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I. Introduction 

The Weinberg-Salam.model l is a relatively simple example of a field 

theory with non-Abelian gauge fields and the Higgs mechanism of spontaneous 

symmetry breaking. Still its non-linearity makes the theory highly 

non~trivial. Abetter understanding, or a complete solution even, of the 

Weinberg-Salam theory is all the more desirable, since the theory appears to 

give an excellent description2 of the electroweak interactions, at least up to 

energies of order of 100 GeV. In this article we deal with the vacuum sector 

of the classical theory, knowledge about which will be a neces~ary ingredient 

fo~our eventual understanding of the quantum theory; 

In a previous article3,by N. Manton and the present author a close 

approximation was found to a static, but unstable, classical solution·in the 

vacuum sector of the Weinberg-Salam theory without the fermionic fields of 

quarks and leptons. Being unstable we found it inappropriate to 'call it a 

soliton and we proposed for this solution,and others of the same kind, the 

word "sphaleron," which is derived from the Greek adjective for "unstable." 

In this article we look for a new sphaleron (S*), which is expected to be more 

complicated (axisymmetric) and heavier than the first sphaleron (S) discussed, 

in Ref. 3, which was spherically symmetric and had amass of order 10 TeV. 

First let us recall how the sphaleron S was discovered, or redisco~ered 

rather, since we learned afterwards that it was found many years ago by 

Dashen, Hasslacher and Neveu. 4 Inspired by work of Taubes 5 in the SU(2) 

Yang-Mills theory with adjoint Higgs, Manton6 constructed in the space of 

classical static configurations of the Weinberg-Salam theory, where the Higgs 

fields are in the fundamental representation, a non-contractible loop passing 

through the unique vacuum solution at zero energy. This non-contractible 
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loop, parametrized by ~ E [O,~], contains information of the behaviour of 

the fields at spatial infinity, which is covered by the standard spherical 

coordinates. and e. For a fixed value of ~ this information is given by a 

SU(2) matrix U(.,e;~). The configurations of the non-contractible loop are at 

infinity pure gauge as described by the matrix U and are interpolated inwards 

by use of two radial functions, one each for the gauge and Higgs fields. The 

U(.,e;~) of Ref. 6 is a specific map from Sl x S2 into SU(2) ~ s3, which can 

be deformed to the homotopically non-trivial map S3 ~ S3 with winding number 

n = 1 .. The argumentS of how this loop leads to a non-trivial solution of the 

field equations runs as follows. The energy of the configurations of the loop 

considered attains its maximum at ~ = ~/2. Choosing the two radial 

functions appropriately it is possible to minimize that maximum energy. Morse 

theory arguments can be used to show that, because the loop in configuration, 

space was non-contractibl~, the configuration obtained from this mini-max 

procedure is a saddle-point of the energy functional and thus a solution of 

the field equations. There is one possible loophole in this argument: the 

non-compactness and infinite dimensionality of the configuration manifold can 

make that the configuration approached by the mini-max procedure is rather 

trivial. An example of this was given in Ref. 7 for the Skyrme model. The 

non-contractible loop of configurations that was considered had the following 

structure: for ~ = 0 the vacuum, for ~ = ~/2 a Skyrmi~n-antiSkyrmionpair 

at a separation d and with a relative isosp~n rotation, and for ~ = ~ the -

vacuum again. For this loop the mini-max procedure never reached a new 

solution; rather the distance d kept on increasing ind~finitely, .always 

reducing the ~ = ~/2 energy a little. Luckily, the Weinberg-Salam theory 
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did not use a' similar way out and the mini-max procedure did reach a new 

solution, i.e. the sphaleron S, for details of which the reader is referred to 

Ref. 3. Clearly the Weinberg-Salam theory is richer than the Skyrme model in 

that it possesses also gauge fields and it is precisely those extra degrees of 

freedom that allow for a solution. The situation is analogous to that of the 

It Hooft-Polyakov magnetic monopole solution,8 where the SU(2) gauge fields 

and the adjoint Higgs are subtly working together to give a solution. 

