processor calls the provided APIs to offload specific

classification tasks. Figure 6.8(a) shows an illustrative application code in Python style.
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Illustrative Application Program

import ENMC

//Host Preprocess
model = app_model() 
model = load(path)
...

//Initialize ENMC Params
ENMC.initial_classifier(\

model.classifier.w, model.classifier.b)
ENMC.initial_screener(\

model.proj_M, model.screen_w, model.screen_b)

for (batch_id, x) in batched_dataset:
//Host Inference
x = model.lstm(x)

//ENMC Classification
x = model.classifier(batch_id, x)

NEC Instructions
LOAD_FEA_INT4 0x4fe3
LOAD_W_INT4 0x4a62
MUL_ADD_INT4 fea_int4, w_int4
…
FILTER psum_int4
TRANSLATE
LOAD_FEA_FP32 0x4cea
LOAD_W_FP32 0x41eb
MUL_ADD_FP32 fea_FP32, w_FP32
…
RETURN spec_func, index

ENMC Instructions

//Initialization
INIT rx0, addr_w
INIT rx1, addr_b
INIT rx2, dim0_w
INIT rx3, dim1_w
...

//Run Classification
INIT r0, batch_id
INIT r1, batch_size
LOAD buffer0, 0x4cea4fe2
LOAD buffer1, 0xa1ebea62
MUL_ADD_INT4 buffer0, buffer1
LOAD buffer0, 0x4cea50e2
...
FILTER psum0
BARRIER
LOAD buffer2, 0xb2eef3a2
LOAD buffer3, 0xa97fac44
MUL_ADD_FP32 buffer2, buffer3
...

Figure 6.8: An illustrative example of programming support of ENMC. The ENMC
APIs are wrapped as high-level function libraries, which are further compiled into
ENMC instructions.

The functions can run on ENMC DIMM as wrapped up into a Python package, such

as initializing the Screener and screening-based classification. Therefore, a program-

mer could build a machine-learning model transparently using the ENMC package. The

approximate screening algorithm is implemented inside an ENMC object of classifier.

Furthermore, when translating the applications into ENMC instructions, the compiler

tiles the operation with initialized parameters and hardware configurations and executes

the instruction in a loop. The ENMC instructions are further packed into a memory re-

quest packet and routed to the memory controller, which transmits them to the ENMC

DIMM, as shown in Figure 6.8(b).

Execution Flow. Figure 6.9 presents the ENMC workflow compared with a host

only system. The execution of front-end feature extraction (DNN-based or non-DNN-

based) and the classification can be treated in a decoupled way. To be more specific,

the host in the ENMC system is dedicated to run the feature extraction and offloads the

102



Near-Memory Classification Chapter 6

Execution Timeline

Prep. DNN/Non-DNN
Inference

ENMC
Inst.

DNN/Non-DNN
Inference

ENMC
Inst.

Prep. DNN/Non-DNN
Inference

Extreme
Classification

DNN/Non-DNN
Inference

Extreme
Classification

Host-only System

Scr.
Can.

Scr.
Can.

ENMC System

Batch 0 Batch 1

Host

Memory Access Memory Access

Processor

ENMC DIMM

Memory Controller
ENMC Inst. Encoder

ENMC DIMM

ENMC DIMM

ENMC DIMM

Host

ENMC

Mem
ReqMe
m
Req

Figure 6.9: The ENMC workflow compared with a host-only system. ENMC offloads
the classification tasks to the ENMC DIMMs by sending the instructions as memory
requests through the memory controller.

classification tasks to the ENMC memory. The ENMC memory works as a regular main

memory for data accessing in the first phase, and performs screening approximation and

candidate-only classification in the second phase.

6.5 Methodology

This section discusses the methodology of evaluating the ENMC co-design, including

the implementation details and performance metrics.

6.5.1 Software Evaluation

The approximate screening algorithm is implemented on top of existing pre-trained

models in the PyTorch machine learning framework [160]. The screening parameters are

trained under mean-square-error (MSE) loss using the original training and validation
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datasets till convergence. Both the input features and the screening parameters are

further quantized at inference time. The number of candidates, screening parameters

size, and quantization precision are adjustable for sensitivity studies.

Table 6.2: Evaluated models and datasets.
Application Dataset Dataset Type Num. Categories Inference Model Model Type Hidden Size Abbr.

NLP Wikitext-2 Language Modeling 33,278 LSTM RNN 1500 LSTM-W33K
NLP Wikitext-103 Language Modeling 267,744 Transformer DNN 512 Transformer-W268K
NMT WMT16, en-de Translation 32,317 GNMT DNN 1024 GNMT-E32K

Recommendation Amazon-670k Multi-label Classification 670,091 XMLCNN CNN 512 XMLCNN-670K

Workloads. The evaluated tasks include Language Modeling (LM) [161], Neural

Machine Translation (NMT) [1], and product-to-product recommendation [162]. LM

tasks use the Wikitext-2 and Wikitext-103 datasets [3] and evaluate on both long short-

term memory networks (LSTM) and Transformer networks. NMT tasks use the WMT16

English-to-German dataset and evaluate on Google’s Neural Machine Translation Sys-

tem (GNMT) [2]. Product recommendation tasks use the Amazon670K dataset [10] and

evaluate on a Convolutional Neural Network based model [6]. Table 6.2 lists the appli-

cations, the models, and the datasets used in the evaluation, as well as the number of

categories and the hidden dimensions, including three synthesized datasets with 1 mil-

lion, 10 million, and 100 million categories to study the scalability of ENMC (namely

S1M, S10M, and S100M).

Baselines. Two other approximation methods for classification: SVD-softmax [153]

and FGD [163] are compared with approximate screening. The SVD-softmax method

leverages singular value decomposition (SVD) to approximate the classification weight

with principle singular values; the FGD method uses graph-based nearest neighbor

search to approximate top-k classification results. Both baselines are implemented in

the PyTorch-based framework.
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Table 6.3: ENMC Configurations
DRAM Configuration

Spec DDR4-2400MHz DRAM Chip 8Gb×8
Channels 8 Ranks/CH 8
Queue 64-entry Capacity/CH 64GB

Timing
CL-tRCD-tRP: 16-16-16
tRC=55, tCCD=4, tRRD=4, tFAW=6

ENMC Configuration
Tech Node 28nm Frequency 400MHz
Executor
Buffer

256B+256B
Screener
Buffer

256B+256B

FP32 MAC 16 INT4 MAC 128

6.5.2 Hardware Evaluation

The ENMC logic is implemented in RTL and synthesized with Design Compiler for

hardware parameters including timing, power, and area. A cycle-accurate simulator

is developed for the ENMC DIMM that interfaces with Ramulator [164] to derive the

DRAM timing information. Since the host processor and the ENMC DIMM execute

the feature extraction phase and the classification phase separately without complicated

feature interactions in between, we can simulate a simple host model that only issues

ENMC instructions regularly according to the status registers.

Configurations. As shown in Table 6.3, the ENMC DIMM is based on DDR4-2400

specifications. Each rank consists of 8×8 DRAM chips that add to a total capacity of

8Gb. We put 8 memory channels for the host processor, and there are 8 ranks per channel,

contributing to 64GB capacity and 21.3 GB/s bandwidth per channel. In addition, the

ENMC logic is synthesized with TSMC 28nm technology, running on the frequency of

400MHz. The two input buffers and accumulation buffer in both Screener and Executor

are 256B. There are 64 INT4 MACs and 16 FP32 MACs on each DIMM. The exponential

function, for non-linear activations in the executor, uses Taylor expansion to the 4th order.

Baselines. ENMC is compared with CPU and other NMP architectures, and all
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Table 6.4: Comparing ENMC with three NMP baselines, all configured with similar
area and power budget.

NMP Designs Configuration Est. Area - mm2 Est. Power - mW

NDA [158]
4*4 Functional Units

+ 1KB Memory
0.445 293.6

Chameleon [159]
4*4 Systolic Array
+ 1KB Memory

0.398 249.0

TensorDIMM [25]
16-lane VPU

+ 512B Queue * 3
0.457 303.5

ENMC (Ours)
FP32 * 16 + INT4 * 128

+ 256B Buffer * 4
0.442 285.4

of them are equipped with the approximate screening algorithm. The CPU baseline

is Intel Xeon Platinum 8280 @ 2.7GHz. It has 28 physical cores and 6 DDR4-2666

memory channels, contributing to a total memory capacity of 512 GB and 128GB/s ideal

bandwidth. Three state-of-the-art DRAM-based NMP architectures are also selected for

evaluation:

NDA [158] provides a near-data acceleration solution by stacking coarse-grain re-

configurable accelerators (CGRA) with DRAM devices. The CGRA mainly consists of

functional units, switches, and memory.

Chameleon [159] is similar to NDA by employing a 2D architecture and focusing

on how to integrate the accelerator with commercial DRAM. As Chameleon could work

with any programmable compute unit, a systolic array acts as the accelerator core to

distinguish it from NDA.

TensorDIMM [25] is a NMP architecure for deep learning applications, especially for

recommendation workloads. It leverages the VPU to accelerate the embedding operations

in recommendation systems.

For a fair comparison, ENMC and three baselines are configured with approximately
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the same area and power budget, as shown in Table 6.4; the control logic and DRAM

device controller are excluded.

6.6 Evaluation

This section evaluates the screening method for extreme classification and the micro-

architecture of near-memory processing cores. The method evaluation shows the trade-

offs between inference quality and speedup to CPU execution time of full classification.

Then, the architecture evaluation presents the speedup of classification enabled by NMP

co-design and the system performance improvements.

6.6.1 Algorithm-level Evaluation

Overall model quality. The hypothesis is that extreme classification can afford

approximation. Here, the experimental results can support the hypothesis. Overall,

the screening method can achieve significant computation saving with negligible model

quality degradation. Lowering model inference quality to the acceptable extend can

achieve more computation reduction.
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Figure 6.10: Quality vs. Speedup trade-off of Approximate Screening (AS) and two
baselines: SVD and FGD.

As shown in Figure 6.10(a), compared with using full classification as in NMT tasks,

the proposed method can achieve speedup of 11.8× without any loss in translation quality

measured by BLEU score. As for LM tasks, the speedups can reach 5.7× to 6.3× while

preserving perplexity results, as shown in Figure 6.10(b) and (c). Similarly, for product
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recommendation, the screening method can achieve 17.4× speedup with only 0.5% drop

in accuracy, as shown in Figure 6.10(d).

Because of the well approximation that the screening method achieves, the screening

phase can effectively select the key candidates for classification. Using the NMT task

as an example, at every decoding step, we want the most likely word or a few words if

using beam search. With Approximate Screening, we can identify the key candidates and

compute the accurate probabilities of these words for translation, saving redundant com-

putations for the remaining words in the vocabulary. We set the overhead of Approximate

Screening to be 3.1% of full classification.

Compared with two other approximation methods, the method achieves better quality-

speedup trade-off, as shown in Figure 6.10. Besides, the computation overhead of SVD-

based approximation is 4× more than ours. We can infer that the improvement of the

method is due to the learning-based approximation and no strong requirement for clas-

sifier weights to be low-rank.
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Figure 6.11: Comparing different (a) parameter reduction scales and (b) quantization
levels of AS. We choose parameter reduction scale of 0.25 and precision of INT4 in
our design.

Sensitivity on Approximate Screening. Intuitively, better approximation costs

larger computation and data overhead, while achieving better model quality with screen-

ing. Here shows different parameter sizes of the screening module and the corresponding
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quality. Figure 6.11(a) shows different parameter reduction scales of the screening module

vs. full classifier; the scale is chosen to be 0.25 as the good quality preserving. As shown

in Figure 6.11(b), 4-bit fixed-point quantization is used on on the screening module as

this quantization level maintains approximation as using single floating-point precision.

6.6.2 Architecture-level Evaluation
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Figure 6.12: The performance results of ENMC, CPU, NDA, Chameleon, and Ten-
sorDIMM, normalized to vanilla CPU; all schemes are equipped with approximate
screening.

Performance. As described in Section 6.5, ENMC is compared with four baselines.

Figure 6.12 shows the performance results of using batch size of 1, 2, 4, normalized to the

full-classification CPU baseline for each workload, and the results are arranged according

to the size of classification across the x-axis. The approximate screening demonstrates

7.3× performance speedup on average in CPU baseline, and the ENMC offers a total

56.5× speedup over the CPU. Also, 3.5×, 5.6×, and 2.7× average are observed when

compared with NDA, Chameleon, and TensorDIMM respectively. First, ENMC provides

significant speedups of 55.5×-600.7× when running low-latency inference with batch size

of 1, because ENMC processes the inference in a streaming manner over the lightweight

classification. The huge performance gain in XMLCNN-670K workload is due to the

reduction of the number of candidates by 50×. Second, the three NMP baselines benefit

from large internal bandwidth and offer 10.2-20.7× speedup over the CPU baseline.

However, ENMC could further boost their performance by 2.7-5.6× with heterogeneous

resource management and dataflow customization. This result aligns the assumption that
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the performance of naive NMP solutions is bounded by the limited on-DIMM buffers and

computation resources. Because they employ homogeneous FP32 computation units and

hardly meets the throughput requirement in the screening phase. ENMC eliminates the

redundant computation and needs only a small portion of FP32 computations. The entire

screening phase is processed with lightweight INT4 units in stream.
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Figure 6.13: Energy breakdown by DRAM static cost, DRAM access, and computa-
tion & control logic, normalized to TensorDIMM.

