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ABSTRACT OF THE DISSERTATION

A Quantitative Seismic Behavior Assessment of Buried Structures

by

Wenyang Zhang

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Los Angeles, 2019

Professor Ertugrul Taciroglu, Chair

This dissertation is focused on quantitatively investigating the nonlinear seismic behavior

assessment of underground structures, by performing high-fidelity SSI analyses. Specifically,

several computer codes are developed for forward simulation of wave propagation in both two-

(plane-strain) and three-dimensional semi-infinite heterogeneous solid media. (i) a multi-

axial bounding surface plasticity model is implemented, calibrated and validated through

centrifuge test data, to consider the soil nonlinearities (ii) the domain reduction method

(DRM) is implemented for both 2D and 3D domains, homogeneous and heterogeneous media,

vertical and inclined incident SV waves, to consistently prescribe the input motions in a

truncated domain and (iii) perfectly matched layer (PML) is implemented for both 2D and

3D domains, to absorb the outgoing waves super efficiently.

By using the aforementioned numerical tools, multiple studies on seismic behavior as-

sessment of underground structures are performed.

1. Development of validated methods for soil-structure analysis of buried structures.

State-of-the-art versions of these simplified methods of seismic analysis for buried/embedded

structures were most recently articulated in the “NCHRP 611” report, and comparisons

of their predictions to experimental data are made in the present study in order to es-

tablish the validity (or lack thereof) of this method. Experiments comprises centrifuge
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tests on two specimens—one relatively- stiff rectangular and one relatively-flexible cir-

cular culvert—embedded in dense dry sand. Comparisons of experimental data are

also made with predictions from a calibrated two-dimensional (plane-strain) finite el-

ement (FE) model. Predictions made using this FE model are superior and exhibits

acceptable errors.

2. Parametric studies of buried circular structures and a proposed improvement of the

NCHRP 611 method. The NCHRP 611 method has been widely adopted as a guide-

line in the analysis design of buried/embedded structures due to its computational

simplicity and broadly accepted accuracy for simple soil-structure configurations. How-

ever, the method is not without shortcomings. In particular, the NCHRP method is

not sensitive to the inherently broadband frequency content of seismic input excita-

tions, soil heterogeneities, and potential kinematic interaction effects. The present

study seeks to quantitatively assess the brackets of the validity of the NCHRP 611

method—specifically, for soil-structure analyses of buried circular structures, and of-

fers an improvement that is simple to implement. This is achieved through parametric

studies using detailed nonlinear finite element simulations involving a broad range of

ground motions, and soil and structural properties. The simulations are carried out

with a model that has been validated in a prior centrifuge testing program on embedded

structures. A refined version of the NCHRP 611 method, which uses maximum shear

strains obtained through one-dimensional site response analyses, is shown to produce

fairly accurate results for nearly all of the different cases considered in the parametric

studies.

3. Fragility-based seismic performance assessment of buried structures. Fragility-based

seismic performance assessment and design procedures are being refined and adopted

for many civil structures. With recent advances in computational capabilities as well as

broad improvements in ground motion characterization and inelastic modeling of struc-

tural and geotechnical systems, large-scale direct models for underground structures—

e.g., tunnels, water reservoirs, etc. —can now be devised with relative ease and de-
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ployed in engineering practice. In this study, a fragility-based seismic performance

assessment of a large buried circular culvert is presented. Existing documents/codes

are used to define the performance criteria and develop fragility functions through a

Probabilistic Seismic Demand Analysis (PSDA) procedure. The analyses incorporate

nonlinear behavior of soils and structural components, various soil layer profiles and

account for uncertainties in the expected ground motions.
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CHAPTER 1

Introduction

1.1 What is soil-structure-interaction (SSI)?

Almost all civil structures have foundation/support elements that either rest on, or are

embedded in, soil. Because of complexities in modeling the mechanical behavior of soils, and

the high degree of uncertainty and variability in their properties, it is not uncommon among

structural engineers to completely ignore their response and effects on the structure, and to

simply assume that the base of the structure is rigid. This simplistic approach—wherein the

soil-structure-interaction (SSI) effects are unaccounted for—might yield acceptable designs

for certain cases (e.g., lightweight structures on rock or stiff soils), but can also bear perilous

consequences under extreme loading events such as earthquakes [5].

Different types of agents—e.g., rotating machinery, earthquakes, traffic, etc.—excite a

structure. Depending on the nature of the loading, the ensuing structural vibrations result

in time-harmonic or time-varying tractions at the soil-structure interface. These tractions

will cause further deformations within the structure due to the soil’s flexibility, which may

reach significant levels under certain combinations of soil’s and structure’s properties (e.g., a

massive structure resting on soft soil) [6]. On the positive side, the surrounding/supporting

soil transmits energy away from the structure in the form of outgoing elastic waves. The

amount of this radiated energy depends, to a large extent, on the soil profile and properties

[5].
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1.1.1 Kinematic versus inertial SSI

Soil-structure interaction (SSI) effects generally have two fundamental mechanisms—namely,

kinematic (KI) and inertial (II) interactions. Differences in motion between the free-field

soil and the foundation system in the absence of excess or deficient mass between the two

that are due to their stiffness contrast are collectively referred as kinematic interaction (KI)

effects. Inertial interaction (II) effects are, therefore, complementary, and are concerned with

the soil reactions that develop to resist inertial forces associated with accelerations of the

foundation-structure system relative to the soil.

More specifically, kinematic interaction generally results from (i) base-slab averaging, (ii)

deconvolution/embedment effects, and (iii) wave scattering effects. The base-slab averaging

effects result from wave fields which have an angle of incidence relative to the vertical, or

which are incoherent in time and space, so that the motion of a rigid surface foundation

differs from the free-field motion [7]. Such effects can reduce the base-slab translation, the

but introduce the torsion and rocking, and tend to become more significant with increasing

frequency [8]. The presence of embedded foundations can reduce the variation of ground

motion with depth, and hence such so-called embedment effects make the ground motion

amplitude decreases with depth [9, 10, 11]. The wave scattering effects are due to the

scattering of seismic waves off of corners and asperities of the foundation.

As for inertial interaction, the inertia developed in the structure due to its own vibrations

gives rise to base shear and moment, which in turn cause displacements of the foundation

relative to the free-field motion. The impedance function, which represents the dynamic

stiffness and damping characteristics of foundation-soil interaction, is used to relates the

forces (e.g. base shear and moment) at the base of the structure to the displacements and

rotations of the foundation relative to the free-field. The components of the impedance

function are complex-valued and frequency dependent. A number of analytical and semi-

analytical impedance functions are developed, many of which are summarized in [12].
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1.1.2 Surface structures versus underground structures

The SSI effects are different for surface and underground structures. The kinematic compo-

nent is generally considered to be more significant for underground structures due to their

modest mass and their confinement by soil. The focus of underground seismic design, there-

fore, is on the free-field deformation of the ground and its interaction with the structure [13].

However, for the surface structures and superstructures, owing to their enormous mass and

significant height, the SSI effects are dominated by inertial interaction effects. In this sense,

an accurate impedance function is crucial for modeling the SSI effects of surface structures.

1.1.3 Is neglecting SSI effects always beneficial?

Analysis and design guidelines on SSI had first been developed in the U.S. by the Applied

Technology Council [14]. In these provisions, the effects of SSI were accounted for by increas-

ing the fundamental-mode period of the fixed-base structure and by modifying the system

damping ratio, to take the effects of soil flexibility and energy radiation into account, re-

spectively. These recommendations were barely used in practice, since it was assumed that

the nominal seismic demands specified in code provisions would already led to safe designs.

However, later studies would show that ignoring the effects of SSI is not always a safe route,

and would indicate the need for more comprehensive studies (see, for example, [6]).

1.2 How to model SSI effects?

1.2.1 Simplified approaches

In engineering practice, common approaches (e.g., NIST approach[15] and ASCE 7-10[16])

for superstructures that take the effects of SSI into account are typically based on modifying

the dynamic properties of the fixed-base structure by attaching representative soil springs

and dashpots at the base of the structure or giving a direct reduction for base shear force,

and modifying the input motion or modifying the shapes of the superstructures. However,
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reliability of these simple models is still questionable [17]. The main drawback of these

methods is their inability to include frequency-dependency of the soil impedance functions.

This oversimplification, though acceptable for time-harmonic analysis, may not be reasonable

for design of structures against time-varying non-stationary loads such as seismic excitations.

This is especially true for problems that variation of soil impedance functions is appreciable

in range of frequencies where frequency content of the input ground motion is high, as well.

As for underground structures, current seismic design practices—articulated in, for exam-

ple, the NCHRP Report 611 [18]—are based on the procedures proposed by [19] for circular

and rectangular buried structures. The method is derived based on the assumptions that (i)

the entire system is linear elastic (ii) the structure is embedded in a full-space homogeneous

soil media (iii) uniform shear stress is statically applied at infinity and (iv) the soil-structure

interface is either full-slip or no-slip. Then the analytical solutions are devised based on lin-

ear elasticity theory and Airy’s function to compute the seismic bending moments and hoop

forces in circular structures. And for rectangular structures, on the other hand, are based

on static frame analysis.

1.2.2 Approaches based on reduced order models (substructure method)

Apparently, it is not possible to discretize the semi-infinite soil domain with a finite number

of elements; and thus, it is necessary to truncate it by introducing appropriate boundary

conditions. For an exact representation of the omitted domain—dubbed the far-field—, the

introduced fictitious boundaries on the computational domain (the near-field) must have the

ability to transmit the energy of the outgoing and incoming waves perfectly1.

In problems where the source of excitation is inside the near-field, all waves impinging

upon the fictitious boundaries are outgoing; and the inserted boundary condition must absorb

the energy of these outgoing waves through the, so-called, absorbing-boundary-conditions

(ABCs). On the other hand, for problems where the source of excitation outside the near-

1In this text, the terms ’outgoing’ and ’incoming’ refer to wave-fields within the near-field.
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field, the forged boundary conditions must not only absorb the energy of the outgoing waves

but also be transparent to all incoming waves. The latter device is usually referred to as

an open-boundary-condition (OBC). The modified direct modeling method is described in

Fig. 1.1. The undamped regular domain (Ω0) is truncated by PMLs, which serve as the

ABCs.

n

n

Γfree

Γfixed

Γfixed

ΩPML

Γload

Ω0
ΩPML

ΩPML

Ω :The entire domain

Known displacement

x
2

x
3

n

Figure 1.1: The problem geometry and boundary conditions.

The first ABC was introduced by [20]. Though exact for waves with normal incidence,

the Lysmer and Kuhlemeyer (LK) ABC cannot absorb inclined incident waves totally, which

results in trapping of energy inside the near-field. Since then, different ABCs had been

formulated with the aim of improving the effectiveness in absorbing the radiation energy.

Some methods had also aimed to extending the application of ABCs to problems where the

excitation source is in the far-field (e.g., seismic excitations).

Although domain truncation together with insertion of an appropriate boundary condi-

tion reduces the order of the original problem, it is still computationally expensive and is

rarely used in engineering practice. Therefore, it is desirable to entirely avoid the discretiza-

tion of the soil domain by defining the near-field boundaries at the soil-foundation interface.

This approach, which is known as the substructure method, is described in Fig. 1.2 and 1.3.

For problems where the foundation of the structure is fairly rigid, the substructure

method reduces the order of the model significantly by restricting the degrees-of-freedom
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(1) structure and near-field soil

(2) far-field soil

coupling interface

(a) decoupled components

ABCs (truncated far-field soil)

jump condition	


(effective input motion)

discretized near-field

(b) coupled structure-near-field-ABC system

Figure 1.2: Sub-structuring view of direct SFSI analysis

(1) structure

(2) soil

coupling interface

(a) decoupled components

soil impedance function

foundation	


input motion

(b) coupled structure-soil-impedance system

Figure 1.3: Sub-structuring view of substructure SFSI analysis
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(DOFs) of the soil domain to those of the foundation2. However, it requires defining an

appropriate Dirichlet-to-Neumann (DtN) map at the soil-foundation interface, which relates

the interacting force and displacement components. Moreover, in cases where the source of

excitation is within the soil medium—e.g., seismic excitations—the input motion at the soil-

foundation interface—a.k.a. the foundation input motion, or FIM—may be different from

the so-called free-field motion. This is mainly because of the so-called “base-slab averaging”

effects, and requires the free-field motion to somehow be transformed into an approximation

of the (true) foundation input motion [21]. Starting as early as 1960s, a fairly large number

of studies focused on deriving appropriate DtN-maps in the frequency domain [22]. These

DtN-maps are better known as “soil impedance functions,” which are frequency-dependent

and complex-valued functions that represents the stiffness and radiation damping at the

soil-foundation interface.

For linear SSI analysis it is convenient to solve the problem in the frequency domain,

using the soil impedance functions and the modified input motion, together with dynamic

characteristic of the structure. While the use of impedance functions in linear SSI analyses

are quite straightforward, they cannot be used—at least, directly—in nonlinear SSI analysis,

even for cases where only the structural components are behaving nonlinearly. This is

because it is not possible to solve nonlinear problems in the frequency domain. Therefore, soil

impedance functions must be transformed into the time domain, where we can approximate

each impedance function as a ratio of two complex polynomials that could subsequently be

incorporated into the system’s equations of motion as a recursive discrete-time digital filter.

The use of inverse Fourier transform techniques results in integro-differential equations,

which in turn leads to exact representation of impedance functions in time. However, it is

typically more appealing to deal with differential equations in time. This is mainly because

these equations can be solved using standard numerical schemes, such as the standard finite

element or finite difference methods. In some cases, it is possible to represent SSI effects by

2These are typically the rigid body modes of the foundation—e.g. the lateral, vertical, and rocking DOFs
of the foundation for two-dimensional problems.
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appropriate arrangements of discrete elements—viz., masses, dashpots, and springs [23]. A

third alternative is to approximate the original impedance function with another approximate

transfer function, using the concept of rational approximations [24]. The resulting DtN-map

has the advantage of being represented in time as a differential or difference equations, and

in simple cases being represented as discrete mechanical models [25, 26, 27, 28, 29].

1.2.3 Continuum approaches (direct method)

One classical continuum approach to take the effects of SSI into account is to use the finite

element method (FEM) to model a portion of the supporting/surrounding soil media along

with the structure. This approach is known as the direct modeling [5, 30] method. Figure 1.4

displays schematically the direct modeling of a semi-infinite domain problem in the context

of soil-structure-interaction.

incoming waves

outgoing waves

inside excitation

outside excitation

boundary condition

near-field

(truncated) far-field

mesh grid

tunnel

Figure 1.4: Schematic direct modeling of soil-structure interaction problem

Direct modeling of SSI problems usually suffer from defining inappropriate absorb bound-

ary conditions and input ground motions [31, 32, 33]. In order to increase the modeling

accuracy, a large extent of the soil domain has to be discretized, and this is usually fatal

because of the high level of computational effort required [34]. On the other hand, to date,

impedance functions and foundation input motions are only forged for simple foundation

shapes and soil profiles, which limits their usefulness in substructure modeling of SSI prob-

lems. Moreover, in almost all studies to date, it is assumed that the foundation behaves
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rigidly, and a only few studies have addressed the effects of foundation flexibility (see, for

example, [35, 36, 37, 38, 39]). Furthermore, despite the appealing characteristics of the

substructuring approach, the path extend it to problems featuring near-field irregularities

and/or nonlinearities is not very clear. In addition, even for cases where only the struc-

tural components behave nonlinearly, time domain representations of elastic soil impedance

functions—which may be in scalar or matrix form—is not a straightforward task, and may

suffer from numerical instability issues [24, 40].

1.3 Methods for SSI analysis of buried structures

Seismic response of underground structures is a complex soil-structure interaction (SSI)

problem. Limit equilibrium methods [41] are not appropriate for the seismic design of buried

structures because their formulation does not reflect the SSI processes that are responsible for

the formation of interface pressures. As such, a number of researchers [19] proposed pseudo-

static deformation-based approaches to take the effects of SSI into account for the seismic

design of underground structures, followed by [42] and [13]. In the said approaches, analytical

elasticity-based formulations are provided to compute the seismic bending moments and

hoop forces in circular structures. Methods proposed for computing internal seismic forces

for rectangular structures, on the other hand, are based on static frame analysis.

More recently, [43] presented a finite element approach to obtain the seismic responses of

buried culverts and cut-and-cover tunnels, by specifying quasi-static displacement profiles at

the soil boundaries. These profiles taken as the products of free-field ground strains and the

height of the modeled soil domain. As a result, the frequency content of the ground motion—

which, in turn, controls the wavelength—is indirectly represented in these methods through

their impact on the shear strain. It should be noted that pseudo-static methods described in

[19] and [13] are very similar to the implementation in [43], so these are conceptually similar

methods.

Limitations of the aforementioned methods are manifold: (1) They do not directly ac-
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count for the broadband frequency content of seismic input excitations, as it is now well

understood that seismic earth pressures vary with excitation wavelength [44]; (2) By con-

ditioning the analyses on shear strain, their results are impacted by the challenges and

limitations of 1D ground response assumption [45]; (3) The shear strain field is taken as uni-

form over the height of the buried structure, which may not be a valid assumption depending

on the frequency of the seismic excitation, size of the underground structure, heterogeneity

of the soil profile, and the mode of free-field wave. Finally, (4) these methods do not con-

sider the relative inertia that can develop between the buried structure and the soil (that is,

negative inertia that is caused by the culvert’s empty space).

1.4 Research Objectives

The studies of seismic response assessment of buried structures, as well as the effects of

soil-structure interaction on buried structures have been trending research topics in last few

decades. Direct modeling of SSI problems usually suffer from defining inappropriate ABCs,

input ground motions and constitutive models [46, 47, 48]. On the other hand, to date,

impedance functions and FIMs have been devised only for simple foundation shapes and

soil profiles, which limits their usefulness in substructure modeling of SSI problems. The

objective of this work, therefore, is to devise and combine the validated nonlinear soil model

and advanced reduced order tools for SSI problems, and hence to comprehensively study the

seismic response behavior of underground structures, and finally provide recommendations

to improve the validity and accuracy of design methods used in engineering practice.

1.5 Organization of this document

The remainder of this document is organized as follows:

Chapter 2 provides a more detailed overview of the state-of-the-art nonlinear soil mod-

els, and the model adopted in this study, and corresponding calibration and validation of

that model by using centrifuge test data.
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Chapter 3 presents the formulations, verification studies and applications of the imple-

mented reduced order modeling tools—i.e., domain reduction method (DRM) and perfectly

matched layer (PML)—for time domain SSI analysis.

Chapter 4 compares the experimental findings with the design method described in

NCHRP Report 611 and the calibrated numerical models, in order to develop validated

methods for SSI analysis of buried structures.

Chapter 5 contains parametric studies of buried circular structures using detailed non-

linear finite element simulations involving a broad range of ground motions, and soil and

structural properties.And it seeks to quantitatively assess the brackets of the validity of the

NCHRP 611 method, and offers an improvement that is simple to implement.

Chapter 6 describes the fragility-based seismic performance assessment of buried cir-

cular structures. Fragility curves are developed through a Probabilistic Seismic Demand

Analysis (PSDA) procedure, from hundreds of nonlinear time history analyses, by using

validated nonlinear soil and structural models, and DRM and PML.

Chapter 7 concludes this document by providing a roadmap for the conducted research

ahead.
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CHAPTER 2

Modeling the soil nonlinearity

Studies of seismic site response analysis have been continuously probed over the last half

century and have revealed and demonstrated the importance of accurately modeling the

soil behavior under seismic motions. Also, studies of soil behavior have indicated that soil

behavior is highly nonlinear and hysteretic even under very small strains.

In the late 1960’s, [49] published a pioneering paper proposing an equivalent linear model

where using a linear spring and a dashpot to represent the function of shear modulus and

damping, respectively, which is considered as the cornerstone of technique of modern seis-

mic site response analysis. Then, [50] proposed a computer program, SHAKE and utilized

frequency domain to conduct the response analysis. During a very long time the frequency

domain methods are more popular because they are easy to be implemented, their compu-

tational cost is pretty low, and because of their robustness and flexibility.

The most widely used frequency domain method to analyze the soil behavior is the

equivalent linear method, which is proposed by [51] that relates the ratio of effective shear

strain to maximum shear strain (Rγ) with the earthquake magnitude (M) is common used

in Eq. (2.1).

Rγ =
M − 1

10
(2.1)

To finally determine the maximum level of strain in each layer of the soil, this equivalent

linear method needs to be implemented iteratively. The first step is to make an initial

guess for soil stiffness and damping properties for each layer, then perform a shear wave

propagation analysis. Hence the values of strain obtained, while corresponding stiffness and
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damping properties need to be updated based on the strain by multiplying the maximum

strain at each layer by Rγ. The procedure will be done iteratively until maximum strain

for all layers converge for two consecutive iterations. An example of the equivalent linear

iterative procedure is presented in Fig. 2.1.

Figure 2.1: Equivalent Linear iterative procedure a) Modulus reduction curve, b) Damping
curve

Some researchers observed that for sites with soft soil or sites under strong seismic mo-

tions, the equivalent linear method doesn’t show enough accuracy when compared with

recorded data. [52] and [53] extended the stiffness and damping properties with frequency

dependency. [54] conducted a series of site response analysis with modified equivalent linear

method to observe and characterize the effect of the rate-dependent soil behavior. Conclusion
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has been drawn that the rate-dependence on soil behavior is inconspicuous.

2.1 State-of-the-art in nonlinear soil models for SSI

Even at very small strains, soil nonlinearities appear. Thus incorporating the soil nonlin-

ear behavior is very important for SSI problems. To numerically simulate the soil non-

linearities, modeling soil behavior under cyclic/dynamic loading becomes crucial in most

geotechnical earthquake engineering problems, especially for site response analysis and SSI

problems. In last decades, a broad range of simplified and advanced, one-dimensional and

three-dimensional soil constitutive models have been developed and applied in SSI problems.

Due to the complexity of the soil behavior, such as nonlinearity, irreversibility, anisotropy,

rate-sensitivity, path-dependence, pore water pressure generation, dilation, etc. An advanced

soil model that can capture as many soil characteristics as possible is preferred.

2.1.1 Models for one-dimensional site response analyses

In last a few decades, 1-D nonlinear soil models are widely used in 1-D site response anal-

yses and SSI problems because of its simplicity of computer implementation and durable

accuracy. [55] proposed a plastic soil model that includes both drained and undrained,

anisotropic, path-dependent stress-strain properties of saturated soils. [56] proposed a con-

stitutive model for nonlinear 1-D cyclic soil behavior applied to seismic analysis of layered

deposits. [57] devised an one dimensional nonlinear soil model for ground response analysis

that can perfectly fit both shear modulus reduction and damping ratio curves.

The most widely used 1-D nonlinear soil model for current studies is a hyperbolic model,

the modified Kondner-Zelasko (MKZ) model ([58]). The hyperbolic model can be described

by using two sets of equations; the first equation - known as the backbone - decribes the

stress-strain relationship for load; the second equation defines the stress-strain relationship

for unloading-reloading conditions. Eq. (2.2) and Eq. (2.3)
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τ =
γ ·G0

1 + β( γ
γr

)s
(2.2)

τ =
2 ·G0 · (γ−γrev2

)

1 + β(γ−γrev
2·γr )s

+ τrev (2.3)

Where γ is the given shear strain, γr is the reference shear strain, β is a dimensionless

factor, G0 is the maximum shear modulus, and s is a dimensionless exponent.

Later [59] demonstrated that the confining pressure is also one of the impact factors.

The greater confining pressure results a less shear modulus reduction (G/Gmax and a smaller

strain damping ratio. Based on this idea, [60] proposed a new model introducing a parameter

- damping reduction factor - to accurately mimic the soil behavior. Eq. (2.4) presents the

function of the damping reduction factor.

F (γm) = p1 − p2

(
1− Gγm

G0

)p3

(2.4)

Where p1, p2, p3 are non-dimensional parameters selected to obtain the best possible fit

with the target damping curve. By introducing the parameter, [60] proposed a modified

model based on the MKZ model, which is proved to be able to fit both shear modulus

reduction and damping curves very well. The following equations, Eq. (2.5) and Eq. (2.6)

describe the modified loading/backbone curve and unloading/reloading curve, respectively.

τ =
γ ·G0

1 + β( γ
γr

)s
(2.5)

τ = F (γm) ·
[

2 ·G0 · (γ−γrev2
)

1 + β(γ−γrev
2·γr )s

− G0 · (γ − γrev)
1 + β(γm

γr
)s

]
+
G0 · (γ − γrev)

1 + β(γm
γr

)s
+ τrev (2.6)

One-dimensional constitutive models still have some drawbacks that may lead to huge

inaccuracy when doing multi-dimensional site response analyses or SSI problems. The main

disadvantage of 1-D models is the disability to reproduce a sound coupled multi-axial behav-
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ior when external loadings are multi-axial instead of one-dimensional, which is more than

general in real world.

2.1.2 Models for continuum (3-D) analyses

Referring to the observations of 1-D nonlinear soil models, it’s necessary to develop a multi-

dimensional (3-D) nonlinear material model. In past decades, lots of researchers made great

contributions to it. [61] proposed a simple plastic model that can be applied to frictional

cohesionless soils. [62] developed a hypoplastic model that can handle very complex loading

conditions. [63] showed a multiaxial plastic model vanished the elastic region, where plastic-

ity can emerge even under low strains. [64] proposed a two-surface plasticity (yielding and

bounding) model that can reproduce the sands behavior under either undrained or drained

loading conditions. [65] came up a multi-surface plasticity model with a non-associative flow

rule that can incorporate the dilative response phase of soils.

An example of advanced nonlinear soil models is the multi-surface constitutive model de-

vised by Elgamal and co-workers [66]1—a.k.a., the pressure-dependent multi-yield (PDMY)

model—, which is frequently used in direct simulation of SSI problems within the research

community. The main advantage of this model is that its many hierarchical yield surfaces

enable it to approximate soil behavior within a broad range of strain regimes including post-

liquefaction, but this is also a disadvantage in that the large number of requisite model

parameters renders the calibration process formidable [67].

2.2 The Borja-Amies nonlinear soil model

A model with a simpler scaffold is that by Borja and Amies [63], which was later extended by

Chao and Borja [68]. This is also a multi-surface model, but it has only a bounding surface—

which can translate in stress-space through the extension proposed in [68]—in addition to

a vanishing elastic region. Incidentally, it needs just a few parameters for calibration. The

1This model is, in fact, an extension of that devised by Prévost in 1985 [61].
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validity of this model was previously examined by utilizing the downhole array motions

recorded at Lotung, Taiwan through one-dimensional nonlinear site response analyses [69].

Due to its mathematical/thermodynamical consistency and relative simplicity, this model

by Borja and co-workers holds great promise in capturing the multi-axial behavior of soil

deposits in general wave propagation problems. While soil behavior in one-dimensional

settings—especially for vertically propagating horizontally-polarized shear waves—have been

well understood, and numerous models have been devised and validated (see, for example,

[70]), models that can capture soil behavior in more general settings are needed to extend

the present capabilities in SSI analyses beyond this simplest configuration (for example, to

consider inclined waves from a distant source, surface waves, waves emanating from a buried

scatterer, waves propagating in non-horizontally layered media, etc.).

In this chapter[71], we explore the capabilities of Borja and co-workers’ model [63, 68, 72].

in capturing the dynamic responses measured during a centrifuge test, wherein multi-axial

stress conditions were generated due to the presence of an embedded scatterer. These tests

were conducted by Hushmand et al. [73] at the University of Colorado Boulder to investigate

the seismic performance of relatively stiff structures buried in dry sand.

In what follows, we first derive the consistent tangent operator of Borja’s model for

the multi-axial case, and implement it as a user-defined material subroutine (UMAT) in

ABAQUS [74]. For verification, we make comparisons of one-dimensional (1D) wave prop-

agation analysis results with those obtained using with DEEPSOIL [75], which is a site-

response analysis software that features well-accepted 1D model(s) of the hysteretic behavior

of well-confined soils under low-to-moderate (shear) strains, (see, for example, [58]). Next,

we explore the capability of this soil model in predicting responses measured during the tests

by Hushmand et al. [73]. In this, we also make comparisons with numerical results obtained

by Deng et al. [76] and Esmaeilzadeh Seylabi et al. [77], who used the PDMY [66] and

equivalent linear soil models, respectively.
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2.2.1 Formulation

It is well known that soil nonlinearity comes into effect even at very small strain levels

[78] and that omission of such nonlinearities may result in significant errors in free-field (and

thus, foundation input) motions in SSI analyses [70]. In the present study, we implement and

validate a multi-axial viscoplastic soil model with a vanishing elastic region and coupled fully

nonlinear behavior [72]. This constitutive model is a minor extension of the model proposed

by Borja and Amies [63]—in that, it features a material-point-level stiffness-proportional

viscous damping. A summary formulation of this model, which include its fourth-order

consistent tangent material tensor, are presented next.