Physically the role of the sphaleron S is the following. As argued by 

It Hooft9 there are instanton-like configurations in the Weinberg-Salam 

theory, starting at Euclidean time t = -00 from the vacuum and ending at t = 

+00 at the vacuum again, be it in a different gauge. The sphaleronS is just 

the maximum energy configuration at t = 0 or, in physical terms, it lies on 

the top of the energy barrier between the vacua. Our present knowledge3 of S 

allows u~ to extend It Hoof tis approximate treatment, whichwas-vali~ for 

small values'of the Higgs quartic coupling constant ~, to all values of ~. 

The instanton has a winding number n = 1 and an approximate' action A(n = 1) ~ 

, 2 3 
8~/g , where g is the SU(2) coupling constant. With the known sphaleron 

energy E = e 4~v/g, where e = e(~/g2) is a number of order 1 and v is the 

Higgs vacuum expectation value, we can set A(l) = Es~t, which gives the 

timelike extent of the instanton ~t ~ e-'M-1, where M = -21 gv is the mass w w 
of the W boson. We could also start from a configuration lO with n > 1 

instantons on top of each other, which would have an action A(n) ~ n A(l) + 

interaction terms. Assuming ~t not to change significantly, we are thus led 

to expect a tower of sphalerons with increasing energies. We expect them to 

be spherically symmetric, just as the original sphaleron S of Refs. 3 and 4. 
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These other sphalerons can perhaps be found explicitly by doing the mini-max 

procedure for non-contractible loops with winding number n > 1. Of course, 

other configurations of multiinstantons may lead to even more sphalerons. 

These other possible sphalerons are not terribly exciting. Rather we 

will search for a really different sphaleron (S*). Its existence should be 

related to a non-contractible sphere in configuration space, which ~ priori is 

a possibility, since -4(SU(2» = Z2' If S* exists, the cyclicity of this 

homotopy group perhaps implies that it is not directly related to the known 

instantons of the pure gauge theory. Anyway, first we have to establish the 

existence of such a solution S* and see if it is really different. In Section 

II we construct a non-contractible sphere in configuration space and obtain 

from it our tentative ansatz for S*. This ansatz has to be of a quite 

complicated form in order to stand a chance of being correct; specifically it 

is axisymmetric and involves three functions. In Section III we calculate the 

equations of motion for this ansatz. Th~ general equations are certainly 

simplified by our ansatz, but it is not clear if a solution exists to them, 

since there appear two constraint equations on the polar dependence of the 

ansatz functions. Only at large distances are we able to construct an 

approximate solution (Section V). Hence there are two possibilities: either 

the ansatz allows miraculously for a solution of the field equations over all 

space or the ansatz is relevant only asymptotically and the fields in the 

inner region are different. Anyway, the ansatz is useful to calculate in 

Section IV for 1/g2 = 0 an upper bound on the energy ES* of 2.2 ES' Finally, 

in Section V we compare the two ansatze for S* and S, and show that they are 

very similar. In fact, it looks as if S* may correspond to two sphalerons S 

infinitely far apart, which would be rather disappointing and an example of 

• 
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the loophole in the topological argument as discussed above. Still the other 

possiblity remains open that S* is a truly new axisymmetric solution with a 

single core and an energy certainly larger than Es and perhaps close to 2ES' 
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II. Ansatz 

Henceforth we consider the Weinberg-Salam theory with a restricted gauge 

group G = SU(2) instead of the full SU(1)xU(1). Ina previous paper3 it was 

shown that inclusion of the U(l) field does not significantly modify the 

sphaleron S, whose existence is related to ff3(G) being non-trivial and this 

homotopy group is insensitive to the U(l) factor. The reason that the energy, 

for example, changes by a small amount if the U(l) field is included is the 

smallness of the weak mixing angle eW = tan gl/g, where gl and g are the 

coupling constants of the U(l) and SU(2) gauge groups, respectively. So our 

use of a restricted gauge group SU(2) means that we set gl = 0 in the full 

theory. A more drastic amputation is that we shall omit the fermionic fields 

of the quarks and leptons. So we only have non-Abelian gauge fields given by 

an antihermitian potential A (x), which takes values in the Lie algebra of 
~ 

SU(2), together with one doublet of Higgs scalars ~(x), whose self interactions 

result in a vacuum expectation value <01~10> ~ v (~) , wtth v ~ 250 GeV. 

