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Abstract

Shared, trial-to-trial variability in neuronal populations has a strong impact on the accuracy of

information processing in the brain. Estimates of the level of such noise correlations are diverse,

ranging from 0.01 to 0.4, with little consensus on which factors account for these differences. Here

we addressed one important factor that varied across studies, asking how anesthesia affects the

population activity structure in macaque primary visual cortex. We found that under opioid

anesthesia, activity was dominated by strong coordinated fluctuations on a timescale of 1–2 Hz,

which were mostly absent in awake, fixating monkeys. Accounting for these global fluctuations

markedly reduced correlations under anesthesia, matching those observed during wakefulness and

reconciling earlier studies conducted under anesthesia and in awake animals. Our results show that

internal signals, such as brain state transitions under anesthesia, can induce noise correlations, but

can also be estimated and accounted for based on neuronal population activity.
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Introduction

A ubiquitous property of cortical neurons is their high degree of response variability (Softky

& Koch 1993). Since repeated presentations of the same stimulus never elicit the same

response twice, an accurate representation of the stimulus can be obtained only by

considering the joint response profile of populations of neurons. The accuracy of such a

population code strongly depends on neuronal correlations (Averbeck et al. 2006; Zohary et

al. 1994; Abbott & Dayan 1999; Sompolinsky et al. 2001). Specifically, noise correlations,

which express the amount of covariability in the trial-to-trial fluctuations of responses of

two neurons to repeated presentations of the same stimulus, are central to such questions of

coding accuracy.

In recent years, both the level and the origin of such noise correlations have been subject to

debate. While it was originally suggested that noise correlations arise due to shared sensory

noise arising in the afferent sensory pathway (Zohary et al. 1994; Shadlen & Newsome

1998), more recent studies suggest that they in fact represent meaningful top-down signals

generated internally to the brain (Cohen & Newsome 2008; Nienborg & Cumming 2009;

Ecker et al. 2010). Moreover, the observed level of correlations varies greatly between

studies, with average values ranging from 0.01 to 0.4 (Bach & Krüger 1986; Zohary et al.

1994; Gawne & Richmond 1993; Gawne et al. 1996; Bair et al. 2001; Kohn & Smith 2005;

Gutnisky & Dragoi 2008; Smith & Kohn 2008; Cohen & Newsome 2008; Mitchell et al.

2009; Cohen & Maunsell 2009; Ecker et al. 2010; Hansen et al. 2012; Smith et al. 2013;

Smith & Sommer 2013; Herrero et al. 2013). It has recently been suggested that much of the

differences between studies may be accounted for by differences in firing rates (Cohen &

Kohn 2011). However, there are striking differences in correlations even between studies

conducted in the same brain area with similar stimuli and similar firing rates (e.g. Smith &

Kohn 2008; Ecker et al. 2010), suggesting that the firing rate dependence is insufficient to

explain the variability across studies and other factors need to be taken into account as well.

One such factor that varies across studies is anesthesia. It constitutes a drastic alteration of

global brain state, the mechanisms of which are only partly understood and depend on drugs

that are used (Campagna et al. 2003). One of the most striking features of anesthesia, also

observed during natural deep sleep, are strong slow-wave oscillations in the

electroencephalogram (EEG) at frequencies below 2 Hz (Steriade et al. 1993). Many

commonly used anesthetics, such as isoflurane, urethane and ketamine, substantially alter

neural activity by suppressing sensory responses and increasing response latencies (Angel

1993; Drummond 2000; Chi & Field 1986; Kohn et al. 2009) as well as inducing so-called

up and down states (Renart et al. 2010; Constantinople & Bruno 2011; Harris & Thiele

2011). Some neuroscientists resort to opioids, such as fentanyl or sufentanil (Kohn & Smith

2005; Smith & Kohn 2008; Reich et al. 2001), which are believed to affect neural activity in

less dramatic ways (Loughnan et al. 1987; Schwender et al. 1993; Drummond 2000;

Constantinople & Bruno 2011). However, although opioids seem to have a number of

advantages over other drugs, they have similarly been shown to affect neural response

properties (Schwender et al. 1993) and induce low-frequency oscillations (Bowdle & Ward

1989).
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To shed light on how opioids modify the structure of neural population activity, we

measured noise correlations in primary visual cortex of anesthetized and awake monkeys

using identical recording techniques. Under anesthesia we observed periods of almost

complete silence across the population as well as periods of very strong activity. These

periods lasted for a few hundred milliseconds, arose spontaneously and were not linked to

the visual stimulus. They resembled up and down states commonly observed using non-

opioid anesthetics (Renart et al. 2010; Constantinople & Bruno 2011; Harris & Thiele 2011)

and their characteristic frequency was comparable to slow-wave oscillations in the EEG

(Steriade et al. 1993). Interestingly, they could be almost completely accounted for by a

latent variable model of the population activity with a single latent variable indicating the

network state. When we conditioned on this latent variable, the magnitude and structure of

noise correlations under anesthesia were almost indistinguishable from those we observed

previously in awake monkeys (Ecker et al. 2010).

Our results show that spontaneous transitions in network state under anesthesia induce noise

correlations between neurons. These transitions are absent in awake, fixating monkeys. This

indicates a clear qualitative difference between the two states despite similar firing rates.

Thus, anesthesia is an important, but often neglected factor accounting for differences

between studies that cannot be explained by firing rates, as suggested previously (Cohen &

Kohn 2011).

Results

First and second order statistics of neuronal responses

We recorded the spiking activity of populations of neurons in primary visual cortex of

awake and anesthetized macaque monkeys. We recorded from 487 neurons in two awake

monkeys and 636 neurons in three anesthetized monkeys. Our dataset consists of 58

recording sessions (31 awake, 27 anesthetized), each containing 10–42 simultaneously

recorded cells (medians: 15 awake, 23 anesthetized). The awake dataset is a subset of

previously published data (Ecker et al. 2010, see Experimental Procedures for details). We

presented sinusoidal gratings covering the receptive fields of all recorded neurons. Gratings

were drifting, except in 14 of the awake sessions where static gratings were shown.

As expected, neurons in V1 of awake monkeys were robustly driven by the grating stimulus

(Figure 1A) and the vast majority of cells were tuned to orientation (Figure 1B; for this

example session: 27/29 cells; overall 82% or 400/487 cells at p < 0.01, permutation test, not

corrected for multiple testing). The same was true for anesthetized recordings (Figure 1C,

D), where an even larger fraction of cells was tuned (example session: all 44 cells; overall

92% or 586/636 cells tuned at p < 0.01), probably reflecting the fact that anesthetized

recordings on average contained larger amounts of data. Thus, when averaging spike trains

across multiple trials, responses recorded during wakefulness and under anesthesia were

qualitatively similar in the sense that a large fraction of cells was robustly tuned to

orientation.

