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Non-iterative Method for Constructing Valence

Antibonding Molecular Orbitals and a

Molecule-adapted Minimum Basis.

Abdulrahman Aldossary and Martin Head-Gordon∗

Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of

California, Berkeley CA 94720, USA

E-mail: mhg@cchem.berkeley.edu

Abstract

While bonding molecular orbitals exhibit constructive interference relative to atomic

orbitals, antibonding orbitals show destructive interference. When full localization of

occupied orbitals into bonds is possible, bonding and antibonding orbitals exist in 1:1

correspondence with each other. Antibonding orbitals play an important role in chem-

istry because they are frontier orbitals that determine orbital interactions, as well as

much of the response of the bonding orbital to perturbations. In this work, we present

an efficient method to construct antibonding orbitals by finding the orbital that yields

the maximum opposite spin pair correlation amplitude in second order perturbation

theory (AB2) and compare it with other techniques with increasing the size of the basis

set. We conclude the AB2 antibonding orbitals are a more robust alternative to the

Sano orbitals as initial guesses for valence bond calculations, due to having a useful

basis set limit. The AB2 orbitals are also useful for efficiently constructing an active

space, and work as good initial guesses for valence excited states. In addition, when

combined with the localized occupied orbitals, and relocalized, the result is a set of

molecule-adapted minimal basis functions that is built without any reference to atomic

orbitals of the free atom. As examples, they are applied to population analysis of

halogenated methane derivatives, H-Be-Cl, and SF6 where they show some advantages

relative to good alternative methods.

1



1 Introduction

Virtual orbitals are important in chemistry as they play a central role in molecular orbital

theory. From a computational standpoint, orbital mixing between occupieds and virtuals

determines the optimal occupied orbitals in mean-field Hartree-Fock theory1–3 and Kohn-

Sham density functional theory.4–7 In wavefunction theory, electron correlation is typically

described by amplitudes such as the pair correlations describing the simultaneous promotion

of two electrons from occupied to virtual orbitals. The virtual orbitals span the unoccupied

space, and the choice of representation is important. Canonical virtual orbitals are delo-

calized levels that are appropriate for electron attachment. Localized virtuals, such as the

redundant non-orthogonal basis of atomic orbitals projected into the virtual space,8,9 permit

development of efficient local correlation methods, because the amplitude tensors describing

correlation become sparse.10 Other prescriptions for localized orthogonal virtuals exist,11–13

as well as proposals to form sets of virtuals that are specifically optimized for correlations

that involve a given occupied level, as will be discussed below.

The virtual orbitals span the entire unoccupied space, which can be contrasted with

the intuitive notion of antibonding orbitals that exist in 1:1 correspondence with bonding

orbitals. The 1:1 correspondence is evident from constructive and destructive interference of

a pair of 1s-type functions on two hydrogen atoms in H2:

σ = N (1sA + 1sB) (1)

σ? = N? (1sA − 1sB) (2)

Antibonding orbitals themselves play a central role in describing chemical reactivity14–19 of

one molecule with another through donor-acceptor interactions between a high-lying occu-

pied of one species with a low-lying antibonding orbital of the other. Frontier orbital theory

is constructed on these ideas. Antibonding orbitals also play an important role in describing

strong electron correlations. A simple example is the stretching of the H-H bond which leads,

in a minimal basis, to a strong increases in the amplitude for σσ̄ → σ?σ̄? excitation which

breaks the bond.

While the antibonding orbitals are intuitive,16–18,20 it is nonetheless not routine to ex-

tract them from modern quantum chemistry calculations performed in extended basis sets,

which return canonical orbitals. By contrast, in a minimal basis description of hydrocarbons,

the space of antibonding orbitals is naturally spanned by the canonical virtual orbitals. In

larger basis sets however, different methods have been developed to extract the antibonding

orbitals, often by relying on projection back onto some chosen minimal basis,13,21–25 typi-
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cally a tabulated one for a specific free-atom Hartree-Fock energy eigenstate. For example,

Schmidt et. al. found antibonding orbitals by performing an SVD of the overlap between

the virtual orbitals and a minimal basis to produce valence virtual orbitals.13 Some methods

have been developed to produce a minimal basis specifically adapted to a molecular envi-

ronment,26,27 but those are non-linear optimization procedures that are often iterative and

costly. One famous method that does not rely on a reference minimal basis is the Natural

Bond Orbital (NBO) procedure,14,15 where the density matrix coupling between multiple

atom-tagged orbitals is utilized to produce bonding and anti-bonding orbitals. However,

atom tagging of basis functions plays a critical role in the NBO procedure – in fact, the

standard NBO method is specific to atom-centered orbital (AO) basis calculations. Few

methods cut the umbilical cord to the minimal basis in producing antibonding orbitals.