Energy Consumption. The energy results of ENMC are evaluated against Tensor-

DIMM and TensorDIMM-Large for a fair comparison. As shown in Figure 6.13, ENMC

can reduce the average energy cost by 5.0× and 8.4× compared with TensorDIMM and

TensorDIMM-Large, respectively. Particularly, breaking down the energy consumed by

the DRAM static cost, DRAM access, and on-DIMM computation/control logic, we can

observe that the significant energy reduction of ENMC comes from two facts: First,

the co-designed approximation algorithm greatly reduces the DRAM accesses in ENMC.

ENMC performs INT4 and low-dimensional screening during the classification phase,

while TensorDIMM and TensorDIMM-Large need to operate over the full classification

weight. Moreover, due to the limited logic-side buffer size, TensorDIMM cannot store

the intermediate results in a matrix multiplication operation. Thus, the buffer over-

flow results in frequent DRAM memory accesses. Second, the reduced execution time
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leads to the background energy reduction of the DRAM modules. As the DRAM takes

a noticeably portion of power for refreshing, ENMC reduces the DRAM static energy

consumption by 9.3× and 4.8× compared with TensorDIMM and TensorDIMM-Large.
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Figure 6.14: The end-to-end performance scalability compared with TensorDIMM and
TensorDIMM large. We evaluate them with the same front-end model of XMLCNN,
and we normalize the performance to CPU.

End-to-End Scalability. Evaluation on large synthetic datasets shows the scalabil-

ity of performance considering the end-to-end performance. Figure 6.14 shows the perfor-

mance of TensorDIMM, TensorDIMM-Large, and ENMC, normalized to the CPU base-

line, when restricting the application to the same front-end model of XMLCNN. For com-

parison, ENMC achieves 4.7× and 2.9× speedup over TensorDIMM and TensorDIMM-

Large. Particularly, for the two smaller datasets, ENMC achieves 2.2× and 1.6× speedups,

while for the two tremendous datasets, ENMC achieves 7.1× and 4.2× speedups, com-

pared with TensorDIMM and TensorDIMM-Large, respectively. The excellent scalability

of ENMC comes from the fact that the ENMC processes the lightweight classification in

stream and does not need to buffer large intermediate results back to DRAM.

Area and Power. Table 6.5 shows the breakdown area and power estimation of

ENMC. The total area of ENMC logic is 0.388mm2, and the total power is 264.6mW,

which are comparable to prior NMP architectures such as RecNMP [24]. Specifically,

the compute unit (INT4 and FP32 MAC arrays) takes 40.8% of the total area and 25%
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Table 6.5: Area and Power Estimation.

Area (mm2) Power (mW ) Area (mm2) Power (mW )

INT4 MAC 0.013 10.4 FP32 MAC 0.145 58.0

Compute Buffer 0.061 56.8 Control Buffer 0.053 49.3

ENMC Ctrl 0.035 32.9 DRAM Ctrl 0.135 78.0

Total Area 0.442mm2; Total Power 285.4mW

of the total power. The buffers made of register files in the Screener and the Executor

compose of 23.5% of the total area and 32.2% of the total power. Finally, the ENMC

controller and DRAM controller takes 9.0% and 34.8% of the area, and 12.4% and 29.5%

of the power, respectively.

6.7 Conclusion

This Chapter addresses the extreme classification problem with NMP-based software-

hardware co-design. An approximate screening algorithm is proposed to reduce the com-

putational complexity and memory consumption of extreme classification. Furthermore,

a near-memory architecture is designed to utilize efficient candidates-only classification

enabled by the screening method. Finally, the approximate screening method achieves

7.3× speedups, and the ENMC architecture further improves the performance by 7.4×

and demonstrates 2.7× speedup compared with the state-of-the-art NMP baseline.
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Chapter 7

Dynamic Sparse Attention

Transformer Neural Networks powered by the attention mechanism are stunning in se-

quence modeling tasks. However, the quadratic computational complexity of attention

hinders long-sequence modeling. This Chapter investigates elastic processing in the at-

tention mechanism and proposes dynamic sparse attention for scalable Transformer ac-

celeration.

7.1 Introduction

Transformers [4] have become the driving force for sequence modeling tasks such as

neural machine translation [165], language understanding [166], and generative modeling

[167, 168]. Equipped with the self-attention mechanism, Transformers are capable of

handling long-range dependencies.

Despite the impressive progress made by Transformers, the computational require-

ments make the deployment of Transformer-based models difficult at inference time,

especially when processing long sequences. The self-attention modules are the execution

bottleneck under long sequences. Therefore, many studies propose Transformer variants

113



Dynamic Sparse Attention Chapter 7

to mitigate the quadratic time and space complexity issue. Some approaches are primary

for memory footprint reduction during training while efficient inference is being under-

studied [62, 169, 67, 68]. Other methods use fixed or static sparse attention patterns to

save computations [65, 66, 170, 64]. However, as discovered in this work, intrinsic sparse

patterns in attention are naturally dynamic, depending on input sequences. Thus, we can

exploit the dynamic sparse patterns to save attention computations without sacrificing

the representation power of attention. Intuitively, posing static sparsity constraints in

attention could be too strong to capture dynamic attention connections.

The proposed Dynamic Sparse Attention (DSA) approach exploits dynamic sparsity

to improve efficiency. The challenge is to efficiently search for sparse patterns close to

oracle sparse patterns that keep all the important attention weights. The searching can

be formulated as a prediction problem, and the standard attention mechanism can be

augmented with a prediction path. As discussed in Section 7.3, we can first obtain an

approximation of attention scores with low computational costs. Then, we can predict

the sparse attention patterns using the approximate attention scores. With the predicted

sparse attention patterns represented as binary masks, we can save computations involved

in full attention scores, softmax, and attention outputs.

Compared with static sparse attention methods, the DSA method is dynamic and

naturally captures sparse attention patterns of different input sequences. We can observe

important tokens that attract a large portion of attention weights from other tokens,

similar to the global attention method [170, 64]. However, the positions of global tokens

are input-dependent, and the DSA method can effectively identify such varieties, instead

of relying on domain knowledge to predetermine certain global tokens in fixed positions.

Compared with other low-rank approximation methods, the approximation in DSA is

only for sparsity prediction without strict and static constraints on attention positions.

Therefore, DSA can maintain the representation power of full attention while reducing
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unnecessary attention weights.

Although DSA can save theoretical computations and maintain attention capability,

achieving practical speedups and energy savings on real hardware is challenging. Section

7.5 discusses the implications of DSA on existing GPU architectures, and Section 7.6 dis-

cusses specialized hardware accelerators. The fine-grained dynamic sparsity as searched

by DSA is extended to structural dynamic patterns, such as block-wise and vector-wise.

We give the study on structural sparse patterns vs. attention’s expressive power and ex-

plore the opportunities for dataflow optimization and data reuse from dynamic sparsity.

The evaluation in Section 7.4 shows that DSA can achieve 95% sparsity in attention

weights without compromising model accuracy. Under this setting, the overall computa-

tional saving is up to 4.35× compared with full attention, while the sparsity prediction

only introduces around 1.17% to 1.33% computational overhead. Experiments in Sec-

tion 7.5 show that, on NVIDIA V100 GPU, applying vector-wise sparsity of 90% ratio on

DSA delivers 1.15× speedup on attention score computation, 14.6× speedup on softmax

computation, and 1.94× speedup on attention output computation, with only 0.1% of

accuracy loss.

Finally, through hardware specialization, we can explore architecture support to

translate the theoretical savings to real performance speedup. Three system-level chal-

lenges are addressed through the proposed architecture design. Firstly, to support large

Transformer models with various configurations, we need to effectively disassemble the

algorithm and identify the essential components. Prior accelerators are designed for spe-

cific components like the self-attention block [104, 105]. Instead, the DOTA design, as

discussed in Section 7.6, provides an efficient abstraction of the model and presents a uni-

fied architecture to support all components, achieving better area- and energy-efficiency.

Besides, Section 7.6.1 further presents the analysis on different levels of parallelism on

top of the proposed abstraction and present a scalable system architecture. Secondly,

115



Dynamic Sparse Attention Chapter 7

low-precision computation is essential to the cost of the attention detection mechanism.

To support multi-precision computations, DOTA uses a Reconfigurable Matrix Multi-

plication Unit (RMMU) that can be dynamically orchestrated to satisfy the throughput

requirements of different computation precision (Section 7.6.2). Finally, when comput-

ing the attention output with the sparse attention graph, DOTA outperforms prior work

by adopting the Token-Parallel dataflow with software-enabled workload balancing and

hardware-enabled out-of-order execution.

7.2 Background and Motivation

Before going into details of the DSA method, this Section introduces the preliminaries

of the standard attention mechanism used in vanilla Transformers. Then, the challenge of

serving long sequences under the quadratic complexity of attention is discussed. Finally,

as shows in this Section, redundancy exists in attentions and dynamic sparse patterns

are naturally expressed in attention.

7.2.1 Preliminaries of Attention

The attention mechanism is the essential component of Transformers [4]. Self-attention

operates on input representations of length l, X ∈ Rl×d, with three linear projections

namely, query, key, and value as

Q,K, V = XWQ, XWK , XWV (7.1)
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, where Q ∈ Rl×dk denotes the queries, K ∈ Rl×dk denotes the keys, and V ∈ Rl×dv

denotes the values. After linear projections, the attention weights A ∈ Rl×l is defined as

A = ϕ(
QK⊤
√
dk

) (7.2)

where ϕ is the row-wise softmax(·) function. Finally, the output values are computed

by multiplying the attention weights A with the projected values V as

Z = AV. (7.3)

Serving Transformer-based models is challenging when the input sequence length l

is large. When using long sequences, computing Eq. (7.2) and Eq. (7.3) consumes the

majority of operations and becomes the bottleneck of model evaluation. The asymptotic

complexity of attention O(l2dk + l2dv) is quadratic to sequence length l.

7.2.2 Intrinsic Sparsity in Attention Weights

A number of efficient Transformer variants have been proposed to mitigate the quadratic

complexity of self-attention [65, 170, 64, 171]. One straightforward way to exploit the

intrinsic redundancy in attention is forming sparse patterns as in

A = ϕ(QK⊤ − c(1 −M)), (7.4)

where M ∈ {0, 1}l×l represents the sparse attention pattern, c is a large constant (1e4)

such that where Mij = 0, indicating unimportant attention, Aij = 0 after softmax nor-

malization. Here, we omit
√
dk for simplicity. The sparse patterns can be pre-determined

into global, block, random, or a combination of different patterns. Another way to de-
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termine sparse patterns is through trainable masks. However, all these methods explore

static or fixed sparse patterns, restricting viable attention connections.

7.2.3 Dynamic Sparse Patterns in Attention

A common motivation of sparse attention methods is that not all attention weights,

i.e., probabilities, are equally important in Eq. (7.3). A large portion of attention weights

do not contribute to attention output and are redundant. In other words, only a small

portion of attention weights are useful. However, as discovered in this work, sparse

patterns in attention are inherently dynamic and data-dependent.
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Figure 7.1: Visualization of attention weights from different inputs and attention
heads. Only a small amount of attention weights are important. Note values > 0.005
are clamped to show as 0.005.

Here, the hypothesis is supported by showing the original attention weights matrix

(after softmax normalization) in Figure 7.1. The model used here is a vanilla Trans-

former and the benchmark is Text Classification from Google Long-Range Arena [172].
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Figure 7.1 indicates that only a small amount of attention weights are with large magni-

tude and a significant portion is near zero. Note that this shows the raw attention weights

without forcing any sparsity constraints or fine-tuning, which indicates that redundancy

naturally exists in attention. In short, attention mechanism exhibits the focused positions

on a set of important tokens.

More importantly, the attention weights have dynamic sparse patterns. As shown in

Figure 7.1, the sparse patterns in attention weights are dynamically changing depending

on the input sequence. Different heads in multi-head attention also have different sparse

patterns. The characteristic of dynamic sparsity in attention weights motivates us to

explore effective methods to eliminate the redundancy and save computations. Prior

work on static or fixed sparse patterns cannot capture the dynamically changing attention

weights.

7.3 Approach

Section 7.2 shows that attention weights have intrinsic sparse patterns, and the po-

sitions of important attention weights are dynamically changing as different input se-

quences. While attention exhibits dynamic sparse patterns, how to efficiently and effec-

tively obtain the dynamic sparse patterns remains challenging. The process of identifying

sparse attention patterns can be formulated as a prediction problem. The key challenge

is how to obtain an approximate attention predictor that can accurately find the sparse

patterns while keeping the prediction overhead small.

Here presents Dynamic Sparse Attention (DSA) that exploits sparsity in attention

weights to reduce computations. The principle of the DSA method is to effectively search

for dynamic sparse patterns without enforcing strict and static constraints on attention

while keeping the searching cost small. DSA leverages trainable approximation to predict
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sparse attention patterns. As shown in Figure 7.2, DSA uses a prediction path based on

low-rank transformation and low-precision computation. The prediction path processes

input sequences functionally similar to query and key transformations but at much lower

computational costs. Given the prediction results that approximate QK⊤ well, we can

search sparse patterns based on the magnitude of prediction results.
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Figure 7.2: (a) Standard full attention; (b) Dynamic sparse attention with approxi-
mation-based prediction and sparse computation.