We noticed, however, that anesthetized responses appeared noisier than those recorded

during wakefulness (Figure 1A, C). To test whether this impression was true at the
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population level we computed the Fano factors (variance of the response divided by its

mean) for all recorded neurons. Indeed, response variability was roughly twice as large

under anesthesia as during wakefulness (Figure 2A; average F = 2.2 vs. 1.2, respectively; p

< 10−15, Wilcoxon rank sum test). This was not due to systematic differences in firing rates

between wakefulness and anesthesia, as it was true for the entire range of firing rates (Figure

2B).

This increased trial-to-trial variability could be a single-neuron effect, where the anesthetic

causes individual neurons to fire more randomly, or a population effect, where groups of

neurons are co-modulated by a common source present only under anesthesia. While the

former would add independent noise and manifest itself primarily in increased variances

(and Fano factors), the latter would also give rise to elevated noise correlations. Indeed, the

average level of correlations was roughly six times higher under anesthesia than during

wakefulness (Figure 2C; 0.05 vs. 0.008, respectively; p < 10−15, Wilcoxon rank sum test,

8012 vs. 3878 pairs). Again, this difference was present at the full range of firing rates and

most prominent for pairs of cells with high rates (Figure 2D).

State fluctuations under anesthesia

Our data seem to argue for a population level effect of anesthesia, where many neurons are

modulated simultaneously on a trial-to-trial basis. Indeed, population raster plots showing

the activity of all simultaneously recorded neurons for a given trial revealed periods of

almost complete silence as well as periods of vigorous activity (Figure 3C, see e.g. trials 2–

4). The transitions between such periods seemed to arise spontaneously and were not linked

to the stimulus, suggesting that at least part of the increased variability was caused by a

common noise source.

To characterize this common source of variability in more detail, we used a recently

developed latent variable model called Gaussian Process Factor Analysis (GPFA, Figure 3A

and Experimental Procedures for details) (Yu et al. 2009). The GPFA model promises to be

a good candidate for capturing the phenomena observed here as it seeks to describe the

correlations in the data by a low-dimensional state variable, which evolves smoothly in time

and affects each neuron’s firing rate linearly. We use the GPFA model to represent the

fluctuations around the stimulus-driven response (noise correlations):

(1)

Here, fk(s(t)) is the time-resolved tuning curve of neuron k, which captures the stimulus-

induced response dynamics; x(t) is the network state, which is a one-dimensional function of

time; ck is the weight that determines how x affects the neuron’s response; and η is

independent Gaussian noise. The network state x has a smooth autocorrelation function with

timescale τ (Figure 3A and Experimental Procedures).

Using such a latent variable model affords several advantages over the traditional approach

of computing pairwise correlations and analyzing their relationship to other quantities such

as signal correlations or distance between neurons. First, the number of parameters that need
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to be estimated is substantially lower than when estimating the full correlation matrix.

Second, if there are processes contributing to the observed correlations that affect many

neurons at the same time, they can be estimated more efficiently and their timescale can be

extracted simultaneously.

The GPFA model with a single state variable captured the structure and dynamics of the

population response under anesthesia well. Visually, the estimate of the network state

corresponded well to the apparent on and off periods (Figure 3C). We quantified how much

explanatory power the network state variable has under the two different brain states by

computing the fraction of variance explained (see Experimental Procedures for details) on a

separate subset of the data not used for fitting the model. In the awake dataset the state

variable explained on average less than 5% of the variance (Figure 3D, F). Strikingly, under

anesthesia up to 40% of individual cells’ variances were explained by network state (Figure

3E, F). To ensure that this effect was not due to longer trials in our anesthetized experiments

(2 s anesthetized vs. 500 ms awake), we repeated the analysis on the anesthetized data using

only the first 500 ms of the response (Figure 3F, dashed line), which reproduced the result

obtained with the full response. Generally, the fraction of variance explained was

substantially higher for cells with high firing rates (Figure 3F) and increased with the size of

the window over which spikes were counted (Figure 3G). This effect was particularly strong

under anesthesia, but much less so during wakefulness.

To gain insights into the structure of variability induced by the network state variable, we

analyzed the key parameters of the model: weights and timescale. The weight of a cell tells

us how the network state affects its firing rate. If all cells are co-modulated in the same

direction we expect mostly positive weights and, thus, positive correlations between cells. If,

on the other hand, some cells are enhanced (positive weights) while others are suppressed

(negative weights) we expect mostly positive correlations within each group and negative

correlations across groups. During wakefulness the weights were mostly distributed around

zero (Figure 4A, C; 65% positive) while during anesthesia most weights were positive

(Figure 4B, D; 88% positive). Note, though, that there is an ambiguity in the GPFA model:

one can always flip the sign of all weights without changing the model, by simply flipping

the sign of the latent variable (see Eq. 1). By convention, we set the sign such that the

majority of weights for each model are positive. We therefore expect a fraction greater than

50% to have positive sign, even in the absence of any effect (bootstrap 95% confidence

intervals under the null hypothesis: awake 61.6–62.9% positive weights, anesthetized 59.2–

60.4%). Thus, although it was significant (p = 2 × 10−9), only marginally more neurons than

expected by chance had positive weights during wakefulness. Together with the finding

above that the model explained very little variance, this indicates that there were no strong

state fluctuations in our data during wakefulness. Under anesthesia, in contrast, the weights

were mostly positive (p < 10−15), indicating that the firing rates of most cells were co-

modulated by a common term, which presumably caused the elevated correlations observed

above (Figure 2B, C; we will quantify below what fraction of the correlations is accounted

for by the network state variable).

The inferred timescale can help us to constrain our hypotheses on the origin of the observed

correlations. If the common noise was due to shared sensory noise (Zohary et al. 1994;
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Shadlen & Newsome 1998) its time constant should be relatively small, corresponding

roughly to the membrane time constants of the post-synaptic cells (10–50 ms; Mason et al.

1991; Shadlen & Newsome 1998). On the other hand, intrinsically generated up and down

states, which have been observed with many non-opioid anesthetics, are much slower (< 2

Hz; Renart et al. 2010; Constantinople & Bruno 2011; Haider et al. 2013). More consistent

with the latter hypothesis, the timescale of the network state dynamics during anesthesia was

relatively slow. The median width of the Gaussian temporal kernel was 207 ms (Figure 4F).