Aside from the Sano antibonding orbitals28 (discussed below), Foster and Boys29 suggested

oscillator orbitals which are virtual orbitals with the maximum dipole from localized occupied

orbitals.

Local correlation has been intensively studied,8,9,25,30–38 leading to the conclusion that

dynamic correlation can be well approximated using domains of localized virtual orbitals

that are in the same spatial region as a localized occupied orbital.8,9 This reduces the 4th

rank tensor of pair correlation amplitudes to an asymptotically linear number of significant

elements. Nevertheless, all virtual orbitals are required for post-SCF methods such as coupled

cluster theory that recover dynamic correlation, rather than just the much smaller set of

valence virtual orbitals. By contrast, static or strong correlation, resides mostly in the valence

virtuals (i.e. the antibonding orbitals). Thus complete active space (CAS) methods that seek

to describe strong correlation require only a description of the valence virtuals. Methods in

this class include CASSCF,2,39–42 spin-coupled valence bond (VB),43–46 and approximations

such as generalized valence bond (GVB),47 coupled cluster valence bond (CCVB),48–50 etc.

CAS, GVB and CCVB methods thus need an initial guess for the antibonding orbitals.

We do note that the orbitals associated with key amplitudes for strong correlation are not

necessarily spatially localized.51–54

One method used to obtain initial guess antibonding orbitals is the so-called Sano proce-

dure.28 In brief, after localizing a set of occupied orbitals using standard methods,12,55–57 the

Sano procedure finds the virtual orbital that has maximum exchange interaction with each

given localized occupied orbital. The idea of maximizing exchange is very old58,59 and comes

from its predecessor, the modified virtual orbitals60,61 (note that modified virtual orbitals

have been since used to refer to any non-canonical set of virtual orbitals62). The result-

ing orbitals are symmetrically orthogonalized to yield a set of valence antibonding orbitals.

This method has worked quite well for GVB-PP and CCVB calculations in moderately sized
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basis sets.49–51,63,64 In this work we will show that the Sano procedure shows undesirable

behavior with increasing the size of the AO basis set. This motivates the need for a better

behaved alternative. We suggest that finding the antibonding orbital which gives the largest

first order perturbation amplitude for exciting an electron pair from a given bonding orbital

is a suitable alternative. A range of numerical results confirm this to be the case. These

antibonding orbitals can be viewed as a specific instance of orbital specific virtuals.30–32

2 Theory

2.1 Defining the set of antibonding orbitals

Solving the mean field Hartree-Fock (HF) equation self consistently gives the lowest energy

single Slater determinant electronic wave function. To solve the many-body problem, one

needs to include the missing correlation energy.65 Second order Møller-Plesset (MP2) per-

turbation theory66,67 offers a useful and computationally inexpensive approximation to treat

the correlation yielding the following expression in the case of restricted HF orbitals:

E(2) =
occ∑
ij

virt∑
ab

τabij (ia|jb) (3)

where

τabij =
2(ia|jb)− (ib|ja)

εi + εj − εa − εb
(4)

This expression folds together contributions from the correlation of two electrons of opposite

spin (OS), with amplitudes:

tabij =
(ia|jb)

εi + εj − εa − εb
(5)

together with the contribution of correlations of electrons with the same spin. The two-

electron repulsion integrals (ERIs) over spatial orbitals describing the interaction of each

occupied with each virtual are:

(ia|jb) =

∫
dr1φi(r1)φa(r1)

∫
dr2r

−1
12 φj(r2)φb(r2) (6)

Let us collect the ERIs associated with occupied orbital i into the symmetric matrix Ki,

where:

Ki
ab = (ia|ib) (7)

Ki is positive semi-definite, and thus the eigenvector belonging to its largest eigenvalue will
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correspond to the virtual level with the strongest exchange interaction with occupied level

i. That is the Sano prescription28 for finding the antibonding orbital associated with i.

We can likewise define a matrix of second order pair correlation amplitudes, Ti, associated

with a given occupied orbital:

T iab = tabii (8)

This matrix is negative semi-definite since the denominators are negative for the ground

state determinant. We can therefore find the largest OS pair-correlation amplitude as the

lowest eigenvalue, timax of Ti, and the associated virtual orbital, |i∗〉 =
∑

a |a〉 cai∗ is the

eigenvector, with expansion coefficients cai∗ in the original virtual basis:∑
b

T iabcbi∗ = timaxcai∗ (9)

Upon repeating for each occupied level, most naturally in a localized representation,

and using similar arguments to Kapuy’s zeroth in the Fock and 2nd order in correlation

approximation,68,69 we suggest that this is an appropriate non-iterative way to find a set of

antibonding orbitals in 1:1 correspondence with the bonding orbitals. This approach may

be contrasted with Sano’s suggestion to obtain the virtual orbital with maximum repulsion

from the bonding orbital by solving the eigenvalue problem for each orbital using Ki rather

than Ti. Inclusion of orbital denominators in Eq. 9 provides a clear physical meaning of the

antibonding orbital as having strongest pair correlation amplitude with its parent bonding

orbital. As will be demonstrated numerically later, this property also dramatically improves

basis set convergence relative to the Sano definition.