7.3.1 Design of Prediction Path

Attention scores are denoted as S = QK⊤ and omit the scaling factor for simplicity.

As shown in Figure 7.2(a), two general matrix-matrix multiplication kernels (GEMM)

and one softmax kernel consume the majority of computations in self-attention. A pair
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of approximate query and key transformations are constructed in the prediction path to

compute for approximate score S̃, as in

Q̃, K̃ = XPW̃Q, XPW̃K . (7.5)

Here P ∈
√

3
k
· {−1, 0, 1}d×k is a sparse random projection matrix shared by both paths,

and W̃Q ∈ Rk×k, W̃K ∈ Rk×k are parameters in approximating query and key.

Then, the approximate attention scores are as S̃ = Q̃K̃⊤. From S̃, we can predict

sparse attention masks M using thresholds, where the threshold values are either fixed

by tuning from the validation set or determined by top − k searching. When S̃ is well

approximated with accurate attention scores S, the large scores in S̃ are also large in S

with high probability. The resulting sparse attention weights Ā is used to multiply the

value matrix V similar to Eq. 7.3.

Optimization of Approximation. The random projection matrix P is constant

after initialization and shared by two approximate transformations. The trainable pa-

rameters, W̃Q and W̃K , are obtained through minimizing the mean squared error (MSE)

as the criterion to optimize for approximation:

LMSE =
1

B
||S − S̃||22 =

1

B
||QK⊤ − Q̃K̃⊤||22 (7.6)

where B is the mini-batch size.

Given the motivation of finding dynamic sparse patterns, the hypothesis of the DSA

method is that there exist oracle sparse patterns that perform well. Such that the

optimization target is to approximate full attention scores S well enough to predict

sparse patterns. The results of applying oracle sparse patterns, by directly dropping

small-magnitude attention weights during inference without fine-tuning the model, can
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further support the hypothesis. As listed in Table 7.1, around 90% (up to 97%) of small

attention weights can be dropped with negligible accuracy loss.

Table 7.1: Sparsity in attention weights, where values < θ are set to zero. A significant
portion of attention weights that have small magnitude are redundant. The accuracy
metrics are Exact Match (EM) and F1 Score.

Case Sparsity EM F1

Base 0% 81.49 88.70
θ = 0.001 75% - 95% 81.50 88.70
θ = 0.01 94% - 97% 80.51 87.85

7.3.2 Model Adaptation

When sparse attention scores are masked out to generate sparsity in attention, the

remaining attention weights, i.e., the important weights, are scaled up as the denominator

becomes small. Leaving the disturbed attention weights intact will degrade model quality.

A countermeasure is to fine-tune model parameters with dynamic sparse constraints,

referred to as model adaptation. With adaptation, the model evaluation accuracy can

recover to be on par with full attention baselines, while the computational costs are

significantly reduced.

The computational graph and the loss function of the original model stay the same,

except adding dynamic sparse constraints in attention as mask M . As a result, the

new attention Ā are sparse and only have important weights from prediction. Given a

pre-trained model, DSA jointly fine-tunes the model parameters and parameters of the

prediction path as in

L = LModel + λLMSE (7.7)

where λ is the regularization factor of MSE. DSA can also train from scratch with ini-

tialized model parameters.
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DSA approximates the original attention score with a low-rank matrix S̃. When

training the model with loss function in Eq. 7.6, the gradient from LMSE will be passed

to both the low-rank approximation S̃ and the original attention score S. Intuitively,

this loss function not only makes S̃ a better approximation of S, but also makes S easier

to be approximated by a low-rank matrix, i.e., by reducing the rank of S. On the other

hand, the loss LModel guarantees the rank of S to be high enough to preserve the model

accuracy. In other words, the joint optimization of LModel and LMSE implicitly learns a

low-rank S with a learnable rank depending on the difficulty of the task. DSA brings two

advantages. First, the rank of S will be automatically adjusted to tasks with different

difficulty levels. Hence, DSA can potentially achieve higher accuracy on difficult tasks

and higher speedup on simple tasks compared with low-rank approximation methods

using fixed rank. Second, as the rank of S̃ only implicitly influences the rank of S, the

final result is less sensitive to the hyper-parameter k.

7.3.3 Computation Saving Analysis

DSA introduces additional computations in the prediction step, but the overall com-

putation saving from sparse attention kernels is fruitful and can have practical speedup.

The original full attention takes O(l2dk + l2dv) MACs (multiply-and-accumulate oper-

ations) asymptotically. However, the asymptotic analysis does not consider practical

concerns such as sparsity, quantization, and data reuse. Here, the traditional asymptotic

analysis can be augmented with a sparsity factor α and a quantization factor β. In this

way, DST prediction takes O(βldkk+βl2k) MACs; DST attention takes O(αl2dk +αl2dv)

MACs. Both α and β are determined depending on tasks and underlying hardware plat-

forms. In the settings, α is between 90% and 98% and the developed GPU kernels can

achieve practical speedups. The assumption is that the baseline model uses FP32 as
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the compute precision and set prediction precision to be INT4. The execution time on

softmax is not revealed in asymptotic analysis but is one of the major time-consuming

components. DSA can also save the time of softmax kernel with the same sparse atten-

tion patterns.

7.3.4 Implications for Efficient Deployment

Compared with standard attention, DSA exhibits two new features that can poten-

tially affect model deployment. Firstly, a light-weight prediction path is attached to the

attention layer to search for dynamic sparse patterns. The prediction involves approxima-

tion of attention scores, which is essentially a low-precision matrix-matrix multiplication

(GEMM). While NVIDIA GPUs with Tensor Cores support data precision as low as

INT8 and INT4, DSA prediction can tolerate INT2 computation on certain benchmarks.

Therefore, specialized hardware is preferable when seeking ultra-efficient attention es-

timation. Section 7.6 introduces two types of architectures to support multi-precision

computations.

Secondly, the predicted sparse patterns can be used to reduce unnecessary attention

computations. In other words, instead of computing QK⊤ and AV as two dense GEMM

operations, we can reformulate QK⊤ as a sampled dense dense matrix multiplication

(SDDMM) and AV as a sparse matrix-matrix multiplication (SpMM). When processing

SDDMM and SpMM kernels on GPU, data reuse is the key disadvantage that limits its

performance compared with GEMM. Therefore, DSA can extended to support structural

sparsity that can improve the data reuse of both SDDMM and SpMM kernels. Cus-

tomized kernels are developed that take advantage of the sparsity locality to improve

kernel performance, achieving practical runtime speedup on NVIDIA V100 GPU. Also,

the choice of structural sparsity pattern is demonstrated and DSA is able to maintain
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the model expressive power with the extra constraints.

As for specialized hardware, the advantage of DSA can be fully exploited as the

specialized architecture and dataflow is able to deal with fine-grained sparsity, therefore

achieving optimal sparsity ratio and computation reduction. However, the challenge

also arises as irregular sparsity causes load imbalance and under-utilization of processing

elements. Moreover, instead of independently executing SDDMM and then SpMM, more

optimization opportunities can be explored when considering the whole process as a two-

step SDDMM-SpMM chain. Please refer to Section 7.6 for more architectural design

details and experimental results.

7.4 Algorithmic Evaluation

This section evaluates the performance of DSA over representative benchmarks from

Long-Range Arena [172]. First, the model accuracy results of DSA are compared with

dense vanilla transformers and other efficient transformer models. Then, a sensitivity

study is presented that using different configurations of the prediction path. By choos-

ing different number of prediction parameters, DSA is able to achieve flexible trade-offs

between computational cost and model accuracy. Finally, the model efficiency of DSA is

investigated by analyzing the computational cost (MACs) and relative energy consump-

tion.

7.4.1 Experiment Settings

The datasets used are from Long-Range Arena (LRA), which is a benchmark suite for

evaluating model quality under long-sequence scenarios. In LRA, different transformer

models are implemented using Jax [173] API and optimized with just-in-time (jax.jit)

compilation. DSA is implemented on top of the vanilla transformer provided by LRA
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and compared with other models included in LRA. Specifically, the self-attention layer

in the vanilla transformer is augmented by the DSA method as described in Section 7.3.

All the other model configurations are kept the same for a fair comparison.

The experiments incorporate three tasks from the LRA benchmark, including Text

Classification, Document Retrieval, and Image Classification. The Long ListOps and

Pathfinder tasks are excluded. Appendix C provides benchmark descriptions and exper-

iment configurations.

7.4.2 Accuracy
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Figure 7.3: Overall model accuracy of DSA (fine-tuned from a pretrained checkpoint)
compared with vanilla dense transformer.

Figure 7.3 presents the overall model accuracy of DSA on different LRA tasks. In

this experiment, the DSA model is fine-tuned from a pretrained vanilla transformer by

jointly updating the model parameters and prediction parameters using the combined

loss of LMSE and LModel. Different percentage numbers indicate the sparsity ratio in the

DSA models. For instance, DSA-90% means that keeping 10% of the attention weights

in each row of the attention matrix, while masking out all the other 90% of the weights.

The sparsity ratio constraint is uniform for all the heads and attention layers in the DSA

model.
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Table 7.2: Accuracy of different Transformer models on the LRA benchmark suite
[172]. For a fair comparison, we follow the instructions in LRA and train our model
from scratch. DSA-90% uses projection scale σ = 0.25 and INT4 quantization.

Model Text Retrieval Image Avg

Transformer 65.12 62.5 42.74 56.79

Local Attention 52.98 53.39 41.46 50.89
Sparse Trans. 63.58 59.59 44.24 55.80
Longformer 62.85 56.89 42.22 53.99
Linformer 53.94 52.27 38.56 48.26
Reformer 56.10 53.40 38.07 49.19

Sinkhorn Trans. 61.20 53.83 41.23 52.09
Synthesizer 61.68 54.67 41.61 52.65

BigBird 64.02 59.29 40.83 54.71
Linear Trans. 65.90 53.09 42.34 53.78

Performer 65.40 53.82 42.77 54.00

DSA-90% 65.62 63.07 43.75 57.48

As shown in Figure 7.3, for all the evaluated tasks, dense transformer possesses a

considerable amount of redundancy in the attention matrix under the long-sequence con-

dition, which supports the previous claim in Section 7.2. Specifically, we can safely mask

out up to 95% of the attention weights without suffering from any accuracy degradation.

In fact, by jointly optimizing the model parameters to adapt dynamic sparse attention,

DSA delivers slightly higher performance with 90% and 95% sparsity ratio. Even with

up to 99% of sparsity, DSA still demonstrates promising performance with negligible

accuracy drop compared with the dense baseline.

Several training constraints during the experiments are used to fairly compare with

other transformer variants provided by LRA. For example, instead of fine-tuning from a

pretrained baseline, the DSA model used in the comparison is obtained from a randomly

initialized model, i.e., training from scratch. We also fix other model parameters (e.g.,

number of layers, number of heads, hidden dimension) and training configurations (e.g.,

total training steps). The results are shown in Table 7.2. We use DSA-90% with quanti-
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zation precision to be INT4, and let the random projection dimension scale σ=k/d=0.25.

As we can see from the table, DSA achieves first-tier performance in all three tasks and

delivers a leading average score on the LRA benchmarks.

Input Seq1 Input Seq2 Input Seq3 Input Seq4

Figure 7.4: Oracle attention mask generated by top-k selection.

Input Seq1 Input Seq2 Input Seq3 Input Seq4

Figure 7.5: Sparse attention mask generated by DSA prediction.

This encouraging performance mainly comes from two aspects. Firstly, joint opti-

mization ensures that the DSA model can well adapt to the sparse attention patterns

for computing the attention output. Secondly, the trainable prediction path is able to

accurately capture the input-dependent patterns. Figure 7.4 shows the oracle sparse pat-

terns of four different input sequences obtained from top-k selection over the original full

attention matrix. The yellow dots indicate that the important positions in the attention

matrix, while the purple region is masked out. Figure 7.5 shows the sparsity patterns

generated by DSA prediction. As we can see from the two figures, horizontally, the sparse

attention pattern changes with different input sequences. Vertically, the predicted pat-

terns are very close to the oracle patterns. In the experiments, the prediction accuracy

is around 85 ∼ 95%.
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Two cases on the Text Classification dataset are tested to make sure the high per-

formance of DSA comes from the proposed approach rather than the task itself. First is

applied with a 99% sparsity constraint on the vanilla transformer, but with a static local

attention pattern. Second is used a short sequence with dense attention, and let the total

number of tokens in the short sequence matches with the number of important tokens in

the long-sequence scenario. The results show that these two cases perform very poorly on

the task, delivering a model accuracy of only 53.24% and 54.16% compared with 64.04%

accuracy achieved by DSA-99%. This further supports the previous discussion.

7.4.3 Design Space Exploration of Prediction Path

One of the most important design choices of DSA is the configuration of the Predic-

tion Path. Overall, we want the predictor to accurately capture dynamic sparse patterns.

However, we also want to minimize the cost of prediction while maintaining DSA model

accuracy. Thus, while we can involve trainable parameters for prediction, we also need

to introduce random projection matrix P ∈ {−1, 0, 1}d×k to control the prediction pa-

rameters (W̃Q ∈ Rk×k, W̃K ∈ Rk×k), and to use low-precision to reduce the computation

overhead. Here presents the sensitivity results regarding different choices of the reduced

dimension size and quantization precision.