In the frequency domain this corresponds to a lowpass cutoff frequency of 2.35 Hz (at −40

dB attenuation). This estimate of the timescale appears somewhat higher than that

previously reported for anesthetized monkey V1 (Smith & Kohn 2008). However, this

difference is caused by what appears to be a bias in their method of estimating the timescale,

rather than reflecting a discrepancy between the two datasets (performing the same analysis

as they did showed that our dataset is consistent with theirs; see Supplemental Material for

an in-depth discussion of this issue). During wakefulness, in contrast, a large fraction of

timescale values were around 800 ms (Figure 4E; median 688 ms), which is substantially

longer than a single trial (500 ms). As the model does not take into account correlations of

the network state across trials, this indicates that the network state was essentially constant

within a trial. Thus, the strongest common modulations the model picked up during

wakefulness were, in addition to being much weaker, substantially slower than the state

fluctuations we observed under anesthesia.

We next turned to the pairwise correlation structure and asked to what extent it was

explained by the network state fluctuations. The raw correlation structure under anesthesia

resembled that in previous reports of anesthetized monkey V1 (Kohn & Smith 2005; Smith

& Kohn 2008). Raw noise correlations were strongest for pairs with high firing rates (Figure

5A) (see also Smith & Sommer 2013) and high signal correlations (Figure 5B). Moreover,

they decreased significantly with the spatial separation between cells (Figure 5C). To

determine to what degree the GPFA model accounted for this correlation structure, we

computed the residual correlations after accounting for the network state. This can be

thought of as computing correlations by not only conditioning on the stimulus but also on

the network state (see e.g. Renart et al. 2010). We found that the network state explained

most of the difference in the magnitude and structure of noise correlations between

wakefulness and anesthesia. The residual correlation structure under anesthesia resembled

the raw correlation structure during wakefulness remarkably well: except for pairs recorded

on the same tetrode the differences were within the margin of error (Figure 5A–C). For pairs

recorded on the same tetrode the residual correlations under anesthesia were significantly

higher than during wakefulness (Figure 5C, see discussion). Accounting for network state

did not alter the correlation structure during wakefulness. This finding was expected due to

the low fraction of variance captured by the model during wakefulness (Figure 3F).

Model of state fluctuations as common gain

The analysis of residual correlations showed that the correlation structure changed when

accounting for network state: the firing rate dependence was nearly abolished (Figure 5A)

and both the relation with signal correlations and that with distance were weakened

substantially (Figure 5B, C). This may seem counter-intuitive at first, since all neurons are
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modulated by the same common network state variable and, thus, one may expect a uniform

effect on all neurons. However, since the network state can affect different neurons with

different weights and those weights may depend on the stimulus, network state fluctuations

can induce a non-uniform correlation structure. In our data, the weights were positively

correlated with firing rates (data not shown), indicating that the network state acted as a

common gain, modulating each neuron’s firing rate multiplicatively.

To understand how such fluctuations in common gain would affect the correlation structure,

we considered a simple network model: the firing rate of each neuron was determined by its

tuning curve times a common gain and neurons spiked according to independent,

inhomogeneous Poisson processes (Figure 6A, see Experimental Procedures for details).

The gain term was fluctuating randomly with temporal correlations matching that in the data

(~200 ms). This simple model was able to reproduce both the firing rate dependence of

noise correlations in our data as well as their dependence on signal correlations quite

naturally (Figure 6B, C). To capture the spatial dependence of correlations, we would have

to include spatial structure, e.g. by replacing the global gain by one that can vary across

space with a certain correlation structure. However, we do not pursue the question in more

detail here, since the main point of the model is to illustrate that very simple mechanisms

can cause remarkably non-uniform correlation structures.

Spontaneous activity

We next asked whether the state fluctuations observed under anesthesia were also present

during spontaneous activity in the absence of visual stimulation. To address this question,

we analyzed the blank periods between subsequent stimulus presentations. The results

essentially mirrored those obtained during visual stimulation (Figure 7). Variance explained

increased with both firing rates and the size of integration window (Figure 7A–C). Weights

were almost exclusively positive (96%, Figure 7D, E) and the timescale of the network state

was comparable to that during visual stimulation (Figure 7F; median: 181 ms; cutoff

frequency: 2.75 Hz). As for the evoked responses, residual correlations after accounting for

network state were profoundly reduced (Figure 7H–J).

Local field potential as a predictor of global network state

We showed that under anesthesia most neurons are affected in a similar way by the network

state and this network state can change on a timescale of a few hundred milliseconds. If the

effect is as global as it appears, we should find its signature in more global measures of

neural activity such as the local field potential (LFP). We thus asked whether the low-

frequency range of the LFP correlated with the network state we inferred above. This was

indeed the case for all three anesthetized but for none of the awake animals (Figure 8A, B).

The magnitude of the correlation was strongest at zero time lag and had additional peaks/

troughs of opposite sign at time lags of ±500 ms between LFP and inferred network state.

If the low-frequency range of the LFP is correlated with the network state, it should be

possible to use it to predict the trial-to-trial variability observed under anesthesia. To verify

this, we followed the approach taken by Kelly et al. (2010) and fitted a generalized linear
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model (GLM) with the lowpass-filtered LFP as input (see Experimental Procedures for

details):

(2)

Here μ(t) is the firing rate, a(t) the stimulus response (PSTH) and u(t) the LFP, all of which

are functions of time. The linear weight b determines by how much a change in the LFP

affects the firing rate of the neuron. During wakefulness the LFP weights were distributed

mostly around zero (Figure 8C), whereas under anesthesia they were mostly negative

(Figure 8D).

In summary, the network state we inferred above in an unsupervised way from spiking data

alone (GPFA model) has its physiological counterpart in the low-frequency oscillations in

the LFP. Both the low-frequency oscillations and the apparent network state fluctuations in

the spiking activity of local populations are pronounced under anesthesia but relatively

small, if not absent, during awake fixation.

Finally, our analysis so far has focused on comparing wakefulness and anesthesia using

different cells recorded in different animals. However, anesthesia has multiple different

stages, with light anesthesia being characterized by relatively desynchronized EEG activity,

whereas deep anesthesia displays strong, coherent network oscillations. We therefore asked

whether we could use the LFP to find evidence for slow changes in brain state (depth of

anesthesia) within recording sessions. Indeed, in many sessions we observed slow changes

in LFP power in a low-frequency range and sometimes in the gamma range (Figure 9A, B).