The total stress tensor σ of the model consists of two major—namely, the inviscid (σinv)

and the viscous (σvis)—parts, as given by

σ = σinv + σvis (2.7)

where

σinv = Ce : (ε− εp),

σvis = D : ε̇,
(2.8)

and Ce and D are elastic stiffness and viscous damping tensors, respectively; ε is the total

strain tensor; εp is the plastic strain tensor, and ε̇ is the total strain rate. In this study, a

linear stiffness-proportional damping is adopted [72], which can be devised by defining D as

D =
2ξ0

ω0

Ce (2.9)

where ω0 is the frequency at which the small strain damping ratio is equal to ξ0; and the

term ω0 can be calibrated to match the dominant frequency of the input motion.

To achieve an optimal rate of convergence for Newton’s method, the consistent tangent

moduli are required [79]. For their model, Borja et al. [80] derived this fourth-order tensor

18



as,

C inv
ep =

dσinv
n+1

dεn+1

= K1⊗ 1 + ψIdev +
∂ψ

∂εn+1

⊗∆ε′ (2.10)

where Idev = I− 1
3
1⊗ 1, is the deviatoric identity tensor and K is the bulk modulus. The

parameter ψ is defined through the equation ∆σ′ = ψ∆ε′, where ∆σ′ and ∆ε′ denote the

deviatoric stress and strain increments, respectively. Further details of derivation are omitted

here for brevity, and may be found in [63, 72, 80].

As seen, the third term on the right-hand side of Eq. (2.10) renders C inv
ep non-symmetric

in general. However, as demonstrated by Borja and Wu [80], the symmetric part of this

consistent tangent stiffness tensor is often efficient enough to produce accurate solutions

at superlinear convergence rates. Incidentally, a symmetric tangent also facilitates signifi-

cant savings in memory requirements as well as in flops for solving the system-level linear

equations.

After incorporating the viscous stress and by using the forward-difference method to

approximate the total strain rate, we can derive from Eqs. (2.8) and (2.9)

σvis
n+1 = Cvis

ep : dεn+1 =
2ξ0

ω0

Ce : ε̇n+1 =
1

dt

2ξ0

ω0

Ce : dεn+1 (2.11)

which yields,

Cvis
ep =

1

dt

2ξ0

ω0

Ce (2.12)

By only retaining the symmetric part of the consistent tangent of Borja’s model, we obtain

the total consistent tangent stiffness moduli as,

Cep = C inv
ep,symm +Cvis

ep = K1⊗ 1 + ψIdev +
1

dt

2ξ0

ω0

Ce (2.13)

where dt is the time increment chosen for the approximation of ε̇n+1.
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2.2.2 Model calibration

For nonlinear soil models, the computational cost and mathematical difficulties associated

with the calibration of the model parameters often critically affect their application in prac-

tical engineering problems. This is especially true for models featuring a large set of phe-

nomenological parameters, which, in turn, require a large set of case-specific experimental

data for calibration.

The present soil model has only a few parameters, yet it can effectively reproduce the

key soil behavior attributes such as stiffness degradation and damping curves over a wide

range of strains. As shown in [72], the main equation to calibrate the soil parameters is,

G

Gmax

= 1− 3

2γ0

∫ 2τ0

0

[
h

(
R/
√

2 + τ0 − τ
τ

)m
+H0

]−1

dτ (2.14)

where G = τ0/γ0 is the secant shear stiffness, and R is the radius of the bounding surface.

Parameters h, m and H0 control the intensity of the hardening. Given this equation, as will

be demonstrated subsequently in detail, it is possible to use a nonlinear solution method—

here, Broyden’s [81]—and an appropriate initial guess, to calibrate the model parameters

h and m from two points on the G/Gmax curve. Alternatively, a nonlinear least-squares

regression can be used to determine the optimal values for h, m and H0, if more than two

points are selected. Matlab [82] scripts for both cases are provided in the Appendix for

the readers’ convenience. Moreover, to facilitate broad use, we implemented all variants of

the model—namely, plastic, viscoplastic, with symmetric or non-symmetric tangent, plane-

strain, axisymmetric, and three-dimensional—in the commonly used commercial finite ele-

ment analysis software ABAQUS [74], through its user-defined material (UMAT) subroutine

interface.

2.2.3 Model verification

Here, the basic model is verified, first by examining its output and parameter-sensitivities

under numerical simple shear tests, and next by comparing its output for a site-response
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analysis with that from DEEPSOIL [75], which is a tool specifically designed for (and limited

to) one-dimensional shear wave propagation.

2.2.4 A simple shear test

Strain-controlled numerical shear tests are carried out with and without the viscous part.

For each test, a sinusoidal loading with the frequency of ω0 = 1 rad/s is applied. Fig. 2.2a

displays the resulting hysteresis loops for different values of ξ0 and maximum shear strain

γmax = 10%. Figs. 2.2b and 2.2c display the resulting normalized shear modulus degradation

and damping curves for γmax ranging from 10−4% to 10%. As seen, depending on the value

of ξ0, adding more viscous damping results in smoother stress-strain curves and more energy

dissipation per loading cycle. On the other hand, viscous damping does not appear to affect,

as expected, the effective secant shear stiffness for this test.

In order to explore the rate of convergence for the symmetric and non-symmetric (i.e.,

full) consistent tangent stiffness moduli, a simple shear test with sinusoidal loading on a unit

cube is carried out. Table 2.1 displays the normalized maximum residual forces obtained

using both moduli, and with and without considering the viscous part, using the Newton-

Raphson method. As these results indicate, although the non-symmetric moduli has a higher

rate of convergence, the symmetric one still converges successfully, and its rate of convergence

is acceptable. Moreover, the use of viscous part improves the rate of convergence, possibly

because the stress-strain curves are becoming smoother with increased damping.

Table 2.1: Normalized maximum residual force for simple shear test.

Plastic only Viscoplastic
Iteration non-symmetric symmetric non-symmetric symmetric

1 1 1 1 1
2 0.039990 0.113682 0.038129 0.111368
3 0.002032 0.030282 0.001851 0.028722
4 0.000304 0.011871 0.000255 0.010915
5 0.000088 0.005332 0.000072 0.004784
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Figure 2.2: (a) Hysteresis loops, (b) normalized shear modulus degradation and (c) damping
ratio curves for Gmax = 20 MPa, ν = 0.3, h = Gmax, m = 1, R = 200 kPa, H0 = 0, ω0 =
1 rad/s, and ξ0 = [0 0.005 0.01 0.03 0.05].
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2.2.4.1 Model verification through one-dimensional nonlinear site response anal-

yses

One-dimensional nonlinear site response analyses are conducted using the implemented non-

linear soil model and the results are compared with those obtained from DEEPSOIL [75],

which is a well-known computer code for site response analysis that features linear, equivalent

linear, and validated nonlinear soil models. Reasonable—and otherwise unremarkable—soil

and model parameters are chosen for the simulations: the height of the soil column is 28.9

m, Gmax = 8 MPa, h = Gmax, m = 0.5, R = 50 kPa, ω0 = 4π rad/s, ξ0 = 1%, and H0 = 0.

Fig. 2.3 displays the acceleration time-series and the 5%-damped spectral accelerations

obtained at the surface of the soil column, which was subjected to a Ricker wavelet [83]

with a central frequency that is equal to the natural frequency of the homogeneous soil

layer considered. Fig. 2.4 displays the results obtained for the same soil column when it is
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Figure 2.3: 1D site response analysis (a) Acceleration history and (b) 5%-damped spectral
acceleration subjected to the Ricker wavelet input.

subjected to an earthquake motion. As seen for both cases, the results of the implemented

soil model are in very good agreement with those obtained using DEEPSOIL, especially after

adding the viscous damping term.
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Figure 2.4: 1D site response analysis (a) Acceleration history and (b) 5%-damped spectral
acceleration subjected to the earthquake input.

2.2.5 Model validation: Nonlinear SSI analyses of centrifuge experiments on

buried structures

Hushmand et al. [73] conducted a series of centrifuge experiments at the University of Col-

orado Boulder to investigate the seismic performance of relatively stiff structures buried in

dry sand. Three different box-shaped specimens were designed to represent the character-

istics of prototype reinforced concrete reservoir structures with varying stiffnesses. Aspect

ratios and dimensions of these structures, as well as their stiff roofs restrained excessive ro-

tational movements and produced significant seismic pressures (and bending strains) on the

walls. Three distinct ground motions were applied to each structure.

Fig. 2.5 shows the centrifuge test layout and instrumentation. The dimensions and prop-

erties of the model structures used for the experiments are provided in Table 2.2. The

material properties of the steel structures were chosen as follows: density, ρ = 7870 kg/m3,

Young’s modulus, E = 200 GPa and Poisson’s ratio, ν = 0.29. The 5%-damped spectral ac-

celerations and Arias intensity time-histories as recorded in the centrifuge test on the flexible

structure are shown in Fig. 2.6.

Deng et al. [76] explored the capability of the so-called PDMY model, which is a pressure-

dependent multi-yield-surface plasticity model, in predicting the response of the specimen
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structures and the far-field soil. The PDMY model has 20 material parameters, great ma-

jority of which are not directly calibrated, but have judiciously chosen “assumed” values.

Using the same test data, Esmaeilzadeh Seylabi et al. [77] explored the range of applicability

of calibrated equivalent linear soil models in capturing the response of the tested structures.

Here, we investigate the capability of the implemented nonlinear soil model in predicting

the response of the tested structures, and also make comparisons to results obtained with

PDMY model by Deng et al. [76] and with equivalent linear models by Esmaeilzadeh Seylabi

et al. [77].

Two-dimensional meshes are used for discretizing tests on the flexible and stiff specimens,

and each mesh comprised 18 soil layers with a uniform element size of 0.25 m to capture

the soil heterogeneity. It should be noted that the element size is selected small enough to

resolve wave propagation in the frequency range of interest. In order to set up the initial

stress condition appropriately, a static analysis under gravity loading is performed prior to

each dynamic analysis. During the static analyses, horizontal degrees of freedom (DOFs) at

the left and right vertical edges of the domain are fixed, and the vertical DOFs are left free.

For the dynamic analyses, the horizontal DOFs at the said edges are slaved to each other

at every elevation—per the boundary condition imposed by the centrifuge’s container—and

the vertical DOFs are considered free.

Table 2.2: Dimensions and properties of model structures in prototype scale.

Thickness Fundamental frequency
Structure Base (m) Roof (m) Walls (m) (Hz)
Flexible 0.5 0.28 0.28 1.9
Baseline 0.69 0.37 0.56 3.9

Stiff 1.46 1.12 1.13 9.1

2.2.5.1 Soil model calibration

In the centrifuge experiments, dry Nevada sand was used, and it had the following material

properties: ν = 0.3, Gs = 2.65, emin = 0.56, emax = 0.84, D50 = 0.13 mm, and Cu = 1.67.

The sand was pluviated inside the flexible shear beam container of the centrifuge such that

25



Figure 2.5: Layout and instrumentation of centrifuge experiments in prototype scale.
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Figure 2.6: (a) 5%-damped spectral accelerations and (b) Arias intensity time histories of
the container base motions recorded for the test on flexible structure.
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an approximately uniform soil layer with a dry unit weight of ρ = 1590 kg/m3, or a relative

density (Dr) of approximately 60%, could be achieved. The small-strain shear wave velocity

profile of the soil deposit is predicted using the equation proposed by Bardet et al. [84],
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Figure 2.7: (a) Shear wave velocity and (b) Stiffness degradation curves.

Gmax = A
(a− e)2

1 + e
pn , (2.15)

where A = 8.811, a = 1.935 and n = 0.5 are the three constants determined for the Nevada

Sand [85]. The parameters e and p are, respectively, the void ratio and the mean pressure

expressed in kPa. Fig. 2.7a displays the resulting maximum shear wave velocity profile.

It can be shown that the model by Borja et al. [68] implies the following relationship

between normalized shear modulus, the shear strain, and other material parameters:

G

Gmax

+
3

2γ

∫ 2Giγ

0

[
h

(
R/
√

2 +Gγ − τ
τ

)m
+H0

]−1

dτ − 1 = 0. (2.16)

The secant stiffness tends to be zero when the amplitude of shear strain is large, which yields

27



H0 = 0. The radius of the bounding surface can also be simply computed as,

R =
√

2τmax ≈
√

2G
∣∣
γmax=5%

γmax=5% ≈ 0.003 Gmax . (2.17)

As such, the material parameter calibration procedure involves the estimation/calibration of

two parameters only—namely, h and m in Eq. (4.31).

Here, we use the shear modulus degradation curves proposed by Darendeli [59], and pick

two representative points on that curve for (γ, G/Gmax) as (0.003, 0.192) and (1.023E-4,

0.845). Plugging these choices in Eq. (4.31) yields two nonlinear equations in parameters h

and m. Using Broyden’s method [86] eliminates the need to compute an analytical Jacobian

for iterative solution procedure to obtain h and m. Using initial guesses of h0 = 0.1 Gmax

and m0 = 1.0, yields the materials parameter as h = 0.1363 Gmax and m = 1.5477, with a

resulting L2 residual norm of 1× 10−16.

It is also possible to obtain the optimal h, m and H0 values when more than two exper-

imental data points from the (γ, G/Gmax) curve are provided. As this would then produce

an over-determined system, nonlinear least-squares procedures are needed to obtain the op-

timal material parameter values. One such procedure for the present model is implemented

in Matlab, and this code along with an example dataset are provided in the Appendix for

the readers’ convenience.

2.2.5.2 Numerical analyses

Two types of nonlinear SSI analyses are conducted with the implemented nonlinear model.

These are either purely plastic or plastic with 3% viscous damping, which are henceforth

referred to as NL and NLV models respectively. For each soil model, four cases that cover

a range of stiffness and ground motion intensities are considered. These are, specifically,

“flexible” and “stiff” buried structures that were subjected to the “Northridge-L” and

“Northridge-H” motions (henceforth referred to as AL and AH). The experiments on the

flexible and stiff structures are similarly named as T-Flexible and T-Stiff, respectively.
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To examine the performance of the implemented nonlinear soil model, we present the

measured and predicted responses for the centrifuge experiments in terms of accelerations,

specimen racking displacements, bending strain and lateral earth pressure along the speci-

men’s walls, as well as soil surface settlement. Also, back-calculated stress-strain relation-

ships and the associated effective stiffness in all four tests are presented.

As mentioned above, numerical results are compared with not only the experimental

data but also with the numerical results from Deng et al. [76] and Esmaeilzadeh Seylabi

et al. [77], who respectively used the PDMY and equivalent linear soil models (referred to

as EL below). It is important to note that in their analyses, Deng et al. used three sets of

material parameters that were calibrated from three differentG/Gmax curves to achieve better

agreement in a variety of tests. Similarly, Esmaeilzadeh Seylabi et al. used an optimization

based method to calibrate the shear wave velocity profile and the Rayleigh damping model

of a soil column using the available far-field acceleration data for each test. In the present

study, we only use one set of material parameters, which are calibrated from a single G/Gmax

curve as described in the previous section.

Acceleration: Fig. 2.8 displays the 5%-damped spectral accelerations at different lo-

cations for all of the studied test cases. Under the relatively low-amplitude input motion

Northridge-L, the equivalent linear (EL) model yields satisfying results at all locations at

lower frequencies. However, a better agreement is achieved with experimental data at higher

frequencies using the implemented nonlinear soil model. This observation reveals the non-

linear model’s advantages over the equivalent linear model, which experiences high damping

at higher frequencies. Under the high-amplitude input motion Northridge-H, where the soil

nonlinearity is more prominent, the EL model always overestimates the spectral accelera-

tions, even at low frequencies. For the nonlinear model, on the other hand, predictions match

the measurements well at deeper locations (this trend is generally true, in fact, for all models,

because the input motions at the bottom of the container are known and prescribed in all

of the numerical simulations). However, as we get closer to the soil surface, discrepancies

increase and the nonlinear models (NL, NLV) underestimate the responses.
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Fig. 2.9 displays the Arias intensity time-series at the far-field (see Fig. 2.5). As seen in

Figs. 2.8 and 2.9, the NLV performs better than NL. The presently used stiffness-proportional

viscous damping in the NLV model increases linearly with frequency, and thus, it appears

possible to improve the NLV’s agreement with measurements even further, especially at

higher frequencies, by using a more sophisticated viscous part—a task deferred to a future

study.

Fig. 2.10 displays the time-frequency distributions of the signal energy density [87] for

acceleration time-series of T-Flexible-AH test (for which we expect significant nonlinear

behavior) at locations A4 and A14 (cf. Fig. 2.5). As seen, both the NLV and EL models are

generally capable of capturing the general patterns of experimental data, and as expected,

the NLV model outperforms EL model at higher frequencies. On the other hand, the time-

frequency distributions resulting from the NL model have spurious energy content at higher

frequencies, which are non-existent in the experimental data, especially towards the end of

the signal. This ascertains the discrepancies observed in the 5% damped spectral acceleration

and Arias Intensity results presented for the NL model in Figs. 2.8 and 2.9, respectively.

Bending strains and lateral earth pressures: bending strains and lateral earth

pressures along the walls of buried structures are two of the most important response/demand

measures used in the design of such structures. As shown in Fig. 2.5, there were eight strain

gauges installed outside of each wall in the centrifuge tests (SG1-8 and SG9-16). Figs. 2.11

and 2.12 compare, respectively, the bending strains obtained numerically and measured

experimentally at the location of SG8 and the spatial variation of the maximum bending

strains along the north wall. Strains predicted by NLV and EL are generally in very good

agreement with experimental data for all the tests, which are both superior in this respect

strains predicted by Deng et al. [76] using the PDMY model2.

Static and total lateral earth pressures were experimentally measured on the walls of

buried structures using tactile pressure sensors that were statically and dynamically cali-

2In their study, Deng et al. [76] did not present the Fourier amplitude spectra of their results for the
PDMY model. These calculations are made here using their reported time series results. Also noted here is
that a low-pass Butterworth filter is used to reduce the noise in strain data measured for the stiff structure.
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Figure 2.8: 5% damped spectral acceleration at far-field (A2, A3, A4) and on structure (A12,
A13, A14) for T-Flexible-AL, Stiff-AL, Flexible-AH, and Stiff-AH obtained numerically and
experimentally.
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Figure 2.9: Arias intensity at far-field (A1, A2, A3, A4) for T-Flexible-AL, Stiff-AL, Flexible-
AH, and Stiff-AH obtained numerically and experimentally.
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Figure 2.10: Time-frequency distribution of the energy density of acceleration time series for
T-Flexible AH test using experimental and numerical data.

brated as detailed by Gillis et al. [88]. Data was averaged over each row of sensels to reduce

scatter [73]. In nonlinear numerical simulations, frictional contact elements are used to con-

sider the potential effects of the soil-structure interface sliding on the distribution of the

lateral earth pressure on the structures. The friction coefficient of the interface is computed

using,

tan (φinterface) = 0.7 tan (φsoil) ≈ 0.33 . (2.18)

which agrees with typical values used in engineering practice [89], and was also used by Deng

et al. [76]. Fig. 2.13 displays the distribution of the maximum dynamic (i.e., total minus

static) and total lateral earth pressures along the north walls of the specimens. As seen,

the NLV and contact models are successful in capturing the experimentally measured lateral

earth pressures3, especially for the stiff specimen and strong input motions for which the EL

model has a poor performance. The NLV model also outperforms the PDMY model used by

Deng et al. [76], who only reported results for low-intensity (Northridge-L) base motions.

Racking: the racking deformations—i.e., the relative displacement between the roof and

3In general, earth pressures in dynamic centrifuge experiments are difficult to measure reliably due the
sensor limitations. Therefore, a higher degree of uncertainty should be expected in ”measured” earth pres-
sures than, for example, direct strain measurements.
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Figure 2.11: Dynamic bending strains and their corresponding Fourier amplitude spectra of
the sensor SG8 at the bottom of the north wall obtained numerically and experimentally.
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Figure 2.12: The distribution of maximum bending strains along the north wall for T-
Flexible-AL, Stiff-AL, Flexible-AH, and Stiff-AH obtained numerically and experimentally.
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Figure 2.13: The distribution of the maximum dynamic and total lateral earth pressure
profiles for T-Flexible-AL, Stiff-AL, Flexible-AH, and Stiff-AH obtained numerically and
experimentally.
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base—is another critical parameter in the design procedures for buried structures. Experi-

mental racking deformations are obtained by double-integrating the accelerations at locations

A14 and A12, which are then subtracted from each other (i.e., D12 − D14). Fig. 2.14 displays

the racking deformations for all the tests. As seen, the numerical and experimental results

are in good agreement in all the tests, and NLV displays significantly better performance

than PDMY under high-amplitude base motions.

Stress-strain curves and secant stiffness values: in order to visualize the level of

nonlinearity/hysteresis that the NLV model exhibited under the earthquake excitations used

in the tests, shear stress-strain curves at the representative locations, A1, A2, A3 and A4,

are plotted for all of the base motions. The components of stress and strain are computed

at the centers of the finite elements representing the far-field soil. As seen in Fig. 2.15, the

NLV model exhibited a high degree of hysteretic behavior and the model also experienced

permanent deformations.

Additionally, the maximum and “effective” shear strains measured in the far-field soil are

used to compute the secant and effective shear stiffnesses using Fig. 2.7b. It is assumed that

effective shear strain is equal to 65% of the maximum shear strain [90]. Fig. 2.16 displays

the resulting secant and effective shear wave velocity profiles as well as those used in the

equivalent linear (EL) model simulations conducted by Esmaeilzadeh Seylabi et al. [77].

As seen, for T-Flexible-AL and T-Stiff-AL, the shear wave velocities profile used in the EL

model a lower than those that the NLV model yields. This is mainly because the associated

Rayleigh damping used for the EL model is higher than those assumed for NLV. For the

high-amplitude motion cases T-Flexible-AH and T-Stiff-AH, significant soil nonlinearities

are induced, the the EL and NLV profiles become closer to each other.

Surface settlements: during the tests, surface settlements are measured by 7 linear

variable differential transducers (LVDTs), as shown in Fig. 2.5. Here, the experimental and

numerical surface settlements at locations D3 and D6 are compared, which represent the

settlements experienced by the specimen structures and the far-field, respectively. As seen

in Fig. 2.17, in most cases, the NLV model can capture the settlement at the specimen
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Figure 2.14: Racking profiles for T-Flexible-AL, Stiff-AL, Flexible-AH, and Stiff-AH obtained
numerically and experimentally.
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Figure 2.15: Numerically predicted stress-strain curves for T-Flexible-AL, Stiff-AL, Flexible-
AH, and Stiff-AH.
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Figure 2.16: Comparisons of shear wave velocity profiles for T-Flexible-AL, Stiff-AL,
Flexible-AH, and Stiff-AH obtained from nonlinear and equivalent linear method.

location very well. Discrepancies that exist, especially for the low-amplitude tests, may be

due to the soil densification that occured during these tests, which were conducted before the

high-amplitude motion tests for each structure. In their study, Deng et al. [76] only presented

results for surface settlements obtained for the baseline structure, and the agreement achieved

there with PDMY is generally inferior to NVL.

Error analyses of numerical simulation results: in order to explore the capability

of nonlinear and equivalent linear soil models in predicting different response parameters

investigated in this study, we compute the residual for each response parameter, as in [85]:

Residual X = log

(
Xmeasured

Xpredicted

)
(2.19)

where X refers to a given response parameter of interest. Fig. 2.18 shows the range of resid-

uals and variances for each analysis type and response parameter—namely, PGA profiles

for the far-field and the structural walls, surface response spectra, surface far-field Arias

intensity, racking displacement, bending strain and pressure profiles of structural walls, and

the amplitude of surface settlement. As these results indicate, the EL model exhibits satis-

factory performance, especially for the low-amplitude motions, with residuals ranging from
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Figure 2.17: Measured (experimental) and predicted (numerical) surface settlements at the
sensor locations LVDT3 (structure) and LVDT6 (free-field).
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about −0.22 to 0.31, if we exclude the pressure residuals (as pressure transducers have yet

unknown reliability). NLV is superior with residuals ranging from about −0.16 to 0.2, if

we exclude the pressure and settlement residuals (as full settlement data is only available

for NLV). This performance of NLV is especially impressive, because unlike EL, the NLV

model is calibrated from a single material dataset, whereas the EL model was specifically

calibrated [77] to match—in a weighted least-squares sense—soil behavior in seperate (low-

and high-amplitude input) tests.
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Figure 2.18: The range of (a) residuals and (b) variances for each analysis type and response
parameters.
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CHAPTER 3

Reduced order modeling tools for SSI

3.1 Review of the reduced order modeling techniques for SSI

problems

All civil structures have foundations and other support elements that either rest on, or

are embedded in, soil. Because of complexities in modeling the mechanical behavior of

soils, and the high degree of uncertainty and variability in their properties, it is not un-

common among structural engineers to completely ignore their effects on the structural

system. This simplistic approach, wherein the soil-structure interaction (SSI) effects are un-

accounted for, might yield acceptable designs for certain cases—for example, for lightweight

aboveground structures resting on, or stiff underground structures buried in, rock and stiff

soils [5]. Nevertheless, the omission of SSI effects can also bear perilous consequences un-

der strong earthquakes—for example, for a massive structure resting on soft soil [6]. For

buried structures, although the inertially induced tractions may become negligible, the nom-

inal contrast between the flexibilities of the foundation system and its surrounding soil may

significantly affect their responses.

One approach to take the effects of SSI into account is to use the finite element method

(FEM) to model a portion of the supporting/surrounding soil media along with the structure.

This approach is known as the direct modeling [5, 30] method. Apparently, it is not possible

to discretize the semi-infinite soil domain with a finite number of elements; and thus, it

is necessary to truncate it by introducing appropriate boundary conditions. For an exact

representation of the omitted domain—dubbed the far-field—, the introduced boundaries on

43



the computational domain (the near-field) must have the ability to transmit the energy of

the outgoing and incoming waves perfectly. In problems where the source of excitation is

inside the near-field, all waves impinging upon the imposed boundaries are outgoing; and

the inserted boundary condition must absorb the energy of these outgoing waves through

the so-called, absorbing-boundary-conditions (ABCs).

Lysmer and Kuhlemeyer [20] proposed the first local ABC 1, which could only absorb

waves traveling along a prescribed direction. Higdon [93] proposed the m-th order multi-

directional boundary condition that can absorb traveling waves with m different angles of

incidence perfectly. Although the accuracy of this boundary condition increases by m, its

usage in application is limited to m ≤ 2. This is because it is very complicated to define

high-order derivatives in standard numerical schemes, such as the finite element method.

Since then, different high-order ABCs have been proposed [94]. Almost all these boundary

conditions are limited to scalar problems such as electrodynamics and acoustic problems.

Although many infinite domain problems involve vectorial elastic waves, only a few high-

order ABCs have been developed for elastodynamics problems thus far [95, 96]. However, all

of them suffer from long-time instability 2 issues [97]. Recently, Baffet et al. [97] proposed the

first long-time stable high-order local ABC. Thus far, this high-order ABC is only available

for the relatively simple case of 2D elastodynamics with a single artificial boundary and two

physical boundaries. Extensions to more involved cases, such as problems in SSI analysis,

which consist of a single physical boundary and three artificial boundaries, do not yet exist.

The paraxial boundary is also an ABC that is based on the paraxial approximations of

the one-way wave equations, and has been developed for both scalar wave [98, 99] and elastic

wave equation [100, 101, 102]. However, it was demonstrated that this approximation is very

accurate only for high-frequency waves and for waves impinging the boundary with small

1ABCs may be classified as nonlocal and local. Nonlocal ABCs are derived by using analytical solutions
of waves propagating in the far-field, and involves a boundary integral operator, meaning that all the nodes
on the boundary interact with each other. However, local ABCs are represented as a differential operator,
so that after discretization, each node on the boundary interacts only with its neighbors, resulting less
computational costs [91, 92].

2The solution grows exponentially after a sufficiently long amount of time.
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incident angles [101].