Different sizes of k are used to evaluate the accuracy of DSA-90% on the LRA

Text Classification task. Here, σ = k/d ∈ (0, 1] represents the size of the predictor. A

Larger σ value indicates more prediction parameters and better representation power,

but also larger computation overhead. As we can see from Table 7.3, DSA demonstrates

relatively stable performance with different σ values. Even with σ = 0.1, DSA-90% still

achieves a slightly higher accuracy compared with vanilla transformer. Because we use

predictor to indicate the positions of the important attention weights, while passing the
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accurate attention weights to the output. Therefore, the predictor module can tolerate

highly approximate computation as long as it can capture the relative importance in the

attention matrix.

Table 7.3: Change of DSA-90% model accuracy when sweeping random projection
scale σ and quantization precision.

σ 0.1 0.16 0.2 0.25 0.33 Base

DSA-90% 65.32 65.25 65.17 65.46 65.63 65.12

Precision Random INT2 INT4 INT8 FP32 Base

DSA-90% 60.42 64.23 65.56 65.69 65.63 65.12

To further study the performance and the impact of the predictor, another experiment

is conducted to sweep over different quantization precision, while fixing σ to be 0.25. As

shown in Table 7.3, DSA-90% achieves good accuracy with precision as low as 4-bit.

Accuracy degradation occurs when the precision further scales down to 2-bit. As we

go deeper into the predictor module, we collect and show the prediction accuracy in

each attention block of this 4-layer DSA model. The prediction accuracy is defined

by the percentage of the correct guesses among the total number of predictions. For

example, for a DSA-90% model working on a sequence length of 2000, for each row of

the attention matrix, the predictor will output 200 positions to be important. If 100 of

these 200 locations actually matches with the top-k results, the prediction accuracy is

50%. As shown in Figure 7.6, the predictor is able to maintain its prediction accuracy

even with 4-bit quantization. When the precision is 2-bit, the prediction accuracy suffers

a significant degradation, dropping from 60 ∼ 90% to 25 ∼ 55%. Despite this, the overall

model accuracy is acceptable, with only 0.89% degradation compared with the baseline

transformer. The reason is that, for the binary Text Classification task, it is more crucial

to capture the very few most important attentions. Although the prediction accuracy

becomes lower, the most important positions are preserved and therefore maintaining
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Figure 7.6: The prediction accuracy of DSA in a 4-layer DSA-90% model with
different quantization precision.

the overall model accuracy. Finally, Figure 7.6 and Table 7.3 include a special case of

randomly selecting 10% important positions. With this random mask applied to the

model, the prediction accuracy is less than 10%, and overall model accuracy directly

drops to 60.42%. This result supports the previous analysis.

7.4.4 Model Efficiency

As mentioned earlier, DSA has the potential to significantly reduce computation

and memory consumption of the self-attention layer, which is especially beneficial for

deploying a long sequence transformer model at inference time. While we acknowledge

that the actual runtime performance and memory footprint are largely depending on

the underlying hardware implementation, this subsection sheds light on this problem by

quantitatively analyzing the cost of DSA.

What presented are the number of required MAC operations for each attention layer.

The number of MAC is used as the computational cost metric because the majority of

the operations in the self-attention layer are matrix multiplications. The total MAC

operations can be divided into three parts: (1) Linear: General Matrix-matrix Multi-
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plication(GEMM) for computing Query, Key, and Value. (2) Attention: GEMM for

computing attention weight matrix and output Value. (3) Other: Other GEMMs inside

the attention block like Feed-Forward layers. As introduced earlier, the two GEMM op-

erations in the part (2) scale quadratically with the sequence length, and these GEMM

operations can be transformed to SDDMM and SpMM in DSA-enabled model to reduce

both computation and memory consumption. Based on this setting, the computational

cost breakdown of different models used in our LRA experiment is shown in Figure 7.7.

Comparing different tasks, the tasks with longer sequence length (Text and Retrieval) are

more bounded by the Attention part. The benefit of using DSA is also more significant

on the 4K tasks. Comparing within each task, it is obvious that DSA model with higher

sparsity ratio delivers higher computation savings. Overall, DSA achieves 2.79 ∼ 4.35×

computation reduction without any accuracy degradation.

Den
se

DSA
-90

%

DSA
-95

%

DSA
-97

%

DSA
-99

%
0.00

0.25

0.50

0.75

1.00

1e10 (a) Text
Other
Linear
Attention

Den
se

DSA
-90

%

DSA
-95

%

DSA
-97

%

DSA
-99

%
0

2

4

1e9 (b) Retrieval

Den
se

DSA
-90

%

DSA
-95

%

DSA
-97

%

DSA
-99

%
0.0

0.5

1.0

1.5

1e8 (c) Image

Figure 7.7: Computational cost measured in the number of MACs.

Note that the computation overhead of the prediction path for generating the sparsity

mask is not included. This is because the computations conducted in prediction are in

reduced precision rather than full-precision. Besides, it is inappropriate to directly project

the number of low-precision MACs to the number of FP32 MACs. Therefore, the relative

energy consumption is used to illustrate the overall cost of DSA-augmented attention.
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Figure 7.8 shows the relative energy consumption of DSA-95% with σ = 0.25 and INT4

quantization. Each INT4 MAC’s energy cost is projected to the relative factor of FP32

MAC, where the factor number is referenced from industry-level simulator [174] with

45nm technology. From the figure we can see that, even with the predictor overhead

considered, the overall benefit is still compelling by virtue of the high dynamic sparsity

ratio and low-cost prediction.
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Figure 7.8: Relative energy consumption projected to vanilla transformer.

7.5 GPU Acceleration

In Section 7.4.4, we discussed the potential of DSA in terms of reducing the total cost

of Transformers. While the estimated number of MAC operations and relative energy

consumption present very promising results, it remains challenging to achieve practical

speedup and energy reduction on real hardware systems. In this section, we will dive

deeper into this problem as we discuss the implementation of DSA on GPUs. Specifically,

mapping DSA onto GPU architectures is a challenge, and DSA is flexible as enabling

efficient algorithm-hardware co-designs.

Given the predicted sparse patterns, we can reformulate QK⊤ as the sampled dense

dense matrix multiplication (SDDMM) and AV as the sparse matrix-matrix multipli-
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cation (SpMM). Under fine-grained sparsity, a recent work [175] proposes SpMM and

SDDMM kernel that outperforms dense GEMM kernel under > 71% and > 90% sparsity,

respectively. Besides, cusparse [176] also achieves practical speedup at > 80% sparsity

for single precision data. As we presented in Section 7.4, DSA can easily deliver a sparsity

ratio of more than 90% with zero accuracy degradation, therefore enabling faster kernel

implementations on GPUs.

7.5.1 Vector Sparse Patterns

While fine-grained sparse GPU kernels are able to outperform the dense counterparts

on relatively high sparsity ratios, the speedup is significantly limited due to low data

reuse. Moreover, when half precision (FP16) is used for computation, above fine-grained

kernels can hardly compete with GEMM kernel, as NVIDIA Tensor Core provides much

higher throughput for half precision matrix multiplication. Thus, the performance gain

on sparse matrix multiplication can hardly mitigate the overhead of computing the pre-

diction path in DSA, especially for half precision scenarios that commonly appeared at

inference. To tackle this problem, structural dynamic sparsity can be introduced to the

attention selection. Specifically, instead of selecting top−k independent attention weights,

we can enforce block-wise and vector-wise constraints. Also, trade-off can be made by

adjusting the block size, as larger blocks deliver higher speedup but can potentially cause

accuracy loss.

In this work, the experiments on vector sparsity use the Text Classification bench-

mark. As shown in Figure 7.9, column-vector sparse encoding is in use, where the atten-

tion elements are pruned in a column-vector granularity. Column-vector sparsity provides

the same data reuse as block sparsity, but its smaller granularity makes it more friendly

to model training [177]. Table 7.4 gives the corresponding kernel speedup and model
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1x2 Sparsity 1x4 Sparsity

Figure 7.9: Column-vector sparse encoding [177]

accuracy under 90% sparsity ratio. The data type is FP16 for 1 × 4/1 × 8 sparsity and

FP32 for fine-grained sparsity. As we can see, DSA can be flexibly combined with dif-

ferent sparsity patterns, achieving practical runtime speedup on GPU while maintaining

on-par model accuracy with full attention.

Table 7.4: Model accuracy and kernel speedup over cuBLASHgemm. Customized
SDDMM/SpMM kernel for 1 × 4/1 × 8 sparsity and reused the kernel in [175] for
fine-grained sparsity. Experiments are done on NVIDIA V100 GPU.

Sparsity Pattern vec 1×4 vec 1×8 Fine-grained

SpMM Speedup 1.57× 1.94× 1.85×

SDDMM Speedup 0.94× 1.15× 1.09×

Accuracy(%) -0.02 -0.1 +0.5

To shed some light on the results, we can trace back to the visualizations of the at-

tention matrix in Figure 7.1. As shown by the figure, despite the sparse and dynamic

characteristics of the attention matrix, the distribution of important attention connec-

tions exhibits a certain degree of locality. For example, there exist some global tokens

that attend to most of the tokens within a sequence. Therefore, some columns of the

attention matrix will contain many important positions. Besides, local attention also in-

dicates row-wise locality, as a token is likely to be influenced by its neighbors. Therefore,

row-vector sparsity can be added to DSA for performance/accuracy exploration as well.
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While these fixed locality patterns have been well discussed in prior work [64, 170], DSA

illustrates the dynamic distribution which motivates us to propose the prediction path

to efficiently locate these important connections.

7.5.2 Sparse Softmax Computation
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Figure 7.10: Speedup of softmax with different sparsity ratios.

Under the long-sequence scenario, the softmax function could be a bottleneck. Let

h, l, and d be the number of head, sequence length, and feature dimension of each

head, respectively. The profiling result shows that with h = 8, l = 4096, d = 64,

softmax contributes 47% of the total execution time of the multi-head self-attention

layer. By sparsifying the attention matrix, DSA directly saves both memory access

and computation consumption of the softmax function to reduce execution time. The

latency of the PyTorch-implemented softmax function is evaluated on NVIDIA V100

GPU. From the configuration in Text Classification Benchmark, batch size=16, h = 4,

l = 2000, with different sparsity ratios. Figure 7.10 shows that the reduced softmax

achieves 3.0 ∼ 709.9× speedup compared with dense softmax function.
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7.5.3 Overall Performance Speedup

Here is demonstration of the overall performance of DSA on Nvidia V100 GPU. The

results in Table 7.5 show that combining all proposed techniques, DSA can achieve 1.24x-

1.97x speedup on self-attention block and 1.19-1.71x end-to-end speedup with negligible

accuracy degradation. As we can see, while DSA does achieve practical speedup on

existing GPUs, it is still hard to fully utilize DSA’s computation savings. On one hand,

GPU architectures like V100 do not support ultra low-precision computations like INT4

and INT2. Latest Ampere GPU provides lower precision computation, which shows

DSA’s impact on future GPUs. On the other hand, SpMM and SDDMM operators

have sub-optimal performance on GPUs, which results in limited performance speedup.

Therefore, we further discuss the opportunities to apply hardware specialization to DSA.

Table 7.5: End-to-End Performance Speedup

Sparsity (95%) Self-Attention End-to-end Accuracy

1×4 1.23× 1.19× -0.06

1×8 1.97× 1.71× -0.12

7.6 Hardware Specialization

While adding structural constraints can potentially benefit GPU kernel implementa-

tion, the expressive power of the model is still inevitably affected. For instance, as shown

in Table 7.4, the 4× 1 vector encoding achieves comparable accuracy with full-attention,

but is lower than the accuracy of using fine-grained sparsity under the same sparsity

ratio. Thus, an alternative approach is to use hardware specialization to fully exploit the

potential saving from DSA.

Here presents the design of DOTA, Detect and Omit attention sparsity in Trans-
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former Accelerator, which is capable of performing scalable Transformer inference by

efficiently utilizing DSA. This design specifically addresses three system-level challenges.

First, long-sequence Transformer models involve large GEMM/GEMV computations with

configurable hidden dimensions. Therefore, to effectively execute different Transformer

models, we need to disassemble the algorithm and identify the essential components. The

abstraction of the model helps designing a scalable and unified architecture for different

Transformer layers, achieving good area- and power-efficiency. (Section 7.6.1). Sec-

ond, apart from implementing normal precision arithmetic, DOTA also needs to support

low-precision computations required by the attention detection. Instead of separately im-

plementing all the arithmetic precision, a reconfigurable design would be preferred as it

can dynamically balance the computation throughput of multi-precision computations.

(Section 7.6.2). Finally, to efficiently compute over the detected attention graph, we

should tackle the workload imbalance and irregular memory access caused by attention

sparsity (Section 7.6.3).

7.6.1 Overall System Architecture

Figure 7.11 illustrates the overall system architecture of DOTA, and explain how it

execute a single encoder block. Running decoders can be considered as a special case

of encoder with strict token dependency. As depicted by the figure, DOTA processes

one input sequence at a time. Different input sequences share the same weights while

requiring duplicated hardware resources to be processed in parallel. Therefore, we can

scale-out multiple DOTA accelerators to improve sequence-level parallelism.