To quantify these changes we computed an LFP power ratio in windows of approximately

90 seconds (power at 0.5–2 Hz divided by that in the gamma band, 30–70 Hz) (Goard &

Dan 2009), which we used as a proxy for depth of anesthesia. This power ratio displayed

changes on timescales of a few minutes up to half an hour and longer (Figure 9C, D, black

lines). Remarkably, the time-resolved LFP power ratio was tracked very closely by the total

correlation in the network as measured by the variance of the network state variable inferred

by the GPFA model (Figure 9C, D, red lines). Across all sessions, the LFP power ratio and

the overall level of correlations were significantly correlated (Figure 9E, Spearman’s ϱ =

0.42, p < 10−15). This correlation was positive and significant in 19/27 individual sessions (p

< 0.05, uncorrected). Thus, the degree of network-wide correlations varied within a

recording session in the same cells over the course of several minutes and correlated well

with more traditional, LFP- or EEG-based measures of brain state or depth of anesthesia.

Discussion

State fluctuations under opioids

We demonstrated a striking feature of cortical activity under opioid anesthesia that had

previously not been appreciated: neurons undergo spontaneous coordinated transitions

between states of almost complete silence, highly elevated levels of activity, and

intermediate levels of activity. These state transitions resemble up and down states, which

have been described previously for other, non-opioid anesthetics (Steriade et al. 1993;
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Renart et al. 2010; Constantinople & Bruno 2011), and they occur on a timescale of several

hundred milliseconds. In addition, the strength of these state fluctuations can change slowly

over several minutes, which may reflect slow changes in the depth of anesthesia.

Although the effect of opioid anesthetics may be less dramatic than that of non-opioids such

as urethane, isoflurane or ketamine (Constantinople & Bruno 2011; Movshon et al. 2003;

Kohn et al. 2009; Smith & Sommer 2013), it should be emphasized that they still have a

substantial effect on neural responses, explaining on average more than one third of the

variance of cells firing at rates of more than 10 spikes/s (Figure 3). Since the effect is largely

common to all cells within a few millimeters of cortex, it becomes particularly evident when

considering populations of simultaneously recorded neurons and substantially biases the

structure of noise correlations compared with awake recordings.

We are aware of two reports that directly addressed the effect of opioids and found no

differences to the awake state (Loughnan et al. 1987; Constantinople & Bruno 2011).

Although they may superficially appear at odds with our results, this is not the case. One

study measured the average sensory-evoked EEG response in humans (Loughnan et al.

1987) and found no difference between anesthetized and awake subjects. While this finding

is consistent with our results that sensory responses were intact, it does not rule out

spontaneous state transitions, as those would have been averaged out. The other study

measured membrane potential fluctuations in single neurons (Constantinople & Bruno

2011). It is possible that opioids act more subtly than other anesthetics, not inducing the

bimodal distribution of membrane potentials that typically characterizes up and down states

(Petersen et al. 2003; Constantinople & Bruno 2011), but nevertheless leading to global

fluctuations in spiking output that are strong enough to be picked up when recording

populations of neurons simultaneously. Another important point to be noted is that the two

studies cited above were conducted under much lighter anesthesia. The fentanyl doses used

(3 μg/kg bolus and 10 μg/kg/h, respectively) were substantially lower than the minimum

equivalent sufentanil dose used in acute primate experiments (our study and e.g. Smith &

Kohn 2008; Kelly et al. 2010: 4–15 μg/kg/h sufentanil, equivalent to 40–150 μg/kg/h

fentanyl). Thus, the differences in depth of anesthesia, different measures of neural activity,

or differences between species could account for the differences between these studies and

ours.

State fluctuations during wakefulness

State transitions similar to those we observed under anesthesia have been observed in

rodents also during wakefulness. Poulet & Petersen (2008) found that periods of inactivity

(termed quiet wakefulness) resembled the anesthetized state. Both, the intracellular

membrane potentials and the LFP displayed increased power in the low frequencies, similar

to our and other labs’ findings under anesthesia, and spikes were tightly locked to those

oscillations. During periods of active whisking, in contrast, somatosensory cortex was in a

desynchronized state that resembled our awake results. In addition, Niell & Stryker (2010)

showed that the firing rates of neurons in primary visual cortex of mice depend strongly on

whether the mouse is still or running on a treadmill. Although they did not explicitly test

whether response variability or properties of the LFP were different between the two states,
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their findings support the idea that the cortex can switch between different states of activity

during wakefulness.

To our knowledge, such state fluctuations have not been observed in the visual system of

awake, behaving primates. One could speculate that this is due to a species difference

between rodents and primates. However, it seems more likely that we did not observe such

quiet states during our awake experiments because the monkeys had to actively initiate a

trial by moving their eyes to the fixation spot and maintain fixation throughout the trial,

actively suppressing their natural reflex to move the eyes several times per second. This

required oculomotor action before and during the stimulus could trigger an active state

similar to whisking or running in rats and mice.

This action to initiate a trial may be an important difference between experiments in the

visual system of awake monkeys and rodents. Unlike with monkeys, in most studies of the

rodent visual system the animals do not have to actively initiate a trial, but stimuli are

presented periodically. To obtain a similar level of control over the brain state, one would

have to either infer it post-hoc from recordings of locomotion, eye or whisker movements or

– as we did in this study – directly from neuronal population activity. Since this is not

usually done (but see, e.g. Poulet & Petersen 2008; Niell & Stryker 2010), many datasets

collected in awake rodent visual cortex are likely to contain a mixture of brain states. We,

therefore, do not expect large differences between wakefulness and anesthesia in such cases,

a hypothesis corroborated by a recent study of noise correlations in mouse V1 (Denman &

Contreras 2013).

Role of firing rates

Could the difference between our awake and anesthetized data be attributed to factors other

than anesthesia? It has been suggested that the low correlations we measured in awake

monkeys were a result of unusually low firing rates (Cohen & Kohn 2011). However, this is

not a viable explanation since firing rates were similar in our awake and anesthetized

recordings and they were comparable to (in fact, slightly higher than) those reported by

other labs using similar stimuli in the same cortical area as in our present study (Smith &

Kohn 2008: 3.4 spikes/s; this study, awake: 5.4 spikes/s, anesthetized: 5.0 spikes/s). In

addition, the difference between awake and anesthetized correlations was evident at the full

range of firing rates (Figure 2) and the firing-rate dependence of correlations in our

anesthetized dataset resembled that reported by other labs in anesthetized monkey V1

(Smith & Kohn 2008; Smith & Sommer 2013). In summary, while firing rates certainly

contribute to differences between studies to some extent, they cannot account for the

difference between wakefulness and anesthesia.