Besides the high-order ABCs and the paraxial boundary, another class of local ABCs

is perfectly matched layers (PMLs), which were originally introduced by Berenger [103] for

absorbing electromagnetic waves, and extended to elastodynamic problems by Basu and

Chopra [104], but using a rather complicated time integration scheme [105] to compute the

internal forces. In short, a PML is an absorbing layer adjacent to the finite computational

domain–i.e., near-field–with two main properties [96]:

• It results in no reflections at the truncated near-field boundary (i.e., “perfect matches”

it) for all non-zero-frequency impinging waves, irrespective of their angles of incidence.

• It attenuates the wave energy within itself.

Due to the applicability for heterogeneous media [106], PMLs have become more popular

than high-order ABCs in dealing with infinite domain problems. Kucukcoban and Kallivokas

[106] proposed a mixed finite element implementation of the displacement-stress unsplit-field

formulation in 2D elastic heterogeneous media, with superior stability and efficacy. Later

they derived the symmetric formulation of this approach [107] and also extended it to 3D

elastic heterogeneous media [108].

However, considering the relatively complex formulations of the PMLs, few of them have

been implemented to commercial finite element packages for broader use, which eventually

limits the considerable advantages of combining the PMLs with other advanced tools, e.g.,

contact elements, nonlinear constitutive models, etc. Plaxis [109] and FLAC [110] —two

commonly used commercial software in geotechnical engineering area—are equipped with

viscous and free-field ABCs. Obviously, those two ABCs are not capable of efficiently ab-

sorbing the outgoing waves when the incident angle is neither 0 nor 90 degree. Basu [111]

implemented an elastic PML in LS-DYNA [112], but it is only available in 3D media and

with explicit integration scheme. Poul and Zerva [113] implemented a viscoelastic PML in

ABAQUS [114] based on the work of Zheng and Huang [115]. However, it is 2D plane-strain

only, and the recursive convolution technique used in the evaluation of internal forces incurs
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more computational efforts.

In this work, we employ the symmetric hybrid PML formulation proposed by Kucukcoban

and Kallivokas, and Fathi et al. [107, 108], by writing a user-defined element (aka UEL) sub-

routine with Hilber-Hughes-Taylor implicit time integration scheme (HHT-α method [116]),

for simulation of wave propagation in both 2D and 3D heterogeneous half-spaces. This

implementation has been verified by comparing our results obtained from PML-truncated

domain against an enlarged domain solution with fixed boundaries. Excellent agreement is

acquired in different cases in terms of loading conditions, material properties and geometry

dimensions.

Besides prescribing proper ABCs, direct modeling of SSI problems also usually suffer from

defining inappropriate input ground motions [46, 47]. So far the Domain Reduction Method

(DRM) [30, 117] is recognized to be the best approach for modeling a semi-infinite domain

under remote excitations. In this study, we first implement the DRM by computing the

effective nodal forces based on the formulations derived in [117], and then thoroughly verify

it by comparing the DRM-generated free-field responses with either analytical solutions (if

exist) or results computed from 1D site response analysis. Moreover, for both homogeneous

and heterogeneous soil layers, vertical and inclined incident SV waves, 2D and 3D domains,

we achieve excellent accuracy.

In the end, by using the powerful coupled DRM-PML system, 1) we compute the impedance

functions for different problems and then compare our results with analytical or semi-

analytical solutions. Given the facts that impedance functions are indispensable for substruc-

ture method, but they have been devised only for specific conditions, we can use DRM-PML

system to compute them regardless of foundation shapes and soil profiles, with extremely low

computational cost and desirable accuracy. 2) A buried rectangular structure in 2D domain

is modeled to study the effects of the angle of incidence. Inclined SV waves with different

angles of incidence are applied, and the resulting horizontal and vertical accelerations, max-

imum axial forces and bending moments, and maximum deformations of the structures are

plotted. For more details regarding this work, please refer to [118].
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3.2 Perfectly-Matched-Layer (PML)

To render the semi-infinite extent of soils, we will truncate it by using a robust wave ab-

sorbing boundary, Perfectly-Matched-Layer (PML). The PML can eliminate reflections at

the truncated near-field boundary for all non-zero-frequency impinging waves, irrespective

of their angles of incidence. And the wave energy will be attenuated rapidly within its zones.

3.2.1 Implementation

In this study we implement both 2D and 3D PMLs developed by Kucukcoban and Kallivokas

[106] and Fathi et al. [119], respectively, that can be used for wave propagation related sim-

ulation in an arbitrarily heterogeneous media. The PML is treated via an unsplit-field, but

mixed-field, symmetric displacement-stress formulation, which then can be directly coupled

to a standard displacement-only formulation for the interior domain, resulting to a relatively

computationally efficient hybrid scheme.

In order to implement this PML-type element in ABAQUS, we write a user-defined

element (UEL) subroutine in Fortran90. Adding the convenient features of the solver in

ABAQUS, we do not need to be concerned regarding the assembling process of the matrices,

even though this mixed PML element consists of displacement and stress components. The

principal component required for constructing a PML is the complex stretching function.

And the idea is to “stretch” the originally physical coordinates to the virtually infinite

coordinates. The complex stretching function we employ in this study is defined as,

λi(xi, ω) = α(xi) +
1

jω
β(xi) (3.1)

where α and β are the scaling functions that stretch the coordinate variable x, and the

attenuation function that enforces the amplitude decay of outgoing waves, respectively, which
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are given in terms of polynomials, as

αi(xi) = 1 + α0

[
(xi − x0

i )ni
LPML,i

]m
, x0

i ≤ xi ≤ xti (3.2a)

βi(xi) = β0

[
(xi − x0

i )ni
LPML,i

]m
, x0

i ≤ xi ≤ xti (3.2b)

where i = x, y and z, and α0 and β0 are two user-chosen parameters that control the

amplitude decay, ni is component of the outward unit normal at the interface in i direction,

and m represents the polynomial degree. And here we use the suggested expressions [106]

for them, as shown in Eq. 3.3. x0
i and xti denote the coordinates of the inner and outer PML

boundaries. LPML,i is the thickness of the PML boundary in i direction.

α0 =
(m+ 1)b

2LPML,i

log

(
1

R

)
(3.3a)

β0 =
(m+ 1)cp
2LPML,i

log

(
1

R

)
(3.3b)

where cp is the P-wave velocity, R is a user-tunable reflection coefficient and b is a char-

acteristic length of the domain. In the following study we always set m = 2, R = 10−10

and b = ten times the average element size. Also, please be advised that the outer PML

boundary should always be fixed (in terms of the displacement field), and for heterogeneous

soils, constant β0 is required for different soil layers. See Fig. 3.1 for an illustration of those

parameters in the 2D PML domain.

Based on the definition of the complex stretching functions, we can derive the corre-

sponding semi-discrete forms and submatrices for PMLs in 2D and 3D domains [119], which

are included in the Appendix A.

In ABAQUS, the Hilber-Hughes-Taylor (HHT-αmethod) implicit time integration scheme

is the default approach for solving both linear and nonlinear problems. And in the UEL sub-
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Figure 3.1: Illustration of a 2D PML domain attached to the interior domain.

routine, the effective stiffness matrix (AMATRX, Keff) and the residual vector (RHS, FR),

which have the relationship in incremental form, as shown in Eq. 3.4, need to be computed

and updated in every step.

Keff∆u = FR (3.4)

where Keff and FR can be derived, as

For 2D domain,

Keff =
1

β∆t2
MPML +

1 + α

β∆t
CPML + (1 + α)KPML (3.5a)

FR = −MPMLüt+∆t + (1 + α)(Ft+∆t
ext −KPMLut+∆t −CPMLu̇t+∆t)−

α(Ft
ext −KPMLut −CPMLu̇t)

(3.5b)
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For 3D domain,

Keff =
1

β∆t2
MPML +

1 + α

β∆t
CPML + (1 + α)KPML +

η∆t

β
GPML (3.6a)

FR = −MPMLüt+∆t + (1 + α)(Ft+∆t
ext −GPMLūt+∆t −KPMLut+∆t −CPMLu̇t+∆t)−

α(Ft
ext −GPMLūt −KPMLut −CPMLu̇t)

(3.6b)

where α, β and γ are time increment parameters for HHT-α method that have the conditions

as,

−1/3 ≤ α ≤ 0, β = (1 + α)2/4, γ = 1/2 + α (3.7)

The default value is α = −1/20.

From Eq. A.4 we can deduce that the governing equation for PML in 3D domain is

a third-order ODE, however the solver in the ABAQUS is designed for second-order ODE.

Therefore here we need to store the variable ū∆t (see Eq. A.4(b)) into SVARS (state variables

in UEL). By using the extended Newmark-beta method [119], ūt+∆t can be expressed as,

ūt+∆t = ūt + ∆tut +
∆t2

2
u̇t +

(1

6
− η
)

∆t3üt + η∆t3ut+∆t (3.8)

where η = 1/12 is a parameter chosen to be consistent with the average-acceleration scheme.

3.2.2 Verification

In this section, we comprehensively verify the accuracy and stability of the implemented

PML, and compare its performance with other ABCs (i.e., Lysmer and Kuhlemeyer [20] and

ABAQUS built-in infinite element), in both 2D and 3D domains, homogeneous and hetero-

geneous soil layers, under concentrated and distributed loads. Lysmer and Kuhlemeyer [20]

ABC simply places dashpots on the outside boundary. The infinite elements in ABAQUS,

per descriptions in the manual [114], provide “quiet” boundaries to the finite element model

through the effect of a damping matrix and a suppressed stiffness matrix. And it does not
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provide perfect transmission of energy out of the mesh except in the case of plane body

waves impinging orthogonally on the boundary in an isotropic medium.

3.2.2.1 2D semi-infinite rod

A 2D semi-infinite rod (see Fig. 3.2(a)) with uniform cross-section and homogeneous material

properties (i.e., Vs = 200 m/s, ν = 0.3, ρ = 2000 kg/m3), excited by a horizontal load using

the function defined in Eq. 3.18 with an amplitude of 100 kN, a central frequency of 5 Hz

and a total period of t = 1.0 sec, is analyzed by attaching i) PML elements (see Fig. 3.2(b)),

ii) infinite elements (CINPE4) and placing iii) dashpots on the right end (i.e., x = 30 m) in

horizontal direction with coefficient cx = ρVp/2. The rod has a thickness of 1 m, and here

we use the 4-node plane-strain element (CPE4) with a size of 1 m by 1m for the regular

domain. The same element size applies to the PML boundary. Besides, the vertical DOF is

fixed and hence only the horizontal DOF is free. To investigate the performance of the PML

and other ABCs, we create an enlarged domain with a total size of 1 m×400 m, element size

of 1 m × 1 m and fixed boundaries on the outer surface, where the domain is large enough

to avoid the reflected waves enter the regular domain, to be the reference solutions.

Fig. 3.3 shows the comparisons of horizontal displacements for two selected points ob-

tained by using different ABCs, i.e., PML, dashpots and infinite element, against the enlarged

domain solutions. All three ABCs show excellent agreement, which is because both Lysmer

and Kuhlemeyer [20] and ABAQUS infinite plane-strain element (CINPE4) are designed for

1D wave propagation analysis.

∞
x

F(t)

x
25 m 5 m

Regular domain PMLSemi-infinite domain

CP1 CP2

F(t)

(a) Original problem

∞
x

F(t)

x
25 m 5 m

Regular domain PMLSemi-infinite domain

CP1 CP2

F(t)

(b) PML-truncated domain

Figure 3.2: Configuration of (a) the original 2D semi-infinite rod problem and (b) the PML-
truncated domain.
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Figure 3.3: Comparisons of horizontal displacements for two selected points.

3.2.2.2 2D three-layered half-space

A 2D three-layered half-space case (see Fig. 3.4(a)) with material properties summarized

in Table. 3.1, excited by a vertical point load using the function defined in Eq. 3.18 with

an amplitude of 100 kN, a central frequency of 5 Hz and a total period of t = 2.0 sec,

is analyzed by attaching i) PML elements (see Fig. 3.4(b)), ii) infinite elements (simply

replacing PML by CINPE4) and placing iii) dashpots on both bottom (y = −110 m) and

side boundaries (x = ±110 m) with coefficients defined in Eq. 3.9. Similarly, here we use the

4-node plane-strain element (CPE4) with a size of 1 m by 1m for the interior domain. The

same element size applies to the PML boundary. Again, an enlarged domain with a total

size of 750 m× 1500 m, element size of 1 m× 1 m and fixed boundaries on the outer surface

is constructed to be used for the reference solutions.

Table 3.1: Material properties of the three-layered soil deposits.

Shear wave velocity Vs (m/s) Poisson’s Ratio Density (kg/m3)
Layer 1 200 0.3 2000
Layer 2 300 0.3 2000
Layer 3 400 0.3 2000
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Figure 3.4: Configuration of (a) the original 2D three-layered half-space problem and (b)
the PML-truncated domain.

For the bottom boundary →


cx = ρ · Vs · Ab

cy = ρ · Vp · Ab
(3.9a)

For the side boundaries →


cx = ρ · Vp · As

cy = ρ · Vs · As
(3.9b)

where ρ is the density of the soil; Ab and As are the areas of the bottom and side soil elements

that correspond to the dashpots used.

Fig. 3.5 shows the comparisons of vertical displacements for CP1 and CP2, both hori-

zontal and vertical displacements for CP3 and CP4, obtained by using different ABCs, i.e.,

PML, dashpots and infinite element, against the enlarged domain solutions. As seen, the

PML boundary behaves perfectly for all selected points, regardless of horizontal and vertical

displacements. However, for dashpots and infinite elements, errors appear after the reflected

waves enter the interior domain, which is because the outgoing waves are not perfectly ab-

sorbed. And due to the fact that these ABCs are sensitive to the angle of incidence, the

discrepancies become more apparent for the corner point (i.e., CP4). Besides, the contour

plots for the total displacement field at different times (i.e., t = 0.4, 0.6, 0.8, 1.0, 1.5 sec)

obtained by using PML boundary, are presented in Fig. 3.6, which on the other hand, proves

that the PML boundary absorbs all the outgoing waves.
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Figure 3.5: Comparisons of horizontal and vertical displacements for four selected points.

3.2.2.3 3D semi-infinite rod

A 3D semi-infinite long rod (see Fig. 3.7(a)) with uniform cross-section of 1 m × 1 m and

homogeneous material properties (i.e., Vs = 200 m/s, ν = 0.3, ρ = 2000 kg/m3), excited by

a longitudinal load using the function defined in Eq. 3.18 with an amplitude of 100 kN, a

central frequency of 5 Hz and a total period of t = 1.0 sec, is analyzed by attaching i) PML

elements (see Fig. 3.7(b)), ii) 3D infinite elements (CIN3D8) and placing iii) dashpots on the

right end (i.e., x = 30 m) in x direction with coefficient cx = ρVs/2. 8-node tri-linear element

(C3D8) with a size of 1 m×1 m×1 m is used for the regular domain. The same element size

applies to the PML boundary. Besides, the DOFs in y- and z-axis are fixed and hence only

the x-DOF is free. Still, an enlarged domain with a total size of 1 m× 1 m× 400 m, element

size of 1 m× 1 m× 1 m and fixed boundaries on the outer surface, is used for obtaining the

reference solutions.

Fig. 3.8 shows the comparisons of x displacements for two selected points obtained by

using different ABCs. The same, all three ABCs show perfect agreement for such 3D in
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Figure 3.6: Contour plots of the total displacement field at different times obtained by using
the PML boundary.
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Figure 3.7: Configuration of (a) the original 3D semi-infinite rod problem and (b) the PML-
truncated domain.
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Figure 3.8: Comparisons of x displacements for two selected points.

3.2.2.4 3D homogeneous half-space

A 3D homogeneous half-space model (see Fig. 3.9) with material properties as Vs = 1 m/s, ν =

0.25 and ρ = 1 kg/m3, is subjected to a uniformly distributed vertical pressure on the

grey area. The function of the applied pressure is defined in [105] with parameters as

td = 10 sec, ωf = 3 rad/s. The resulting time history and Fourier amplitude plots are shown

in Fig. 3.10. This problem is also analyzed by attaching i) PML elements, ii) 3D infinite

elements (CIN3D8) and placing iii) dashpots on the outer surface with coefficients defined

in Eq. 3.9. 8-node tri-linear element (C3D8) with a size of 0.1 m × 0.1 m × 0.1 m is used

for the interior domain and ∆ t = 0.05 sec is used for the time step. The same element
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size applies to the PML boundary. Further, in order to investigate the performance of the

PML and other ABCs, an enlarged domain with more than 10 million elements are required

for such problem [111]. Due to the limitation of the maximum number of elements that the

software imposes, it is however impossible to be done in ABAQUS. Therefore here we adopt

the reference solutions from [108].

Fig. 3.11 shows the computed vertical displacements for the center and corner points

on the grey surface. Still, the PML displays obviously superb behavior compared with

dashpots and infinite elements. This example demonstrates that the PML can shrink the

computational domain as close to the loading area as possible, and maintains the same

excellent performance.

Pressure load

0.8 m

0.2 m

1.0 m

0.2 m

0.8 m

1.0 m

0.2 m

0.8 m

PML PML

PML

Interior domain

Figure 3.9: Quarter model of a PML-truncated 3D homogeneous half-space model.

3.2.2.5 3D three-layered half-space

A 3D three-layered half-space case (see Fig. 3.12) with material properties summarized in

Table. 3.1, excited by a vertical point load using the function defined in Eq. 3.18 with an

amplitude of 100 kN, a central frequency of 5 Hz a total simulation time of t = 10.0 sec and

∆t = 0.001 sec, is analyzed by using PML boundary. 8-node tri-linear element (C3D8) with
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Figure 3.10: Time history and its Fourier amplitude plots for the applied surface pressure.
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a size of 1 m× 1 m× 1 m is used for the interior domain and the same element size for the

PML elements.

Because for such a problem there are no reference solutions in literature and we are unable

to conduct an enlarged domain analysis in ABAQUS, we utilize this model to examine the

long-time stability of the implemented PML. As we know, some other PML formulations may

suffer long-time instability issue [120]. This simulation has a total of T/∆t = 10/0.001 =

10000 steps, which is considered adequate to examine the stability of the model. The time

histories of displacements of six selected points are shown in Fig. 3.13. The locations of

CP1, CP2, CP3 and CP4 are indicated in Fig. 3.12. CP5 and CP6 have the coordinates as

(25, 25, 0) and (25, 25,−25), respectively. And the contour plots of the total displacement

field at different times are also presented in Fig. 3.14. It can be observed that the whole

model becomes silent after around t = 0.7 sec, and there is no visible reflection at the

interface of the interior domain and the PML boundary.
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5 m
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5 m

60 m 60 m
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PML
CP2

PML 5 m

5 m

xy

z

F(t)

CP1
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Figure 3.12: Configuration of the PML-truncated 3D three-layered half-space model.
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Figure 3.13: Time histories of displacements of six selected points.
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Figure 3.14: Contour plots of the total displacement field at different times.
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3.3 Domain Reduction Method (DRM)

DRM is a two-step finite element procedure proposed by Bielak et al. [117] for modeling

the seismic responses of heterogeneous subdomains. The most appealing advantage of DRM

is that it enables the conversion of the half-space problem to an equivalent one in which

the effects of incoming waves due to remote excitations are translated into equivalent nodal

forces that are applied inside a domain that is truncated by ABCs.

3.3.1 Implementation

In DRM, the equivalent nodal force vector is computed using Eq. 5.3 per [117] and applied

to the nodes located at a single layer of elements that form the boundary between the ABCs

and the near-field domain as shown in Fig. 3.15(a),

Peff =


Peff
i

Peff
b

Peff
e

 =


0

−MΩ+
be ü0

e −CΩ+
be u̇0

e −KΩ+
be u0

e

+MΩ+
eb ü0

b + CΩ+
eb u̇0

b + KΩ+
eb u0

b

 (3.10)

where the subscripts i, b and e refer to the nodes inside the domain of interest, along the

inside and outside boundary of the one layer of elements, respectively. The terms u0 and

Peff respectively denote the free-field displacements and forces along nodes of the one layer

of elements. MΩ+, CΩ+ and KΩ+ are the mass, damping and stiffness matrices assembled

for only the single layer of elements that form the interface between the exterior and interior

domains. In this study, we 1) use analytical solutions (if exist) or perform 1D site response

analysis to obtain the free-field response, 2) extract the nodes’ coordinates and meshes’

connectivity information from ABAQUS input file, 3) use the information and the computed

free-field response in step 1) to compute the MΩ+, CΩ+, KΩ+ matrices, and Peff vector,

4) insert the computed Peff vectors, that are considered as concentrated force time-history

functions for all DRM nodes, into the ABAQUS input file. A routine has been developed in

MATLAB [82] to perform the aforementioned tasks.
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Figure 3.15: (a) Configuration of modeling semi-infinite domain by using DRM and ABCs,
and (b) equivalent 1D site response analysis model for evaluation of free-field response for
DRM interface.

As for the inclined incident SV waves, it is extremely difficult to calculate free-field re-

sponse by conducting 1D site response analysis and analytical solutions are only available for

the homogeneous half-space case in time domain. Here we adopt the time domain analytical

solutions for the inclined SV-wave propagation in a homogeneous flat half-plane derived by

[121]. The displacement field solution is given in Eq. 3.11

 ux′(x
′, z)

uz(x
′, z)

 = U i
s

 + cos θs

+ sin θs

 f(− x′

cs
sin θs +

z

cs
cos θs + t

)
+

U r
s

 − cos θs

+ sin θs

 f(− x′

cs
sin θs −

z

cs
cos θs + t

)
+

U r
p

 + sin θp

+ cos θp

 f(− x′

cp
sin θp −

z

cp
cos θp + t

)
(3.11)

where ux′ and uz are the displacement fields in horizontal and vertical directions, respec-

tively. Fig. 3.16 shows the schematic propagation of the inclined incident SV wave in a flat

homogeneous half-space in 2D and 3D domains. Eq. 3.11 is originally derived for plane-wave,
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but it can be easily converted to 3D formulation, by using the knowledge of transformation

of coordinate system (see Eq. 3.12 for details). U i
s (usually defined as 1), U r

s and U r
p are

the amplitudes for the incident SV wave, reflected SV wave and reflected P wave fronts,

respectively, which are defined as,

∞

∞

∞x

y
z

∞

∞

∞
x'

z

x'θsθs
θp

Incident SV 
wave front

Reflected 
SV wave 

Reflected 
P wave 

Incident SV 
wave front

Reflected 
SV wave 

Reflected 
P wave 

θs θs

θp

Half-space
φ

Figure 3.16: Schematic propagation of the inclined incident SV wave in a flat homogeneous
half-space in 2D and 3D domains.

u =


ux

uy

uz

 = ΦTu′ =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1


T 

ux′

uy′ = 0

uz

 (3.12)

U i
s = Aisks, U

r
s = Arsks, U

r
p = Arpkp (3.13)

where Ars and Arp have relationships with Ais as,

Ars =
sin(2θs) sin(2θp)− k2 cos2(2θs)

sin(2θs) sin(2θp) + k2 cos2(2θs)
Ais (3.14a)

Arp =
−2k2 sin(2θs) cos(2θs)

sin(2θs) sin(2θp) + k2 cos2(2θs)
Ais (3.14b)

and k = cp/cs, and cs and cp are the shear and compressional wave velocities. kp and ks in
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Eq. 3.13 are shear and compressional wavenumbers, which are defined as,

ks =
ω

cs
, kp =

ω

cp
(3.15)

where ω is the natural frequency of the soil. By combining Eq. 3.13-3.15, we have

U r
s =

sin(2θs) sin(2θp)− k2 cos2(2θs)

sin(2θs) sin(2θp) + k2 cos2(2θs)
U i
s (3.16a)

U r
p =

−2k2 sin(2θs) cos(2θs)

sin(2θs) sin(2θp) + k2 cos2(2θs)

Cs
Cp
U i
s (3.16b)

Besides, θs is the angle of SV incidence, which is also equivalent to the angle of reflected

SV-wave, and θp is the angle of reflected P-wave that can be obtained based on Snell’s law:

θp = arcsin
(cp
cs

sin θs

)
(3.17)

Function f = f(t) in Eq. 3.11 is any time-dependent function that determines the tem-

poral variation of the incident wave.

3.3.2 Verification

In the present study, the DRM method is implemented in ABAQUS [114], and the accuracy

of this implementation is verified by comparing the numerical results obtained from DRM

and analytical solutions (for homogeneous cases, vertical and inclined incident SV waves) and

single-soil-column simulations (for heterogeneous cases, vertically propagated SV waves). In

these verification problems, a single soil column that has an identical height and material

properties as the full DRM model (see Fig. 3.15(b)) is used in 1D wave propagation analyses

to obtain free-field ground responses. Where ρb and Vb are the density and the shear wave

velocity of the elastic bedrock, respectively; ub(t) = 2uI(0, t) and uI is the incident wave

function.
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For all the verification problems, we use Ricker pulse defined in Eq. 3.18, with the selected

parameters as ARicker = 1e−4 m, fRicker = 5 Hz and t0 = 0.3 sec, as the incident wave

function. And a total step equals to 1 sec with ∆t = 0.001 sec is used. Corresponding

displacement, velocity and acceleration time histories and Fourier amplitude are shown in

Fig. 3.17. Besides, A Northridge earthquake motion with duration equals to 28.6 sec and

∆t = 0.005 sec, is adopted for the case DRM-2D-Hetero-Ver (see Table.3.2 for definition)

to verify the accuracy of the DRM when earthquake motion is applied. Its displacement

time histories and Fourier amplitude are shown in Fig. 3.18.

u(τ) = ARicker

[
1− (2πfRickerτ)2

]
e(−πfRickerτ)2

, τ = t− t0 (3.18)
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Figure 3.17: Displacement, velocity, acceleration and Fourier amplitude plots for the applied
Ricker pulse.

In the numerical simulations, we verify DRM in a total of 5 different cases. 3 for 2D

and 2 for 3D domains, with 1) inclined incident SV waves in homogeneous media and 2)

vertically propagated SV wave in heterogeneous media (one Ricker pulse and one earthquake

motion). For all 5 cases, uniform density ρ = 2000 kg/m3 and Poisson’s ratio ν = 0.3 are

selected. And for homogeneous cases, the shear wave velocity V homo
s = 200 m/s is used. For
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Figure 3.18: Acceleration and Fourier amplitude plots for the applied earthquake motion.

heterogeneous cases, we adopt a continuous function as V hetero
s = VH

[
b+ (1− b) z

H

]n
, where

b = (V0/VH)1/n, V0 = 200 m/s, VH = 400 m/s, n = 0.5, H = 25 m, z is the downward

vertical coordinate measured from the soil surface; and V0 and VH are shear wave velocities at

z = 0 and z = H, respectively. All the necessary information for DRM verification problems

is summarized in Table. 3.2 for a more transparent view. In the full DRM models (see Fig.

3.19), with a uniform element size of 1 m, 98 4-node quadrilateral plane strain elements

(CPE4) and 7204 8-node linear isoparametric elements (C3D8) are used for the single layer

of elements for 2D and 3D models, respectively, and a thickness of 5 m PML are attached

to the interior domains to absorb the noises coming from numerical imprecision.

Figs. 3.20-3.24 displays the displacement results for the three selected points (see Fig.3.19)

obtained using DRM, analytical solutions and the single soil column modeled as shown in

Fig. 3.15(b). As seen, the DRM yields a near-perfect match compared to both analytical

solutions and the single-soil-column results, for both homogeneous and heterogeneous soil

media, vertical and inclined incident SV waves, and in 2D and 3D domains.

3.4 Applications

After the successful implementation and verification of both DRM and PML in ABAQUS,

in this section, we present some applications that can be conducted by using the PML or

coupled DRM-PML system, e.g., computing the impedance functions and investigating the

effects of angle of incidence.
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Table 3.2: Five verification problems of the DRM implementation.
Dimension Label Definition Vs Angle of inci-

dence
DRM-2D-Homo-Inc Homogeneous soil

layer with inclined
incident SV wave in
2D domain.

200 m/s 25o

2D
DRM-2D-Hetero-
Ver (i. Ricker pulse, ii.
earthquake motion)

Heterogeneous soil
layer.

Vs = VH
[
b + (1 − b) z

H

]n
,

where b = (V0/VH)1/n, V0 =
200 m/s, VH =
400 m/s, n = 0.5, H =
25 m.

0o

DRM-3D-Homo-Inc Homogeneous soil
layer with inclined
incident SV wave in
3D domain.

200 m/s θs = 25o and φ =
45o

3D
DRM-3D-Hetero-
Ver

Heterogeneous soil
layer with vertical
incident SV wave in
3D domain.