We will refer to these virtual orbitals as “second order antibonding” (AB2) MOs to

emphasize their second order origins, and their 1:1 correspondence with bonding MOs. In

terms of existing literature, the AB2s are directly related to the “orbital-specific virtual”

(OSV) orbitals30,31 that are sometimes used to evaluate the correlation energy. Each AB2

orbital is the most important OSV for a given localized bonding orbital. Of course the

reason for selecting the amplitudes associated with MP2 is computational efficiency. The

exact limit of this procedure would be to diagonalize the corresponding exact (i.e. from Full

CI) doubles amplitudes; T iab, via Eq. 9.

A closely related alternative that has some advantages over Eq. 9 above is to define the

space of valence antibonding orbitals from the virtual-virtual block of the MP2 one-particle

density matrix:70,71

Pab =
∑
ijc

tacij t
bc
ij (10)

Upon diagonalizing, the (M − O) eigenvectors with largest occupation numbers span the

5



valence antibonding orbital space, and, together with the occupied space, complete the span

of a molecule-adapted minimal basis. Localization of these valence virtual orbitals will then

yield an alternative to the localized virtuals above. The advantage of this approach is for

cases where there is no simple 1:1 mapping between bonding and antibonding orbitals, as

discussed more later.

The virtual orbitals obtained this way are the valence subset of the “frozen natural

orbitals” (FNO),70,71 and we emphasize that they are not generally localized in contrast to

the AB2 MOs. They are close to the virtual natural orbitals associated with PMP2 as defined

by the gradient of the MP2 energy,72–74 with the caveat that only the virtual-virtual block

is diagonalized.

2.2 Population analysis using the effective minimal basis

Finding a suitable set of antibonding orbitals provides the missing part of the valence space

not spanned by the occupied orbitals. Thus the union of the occupied space and the space

of antibonding orbitals spans the space of an effective minimal basis. It is well accepted

that full valence CASSCF wavefunction is spanned by an effective minimal basis within the

molecule for this reason.39,40 Accordingly, localizing the union of the occupied orbitals with

the antibonding orbitals reveals a set of molecule-adapted atomic orbitals (MAOs):75,76

CMAO = {Cnon-bonding} ⊕ {Localize(Cbonding ⊕Cantibonding)} (11)

For a given pair of well-localized bonding and antibonding orbitals (say σ and σ∗), this

procedure amounts to inverting Eqs. 2 to discover the corresponding MAOs even though we

may be using a very extended basis, or even a non-atom-centered basis, such as plane waves

or a real-space grid, to perform the calculations.

The resulting MAOs, χ are thus expressed in terms of the AO’s, ω, as χ = ωCMAO . The

MAOs are orthogonal, and typically localize onto atoms. The MAOs exactly span the space

of the occupied orbitals, and can be used for population analysis among other things.26,40,77–83

Let us denote p as an MAO label for χp, which is centered at rp = 〈χp|r|χp〉. Using A,B as

atom labels, and given that the density matrix in the MAO basis is PMAO = C†MAOSPSCMAO,

one can make a population analysis as follows:

p ∈ A ⇐⇒ |rp −RA| = min
B

(|rp −RB|) (12)

QA = ZA −
∑
p∈A

PMAO
pp (13)
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where QA and ZA are the atomic charge and the nuclear charge, respectively. Such a pop-

ulation analysis has no dependence on atom-tagging of the underlying basis, and does not

rely upon a reference minimal basis. Therefore it generalizes nicely to plane wave basis and

real space methods. If the orbitals are unrestricted, we construct antibonding pairs and the

MAOs for the alpha and beta spin spaces independently.

This approach to generating an MAO representation does have some limitations. First,

it assumes that there is a 1:1 mapping between bonding and antibonding orbitals. One class

of exceptions can be found in electron deficient molecules (e.g. LiH will not recover 2p-like

orbitals on Li, and BH3 will not recover a 2pz orbital on B). Such species can be said to

have “virtual lone pairs”, whose identification is a problem that we shall not address here.

A second class of exceptions lie in species such as cyclopentadiene anion, where there are 3

semi-localized π occupied orbitals, but the valence space only admits 2 antibonding orbitals.