Role of cortical layers

Recent studies suggest that noise correlations are low in the granular layers of V1, raising

the possibility that our awake recordings were mostly restricted to those layers (Hansen et al.

2012; Smith et al. 2013). If this was the case, the effects we describe in this study could be

caused by laminar differences, rather than reflecting a difference between wakefulness and

anesthesia. Based on our data we cannot rule out this possibility entirely, but a number of
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observations argue against it. Although in our anesthetized experiments we recorded

throughout all layers and tried to adjust all tetrodes to a similar depth for each recording, we

were unable to identify the region of low correlations. This is most likely owed to the

limitations of our experimental approach. Tetrodes have a blunt tip, presumably causing

more tissue displacement than single electrodes with small beveled tips, making the point of

entry into the brain a poor reference to estimate laminar location. In addition, we did not

reach white matter with all tetrodes before the end of the experiment, precluding the use of

white matter as a reference. Furthermore, tetrodes have much lower impedances than single

electrodes. Therefore they probably sample cells from a larger volume. We thus expect

considerable variability in both the laminar location of the tetrodes and our estimates

thereof. Since the region of low correlations reported previously (Hansen et al. 2012; Smith

et al. 2013) is a narrow strip of 200–300 μm, it may not be surprising that we were unable to

identify it. However, for the same reasons it seems implausible that laminar variation should

explain the low correlations we observed during wakefulness. For this to be the case, most

of our tetrodes should have been located in exactly this narrow region. Yet, unlike in our

anesthetized experiments, we neither adjusted the tetrodes together nor did we target any

specific layer, but instead adjusted each tetrode to a position where it isolated cells. In

addition, between awake recording sessions we sometimes adjusted the tetrodes, in total by

up to 600 μm (median: ~300μm) between the first and the last experiment. As a result, we

should either have been able to localize the region of low correlations during anesthesia or

we likely recorded from outside it as well during wakefulness, suggesting that the effect we

describe is not simply explained by laminar differences.

Relation to other studies of noise correlations in the primate visual system

By modeling the state fluctuations under anesthesia with a latent variable model (GPFA) we

recovered the residual correlation structure, which was remarkably similar to that observed

in the awake monkey. This finding reconciles the results of previous studies conducted in

V1 under anesthesia with our awake, fixating data (Ecker et al. 2010). The raw correlation

structure we observed under anesthesia is entirely consistent with previous reports using the

same preparation (Kohn & Smith 2005; Smith & Kohn 2008). The higher average level of

correlations during anesthesia (Reich et al. 2001; Kohn & Smith 2005; Smith & Kohn 2008)

is accounted for by the one-dimensional network state variable. The LFP can be used to

predict some of these state fluctuations under anesthesia, which has been reported previously

(Kelly et al. 2010). Finally, another study characterizing higher-order correlations in

anesthetized monkey V1 (Ohiorhenuan et al. 2010) reports an excess probability of silence

in triplets of neurons, suggesting that the periods of almost complete silence we observe are

also present in other anesthetized preparations.

Some discrepancies remain between the papers discussed above (Kohn & Smith 2005;

Smith & Kohn 2008; Reich et al. 2001; Ohiorhenuan et al. 2010; Ecker et al. 2010) and

some other studies. For instance, some authors report substantially higher noise correlations

in awake monkey V1 (0.2–0.4; Gutnisky & Dragoi 2008; Hansen et al. 2012; Herrero et al.

2013) than we did (Ecker et al. 2010). Note that in addition to substantially higher average

firing rates, these studies typically also observed relatively high Fano factors (F > 2;

Gutnisky and Dragoi, 2008; Herrero et al., 2013; our awake data: average F = 1.1, Figure
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2A), indicating that either different cell populations were sampled or additional confounding

factors were present that were not accounted for (e.g. as argued in Ecker et al. 2010; Bair et

al. 2001). For instance, accounting for eye movements reduced the correlations by almost

50% in Hansen et al. 2012 (their Supplementary Figure 3).

Correlations between nearby neurons

Similar to other authors (e.g. Smith & Kohn 2008; Cohen & Maunsell 2009), we focused

mainly on pairs recorded by different electrodes. For such pairs, accounting for the network

state under anesthesia reduced the noise correlations consistently below 0.01, similar to the

level observed during wakefulness. However, a notable observation we made was that

residual correlations between pairs recorded by the same tetrode were still higher under

anesthesia than during wakefulness (Figure 5C). This could reflect an additional, more local

contribution of anesthesia that was not captured by the single latent variable in our model.

Alternatively, there may be some degree of heterogeneity in the local connectivity, which

gives rise to different levels of correlation depending on where one records from (e.g. close

to pinwheels vs. linear zones, or differences between layers). Indeed, when we re-analyzed

the awake data, focusing on pairs recorded by the same tetrode, we observed some

differences between the two monkeys. In one monkey, signal correlations for pairs recorded

on the same tetrode were close to zero (average 0.025) and so were the noise correlations

(average 0.006), while in the other monkey signal correlations were positive (0.24) and

noise correlations were somewhat higher as well (0.045). The latter is more consistent with

the anesthetized results (average signal correlations: 0.17, average residual noise

correlations: 0.065). It is possible that we sampled cells in a more unbiased fashion in our

anesthetized experiments, in which we recorded from more monkeys and more individual

tetrodes than in our awake dataset. To reach a definite conclusion regarding the structure and

level of correlations for neurons separated by less than 200 μm and to resolve the potential

contribution of cortical layers, more extensive future experiments with high-density laminar

probes (Blanche et al. 2005) are needed.

Conclusions and future directions

Most of what we know today about the early visual system we learned through studies in

anesthetized animals (e.g. Hubel & Wiesel 1968; Zeki 1974; De Valois, William Yund, et al.

1982; De Valois, Albrecht, et al. 1982; Movshon et al. 1985; Carandini et al. 1997). Without

doubt, the acute anesthetized preparation is an extremely valuable tool, which offers many

advantages for studying the early visual system (no training of animals, no issues due to eye

movements/microsaccades, longer experiments with more trials, etc.). For instance,

receptive fields or tuning curves can be measured under anesthesia just as well as in the

awake animal.

More recently, however, many groups have started to characterize the joint activity patterns

of pairs and groups of neurons (Zohary et al. 1994; Gawne & Richmond 1993; Gawne et al.