Vs = VH
[
b + (1 − b) z

H

]n
,

where b = (V0/VH)1/n, V0 =
200 m/s, VH =
400 m/s, n = 0.5, H =
25 m.

0o

Note: for all 5 cases, the same density ρ = 2000 kg/m3 and Poisson’s ratio ν = 0.3 are selected. The
Ricker pulse defined in Eq. 3.18, with ARicker = 1e−4 m, fRicker = 5 Hz and t0 = 0.3 sec, is used for the
incident wave function.
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Figure 3.19: Numerical models constructed for DRM verification problems in (a) 2D, and
(b) 3D domains.
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Figure 3.20: Comparisons of horizontal and vertical displacement results for the case DRM-
2D-Homo-Inc.
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Figure 3.21: Comparisons of horizontal displacement results for the case DRM-2D-Hetero-
Ver (Ricker Pulse).
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Figure 3.22: Comparisons of horizontal displacement results for the case DRM-2D-Hetero-
Ver (earthquake motion).
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Figure 3.23: Comparisons of Ux, Uy and Uz for the case DRM-3D-Homo-Inc.
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Figure 3.24: Comparisons of Ux for the case DRM-3D-Hetero-Ver.

3.4.1 Impedance functions

It is well known that the substructure method is a computationally efficient alternative where

a reduced-order model for the near-field is utilized [5, 122, 123]. However, the impedance

function of the near-field soil-foundation system is the ingredient of the substructure method.

The impedance function represents the complex-valued frequency-dependent stiffness matrix,

where its real part corresponds to the stiffness and mass inertia effect of the soil and the

imaginary part accounts for radiation damping.

In this section, we follow the procedures mentioned by Seylabi et al. [83] to extract the

impedance functions with time-domain analysis in ABAQUS for four different problems. And

in the subsequent analyses, we always apply the Ricker pulse (see Eq. 3.18) with parameters

as ARicker = 1e−4 m, fRicker = 10 Hz to be the input displacements. A total simulation

time T = 0.5 sec and stepsize ∆t = 0.001 sec are used. For 2D problems, we use 4-node

quadrilateral plane-strain element (CPE4) with element size of 0.5 m×0.5 m for the interior

domain, and for 3D problems, we adopt 8-node tri-linear solid element (C3D8) with element

size of 0.5 m× 0.5 m× 0.5 m. The PML elements always keep the same element size as the

regular elements.
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3.4.1.1 2D rigid strip surface foundation

The compliance function (i.e., inverse matrix of the impedance function) of the rigid strip

foundation shown in Fig. 3.25(a), resting on the surface of an elastic homogeneous half-

space, with material properties as E = 1 GPa, ν = 0.25 and ρ = 2000 kg/m3, is computed.

The reference analytical solution to this problem is provided by Luco and Westmann [124].

As shown in Fig. 3.26, the numerically-evaluated compliance functions show an excellent

PML

5 m 1 m 5 m

5 m

5 m

1 m

Δ1

Δ2
θ

8 m

(a) Original problem

PML

5 m 1 m 5 m
4 m

5 m

1 m

Δ1

Δ2
θ

8 m

1 m

(b) PML-truncated domain

Figure 3.25: Configuration of (a) the 2D rigid strip surface foundation problem and (b) the
2D embedded rigid foundation problem.

agreement with the reference solutions for both diagonal terms (i.e., CHH , CV V , and CMM)

and the coupled term (i.e., CHM/CMH). B denotes the half-width of the foundation.

3.4.1.2 2D embedded rigid foundation

The impedance function of a rigid foundation embedded in a homogenous soil shown in

Fig. 3.25(b), with identical material properties as the previous case, is computed. The

reference solution to this problem is due to Wang and Rajapakse [125], obtained by using

the indirect boundary integral equation method. Fig. 3.27 shows the numerically-computed

impedance functions versus the reference solution, which again are in good agreements.
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Figure 3.26: Compliance function of a rigid strip surface foundation computed using FEM-
PML versus analytical solution.
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Figure 3.27: Compliance function of an embedded rigid foundation computed using FEM-
PML versus reference solution.
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3.4.1.3 3D rigid circular plate surface foundation in homogeneous media

The compliance function of the rigid circular plate foundation shown in Fig. 3.28, resting on

the surface of an elastic homogeneous half-space, with material properties as E = 1 GPa, ν =

1/3 and ρ = 2000 kg/m3, is computed. The reference analytical solution to this problem is

proposed by Luco and Westmann [126]. As shown in Fig. 3.28, by using the implemented
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Figure 3.28: Compliance function of a rigid circular plate surface foundation in homogeneous
media computed using FEM-PML versus reference solution.

3D PML boundary, the numerically-calculated compliance functions match the analytical

solutions very well, for all horizontal, vertical, rocking and torsional results. Here B = 8 m

represents the radius of the rigid plate.

3.4.1.4 3D rigid circular plate surface foundation in two-layered half-space me-

dia

To test the performance of the FEM-PML method in layered media, we also compute the

impedance function of a 3D rigid circular plate on the surface of a two-layered half-space

shown in Fig. 3.29. The material properties of two soil layers are included in Table. 3.4.

The analytical solution due to Luco[127] only provides the horizontal, vertical and rocking
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terms (i.e., KHH , KV V and KMM). For the torsional term (KTT ), we compare our re-

sult with a semi-analytical solution proposed by Lin et al.[128]. And for the coupled term

(KHM = KMH), we just include our result because no analytical/semi-analytical solution has

been found in the literature. In all cases, FEM-PML method could reproduce the reference

solutions with high accuracy.
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Figure 3.29: Compliance function of a rigid circular plate surface foundation in two-layered
half-space media computed using FEM-PML versus reference solution.

3.4.2 Effects of the angle of incidence

As been reported in [129, 130], the angle of incidence can significantly affect the response of

the buried structures, especially for vertical ones. In this section, we analyze a 2D rectangular

tunnel in homogeneous media excited by SV waves with different angles of incidence. The

numerical model is shown in Fig. 3.30. Here we use the DRM interface to prescribe the input

motion, and the PML to truncate the domain and absorb the scattering waves. Eq. 3.18 with

the selected parameters as ARicker = 1e−4 m, fRicker = 2 Hz and t0 = 0.8 sec, is used as the

incident wave function. A total simulation time is T = 3 sec and time stepsize is ∆t = 0.005

sec. 4-node quadrilateral plane strain elements (CPE4) with element size of 1 m× 1 m are

used for the soil in the interior domain. 2-node beam elements (B21) with element size of

76



0.5 m and thickness 1 m are used for the rectangular structure. No-slip interface condition

is used for the soil-structure interface. Material properties for the homogeneous soil and the

rectangular structure are summarized in Table. 3.3. The effects of the distance between the

DRM interface and the buried structure need to be further investigated [131].

DRM interface

PML

5 m 19 m 5 m

25 m

5 m

CP1

CP2

9 m

9 m

19 m

6 m

6 m 6 m

Incident 
SV waves

θ

Figure 3.30: Plan view of the buried rectangular tunnel for studying the effects of angle of
incidence.

Table 3.3: Material properties of homogeneous soil and the rectangular structure.

Young’s modulus (MPa) Poisson’s Ratio Density (kg/m3)
Soil 208 0.3 2000

Structure 32000 0.2 2500

Table 3.4: Material properties of the two-layered soil deposits.

Shear wave velocity Vs (m/s) Poisson’s Ratio Density (kg/m3)
Layer 1 400 1/3 1700
Layer 2 500 1/3 2000

First, we compare the accelerations for two corner points on the structure (i.e., bottom

left and top right). As we can see in Fig. 3.31, for this specific case, by increasing the angle

of incidence, both maximum values of horizontal and vertical accelerations increases and the

amplification factors can reach 2.57 and 6.52, respectively. Then the racking displacements

77



0 0.5 1 1.5 2 2.5 3
Time (sec)

-0.04

-0.02

0

0.02

A
x (

m
/s

2 )

Bottom-left

 = 0o

 = 10o

 = 20o

 = 30o

0 2 4 6 8 10
Frequency (Hz)

0

0.5

1

1.5

F
ou

rie
r 

A
m

pl
itu

de

Bottom-left

0 0.5 1 1.5 2 2.5 3
Time (sec)

-0.04

-0.02

0

0.02

A
x (

m
/s

2 )

Top-right

0 2 4 6 8 10
Frequency (Hz)

0

0.5

1

1.5

2

F
ou

rie
r 

A
m

pl
itu

de

Top-right

(a) Horizontal acceleration

0 0.5 1 1.5 2 2.5 3
Time (sec)

-0.02

-0.01

0

0.01

0.02

A
y (

m
/s

2 )

Bottom-left

 = 0o

 = 10o

 = 20o

 = 30o

0 2 4 6 8 10
Frequency (Hz)

0

0.2

0.4

0.6

0.8

F
ou

rie
r 

A
m

pl
itu

de

Bottom-left

0 0.5 1 1.5 2 2.5 3
Time (sec)

-0.02

-0.01

0

0.01

0.02

A
y (

m
/s

2 )

Top-right

0 2 4 6 8 10
Frequency (Hz)

0

0.2

0.4

0.6

0.8

F
ou

rie
r 

A
m

pl
itu

de

Top-right

(b) Vertical acceleration

Figure 3.31: Time histories and the Fourier amplitudes of the horizontal and vertical accel-
erations.
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for different columns and its Fourier spectrums are computed and shown in Fig. 3.32. As

seen, the racking displacements actually decrease when the angle of incidence increases, for

all left, middle and right columns.
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Figure 3.32: Time histories and the Fourier amplitudes of the racking displacements.

Finally, we explore the effects of the angles of incidence on the axial force, bending

moment, as well as the deformation mode. Figs. 3.33(a) and (b) show the profiles of the

maximum axial force and bending moment, respectively. As seen, with the increasing angles

of incidence, the axial force increases, while the bending moment decreases. And Fig. 3.34

shows the deformation plot when the maximum bending moment happens, for different angles

of incidence. More bending deformation is observed for small angles, and more rotation is

noticed for larger angles. It should be noted that in all figures the resulting deformations

are magnified 30000 times.
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Figure 3.33: Profiles of the maximum (a) axial force and (b) bending moment.
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Figure 3.34: Maximum deformation plot for different angles of incidence.
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CHAPTER 4

Development of validated methods for soil-structure

analysis of buried structures

Seismic response of underground structures is a complex soil-structure interaction (SSI) prob-

lem in which two fundamental mechanisms are at play. Differences in motion between the

free-field soil and the buried structure in the absence of excess or deficient mass between the

two that are due to their stiffness contrast are collectively referred as Kinematic Interaction

(KI) effects. Inertial Interaction (II) effects are, therefore, complementary, and are concerned

with the soil reactions that develop to resist inertial forces associated with accelerations of

the foundation-structure system relative to the soil. The kinematic component is generally

considered to be more significant for buried structures due to their modest mass and their

confinement by soil.

Current seismic design practices—articulated in, for example, the NCHRP Report 611

[18]—are based on the procedures proposed by [19] for circular and rectangular buried struc-

tures. During the last few years, a number of experimental [132, 133, 134, 135, 136, 137, 138],

numerical [139, 140, 135, 141, 142] and analytical [143, 144, 145] studies have been conducted

to explore the accuracy of the aforementioned simplified procedures. A non-exhaustive list

of previously performed experimental studies on buried structures in dry sand is provided in

Table 4.1.

We have undertaken here a centrifuge modeling program that is designed to extend the

previous test results by (1) applying a wider range of ground motions spanning frequency

contents where interaction effects are expected to range from significant to negligible; (2) ap-

plying a wider range of shaking amplitudes to investigate variable effects of soil nonlinearity;
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and (3) deploying a relatively dense instrument configuration to enable detailed measure-

ments of the culvert section responses as well as near- and far-field soils. The centrifuge

tests were performed using the 9m-radius centrifuge at the Center for Geotechnical Model-

ing (CGM) at UC Davis [146]. Specimens consisted of two representative structures that

were selected per Caltrans Standard Plans 2015 A62E and A62F [147], which were embedded

in a granular backfill.

The main objectives of this chapter were (1) to compare the experimental findings with

the design method described in NCHRP Report 611 [18] in order to establish the validity (or

lack thereof) of this method for the specific Caltrans configurations tested; (2) to formulate

preliminary recommendations for Caltrans practice; and (3) to identify future research needs

in this area, as needed.

Table 4.1: A list of previous experimental studies on buried structures in dry sand.

References
Structure Input motion

Soil

Type
Dimensions Material Material

Type PGA (g)
Frequency relative

(m) (model) (prototype) (Hz) density

[132, 133]
S

5× 0.061
A A H 0.08− 0.32 0.8− 1.2

45%5× 0.155
C 5× 0.088 A A E 0.22− 0.62 1− 3

[134, 135] C 6× 0.06 A CR H 0.05− 0.15 0.37− 0.75 40%, 75%
[136] S 5× 0.13 A CR H, SS 0.02− 0.24 0.6− 1.2 90%
[137] S 2× 0.06 A A H 0.25− 0.4 2− 3.5 70%

[138] S
4.57× 0.27

A CR E 0.11− 0.33 0.46− 1.45 50%, 90%
4.57× 0.53

In the second column, S and C stand for Square and Circle, respectively.
In the third column, dimensions are in width×thickness for square sections and in diameter×thickness for circular sections.
In the fourth and fifth columns, A and CR stand for aluminum and concrete, respectively.
In the sixth column, H, E, and SS stand for Harmonic, Earthquake and Sine Sweep motions, respectively.

4.1 Centrifuge modeling

4.1.1 Centrifuge modeling and scaling laws

Scaling laws are used in centrifuge modeling so that the stress field at any point within the

model is similar to what is expected in the prototype. As shown in Figure 4.1, if we scale

down the size of the prototype by N , and increase the centrifugal acceleration by the same

amount, the stress field in the model and the prototype—e.g., γH in Figure 4.1—will be

similar. In other words, by using the aforementioned scaling law, we can capture the actual

nonlinear and pressure-dependent behavior of the soil with the scaled model. Scaling laws
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for different parameters relevant to this research are listed in Table 4.2. It should be noted

that in this project N = 21.

Figure 4.1: Scaling law for the stress field [1].

Table 4.2: Scaling laws [4].

Parameter Model/Prototype
Length 1/N
Area 1/N2

Volume 1/N3

Mass 1/N3

Stress 1
Strain 1
Force 1/N2

Moment 1/N3

Time (dynamic) 1/N
Frequency N

Displacement 1/N
Velocity 1

Acceleration N

4.1.2 UC Davis centrifuge and model container

We used the NEES@UCDavis Flexible Shear Beam Container 2 (FSB2), which has a number

of aluminum shear rings as well as rubber shear layers to replicate free-field shear conditions

in the soil deposit when no structure is present. The length, width, and height of this
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container are shown in Figure 4.2. After model construction and instrumentation, the filled

container was mounted on the centrifuge arm to be spun. An illustrative example of a

mounted model is shown in Figure 4.3.

Figure 4.2: Geometry of the flexible shear beam container (FSB2).

4.1.3 Soil properties

4.1.3.1 Mechanical properties of the Ottawa sand

Ottawa sand, which is a pure quartz sand composed of naturally rounded grains, was used

in the centrifuge experiments. Representative mechanical properties of the Ottawa sand are

summarized in Table 4.3.

Table 4.3: Mechanical properties of the Ottawa sand (CGM, personal comunication).

Soil paeameter Value
Specific gravity, Gs 2.673

Mean grain size, D50 ≈ 0.2 mm
Coefficient of uniformity, Cu 1.73
Coefficient of gradation, Cc 1.08
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Figure 4.3: Configuration of the instrumented container mounted on the 9 m centrifuge arm.

4.1.3.2 Shear wave velocity

Shear wave velocity measurements were obtained by bender elements [148] at four positions

in the soil profile; near the bottom of the container, below the circular pipe, below the

rectangular culvert and close to the surface of the container. Figure 4.4 shows the array next

to the box structure. Center-to-center distance between bender elements is about 10 cm.

In all these arrays, three bender elements are used, which act as piezoelectric transducers,

one being the source and the other two being the receivers of the signal. The measurements

are taken at 20g (during spinning). A high voltage step wave motion is imposed on the

source bender element, which causes the element to rapidly bend inducing a horizontally

propagating shear wave with vertical particle motion. The wave travels through the soil and

deforms the receivers, resulting in a recorded voltage signal. Shear wave velocity can then be

estimated by measuring the time it takes for the waves to travel between receivers. Details

of bender element signal processing is provided in [149].
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Figure 4.4: One array of the bender elements used for measuring shear wave velocity.

4.1.4 Culvert structures

4.1.4.1 Mechanical properties of the culvert structures

The Caltrans Standard Plans [147] present common configurations for culvert structures used

in California. These culverts are composed of corrugated steel pipe or reinforced concrete

box structures. The model structures, embedment depths, and soil properties utilized in the

centrifuge models were selected to be consistent with these commonly used culvert structures.

Pipe structure: the model specimen is a uniform seamless aluminum pipe with a thick-

ness of 0.16 cm (0.065 in) and inside diameter of 12.37 cm (4.87 in). It is made from

Aluminum 6061-T6 with E = 68.95 GPa (107 psi), γ = 26.48 kN/m3 (0.0975 lb/in3), and

ν = 0.33 (all based on manufacturer specifications rather than measurements). These di-

mensions were selected to match the static flexural stiffness of a representative prototype

corrugated steel pipe structure (cf. Caltrans Standard Plans).

Box structure: the model specimen is a box tube with inside dimensions of 18.4cm×10.8cm

(7.25in×4.25in) and uniform thickness of 0.95 cm (0.375 in). It is also made of Aluminum

6061-T6. These dimensions are selected to match the flexural stiffness of a representative

reinforced concrete culvert structure (cf. Caltrans Standard Plans).
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4.1.5 Model construction and instrumentation configurations

Figure 4.5 displays an elevation view of the centrifuge model.

Sensors were placed in six stages at different elevations in the model, including 59 ac-

celerometers, 43 of which were installed in soil or on the container and the rest inside the

specimens. A frame is mounted on top of the container to secure LPs in order to measure soil

surface settlements and to capture vertical displacements of the specimens. Another frame

is used to attach LPs to the container wall and to measure the associated lateral displace-

ments (see Figure 4.5). All sensors used in the model were connected to a data acquisition

system as shown in Figure 4.3. We used thin aluminum sheets to close the two ends of each

specimen in order to avoid intrusion of sand inside the specimens. The configurations and

labels of the sensors installed on the pipe and box structures are provided in Figure 4.6. The

IDs used for labeling the sensors, along with their positions and configurations, are provided

in Table. 2.3 of [149].

A total of 25 shaking events were applied at approximately N = 21g centrifugal accelera-

tion. Shaking was applied transverse to the culverts’ long axes in the north-south direction.

The sequence of the type of motions used to shake the model, including step-, earthquake-,

and sinusoidal-functions are provided in Table 4.4.

Three earthquake ground motions are used in this study, which are obtained from the

PEER ground motion database. The characteristics of these motions—i.e., target earthquake

motions—are provided in Table 4.5. Figure 4.7 shows the 5%-damped spectral accelerations

and the Arias intensity time series of the target earthquake motions.

Since the shake table on the centrifuge cannot perfectly reproduce a target motion, some

signal modification needs to applied. This is typically achieved by first computing a com-

mand motion in which the high frequency content is increased relative to the target motion.

This accounts for a loss of high-frequency content due to the mechanics of the shake table

feedback control system. The achieved motion is then compared to the target motion, and

the command motion is adjusted. Through an iterative process, the achieved base motions
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Figure 4.6: Layout of the instrumentation for the rectangular and circular structure.
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in the present tests were similar to, but not perfectly equivalent with, the target motions.

For this reason, we suggest always using the measured base motions when interpreting the

test data. The 5%-damped spectral accelerations and the Arias intensities of the measured

base motions for the earthquakes (i.e., motions #03 to #11) are shown in Figure 4.8.

Sine-sweep motions were also used to shake the model the prototype frequencies of up

to 25 Hz. As mentioned before, it was expected that soil-structure interaction effects would

be more significant at higher frequencies. Two types—namely, constant acceleration and

constant-velocity—target motions were used. It was found that constant velocity motions

provided command inputs with richer high-frequency energy content.

The model was also excited with stepped-sine signals with discrete frequencies of 1.25,

1.85, 2.5, 3.75, 5, 7.5, 10, 17.5, and 25 Hz. At each iteration, the amplitudes of the stepped-

sine functions at different frequencies were updated so that the amplitude of measured ac-

celerations at the soil surface (as recorded by sensor AFH30) were nearly the same at all

discrete frequencies considered. It should be noted that ideally a sine sweep function could

be used for this purpose. However, calibration of the command input using sine sweep func-

tions was not straightforward. This is why stepped sine functions were applied. Shaking the

models with motions with the same surface acceleration amplitude permits observation of

the frequency-dependence of the structural response.
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Figure 4.7: 5%-damped spectral acceleration and Arias intensity time series of the earthquake
motions used in this study.

4.2 The NCHRP 611 approach

The current AASHTO LRFD Bridge Design Specifications do not cover the seismic response

of buried structures; and only the recent National Cooperative Highway Research Program

(NCHRP) Report 611—titled ”Seismic Analysis and Design of Retaining Walls, Buried

Structures, Slopes, and Embankments”—offers various recommendations on the topic. As

culvert structures in transportation applications generally have a limited length, their poten-

tial failure modes are due to their transverse deformations under transient ground shaking—

namely, ovaling and racking of circular and rectangular culverts, respectively [18]—, which

are illustrated in Figure 4.9.

4.2.1 Ovaling of a circular culvert

It is widely accepted that plane strain models provide reasonable approximations to the

failure modes of circular culverts, as their most critical mode is the ovaling deformation

mode [140]. Transient ovaling effects in circular culverts can be quantified by the change in

their diameters, which can then be used to obtain reasonable estimates of the peak seismically

induced internal forces. For flexible culverts, buckling is the most critical failure mode, which
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Figure 4.8: 5%-damped spectral acceleration and Arias intensity time series of the measured
base motions for shake events #03 to #11.

Vertically propagating shear wave front

Figure 4.9: Ovaling and racking deformation of the circular and rectangular cross sections.
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is governed by the thrust force. For rigid culverts, on the other hand, the lining deformation,

bending, thrust, and the resulting strains are all important parameters to evaluate [18].

Currently, four analytical closed-form solutions are available [150, 151, 144, 145], which

are all based on the assumption that, under seismic loading, the tunnel lining acts as an

elastic beam subject to a uniform shear strain field of amplitude γmax, wherein the inertial

soil-lining interaction effects are ignored. As enumerated by [140], the dynamic interaction

can become important when (i) the dimensions of the tunnel cross-section is comparable

to the wavelengths of the seismic loading, (ii) the tunnel is relatively shallow, and (iii) the

structure is significantly stiffer than the surrounding soil.

The methodology provided in NCHRP Report 611 [18] is based on the solution provided

by [150]. An engineer needs to execute the following steps to determine the seismic demands

due to ovaling of the circular culvert:

1. Estimate the free-field ground strains (γmax) at the top and bottom elevations of the

culvert structure: For highway culverts with burial depths less than 50 ft, γmax may

be estimated using the equation below:

γmax =
τmax
Gm

, τmax = (PGA/g)σvRd (4.1)

where Gm is the effective-strain-compatible shear modulus of the surrounding soil,

PGA is the peak ground acceleration, σv is the overburden pressure at the depth

corresponding to the invert of the culvert, and Rd is a depth-dependent stress reduction

factor given by

Rd =


1− 0.00233z z < 30ft

1.174− 0.00814z 30ft ≤ z ≤ 75ft

(4.2)

and z is the depth to the midpoint of the culvert. One may also estimate γmax by

performing free-field site response analysis.
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2. Calculate of the flexibility and compressibility ratios : Compressibility (C©) and flexi-

bility (F©) ratios are used to determine the relative stiffness of the culvert lining with

respect to the surrounding ground [150], and can be computed as:

F© =
Em(1− ν2

1)R3

6E1I1(1 + νm)
(4.3)

C© =
Em(1− ν2

1)R

E1A1(1 + νm)(1− 2νm)
(4.4)

where Em is the strain-compatible elastic modulus, and νm is the Poisson’s ratio of

the surrounding soil. The terms R, E1, ν1, A1, t and I1 respectively denote nominal

radius, elastic modulus, Poisson’s ratio, cross-sectional area, thickness, and moment of

inertia of the culvert lining. For F© < 1, the lining is considered to be stiffer than the

surrounding soil while for F© > 1, it is expected that the lining deforms more than

the free-field.

3. Estimate the lining deformation and seismic demands : For estimation of the lining

diameter change (∆DEQ) and the resulting moment (M), it is recommended to consider

a full-slip interface assumption, which allows normal stresses without normal separation

and tangential forces. On the other hand, for estimation of the resulting thrust (T ), a

no-slip interface assumption is recommended. Therefore,

∆DEQ = ±1

3
k1F

©γmaxD (4.5)

M© = −1

6
k1

Em
1 + νm

R2γmax cos 2(θ +
π

4
) (full-slip) (4.6)

T© = −k2
Em

2(1 + νm)
Rγmax cos 2(θ +

π

4
) (no-slip) (4.7)
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where

k1 = 12
1− νm

2F© + 5− 6νm
, (4.8)

k2 = 1 +
F©(1− 2νm)(1− C©)− 0.5(1− 2νm)2C© + 2

F©[(3− 2νm) + (1− 2νm)C©] + C©[2.5− 8νm + 6ν2
m] + 6− 8νm

. (4.9)

4.2.2 Racking of a rectangular culvert

Contrary to circular culverts, no closed form solution is available for quantifying the racking

deformations in rectangular culverts. The procedure provided in NCHRP Report 611 is

based on the pseudo-static method proposed by [150], which again does not take inertial

interaction effects into account. The following steps are recommended therein to estimate

the seismic demands due to racking of a rectangular culvert.

1. Estimate of the free-field ground strains (γmax) at the elevation of the culvert structure:

γmax can be computed following the procedure provided for circular culverts in §4.2.1.

2. Estimate the differential free-field relative displacement (∆freefield) at the corresponding

top and bottom elevations of the rectangular structure. That is:

∆freefield = Hγmax (4.10)

where H is the height of the structure. As seen in Equation (4.10), it is assumed that

the racking is due to a uniform shear strain field. This assumption is the same as that

used for ovaling of circular culverts.

3. Calculate the racking stiffness (Ks) of the structure: This value can be computed

through a simple structural frame analysis by applying a unit horizontal force at the

roof of the structure, while its base is restrained as shown in Figure 4.10 and reading

the resulting lateral displacement ∆. That is,

Ks =
1

∆
. (4.11)
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Figure 4.10: Racking stiffness of the rectangular culvert.

4. Calculate the flexibility ratio: The flexibility ratio F� is the measure of the relative

stiffness of the structure to the surrounding soil and can be estimated as follows.

F� =
Gm

Ks

W

H
(4.12)

where W is the width of the culvert structure as shown in Figure 4.10.

5. Estimate the racking ratio: The racking ratio R� determines the ratio of the actual

racking deformation of the structure with respect to the free-field racking deformation

of the surrounding soil and can be defined as:

R� =
2F�

1 + F�
. (4.13)

6. Estimate the racking deformation of the structure: Using the racking ratio and the free-

field relative displacements, the racking deformation ∆s can be computed as follows:

∆s = R�∆freefield . (4.14)

7. Determine the seismic demands : Internal forces and the resulting strains can be com-

puted by imposing the racking deformation at the roof of the structure as shown in

Figure 4.11, and by performing a structural frame analysis.
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Figure 4.11: Imposition of the racking displacement to determine the resulting internal forces
and moments from structural frame analysis.

4.3 Comparison of centrifuge results with NCHRP 611 method

In this section, comparisons of seismic demands obtained from centrifuge test data with

those calculated using the NCHRP 611 method (see section 4.2) are presented.

4.3.1 NCHRP 611 method

In order to compute seismic demands using the NCHRP 611 methodology, we first need to

estimate the free field maximum strain γmax in the soil deposit as well as the correspond-

ing effective compatible shear modulus Gm. Then, the seismic demands can be computed

following the steps outlined in section 4.2.