Each encoder can be splited into three GEMM stages namely Linear Transformation,

Multi-Head attention, and FFN. The GEMM operations in different stages need to be

computed sequentially due to data dependency, while each GEMM can be cut into mul-
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Figure 7.11: DOTA system design. (a) The abstraction of a single encoder block.
We divide each encoder into three sequential stages. Each stage contains multiple
GEMM operations that can be further cut into chunks (represented by different colors)
and mapped to different compute Lanes. (b) Overall system design of DOTA. Each
compute Lane communicates with off-chip DRAM for input feature. The intermediate
results are summed up in the Accumulator. (c) Computation mapping between the
algorithm and hardware. Each DOTA accelerator processes one input sequence, and
each Lane computes for one chunk (color).

tiple chunks and processed in parallel. Therefore, as shown in Figure 7.11, the DOTA

accelerator has four compute lanes, and each Lane is dedicated to the computation of

one chunk. For example, during Transformation stage, each Lane contains a fraction of

weight WQ,WK ,WV and generates a chunk of QKV. The chunk’s size is equal to the

attention head size hd. Thus, for Multi-Head Attention, each Lane can directly use the

chunks previously generated by itself to compute for self-attention, keeping the data lo-

cal during execution. Finally, the FC layers in the FFN stage can be orchestrated in a

similar way.

Different compute Lanes share the same input at the beginning of a encoder, whereas

the weights and intermediate results are unique to each Lane. Therefore, we can avoid

data exchanging as well as intermediate matrix split and concatenation among the Lanes.

An exception of the above discussion is that, at the end of Multi-Head attention and
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each FC layers in FFN, we need to accumulate the results generated by each Lane. In

DOTA, this is handled by a standalone Accumulator. One DOTA accelerator has four

lanes because four is the least common multiple of the attention head numbers across

all the benchmarks evaluated. More Lanes can be implemented for higher chunk-level

parallelism.
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Figure 7.12: Architecture of each compute Lane.

Inside each Lane, as shown in Figure 7.12, there is an SRAM buffer, a Reconfigurable

Matrix Multiplication Unit (RMMU), a Detector for attention selection, and a Multi-

Function Unit for special operations such as Softmax and (De)Quantization. As discussed

above, one large RMMU is utilized to execute all different-precision GEMM operations

in each stage. Specifically, RMMU first computes low-precision (INT2/4) estimated

attention score. The low-precision results are sent to the Detector to be compared with

preset threshold values for attention selection. Besides selecting important attentions to

be calculated later, the Detector also contains a Scheduler to rearrange the computation

order of these important attention values. We incorporate this reordering scheme to

achieve balanced computation and efficient memory access (Section 7.6.3).
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7.6.2 Reconfigurable Matrix Multiplication Unit Design

As presented in Figure 7.12, each compute Lane contains a Reconfigurable Matrix

Multiplication Unit (RMMU) which supports MAC operation in different precision. Low-

precision computation occurs during the attention detection. Naively, we can support

this feature with separate low-precision arithmetic units, but with the cost of extra

resources to implement all supported precision levels. Besides, the decoupled design

can only provide constant computation throughput for each precision, but the ratio of

attention detection with respect to the other parts of the model varies from benchmark

to benchmark. Thus, we need to dynamically control the computation throughput of

attention detection and computation to achieve better resource utilization and energy-

efficiency.

Operand-1 
Buffer

Operand-2 
Buffer

×

P
SU

M

+

Multi-Precision PE

Input 
Operands

Partial
Sums

Precision
Configuration

Precision
Configuration

Output
Results

Sample FX4/INT2 Multiplier

+

MUXMUXMUXMUX MUXMUX MUXMUX

<<4

××

<<4

×

<<2

××

<<2

×

<<2

××

<<2

×

<<0

××

<<0

×OP2
MSB
OP2
MSB

OP2
LSB
OP2
LSB

OP1
MSB
OP1
MSB

OP1
LSB
OP1
LSB

BypassBypass BypassBypass BypassBypass BypassBypass

OP2

MSBMSB LSBLSB

OP2

MSB LSB

OP1

MSB LSBLSB

OP1

MSB LSB

OP2

MSB LSB

OP1

MSB LSB INT2 Data Path

FX4 Data Path

Always-enabled 
Data Path

Pre-stored
Weights

Pre-stored
Weights

(b) (c)(a)

FX16 FX16 FX16 FX16FX16 FX16 FX16 FX16FX16 FX16 FX16 FX16

INT4 INT4 INT4 INT4INT4 INT4 INT4 INT4INT4 INT4 INT4 INT4

INT2 INT2 INT2 INT2INT2 INT2 INT2 INT2INT2 INT2 INT2 INT2

FX16 FX16 FX16 FX16FX16 FX16 FX16 FX16FX16 FX16 FX16 FX16

D
at

ab
u

s

RMMU

Same PE, Different 
Precision Configuration

Figure 7.13: Design of the Reconfigurable Matrix Multiplication Unit. (a) RMMU is
composed of a 2D PE array, where each row can be configured to a specific compu-
tation precision. (b) Each PE is a multi-precision MAC unit. (c) A sample FX4/IN2
multi-precision multiplier. The key is to build up high precision multiplication data
path with low precision multipliers. In low precision mode, we split and multiply
the input operands with pre-stored weights and perform in-multiplier accumulation.
Therefore, the computation throughput is quadratically improved while input/output
bit-width are kept the same as high precision mode.

To tackle this problem, the RMMU design is shown in Figure 7.13. The key idea is to

design computation engine with configurable precision. As we can see from Figure 7.13,
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RMMU is composed of a 32 × 16 2-D PE array, where each PE is a fixed-point (FX)

MAC unit. The PE supports FX16, INT8, INT4, and INT2 computations. FX16 is

used for important attention computation and the rest are for attention detection. The

RMMU can be configured to different precision at a row-wise granularity. Therefore, we

can flexibly control how many rows of PE use FX16 for computation and how many rows

adopt low precision to balance the computation throughput.

The multi-precision multiplier design is based on two common knowledge of com-

puting arithmetic. Firstly, a fixed-point multiplier is essentially an integer multiplier,

only with a different logical explanation of the data. Secondly, we can use low-precision

multipliers as building blocks to construct high-precision multipliers [178]. Without loss

of generality, the implementation of an FX4/INT2 multiplier is shown in Figure 7.13 (c).

As we can see, each operand is divided into MSBs and LSBs and then sent to an INT2

multiplier. A INT2 multiplier takes one fraction from each operands and generates a

4-bit partial sum. Therefore, we need four INT2 multipliers to generate all the required

partial sums. The four partial sums are shifted and accumulated to give the final 8-bit

result. On the other hand, if the multiplier is in INT2 computation mode, the four INT2

multipliers is able to provide four times higher computation throughput. Note that,

we need 16-bit input and 16-bit output each cycle to facilitate all the INT2 multipliers.

However, an FX4 multiplication only requires half the bit-width (8-bit for input/output).

This problem is addressed by keeping half the input stationary in the multiplier, and ac-

cumulate the INT2 multiplication results before sending them out. Therefore, the input

bit-width is the same as FX4 computation while the output consumes 6-bit instead of

16-bit. In other words, when working on INT2 data, the multiplier is utilized as a tiny

input-stationary MAC unit which can perform 4 INT2 multiplications and accumulations

each cycle.

To summarize, multi-precision PEs are used in the RMMU and ensure scalable com-
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putation throughput when using low-precision data. The final design implements FX-16

multiplier built up from low-precision INT multipliers as discussed above.

7.6.3 Token-parallel Sparse Attention Computation

After RMMU generates estimated attention scores, the Detector unit selects impor-

tant attention connections. Specifically, as depicted in Figure 7.12, the Detector loads

estimated attention scores from SRAM and compare them with preset thresholds. A

binary mask is generated after the comparison, with 1s representing the selected connec-

tions. The Scheduler further processes the binary mask to rearrange the computation

order for each token, and stores the reordered connection IDs in the Queue. Later,

RMMU will load Key and Value vectors according to these IDs to compute the atten-

tion output. Multiple tokens are processed in parallel, each corresponding to one row

of the attention matrix. This is named as token-parallel dataflow, which can improve

Key/Value data reuse and reduce total memory access. This subsection uses three differ-

ent examples to demonstrate the benefits, the challenges, and the solutions to compute

the attention output with the detected attention graph and Token parallelism.

Token-Parallel Dataflow. As shown by the example in Figure 7.14, the 4×5 matrix is

the sparse attention graph with important connections marked with crosses. Prior work

process each Query (Token) one by one, meaning that the attention weights and output

are computed row by row. As a result, we need to load ten keys from the memory, even

though only four different keys are required. On the contrary, processing all four queries in

parallel, as shown in Figure 7.14, significantly reduces the total memory accesses because

some key vectors can be loaded once and shared by multiple rows. This example shows

that exploring token-level parallelism benefits memory accessing when attention weight

matrix has such row-wise localities. We can observe similar locality in real attention
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graphs. On one hand, there are usually some important tokens in one sentence that

attend to multiple tokens. On the other hand, a token is likely to attend to its neighbor

tokens within a certain window size.

k1 k2 k3 k4 k5

q1

q2

q3

q4

Dataflow Procedure
Total 
Mem 

Access

Row-by-Row
Load k2, k3, k1, k2, k5, 

k2, k3, k1, k3, k5
10 Key 
Vectors

Token-Parallel
(w/o reorder)

Load (k1, k2), 
Load(k2, k3), Load(k5)

5 Key 
Vectors

× ×
× × ×

× ×
× × ×

× ×
× × ×

× ×
× × ×

Figure 7.14: Token-level parallelism reduces key/value vector memory access.

Workload Balancing. One challenge of parallel token processing is the workload im-

balance issue among different rows. Figure 7.14 shows that different queries may have

various numbers of important key vector pairs, which may further cause resource under-

utilization and performance degradation. One solution is to let early-finished PEs switch

to the processing of other queries. However, this will generate extra inter-PE commu-

nications as well as query reloading. Therefore, this problem is tackled directly from

algorithm perspective without affecting the underlying hardware. Specifically, a con-

straint is added to enforce all the rows in the attention matrix to have the same number

of selected attention connections.

Out-of-Order Execution. Finally, hardware-enabled out-of-order execution is pro-

posed to further improve key/value reuse and reduce total memory access. As shown in

Figure 7.15, suppose all four queries have balanced workload and are processed in paral-

lel. The left-to-right computation order firstly computes (q1, k1), (q2, k2), (q3, k3), (q4, k3),

and then (q1, k2), (q2, k3), (q3, k5), (q4, k4), and finally (q1, k3), (q2, k4), (q3, k6), (q4, k5).
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Consequently, some originally shared keys will have to be reloaded and the locality is

broken. In this example, the required total memory access is 11 vectors, which is only

one vector less compared with no parallelism.

Dataflow Procedure
Total Mem 
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Token-Parallel w/o 
Out-of-order Execution

Load (k1,k2,k3), Load(k2,k3,k5,k4), 
Load(k3,k4,k6,k5), 
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Token-Parallel w/
Out-of-order Execution

Load (k2,k5), 
Load(k3,k6), Load(k1,k4,k5)

7 Key Vectors
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1 2
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k6

Computation 
Reorder

Computation 
Reorder

Figure 7.15: Even with token parallelism, the computation order of each row still
matters and affects total memory access.

To address this problem, a locality-aware scheduling algorithm is proposed to reorder

the computation of each query. As shown in Figure 7.15 and 7.16, we can start with

issuing the keys that are shared by most queries. When scheduling partially shared keys

like k2, we also need to schedule computations for the unassigned query, which is q4.

Doing so need to first look for keys that belong to q4 alone. If not found, moving on

to keys shared by q4 and another query, and so on. In this example, there are no key

vectors that are owned by q4. Therefore, we can go to the second best choice, which is

k5. Thus, in the first round, schedule k2 for q1,2,3 and k5 for q4. Although this breaks

the locality of q5, the greedy search ensures overall minimal memory access. Besides,

since each query is scheduled for exactly one connection at each round, and they have

same total connections, this ensures the synchronization of each rows and maximizes

resource utilization and performance. The complete scheduling algorithm is presented
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in Algorithm 4. Note that, the scheduling only needs to be performed once, and the

generated computation order is reused for computing attention output using attention

weights A and Value matrix V .

Algorithm 4: Locality-Aware Scheduling Algorithm.

Require: A set of buffers B that store the selected connection IDs for query
q1, q2, q3, q4. e.g., B0110 stores IDs that are required by q2 and q3.

Ensure: A computation order that achieves optimal Key and Value data reuse.
1: Issue all the IDs in B1111 (required by all 4 queries)
2: while B1110 is not empty do
3: Issue an ID in B1110

4: if B0001 is not empty then
5: Issue an ID in B0001

6: else
7: Search and Issue an ID in Bxxx1

8: Move the issued ID from Bxxx1 to Bxxx0

9: end if
10: end while
11: Repeat 2-10 for all the other buffers.

A Scheduler is designed to implement the scheduling algorithm. As shown in Fig-

ure 7.16, the Scheduler first stores each connection ID in the corresponding buffer ac-

cording to the 4-bit binary mask generated after threshold comparison. For example,

according to Figure 7.15, ’1’ is stored in buff-1000, ’2’ is stored in buff-1110. Then, the

Scheduler starts issuing computations from buff-1111. Besides, when k5 is scheduled for

q4 during the step-1, ’5’ will be moved to buff-0010, meaning that now it only belongs to

q3. We use a Finite-State Machine to implement the condition statements and control

logic.