1996; Bair et al. 2001; Reich et al. 2001; Kohn & Smith 2005; Smith & Kohn 2008;

Gutnisky & Dragoi 2008; Ecker et al. 2010; Berens et al. 2012) and both the origin and the

implications of neuronal correlations have been of great interest (Zohary et al. 1994;

Shadlen & Newsome 1998; Abbott & Dayan 1999; Sompolinsky et al. 2001; Averbeck et al.
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2006; Cohen & Newsome 2008; Josic et al. 2009; Nienborg & Cumming 2009; Ecker et al.

2011). For these studies it is important to distinguish between different sources of

correlation: if the network transitions from one state to another such widely distributed

dynamics can quickly become the dominant source of (co-)variance. However, if such state

transitions do not occur in alert animals paying attention to or interacting with their

environment, the functional relevance of these correlations may be very different from those

originating from shared input in the feed-forward signal chain of upstream neurons. Thus,

one should be aware of possible state fluctuations and, if necessary, take them into account.

While some authors have done so by considering only data during those periods where the

brain was in a certain state (e.g. Renart et al. 2010) or incorporating global signals such as

the LFP directly into the response model (Kelly et al. 2010), our study showed that in some

situations the network state may also be inferred directly from population data using a latent

variable model (Figure 3–5).

Latent variable models like the one we used in this study (GPFA, Yu et al. 2009; see also

Macke et al. 2011; Buesing et al. 2012) are powerful tools for future studies of neuronal

population activity. In light of current and future technological developments, the number of

neurons that can be monitored simultaneously will increase substantially. The amount of

time that can be used to collect data, however, is and remains limited by experimental and

ethical constraints. Thus, an accurate characterization of the joint population response will

be feasible only if much of the variability is restricted to a relatively low-dimensional

subspace. Fortunately, this is very likely to be the case if our original hypothesis is correct

and most of the correlations observed in awake animals are driven by unobserved internal

signals rather than by shared sensory noise (Ecker et al. 2010). In this case, latent variable

models will not only afford a parsimonious statistical description of neuronal population

data, but they may also provide us with a method to read out internal signals, such as the

focus of attention (Cohen & Maunsell 2010), task strategies or many more, in real time on a

trial-by-trial basis.

Experimental Procedures

Electrophysiology in awake monkeys

We recorded from two adult, male rhesus monkeys (macaca mulatta) using chronically

implanted tetrode arrays. The awake dataset used in this study is a subset of a dataset

analyzed previously (Ecker et al. 2010; Berens et al. 2012, see below for inclusion criteria).

Surgical methods and recording protocol for our awake experiments have been described

previously (Tolias et al. 2007; Ecker et al. 2010).

Electrophysiology in anesthetized monkeys

In acute experiments lasting 4–5 days, we recorded from three adult, male rhesus monkeys

(macaca mulatta) using the same 24-tetrode arrays as in the awake recordings. Surgical

details are described in the Supplemental Experimental Procedures. Prior to each set of

recordings, all tetrodes were adjusted to a new target depth approximately 200 μm deeper

than the previous one. The exact amount of adjustment varied by tetrode, leaving tetrodes (if

possible) at a position where cells could be isolated. Throughout the experiments anesthesia
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was maintained by intravenous infusion of sufentanil (4–15 μg/kg/hr; protocol similar to

Kohn & Smith 2005; Smith & Kohn 2008). Animals were paralyzed using vecuronium

bromide by intravenous infusion (100 μg/kg/hr). The pupils were dilated by topical

application of cyclopentolate. Refraction was provided by contact lenses. Stimuli were

presented monocularly; the other eye was closed and covered. The open eye was kept

irrigated using saline. Vital signs (ECG, heart rate, respiratory rate and volume, blood

pressure, temperature, CO2, O2, %SpO2) were monitored continuously. All experimental

procedures complied with guidelines approved by the Baylor College of Medicine

Institutional Animal Care and Use Committee (IACUC).

Visual stimuli/behavioral paradigm

Visual stimuli were drifting gratings (16 different directions of motion) under a circular

aperture presented at full contrast on gray background using the Psychophysics toolbox for

Matlab (Brainard 1997). In a subset of awake experiments stimuli were static gratings (eight

orientations), partly at lower contrasts (see Ecker et al. 2010 for details). Because of space

constraints in the anesthetized setup, we used an LCD monitor running at a refresh rate of 60

Hz and positioned at a distance of 55 cm to the eye during our anesthetized experiments.

The stimuli for awake monkeys were presented on CRT monitors running at 100 Hz and

positioned at a distance of 100 cm. To address concerns about low firing rates in our data

raised previously (Cohen & Kohn 2011), we reduced the size of the stimuli during the

anesthetized experiments to 2–3° in diameter, compared with 4° in awake experiments. We

ensured that the gratings covered the receptive fields of all neurons by mapping multi unit

receptive fields of most tetrodes manually before each recording session. Temporal

frequency was 3.4 cycles/sec for all sessions. Spatial frequency varied between 3–6 cycles/

deg, roughly matching the preferences of the recorded cells due to some variability in

eccentricity of recording locations (estimated between 1–4° from the fovea). Stimulus

conditions were randomized in blocks of 16 trials to ensure a balanced number of

repetitions.

In awake experiments trials were initiated by a sound and the appearance of a fixation target

(~0.15°). After the monkey fixated for 300 ms, the stimulus was shown for 500 ms and the

monkey had to fixate for another 300 ms. Monkeys were required to fixate within a radius of

0.5–1° but typically fixated much more accurately, as revealed by offline analysis. Monkeys

were rewarded by a drop of juice upon completion of a successful trial.

In anesthetized experiments stimuli were shown for 2 s, separated by blank periods with a

gray screen lasting approximately 1.1–1.6 s (randomly drawn from a uniform distribution).

Spike detection and sorting

Our data processing methods are based on previously published work (Tolias et al. 2007) but

have been revised since the original report. A detailed description can be found in the

Supplemental Experimental Procedures. Briefly, spikes were detected offline when the

signal on any of the four channels crossed a threshold of five times the SD of the noise.

After spike alignment, we extracted the first three principal components on each channel,

resulting in a 12-dimensional feature vector used for spike sorting. To deal with waveform
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drift, we fit a mixture model that uses Kalman filters to track changing cluster means over

time (Calabrese & Paninski 2011). Single unit isolation was assessed quantitatively using

the mixture model. Since the focus of this paper is on global fluctuations that are distributed

among many tetrodes, spike-sorting errors are unlikely to play an important role; they would

affect primarily pairs recorded by the same tetrode (Ecker et al. 2010). Therefore, we

included all units flagged as single units in the analysis to increase statistical power. The

sum of the false positive rate and the false negative rate was less than 10% for 62% of the

single units in our dataset and less than 20% for 83% of the single units (awake: 63% and

82%, anesthetized: 61% and 83%).