Thirdly, in symmetric systems with multiple Lewis structures (e.g. C6H6), the MAOs will

derive from localized bond and antibonding orbitals corresponding to a single Lewis structure

and may not reflect the indistinguishability of the atoms. Broadly, we can say that this MAO

approach is readily applicable to neutral molecules with a single dominant Lewis structure.

2.3 Implementation details

Computational efficiency is very important for quantum chemistry in order treat molecules

that are as large as possible for given computational resources (computer speed, memory

size, etc). Our AB2 implementation uses exact 4-center integrals in a basis of Gaussian-type

atomic orbitals (other alternatives such as using auxiliary basis expansions can also be readily

implemented). Each step with its computational complexity is shown in Fig. 1. Note that

for the figure and the discussion here we use O, V , and N for the number of bonding orbitals,

virtual orbitals, and AO basis functions, respectively. We start by making a pseudo-density

Pi = CiC
†
i for each bonding orbital, i. To generate the two-electron integrals (µν|λσ), Q-

Chem84 only generates significant µν (i.e. AO basis) pairs to some target numerical cutoff,

yielding a total that we term as (NN)cut. (NN)cut scales quadratically (i.e. (NN)cut ≈ N2)

for small systems but approaches linear scaling (i.e. (NN)cut ∝ N) in the limit of large

system size. The integrals are made and contracted on-the-fly with the bonding orbitals’

pseudo-densities to make bonding-specific exchange integrals Ki
µν with compute effort scaling

as O(O(NN)2cut). The Ki
µν matrices are then transformed into the virtual space as Ki

ab in

Eq. 7 with compute cost scaling as O(OV N2+OV 2N). Asymptotically this is the dominant

step in this method unless more careful thresholding is considered.85 Then, we divide by the

appropriate denominator to get T iab in Eq. 8 (with O(OV 2) effort). Lastly, we diagonalize
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Ti for each bonding orbital to get the AB2 antibonding orbitals as in Eq. 9 with O(OV 3)

effort. Note that the last step can in principle be made O(OV 2) since we are only solving for

the eigenvector with the largest amplitude in each matrix. We can contrast this procedure

with the modified FNO approach which has a dominant computational step that scales as

the 5th power of molecule size: constructing Pab in Eq. 10 with complexity of O(O2V 3).

Figure 1: A chart illustrating the mathematical steps needed to construct AB2 orbitals with
the appropriate computational complexity for each step indicated. Here, O, V , N , and
(NN)cut refer to the number of occupied orbitals, virtual orbitals, AO basis functions, and
significant AO pairs, respectively.

One reason for the efficiency of the AB2 approach compared to FNO comes from focusing

on the bonding orbitals one at a time rather than the whole occupied space at once. It is then

important to start by localizing the occupied space, which is known to be a cubic scaling

iterative procedure for e.g. the Boys and Pipek-Mezey localization measures.86,87 Then,

one must also distinguish between localized orbitals with different character: specifically

core, bonding, and non-bonding, e.g. lone pairs. Our implementation uses an automatic

bonding detection option that runs before AB2. The detection process is simply determined

by Pipek’s delocalization measure88 on Mulliken charges, where measures amounting to

1 indicate an orbital localized on an atom (core or non-bonding) and measures around 2

correspond to orbitals split between two atoms.

2.4 Computational details

All methods discussed here were implemented in a developer version of Q-Chem 5.84 The

geometries used for molecular calculations were optimized at the ωB97X-D/def2-TZVPD

level of theory. All geometries are included in the Supplementary Material (SI).
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3 Results and discussion

We will compare different approaches to generating effective antibonding orbitals: in par-

ticular we are interested in whether the second order antibonding (AB2) MOs significantly

improve upon the Sano antibonding orbitals, as measured by usage-relevant metrics obtained

from a set of numerical experiments. We will first examine orbital plots, orbital energies,

and orbital variances. We then test the applicability of Sano and AB2 MOs to several

valence correlation methods: coupled cluster valence bond (CCVB),49,50 complete active

space configuration interaction (CASCI),89–92 and complete active space self-consistent field

(CASSCF).39–42 Next, we look into their uses for describing valence excited states. For ba-

sis set, we are using the Dunning basis set family93 and Ahlrichs.94 These are available in

Q-Chem 5.3 with an automated detection of bonding orbitals.

3.1 Orbitals, orbital Energy, and orbital variance

We start by looking at the σ∗ orbital of H2, as shown in Fig. 2, evaluated by the Sano

procedure, the AB2 approach, and CAS(2,2) (performed as 1-pair perfect pairing). It is

visually clear that the Sano σ∗ orbital is contracting as the basis set is improved. Fig. 3

displays the orbital energy (diagonal matrix element of the Fock operator) and the variance

(〈r2〉 − 〈r〉2) of the σ bonding orbital, and the Sano and AB2 models of the antibonding

orbital. The variance confirms that the size of the Sano σ∗-orbital contracts with basis size,

while its orbital energy increases (reflecting increasing electron confinement) unsatisfactorily.