In summary, token-level parallelism is explored with software-enabled workload-balancing

and hardware-enabled out-of-order execution to efficiently compute the attention output.

The proposed strategy can be generalized and used in other applications with the same
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two-step matrix multiplication chain as shown in equation 7.8. (SoftMax is optional.)

O = (Q ∗K) ∗ V = A ∗ V (7.8)

More importantly, even with out-of-order execution, the final result is automatically gen-

erated in a regular order. Because the irregular computation only affects the intermediate

matrix A, which is completely consumed during the computation. In contrast, exploring

same reordering in CNN would require a crossbar-like design to correctly store the output

result [179].
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Figure 7.16: Design of the Scheduler and the scheduling process of Figure 7.15.
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7.6.4 System Design Completeness

Decoder Processing For decoders, since the input tokens have to be processed sequen-

tially, the core operation would be GEMV and the performance is memory-bounded.

DOTA reduces total memory access by efficiently filtering out majority of the attention

connections.

Memory Modules The on-chip memory is implemented as banked SRAM module that

can be configured to store different types of data. A custom simulator is developed to

obtain the capacity and bandwidth requirement of the SRAM module. We facilitate

each Lane with a 640KB SRAM (10 64KB banks). Therefore, DOTA has a total on-chip

SRAM capacity of 2.5MB. The bandwidth requirements of embedding layer and decoders

are significantly higher than other layers. Therefore, we need to make sure the SRAM

bandwidth meets the need of the computation-bounded layers, while leaving embedding

and decoder to be memory-bounded.

7.6.5 Performance Speedup

Appendix C includes the hardware evaluation methodology. Figure 7.17 presents the

speedup of DOTA over the baselines. Both stand along attention block and the end-to-

end performance improvements are evaluated. Two versions of DOTA are provided by

setting the accuracy degradation of DOTA-C (Conservative) to be less than 0.5% and

limiting the degradation of DOTA-A (Aggressive) within 1.5%. As for ELSA, although

it fails to reach the above accuracy requirement, the original settings [105] are used, and

the retention ratio is 20% for performance evaluation.

As we can see, comparing with GPU, DOTA-C achieves 152.6× and 9.2× average

speedup on attention computation and Transformer inference, respectively. On the other

hand, DOTA-A achieves on average 341.8× and 9.5× speedups at the cost of a slightly
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Figure 7.17: (a) Speedup of DOTA over GPU and ELSA on attention block. (b)
End-to-end speedup over GPU. Red dots indicate the theoretical performance up-
per-bound of an accelerator. (c) Normalized latency breakdown of DOTA. DOTA-F
means to compute the Full attention graph with DOTA without detection and omis-
sion. DOTA-C (Conservative) and DOTA-A (Aggressive) both adopt attention detec-
tion, while DOTA-C allows for an accuracy degradation less than 0.5% and DOTA-A
allows for 1.5%.

higher accuracy degradation. The speedup mainly comes from three aspects. Firstly,

DOTA benefits from highly specialized and pipelined datapath. Secondly, the attention

detection mechanism significantly reduces the total computations. Finally, the Token-

parallel dataflow with workload balancing and out-of-order execution further improves

resource utilization.

The end-to-end speedup is lower than that of attention computation, since the pro-

posed detection method is tailored to the cost reduction of self-attention blocks. Another

baseline is included by assuming the accelerator always works at its peak throughput,

and the attention computation has a negligible cost. Combining this peak throughput

assumption and Amdahl’s law [180], we can derive the theoretical speedup upper bound

for DOTA. As we can see, the real performance of DOTA is relatively close to the upper

bound by virtue of the extremely small retention ratio and hardware specialization. We

only compare DOTA and ELSA on attention computation performance, because ELSA

does not support end-to-end Transformer execution. As we can see from Figure 7.17

(b), on average, DOTA-C is 4.5× faster than ELSA and DOTA-A is 10.6× faster. This

improvements mainly come from lower retention ratio and Token-parallel dataflow.
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The latency breakdown in Figure 7.17 (c) delivers two key messages. Firstly, the la-

tency of attention estimation is negligible compared with the overall consumption. There-

fore, the Detector is both accurate and hardware efficient as we expected. Secondly, with

the proposed detection method and system architecture, the cost of attention has been

significantly reduced. The new performance bottleneck is Linear computation, which

can be optimized with weight pruning and quantization. These classic NN optimization

techniques can be fluently transplanted on DOTA, because our system is designed on top

a GEMM accelerator with multi-precision arithmetic support and sparse computation

dataflow. Overall, DOTA delivers scalable Transformer inference acceleration.

7.7 Conclusion

This Chapter presents Dynamic Sparse Attention (DSA), a novel method that ex-

ploits dynamic sparse patterns in attention to reduce computational cost when serving

Transformers. Specifically, it is shown that the DSA method can achieve up to 95%

attention sparsity without model inference quality loss. Other than prior art that uses

static sparse patterns in attention, DSA explores dynamic sparse patterns that are inher-

ent in attention when processing different input sequences. Instead of replacing standard

attention with other variants such as low-rank approximation methods, DSA can aug-

ment standard attention with a prediction path as the means to locate dynamic sparsity.

On one hand, attention approximation can be very efficient when only used for sparsity

prediction. On the other hand, the expressive power of full attention is preserved as the

important attention weights from full attention are effective in model inference. Exper-

imental results on the LRA benchmark demonstrate superior performance and model

efficiency of DSA. Furthermore, this Chapter demonstrates the potential of using DSA

to improve hardware performance and efficiency. With customized kernel design and
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structural sparsity, DSA delivers practical speedup on GPU. The algorithm benefit can

be further exploited with specialized architecture, as the hardware can fully benefit from

low-precision prediction, fine-grained sparse computation, and data locality.
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Conclusion

This dissertation presents how to explore the elasticity in Machine Learning (ML) pro-

cessing and hardware architectures to enhance efficiency.

8.1 Summary of Contributions

By exploring the elasticity of approximate-accurate activations, Chapter 3 presents

the dual-module inference method that is applicable to various types of neural networks.

For the memory-bound RNNs, with overall memory accesses reduced by 40% on a com-

modity CPU-based server platform, the method can achieve 1.5× to 1.7× wall-clock time

speedup with negligible impact on model quality. In addition, the method can reduce the

operations of the compute-bound CNNs by 3.0×, with only a 0.5% accuracy drop. The

high-level view of DMI is using learned auxiliary modules for speculative computation

skipping. Future large-scale ML models could benefit from such a paradigm where only

a subset of components are activated during inference.

As discussed in Chapter 4, the proposed dynamic sparse graph (DSG) approach,

supported by dimension-reduction search and double-mask selection, can achieve 1.7-
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4.5× memory compression and 2.3-4.4× computation reduction with minimal accuracy

loss across a set of CNNs. This approach is distinct from static model compression

techniques on permanent weight pruning since we never prune the graph but activate

partially. Therefore, we can maintain the model’s expressive power as much as possible.

This work simultaneously pioneers the approach towards efficient online training and

offline inference, which can benefit the DL in both the cloud and the edge.

As proposed in Chapter 5, with acceptable model inference quality degradation, dual-

module accelerator design can achieve 2.2× speedup and 2.0× energy reduction. Lever-

aging heterogeneous computing capabilities of modern hardware is a critical question

to address, and our design proposes an orchestrated execution at the level of special-

ized hardware. Future ML accelerators can embrace the idea of leveraging heterogeneous

computing units tailored for components that have different computational requirements.

Chapter 6 presents a software-hardware co-design that features: a novel screening

method to reduce the computation and memory consumption by efficiently approximating

the classification output; a specialized NMP architecture design for both the screening

phase and the classification phase. Overall, the approximate screening method achieves

7.3× speedup over the CPU baseline, and the ENMC architecture design further improves

the performance by 7.4× and demonstrates 2.7× speedup compared with the state-of-

the-art NMP baseline.

Finally, in Chapter 7, Dynamic Sparse Attention (DSA) is proposed to accelerate

long-range Transformer Neural Networks. The DSA method can achieve up to 95%

attention sparsity without model inference quality loss. Instead of using static sparse

patterns, DSA explores explores dynamic sparse patterns that are inherent in attention

when processing different input sequences. Experimental results demonstrate superior

performance and model efficiency of DSA. Furthermore, the potential of using DSA to

improve hardware performance and efficiency is demonstrated. With customized kernel
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design and structural sparsity, DSA delivers practical speedup on GPU. The algorithm

benefit can be further exploited with specialized architecture, as the hardware can fully

benefit from low-precision prediction, fine-grained sparse computation, and data locality.

8.2 Future Research

The design principles of elastic processing and architectures can be expanded to three

aspects in the future: design metrics (e.g., robustness, privacy, and environmental im-

pact), computing paradigms (e.g., near-memory, in-storage, and network-centric comput-

ing), and application domains (e.g., autonomous, graph processing, and biomedical).

8.2.1 Co-Designing Robustness and Efficiency

Computer systems are vulnerable to erroneous inputs and execution-time errors.

Specifically, for ML applications, adversarial examples can fool the models, and device-

level faults can degrade the accuracy or crash the system in reliability-critical scenarios.

While many studies have been proposed to improve the robustness of ML systems, design-

ing defense and detection mechanisms is often separated from architectural properties.

Using robust countermeasures at the cost of performance and efficiency degradation is

not favorable in real-time applications and resource-limited platforms. Elastic processing

can be expanded to jointly design robust ML methods and hardware architectures in

several potential ways: 1) reusing approximate computing units designed for efficiency to

enhance robustness from adversarial attack; 2) architectural support for detecting adver-

sarial examples without hurting performance; 3) incorporating redundancy as to improve

system reliability while elastically removing unnecessary computations.
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8.2.2 Incorporating Emerging Computing Paradigms

For data-intensive workloads, such as large-scale classification training, embedding

operation, and bioinformatics, accessing the memory hierarchy for data is the bottle-

neck of system performance and energy consumption. We are in search of offloading

data-intensive workloads to smart storage systems with Near-Data Processing (NDP)

technologies. However, native NDP design cannot support the computational complex-

ity of data-intensive workloads due to the area and power limitations. Leveraging the

design principles in elastic processing and near-memory processing, future research can

bridge the gap between data-intensive workloads and NDP-enabled storage systems.

A typical large-scale ML training system consists of CPUs and accelerators connected

by traditional PCIe interconnects. The communication limits the training throughput

due to high latency from passive network fabrics, inflexible network topology, and co-

herence management. Building from the work on CNN training with dynamic sparse

graph in Chapter 4, future research could explore elastic communication methods in

large-scale training and seek co-designs of active network fabrics with caching and com-

puting capabilities and specialized network for adaptive communication with topology

reconfiguration.

8.2.3 Expanding Application Domains

Future research can explore elastic processing and domain-specific architectures in

a wide range of application domains, including robotics, graph analytics, and bioin-

formatics. While specialization plays a key role in scaling performance and efficiency,

non-recurring engineering (NRE) cost, development time, and programmability remain

challenging. On one hand, highly specialized ASIC designs can deliver the best per-

formance and efficiency, but lack programmability and flexibility. Once the algorithms
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evolve, the ASIC designs become obsolete. On the other hand, general-purpose proces-

sors and programmable devices have the flexibility but cannot meet performance and

efficiency requirements. Thus, we need to balance specialization and generality in next-

generation architectures.

One potential direction is on software/hardware co-optimization towards both effi-

ciency and flexibility, as this raises many challenges. For example, how can we achieve

near ASIC performance and efficiency while having flexibility? How can we enable rapid

design space exploration in accelerators? Can we have abstractions for specialized com-

ponents in an application domain such that extended accelerator designs can deliver high

efficiency with full programming capability? How can we enable automated design flow

for accelerators and jointly search optimization space in both software and hardware?

Future accelerator design to be essentially parallel programming where applications and

algorithms will be adapted and mapped to hardware simultaneously.

Cross-domain adaptation can potentially reuse past specialized designs for new prob-

lems and new algorithms with much reduced cost and development time than from-scratch

approaches. Recent integration technology advancements such as multi-chip-module and

fine-grained 3D stacking could facilitate cross-domain design reuse. This agile co-design

paradigm could enable efficient and flexible next-generation intelligent applications

156



Appendix A

Supplemental Materials for Dynamic

Sparse Graph

A.1 Proof of the Dimension-reduction Search for In-

ner Product Preservation

Theorem 1. Given a set of N points in Rd (i.e. all Xi and Wj), and a number of

k > O( log(N)
ϵ2

), there exist a linear map f : Rd ⇒ Rk and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we

have

P [ |⟨f(Xi), f(Wj)⟩ − ⟨Xi,Wj⟩| ≤ ϵ ] ≥ 1 −O(ϵ2). (A.1)

for all Xi and Wj.