Dataset and inclusion criteria

We recorded from two awake and three anesthetized monkeys, a total of 46 and 30

recording sessions, respectively. We included recording sessions where gratings were shown

for at least 500 ms per trial, at least 20 trials per condition, and at least 10 single units with

stable firing rates were recorded. Firing rate stability was assessed by computing the long-

term component of the trial-autocorrelogram (Bair et al. 2001), which we estimated by

taking a weighted average (Gaussian window with SD of eight trials) around zero, excluding

the bin at zero lag (which is one by definition). Units were considered stable if the long-term

component of the trial-autocorrelation was less than 0.1. These criteria resulted in 31 awake

and 27 anesthetized recording sessions with 487 and 636 single units, respectively. The

stability criterion was important since the anesthetized experiments were performed acutely

and tetrodes were adjusted every 8–10 hours (see Supplemental Experimental Procedures for

a discussion of this issue).

Data analysis/availability of code and data

Data analysis was done in Matlab using a data analysis framework with MySQL database

backend (DataJoint: https://github.com/datajoint; D. Yatsenko, Tolias Lab, Baylor College

of Medicine). The complete dataset and code used for data processing, data analysis and

creating the figures in this article are available at http://toliaslab.org/publications/ecker-et-

al-2014/.

Orientation tuning

We assessed the significance of orientation tuning by a permutation test. We first extracted

the magnitude of the second Fourier component (i.e. orientation) by projecting the vector of

average responses for each orientation onto a complex exponential with two cycles:

(3)

where 〈r〉k is the average response to the kth direction of motion. We compared |q| to its null

distribution, which we obtained by shuffling the trial labels. We ran 1000 iterations of the

shuffling procedure and used the fraction of runs with |q| greater than that observed in the

real data as the p value.
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Fano factors/noise correlation analysis

Fano factors and noise correlations were computed on the first 500 ms of the response for

both awake and anesthetized experiments. Fano factors were computed as the variance of

the spike count divided by its mean. Noise correlations were computed as the Pearson

correlation coefficient of two neurons’ responses to identical repetitions of the same

stimulus condition, averaged (for each pair) over all stimulus conditions with non-zero firing

rates in both neurons.

Gaussian Process Factor Analysis (GPFA)

A detailed description of the GPFA model and the derivation of the Expectation

Maximization (EM) algorithm to fit it can be found in Yu et al. (2009). Here we describe

only the key points.

The GPFA model is described in the main text (Eq. 1 and Figure 3). We extracted spike

counts in each trial during the stimulus period in T non-overlapping bins of 100 ms starting

30 ms after stimulus onset (awake: T = 5, anesthetized: T = 20). We square-root transformed

spike counts to stabilize the variances (Yu et al. 2009). Before fitting the model we

subtracted the average across trials for each stimulus condition and time bin. This procedure

removes systematic contributions by the stimulus and, thus, the model explains only the

trial-to-trial variability. Note that in this case both the network state x and the observed

(transformed) spike counts y have zero mean (over trials) in each bin. The noise covariance

under this model is given by

(4)

where the prime (′) denotes the transpose, y are the square-root-transformed and mean-

subtracted spike counts, c is a vector of linear weights mapping network state to firing rate,

and R is a diagonal matrix of residual (independent) variances. We fitted the model for each

stimulus condition independently to allow the weights to depend on the stimulus (this was

indeed the case: weights increased with firing rates, which was reflected in both the increase

of correlations and variance explained with firing rates, Figures 2 and 3). Units were

included in the model in all stimulus conditions where they fired at least 0.5 spikes/s during

the stimulus period.

The network state x was assumed to evolve smoothly in time. This was achieved by

modeling its temporal correlations by a Gaussian kernel:

(5)

To keep the algorithm computationally tractable we set temporal correlations in network

state extending across trials to zero.

Ecker et al. Page 16

Neuron. Author manuscript; available in PMC 2015 April 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To evaluate the fraction of variance explained (VE; Figure 3) and the residual correlations

(Figure 5) we used an independent test set that had not been used for fitting the model.

Training and test set consisted of the first and second half of the data (and vice versa; i.e.

two-fold cross-validation). We fit the model on spike counts in 100-ms windows, but

residual correlations and VE can also be evaluated for larger counting windows by summing

up variances and (temporal) covariances over several time bins. VE (Figure 3) and residual

noise correlations (Figure 5) were calculated for 500 ms windows since this was the

maximum available in the awake dataset. For details on how to compute VE and residual

correlations see Supplemental Experimental Procedures.

Model of common gain modulation

The model population (Figure 6) consisted of 64 neurons with uniformly spaced preferred

orientations and von Mises tuning curves given by

(6)

where φk is the preferred orientation, k = 2 and α = 1.8, resulting in a bandwidth of ~25°

(half-width at half-maximum) and a peak firing rate of 45 spikes/s. The firing rate of each

neuron was determined by the product of its tuning curve and the value of the common gain:

(7)

The gain had E[g] = 1 and its temporal autocorrelation was a Gaussian kernel

(8)

with σ = 0.15 and τ = 200 ms. We sampled independent Poisson spike counts from the given

rates μ(t). As for the data, we used bins of 100 ms and computed correlations in bins of 500

ms.

Analysis of spontaneous activity under anesthesia

For the analysis of spontaneous activity (Figure 7) we used the blank periods between two

subsequent stimuli. We analyzed segments of 1-s duration starting 200 ms after the end of

the stimulus (to avoid contamination by off responses to the stimulus). Approximately 75%

of the blank periods were long enough to be included given these criteria, resulting in an

average of 1188 ‘trials’ (min: 1148, max: 1225).

Generalized Linear Model accounting for network state

Following Kelly et al. (2010) we fitted a Generalized Linear Model (GLM) with the

lowpass-filtered LFP as inputs (Figure 8). The model is defined in Eq. 2 in the main text. As

for the GPFA model above we used spike counts in 100-ms bins and fitted the model

independently for each stimulus condition. The contribution of the stimulus was captured by

the parameter a(t), which represents the PSTH. The LFP predictor u(t) was the bandpass-
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filtered (0.5–10 Hz) LFP. We averaged the LFP over all tetrodes that recorded at least one

single unit in this session and subtracted the average stimulus-evoked response. The latter

ensured that LFP weights captured only fluctuations around the average response to the

stimulus. For analysis of the weights (Figure 8C, D) we averaged the weights of each neuron

across all conditions in which it was included (firing rate > 0.5 spikes/s). The cross-

correlation between LFP and network state estimated by GPFA (Figure 8A, B) was

computed by first subtracting the average of each measure within each trial (i.e. it is the

correlation of the fluctuations within trials rather than across trials).