By contrast the behavior of the AB2 orbital is very close to the bonding orbital, with pleasing

stability in both energy and variance as the basis set is converged towards completeness.

The stark difference is due to Sano orbitals including high energy orbitals to maximize

the exchange interaction whereas AB2 biases against those higher energy orbitals with the

denominator penalty in Eq. 8.
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Figure 2: Comparison of σ∗ orbitals predicted by Sano, AB2, and CCVB in H2 with increas-
ing size of the basis set. For this problem, CCVB is identical with (2,2) CASSCF. Orbitals
were plotted with 10 contour isovalues logarithmically spaced [0.1,10], 5 for each phase.
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Figure 3: Comparison of orbital energy (diagonal matrix element of the Fock operator) for σ,
Sano, and AB2 orbitals for H2 with increasing size of the basis set. Bottom graph compares
the variance.

Next we look into C2H4, where the localization scheme of Boys produces mixed σ − π
orbitals (sometimes called banana bonds), while Pipek-Mezey predicts separate σ and π

orbitals. We will therefore use Pipek-Mezey orbitals whenever we encounter π orbitals.

Inspecting the σ C-C bond in C2H4 in Fig. 4 shows that the shape of the occupied Pipek-

Mezey and converged CCVB bonding orbitals both do not change much upon increasing the

size of the basis set. By contrast, when looking at σ∗ in Fig. 4 we see even poorer behaviour

of the Sano C-C antibonding orbital as a function of basis set size than we did for H2. This

is confirmed in Fig. 5 where we compare the orbital energy and the orbital variance of the

bonding and the antibonding C-C σ orbital in C2H4. The Sano σ∗ orbital does not converge

with the size of the basis set, with the variance decreasing, and the energy increasing. By

contrast, the AB2 σ∗ orbital converges rapidly both in terms of energy and variance for

similar reasons to before.
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Figure 4: Comparison of σ orbitals predicted by Pipek-Mezey localization with those found
by converging CCVB (top row) and σ∗ orbitals predicted by Sano, AB2, and CCVB (bottom
row) in C2H4 with increasing size of the basis set. Orbitals were plotted with 10 contour
isovalues logarithmically spaced [0.1,10], 5 for each phase.

In Fig. 5 we compare the orbital energy and the orbital variance of the bonding and the

antibonding orbitals for the C-C π in C2H4. The shortcomings of Sano seem to be much less

severe in π∗ orbitals. We believe this is due to the diffuse nature of the π orbitals making

the maximum exchange, thus spatial locality, sufficient to describe the π∗. However, we can

still see that the orbital energy and variance do not converge for Sano while they do for AB2,

and converge to drastically different orbital energy and orbital variance.

12



Figure 5: Comparison of orbital energy (diagonal matrix element of the Fock operator) for
the C-C σ orbital with the σ∗ (left) and π orbital with the π∗ (right) predicted by Sano and
AB2 in C2H4 with increasing the size of the basis set. It can be seen that Sano orbitals do
not converge with increasing the basis set cardinality whereas AB2 converges much quicker
especially for the σ orbital. Bottom graphs compare the spatial variance for the same orbitals
where Sano contracts orbitals further with increasing the basis set, less so for the π orbital.

The quantitative advantage of the AB2 antibonding orbitals relative to the Sano orbitals

seen so far can also become qualitative advantages in systems with more complex electronic

structure. One such example is Cu2, which, considering that the valence state of Cu can be

taken as 3d104s1, is isoelectronic to H2. The σ orbital (HOMO) of Cu2 is shown in the upper

panel of Fig. 6, along with the optimized correlating orbital from CCVB, as well as the Sano

and AB2 antibonding orbitals. Maximizing exchange results in a Sano antibonding orbital

that resembles an empty π-bond between the two metals. By contrast, the AB2 and CCVB

orbitals look qualitatively identical.
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Figure 6: Comparison of the shape of the orbitals in Cu2 where the σ bond is used to produce
Sano and AB2 antibonding orbitals. While the AB2 method produces very similar orbitals
to CCVB, the Sano approach fails to give a qualitatively correct antibonding orbital.