4.3.1.1 Estimation of Gm at the elevation of the culvert structures

In chapter 3 of [149], we provided details of a signal processing procedure for obtaining shear

wave velocities at different elevations of the soil deposit inside the container using bender

element sensors. [3] also used a Bayesian approach to infer the shear wave velocity profile

using data measured by the far-field accelerometer array {AA1,AC12,AD18,AE25,AF28}

during low-amplitude earthquake motions (i.e., motions #3, #4, and #5) with maximum

input acceleration of ∼ 0.015g. The resulting estimated shear wave velocity profile was given

98



V
s
 (m/s)

0 50 100 150 200 250

z
/H

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

from bender element signal processing
Fitted curve
Seylabi et al. (2018)

Figure 4.12: Shear wave velocity profile obtained from post-processing of the bender element
signals and from a Bayesian estimation method.

as,

Vs (m/s) = 16.905 + 192.976
( z
H

)0.331

, (4.15)

which is shown in Figure 4.12 along with the curve fitted through the data points obtained

from bender element signal processing. As it will be shown in section 4.4, using this new

shear wave velocity profile will result in acceleration responses that are highly correlated

with experimentally recorded ones. Therefore, in the subsequent analyses, we will use Equa-

tion (4.15) for computing the shear wave velocity associated with small soil strains. Then,

one may also compute the maximum shear modulus Gmax as follows:

Gmax = ρV 2
s (4.16)

where ρ is the density of the soil deposit, which is equal to 1733 kg/m3 for the present case.

The maximum shear modulus may be an appropriate representation of Gm for only low-

amplitude motions for which the soil nonlinearity is negligible and the shear strains are very
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small (i.e., ∼ 10−5). Therefore, we also need to use a representative modulus reduction curve

along with the computed Gmax to estimate the effective strain compatible shear modulus Gm

at elevations of the tested culvert structures. Based on available soil properties for the Ottawa

sand, one may use the empirical equations given by [2] to estimate the modulus reduction

curve. That is,

G

Gmax

=
1

1 + (γ/γr)
a (4.17)

where

γr = 0.12C−0.6
u

(
σ′m
pa

)0.5C−0.15
u

, a = 0.86 + 0.1 log

(
σ′m
pa

)
(4.18)

and Cu is the coefficient of uniformity, which, for Ottawa sand, is equal to 1.73. In order

to decrease the uncertainties emanating from the use of empirical equations, [3] used an

approach to estimate the modulus reduction curve from far-field acceleration data, which

was similar to what was used for inferring the shear wave velocities from the same data. A

multi-axial cyclic plasticity model by [72] was used to model the nonlinear/inelastic behavior

of the soil deposit. The mean value of the estimated soil model parameters are as follows 1.

h =

[
0.107 + 0.474

( z
H

)4.581
]
Gmax, m = 1.579, R = 0.0028 Gmax, H0 = 0 , (4.19)

Figure 4.13 displays the resulting modulus reduction curves from both approaches at the

elevations of the rectangular and circular structures. Finally, with using the estimated

G/Gmax curves and the Gmax profile, we can compute the effective-strain-compatible shear

modulus Gm for a given maximum shear strain in each event.

1Details of the nonlinear soil model and definitions of its parameters are provided later in section 4.4. It
should also be noted here that our prior studies on centrifuge experiments involving structures embedded
in dry sands have demonstrated that this soil model exhibits very good performance in predicting the main
features of soil and embedded structure responses under broadband/seismic excitations [71].
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(a) At the elevation of the rectangular culvert,
z/H = 0.19
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(b) At the elevation of the circular culvert, z/H
= 0.46

Figure 4.13: Shear modulus reduction curves obtained from the empirical equations by [2]
and from the Bayesian estimation [3] at the elevations of the rectangular and circular culvert
structures.

4.3.1.2 Estimation of γmax at the elevation of the culvert structures

For shallow structures one may use the procedure provided in section 4.2 to estimate γmax.

However, in order to use that procedure, we need to know the effective compatible shear

modulus Gm, which itself is a function of γmax. Therefore, in order to use the NCHRP 611

method, we need to obtain it iteratively as follows:

1. To start the procedure (iteration i = 0), we need to have initial guesses for the max-

imum shear strains at the elevation of the rectangular and circular culverts. In order

to compute the maximum strain at the elevation of the rectangular culvert, i.e. γ�max,0,

we use the acceleration measurements at AF28 and AE25, which correspond to the

elevations at the roof and invert levels of the culvert. The displacement responses at

these elevations can be computed by double integration of the acceleration time-series.

Then, the relative free-field displacement history ∆u�free-field can be computed as follows.

∆u�free-field(t) = uAF28(t)− uAE25(t) . (4.20)

Since NCHRP 611 considers the purely uniform shear in estimation of the seismic de-
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mands, γ�max,0 can be computed dividing the maximum relative free-field displacement,

i.e. ∆�
free-field, by the height of the culvert structure H. That is,

γ�max,0 =
∆�

free-field

H
. (4.21)

For the circular culvert, we use the acceleration measurements at AE27 and AC17 to

determine the relative free-field displacement at the elevation of the structure. That

is,

∆u©free-field(t) = uAE27(t)− uAC17(t) . (4.22)

Again, the maximum strain at the elevation of the circular culvert can be computed by

dividing the maximum relative free-field displacement ∆©free-field by the height (diameter)

of the structure D. Therefore,

γ©max,0 =
∆©free-field

D
. (4.23)

2. For iteration i, we can predict Gm for the rectangular and circular culverts using

γmax,i−1 and Figure 4.13. Then, we can correct the maximum shear strain γmax,i using

Equation 4.1.

3. We need to repeat step 2 until |γmax,i− γmax,i−1| <= TOL for the predefined tolerance

TOL.

Figures 4.14, 4.15 and 4.16 show the iterative procedure for base shakings #3, #6, and

#9, respectively. The resulting maximum shear strains are also tabulated in Table 4.6. As

shown, in all cases the use of the iterative procedure results in higher maximum shear strains

compared to those obtained from dividing the relative free field displacements at elevations

of the rectangular and circular structures by the height of the structure.

As mentioned before, NCHRP 611 also suggests using 1D site response analysis to com-
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pute the maximum shear strain. In order to investigate the accuracy of NCHRP 611 equa-

tions against this refined procedure, we performed 1D wave propagation analysis, using the

multiaxial cyclic plasticity model. The resulting maximum strain profiles for all nine input

motions are shown in Figure 4.17 and the strain values at elevations of the culverts are pro-

vided in Table 4.6 (i.e., γ�max,1D and γ©max,1D). As shown, the shear profile is not constant with

depth (especially for medium and high amplitude motions) and its curvature is a function

of soil behavior and input motion characteristics. Moreover, the values of maximum strain

obtained from 1D wave propagation analysis are considerably smaller than those obtained

from the iterative procedure and are close to those obtained from the experimental data (i.e.,

our initial guesses for the iterative procedure). The effect of this difference will be studied

in the subsequent sections.
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Figure 4.14: Iterations for computing γmax at the elevation of the rectangular and circular
structures when subjected to the base shaking #3.

4.3.1.3 Seismic strains of the rectangular culvert

As mentioned in section 4.2, for determination of the flexibility ratio, we need to compute

the racking stiffness Ks. To this end, we modeled the rectangular structure in ANSYS and

analyzed it under the unit horizontal force. This resulted in Ks = 26882 kN/m. We consider
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Figure 4.15: Iterations for computing γmax at the elevation of the rectangular and circular
structures when subjected to the base shaking #6.
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Figure 4.16: Iterations for computing γmax at the elevation of the rectangular and circular
structures when subjected to the base shaking #9.

104



0 2 4 6

z
/H

-1

-0.8

-0.6

-0.4

-0.2

0

Motion#03

0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

Motion#04

0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

Motion#05

0 2 4 6

z
/H

-1

-0.8

-0.6

-0.4

-0.2

0

Motion#06

0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

Motion#07

0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

Motion#08

γ
max

 (milistrain)
0 2 4 6

z
/H

-1

-0.8

-0.6

-0.4

-0.2

0

Motion#09

γ
max

 (milistrain)
0 2 4 6

-1

-0.8

-0.6

-0.4

-0.2

0

Motion#10

γ
max

 (milistrain)
0 2 4 6

-1

-0.8

-0.6

-0.4

-0.2

0

Motion#11

Figure 4.17: Maximum shear strain profile obtained from 1D wave propagation analyses.

Table 4.6: The computed maximum free field shear strains at the elevation of the rectangular
and circular structures.

Motion # γ�max,0 γ�max γ�max,1D γ©max,0 γ©max γ©max,1D
(milistrain) (milistrain) (milistrain) (milistrain) (milistrain) (milistrain)

3 0.054 0.067 0.020 0.041 0.066 0.046
4 0.092 0.127 0.036 0.075 0.124 0.082
5 0.061 0.086 0.025 0.043 0.080 0.059
6 1.019 1.495 0.298 0.823 1.504 0.943
7 1.235 1.882 0.497 1.082 2.477 1.950
8 0.381 0.612 0.138 0.313 0.815 0.412
9 4.580 9.108 0.993 3.855 18.181 2.355
10 3.553 16.993 0.983 2.508 7.022 4.088
11 2.156 8.280 0.702 1.702 7.660 3.039
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W and H to be equal to 4.3 m and 2.7 m, respectively, in prototype scale. After computing

the flexibility and racking ratios, we can compute the resulting racking displacement and

impose it on top of the structure to obtain internal forces and moments from a simple frame

analysis. We performed this analysis in ANSYS.

4.3.1.4 Seismic strains of the circular culvert

As mentioned in section 4.2, we first need to determine the flexibility and compressibility

ratios to determine the internal forces in the circular culvert (see Equations 4.3 and 4.4).

After obtaining Gm, one can compute the effective-strain-compatible Young’s modulus of

the surrounding soil using the following equation

Em = 2Gm(1 + νm) (4.24)

where νm is the Poisson’s ratio of the soil and is equal to 0.3 for the present case. I1 and

A1 are the moment of inertia and area of the cross-section, and are equal to 1/12t31 and t1,

respectively, for the unit length of the circular culvert with the thickness of t1. After the

determination of F© and C©, we can calculate the internal forces and the resulting strains

for each test. In-plane bending strain (ε©b ) and in-plane axial (hoop) strain (ε©h ) are related

to the internal bending (M©) and thrust (T©) as follows:

ε©b =
M©t1
2E1I1

, ε©h =
T©

A1

. (4.25)

4.3.2 Static and dynamic increments of measured strains

As mentioned in section 4.1.1, we use the full bridge arrangement to measure the in-plane

bending and in-plane axial strains at different points along the edges of the structures. Prior

to interpretation and comparisons, the strain data need to be processed, the procedural

details of which are provided in chapter 5 of [149].

In the following sections, we provide the strain results for both the static offset at the
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beginning of each base shaking and the corresponding dynamic increment. It should be

noted that for the rectangular structure, the results for only the bending strains are provided.

This is mainly because the recorded in-plane axial strains were too small, even for the large

amplitude motions.

4.3.3 Comparison of the in-plane bending strains for the rectangular culvert

In order to compare the experimental bending strain data against those computed using

the NCHRP 611 method, we need to obtain the maximum bending strain profiles. To this

end, we use the processed strain data from each event to determine the maximum bending

strain among all recorded bending strains on the rectangular structure as well as the time

it occurs. Then, we read the value of bending strains at all locations at the time that the

maximum bending strain has occurred. Figure 4.19 displays the bending strain comparisons

for each base shaking. In each sub-figure, the maximum dynamic increment (red bars) along

with those obtained from the NCHRP 611 method (blue bars) are shown. It should be

noted that different scaling factors are used among different events. Therefore, these figures

provide only a qualitative understanding of differences between the experimental data and

the NCHRP 611 analysis results.

In order to compare the actual bending strain values, we compute the maximum bending

strain for each event. Table 4.7 summarizes the values of the important parameters including

the flexibility and racking ratios, and the maximum bending strains. We observe that:

• The application sequence of base shakings had negligible effects on the maximum value

of the static strain offset. However, the static offset profile has slightly changed (specif-

ically, along the invert and bottom sides of the culvert walls).

• Since the box structure remained elastic, F� is proportional to Gm. Therefore, as

the surrounding soil becomes softer, the flexibility ratio—and therefore the racking

ratio—decreases.

• In all cases, the NCHRP 611 method overestimates the maximum bending strain.
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• The experimental bending strain profiles along the walls, roof, and invert vary almost

linearly, and conform to the bending strain profile obtained from static frame analysis.

In order to have a closer look at how the maximum bending strain is related to differ-

ent parameters of interest (PoIs), we plot each PoI against the maximum bending strains

obtained from the centrifuge data directly, and the NCHRP method. This is shown in Fig-

ure 4.18. Although the range of εCentrifuge
b is different from the range of εNCHRP

b , visually they

both follow similar trends, especially with respect to γmax and R.
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4.3.4 Comparison of the in-plane bending strains for the circular culvert

We use the same approach here for the circular culvert as we did for obtaining the bending

strain of the rectangular structure. Figure 4.21 displays the static offset and dynamic in-

crement of bending strain data recorded during different base shakings. Again, the bending

strain data obtained from the NCHRP 611 method are included in the figures for compar-

ison. As mentioned before, since the scaling factors that are used are not the same, these

figures only provide a qualitative means of comparison as well as how the static and dynamic

strain profiles vary with different motions. Table 4.8 summarizes the maximum values of the

bending strains along with PoIs, and their relationships are illustrated in Figure 4.20. We

observe that:

• The static strain offset increases as the model is subjected to more base shakings. This

may be partially due to the densification of the soil around of the structure.

• In all cases, the flexibility ratio is greater than 1; and its value decreases as the sur-

rounding soil becomes softer. Therefore, for low-amplitude motions, ovaling should

be the dominant mode of deformation of the structure. On the other hand, as F©

decreases, the relative stiffness of the structure with respect to the surrounding soil in-

creases, which would result in more (dynamic) SSI effects and therefore more complex

behavior. The bending strain profiles shown in the figures ascertain this observation.

• In general, the NCHRP method overestimates the bending strains.

• Again, although the range of εNCHRP
b and εCentrifuge

b differ, they vary similarly with PoIs,

especially with F© and γmax,0.

4.3.5 Comparison of the hoop strains for the circular culvert

We obtained the hoop strain profiles following the same procedure as before, which are shown

in Figure 4.23. The summary of the PoIs and maximum hoop strain values are provided in

Table 4.9 and Figure 4.22. We observe that:
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Figure 4.19: Comparison of the experimental in-plane dynamic bending strains in the rect-
angular culvert with those from the NCHRP 611 method.
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Figure 4.20: PoI correlation with maximum bending strain of the circular structure.

• The static hoop strain offset is less sensitive than the static bending strain to the

application sequence of the base shakings.

• The computed compressibility ratios are less than 1 in all cases. Again, as the soil

becomes softer, the relative stiffness of the structure with respect to the surrounding

soil increases, and therefore, the compressibility ratio decreases. This can lead to more

complex hoop strain profiles under higher amplitude base shakings.

• In general, the NCHRP method underestimates the hoop strains. This is while the

NCHRP analysis method suggests the use of the full-slip condition in computing the

thrust as a conservative approach to take care of amplifications due to dynamic SSI

effects. However, we observe that this conservative solution still underestimates the

hoop strains in the circular structure.

• The variations of εNCHRP
h and εCentrifuge

h with PoIs are similar, especially with respect

to C.
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Figure 4.21: Comparison of the experimental in-plane dynamic bending strains in the circular
culvert against those from the NCHRP 611 method.
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Figure 4.22: PoI correlation with maximum hoop strain of the circular structure.

4.3.6 The racking of the rectangular structure

As shown, the bending strains computed using the NCHRP 611 method have a direct re-

lationship to the racking displacements imposed on the roof of the structure. In order to

see how the computed ∆s differs from the actual racking of the tested structure, we also

computed the experimental racking from the recorded accelerations on the structure. That

is,

∆�
s,left = u7(t)− u1(t) (4.26)

∆�
s,right = u3(t)− u6(t) (4.27)

where ui(t) for i = {1, 3, 6, 7} are obtained from double integration of the processed acceler-

ation data. Figure 4.24 displays the time series of the resulting racking deformations along

the left and right walls of the structure along with the maximum racking deformations that

we obtained through the NCHRP 611 method. As shown, the racking displacements along
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Figure 4.23: Comparison of the experimental dynamic hoop strains in the circular culvert
with those from the NCHRP 611 method.

115



the left and right walls conform to each other and their maximum values are considerably

smaller than the NCHRP ∆s.
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Figure 4.24: Comparison of the rectangular structure racking displacements obtained from
recorded accelerations on the structure and from the NCHRP 611 method.

4.3.7 Comparison of the von Mises stresses

In order to quantify the stress level in culvert cross sections, we also computed the von Mises

equivalent stress. This stress invariant is a typical metric used in the strength-based design of

metal components, and could also be applied to culverts. Using a scalar invariant such as von

Mises stress for comparisons of different methods is desirable in that it combines discrepancies

in all of the predicted-vs-measured stress/strain components into single measure.
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Assuming a plane strain condition2:

σ11 = Eε11, σ22 = 0, σ33 =
νE

(1 + ν)(1− 2ν)
ε11, σ12 = σ13 = σ23 = 0 , (4.28)

and therefore,

σvm =
√
σ2

11 + σ2
33 − σ11σ33 . (4.29)

Using the above equation and considering ν = 1/3 and E = 68.95 GPa for Aluminum, Table

4.10 provides the resulting von Mises stresses σvm for each motion.

Table 4.10: Comparison of the Von Mises stress in the culvert structures.

Motion σ©
vm (MPa) σ©

vm (MPa) σ©
vm (MPa) σ�

vm (MPa) σ�
vm (MPa) σ�

vm (MPa) σ©
vm σ©

vm σ�
vm σ�

vm
# NCHRP NCHRP-1D Centrifuge NCHRP NCHRP-1D Centrifuge (1/3) (2/3) (4/6) (5/6)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

3 0.4 0.3 0.2 0.5 0.2 0.2 2.0 1.5 2.5 1.0
4 0.7 0.5 0.4 0.9 0.3 0.4 1.8 1.25 2.3 0.75
5 0.4 0.3 0.2 0.6 0.2 0.2 2.0 1.5 3.0 1.0
6 6.6 4.4 4.7 6.7 2.0 2.2 1.4 0.9 3.0 0.9
7 10.4 8.4 5.5 7.8 3.0 2.8 1.9 1.5 2.8 1.1
8 3.8 2.1 1.7 3.6 1.0 1.4 2.2 1.2 2.6 0.7
9 62.4 10.0 22.8 17.4 5.1 4.2 2.7 0.4 4.1 1.2
10 26.8 16.4 16.0 22.1 5.1 4.7 1.7 1.0 4.7 1.1
11 29.0 12.6 10.0 16.8 4.0 3.8 2.9 1.3 4.4 1.1

4.3.8 Effects of using γmax,1D for computing bending and hoop strains and rack-

ing displacements via the NCHRP 611 method

As shown in the previous sections, using the NCHRP 611 method with the iterative procedure

to compute γmax resulted in the over-estimation of bending strains in both rectangular and

circular culverts. We repeated the NCHRP 611 procedure using γmax,1D as the input. As

mentioned before, we computed γmax,1D for each case by performing nonlinear 1D wave

propagation analyses in ABAQUS using soil model parameters obtained form the Bayesian

approach. We will use these parameters for our numerical simulations, as it will be discussed

in detail in section 4.4.

2It should be noted that in general σ22 is not zero and its effects should be considered in computing the
von Mises stress.
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Figures 4.25, 4.26 and 4.27 provide the dynamic bending strain profiles for the rectangular

culvert, dynamic bending strain profiles for the circular culvert, and the dynamic hoop strain

profiles for the circular culvert, respectively. Figure 4.28 displays the comparison of the

racking displacements in the rectangular culvert. As seen, using the more-refined procedure

to compute maximum free field shear strain resulted in bending strain profiles that are closer

to those measured in the centrifuge experiments, and tended to underestimate the profiles

in many cases. This trend is even worse for the hoop strains. Table 4.11 summarizes the

resulting maximum strain ratios compared to those we obtained using the NCHRP 611

iterative procedure. Moreover, as shown in Figure 4.28, the racking displacements have

also become in the same order of those computed from the experimental data. This shows

the importance of the choice for γmax if/when we want to use the NCHRP 611 method to

compute the seismic demands in culvert structures.

Table 4.11: Maximum bending and hoop strain ratio comparisons when we use the NCHRP
611 iterative procedure and the more-refined 1D site response analysis to compute the free
shear strain.

Motion e�b , using γmax e�b , using γmax,1D e
©
b

, using γmax e
©
b

, using γmax,1D e
©
h

, using γmax e
©
h

, using γmax,1D

3 2.17 0.65 1.72 1.19 0.96 0.71
4 2.21 0.65 1.64 1.09 0.90 0.61
5 2.42 0.72 1.89 1.38 0.96 0.71
6 2.86 0.84 1.29 0.82 0.56 0.45
7 2.68 1.04 1.79 1.42 0.72 0.65
8 2.46 0.68 1.99 1.01 1.11 0.75
9 3.94 1.15 2.67 0.39 0.52 0.26
10 4.50 1.03 1.59 0.95 0.48 0.40
11 4.20 0.99 2.85 1.18 0.70 0.51

4.4 Finite element modeling & analysis of the centrifuge tests

In this section, we provide details of direct numerical modeling of the conducted centrifuge

experiments and investigate the predictive capabilities of the calibrated finite element model

to capture the key response parameters.
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Figure 4.25: Comparison of the experimental in-plane dynamic bending strains in the rect-
angular culvert against those from the NCHRP 611 method when γmax,1D is used as the
input maximum free field shear strain.
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Figure 4.26: Comparison of the experimental in-plane dynamic bending strains in the cir-
cular culvert against those from the NCHRP 611 method when γmax,1D is used as the input
maximum free field shear strain.
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Figure 4.27: Comparison of the experimental dynamic hoop strains in the circular culvert
against those from the NCHRP 611 method when γmax,1D is used as the input maximum
free field shear strain.
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Figure 4.28: Comparison of the rectangular structure racking displacement obtained from
recorded accelerations on the structure and from the NCHRP 611 method using γmax,1D as
the input.
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4.4.1 Development of the numerical model

In order to numerically study the dynamic SSI behavior of the centrifuge specimens, a two-

dimensional (2D) finite element model was constructed in prototype scale based on the

dimensions given in Figure 4.5. In experiments with earthquake excitations (i.e., motions

3 to 11), the scaling factor N ranges from 20.7g to 21.1g. As such, we decided to use

the same factor of N = 21g for all numerical simulations in this report. As shown in

Figure 4.29, the input motion is applied along the bottom boundary of the model, where the

vertical degrees of freedom are fixed. We did not model the container explicitly. Instead, we

imposed periodic boundary conditions along horizontal degrees of freedom at the left and

right vertical edges of the soil domain while their vertical degrees of freedom are fixed, since

a flexible shear beam container is used for the experiments. It should be noted that this

configuration is used in the dynamic loading steps of analyses. In order to set up the initial

stress conditions appropriately, we also performed a static analyses under gravity loading

prior to each dynamic analysis. During the static analyses, we fixed the horizontal degrees

of freedom at the left and right vertical edges of the discretized model, while leaving the

vertical degrees of freedom free.

We used bilinear plane-strain elements for modeling the soil and the rectangular structure

and beam elements for modeling the circular structure. We also used frictional contact

elements to model sliding at the soil-structure interface. Following [76] and by considering

the soil friction angle of φsoil = 35 degrees, the friction coefficient of the interface elements

is computed as,

tan (φinterface) = 0.7 tan (φsoil) ≈ 0.33 . (4.30)

As the structures were expected to behave linear elastically in all of the experiments,

we used linear elastic material models for both culverts using the properties of Aluminum

T60-61, which are γ = 26.5 kN/m3, E = 68.9 GPa and ν = 0.33. On other hand, for

capturing the nonlinear soil behavior, which is a relatively dense dry Ottawa sand, we used
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Figure 4.29: Mesh configuration of the finite element model used in numerical analysis.

a multi-axial cyclic plasticity model. Details of this model are provided in chapter 2.

4.4.2 Calibration of the soil parameters from centrifuge data

Borja’s model can be defined by small strain shear wave velocity profile, modulus reduction

curves, small strain damping, and shear strength of the soil deposit at hand. It can be

shown that under the simple shear test condition, the following relationship exists between

the normalized shear modulus G/Gmax and shear strain γ using Borja’s model [68].

G

Gmax

+
3

2γ

∫ 2Giγ

0

[
h

(
R/
√

2 +Gγ − τ
τ

)m
+H0

]−1

dτ − 1 = 0. (4.31)

Therefore, for the given G/Gmax curve, one can obtain the unknown parameters h, m, R and

H0 by solving a series of nonlinear equations or via the least squares method [71]. As men-

tioned earlier in section 4.3, we used a Bayesian approach to infer the shear wave velocity,

G/Gmax and the small strain viscous damping coefficient a1 from free field acceleration mea-

surements. Assuming a power function for the shear wave velocity profile and the hardening

parameter h resulted in

Vs (m/s) = 16.905 + 192.976
( z
H

)0.331

(4.32)

and

h =

[
0.107 + 0.474

( z
H

)4.581
]
Gmax (4.33)
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Figure 4.30: Calibrated shear wave velocity profile and G/Gmax curves over the depth.

along with other parameters estimated as

m = 1.579, R = 0.0028 Gmax, a1 = 0.0031 . (4.34)

We also assumed that H0 = 0. Figure 4.30 displays the resulting calibrated shear wave ve-

locity profile and the G/Gmax curves for different depths, which are used in various numerical

analyses of this report.

4.4.3 Numerical analyses

We used the calibrated soil model in finite element models of the centrifuge tests and per-

formed numerical simulations using the earthquake excitations as input motions. To exam-

ine the predictive capabilities of the finite element models, we present the measured and

numerically computed accelerations at various locations within the soil and on the specimen

structures, the bending strains along the rectangular structure, and the bending and hoop

strains along the circular structure in the following subsections.
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4.4.3.1 Comparison of horizontal accelerations in soil

Figures 4.31-4.39 display comparisons of horizontal acceleration time-series and Fourier am-

plitudes for the left/southern acceleration array (i.e., locations AA1, AC12, AD18, AE25 and

AF28). Figures 4.40-4.48 display similar data for the middle array (i.e., locations AAH5,

AC16, ADH23, AE26 and AFH30). For the reader’s convenience, we recall here that the

motions 3-5 were low-amplitude, 6-8 were moderate amplitude, and 9-11 were high ampli-

tude excitations (see Figure 4.8). As shown, the finite element models generally capture the

time-series and the Fourier amplitude spectra of the measured accelerations for all motion

amplitudes. It should be noted that we used only the left array acceleration data from mo-

tions #3 and #9 for calibrating the soil constitutive model parameters. Moreover, as shown,

ICP AAH5 was only functional during motions 3, 4, and 5.
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Figure 4.31: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #3.
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Figure 4.32: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #4.
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Figure 4.33: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #5.
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Figure 4.34: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #6.
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Figure 4.35: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #7.
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Figure 4.36: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #8.
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Figure 4.37: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #9.
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Figure 4.38: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #10.

5 6 7 8 9 10 11 12 13 14 15

A
c
c
e
 (

g
)

-0.5

0

0.5

AA1Numerical Experimental

0 2 4 6 8 10

F
A

 (
g
.s

)

0

0.05

0.1

0.15

5 6 7 8 9 10 11 12 13 14 15

A
c
c
e
 (

g
)

-0.5

0

0.5 AC12

0 2 4 6 8 10

F
A

 (
g
.s

)

0

0.05

0.1

0.15

5 6 7 8 9 10 11 12 13 14 15

A
c
c
e
 (

g
)

-0.5

0

0.5

AD18

0 2 4 6 8 10

F
A

 (
g
.s

)

0

0.05

0.1

0.15

5 6 7 8 9 10 11 12 13 14 15

A
c
c
e
 (

g
)

-0.5

0

0.5

AE25

0 2 4 6 8 10

F
A

 (
g
.s

)

0

0.05

0.1

0.15

Time (sec)
5 6 7 8 9 10 11 12 13 14 15

A
c
c
e
 (

g
)

-1

-0.5

0

0.5 AF28

Frequency (Hz)
0 2 4 6 8 10

F
A

 (
g
.s

)

0

0.05

0.1

0.15

Figure 4.39: Time series and Fourier amplitude spectra of the accelerations recorded at the
left array (AA1, AC12, AD18, AE25 and AF28) for motion #11.
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Figure 4.40: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #3.
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Figure 4.41: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #4.
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Figure 4.42: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #5.
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Figure 4.43: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #6.
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Figure 4.44: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #7.
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Figure 4.45: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #8.
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Figure 4.46: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #9.
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Figure 4.47: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #10.
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Figure 4.48: Time series and Fourier amplitude spectra of the accelerations recorded at the
middle array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #11.