We will look at static configurations only and set A = O. The gauge we 
o 

work in is given by the following two conditions: 1. Vanishing radial 

gauge fields Ar = 0, and 2. A fixed Higgs field at the north pole of the 

sphere at spatial infinity ~(r = w,e = 0) = v (~) , which removes the global 

symmetry leftover by the first condition. Our starting point is the energy 

functiona1 6 



+ 1 ~ (ttt _ 1)2 
4 g2 

1 

- ~2 Tr/atAeatAe + Si:2e atA~atA~ + t2s:n2e F~Fe~}] ( 1 ) 

t where the integral is made dimensionless by scaling the fields and using a 

dimensionless radial distance ~ = gvr. Furthermore there are the following 

definitions of the covariant derivative and the field strength 

F .. _ a.A. - a.A. + [A.,A.] 
lJ 1 J J 1 1 J 

We turn now to the construction of the non-contractible sphere in 

configuration space, which, as mentioned in the Introduction, is described by 

a SU(2) matrix U. We take1' 

A 

U(X;lJ,\I) 
i(\I+~/2)a3 A ~ -i(\I+~/2)a3 

= (s i n lJ + i cos lJ ex· a e ) 

• (sin lJ - i cos lJ X • 3) (2) 

A A A 

where x = (x,y,z) is a unit vector in 3-d space and lJ,\I E [-~/2,~/2] are 

the parameters in configuration space. .As the boundaries of the lJ,\I square 
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are mapped in the same element (the identity). (2) describes in fact a 

non-trivial map 52 x 52 ~ SU(2) ~ S3. where x lies on the spatial sphere 

52 and ~.v are the coordinates of the parameter sphere 52. The map (2) has 
~ 

the property that the north pole x = (0.0.1) is mapped into the same element 1 

for all possible values of ~ and v. This will guarantee that the second 

gauge condition is fulfilled by all configurations of the non-contractible 

sphere. These configurations are given by 

A = 0 
t 

A~ = -g(t.e)a~u U-1 

t = h(t.e)U (~) + (1 _ h(t.e» ( 0 ) 
( . 2 . 2 ) ,max S1n ~.s'n v. 

where the functions f. g and h approach 1 for t ~ m and 0 for t ~ 0 in 

order to assure finite energy (see below) and smoothness at the origin. 
-2 ' 

The pole ~ or v = ±ff/2 of the parameter sphere $ gives the vacuum12 

and on symmetry grounds we expect the maximum energy to be at the pole ~ = 

v = o. Presently we will just assume this and verify it ~ posteriori (see 

(3) 

(11) below) if we find a non-trivial solution $* based on the matrix U(x.O.O). 

We have no interest in the map (2) per set only as a guide to obtain an ansatz 

for $*. This ansatz then is (3) with the matrix U given by 

~ 

U = U(x.O.O) cos 2e - sin 2e cos ~ iox 

+ sin 2e sin ~ ioy (4) 

.. 
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which is of a remarkably simple form and furthermore similar to the one of the 

original sphaleron S (see Section V). In the ansatz (3,4) we had to introduce 

different smoothing functions f and g for the Aa and A~ fields and allow the 

functions f, g and h to depend on a also. These complications are required 

if we try to obtain valid field equations, which we will derive in Section III. 

For this ansatz (3,4) the energy functional (1) becomes 

E = 2~ f dt sin e de d~[4f'2 + 4 cos2e g'2 + 

2 . . 
4 cos a {(g _ 2 cotan 2a (f - g»2 + 4(f + g - 2f9)2} 

~2 

where a prime or circle denotes differentiation with respect to ~ or a, 

( 5) 

respectively. The energy density in (5) is axisymmetric and integration over 

~ gives a factor 4ffV/g in front of the integrals that remain. As (5), 

appropriately, has non-negative terms in the integrand, the finite energy 

requirement must be applied to all terms separately. This leads to the 

following boundary conditions 

1 im(f .[ h) = 0 
~ 

, 
~-+O 

(6a) 

1 i m( f , g, h) = 1 (6b) 
~-+co 
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1 02 
It is interesting that the 4 h term in the integrand of (5) precludes having 

a non-trivial e dependence in separated form h(~,e) = h(~)h(e), since for 

~ ~ m the A term would require that hh~ 1 and the ~2h 2 term that h ~ 
02 - -1 constant c, so that the h term would give h = c 

We now derive the variational equations for ~n extremum of (5). For 

later convenience we introduce a mnemonic notation for these equations; for 

example [6f] stands for the expression that follows from variation of f. 