3.2 CCVB iterations

The CCVB method is a simple low-scaling approximation49–51 to exponentially scaling spin-

coupled valence bond theory that can separate a system of 2n electrons into fragments with

spin purity, provided that UHF can also reach the dissociation limit. One price to be paid for

these advantages is a challenging orbital optimization problem: the CCVB orbitals have no

invariances to rotations within the active space, in contrast to CASSCF. Hence a good initial

guess is very important. Sano orbitals28 have been commonly as a starting guess for valence

bond methods51,95 such as CCVB due to their resemblance to antibonding orbitals. For

simple alkanes, we examine how many iterations are needed to converge a CCVB calculation

with Sano and compare with AB2 shown in Fig. 7 with increasing the molecule size and

the basis set size (using the Dunning cc-pVXZ sequence of basis sets93). Since the double-

zeta basis set does not involve many high energy orbitals, both methods converge almost at

the same speed. Upon increasing the size of the basis set, overly-contracted Sano orbitals

deviate more from the optimal antibonding orbitals, and therefore require far more iterations

to converge. For this reason, we recommend using AB2 orbitals as a starting guess for valence

bond methods instead of the Sano orbitals.
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Figure 7: Number of iterations needed to converge CCVB calculations on alkanes of in-
creasing size, with increasing ζ of the basis set. This shows a relatively constant number of
iterations needed for AB2 regardless of system size, while the number of iterations rise un-
favorably for the Sano guess in large basis sets. Geometric direct minimization (GDM)95,96

is used to determine the steps.

3.3 CAS methods

The relative fraction of correlation energy recovered using AB2, Sano, FNO or other choices

for antibonding orbitals to complete an active space can help us discern which ones are most

appropriate to use for configuration interaction with fixed orbitals, as well as for a CASSCF

initial guess. As a simple example, we stretch the C-C bond in C2H4 while keeping the

geometry of the methylene groups fixed at those of the equilibrium ground state geometry

of ethene. Looking at Fig. 8, we see that canonical virtual orbitals capture less and less

correlation as the def2 basis set is improved from SVP to TZVPP to QZVPP. We also observe

that the gap between Sano and AB2 orbitals increases with increasing the size of the basis

set. Finally, we can see that FNO and AB2 orbitals perform almost identically and are the

best choices, with AB2 having lower compute costs. Nonetheless, it is encouraging that both

follow the CASSCF energies closely.
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Figure 8: CAS-CI (12e,12o) for C2H4 using canonical, Sano, AB2, and frozen natural orbitals
in three different basis sets. Restricted HF (RHF) and Unrestricted HF (UHF) curves
without any correlation correction are shown for comparison.

Since the AB2 and FNO orbitals seem to capture quite a lot of the static correlation,

we sought to compare them to CASSCF orbitals. In Fig. 9 we are comparing the smallest

singular value of the overlap matrix between the CASSCF orbitals and those of canonical,

Sano, AB2, and FNO, at the optimized geometry of C2H4. Once again, the canonical orbitals

become dramatically worse with increasing the basis set size. Sano and FNO both become

very slightly worse with increasing the size of the basis set, namely by increasing zeta, while

AB2 seems to be nearly basis set-independent.
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Figure 9: The smallest singular value from the overlap of CASSCF (12e,12o) orbitals with
those from Sano, AB2, FNO and canonical orbitals. Canonical orbitals with the lowest
energy and FNOs with the highest occupancy were selected. Canonical orbitals are differ
strongly from optimized CASSCF orbitals while AB2 orbitals have the highest agreement.

3.4 Excited States

Since the AB2 orbitals seem to be good guesses for GVB methods, and yield orbitals close

to converged CASSCF orbitals, this led us to believe that they could also provide a good

description of valence excited states. State-specific methods, such as orbital-optimized DFT

(OO-DFT)97 need a suitable starting guess, as convergence is typically to the nearest sta-

tionary point.,98 so we used Sano and AB2 guesses for the π → π∗ excitation in methanal

(H2CO). For our purposes we employed the square gradient minimization method98 which

looks for saddle points in the orbital Hilbert space to converge restricted open-shell Kohn-

Sham (ROKS).97,99,100 In Fig. 10 we compare the overlap of the π∗ orbital from converged

singlet open shell HF calculations with Sano and AB2 orbitals. For this excitation, AB2

orbitals overlap the optimized orbital by at least 0.9, and vary minimally with the size of

the basis set. We note here that aside from the double-zeta case, converging the excited

state starting from the Sano orbital sometimes lands on a Rydberg excited state, while AB2

landed on the correct π∗ state in all cases.
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Figure 10: The overlap of the converged ROKS-HF antibonding orbital with the Sano and
AB2 initial guesses in H2CO for the π → π∗ excitation. The π∗ orbital is well described by
AB2 regardless of basis set size.