4.4.3.2 Comparison of horizontal accelerations of culvert specimens

Figures 4.49-4.57 display the comparisons for the time series and Fourier amplitude spectra

of horizontal accelerations for the rectangular (locations 7 and 1) and circular (locations 16

and 14) culverts. Again, the agreement between the numerical and experimental results for

all motions are generally very good.

4.4.3.3 Comparison of in-plane bending strains for rectangular culvert

To compare the maximum bending strain profiles, we used the processed strain data of each

event to determine the maximum in-plane bending strains among all the recorded data on

the rectangular structure and the time it occurred. Then, we read the value of bending

strains at all locations at that particular time. We followed the same procedure to extract

the bending strain profile from the numerical simulations. Figures 4.58-4.75 display the

comparisons for the time series and Fourier amplitude spectra of the dynamic bending strains

for the rectangular culvert, and Figures 4.76-4.84 display the comparisons for both static and

dynamic bending strain profiles. Again, as shown, the numerical model was successful in
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Figure 4.49: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #03.
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Figure 4.50: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #04.
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Figure 4.51: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #05.
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Figure 4.52: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #06.
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Figure 4.53: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #07.
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Figure 4.54: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #08.
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Figure 4.55: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #09.
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Figure 4.56: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #10.
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Figure 4.57: Time series and Fourier amplitude spectra of the horizontal accelerations
recorded on the specimen structures (7, 1, 16 and 14) for motion #11.

capturing bending strain data for all (low, medium, high amplitude) base shaking events.
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Figure 4.66: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #07.
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Figure 4.58: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #03.

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

1

2

3
BT1Numerical Experimental

0 2 4 6 8 10
0

0.5

1

1.5

2

BT6

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

0.2

0.4

0.6

0.8

BL7

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

BL10

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

0.5

1

1.5

BB11

0 2 4 6 8 10
0

1

2

3

BB16

Frequency (Hz)
0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

1

2

3

BL17

Frequency (Hz)
0 2 4 6 8 10

0

0.5

1

1.5

BL20

Figure 4.59: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #03.

141



15 20 25

S
tr

a
in

 (
µ
ǫ
)

-10

-5

0

5

10

BT1
Numerical Experimental

15 20 25
-4

-2

0

2

4
BT6

15 20 25

S
tr

a
in

 (
µ
ǫ
)

-2

-1

0

1

2

BL7

15 20 25
-2

-1

0

1
BL10

15 20 25

S
tr

a
in

 (
µ
ǫ
)

-4

-2

0

2

4
BB11

15 20 25
-10

-5

0

5

10

BB16

Time (Sec)
15 20 25

S
tr

a
in

 (
µ
ǫ
)

-5

0

5

10

BL17

Time (Sec)
15 20 25

-4

-2

0

2

4

BL20

Figure 4.60: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #04.
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Figure 4.61: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #04.
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Figure 4.62: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #05.
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Figure 4.63: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #05.
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Figure 4.64: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #06.
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Figure 4.65: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #06.
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Figure 4.67: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #07.
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Figure 4.68: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #08.
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Figure 4.69: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #08.

5 10 15 20

S
tr

a
in

 (
µ
ǫ
)

-100

-50

0

50

100

BT1Numerical Experimental

5 10 15 20
-50

0

50
BT6

5 10 15 20

S
tr

a
in

 (
µ
ǫ
)

-20

-10

0

10

20
BL7

5 10 15 20
-10

0

10

20

BL10

5 10 15 20

S
tr

a
in

 (
µ
ǫ
)

-40

-20

0

20

40
BB11

5 10 15 20
-100

-50

0

50

100

BB16

Time (Sec)
5 10 15 20

S
tr

a
in

 (
µ
ǫ
)

-100

-50

0

50

100

BL17

Time (Sec)
5 10 15 20

-40

-20

0

20

40
BL20

Figure 4.70: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #09.
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Figure 4.71: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #09.
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Figure 4.72: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #10.
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Figure 4.73: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #10.
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Figure 4.74: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #11.
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Figure 4.75: Comparison of the Fourier amplitude spectra of the rectangular structure for
motion #11.

Static Dynamic

Figure 4.76: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #03.

Static Dynamic

Figure 4.77: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #04.
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Static Dynamic

Figure 4.78: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #05.

Static Dynamic

Figure 4.79: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #06.

Static Dynamic

Figure 4.80: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #07.
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Static Dynamic

Figure 4.81: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #08.

Static Dynamic

Figure 4.82: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #09.

Static Dynamic

Figure 4.83: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #10.
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Static Dynamic

Figure 4.84: Comparison of the maximum static and dynamic bending strain profiles of the
rectangular structure for motion #11.

4.4.3.4 Comparison of in-plane bending strains for circular culvert

Similarly, Figures 4.85-4.102 display the comparisons for the time series and Fourier ampli-

tude spectra of the dynamic bending strains for the circular culvert, and Figures 4.103-4.111

display the comparisons for both static and dynamic bending strain profiles. As shown,

the numerical model approach is again successful in general to capture bending strain time

series. However, agreements are not perfect at all locations. Moreover, although the numer-

ical model is successful in capturing the dynamic strain profile, it was unable to do so for

the static case. This can be partially attributed to the fact that we are not modeling the

soil densification in our numerical simulations and the initial condition is the same for all

experiments. This is while in the actual centrifuge experiment we possibly had some soil

densification around the circular structure as it was difficult to pluviate soil uniformly, and

we had to use a hand vibrator to increase soil densification around it prior to the test. It

is likely that this effort was not entirely successful. That said, the static strains are much

smaller than the dynamic strains, and are incidentally more difficult to measure.

4.4.3.5 Comparison of hoop strains for circular culvert

Figures 4.112-4.129 display the comparisons for the time series and Fourier amplitude spectra

of hoop strains for the circular culvert, and Figures 4.130-4.138 show comparisons for both

the static and dynamic hoop strain profiles. In general, the range of hoop strains are smaller
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Figure 4.85: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #03.
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Figure 4.86: Comparison of Fourier amplitude spectra of the circular structure for motion
#03.
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Figure 4.87: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #04.
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Figure 4.88: Comparison of the Fourier amplitude spectra of the circular structure for motion
#04.
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Figure 4.89: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #05.
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Figure 4.90: Comparison of the Fourier amplitude spectra of the circular structure for motion
#05.
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Figure 4.91: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #06.
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Figure 4.92: Comparison of the Fourier amplitude spectra of the circular structure for motion
#06.
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Figure 4.93: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #07.
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Figure 4.94: Comparison of the Fourier amplitude spectra of the circular structure for motion
#07.
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Figure 4.95: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #08.

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

5

10

15

A10Numerical Experimental

0 2 4 6 8 10
0

5

10
A11

0 2 4 6 8 10
0

2

4

6

8
A12

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

5

10
A1

0 2 4 6 8 10
0

5

10
A2

0 2 4 6 8 10
0

5

10

A3

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

2

4

6

8
A4

0 2 4 6 8 10
0

5

10

15

A5

Frequency (Hz)
0 2 4 6 8 10

0

5

10

A6

Frequency (Hz)
0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

5

10

A7

Frequency (Hz)
0 2 4 6 8 10

0

5

10

15

A8

Frequency (Hz)
0 2 4 6 8 10

0

5

10

15

A9

Figure 4.96: Comparison of the corresponding Fourier amplitude spectra of the circular
structure for motion #08.
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Figure 4.97: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #09.
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Figure 4.98: Comparison of the Fourier amplitude spectra of the circular structure for motion
#09.
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Figure 4.99: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #10.
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Figure 4.100: Comparison of the Fourier amplitude spectra of the circular structure for
motion #10.
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Figure 4.101: Comparison of the time series of the dynamic bending strains of the circular
structure for motion #11.
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Figure 4.102: Comparison of the Fourier amplitude spectra of the circular structure for
motion #11.
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Static Dynamic

Figure 4.103: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #03.

Static Dynamic

Figure 4.104: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #04.

Static Dynamic

Figure 4.105: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #05.
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Static Dynamic

Figure 4.106: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #06.

Static Dynamic

Figure 4.107: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #07.

Static Dynamic

Figure 4.108: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #08.
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Static Dynamic

Figure 4.109: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #09.

Static Dynamic

Figure 4.110: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #10.

Static Dynamic

Figure 4.111: Comparison of the maximum static and dynamic bending strain profiles of the
circular structure for motion #11.

164



than the bending strains, and as such, they inherently have inherently lower signal-to-noise

ratios. Not surprisingly, therefore, we could achieve better agreements between experimental

hoop strain data and FE results for higher amplitude motions. Although the agreement is

not uniformly good at all locations, the numerical model could capture very similar static

and dynamic hoop strain profiles in general; and interestingly, the static profile agreement is

much better than what was observed for the static in-plane bending strains shown previously.
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Figure 4.112: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #03.
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Figure 4.113: Comparison of the Fourier amplitude spectra of the circular structure for
motion #03.
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Figure 4.114: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #04.
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Figure 4.115: Comparison of the Fourier amplitude spectra of the circular structure for
motion #04.
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Figure 4.116: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #05.
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Figure 4.117: Comparison of the Fourier amplitude spectra of the circular structure for
motion #05.

10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-20

0

20

40

A22
Numerical Experimental

10 12 14 16 18 20
-20

-10

0

10

20

A23

10 12 14 16 18 20
-10

0

10

20

A24

10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-10

-5

0

5

10

A13

10 12 14 16 18 20
-20

-10

0

10

20

A14

10 12 14 16 18 20
-40

-20

0

20
A15

10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-40

-20

0

20

40

A16

10 12 14 16 18 20
-40

-20

0

20
A17

Time (Sec)
10 12 14 16 18 20

-20

-10

0

10
A18

Time (Sec)
10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-20

-10

0

10
A19

Time (Sec)
10 12 14 16 18 20

-20

0

20

40

A20

Time (Sec)
10 12 14 16 18 20

-20

0

20

40

A21

Figure 4.118: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #06.
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Figure 4.119: Comparison of the Fourier amplitude spectra of the circular structure for
motion #06.
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Figure 4.120: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #07.
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Figure 4.121: Comparison of the Fourier amplitude spectra of the circular structure for
motion #07.
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Figure 4.122: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #08.
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Figure 4.123: Comparison of the Fourier amplitude spectra of the circular structure for
motion #08.
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Figure 4.124: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #09.
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Figure 4.125: Comparison of the Fourier amplitude spectra of the circular structure for
motion #09.
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Figure 4.126: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #10.

172



2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

5

10

15

A22Numerical Experimental

2 4 6 8 10
0

5

10

15

A23

2 4 6 8 10
0

2

4

6

8

A24

2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

5

10

A13

2 4 6 8 10
0

5

10

15
A14

2 4 6 8 10
0

5

10

15
A15

2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

10

20

30

A16

2 4 6 8 10
0

10

20

30

A17

Frequency (Hz)
2 4 6 8 10

0

5

10

A18

Frequency (Hz)
2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

5

10

15

A19

Frequency (Hz)
2 4 6 8 10

0

10

20

30

A20

Frequency (Hz)
2 4 6 8 10

0

10

20

30

A21

Figure 4.127: Comparison of the Fourier amplitude spectra of the circular structure for
motion #10.
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Figure 4.128: Comparison of the time series of the dynamic hoop strains of the circular
structure for motion #11.
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Figure 4.129: Comparison of the Fourier amplitude spectra of the circular structure for
motion #11.

Static Dynamic

Figure 4.130: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #03.

Static Dynamic

Figure 4.131: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #04.
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Static Dynamic

Figure 4.132: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #05.

Static Dynamic

Figure 4.133: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #06.

Static Dynamic

Figure 4.134: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #07.
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Static Dynamic

Figure 4.135: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #08.

Static Dynamic

Figure 4.136: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #09.
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Static Dynamic

Figure 4.137: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #10.

Static Dynamic

Figure 4.138: Comparison of the maximum static and dynamic hoop strain profiles of the
circular structure for motion #11.

4.4.3.6 Maximum dynamic deformation profiles of culvert specimens

In order to investigate the dominant mode of deformation in both structures when the

bending strain is maximum, we read the dynamic displacements of different nodes along

the edge of the structure at the same time that we obtained the bending strain profiles.

Figures 4.139 and 4.140 display the maximum deformation profiles for both the rectangular

and the circular structure under all 9 motions. It should be noted that in both figures the

resulting deformations are magnified 100 times.
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Motion#03 Motion#04 Motion#05

Motion#06 Motion#07 Motion#08

Motion#09 Motion#10 Motion#11

Figure 4.139: Maximum deformation plot for rectangular structure.

Motion#03 Motion#04 Motion#05

Motion#06 Motion#07 Motion#08

Motion#09 Motion#10 Motion#11

Figure 4.140: Maximum deformation plot for circular structure.
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4.4.3.7 Error analysis

In order to summarize the capability of the calibrated numerical model in predicting different

response parameters studied in this report, we compute the relative root-mean-square error

(RMSE) for each response parameter as follows:

Relative RMSE =

√[
1
n

∑n
k=1

(
rexp
k − rnum

k

)2
]

√[
1
n

∑n
k=1

(
rexp
k

)2
] × 100% (4.35)

where n is the total number of time steps considered in the response time-series; and rexp

and rnum are the experimental and numerical response time-series, respectively. Considering

each data point in the response time-series as different predictions in the dataset, the relative

RMSE can be interpreted as the coefficient of variation, i.e. σ/|µ|, where σ is the standard

deviation and |µ| is the absolute mean value.

Figures 4.141 and 4.149 display the relative RMSE for all base shakings used in this

report. We recall that AA1, AD18, AF28, AC16, AE26, and AFH30 are the ICPs measuring

horizontal accelerations at the left and middle arrays in the soil; 7 and 1 are the ICPs at the

bottom and top of the left wall of the rectangular structure; BT1, BL7, BB16, and BL17

are the bending strain bridges at corners of the rectangular culvert; 16 and 14 are the ICPs

measuring the horizontal accelerations at θ=180 and 270 degrees, respectively, of the circular

culvert; A11, A2, A5, and A8 are the bending strain bridges at θ=45, 135, 225, 315 degrees;

and A23, A14, A17, and A20 are the hoop strain bridges at θ=45, 135, 225, 315 degrees.

As shown, RMSE is less for higher amplitude motions in general, which is due to inherently

higher signal-to-noise ratios in those experiments.

Finally, Table 4.12 summarizes the resulting maximum bending strain ratios for the

rectangular culvert, maximum bending and hoop strain ratios for the circular culvert, and

von Mises stress for both culverts, compared to those we obtained using the finite element

model (FEM).
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Table 4.12: Maximum bending and hoop strain ratios, and von Mises stress ratios between
experiment and FE model predictions.

Motion e�b e©b e©h σ�
vm σ©vm

3 0.89 1.37 0.98 0.89 1.29
4 0.81 1.14 0.81 0.81 1.17
5 0.77 1.26 0.87 0.77 1.26
6 1.05 0.86 0.49 1.05 0.89
7 1.17 1.33 0.63 1.17 1.15
8 0.83 0.87 0.88 0.83 0.91
9(a) 1.07 0.63 0.34 1.07 0.59
10 1.19 0.83 0.45 1.19 0.85
11 1.13 1.23 0.53 1.13 1.22

(a) Only motion 9 is used for calibrating parameters of the noninear

soil model for all analyses.
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Figure 4.141: Relative RMSE for motion #03.
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Figure 4.142: Relative RMSE for motion #04.
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Figure 4.143: Relative RMSE for motion #05.
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Figure 4.144: Relative RMSE for motion #06.
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Figure 4.145: Relative RMSE for motion #07.
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Figure 4.146: Relative RMSE for motion #08.
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Figure 4.147: Relative RMSE for motion #09.
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Figure 4.148: Relative RMSE for motion #10.
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Figure 4.149: Relative RMSE for motion #11.
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CHAPTER 5

A quantitative assessment of the NCHRP 611 method

for soil-structure interaction analysis of buried circular

structures and a proposed improvement

As mentioned in chapter 4, current seismic design practices—which are comprehensively ar-

ticulated in the NCHRP Report 611 [18]—are primarily based on the procedures proposed

by Wang [19] and Penzien [42] for circular and rectangular buried structures, respectively.

Due to its computational simplicity, it has been widely adopted as a reference in the de-

sign of buried structures. More recently, a number of experimental (e.g., [132, 134, 135]),

numerical (e.g., [140, 135, 152, 153, 154, 155, 156]), and analytical (e.g., [144, 145]) stud-

ies have been conducted to explore the accuracy of the aforementioned procedures. These

studies have revealed that depending on the particular algorithmic branch of the NCHRP

611 methods adopted, some of the structural strains were over-predicted while others were

under-predicted. Such inaccuracies should not necessarily lead to catastrophic results for

culverts/tunnels, but they nonetheless reduce the margins of safety and economy in their

designs.

The aforementioned past studies, however, evaluated and bracketed the performance

of NCHRP 611 method only in a limited manner—in particular, the effects of flexibility

ratio and the frequency content of the input excitations were not adequately explored, and

typically fewer than 10 ground motions were considered. A more comprehensive study was

recently conducted on buried rectangular structures [155], but it has also been identified that

the responses of rectangular and circular structures are profoundly different, and that the

SSI behavior of circular structures is more difficult to capture [135] compared to rectangular
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one [71].

In this chapter, a quantitative assessment of the NCHRP 611 method is carried out to

comprehensively evaluate the accuracy of the NCHRP 611 method for soil-structure analysis

of buried circular structures. Parametric studies with 400 simulations using a broad range of

ground motions, nonlinear soil properties, embedment depths and structural flexibility ratios,

as well as no-slip and full-slip interface conditions are considered to bracket the acceptable

ranges of applicability of the NCHRP 611 method. Please refer to [157] for more details

about this work.

5.1 The NCHRP approach with nonlinear soil model

As seen in 4.2.1, in order to compute seismic demands using the NCHRP 611 methodology,

we first need to estimate the maximum free-field strain γmax in the soil deposit as well as the

corresponding effective compatible shear modulus Gm. Then, the seismic demands can be

computed following the steps outlined above. For shallow structures one may use Eq. 4.1 to

estimate γmax. However, in order to use that equation, we need to know the strain-compatible

shear modulus (Gm) of the ground surrounding the culvert or pipe, which itself is a function

of γmax. For linear soil response one may simply use the elastic shear modulus Gmax to

represent Gm. For the nonlinear soil response, we can either perform a 1D site response

analysis to compute Gm, or use an iterative procedure to obtain it, as described below:

1. To start the procedure (iteration i = 0), provide an initial guess for the maximum

shear strain at the elevation of the bottom of the circular structure. This initial guess

can be any reasonable value. Here, we simply use γmax,0 = 0.05%.

2. For iteration i, predict Gm for the circular structure, which can be achieved using

γmax,i−1 and the G/Gmax curve of the soil. Subsequently, correct the maximum shear

strain γmax,i using Eq. 4.1.

3. Repeat step 2 until |γmax,i − γmax,i−1| <= TOL for the predefined tolerance TOL.
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The NCHRP 611 report suggests using 1D site response analysis to compute the maxi-

mum shear strain as well; whereas the iterative procedure described above produces a self-

consistent pair of (γmax, Gm).

Given all the different options above, it is best to delineate the NCHRP611 method

into its two variants as shown in Table. 5.1. Of the two, the variant labeled “NCHRP611-

NonLinIterative” has not been described in any prior publication, to the best of the authors’

knowledge; however, it is probably a distinct variant that at least some practitioners must

have used, and as such, it is essential to include it in the comparisons.

Table 5.1: Two variants of the NCHRP611 method.
Label NCHRP611-NonLinIterative NCHRP611-NonLinRefined

Procedure (1) Set γmax,0 = 0.05% and then use the iterative procedure to
compute both γmax and Gm;
(2) Follow Eqs. 4.2–4.7 to compute Rd and then hoop thrust
and bending moment.

(1) Perform nonlinear 1D site response analysis to compute
γmax;
(2) Use computed γmax to interpolate the G/Gmax curve
(corresponding to layer of soil where γmax occurs) to get the
Gm;
(3) Follow Eqs. 4.2–4.7 to compute Rd and then hoop thrust
and bending moment.

Remarks γmax is computed using theG/Gmax curves but not the damping
curves, which can lead to inaccurate results, especially for high
damping ratios of high strain values.

Bears the highest computational cost, but potentially the
most accurate.

5.2 Numerical experiments

A circular culvert (Fig. 5.1) embedded in soil is modeled using the finite element (FE) method

and analyzed under dynamic excitations in parametric studies to quantify the accuracy of

the NCHRP 611 method. Dimensions of the exterior domain and the domain of interest

in the constructed FE model(s) are 180m×45m and 120m×30m, respectively. The culvert

diameter is 3m. The side and bottom boundaries of the computational domain are truncated

using the Lysmer and Kuhlemeyer [20] absorbing boundary conditions (ABCs). The dashpot

coefficients c are determined as,

For the bottom boundary →


cx = ρ · Vs · Ab

cy = ρ · Vp · Ab
(5.1)
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For the side boundaries →


cx = ρ · Vp · As

cy = ρ · Vs · As
(5.2)

where ρ is the density of the soil; Vs and Vp are shear and compressional wave velocities,

respectively; Ab and As are the areas of the bottom and side soil elements that correspond

to the dashpots used. The validity of the numerical model has been verified by comparing

with experimental data from the centrifuge tests [149].

Domain of interest

Exterior Domain

One layer of 
elements

H = Soil cover depth

d =  Culvert Diameter

Figure 5.1: Side view of the numerical model.

In order to reduce the computational domain while modeling a semi-infinite domain

under remote excitations, we use the domain reduction method (DRM). DRM is a two-step

finite element procedure proposed by Bielak et al. [117] for modeling the seismic responses

of heterogeneous subdomains. DRM enables the conversion of the half-space problem to an

equivalent one in which the effects of incoming waves due to remote excitations are translated

into equivalent nodal forces that are applied inside a domain that is truncated by ABCs.

In DRM, the equivalent nodal force vector is computed using Eq. (5.3) per [117] and

applied to the nodes located at a single layer of elements that form the interface between

the exterior and the near-field domains as shown in Fig. 5.1.

Peff =


Peff
i

Peff
b

Peff
e

 =


0

−MΩ+
be ü0

e −CΩ+
be u̇0

e −KΩ+
be u0

e

+MΩ+
eb ü0

b + CΩ+
eb u̇0

b + KΩ+
eb u0

b

 (5.3)
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where the subscripts b and e refer to the nodes along the inside and outside inteface of the

one layer of elements, respectively. The terms u0 and Peff respectively denote the free-field

displacements and forces for the nodes on the one layer of elements, which can be obtained by

performing 1D site response analysis for a given ground motion time-history. MΩ+, CΩ+ and

KΩ+ are the mass, damping and stiffness matrices assembled for only the above mentioned

single layer of elements.

In the present study, the DRM method is implemented in ABAQUS [114], and the ac-

curacy of this implementation is verified by comparing the numerical results obtained from

DRM and single-soil-column simulations [118].

5.2.1 Material Models & Soil-Structure Interface Conditions

In the numerical simulations, the soil is modeled with 4-node quadrilateral plane strain

elements, each of which has a near-uniform size of 0.5m × 0.5m. The circular culvert lining

is modeled with 100 equal-sized beam elements, because NCHRP equations are derived based

on the assumptions of beam elements. The element size is chosen such that approximately

12 discretized nodes exist within the minimum wavelength [158], which, for the present

simulations is λmin/12 = Vs/fmax = 200m/s/10Hz/12 ≈ 1.67m. Table 5.2 summarizes the

mechanical properties of the culvert lining adopted in this study.

For the surrounding soil, nonlinear material behavior is considered. The elastic material

properties of the soft and stiff soils are provided in Table 5.3. In the nonlinear analyses, the

soil deposits are modeled using a bounding surface plasticity model, which was originally

developed by Borja et al. [63, 69]. This nonlinear soil model has been thoroughly calibrated

and validated using data from multiple centrifuge tests by Zhang et al. [71]. Here, we

choose the material parameters of this nonlinear soil model as h = 0.3 Gmax, m = 1.2, R =

0.006 Gmax, H0 = 0.01 Gmax, which are calibrated based on the Ottawa sand properties [2].

The parameters h, m and H0 are three parameters, which control the intensity, rate, and

final state of hardening. R is the radius of the bounding surface. The selected hysteresis and

stiffness degradation and damping curves are shown in Figs. 5.2 (a) and (b), respectively.
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In order to examine the accuracy of the NCHRP 611 method for domains involving soil

layers, a two-layer soil deposit is considered in addition to the uniform soil. The shear wave

velocity curves for homogeneous and two layered half-space cases are shown in Fig. 5.2 (c).

In addition to these considerations, the modeling variations of the soil-structure interface

are examined by using full-slip contact, wherein the ABAQUS [114] built-in node-to-node

hard-contact formulation with finite sliding was used, as well as no-slip (perfectly bonded)

interface conditions, wherein the liner elements were tied to the adjacent soil nodes and the

interface could sustain tension. As reported in [159], the soil-lining interface properties can

significantly affect the internal forces developed in the lining of a circular tunnel.

Table 5.2: Mechanical properties of the culvert lining.

Material Diameter (m) Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m3)
Properties 3 68.9 0.3 2700

Table 5.3: Mechanical properties of the soil deposits.

Shear Modulus (MPa) Poisson’s Ratio Density (kg/m3)
Soft soil 80 0.3 1900
Stiff soil 320 0.3 2000

5.2.2 Effects of Embedment Depth

Upon creating the model matrix with different material properties and soil-structure interface

conditions, we explore the effects of embedment depths by varying the embedment depth

ratio—defined as H/d (see Fig. 5.1)—from 0.5 to 5 in increments of 0.5. The incident wave

is defined based on Eq. 5.4 with amax = 0.1g and T = 0.5 sec.

ü(t) =
amax

2
sin(2πt/T )

[
1− cos(2πt/10T )

]
(5.4)

Fig. 5.3 displays the variations of maximum bending strain, hoop strain, and diameter change

ratios (of NCHRP611 methods to the finite element method) with respect to embedment

depth ratio. The figure presents the results for homogeneous and two layered half-space cases.

189



-10 -5 0 5 10

Shear strain  (%)

-400

-200

0

200

400

S
h

e
a

r 
s
tr

e
s
s
 

 (
k
P

a
)

(a)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

max
[%]

0

0.2

0.4

0.6

0.8

1

G
/G

m
a

x

0

10

20

30

40

50

D
a

m
p

in
g

 R
a

ti
o

[%
]

G/G
max

Damping Ratio[%]

(b)

100 200 300 400 500 600

V
s
 (m/s)

0

5

10

15

20

22

25

30

D
e

p
th

 (
m

)

Homogeneous case

Two layered half-space case

(c)

Figure 5.2: (a) Hysteresis curve of the adopted nonlinear soil model, (b) stiffness degradation
and damping curves, and (c) shear wave velocity profiles.
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Strain variations along the circumference of the structure are also examined by computing

contour plots for hoop and bending strain profiles shown in Fig. 5.4 and Fig. 5.5. The

following can be observed from these figures:

• Generally, the full-slip interface produces higher ratios than the no-slip case (i.e., it

is more conservative)—while noting that the interface modeling assumption can also

lead to a completely different profile (shape) for the maximum hoop strain. Given this

observation, it appears reasonable that the NCHRP611 report recommends the use of

a full-slip interface condition for the bending strain and diameter change, and a no-slip

interface condition for the hoop strain.

• In the no-slip case, the NCHRP611-NonLinIterative method can both over- or under-

estimate the maximum hoop strain by up to a factor of 2.0 and 0.9, respectively.

• In the full-slip case, the NCHRP611-NonLinIterative method always overestimates the

maximum bending strain and diameter change by up to 5.1 and 14.3, respectively.

• In all cases, the refined NCHRP method—namely, NCHRP611-NonLinRefined—exhibits

better performance compared to the NCHRP611-NonLinIterative.

• Overall, the refined NCHRP method (i.e., NCHRP611-NonLinRefined) shows accept-

able profile shapes for both hoop and bending strains.