Analysis of depth of anesthesia

To assess slow changes in brain state we performed spectral analysis on the LFP (Figure 9).

We averaged the LFP across all tetrodes that recorded at least one single unit in this session

and computed the spectrogram using 200 overlapping windows (16 trials or ~1 min per

window, 50% overlap). The spectrogram was computed on the continuous LFP trace

including both evoked and spontaneous activity; no average stimulus response was

subtracted. Following Goard & Dan (2009) we computed a power ratio to assess brain state.

The power ratio was defined as the power in the low-frequency band (0.5–2 Hz) divided by

that in the gamma band (30–70 Hz). To quantify the overall correlation in the network, we

computed the variance of the network state variable inferred by the GPFA model in the same

windows as we used for the spectral analysis above. For the population analysis (Figure 9E)

we used 20 non-overlapping windows to quantify both the power ratio and the overall

correlation. This smaller number was chosen as a trade-off between temporal resolution and

reducing noise by including more data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Recordings of population activity in V1
A, Spike rasters for a subset of the neurons recorded in one example session during

wakefulness. The sinusoid at the top indicates the stimulus duration (500 ms) and its

temporal frequency. Numbers: neuron numbers in B, counted from left to right, top to

bottom. B, Tuning curves for all neurons in the same session as in A. Solid lines: least

squares fit, shown only for cells significantly tuned to orientation (27/29 cells at p < 0.01,

non-corrected). C, Spike rasters during anesthesia (as in A). D, Tuning curves (as in B; all

44 neurons significantly tuned at p < 0.001).
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Figure 2. Fano factors and noise correlations during wakefulness (blue) and anesthesia (red)
A, Distribution of Fano factors. Arrows: means. B, Dependence of Fano factors on firing

rates. Error bars: SEM. C, Distribution of noise correlations. D, Dependence of noise

correlations on geometric mean firing rates.
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Figure 3. Gaussian Process Factor Analysis (GPFA)
A, Schematic of the GPFA model. Spike count variability is generated by an unobserved

(one-dimensional) network state (x) linearly driving neural activity (weights c) plus

independent noise (η). The network state evolves smoothly in time, which is modeled by a

Gaussian Process with temporal covariance shown at the top (correlation timescale τ is

learned from the data). B, Population rasters for an example session recorded in an awake

animal. Each numbered row shows the rasters of all recorded neurons during a single trial.

All trials were under identical stimulus conditions (500 ms drifting grating, indicated by sine

wave at the top). Blue line: estimate of the network state (x). The visible rate modulations

are locked to the phase of the stimulus, but not to the estimated network state (which in this

case had very little explanatory power). C, As in B, but under anesthesia. The estimated

network state captures the population rate dynamics very well (see e.g. trials 1–4), but is

unrelated to the stimulus (stimulus duration: 2 s). D, Scatter plot of variance explained (VE)

vs. firing rate during wakefulness. Each dot is a single neuron under one stimulus condition.

VE is computed in 500-ms windows. E, As in D, but under anesthesia. F, Binned and

averaged representation of D and E. Error bars: SEM. Dashed lines: model fit on

anesthetized data using only the first 500 ms of each trial for better comparison with awake

data (error bars omitted for clarity; they were comparable to those for the solid red line). G,

Average VE versus size of integration window. Open circles: 500 ms window, which was

used for panels D–F. Dashed line: control analysis as in panel F.
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Figure 4. GPFA model parameters
Distribution of weights (variable c, Eq. 1) during wakefulness (A, C) and under anesthesia

(B, D). Timescale of network state dynamics during wakefulness (E) and under anesthesia

(F). The timescale is the parameter (τ) in the squared-exponential temporal correlation

function of the latent variable (x) in the GPFA model.
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Figure 5. Accounting for network state reduces noise correlations under anesthesia
Raw (solid lines) and residual (after accounting for network state; dashed lines) noise

correlations during wakefulness (blue) and under anesthesia (red). Dependence on firing

rates (A), signal correlations (B) and distance between cells (C). Raw correlations in panel

A are as in Figure 2D, except that here the model is fit for each condition separately. Error

bars: SEM.
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Figure 6. Model of state fluctuations as common fluctuations in excitability
A, Illustration of the model. Cells have tuning curves with identical shapes and regularly

spaced preferred orientations. Each cell’s firing rate is given by the tuning curve multiplied

by the common gain, which changes slowly as in our data. Spikes are generated by

independent inhomogeneous Poisson processes with the given rates. The resulting noise

correlations increase with firing rates (B) and signal correlations (C), as in the data.
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Figure 7. GPFA model during spontaneous activity under anesthesia
A–B, Variance explained (VE) versus firing rates (as in Figure 3D–F). C, VE vs. integration

time (as in Figure 3G). D–E, Distribution of weights (as in Figure 4B, D). F, Distribution of

timescales (as in Figure 4G). G–I, Residual correlations versus firing rate, signal correlation

and distance, respectively (as in Figure 5A–C).

Ecker et al. Page 28

Neuron. Author manuscript; available in PMC 2015 April 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8. Local field potential is correlated with inferred network state and predicts trial-to-trial
variability under anesthesia but not during wakefulness
A, Cross-correlation between low-frequency LFP (0.5–10 Hz) and network state inferred by

GPFA model during wakefulness. Gray lines: individual sessions; blue line: average across

all sessions. B, As in A, but under anesthesia. C, Distribution of LFP weights in Generalized

Linear Model taking stimulus and LFP into account; during wakefulness. D, As in C, but

under anesthesia.
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Figure 9. LFP power ratio correlates with overall level of noise correlations
A–B, Spectrogram of LFP over the course of two example recordings (~90 minutes). C–D,
LFP power ratio (black line, power in 0.5–2 Hz band divided by that in the gamma band,

30–70 Hz) and average level of correlations (red line, variance of the network state inferred

by GPFA) for the same sessions. Both quantities are normalized by the session average. E,
Population analysis. LFP power ratio versus overall correlation (variance of network state

inferred by GPFA) in 20 separate blocks per recording (27 recordings in total, i.e. n = 540).

Both quantities normalized by the session average for each session. One outlier cropped for

clarity.
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