3.5 Population Analysis

Antibonding orbitals belong to the valence space, and contribute to making a minimal basis

that can be used to gain insight into chemistry, for instance via population analysis to assign

effective charges on each atom. The population analysis we present here is constructed from

the union of the occupied space and the antibonding orbitals without dependence on the basis

set used. To study our atomic charge predictions and compare it to some other methods

in the literature, we look into fluoro- and chloro-substituted methanes which have been

studied theoretically101–103 and experimentally.104,105 These simple systems are nonetheless

interesting because they manifest the effect of substituting electron withdrawing halogen

atoms of different sizes and electronegativities for hydrogen in methane. How consistent or

inconsistent are different atomic population analysis schemes as descriptors of these chemical

substitutions?

In Fig. 11 we examine the effect of progressive substitution of hydrogen by chlorine

and fluorine in the methane molecule on the computed net charge at the C atom. We

consider some commonly used methods, specifically charges on electrostatic potential grid

(ChElPG),106 iterative Hirshfeld (Iter-Hirsh),107,108 intrinsic atomic orbitals (IAO),109,110 and

the method presented in this work, molecular atomic orbitals (MAO). Most obviously, the

charge transferred upon halogen substitution will depend strongly on the electronegativity

difference between X and H. Furthermore, while halogens are more electronegative than

hydrogen (or carbon), the electron donating capacity of C is not unlimited, and so we expect

the first halogen substituted to pull away a greater fraction of an electron from C compared
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to the next, and so forth. Such a change will also have some dependence on the X vs H

electronegativity difference. With these preambles aside, atomic charges are not observables

and therefore no single answer should be viewed as strictly correct. Nevertheless, we can

examine the results of each population analysis for signs of incorrectness relative to physical

intuition.

Figure 11: The charge on the carbon atom for successive chlorination and fluorination of
methane predicted using four different population analysis methods (see text for the names).
The triangle, square, hexagon, and octagon correspond to charges using def2-SV(P), def2-
SVPD, def2-TZVPD, and def2-QZVPD, respectively.

For instance, while all methods agree that the C–H bonds of CH4 are polarized Cδ−Hδ+,

and all likewise agree that the C–F bonds of CF4 are polarized Cδ+Fδ−, different methods

predict different polarities for the C–Cl bond in CCl4. Perhaps the most counterintuitive

result is that the population on C becomes more negative via ChElPG upon going from

CHCl3 to CCl4 despite the higher electronegativity of Cl vs H. At the other extreme, iterative

Hirshfeld suggests that the change in C population with successive halogenation is linear,

as if the electron-donating capacity of C does not saturate. This is especially striking for

chlorination, and we suspect, as unreasonable as the ChElPG result for CCl4. By contrast,

we find no obvious fault with the MAO values, or with the IAO values for these interesting

test cases, although we prefer the slight negative charge for Cl in CCl4 predicted by MAO

(recalling the electronegativity of chlorine is 3.5 versus carbon at 2.5 on the Pauling scale)

relative to the slight positive charge predicted by IAO.

Finally we examine an unusual linear molecule, which is the result of insertion of Be

into HCl, yielding H–Be–Cl.111,112 While H–Cl is polarized as Hδ+Clδ−, Be has lower elec-

tronegativity than H, and so there will be substantial charge transfer. Indeed the ionic limit

would be H–Be2+Cl– . What then, is the actual charge distribution when we consider the

covalent character of the molecular orbitals? The calculated populations are shown in Fig.
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12, and it is immediately evident that predicted charges on Be vary widely. The least polar

picture comes from ChElPG and MAO, with q(Be)≈+0.5, while the IAO scheme suggests

q(Be)≈+1.35. How should we understand this dramatic difference and suggest which might

be more correct?

Figure 12: The charges on each atom in the BeHCl molecule predicted by the four methods
mentioned in the text. The triangle, square, hexagon, and octagon correspond to charges
using def2-SV(P), def2-SVPD, def2-TZVPD, and def2-QZVPD, respectively.

From the MAO perspective, there are two σ bonds involving Be, one with H and one

with Cl. Each is made from sp hybrid orbitals on Be, meaning that the p orbitals of Be are

at play in this σ bonding, as shown in Fig. 13. These bonds are both polarized away from

Be, as expected. The origin of the much larger IAO charge can now be understood. The

IAO reference minimal basis set, known as ’MINAO’,109 does not include 2p orbitals for Be,

and therefore we are instead seeing essentially only the Be(2s) charge via the IAO approach!

Iterative Hirshfeld evidently struggles with a similar issue, leading to similar overestimation

of Be charge. Overall, this case nicely illustrates the advantages of the MAO population

scheme that is based entirely on the system at hand, rather than some reference atomic

orbitals or states.
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Figure 13: The union of the Boys localized bonding orbitals and their AB2 counterparts in
BeHCl forms a complete valence space. Performing a Boys localization on this set of valence
orbitals leads to molecule-adapted atomic orbitals that are intuitive and centered on atoms,
which can then be used for population analysis.