Furthermore we employ for the gauge field equations a matrix notation that 

saves space and clarifies their structure. The variational equations from (5) 

are then 

CJ-C o -cotan e cos 2e 0 

-cotan e(cos 2e - sin2e). cotan e cos 2e 

- 2
9») C = 0 

2f) 

where we have used the column matrix C defined by 

(7a) 

(7b) 
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o 
g 

c _ 
o 
j 

(f g) 

(f + g - 2fg) 

Finding a solution of (7) is a necessary, but not automatically 

sufficient, condition for the ansatz to be a solution of the complete field 

equations. It may be helpful to have a simple picture in mind, where we 

visualize the configuration space as a two dimensional plane and the ansatz 

some linear section of it. The energy function then maps out a surface above 

this plane. Finding a minimum M in the energy function over the ansatz line, 

i.e. a solution of (7), does not preclude the possibliity that M is somewhere 

at the bottom of a valley with an overall gradient. We really need to find 

the points in the configuration plane, where variations in all directions give 

&E = O. This amounts to solving the field equations, to which we turn in the 

following Section. 



12 

III. Field Equations 

First we derive the general field equations in spherical coordinates and 

in the A~ = 0 gauge by variation of the energy functional (1): 

(8a) 

(8b) 

[M:] 

ita + 4 [~ a o~~ - H.c.] = 0 (8c) 

where 

a = x,y,Z 

O.F .. = a.F .. + [A,.,F'.J.] 
"J "J 

It is a straightforward, but laborious, exercise to insert the ansatz (3,4) 

into (8). Let us first consider the equation (8a) for the Higgs field. After 

some manipulations this equation reduces to 
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[&t] (Sin 28 e i4» + [&t) fos 2& e i~) = 0 

-cos 28 " sin 28 

where the expressions in front of the doublets will be given shortly. A 

moment's thought reveals that the only solution of this equation is [&t] = 

[&i] = O. So we find for our ansatz (3,4) these two equations 

~ 0 0 

[&t] = 2h(1 - f) + h(-f + sin 28 (1 - g) + cotan 8 (g ~ f)} = 0 

For our ansatz the gauge field equations (8bc) give, using the same matrix 

notation as in (7b), 

(9a) 

(9b) 
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/ [&A~] sin2e 0 1 . 2e cos 2e - - s1n 
{ 

2 

[&A~] - 0 1 tan e - 4cotan 2e (1 - 2f) - 2cotan 2e 

\ [&A;] 0 1 tan e + 4tan 2e (1 - 2f) - 2cotan 2e 

o 

4gcotan 2e + + cos 2e (1 - cos 2e ( 1 -2f»} .,. .. 2 
cos 2e S1n e 

+ + cos 2e • 4(1 - 2fl} . 2 S1n e 
2cotan 2e + 2tan 2e(1 - 2g) 

4(1 - 2f) + cos 2e C = 0 
cos 2e 

(10) 

4(1 - 2f) _ 4sin
2
e 

These are the only equations that remain from the original six in (abc), since 

our ansatz gives [&A~] = [&A~] and [&A~] = [&A;] and reduces [&A~] to a 

trivial identity. 

Let us compare the field equations (9,10) with the three equations (7) 

from variations restricted to the ansatz section of configuration space. 