Proof. According to the definition of inner product and vector norm, any two vectors

a and b satisfy 
⟨a,b⟩ = (∥a∥2 + ∥b∥2 − ∥a− b∥2)/2

⟨a,b⟩ = (∥a + b∥2 − ∥a∥2 − ∥b∥2)/2

. (A.2)
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It is easy to further get

⟨a,b⟩ = (∥a + b∥2 − ∥a− b∥2)/4. (A.3)

Therefore, we can transform the target in equation (A.1) to

| ⟨f(Xi), f(Wj)⟩ − ⟨Xi,Wj⟩ |

= | ∥f(Xi) + f(Wj)∥2 − ∥f(Xi) − f(Wj)∥2 − ∥Xi + Wj∥2 + ∥Xi −Wj∥2 |/4

≤ | ∥f(Xi) + f(Wj)∥2 − ∥Xi + Wj∥2 |/4 + | ∥f(Xi) − f(Wj)∥2 − ∥Xi −Wj∥2 |/4,

(A.4)

which is also based on the fact that |u − v| ≤ |u| + |v|. Now recall the definition of

random projection in equation (5) of the main text

f(Xi) =
1√
k
RXi ∈ Rk, f(Wj) =

1√
k
RWj ∈ Rk. (A.5)

Substituting equation (A.5) into equation (A.4), we have

| ⟨f(Xi), f(Wj)⟩ − ⟨Xi,Wj⟩ |

≤ | ∥ 1√
k
RXi + 1√

k
RWj∥2 − ∥Xi + Wj∥2 |/4 + | ∥ 1√

k
RXi − 1√

k
RWj∥2 − ∥Xi −Wj∥2 |/4

= | ∥ 1√
k
R(Xi + Wj)∥2 − ∥Xi + Wj∥2 |/4 + | ∥ 1√

k
R(Xi −Wj)∥2 − ∥Xi −Wj∥2 |/4

= | ∥f(Xi + Wj)∥2 − ∥Xi + Wj∥2 |/4 + | ∥f(Xi −Wj)∥2 − ∥Xi −Wj∥2 |/4

.

(A.6)

Further recalling the norm preservation in equation (3) of the main text: there exist a

linear map f : Rd ⇒ Rk and a ϵ0 ∈ (0, 1), for 0 < ϵ ≤ ϵ0 we have

P [ (1 − ϵ)∥Z∥2 ≤ ∥f(Z)∥2 ≤ (1 + ϵ)∥Z∥2 ] ≥ 1 −O(ϵ2). (A.7)

158



Supplemental Materials for Dynamic Sparse Graph Chapter A

Substituting the equation (A.7) into equation (A.6) yields

P [ | ∥f(Xi + Wj)∥2 − ∥Xi + Wj∥2 |/4 + | ∥f(Xi −Wj)∥2 − ∥Xi −Wj∥2 |/4...

≤ ϵ
4
(∥Xi + Wj∥2 + ∥Xi −Wj∥2) = ϵ

2
(∥Xi∥2 + ∥Wj∥2) ]...

≥ P ( | ∥f(Xi + Wj)∥2 − ∥Xi + Wj∥2 |/4 ≤ ϵ
4
∥Xi + Wj∥2 )...

×P ( | ∥f(Xi −Wj)∥2 − ∥Xi −Wj∥2 |/4 ≤ ϵ
4
∥Xi −Wj∥2 )...

≥ [1 −O(ϵ2)] · [1 −O(ϵ2)] = 1 −O(ϵ2).

.

(A.8)

Combining equation (A.6) and (A.8), finally we have

P [ | ⟨f(Xi), f(Wj)⟩ − ⟨Xi,Wj⟩ | ≤ ϵ
2
(∥Xi∥2 + ∥Wj∥2) ] ≥ 1 −O(ϵ2) . (A.9)

It can be seen that, for any given Xi and Wj pair, the inner product can be preserved

if the ϵ is sufficiently small. Actually, previous work [141, 121] discussed a lot on the

random projection for various big data applications, here we re-organize these supporting

materials to form a systematic proof. We hope this could help readers to follow this paper.

In practical experiments, there exists a trade-off between the dimension reduction degree

and the recognition accuracy. Smaller ϵ usually brings more accurate inner product

estimation and better recognition accuracy while at the cost of higher computational

complexity with larger k, and vice versa. Because the ∥Xi∥2 and ∥Wj∥2 are not strictly

bounded, the approximation may suffer from some noises. Anyway, from the abundant

experiments in this work, the effectiveness of our approach for training dynamic and

sparse neural networks has been validated.
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Algorithm 5: DSG training

Data: A mini-batch of inputs & targets (X0, X
∗), previous weights Wt,

previous BN parameters θt.
Result: Update weights Wt+1, update BN parameters θt+1.

1

2 Random projection: f(Wt
k) ⇐ Wt

k;
3

4 Step 1. Forward Computation;
5 for k=1 to L do
6 if k<L then
7 Projection: f(Xk−1) ⇐ Xk−1;
8 Generating Maskk via dimension-reduction search according to f(Xk−1)

and f(Wt
k);

9 Sk ⇐ φ[ Maskk(Xk−1W
t
k) ];

10 Xk ⇐ Maskk[ BN(Sk, θ
t
k) ];

11 else
12 XL ⇐ linear(XL−1W

t
L);

13

14 Step 2. Backward Computation;

15 Compute the gradient of the output layer GXL
= ∂C(XL,X

∗)
∂XL

;

16 for k=L to 1 do
17 if k==L then
18 GXL−1

⇐ Maskk−1(GXL
(Wt

L)T );

19 GWL
⇐ GT

XL
XL−1;

20 else
21 (GSk

,Gθk) ⇐ Maskk[ BN grad(GXk
,Sk, θ

t
k) ];

22 GWk
⇐ (GSk

⊙ φ grad)TXk−1;
23 if k>1 then
24 GXk−1

⇐ Maskk−1[ (GSk
⊙ φ grad)(Wt

k)T ];

25

26 Step 3. Parameter Update;
27 for k=1 to L do
28 Wt+1

k ⇐ Optimizer(Wt
k,GWk

);
29 θt+1

k ⇐ Optimizer(θtk,Gθk);
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A.2 Implementation and overhead

The training algorithm for generating DSG is presented in Algorithm 5. The gener-

ation procedure of the critical neuron mask based on the virtual activations estimated

in the low-dimensional space is presented in Figure A.1, which is a typical top-k search.

The k value is determined by the activation size and the desired sparsity γ. To reduce

the search cost, we calculate the first input sample X(1) within the current mini-batch

and then conduct a top-k search over the whole virtual activation matrix for obtaining

the top-k threshold under this sample. The remaining samples share the top-k threshold

from the first sample to avoid costly searching overhead. At last, the overall activation

mask is generated by setting the mask element to one if the estimated activation is larger

than the top-k threshold and setting others to zero. In this way, we greatly reduce the

search cost. Note that, for the FC layer, each sample X(i) is a vector.

nPQ

k

k

nK

Low-dimensional 
Inputs

Low-dimensional Weights

…

X(1)

X(m)

Top-K search

nPQ

Threshold

Thresholding

Thresholding

MasksLow-dimensional computations

Sharing

Figure A.1: Selection mask generation: using a top-k search on the first input sample
X(1) within each mini-batch to obtain a top-k threshold which is shared by the
following samples. Then, we apply thresholding on the whole output activation tensor
to generate the importance mask for the same mini-batch.

Furthermore, we investigate the influence of the ϵ on the computation cost of dimension-

161



Supplemental Materials for Dynamic Sparse Graph Chapter A

Table A.1: Computational complexity of dimension-reduction search. MMACs de-
notes mega-MACs and BL denotes baseline.

Layers Dimension Operations (MMACs)
nPQ, nCRS, nK BL 0.3 0.5 0.7 0.9 BL 0.3 0.5 0.7 0.9
1024, 1152, 128 1152 539 232 148 119 144 67.37 29 18.5 14.88
256, 1152, 256 1152 616 266 169 136 72 38.5 16.63 10.56 8.5
256, 2304, 256 2304 616 266 169 136 144 38.5 16.63 10.56 8.5
64, 2304, 512 2304 693 299 190 154 72 21.65 9.34 5.94 4.81
64, 4608, 512 4608 693 299 190 154 144 21.65 9.34 5.94 4.81

reduction search for importance estimation. We take several layers from the VGG8 on

CIFAR10 as a case study, as shown in Table A.1. With ϵ larger, the dimension-reduction

search can achieve lower dimension with much fewer operations. The average reduction

of the dimension is 3.6x (ϵ = 0.3), 8.5x (ϵ = 0.5), 13.3x (ϵ = 0.7), and 16.5x (ϵ = 0.9).

The resulting operation reduction is 3.1x, 7.1x, 11.1x, and 13.9x, respectively.

A.3 Convergence Analysis

One interesting question is that whether DSG slows down the training convergence or

not, which is answered by Figure A.2. According to Figure A.2(a)-(b), the convergence

speed under DSG constraints varies little from the vanilla model training. This probably

owes to the high fidelity of inner product when we use random projection to reduce

the data dimension. Figure A.2(c) visualizes the distribution of the pairwise difference

between the original high-dimensional inner product and the low-dimensional one for the

CONV5 layer of VGG8 on CIFAR10. Most of the inner product differences are around

zero, which implies an accurate approximation capability of the proposed dimension-

reduction search. This helps reduce the training variance and avoid training deceleration.

Another question in DSG is that whether the selection masks converge during training

or not. To explore the answer, we did an additional experiment as shown in the Figure
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(a) (b) (c)

Figure A.2: Accuracy convergence. (a) Training curve with validation accuracy of
VGG8 on CIFAR10; (b) Training curve with top-5 validation accuracy of ResNet-18
on ImageNet; (c) Distribution of pairwise difference between the original high-dimen-
sional inner product and the low-dimensional one for the CONV5 layer in VGG8.

(a) (b)

Figure A.3: Selection mask convergence. (a) Average L1-norm value of the difference
mask tensors between adjacent training epochs across all samples in one mini-batch;
(b) Average L1-norm value of the difference mask tensors between adjacent samples
after training.

A.3. We select a mini-batch of training samples as a case study for data recording. Each

curve presents the results of one layer (CONV2-CONV6). For each sample at each layer,

we recorded the change of binary selection mask between two adjacent training epochs.

Here the change is obtained by calculating the L1-norm value of the difference tensor of

two mask tensors at two adjacent epochs, i.e., change = batch avg L1norm(maski+1 −

maski). Here the batch avg L1norm(·) indicates the average L1-norm value across all

samples in one mini-batch. As shown in Figure A.3(a), the selection mask for each sample

converges as training goes on.

In our implementation we inherit the random projection matrix from training and
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perform the same on-the-fly dimension-reduction search in inference. We didn’t try

to directly suspend the selection masks, because the selection mask might vary across

samples even if we observe convergence for each sample. This can be seen from Figure

A.3(b), where the difference mask tensors between adjacent samples in one mini-batch

present significant differences (large L1-norm value) after training. Therefore, it will

consume lot of memory space to save these trained masks for all samples, which is less

efficient than conducting on-the-fly search during inference.

A.4 Comparison with Other Methods

ResNet-8 AlexNet

Figure A.4: Comparison with smaller-dense models with equivalent MACs using
ResNet8 on CIFAR10 and AlexNet on ImageNet.

Figure A.4 extends Figure 4.8(b) in the main text to more network structures, in-

cluding ResNet8 on CIFAR10 and AlexNet on ImageNet. The similar observation can

be achieved: the equivalent smaller dense models with the same effective MACs are able

to save more training time but the accuracy degradation will be increased. Note that in

this figure, the DSG training uses a warm-up training with dense model for the first 10
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epochs. The overhead of the warm-up training has been taken account into the entire

training cost. To make the accuracy results on CIFAR10 and ImageNet comparable for

figure clarity, AlexNet reports the top-5 accuracy.

Our work targets at both the training and inference phases while most of previ-

ous work focused on the inference compression. In prior methods, the training usu-

ally becomes more complicated with various regularization constraints or iterative fine-

tuning/retraining. Therefore, it is not very fair to compare with them during training.

For this reason, we just compare with them on the inference pruning. Different from do-

ing DSG training from scratch, here we utilize DSG for fine-tuning based on pre-trained

models.

Table A.2: Comparison with other structured sparsification methods for inference. All
the results are from VGG16 on ImageNet, and the default accuracy is top-1 accuracy.
The baseline methods are Taylor Expansion [49], ThinNet [44], Channel Pruning [47],
AutoPrunner [43], and AMC [39].

Methods Taylor Expansion ThinNet Channel Pruning AutoPrunner AMC DSG

Operation Sparsity 62.86% 69.81% 69.32% 73.6% 80% 62.92%

Accuracy 87%(top-5) 67.34% 70.42% 68.43% 69.1%
71.44%(top-1)

90.56%(top-5)

To guarantee the fairness, all the results are from the same network (VGG16) on

the same dataset (ImageNet). Since our DSG produces structured sparsity, we also

select structured sparsity work as comparison baselines. Different from the previous

experiments in this paper, we further take the input sparsity at each layer into account

rather than only count the output sparsity. This is due to the fact that the baselines

consider all zero operands. The results are listed in Table A.2, from which we can see

that DSG is able to achieve a good balance between the operation amount and model

accuracy.
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Dual-Module Inference

B.1 Motivation for Dual-Module Inference

As shown in Figure B.1, the nonlinear activation functions – sigmoid and tanh –

have insensitive regions where the output activations are resilient to errors introduced in

pre-activation accumulation results.

Figure B.1: Insensitive (green shaded) and sensitive (white) regions of sigmoid (left)
and tanh (right) nonlinear functions.