Next we study the hypervalent molecule, SF6, which has Oh symmetry, and whose chem-

ical bonding has long been of interest.113 While empty 3d functions on sulfur are needed to

form 6 equivalent sp3d2 hybrids, the energetic cost of promoting electrons to the 3d shell

is too high for d-orbital participation in the bonding to be chemically important.46,114–117

Rather, the bonding may be thought of as resonance between Lewis structures with 4 cova-

lent S-F bonds, and 2 F− anions, with a formal charge of +2 on S.118 Using Boys localization

produces 6 equivalent σSF orbitals, as shown at the left of Fig. 14. As expected, these σSF

bonds are strongly polarized towards the more electronegative fluorine atom. The AB2 anti-

bonding orbitals, also shown on the left of Fig. 14 are fascinating because contrary to simple

chemical expectations, they are not strongly polarized towards the sulfur atom.

Localizing the union of bonding and antibonding sets produces atom-centered MAOs,

where the sulfur valence orbitals are a set of 6 equivalent orbitals that are strongly polarized

towards the fluorine atoms, as shown in the third image of Fig. 14. These 6 functions are

linearly independent (though non-orthogonal), and combine with the conventional hybrid

orbital on each F to form the strongly polarized σSF orbitals. This hypervalent bonding

problem is treated very naturally by the MAO analysis, while a minimal basis is insufficient

to describe the occupied space since one in principle needs a set of 6 sp orbitals on sulfur.

As measures of polarity, the calculated charges on S are +2.9 (IAO), +2.1 (Iter-Hirsh), and

+1.6 (MAO) in the def2-QZVPPD basis set. The IAO charge may overestimate the polarity
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due to its minimal basis on S, while the MAO charge surely underestimates it, because the

MAO orbital assigned to S is actually quite strongly polarized towards F. So while the MAOs

themselves provide interesting chemical insight, they cannot resolve intrinsic limitations of

population analysis.

Figure 14: The union of the localized σSF bonding orbitals and the corresponding AB2 σ∗SF
antibonding orbitals in SF6 forms a complete valence space describing the SF bonds (and
excluding the F lone pairs). Localizing the set of valence orbitals leads to 6 molecule-adapted
atomic orbitals on S (one is illustrated), showing no visual signs of d orbital participation.

There are some limitations associated with reducing the union of the localized occupied

orbitals and the AB2 antibonding orbitals to a set of MAOs that should be mentioned. First,

some conjugated π systems, such as benzene and C5H5
– , present a multiple minimum solu-

tion problem for orbital localization methods. Since our method relies on the localization

procedure heavily, we expect there will be inconsistencies in these systems. For example,

in benzene, there are different sets of solutions for the localized π orbitals, nominally cor-

responding to the two different Kekule structures. Using the Boys localized orbitals yields

populations that reflect D6H symmetry, while the Pipek-Mezey scheme gives alternating

charges on successive carbons going around the ring. There is a second class of molecules

that are inaccessible in our method. These are anions where the natural valence minimal

basis is too small to provide an antibonding orbital for each bonding orbital. One such

example is C5H5
– , the cyclopentadienyl anion. Forming the set of AB2 valence orbitals and

taking the union with the occupied space leads to a set of orbitals that cannot be localized

to atoms. Broadly, we can say that neutral species with a single Lewis structure are well-

handled by the approach described here; as well as some more complex bonding situations

like SF6 discussed above.
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4 Conclusion

We presented a relatively cheap, non-iterative procedure to produce a set of antibonding

orbitals that vary minimally with the size of the atomic orbital basis set from which they are

constructed. Specifically, antibonding second order (AB2) orbitals show far less variation

with basis than the Sano orbitals which are sometimes used as valence antibonding orbitals.

We showed that use of AB2 rather than Sano orbitals as initial guesses provides improved

convergence for valence bond methods (specifically CCVB), as well as for CASSCF. The

AB2 orbitals were successfully used as guesses for state-specific ROKS calculations of excited

states, where they better resemble the converged orbitals than does the corresponding Sano

orbital guess. We have shown how these AB2 orbitals can be used with the localized occupied

orbitals to construct an effective minimal basis that can be used for population analysis

among other things. Population analysis on the substituted fluormethane and chloromethane

sequence shows the method is stable and consistent with other common methods that accord

with chemical intuition. For the insertion of Be into HCl, the resulting charges show some

advantages. Overall, the AB2 antibonding orbitals are relatively efficient to compute and

quite useful for a variety of applications in quantum chemistry.

Supplementary Material

See the supplementary material for data used to generate the plots as well as the molecular

geometries.
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(68) Kapuy, E.; Csépes, Z.; Kozmutza, C. Application of the many-body perturbation

theory by using localized orbitals. Int. J. Quantum Chem. 1983, 23, 981–990.
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