Hearting1y the latter can be reproduced as follows 

[&h] (11 a) 

(11 b) 

(11 c) 

.,J 
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Analogously to (llc) a simple equation [6~] results from the following 

difference 

[6~] _ ([6A~] - [6A~])Sin22e cos 2e = 

= (0 o 4s;n 2e (1 - 2f)/2sin 2e(1 - 2g) 

(12 ) 

which relates the e derivatives of f and g. For future use we simplify [6f] 
o 0 

by eliminating 9 with (12) and [6g] by eliminating f. The resulting equations 

- 2f) o 

o 

-cotan e{(cos 2e - sin2e)(l - 2g) + 2 cos 2e(1 - 2f)} 

1 - cos 2e cotan e(l - 2g) 2 

o 

2 
cos 2e(1 + 
sin2e 

2 

tcos22e)(1 - 2f) 

4 
-(cos 2e +4cos 2e + cos 2e)(1 

sin2e 
- 2g) - cos 2e( 1 

. 2 Sln e 

4cos 2e(l - 2g)( 1 - 2f) 1 2) - - cos 2 
C = 0 

4COS 2e(l - 2g)( 1 - 2f) + cos 2e 

- 2f) 

(13) 
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involve only derivatives of f in [6f] and of g in [6g]. 

We conclude that the ansatz (3,4) is the spha1eron S* provided a 

non-trivial solution to the three equations (7) exists, which simultaneously 

solves the two constraint equations (9b,12) on their e dependence. Whether 

or not such a solution exists we do not know presently. Following Tyupkin et 

a1. 13 we could introduce a minimizing sequence {(fn,gn,hn)ln E Z+, En+l < 

En < ~). But to seek a general existence proof for non-trivial functions 

(fo,go,ho)' so that E(fo,go,ho) ~ lim E(fn,gn,hn) = inf E(f,g,h), does not 
n~ . 

seem worthwhile, since we need to know the specific form of (fo,go,ho) in 

order to check the constraint equations. Furthermore, if f ~ g the term with 

g(f - g) in (5) could be an obstacle for constructing the norm of the Hilbert 

space of the g functions, which would be needed in the proof. 13 It appears 

that the only way to prove existence of a non-trivial solution is by 

construction. In Section V we will philosophize on the possible form of S*, 

but we close this Section by showing that, asymptotically at least, there does 

exist a solution to the equations of motion of our ansatz. 

For simplicity we take 0
2 = 2A/g2 < 1. As ~ ~ ~ the [6A~] equations 

of (10) reduce to a single equation 

the [6Ae] equation gives the same one with 9 replaced by f, and the [6t] 

equation (9a) simplifies to 

So asymptotically we have the solution 

(14a) 

(14b) 
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Note that if we would have had ~ ~ 1 the tail of h ~ould still go as e-~, 

because of the term -4h(1 + cos 2e)(1 - f)2 in (9a), which would not be 

1· . b 1 14 A t t' 11 t k r.l t b t t th t h neg 191 e. symp 0 lca y we can a e IJ 0 e a cons an ,so a -

h(~). The e dependence of ~ follows from the one equation [~i] (9b) that 

remains 

~(e) 
1 cos 2e 

e2 

with a another constant. The values of a and 13 are to be determined from 

matching with the inside region. As far as ~ is concerned (15c) is only 

( 15a) 

(1 5b) 

(15c) 

approximate, since, for example, it does not solve (12), and we conclude that 

O(~-2) terms in B and ~ of (15ab), carrying e dependence, are crucial for a 

complete solution. 
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IV. Energy 

In this Section we obtain an upper bound on the energy of the new 

spha1eron S*. Based on the topological argument detailed in Sections I and II 

we expect such a solution S* to exist, but it may be that our ansatz (3,4) is 

only correct asymptotically and that the fields of S* in the inner region are 

excited away from the ansatz. Anyway, we can use the energy functional (5) to 

get an upper bound on Es*, but solving the variational equations (7) is 

difficult, even numerically. Since the energy density in (5) only involves e 

explicitly for the terms containing the function g, we may get a somewhat less 

sharp upper bound on the energy by restricting f, g and h to radial 

functions. This is so, provided the configuration with radial f, g and h is 

close enough to the true solution S*, or, to use the metaphoric language of 

the end of Section II, this radial configuration should belong to the same 

valley where S* is the lowest point, see Fig. 1. Henceforth we will assume 

this to be the case. 