The selection of which neurons should be in the (in)sensitive region is dynamic and

input-dependent, which can be seen in Figure B.2. Unlike the static weight sparsity that
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we can prune the unused connections offline in advance, the dynamic region speculation

requires a very lightweight criterion for real-time processing. Taking all these into ac-

count, we propose a dual-model inference method that efficiently determines (in)sensitive

region and significantly saves the memory access and computational cost.

Figure B.2: Dynamic region distribution across time-steps and inputs. The white and
black colors denote neurons in the insensitive and sensitive regions, respectively. The
upper and lower patterns are from different inputs.

B.2 Experiments

Settings. Our evaluation for single-layer RNNs is adapted from PyTorch’s word

language modeling example, where the dataset has 10K tokens. We do not use dropout

when training the LL module(s); the starting learning rate is 5, and we decay it by four

if no loss descent has been seen on the validation dataset. The RNNs used in language

modeling have 35 timestamps; the maximum generated sequence length in GNMT is

80. For language modeling, we choose 1500 hidden units following the word language

modeling example, and we compare our method which dynamically reduces 50% of weight

accesses to the static case where only 750 hidden units are used. Besides single-layer

LSTM and GRU, we also evaluate four-layer stacked LSTMs as in GNMT. For GNMT
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experiments, we use the same set of parameters when training the base model 1. We

train the four little modules in the four-layer stacked LSTM in a total of 4 epochs.

Our experiments on ResNet-18 is adapted from the image classification example of

PyTorch.

Table B.1: LSTM perplexity and execution time (ms).

Insensitive
ratio

hidden size: 1500 hidden size: 750
PPL Diff. Time Speedup PPL Diff. Time Speedup

Base 80.64 n/a 1.477 1.00x 84.32 n/a 0.546 1.00x
10% 80.72 -0.08 1.315 1.12x 84.42 -0.10 0.448 1.22x
30% 80.56 0.08 1.095 1.35x 84.43 -0.11 0.415 1.32x
50% 81.36 -0.72 0.885 1.67x 84.29 0.03 0.342 1.60x
70% 87.48 -6.83 0.641 2.30x 84.89 -0.57 0.287 1.90x
90% 109.37 -28.73 0.380 3.89x 88.44 -4.12 0.216 2.53x

Additional results. In addition to the results of LSTMs using 1500 hidden units

in the main text, We observe a similar quality-performance trade-off for LSTM with

750 hidden units as shown in Table B.1. Comparing the case of base LSTM with 750

hidden units with dual-module LSTM with 1500 hidden units and 50% insensitive ratio,

although the memory access reduction is at the same level, our proposed dual-module

approach achieves much better model quality because we kept the expressive power of a

larger LSTM layer.

Table B.2: GRU perplexity and execution time (ms).

Insensitive
ratio

hidden size: 1500 hidden size: 750
PPL Diff. Time Speedup PPL Diff. Time Speedup

Base 85.48 n/a 1.182 1.00x 89.64 n/a 0.466 1.00x
10% 85.62 -0.14 1.024 1.15x 89.81 -0.17 0.383 1.22x
30% 86.01 -0.53 0.869 1.36x 89.63 0.01 0.334 1.40x
50% 88.73 -3.25 0.726 1.63x 89.69 -0.05 0.302 1.54x
70% 98.09 -12.61 0.545 2.17x 92.51 -2.87 0.284 1.64x
90% 122.75 -37.27 0.350 3.38x 102.37 -12.73 0.198 2.35x

We further report the results using single-layer GRU on word-level language modeling

1From https://github.com/NVIDIA/DeepLearningExamples
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tasks as in Table B.2. Using dual-module inference on GRUs expresses the similar quality-

performance trade-off as of LSTMs. Our dual-module method is generally applicable to

both LSTMs and GRUs. We also measured the execution time of GNMT layer with the

hidden size of 1024 and the input size of 2048 in Table B.3.

Table B.3: GNMT BLEU score and execution time (ms). (1024, 2048) indicates the
hidden size is 1024 and the input size is 2048; similarly for (1024, 1024).

Insensitive
ratio

Quality (1024, 1024) (1024, 2048)
BLEU Diff. Time Speedup Time Speedup

Base 24.32 n/a 0.838 1.00x 1.092 1.00x
10% 24.33 0.01 0.679 1.23x 0.962 1.14x
30% 24.18 -0.14 0.541 1.55x 0.803 1.36x
50% 23.73 -0.59 0.480 1.75x 0.642 1.70x
70% 21.92 -2.40 0.360 2.33x 0.479 2.28x
90% 11.77 -12.55 0.243 3.45x 0.307 3.56x

Figure B.3: The distribution of the little module, on the right, exhibits the same as
the original module on the left.

Evaluation on the little module. Using one layer in ResNet-18, we first show the

histogram of feature map values of both the original module and the little module learned

and approximated from the original module. As shown in Figure B.3, the distribution of

the little module exhibits the same as the original module. We then show the visualization

of feature maps of both the original, i.e., the big module, and of the little module in Figure
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Figure B.4: Visualization of the feature maps of the original layer, i.e., the big module
on the left, and of the little module on the right. The little module can approximate
the original layer well.

B.4. From the visualized feature map comparison, we can see that the little module

approximates the original module well and represents the almost same features.

B.3 Comparison with Weight Pruning Method

Table B.4: Comparison of our proposed dual-module inference (DMI), using 50%
insensitive ratio, with weight pruning using one LSTM layer with 1500 units in word
language modeling task on WikiText-2 dataset.

Method PPL w/o DMI PPL w/ DMI
Dense 85.52 86.21

80% weight sparsity 86.42 88.46
90% weight sparsity 88.75 90.96

As shown in Table B.4, we compare our proposed dual-module inference approach

with the automated gradual pruning method [27], which is a popular pruning method

with open implementation2. Firstly, compared with weight pruning, our method achieves

better quality with practical speedup – 1.54x to 1.75x reduction on wall-clock time – on

commodity CPUs while element-wise weight pruning requires specialized hardware to

2From https://github.com/NervanaSystems/distiller
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gain real speedup of computation given irregular sparsity. Moreover, our dual-module

inference method can be further applied on top of pruned models to reduce execution

time by reducing memory access.
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C.1 Benchmark Descriptions and Experiment Con-

figurations

In our experiments, we choose Text Classification, Image Classification and Docu-

ment Retrieval from Long-Range Arena, while excluding Long ListOps and Pathfinder.

This is because the ListOps results in LRA exhibit significant divergence without much

explanation. And for Pathfinder, we are unable to reproduce the baseline results with

the given training configurations from LRA.

C.1.1 Text Classification

The Text Classification task, as introduced in LRA [172], is a binary classification that

uses real-world data to benchmark the ability of the models to deal with compositionality.

IMDb review [181] is selected as the dataset, which is a common choice for document
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classification. Moreover, to make the problem more challenging, this task takes a byte-

level setup instead of the normal character-level setup for language modeling. Therefore,

the model needs to learn from the unsegmented data and make compositional decisions.

For model configuration, we use the original hyperparameters given in the LRA repos-

itory 1. Specifically, the baseline transformer consists of 4 attention layers, each with 4

heads. The hidden dimension size is 256 and the positional FFN layer has a dimension

size of 1024. The learning rate is 0.05 with a weight decay of 0.1. Finally, the baseline

model is trained for 20K steps where the first 8K are warmup steps and the batch size

is 32.

When compared with the dense baseline in Figure 2 of the full paper, the DSA-x%

models are obtained from fine-tuning the dense model for 5K steps with different levels

of sparsity constraints. During fine-tuning, parameters from both original model and the

predictor are updated simultaneously using the combination of cross-entropy loss and

MSE loss. The weight factor λ of the MSE loss is 0.01 and the learning rate is uniformly

set as 0.0002.

When compared with other efficient transformers as shown in Table 1 of the full

paper, we directly train the DSA prediction path from scratch. The overall training step

is still 20K, but we use the first 15K to train the original model and freeze the predictor

module. Therefore, the first 15K steps are the same as training a dense baseline. After

this, we jointly optimize the model and the predictor module during the last 5K steps

with the same MSE loss factor and learning rate as above.

Finally, to limit the training cost, we set the sequence length to be 2000 for the

baseline comparison and sensitivity study, while only set the length to be 4000 when

comparing with other models.

1https://github.com/google-research/long-range-arena
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C.1.2 Document Retrieval

Document Retrieval is a binary classification task that serves as a test to evaluate

how well a model compresses long sequences into representations for similarity-based

matching. This task uses ACL Anthology Network [182] and aims to identify if two

papers have a citation link. Similar to Text Classification, byte-level setup is used to

increase the difficulty of the problem.

We use a uniform sequence length of 4000 in this task. The baseline transformer

consists of 4 attention layers. Each attention layer has 4 heads, 128 hidden dimensions,

and 512 FFN dimensions. The learning rate is 0.05 with a weight decay of 0.1. The

model is trained for 5K steps with Adam optimizer and a batch size of 32. Similar to

the strategy in the Text Classification task, we use fine-tuning for baseline comparison

and training-from-scratch for cross model comparison. The 5K steps are equally divided

into 2.5K for dense training and 2.5K for joint training in the training-from-scratch

experiment. When jointly optimizing all the parameters, the weight factor λ of the MSE

loss is 0.01 and the learning rate is 0.0002.

C.1.3 Image Classification

The final task we include in our evaluation is image classification using CIFAR-

10 [147]. Each 32 × 32 input image is flattened as a sequence of pixels. Therefore,

the sequence length of this task is 1024. The input images are mapped to a single gray-

scale channel where each pixel is represented with an 8-bit integer value. Following the

given settings, the baseline transformer model contains one attention layer with 8 heads,

64 query/key/value hidden dimensions, and 128 FFN dimensions.

There are in total 45,000 training samples and 15,000 validation samples. We train

the model for 200 epochs with a learning rate of 0.0005 and a batch size of 128. Same
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as above, we use finetuning for baseline comparison and training-from-scratch for cross

model comparison. The 200 steps are divided into 150 for dense training and 50 for

joint training in the training-from-scratch experiment. When jointly optimizing all the

parameters, the weight factor λ of the MSE loss is 0.01 and the learning rate is 0.0002.

C.2 Evaluation

In this section we present the evaluation results of DOTA.

C.2.1 Evaluation Methodology

Benchmarks. Our experiments include series of representative Transformer bench-

marks with challenging long-sequence tasks. We first run BERT (large) [166] on question

answering task (QA) using the Stanford Question Answering Dataset (SQuAD) [183]

v1.1 with a sequence length of 384. To scale our evaluation to longer sequences, we fur-

ther select three tasks from Long-Range-Arena [172] (LRA), which is a benchmark suite

tailored for long-sequence modeling workloads using Transformer-based models. Specifi-

cally, the first benchmark performs image classification on CIFAR10, where each image

is processed as a sequence length of 1K. The second task is a text classification problem

built on the IMDb reviews dataset [181] with a sequence length of 2k. The third task

aims to identify if two papers in the ACL Anthology Network [182] contain a citation link.

The papers are modeled as 4k input sequences to the Transformer model. Finally, we use

GPT-2 to evaluate causal language modeling (LM) on Wikitext-103 [3] using sequences

of 4K length.

Software Experiment Methodology. We implement our attention detection mecha-

nism on top of each baseline Transformer, and jointly optimize the model with attention

selection enabled. We study the effectiveness of our method by evaluating the model
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performance in terms of accuracy or perplexity with respect to the retention ratio of the

sparse attention graph. Besides, we further compare DOTA’s accuracy with state-of-the-

art algorithm-hardware co-design (ELSA [105]) and pure software Transformer models

presented in LRA.

Table C.1: Configurations, Power, and Area of DOTA under 22nm Technology and
1GHz Frequency.

Hardware
Module

Configuration Power(mW )Area(mm2)

Lane
4 Lanes

per accelerator
2878.33 2.701

Lane

RMMU 32*16 FX-16 645.98 0.609
Filter Token Paral. = 4 9.13 0.003

MFU
16 Exp, 16 Div

16*16 Adder Tree
60.73 0.060

Accumulator 512 accu/cycle 139.21 0.045
DOTA

(w/o SRAM)
2TOPS 3017.54 2.746

SRAM 2.5MB 0.51(Leakage) 1.690

Hardware Experiment Methodology. The system configuration and consumption

of DOTA is shown in Table C.1. We implement DOTA in RTL, and synthesize it with

Synopsys Design Compiler using TSMC 22nm standard cell library to obtain power and

area statistics. The power and area of SRAM module are simulated by CACTI. We

implement a custom simulator for performance and energy-efficiency evaluation. The

simulator is integrated with the software implementations of the Transformer models.

We further conduct design space exploration to search for optimal system design choices.

Hardware Baselines We quantitatively compare DOTA with NVIDIA V100 GPU and

ELSA, while qualitatively discuss the difference between DOTA and other customized

hardware (See Section 2.5). When comparing with GPU, we scale up DOTA’s hard-

ware resource to have a comparable peak throughput (12 TOPS) as V100 GPU (14
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TFLOPS). The energy consumption of DOTA is also re-simulated for fair comparison.

When comparing with ELSA’s performance, we extend and validate our simulator to sup-

port ELSA’s dataflow. Then, we re-synthesize DOTA with the same data representation,

computation resources and technology node as ELSA to compare the energy-efficiency.
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