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Hamiltonian structure of the fluid electron temperature
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Electron temperature gradient (ETG) driven turbulence can be simply described via reduced fluid
equations. In this study, we describe the Hamiltonian structure of the simple curvature-driven ETG
model, which is similar to the thermal Rossby wave model studied in atmospheric turbulence.
Together with the Hamiltonian that is conserved, another constant of the motion has been
identified. © 2004 American Institute of Physics. [DOI: 10.1063/1.1632497]

The electron temperature gradient (ETG) driven mode'?

has been introduced as a quasi-fluid electron mode with dy-
namics akin to ITG® (i.e., ion temperature gradient driven
mode, but with &k, p;>1, i=ny+e®/T;). Recently, it has
attracted attention because of its potential to explain the high
levels of electron thermal transport that are being observed in
transport barrier plasmas. The simplest model of toroidal
ETG consists of a Hasegawa—Mima style vorticity equation
coupled to the advection equation for the electron tempera-
ture, with constant background gradients:

(0,+2XV®D-V)(1=VH)D+9 (P+P)+vViD=0,
(1)
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In these equations, dimensionless drift wave variables are
used such that
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where 7=T;/T,. Notice also that by replacing €,;,—€,;(1
—€p/€,;) in the scalings above, one may obtain a model,
which takes into account the effect of curvature drift on the
scalar potential as well. This does not affect the form of the
resulting equations [i.e., (1) and (2)].

Here we do not discuss the derivation of these equations.
It is apparent, however, that this is a simplified model, with
constant local background gradients and no magnetic fluc-
tuations. Toroidal effects are modeled by a constant curva-
ture drift vp , and v ; and v, are ion and electron diamag-
netic drifts. The ion response is assumed to be completely
adiabatic. For the inviscid limit of the model, we can write
the equations in the form:
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where {a,b}=2XVa-Vb is the Poisson bracket, and (1
=Vl is defined as (1-V?)~'(1-V?*a(x)=a(x). For
sinusoidal basis functions that are relevant for periodic do-
mains, this operator can be represented by the kernel,
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The ETG model has a symplectic Hamiltonian structure
similar to that of the Hasegawa—Mima (HM) equation 4
To show this, we start by defining the basis kets and bras
as

. (al=(a;.a;)
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and proceed with the inner product on the Hilbert space P:
(a|b>=2 f aigij(bj)dzxs (5)
ij

where g;; plays the role of a metric operator, in analogy with
the metric tensor, which defines the inner product in a similar
manner. For this particular problem the choice

(1-V% 0
g=( 0 _1) (6)

is the logical one. In order to obtain Egs. (3) and (4) we also
need to define the so-called Poisson structure,

_<(1—V2)"{(~),V2®+x}, (1=~ Y().\ra}
- {(Jrx, ()}, {(-).0} ’

where
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Notice that J, is antisymmetric with respect to the defined

inner product (ie., (a|/,(b))=—(b|J,(a))), and satisfies

the Jacobi condition. Indeed the metric is chosen as in (6), so

that the Poisson structure is antisymmetric. The Hamiltonian
p2

P2+ VP2— 7) d*x (7)

H= %<X|X>:%f

yields the equations of motion in symplectic form:
o= 2
X = X 5Xj .

Notice that the Hamiltonian as defined in (7) is an integral of
motion, which can be illustrated in a simpler way by multi-
plying Eq. (1) by ® and Eq. (2) by —P/r and adding, to
obtain
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Here the first two terms are the usual potential and ki-
netic energy terms corresponding to the HM equation. The
last term is an additional pressure contribution to the poten-
tial energy. The minus sign in front of this term is a mani-
festation of the fact that the model has unstable solutions (in
that case, both ® and P grow in such a way that the total
Hamiltonian remains constant). The Talanov theorem® pre-
dicts wave collapse in nonlinear Schrodinger-type equations
when the total Hamiltonian is negative. For this model, the
higher order nonlinear Schrodinger equation,® that is derived
with a reductive perturbation expansion, has the effective
Hamiltonian (to second order in the expansion parameter )
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Here dy acts on w(k) and ® and P are related to d(x)
through the mean field equations in which the average Rey-
nolds stress generated by the fluctuations drive the mean

fields [e.g., PxzxXk-V(|®|?)]. The form of this Hamil-
tonian is the same as the second order approximation to the
average of the exact Hamiltonian given above, although the
coefficients are calculated using conventional perturbation
methods instead of directly expanding the metric and the
Poisson structure, as well as the Hamiltonian. The coeffi-
cients in front of the mean fields are positive for both
branches. However, the dispersion effects [e.g., dw(K)] are

mainly negative for the dominant branch. The |®|? term that
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comes from {®,V2®} nonlinearity acts to reverse the sign of
the Hamiltonian from its linear value and thus is the source
of wave collapse.

There is, however, another constant of motion, which
may be of special interest as a check on numerical calcula-
tions. This can be derived by multiplying Eq. (1) by P and
Eq. (2) by ®—V2®+ P/r and adding to obtain:
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This is an additional conservation law, which implies that the
integral,
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over the whole domain, is an exact and independent con-
served quantity of the ETG model if the flux terms vanish on
the boundary. It may be speculated that this second integral
of motion is related to the enstrophy generated by the pres-
sure dynamics.

In this Brief Communication we have investigated the
Hamiltonian structure of the simple slab model of toroidal
ETG. We have derived the symplectic Hamiltonian equations
of motion, and found the form of the Hamiltonian. These can
be used to calculate the multiple wave coupling coefficients
corresponding to the particular model, more easily. Although
everything that can be done with the symplectic equations
can also be done with standard reductive perturbation meth-
ods, it provides a compact reformulation of the problem
which may be useful. Naturally, the total Hamiltonian that is
found is an integral of motion of the model equations as
well. The Hamiltonian can be negative (or have opposite sign
from its linear value) if the initial mean fields are sufficiently
high. This indicates the possibility of wave collapse, from
the Talanov theorem point of view. We have also found an-
other independent integral of motion, which can be used to
check numerical calculations.
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