Setting f = g for simplicity, the energy functional (5) becomes for 

radial functions f and h 

where a = 6 = 8/3, ~ = 16/3 and y = £ = 1. This energy is minimal for f 

and h that solve (for appropriate boundary conditions) 

2 II 

a~ f 

( 16) 

( 17a) 

( 17b) 

". 
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If all constants a ... £ would have equaled 1, the equations (16)(17) would 

have be~n precisely those3 of th~ original sphaleron S. Yet this apparently 

minor modificati~n leads to different behaviour of the functions near the 

origin, 

~ « I ( 18) 

where nand m solve the equationsn2 -n - 2a/~ = 0 and m2 + m - 2&/y = 0, so 

that in the' present case m = (,/201 - 3)/6 ~ 1.86 and n = (1 + ",/17)/2 ~ 

2.56. The constants E and Q in (18) are determined by the boundary 

condition at ~ = CXI. An upper bound on (16) can be calculated analytically 

if we use for the functions f and h the form (18) for ~ < E, where we set 

E = Q for simplicity, and f = h = 1 for ~ ~ E. Inserting the numerical 

values for nand m the energy is then 

E = 4~gV [19.17/E + 0.4704E + 0.03291 ~ E3] 
l 

. (19) 

For the Higgs couplings15 ~/g2 = 0 and 1, this energy (for the rest of this 

section we use units of 4~v/g ~ 5.0 TeV) has a minimum value ~6.0 and 8.5 at 

E ~ 6.4 and 3.4, respectively. To improve on these analytic bounds we have 

solved (17) numerically and found 16 E(~/g2 = 0) = 3.31 and E(~/g2 = 1) ~ 5, 

which, as said above, are upper bounds on ES*(~/92). These bounds may be 

compared with the energies 3 of the original sphaleron ES(~/92 = 0) = 1;52 

and ES(~/g2 = 1) = 2.07. In the next Section we will continue the comparison 

further. 
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v. Discussion 

Based on topological considerations 5 in configuration space, we expect 

the existence of a new spha1eron solution S*. The old spha1eron S was arrived 

at by the same topological argument. In that case the ansatz solving the 

equations of motion was found, and the spha1eron S turned out to be old 

indeed, since the ansatz was already written up4 over 10 years ago. For the 

new spha1eron S* the situation is less clear for the moment. As discussed at 

the end of Section III, the problem is that for the ansatz proposed in this 

article we cannot be sure that the resulting equations of motion have a 

non-trivial solution. Even if there were no such solution, our ansatz would 

have some value asymptotically and the following picture for S* would hold. 
>E For ~ > E we would insert our approximate solution (15) in (5) to get ES*' 

whereas for the inner region E~: would have a structure simi lar as (19) . We 

expect E to have such a 
<::: 

value that ES;' which contains a E-l piece, would 

balance with E~;, whose dominant pieces go as pos iti ve powers of E. So S* 

would be expected to ha ve on its outside (~ > E) scalar fields and gauge 

fields close to our ansatz, while for the inside region the fields could 

differ appreciably from those of our ansatz. 

Little more can be said generally, so henceforth we assume the ansatz to 

be correct for the inside region also. After all, working our ansatz through 

the field equations (8) some quite miraculous cancellations and 

simplifications occurred, thereby reducing the eight original equations (8) to 

precisely the ones (7) that followed from variations within the ansatz, and 

two additional equations (9b,12), that concern only the polar dependence of 

the functions involved. Furthermore, we will show in a moment that the 

present ansatz is similar to the one for the old spha1eron S, which gave a 

true solution. 
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The ansatz for S is the same as (3), but with f = g and h radial 

functions only and with U given by17 _ 

US - uS c - (cos a, sin a, sin a) 1 

~ ia x 

sin ~ ia y 

(20) 

where we have introduced a 3-column c of 2 x 2 matrices. Remarkably the north 

pole (~ = v = 0) of our map (2) gives U in (4) with u = (cos 2a, sin 2a, 

sin 2a), which is just uS(2a). This apparently minor difference of U compared 

to US reduces the spherical symmetry of S to an axial symmetry; see the 

explicit cos 2a and cotan 2a terms in (5). So we may think of S* as somehow 

doubling S, but in what sense precisely? There appear to be two 

alternatives: 1. S* is just a configuration with two sphalerons S infinitely 

far apart, or 2. S* is a truly new axisymmetric solution and may perhaps be 

viewed as an excitation of S or as the binding together of 2 SiS. 