5.2.3 Effects of Excitation Frequencies

As mentioned above, the NCHRP 611 method is based on pseudo-static considerations de-

scribed in [19], the validity of which is related—among other things—to the frequency content

of the considered ground motions. In principle, the broadband frequency content of seismic

input excitations (i.e., seismic wavelengths) affect the seismic earth pressures [44], and thus

the shear strain. Herein, we study the effects of excitation frequencies by using the function

defined in Eq. 5.4 and by varying the input frequencies from 0.5 Hz to 10 Hz with 20 log-

arithmically even-spaced frequencies. Fig. 5.6 displays the maximum bending strain, hoop
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Figure 5.3: Ratios of maximum bending strain, hoop strain, and diameter change for (a)
homogeneous and (b) two layered half-space cases versus embedment depth ratio.
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Figure 5.4: Maximum hoop strain profiles obtained using the NCHRP611-NonLinIterative,
NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and (b) two layered
half-space cases versus embedment depth ratio.
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Figure 5.5: Maximum bending strain profiles obtained using the NCHRP611-
NonLinIterative, NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and
(b) two layered half-space cases versus embedment depth ratio.

strain, and diameter change ratio versus the dimensionless term λ/d. The contour plots for

hoop and bending strain profiles are shown in Fig. 5.7 and Fig. 5.8, respectively. Also, in

order to understand the differences in the locations and amplitudes of γmax between results

obtained from 1D site response analyses and the empirical Eq. 4.1, surface plots (see Fig. 5.9)

are generated that show the effects of excitation frequency on γmax. An inspection of these

figures/results reveals that:

• The NCHRP611-NonLinIterative method overestimates the maximum hoop and bend-

ing strains as well as the diameter change values for the lower λ/d ratios. The cor-

responding ratios can climb up to 5.4, 6.5 and 18.8, respectively. The main reason

behind this mishap is that the NCHRP611-NonLinIterative approach estimates the

key parameter γmax at much higher values than the refined ones for the lower λ/d

values.

• The refined NCHRP method (i.e., NCHRP611-NonLinRefined) significantly improves

the overestimations and can reduce those ratios to 1.6, 3.4 and 7.3, respectively.
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• In all cases, the refined NCHRP method produces more accurate results compared to

the NCHRP611-NonLinIterative method.

• Not only the amplitude, but also the location where γmax occurs vary. The empirical

equation (i.e., Eq. 4.1) always assumes that γmax occurs at the bottom of the cul-

vert/tunnel, which is not necessarily true. As shown in Fig. 5.9, the maximum shear

strain may occur at the top elevation of the culvert when λ/d is small.
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Figure 5.6: Ratios of maximum bending strain, hoop strain, and diameter change for (a)
homogeneous and (b) two layered half-space cases versus λ/d.

5.2.4 Effects of Excitation Amplitude

Considering the potentially nonlinear behavior of surrounding soil under strong input mo-

tions, which can have considerable impacts on both Gm and γmax in Eq. 4.1, it is critical to

examine the effects of excitation amplitude. As in the previous parametric study, we also

use Eq. 5.4 here as the input motion, but vary the amplitude, amax, from 0.01g to 1g with 10

logarithmically evenly spaced increments. Fig. 5.10 displays the maximum bending strain,
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Figure 5.7: Maximum hoop strain profiles obtained using the NCHRP611-NonLinIterative,
NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and (b) two layered
half-space cases versus λ/d.
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Figure 5.8: Maximum bending strain profiles obtained using the NCHRP611-
NonLinIterative, NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and
(b) two layered half-space cases versus λ/d.
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Figure 5.9: Surface plot for γmax versus λ/d.

hoop strain, and diameter change ratios versus the Peak Ground Acceleration (PGA) ob-

tained in the numerical experiments. The contour plots for hoop and bending strain profiles

are shown in Fig. 5.11 and Fig. 5.12, respectively. Additionally, the extent of soil nonlinearity

under different amplitudes of input motions are presented in Fig. 5.13. Findings from these

figures can be summarized as follows:

• Both the soil stiffness and damping ratio varies dramatically as the PGA increases.

This results in significant overestimations by the NCHRP611-NonLinIterative method,

which predicts the ratios of the maximum hoop and bending strains and diameter

change as 2.8, 8.8, and 26.0, respectively. However, the refined NCHRP method (i.e.,

NCHRP611-NonLinRefined) performs better again, and produce 0.9, 2.0 and 7.4 for

the same response ratios, respectively.

• The NCHRP611-NonLinIterative method uses the previously mentioned iterative pro-

cedure to estimate both γmax and Gm. This, however, only accounts for the stiff-

ness reduction curve but not the damping ratio curve, which is also influential, espe-

cially under high-amplitude motions. Compared to the refined NCHRP method (i.e.,

NCHRP611-NonLinRefined), this omission leads to an underestimation of Gm, and

subsequently the overestimation of all of the response ratios considered here.
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Figure 5.10: Ratios of maximum bending strain, hoop strain, and diameter change for (a)
homogeneous and (b) two layered half-space cases versus PGA (g).
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Figure 5.11: Maximum hoop strain profiles obtained using the NCHRP611-NonLinIterative,
NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and (b) two layered
half-space cases versus PGA (g).
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Figure 5.12: Maximum bending strain profiles obtained using the NCHRP611-
NonLinIterative, NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and
(b) two layered half-space cases versus PGA (g).
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5.2.5 Effects of Structural Stiffness

Next, the effects of culvert stiffness on the performance of the NCHRP method are examined.

The thickness of the culvert is varied to scan through a wide range of stiffness values. As

shown in Fig. 5.14, we summarize the ranges of F and C from all types of materials that are

used for culverts (i.e., concrete, corrugated steel, corrugated aluminum and thermoplastic).

And our performed analyses cover the entire range of F . Again, the incident wave is defined

through Eq. 5.4 with amax = 0.1 g and T = 0.5 sec. Table. 5.4 summarizes the resulting

flexibility and compressibility ratios of the culverts with different thickness. Fig. 5.15 shows

the maximum bending and hoop strain ratio and diameter change ratio of NCHRP methods

to numerical results versus flexibility ratios. Moreover, the contour plots for hoop and

bending strain profiles are shown in Fig. 5.16 and Fig. 5.17. As seen, all of the computed

ratios tend to increase, leading to relatively worse overestimations as the flexibility ratio

increases. The refined NCHRP method (i.e., NCHRP611-NonLinRefined) exhibits, again,

better performance compared to the NCHRP611-NonLinIterative in all cases.
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Figure 5.14: Flexibility ratio (F) and compressibility ratio (C) from different materials and
performed analyses.
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Table 5.4: Flexibility and compressibility ratios of the culvert.

Thickness (m)
Flexibility Ratio (F) Compressibility Ratio (C)

Homogeneous Two layered Homogeneous Two layered
0.005 62138.68 32399.29 0.86 0.45
0.010 7767.33 4049.91 0.43 0.22
0.020 970.92 506.24 0.22 0.11
0.030 287.68 150.00 0.14 0.07
0.040 121.36 63.28 0.11 0.06
0.050 62.14 32.40 0.09 0.04
0.060 35.96 18.75 0.07 0.04
0.070 22.65 11.81 0.06 0.03
0.080 15.17 7.91 0.05 0.03
0.090 10.65 5.56 0.05 0.02
0.100 7.77 4.05 0.04 0.02
0.200 0.97 0.51 0.02 0.01
0.242 0.55 0.29 0.02 0.01
0.300 0.29 0.15 0.01 0.01
0.400 0.12 0.06 0.01 0.01
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Figure 5.15: Ratios of maximum bending strain, hoop strain, and diameter change for (a)
homogeneous and (b) two layered half-space cases versus flexibility ratio.
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Figure 5.16: Maximum hoop strain profiles obtained using the NCHRP611-NonLinIterative,
NCHRP611-NonLinRefined, and FEA approaches for (a) homogeneous and (b) two layered
half-space cases versus flexibility ratio.
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5.2.6 Mode Shape Analyses

In order to have a closer look at the spatial distribution and temporal variation of deforma-

tion profile of the circular culvert, we use the method of principal component analysis [160].

For this, we (i) create the data matrix: X =
[
e1 e2 ... en

]T
, where ei for i = 1, 2, ..., n is

a displacement time-series at location i; (ii) compute the correlation matrix: R = XXT/N ,

where N is the total number of data points of the time-series; (iii) obtain the Eigen decom-

position of the matrix R, which is R = ΦΛ2ΦT , Φ = [φ1 ... φn] contains the so-called mode

shape vectors φi and Λ is a diagonal matrix with entries λi to be the i-th singular value

of the matrix X; and (iv) compute the so-called modal contribution coefficients, which is

Q = [q1 ... qn]T = ΦTX.

Figs. 5.18(a) and (b) display the first 6 proper orthogonal modes of the numerical results

for the full-slip and no-slip cases, respectively. As seen, the first mode shape of both the full-

slip and no-slip cases is a near perfect oval. For higher modes this resemblance of the mode

shapes disappears (or at least their orders of appearance are different). This discrepancy

results in the differences in the hoop strain profiles for the two cases. The higher the modes

are, the more flexible the mode shape deformations appear, as expected. However, the full-

slip case clearly exhibits more of this effect than the no-slip case. The participation factors

of the principal components shown in Fig. 5.18 can be computed using the eigenvalues of

the correlation matrix as in

Eλi =
λ2
i∑i=n

i=1 λ
2
i

for i = 1, ..., n. (5.5)

The values of these participation factors for the first and second modes for all of the consid-

ered cases are tabulated in the Appendix B.
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Figure 5.18: First 6 proper orthogonal modes of the numerical results for (a) full-slip and
(b) no-slip case.
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CHAPTER 6

Fragility-based seismic performance assessment of

buried circular structures

Due to its capability of accounting for epistemic and aleatoric uncertainties that exist in pre-

dictive response models, material properties, and ground motions, performance-based seismic

assessment (PBSA) methodologies are becoming widely adopted [161, 162, 163]. However,

there are no analysis guidelines or performance criteria for PBSA of underground structures,

even though such structures are typically very critical and some have experienced signifi-

cant damages in large earthquakes [13, 164]. At present, seismic assessment of underground

structures is mainly based on expert judgment [165] or empirical fragility curves derived

from damage data in past earthquakes [166, 167, 168].

The past decade has brought not only significant recent advances in computational ca-

pabilities, but also broad improvements in ground motion characterization, soil-structure

interaction analysis, and inelastic modeling of structural and geotechnical systems. When

combined, these ingredients have made it possible to devise site- and structure-specific ap-

plication of PBSA methodologies to large fully or partially embedded structures, such as

tunnels [169, 170, 153, 171, 172, 173], dams [174], subway stations [175, 176].

Specifically, [169] developed the fragility curves of shallow tunnels in alluvial deposits by

conducting equivalent linear quasi-static analysis. And later [170, 153] extended to nonlinear

dynamic analysis and considered the soil-structure interaction (SSI) and aging effects due

to corrosion in the tunnel lining. [172, 173] proposed the fragility curves for a group of rock

mountain tunnels with different diameters, embedment depths, and lining thicknesses by

performing nonlinear time history analysis, and utilized the machine learning tools to predict
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the fragility curves. [175] performed the fragility analysis of a subway station box structure

by incremental dynamic analysis. [176] developed the fragility curves for rectangular cut-and-

cover tunnels from nonlinear quasi-static frame analyses, and investigated the performance

of various intensity measures of the ground motions.

Due to the constraint of the computational cost and the complexities in modeling the

buried structures—i.e., constitutive models for soil and structural components, absorbing

boundary conditions (ABCs), appropriate input motions, soil-structure interface contact

behavior, etc—aforementioned studies simply performed either quasi-static or incremental

dynamic analysis with limited ground motions (less than 20), adopted the Mohr-Coulomb

and elastic perfectly plastic models for the soil and structures, respectively when conducting

nonlinear analysis, and applied the Lysmer [20] dashpots as the ABCs. As known, how-

ever, buried structures are significantly sensitive to the frequency contents of the ground

motions [157]. Therefore, extensive input ground motions are preferred to bracket the site

uncertainties and hence produce more accurate fragility curves.

In this study, a fragility-based seismic assessment methodology for a buried circular

culvert is presented. The perfectly matched layer (PML) and domain reduction method

(DRM) implemented by [118] are used for absorbing the scattered outgoing waves, and

prescribing the input motions, respectively. This combined tool can dramatically reduce

the size of the computational domain and generate consistent input motions. 100 input

motions are generated based on the average spectral acceleration (SAT) for a region in

Los Angeles. Three shear wave velocity profiles are used to investigate the effects of soil

heterogeneity. The soil domain and the structure are modeled using a multi-dimensional

plasticity model with a vanished elastic region [63, 71] and an elastic-plastic model with

isotropic hardening calibrated through the experimental stress-strain curve obtained from

coupon test, respectively. Two-dimensional nonlinear finite element models are then used in

Probabilistic Seismic Demand Analysis (PSDA) procedure [177], and along with a total of

300 nonlinear time history analyses, are carried to analyze the fragility of the buried circular

culvert.
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6.1 Numerical Modeling

6.1.1 Problem definition

A large buried circular culvert (see Fig. 6.1) is modeled and analyzed using the finite ele-

ment method. The dimensions of the exterior domain, domain of interest are 90m×30m,

78m×24m, respectively. The culvert diameter is 3m, and its embedment depth (i.e., from

the ground surface to the crown) is 9m.

5 m 5 m38.5 m 3 m 33.5 m

25 m

5 m

DRM interface

PML

9 m

3 m

12 m
Nonlinear soil 
Domain of interest

Linear elastic soil 
Exterior Domain

Vertically 
propagated 
incident SV 
waves

90 m

30 m

5 m

Far-field 
soil column

Figure 6.1: Side view of the numerical model.

In order to reduce the computational domain while modeling a semi-infinite domain

under remote excitations, we use the domain reduction method (DRM) [117] truncated by

the perfectly matched layer (PML) [106]. DRM is a two-step finite element procedure for

modeling the seismic responses of heterogeneous subdomains. DRM enables the conversion

of the half-space problem to an equivalent one in which the effects of incoming waves due to

remote excitations are translated into equivalent nodal forces that are applied inside a domain

that is truncated by PML. As a powerful wave absorbing boundary, the PML can eliminate

reflections at the truncated near-field boundary for all non-zero-frequency impinging waves,

irrespective of their angles of incidence. In the present study, both the DRM and PML are

implemented in ABAQUS [114] by Zhang et al. [118].
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6.1.2 Material Models & Soil-Structure Interface Conditions

In the numerical simulations, the soil is modeled with 4-node quadrilateral plane strain

elements, each of which has a near-uniform size of 1.0m × 1.0m, considering the vertically

propagated incident SV waves are applied and the computational cost. The circular culvert

lining is modeled with 100 equal-sized beam elements, of which the accuracy is verified in

the following section. The element size is chosen such that approximately 12 discretized

nodes exist within the minimum wavelength [158], which, for the present simulations is

λmin/12 = Vs/fmax = 200m/s/10Hz/12 ≈ 1.67m.

6.1.2.1 Soil model

For the surrounding soil, nonlinear material behavior is considered. Both linear and nonlinear

soils have the same density ρ = 2000kg/m3, and Poisson’s ratio ν = 0.3. As shown in Fig. 6.2

(c), three soil profiles are considered. In the nonlinear analyses, the soil deposits are modeled

using a bounding surface plasticity model, which was originally developed by Borja et al.

[63, 69]. This nonlinear soil model has been thoroughly calibrated and validated using data

from multiple centrifuge tests by Zhang et al. [71]. Here, we choose the material parameters

of this nonlinear soil model as h = 0.3 Gmax, m = 1.2, R = 0.005 Gmax, H0 = 0, which are

calibrated based on the Ottawa sand properties [2]. The parameters h, m and H0 are three

parameters, which control the intensity, rate, and final state of hardening. R is the radius of

the bounding surface. The selected hysteresis and stiffness degradation and damping curves

are shown in Figs. 6.2 (a) and (b), respectively.

6.1.2.2 Culvert model

For the buried structure, we analyze a corrugated steel pipe culvert, using a built-in elastic-

plastic model with isotropic hardening in ABAQUS [114]. The elastic properties of the

culvert lining are included in Table 6.1. And as shown in Fig. 6.3, the plastic properties are

calibrated based on the stress-strain curves of the A36 steel obtained from the coupon test
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Figure 6.2: (a) Hysteresis curve of the adopted nonlinear soil model, (b) stiffness degradation
and damping curves, and (c) shear wave velocity profiles.
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[178], resulting the yield stress and ultimate strength as σy = 250MPa and σu = 415MPa,

respectively. The sectional configuration of the corrugated steel pipe adopted in this study

is shown in Fig. 6.4, and other required parameters are summarized in Table 6.2, which are

selected based on the standard ASTM A796 [179].

Table 6.1: Elastic properties of the culvert lining.

Steel grade Young’s modulus (GPa) Poisson’s ratio Density (kg/m3)
A36 200 0.26 7850
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Figure 6.3: Stress-strain curve of the A36 steel.

= 21.7 mm

= 3.51 mm

46.02o

Figure 6.4: Sectional configuration of corrugated steel sheets for corrugation of 75 by 25mm.

Since the beam elements are used to model the culvert lining with corrugation, verification

studies are necessary to be carried out to demonstrate its validity and accuracy. To this end,

we 1) construct a sophisticated 3.66m-long 3D corrugated steel culvert model using the
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Table 6.2: Sectional properties of the culvert lining.
Corrugation (mm) Thickness (mm) Area of section (mm2/mm) Moment of inertia (mm3/mm) h (mm) t (mm)

75 by 25 3.51 4.250 330.61 19.79 2.092

aforementioned material and sectional properties (see Fig. 6.5 (a)), 2) perform parallel-plate

test—i.e., vertical line-load applied on the upper surface of the culvert and the bottom

surface is assumed to be simply supported—using 3D solid elements, 3D shell elements, and

2D beam elements with three different configurations, in which we simply use a rectangular

section with unit width and change the height to match either area (A) or the moment of

inertia (I) in Table 6.2, and we also use a box section with unit width and change the height

and thickness to match both A and I (see Fig. 6.5 (b)), 3) compare the force-vertical and -

horizontal displacement curves for the crown and rightmost point of the culvert, respectively,

obtained by using the 2D beam models and the 3D models using solid and shell elements. As

shown in Fig. 6.6, only the beam model that has the equivalent A and I produces satisfied

agreement when compared with detailed 3D models.
Printed using Abaqus/CAE on: Tue Jul 09 22:06:25 Pacific Daylight Time 2019

(a)

1 m

h

t

t

t t

(b)

Figure 6.5: (a) Detailed 3D model with corrugation and (b) box section of the beam model
with equivalent A and I.

To further validate our proposed beam model, we conduct another parallel-plate test and

compare the numerical results obtained by using the beam model that has the equivalent A

and I with experimental data, provided by [180]. The mechanical properties of this test are
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Figure 6.6: Force-displacement curves of the parallel-plate test using beam and 3D models.

summarized in Table 6.3. As seen in Fig. 6.7. Again, the proposed beam model shows an

acceptable accuracy.

Table 6.3: Mechanical properties of the culvert lining for validation test.

Material
Young’s modulus (GPa) Poisson’s ratio Density (kg/m3)

180 0.26 7850

Sectional
Thickness (mm) Area of section (mm2/mm) Moment of inertia (mm3/mm)

2.01 1.507 60.65

6.1.2.3 Soil-structure interface conditions

In terms of modeling the soil-structure interface conditions, the ABAQUS [114] built-in

node-to-node hard-contact formulation with finite sliding is used, as well as the recom-

mended friction angle (see Eq. 6.1) for a cohesionless soil–smooth steel interface according

to ASCE-ALA [181] guidelines. As reported in [159], the soil-lining interface properties can

significantly affect the internal forces developed in the lining of a circular tunnel.

tan (φinterface) = tan (0.7φsoil = 32o) ≈ 0.41 (6.1)
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6.1.3 Input motions

In this study, we select Los Angeles as a representative city and then use USGS web ser-

vices (https://earthquake.usgs.gov/hazards/designmaps/usdesign.php) to retrieve the seis-

mic design data—e.g., SDS and SD1, the 5% damped design spectral response acceleration

parameters at short periods and 1 second, respectively. Upon these, a suite of 100 ground

motions (GMs) is selected conditioned on the average spectral acceleration (SAT) from a

large database of GMs (NGA WEST2) developed by PEER [182]. The acceleration response

spectra of the selected records is shown in Fig. 6.8.

Given each GM, the procedure to generate input motion for the numerical model shown

in Fig. 6.1 is described below,

1. Perform the 1D linear site response analysis for each soil profile shown in Fig. 6.2 (c)

and each GM.

2. Scale the responses of all the nodes on the 1D soil model in step 1 using the same

factor, so that the peak ground acceleration (PGA) of the 1D model matches the PGA

of each GM.
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Figure 6.8: 5% damped acceleration response spectra of the selected records.

3. Use the scaled responses to compute and prescribe the equivalent nodal forces for

all the nodes along the DRM interface, and conduct nonlinear time history analysis.

Please refer to [118] for more details about this step.

6.2 NCHRP 611 approach for the calculation of the internal forces

in a circular culvert

Current seismic design practices—which are comprehensively articulated in the NCHRP

Report 611 [18]—are primarily based on the procedures proposed by Wang [19] and Penzien

[42] for circular and rectangular buried structures, respectively. Due to its computational

simplicity, it has been widely adopted as a reference in the design of buried structures. An

engineer needs to execute the following steps to determine the seismic demands due to ovaling

of a circular embedded structure:

1. Estimate the free-field ground strains (γmax) at the bottom elevation of the embedded

structure: For highway structures with burial depths less than 50 ft, γmax may be
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estimated using PGA,

γmax =
τmax

Gm

, τmax = (PGA/g)σvRd (6.2)

Or PGV for deep buried structures,

γmax =
V culvert
smax

Cculvert
se

, V culvert
smax

= (PGV)Rd, Cculvert
se =

√
Gm

ρ
(6.3)

where Gm is the effective-strain-compatible shear modulus of the surrounding soil,

PGA is the peak ground acceleration, σv is the overburden pressure at the depth

corresponding to the invert of the culvert/tunnel, and Rd is a depth-dependent stress

reduction factor given by

Rd =


1− 0.00233z z < 30ft

1.174− 0.00814z 30ft ≤ z ≤ 75ft

(6.4)

with z denoting the depth to the midpoint of the culvert. V culvert
smax

and ρ are the shear

wave peak particle velocity and density of soil at the culvert elevation, respectively,

and Cculvert
se is the effective shear wave velocity of the medium surrounding the culvert.

One may also estimate γmax by performing a 1D site response analysis [157].

2. Calculate the flexibility and compressibility ratios : Compressibility (C) and flexibility

(F ) ratios are used for determining the relative stiffness of the lining with respect to

the surrounding ground [150], and can be computed as:

F =
Em(1− ν2

1)R3

6E1I1(1 + νm)
(6.5)

C =
Em(1− ν2

1)R

E1A1(1 + νm)(1− 2νm)
(6.6)

where Em is the strain-compatible elastic modulus, and νm is the Poisson’s ratio of

the surrounding soil. The terms R, E1, ν1, A1, t and I1 respectively denote nominal
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radius, elastic modulus, Poisson’s ratio, cross-sectional area, thickness, and moment of

inertia of the culvert lining. For F < 1, the lining is considered to be stiffer than the

surrounding soil while for F > 1, it is expected that the lining can deform more than

the free-field.

3. Estimate the lining deformation and seismic demands : For estimation of the resulting

moment (M), it is recommended to consider a full-slip interface assumption, which

allows normal stresses without normal separation and tangential forces. On the other

hand, for estimation of the resulting thrust (T ), a no-slip interface assumption is rec-

ommended. Therefore,

M = −1

6
k1

Em
1 + νm

R2γmax cos 2(θ +
π

4
) (full-slip) (6.7)

T = −k2
Em

2(1 + νm)
Rγmax cos 2(θ +

π

4
) (no-slip) (6.8)

T = M/R (full-slip) (6.9)

where θ is the angle counterclockwise measured from the right point on the center

plane of the culvert.

k1 = 12
1− νm

2F + 5− 6νm
, (6.10)

k2 = 1 +
F (1− 2νm)(1− C)− 0.5(1− 2νm)2C + 2

F [(3− 2νm) + (1− 2νm)C] + C[2.5− 8νm + 6ν2
m] + 6− 8νm

. (6.11)

As seen, in order to compute seismic demands using the NCHRP 611 methodology, we

first need to estimate the maximum free-field strain γmax in the soil deposit as well as the

corresponding effective compatible shear modulus Gm. Then, the seismic demands can be

computed following the steps outlined above. For shallow structures one may use Eqs. 6.2

or 6.3 to estimate γmax. However, in order to use that equation, we need to know the strain-

compatible shear modulus (Gm) of the ground surrounding the culvert or pipe, which itself

is a function of γmax. If not considering the soil nonlinearity one may simply use the elastic

shear modulus Gmax to represent Gm and
√
Gmax/ρ to obtain Cculvert

se . If do consider the soil
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nonlinearity, we can either perform a 1D site response analysis to compute Gm, or use an

iterative procedure to obtain it, as described below:

1. To start the procedure (iteration i = 0), provide an initial guess for the maximum

shear strain at the elevation of the bottom of the circular structure. This initial guess

can be any reasonable value. Here, we simply use γmax,0 = 0.05%.

2. For iteration i, predict Gm for the circular structure, which can be achieved using

γmax,i−1 and the G/Gmax curve of the soil. Subsequently, correct the maximum shear

strain γmax,i using Eqs. 6.2 or 6.3.

3. Repeat step 2 until |γmax,i − γmax,i−1| <= TOL for the predefined tolerance TOL.

The NCHRP 611 report suggests using free-field site response analysis to compute the

maximum shear strain as well; whereas the iterative procedure described above produces a

self-consistent pair of (γmax, Gm). Please refer to [157] for more details about this procedure.

6.2.1 Verification of the numerical model

To verify the numerical model, we compare the numerically obtained results (i.e., bending

moment and hoop thrust) from FEA, with the analytical solution explained in Eqs. 6.2-

6.11. As known, the analytical solution is derived based on quasi-static condition in a full-

space homogeneous media. The effects of embedment depth are considered via the depth-

dependent factor Rd. However, it is not sensitive to the inherently broadband frequency

content of seismic input excitations. In this following verification study, using the same

model shown in Fig. 6.1, but with a homogeneous and linear elastic soil layer with parameters

as, shear wave velocity Vs = 200m/s, density ρ = 2000kg/m3, and Poisson’s ratio ν = 0.3, is

adopted. Two analyses with no-slip and full-slip interface conditions are used. The incident

wave is defined based on Eq. 6.12 with amax = 1.0 g and T = 10.0 sec. Its acceleration time
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history and Fourier amplitude are shown in Fig. 6.9.

ü(t) =
amax

2
sin(2πt/T )

[
1− cos(2πt/10T )

]
(6.12)
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Figure 6.9: Acceleration and Fourier amplitude plots for the applied input motion.

The resulting hoop thrust, bending moment and the γmax profiles are shown in Fig. 6.10.

As seen, the FEA results are in good agreement with analytical solutions (i.e., NCHRP

approach). And by using the γmax obtained from the 1D site response analysis (1D SRA),

the differences are reduced, especially for the hoop thrust.
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Figure 6.10: Comparisons of the hoop thrust, bending moment and the γmax profiles.
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6.3 Results

In this section, the responses of the buried circular culvert—i.e., hoop thrust and bending

moment—for each soil profile and GM, obtained from FEA, are presented and compared

with the NCHRP 611 approach. Besides, the maximum shear strain (γmax) is computed

by performing 1D site response analysis, using the peak ground acceleration (PGA), peak

ground velocity (PGV), and peak velocity at the elevation of culvert are extracted from the

far-field soil column of the numerical model. The γmax and PGV are also compared with

the estimated method described in NCHRP report (see Eq. 6.13), to further investigate its

accuracy.

6.3.1 Peak velocity

As mentioned in NCHRP 611 report, for a culvert or pipe structure constructed at a signifi-

cant depth below the ground surface, the most appropriate design ground motion parameter

to characterize the ground motion effects is not PGA. Instead, PGV is a better indicator

for ground deformations (γmax) induced during ground shaking. The NCHRP uses a simple

equation (see Eq. 6.13) to estimate the PGV from Sa1, and Eq. 6.3 to get the peak velocity

at the elevation of culvert.

PGV (in/sec) = 55Sa1 (g) (6.13)

where Sa1 is the spectral acceleration of the ground surface at 1s.