Let us start with an heuristic picture of the first possibility. For 

simplicity we neglect the gauge fie1ds in this picture (but see below), which 

may be reasonable for small values of A, cf. (15ab). We look at the behaviour 

of the asymptotic Higgs field t ~ U (~) = uc (~) , where the column c of 

matrices was defined in (20). Consider the following configuration of two 

physically identical sphalerons at a large separation R: Sl centered at 

(0,0,R/2) with U given by uS of (20) and S2 centered at (0,R,R/2) with U given 

by -US and being flipped upside down. Note that this configuration complies 

with the gauge condition t = 1 (~) at (x,y,+oo). Now we let an invisible hand 

push S2 to the position (0,0,-R/2) and flip it upside down once more. In the 

" 

I 

I 
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vertical half plane through the z-axis and at fixed azimuth ~ the resulting 

configuration of the Higgs field is then given schematically by the following 

values for u (abbreviating r == Vl72). 

(1,0,0) 

r(l ,1 ,1) 

Sl (0,1,1) 

r( -1 , 1 , 1 ) 

(-1,0,0) (21 ) 

(-1,0,0) 

r(-l,-l,-l ) 

S2 (0,-1,-1) 

r(l,-1 ,-1) 

(1,0,0) 

In the same half plane S* with u given by (4) has 

(1,0,0) 

r(1,l,l) 

(0,1,1) 

r( -1 , 1 , 1 ) 

S* (-1,0,0) (22) 

r(-1,-l,-1) 

(0,-1,-1) 

r(1,-l,-1) 

(1,0,0) 
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Pulling (-1,0,0) and its neighbours in (21) outwards, which does not cost 

energy since far outside the centers of S1 and S2 we have vacuum, we get the 

same sequence (22) as for S*. This argument shows that S* may be related to, 

or the same as, a configuration of two S's. But our neglect of the gauge 

fields, which certainly is doubtful for large values of A, makes the above 

argument rather shaky. Only a complete solution for our ansatz, or a better 

one, can chose between the following options: 1. S* is just a configuration 

of two sphalerons S infinitely far apart, 2. S* has two energy cores and is 

the binding together of two S's, and 3. S* has a single energy core. The 

2 first possibliity could be ruled out if ES* < 2ES(=3.04 4.v/g for A/g = 

0). Disappointingly, the upper bound on ES* of 3.3l4.v/g for A/g2 = 0, 

which we derived in Section IV, does not decide the matter. Still, this bound 

is already so close to 2ES to make the second or third possiblity quite real, 

that S* can smoothly distribute its energy density and make its total energy 

approximately 2ES or less. Remark that it is possible, in principle, that 

option 3 has an energy somewhat above 2ES' but of course less than the bound 

of Section IV (hence the situation would be just as the full curve in Fig. 1, 

but with ES* raised a little). Furthermore, we would like to mention that our 

ansatz really aims at a new solution (options 2 or 3), since it does not have 

vacuum fields at the origin, whereas (21) has. Should the first option be 

realized, and no new solution is found, that would be an example of the 

loophole in the topological argument as discussed in the Introduction. 

To summarize, a topological argument in the space of classical 

configuration of the Weinberg-Salam theory leads us to expect a new 

saddle-point solution S*, although a loophole in the argument could make that 

S* is rather trivial. We have presented an ansatz (3,4) for a new sphaleron 



24 

S*, which has some promising features, but in the end its success is unclear, 

since the resulting equations of motion appear to be overdetermined. It seems 

that only a numerical study of these equations, which would be rather 

difficult, could establish whether or not a non-trivial solution exists. So, 

for the moment, we do not have a definite answer to the question contained in 

the title of this article. 
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L-__ --l... ___ ...L-__ ~~-----I~ Configuration 
Radial S* Space 2S 
ansatz 

Schematic view of a possible situation (dashed curve) which does not 
arise we hope. Rather we assume (full curve) that our ansatz with 
radial functions f,g,h is close enough to S*, so that ES* 5 E 
(radial ansatz). Note that in drawing this figure we have assumed 
that there does exist a different solution, i.e. S*, in addition to 
the one of two sphalerons S infinitely far apart (25). 
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