Fig. 6.11 shows the estimated and real peak velocities at the ground surface and the

elevation of culvert for different soil profiles, obtained from Eq. 6.13 and the far-field soil

column, respectively. As seen, the simple equation (i.e., Eq. 6.13) generally over-predicts the

peak velocities, especially for the soft soil (i.e., case A). And later we will use both PGVs to

compute the seismic demands—hoop thrust and bending moment.
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Figure 6.11: The estimated and real peak velocities obtained from the far-field soil column
at ground surface and the elevation of culvert for different soil profiles (a) case A (b) case B
and (c) case C.
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6.3.2 Maximum free-field shear strain (γmax)

The maximum free-field shear strain (γmax) is the key parameter for later predicting the

response of the structure. In this section, we compare the γmax obtained from the 1D site

response analysis, with ones from the NCHRP approach by using both PGA and PGV, with

and without considering the soil nonlinearity, for all three soil profiles. To include the soil

nonlinearity, the iterative procedure illustrated earlier is used to obtain the self-consistent

pair of (γmax, Gm). Otherwise Gmax is simply used to represent Gm.

Fig. 6.12 shows the γmax at the elevation of culvert for different soil profiles, obtained

from the NCHRP approach by using PGA and PGV, and the 1D site response analysis,

with and without considering the soil nonlinearity. As seen, the behavior of using PGA and

PGV changes over different soil profiles. But it can be deduced that by using PGA, γmax is

significantly under-predicted for the profile of which the shear wave velocity notably changes

near the elevation of the culvert (i.e., case B). And the prediction is much improved after

considering the soil nonlinearity, especially for those using PGA.

6.3.3 Hoop thrust

Fig. 6.13 shows the comparison of the maximum dynamic hoop thrust (Tmax) computed

based on the γmax from the NCHRP approach by using PGA, PGV, and the 1D site re-

sponse analysis at the elevation of culvert with FEA results, for different soil profiles, with

and without considering the soil nonlinearity. “NS” and “FS” refer to no-slip and full-slip in-

terface conditions, respectively. It can be seen that no-slip interface remarkably over-predicts

the response. However, on the contrary, full-slip case mostly under-predicts the response,

which is indeed within expectation, because an in-between interface condition—i.e., a fric-

tional interface with coefficient of 0.41, see Eq. 6.1—is adopted in FEA. That’s also the

reason why NCHRP recommends to use no-slip interface condition for the calculation of

hoop thrust. Again, the predictions are improved after considering the soil nonlinearity.
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Figure 6.12: γmax at the elevation of culvert, obtained from the NCHRP approach by using
PGA and PGV, and the 1D site response analysis for different soil profiles (a) case A (b)
case B and (c) case C.
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Figure 6.13: Maximum dynamic hoop thrust (Tmax) obtained from the NCHRP approach by
using PGA, PGV, the 1D site response analysis, and FEA for different soil profiles (a) case
A (b) case B and (c) case C.

222



6.3.4 Bending moment

Fig. 6.14 shows the comparison of the maximum dynamic bending moment (Mmax) computed

based on the γmax from the NCHRP approach by using PGA, PGV, and the 1D site response

analysis at the elevation of culvert with FEA results, for different soil profiles, with and

without considering the soil nonlinearity. For bending moment, the NCHRP approach only

provides the solution for full-slip interface condition. And the FEA still uses the frictional

interface with coefficient of 0.41. As seen, using the γmax from 1D site response analysis gives

the most accurate predictions for all the cases, compared with those using PGA and PGV.

It should be noted that for case B, in which the shear wave velocity notably changes near

the elevation of the culvert, PGV, compared with PGA, is a better parameter for predicting

the bending moment. Finally, it’s important to take soil nonlinearity into account.

6.4 Fragility-based analysis

6.4.1 Damage states (DS)

Comprehensive studies have been conducted for the performance-based seismic design of su-

perstructures (i.e., above-ground buildings), and guidelines, such as FEMA-445 [183], sum-

marizes the standard engineering demand parameters (EDPs) and their damage states, such

as peak interstory drift and peak floor accelerations, which are for structural and nonstruc-

tural systems. However, there are no analysis guidelines or performance criteria for PBSA

of underground structures. In [184, 185], the number of plastic hinges activated at the tun-

nel lining is used as EDP and three damage levels are defined. Besides, the ratio of the

maximum bending moment on the lining to its capacity has been widely used to define the

damage states [169, 172, 176]. In this study, we follow the criteria described in [13], adopt

the maximum total stress (σtotal
max = T total

max /A + M total
max h/(2I)) of the lining due to static and

dynamic hoop thrust and bending moment as the EDP, and define three limit damage states

based on that (see Table 6.4).
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Figure 6.14: Maximum dynamic bending moment (Mmax) obtained from the NCHRP ap-
proach by using PGA, PGV, the 1D site response analysis, and FEA for different soil profiles
(a) case A (b) case B and (c) case C.
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Table 6.4: Definition of damage states for tunnel lining.

Damage state (DSi) Range of damage index (DI)
DS0 σtotal

max ≤ σy ≈ 0.6σu
DS1 σy ≤ σtotal

max ≤ 0.75σu
DS2 0.75σu ≤ σtotal

max ≤ 0.9σu
DS3 σtotal

max > 0.9σu

where σy and σu are the yield stress and ultimate strength of the adopted steel, which are

equal to 250MPa and 415MPa, respectively. And such thresholds are defined based on the

typical design criterion of steel structures. Here the categories of those damage states (e.g.,

minor, moderate, major, etc.) are not specified, because the requirement of the maximum

internal stress is different for culverts with different purposes (e.g., gas, oil, water, etc.).

6.4.2 Intensity measure (IM)

Intensity measure (IM) is another key ingredient for generating the fragility curves. Espe-

cially for underground structures, because both amplitude and frequency contents of ground

motions, as well as the soil profiles, can deeply affect the response of structures [186]. There-

fore, in this study, a variety of IMs are utilized, such as PGA, SaT1, PGV and PGV/Vs30,

to investigate their behavior. SaT1 is the 5% damped spectral acceleration at T1, the funda-

mental period of vibration, which is determined based on [85], T1 = 4H/V s = 0.5, 0.355 and

0.334 sec, for cases A, B and C, respectively. In order to develop the fragility curves, first

the EDP versus IM plots are generated and the median, and standard deviation of the best-

fitting regression line are computed. Figs. 6.15-6.17 display these plots, and Table. 6.5 shows

the associated properties of the fitting lines to be used in the subsequent fragility analyses.

The probabilistic seismic demand models (PDMs) in which the demands are plotted versus

the IMs are generated first by computing the median line and the standard dispersions as
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follows:

Sd = mek·IM (6.14)

βD =

√√√√ n∑
i=1

[ln di − ln(Sdi)]
2

n− 1
(6.15)

β =
√
β2
C + β2

DS + β2
D (6.16)

where m and k are the regression coefficients, Sd is the median value of seismic demand; and

βD is the logarithmic dispersion of the demand conditioned on IM. According to [169], the

total variability (β) should be modeled by the combination of the three contributors: (1) the

capacity of the tunnel (βC = 0.3 [187]), (2) the damage states definition (βDS = 0.4 [168]),

and (3) the ground motion demand (βD). As shown in Figs. 6.15-6.17 and Table 6.5, PGA

produces the least scattered plot for all the cases.
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Figure 6.15: DI versus various IMs for case A.
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Figure 6.16: DI versus various IMs for case B.

Table 6.5: Statistical properties of the PDMs for four different IMs and cases.

Parameters/IMs PGA SaT1 PGV PGV/Vs30

Case A

m 0.1929 0.2109 0.1946 0.1946
k 0.8361 0.3186 0.6677 145.6881
βD 0.1996 0.2537 0.2113 0.2113
β 0.5384 0.5607 0.5428 0.5428

Case B

m 0.5384 0.5607 0.5428 0.5428
k 0.9646 0.4192 0.5407 160.2195
βD 0.1178 0.2007 0.2128 0.2128
β 0.5137 0.5388 0.5434 0.5434

Case C

m 0.1707 0.1769 0.1870 0.1870
k 0.5136 0.1945 0.2458 76.9259
βD 0.0487 0.1026 0.1233 0.1233
β 0.5024 0.5104 0.5150 0.5150
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Figure 6.17: DI versus various IMs for case C.
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6.4.3 Fragility curves

The seismic fragility curve represents the conditional probability of exceeding a predefined

damage state as a function of a given intensity measured of ground motion. After defining

the damage states and computing the median and standard deviation of the best-fitting

regression line, the fragility curves are described by the lognormal probability distribution

function as,

P (DS ≥ DSi|IM = X) = Φ

(
lnSd(X)− lnDSi

β

)
(6.17)

where P (DS|IM) is the probability of being at or exceeding a particular damage state at a

given intensity measure, and Φ(·) is the standard normal cumulative distribution function.

As a result, Figs. 6.18-6.20 show the fragility curves for different damage states, inten-

sity measures and cases. The IM PGV/Vs30 shows the best performance, in terms of the

variations of the fragility curve for different cases. Because unlike the other three IMs, it

explicitly considers the soil stiffness. Another thing needs attention is that, even though

the culvert performed well in stiffer soil (i.e., case C), there still is some risk, because the

damage probability values for most of the IMs are non-zero.
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Figure 6.18: Fragility curves for different DSs and IMs for case A.
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Figure 6.19: Fragility curves for different DSs and IMs for case B.
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Figure 6.20: Fragility curves for different DSs and IMs for case C.
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CHAPTER 7

Summary and conclusions

7.1 Chapter 2: validation of a three-dimensional constitutive model

for nonlinear site response and soil-structure interaction anal-

yses using centrifuge test data

In this chapter, we implemented a multi-axial soil constitutive model originally developed

by Borja [63, 72] in ABAQUS. The expression of its consistent tangent stiffness moduli,

when a viscous damping is applied to the soil model, is derived and tested during simple

shear tests with strain-controlled harmonic loading. Furthermore, 1D site response anal-

yses are conducted, the model is verified by comparing the results with the well-known

site-response analysis tool DEEPSOIL. Validation is achieved by calibrating the material

parameters using a theoretical material response curve, and by making blind comparisons

with measurements made in several centrifuge tests on embedded structures, including struc-

tural strains and deformations, lateral earth pressures, accelerations, and surface settlements.

These results indicated that the model can accurately predict inelastic soil responses in a

plane-strain setting. Comparisons made with results obtained from equivalent linear models

and a pressure-dependent multi-yield surface model suggested that the implemented model

is generally superior to them in predicting responses over a broad range of inpute frequencies.
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7.2 Chapter 3: reduced order modeling tools for SSI problems

In this chapter, we presented procedures for implementation of DRM and PML in ABAQUS

for 2D and 3D problems, including a new version of DRM for inclined incident SV waves.

We then carried out a comprehensive set of verification studies through problems involving

vertical and inclined incident SV waves, 2D and 3D domains, homogeneous and heteroge-

neous soil layers, and concentrated and distributed loads. Finally, we presented practical

application examples on the computation of impedance functions, and investigations of the

angle of incidence of seismic waves on response of buried structures. The presented coupled

DRM-PML technique is a key analysis tool for soil-structure interaction problems; and the

presented ABAQUS implementation, will be disseminated for broader use, should enable

researchers and practicing engineers to carry out state-of-the-art nonlinear seismic analyses

of soil-structure systems in truncated domains.

7.3 Chapter 4: development of validated methods for soil-structure

analysis of buried structures

NCHRP 611 Method : In this method, choosing a proper value for the maximum shear strain,

which controls the seismic demand, plays the most critical role in the prediction of critical

structural responses.

When we used the iterative procedure described in section 4.3 to estimate the maximum

shear strain, the bending strains in both the rectangular and circular culverts were over-

predicted (see, Table 4.11). The predicted values for the rectangular box ranged from being

2.17 times (for a low amplitude motion) to 4.50 times (for a high amplitude motion) the

measured value. The situation was better for the circular culvert, with predicted values

being 1.29 times (for a medium amplitude motion) to 2.85 times (for a high amplitude

motion) the measured values. These appeared to be severe inaccuracies for the NCHRP 611

method in predicting the bending strains.
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The hoop strains in the circular culvert computed using the same method were generally

under-predicted1, which was the case even when the NCHRP 611-recommended no-slip con-

dition was used for computing the soil thrust—an option that provides higher values than

the full-slip condition. The predicted hoop strains were as low as 0.48 times (for a high am-

plitude motion) and as high as 1.11 times (for a medium amplitude motion) the measured

values.

The NCHRP 611 report recommends the use of more refined approaches—namely, one-

dimensional site response analyses—to obtain better estimates of the maximum shear strain

at the elevation of the culvert structures. As seen in Table 4.11, the use of this more refined

approach resulted in improvement of the bending strain estimates for both structures, but

further deterioration of the hoop strains for the circular culvert. The bending strains for

the rectangular culvert were generally underestimated for the low and medium amplitude

motions, and were generally overestimated for the high amplitude motions. That said, the

NCHRP 611 method produced its best results for the latter (i.e., high amplitude motion)

case, for which the bending strains were 1.15, 1.03, and 0.99 times the measured values for

the three high amplitude base excitations. Unfortunately, while the bending strain estimate

improved for the circular culvert, the hoop strains have deteriorated, which had considerable

magnitudes.

Given these results, it can be concluded that using one-dimensional site response anal-

ysis in predicting the maximum shear strain should be preferred over obtaining this value

(iteratively) from the modulus reduction curves, when using the NCHRP 611 methods.

Between the two structures, it was observed that the NCHRP 611 methods were more

successful in capturing the relatively stiff structure’s (i.e., the rectangular culvert’s) responses

than the flexible (circular) one. That said, it was observed that the NCHRP 611 method

generally under-predicted the bending strains (especially for low and medium amplitude

motions). For the circular structure, both the bending and hoop strains were under-predicted

in general for all base excitations; and the worst cases of these inaccuracies were encountered

1The analogous (hoop) strains for the rectangular culvert were negligible in all experiments.
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for the high-amplitude base excitations.

Another important response measure considered was the von Mises stresses, which is

a typical quantity used in strength-based design. The von Mises stresses (see Table 4.10)

exhibited trends that were similar to the strains. Namely, (i) they were more accurate when

obtained using the one-dimensional site response analyses; (ii) they were more accurate for

the stiff (i.e., rectangular) structure than they were for the flexible (circular) one. It appeared

that for most cases, the von Mises stresses obtained using the refined NCHRP approach

provided adequate estimates, as the NCHRP-to-experiment ratios von Mises stresses ranged

between 0.7 to 1.2. This implies that a strength-based design would require a safety factor

of at least 1/0.7 ≈ 1.43 just to handle uncertainties in input motions and the model features

related to ground motions—henceforth collectively referred to as epistemic uncertainties.

On the other hand, the same ratios were bracketed from 0.4 to 1.5 for the circular culvert,

implying an factor of safety of 2.5, which is quite large.

Given these observations, it appears that the use of NCHRP 611 methods of analysis on

flexible structures may not produce adequately safe designs. It is likely that the situation

will be worse for structures with higher relative flexibility and for higher amplitude motions.

On the other hand, predictions obtained using the refined NCHRP approach for rigid

culverts appear acceptable. It should be noted here that the use of the refined NCHRP

approach requires one-dimensional site response analyses for every ground motion considered.

Finite Element (FE) Approach: Comparison of the numerical and experimental results

showed that by using only a few sets of recorded free-field accelerations to calibrate the

soil constitutive relationship, the finite element model was more systematically successful in

predicting the key response parameters of both culvert specimens compared to the NCHRP

611 methods (see, §4.4.1, for details). As shown in Table 4.12, for both the rectangular and

circular structures, the bending strain ratios are closer to one compared to those computed

using the NCHRP methods. For the hoop strain, on the other hand, using the finite element

approach resulted in ratios that are closer to those obtained using the NCHRP iterative

method for the low amplitude motions, and closer to those obtained using the NCHRP
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refined approach for the moderate and high amplitude motions. As such, it is concluded

that the finite element approach performed better in predicting bending strains regardless of

the structure flexibility, while its accuracy in capturing the hoop strains decreased for cases

in which the soil behaves more nonlinearly.

For the rigid (rectangular) culvert the ratio of predicted-to-experimental von Mises

stresses ranged from 0.77 to 1.19, implying an epistemic factor of safety of 1/0.77 ≈ 1.30

(as compared to 1.43 for the refined NCHRP method). For the circular culvert, the same

ratio ranged from 0.59 to 1.29, implying an epistemic factor of safety of 1/0.59 ≈ 1.70 (as

compared to 2.5 for the refined NCHRP method). As such, it can be concluded that the FE

method can handle rigid as well as flexible culverts equally well, and generally better than

the NCHRP method.

It is also important to note that the soil model in the FE calculations was calibrated

only once, using the centrifuge free-field array records during motion #9. It is, therefore,

reasonable to expect that the FE model predictions could be made better overall, if its soil

model was calibrated using free-field motions from multiple tests.

7.4 Chapter 5: parametric studies of the NCHRP 611 approach to

investigate its accuracy and acceptable ranges of applicability

for soil-structure analysis of circular culverts.

Parametric studies were performed using detailed finite element models to investigate the

accuracy and acceptable ranges of applicability of the NCHRP 611 method for soil-structure

analysis of circular culverts. These finite element models were variations of a model that

was validated using centrifuge testing in a prior study. The effects of several relevant factors

were explored—namely, the embedment depth ratio, the frequency content of the input

motions, the amplitude of the input motions, and the relative stiffness of surrounding soil

and buried structure. By assuming the results obtained from finite element simulations as

the “true” responses, the following conclusions and recommendations regarding the NCHRP
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611 method can be drawn:

• The NCHRP 611 method is generally very conservative. That is, it over-predicts the

hoop strains for shallow embedment, and bending strains and diameter changes in

all cases. The level of accuracy of NCHRP 611 predictions deteriorates going from

hoop strain, to bending strain, to diameter change. Choosing a proper value for the

maximum shear strain, which controls the seismic demand, plays the most critical

role in the prediction of critical structural responses using the NCHRP 611 method.

Given the results of the parametric studies, it is clear that the refined variants of the

NCHRP 611 method—namely, the variants that utilize one-dimensional site response

analyses—yield better estimates of the maximum shear strain at the elevation of the

culvert structures.

• The hoop strains with deep embedment, computed using the NCHRP611-NonLinIterative

method, are under-predicted, when the NCHRP 611-recommended no-slip condition is

used for computing the soil thrust. The refined variants improve the accuracy of the

predictions.

• The frequency content of input excitations can significantly affect the performance of

the NCHRP 611 method. With lower λ/d values, not only the estimated maximum

shear strain from Eq. 4.1 is overestimated by huge margins, but also the location

where it occurs is incorrectly assumed. The NCHRP 611 method assumes that the

maximum shear strain takes place at the elevation of the invert of the culvert. However,

the elevation at the top of the culvert can also be possibly the place. Again, one-

dimensional site response analyses are capable of finding the exact location where the

maximum shear strain occurs, and the incorporation of this information yields better

predictions.

• The performance of NCHRP611-NonLinIterative method under low amplitude input

motions is acceptable, which is expected because the method is derived based on lin-

ear elasticity. However, for the nonlinear cases, as the amplitudes of input excitations
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increase, the over-predictions from these methods appear to be unacceptably high,

mainly because the effects of increasing damping ratios are overlooked. The refined

approach (i.e., NCHRP611-NonLinRefined) can remarkably remedy this issue, because

one-dimensional site response analyses automatically account for both stiffness reduc-

tion and damping effects.

• In this study we use two different soil profiles for every simulation. One is a homoge-

neous soil layer, and the other one has two layers with different material properties.

By performing 1D site response analyses to find the PGA and the maximum shear

strain (γmax), the impact of a hard layer at the base of the structure has been implic-

itly considered. And the results have demonstrated that the refined approach (i.e.,

NCHRP611-NonLinRefined) has better performance. In the future, more different soil

profiles will be used to further study such impact on the response of buried structures.

7.5 Chapter 6: fragility-based seismic assessment of a large buried

circular culvert.

A fragility-based seismic assessment of a large buried circular culvert is performed using

an advanced finite element model of the structure and its surrounding (inelastic near-field

and elastic far-field) soil media. In order to develop the fragility curves, a suite of 100 site-

specific ground motions is selected based on a target conditioned on an average spectral

acceleration. The suite is then utilized—using a consistent method (DRM) to inject them

as far-field motions into the computational domain truncated by PML—to perform a set of

nonlinear time-history analyses to extract various EDPs. Finally, by using the statistical

properties of the PDM plots, and also by considering appropriate damage states for the

culvert lining, fragility curves are generated for four different IMs, including PGA, SaT1,

PGV and PGV/Vs30. It is observed that PGA produces the least scattered results for all

the cases. However, PGV/Vs30 shows a more stable behavior, as it considers the stiffness of

the soil layer and hence their fragility curves slightly diverge for different soil layers.
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The proposed numerical model is validated with available analytical solutions and exper-

imental data, and also reveals the shortcomings of the analytical methods when nonlinear

seismic analyses are performed. The accuracy of using PGA and PGV to estimate the

maximum far-field shear strain (γmax), adopting simplified equation to estimate PGV based

on Sa1, and utilizing the iterative procedure to consider the soil nonlinearity, is examined.

Finally, it is concluded that using the γmax obtained from 1D site response has the best

performance.

With such a comprehensively validated and both soil, structure and ground motions

characteristics appropriately considered numerical model, more accurate fragility curves can

easily be generated for many other underground structures, including pipes, tunnels, culverts,

water reservoirs, dams, etc.
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APPENDIX A

Formulations and matrices for PML

For 2D domain, the semi-discrete form is:

MPMLü + CPMLu̇ + KPMLu = Fext (A.1)

where the element matrices MPML, CPML and KPML are defined as

MPML =

 Ma 0

0 −Na

 , CPML =

 Mb Ae

Ae −Nb

 , KPML =

 Mc Ap

Ap −Nc

 (A.2a)

u = [ux uy σxx σyy σxy]
T , Fext = [Fx Fy 0 0 0]T (A.2b)

The submatrices in Eq. A.2(a) are defined as,

Mi =

∫
Ωe
iρ diag

(
ΦΦT , ΦΦT

)
dΩ, i = a, b, c (A.3a)

Ni =

∫
Ωe
i


λ+2µ

4µ(λ+µ)
ΨΨT −λ

4µ(λ+µ)
ΨΨT

−λ
4µ(λ+µ)

ΨΨT λ+2µ
4µ(λ+µ)

ΨΨT

1
µ
ΨΨT

 dΩ, i = a, b, c (A.3b)

Ai =

∫
Ωe

 Φ,xΨ
T λ̂iy Φ,yΨ

T λ̂ix

Φ,yΨ
T λ̂ix Φ,xΨ

T λ̂iy

 dΩ, i = e, p, λ̂ej = αj, λ̂
p
j = βj, j = x, y

(A.3c)

where a = αxαy, b = αxβy + αyβx, c = βxβy. Φ and Ψ are the shape functions for

the displacement and stress components. And here we use identical 4-node bilinear shape
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functions for Φ and Ψ in 2D domain.

For 3D domain, the semi-discrete form is:

MPMLü + CPMLu̇ + KPMLu + GPMLū = Fext (A.4a)

ū =

∫ t

0

u(τ) dτ (A.4b)

where the element matrices MPML, CPML, KPML and GPML are defined as

MPML =

 Ma 0

0 −Na

 , CPML =

 Mb Ae

Ae −Nb

 ,
KPML =

 Mc Ap

Ap −Nc

 , GPML =

 Md Aw

Aw −Nd


(A.5a)

u = [ux uy uz σxx σyy σzz σxy σxz σyz]
T , Fext = [Fx Fy Fy 0 0 0 0 0 0]T (A.5b)
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The submatrices in Eq. A.5(a) are defined as,

Mi =

∫
Ωe
iρ diag

(
ΦΦT , ΦΦT , ΦΦT

)
dΩ, i = a, b, c, d (A.6a)

Ni =

∫
Ωe
i



λ+µ
µ(3λ+2µ)ΨΨT −λ

2µ(3λ+2µ)ΨΨT −λ
2µ(3λ+2µ)ΨΨT

−λ
2µ(3λ+2µ)ΨΨT λ+µ

µ(3λ+2µ)ΨΨT −λ
2µ(3λ+2µ)ΨΨT

−λ
2µ(3λ+2µ)ΨΨT −λ

2µ(3λ+2µ)ΨΨT λ+µ
µ(3λ+2µ)ΨΨT

1
µΨΨT

1
µΨΨT

1
µΨΨT


dΩ,

i = a, b, c, d

(A.6b)

Ai =

∫
Ωe


Φ,xΨ

T λ̂iyz Φ,yΨ
T λ̂ixz Φ,zΨ

T λ̂ixy

Φ,yΨ
T λ̂ixz Φ,xΨ

T λ̂iyz Φ,zΨ
T λ̂ixy

Φ,zΨ
T λ̂ixy Φ,xΨ

T λ̂iyz Φ,yΨ
T λ̂ixz

 dΩ,

i = e, p, w, λ̂ejk = αjαk, λ̂
p
jk = αjβk + αkβj , λ̂

w
jk = βjβk, j, k = x, y, z

(A.6c)

where coefficients a, b, c, d are defined as

a = αxαyαz (A.7a)

b = αxαyβz + αxβyαz + βxαyαz (A.7b)

c = αxβyβz + βxβyαz + βxαyβz (A.7c)

d = βxβyβz (A.7d)
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APPENDIX B

Values of the participation factors for the first and

second modes of the buried circular structures

Table B.1: First and second mode participation factors for circular culverts with varying
embedment depth ratios.

H/d
Full-slip No-slip

Eλ1(%) Eλ2(%) Eλ1(%) Eλ2(%)
0.5 97.00 2.75 97.57 2.42
1.0 98.61 1.05 96.59 3.41
1.5 98.01 1.76 95.84 4.15
2.0 98.65 1.08 95.92 4.07
2.5 98.77 0.94 96.80 3.20
3.0 98.98 0.79 97.54 2.45
3.5 99.07 0.76 97.81 1.35
4.0 99.12 0.66 98.83 1.16
4.5 99.23 0.67 98.98 1.02
5.0 98.90 0.93 99.25 0.75
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Table B.2: First and second mode participation factors for circular culverts under varying
input excitation frequencies.

λ/d
Full-slip No-slip

Eλ1(%) Eλ2(%) Eλ1(%) Eλ2(%)
6.7 95.36 4.31 99.57 0.32
7.8 95.11 4.57 98.44 1.21
9.1 99.18 0.58 98.71 1.21
10.7 99.08 0.71 98.80 1.16
12.5 99.35 0.50 98.40 1.59
14.7 99.62 0.27 99.37 0.63
17.2 99.48 0.31 98.76 1.24
20.1 99.77 0.15 98.29 1.71
23.5 99.72 0.20 97.80 2.20
27.6 99.63 0.27 98.38 1.62
32.3 99.16 0.61 98.67 1.33
37.8 97.61 2.09 98.50 1.50
44.2 96.90 2.51 90.38 9.57
51.8 95.94 2.88 94.72 5.27
60.6 97.11 2.35 86.64 13.34
71.0 97.07 2.30 91.24 8.75
83.1 97.23 2.30 95.31 4.69
97.3 97.22 1.92 98.28 1.72
113.9 92.94 5.63 99.04 0.96
133.3 86.82 12.08 97.40 1.34

Table B.3: First and second mode participation factors for circular culverts under varying
input excitation amplitudes.

amax (g)
Full-slip No-slip

Eλ1(%) Eλ2(%) Eλ1(%) Eλ2(%)
0.01 98.95 0.85 99.88 0.12
0.02 99.34 0.51 99.71 0.29
0.03 99.30 0.53 99.32 0.68
0.05 99.24 0.53 98.62 1.38
0.08 99.02 0.73 98.78 1.22
0.13 98.61 1.19 98.18 1.81
0.22 98.79 1.03 98.07 1.93
0.36 97.65 2.09 98.76 1.24
0.60 96.59 2.89 96.92 3.08
1.00 95.69 3.96 93.62 5.82
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Table B.4: First and second mode participation factors for circular culverts with different
thicknesses.

Thickness (m)
Full-slip No-slip

Eλ1(%) Eλ2(%) Eλ1(%) Eλ2(%)
0.005 79.74 9.60 94.67 5.18
0.010 76.33 10.66 96.25 3.66
0.020 87.18 7.42 95.38 4.55
0.030 74.11 10.42 94.39 5.52
0.040 80.68 7.97 97.00 2.92
0.050 91.28 4.03 97.10 2.86
0.060 96.14 2.06 91.27 8.67
0.070 95.37 2.48 97.53 2.44
0.080 96.80 1.76 97.85 2.12
0.090 97.22 1.72 95.17 4.79
0.100 96.62 2.28 96.04 3.93
0.200 98.98 0.79 97.54 2.45
0.242 99.14 0.58 98.65 1.34
0.300 98.27 1.39 99.03 0.97
0.400 97.97 1.41 99.75 0.25
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