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Abstract
Clinical, biomedical, and translational science has reached an inflection point in 
the breadth and diversity of available data and the potential impact of such data 
to improve human health and well- being. However, the data are often siloed, dis-
organized, and not broadly accessible due to discipline- specific differences in ter-
minology and representation. To address these challenges, the Biomedical Data 
Translator Consortium has developed and tested a pilot knowledge graph- based 
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INTRODUCTION

The breadth and diversity of biomedical data available 
today hold great promise in the application of such data 
into actionable outcomes aimed at accelerating transla-
tional science and ultimately improving human health 
and well- being. Indeed, advancements in computing and 
storage capabilities have fostered a wealth of large data 
sets across translational domains. Translational scientists 
now have unprecedented access to data and knowledge 
on genes, biological pathways, chemicals, metabolites, 
drugs, diseases, environmental exposures, clinical health-
care records, and more. However, the inherent power of 
the available data has not been fully harnessed due to 
long- recognized challenges related to the compartmental-
ization of data into separate domains, the lack of widely 
adopted standards or the adoption of standards that are 
domain- specific, and noncompliance with the principles 
of findability, accessibility, interoperability, and reusabil-
ity (FAIR).1

The Biomedical Data Translator program (“Translator 
program”) was launched in Fall 2016 by the National 
Center for Advancing Translational Sciences (NCATS) 
in an effort to overcome the many challenges that 
have long hindered translational science. The vision 
of the Translator program is to augment human rea-
soning and accelerate scientific discovery “through an 
informatics platform that enables interrogation of re-
lationships across the full spectrum of data types.”2 To 
achieve this goal, NCATS rapidly and adeptly estab-
lished a diverse community of nearly 200 basic and 

clinical scientists, informaticians, ontologists, software 
developers, and practicing clinicians distributed over 11 
teams and 28 institutions to form the Biomedical Data 
Translator Consortium (“Translator Consortium”). The 
Translator Consortium adheres to several core princi-
ples that have allowed the program to make considerable 
progress toward a shared vision: namely, team science; 
a bottom- up management approach; and open- source 
community- contributed software development. (See 
Figure S1 for complete timeline and notable milestones.)

The Translator Consortium last reported on the pro-
gram in two 2019 publications.3,4 The aim of this review 
is to provide an update on the Translator program. We 
first review approaches for knowledge representation in 
translational science. We then describe the technical solu-
tion that the Translator program has converged on. We 
demonstrate real- world use- case applications of the pro-
totype Translator system (“Translator”). Finally, we end 
with a discussion of next steps and a comparison between 
Translator and similar systems.

KNOWLEDGE REPRESENTATION 
IN TRANSLATIONAL SCIENCE

“Knowledge” versus “data”

The distinction between “knowledge” and “data” is most 
often captured as the data- to- information- to- knowledge- 
to- wisdom transformation or DIKW pyramid.5 Although 
the origins of this hierarchical representation model are 

Translational Sciences, Biomedical Data 
Translator Program (Other Transaction 
Awards OT2TR003434, OT2TR003436, 
OT2TR003428, OT2TR003448, 
OT2TR003427, OT2TR003430, 
OT2TR003433, OT2TR003450, 
OT2TR003437, OT2TR003443, 
OT2TR003441, OT2TR003449, 
OT2TR003445, OT2TR003422, 
OT2TR003435, OT3TR002026, 
OT3TR002020, OT3TR002025, 
OT3TR002019, OT3TR002027, 
OT2TR002517, OT2TR002514, 
OT2TR002515, OT2TR002584, and 
OT2TR002520; Contract number 
75N95021P00636). Additional funding 
was provided by the National Center 
for Advancing Translational Sciences, 
Intramural Research Program (ZIA 
TR000276- 05) and the National 
Institute of Diabetes and Digestive and 
Kidney Diseases (5U01DK065201).

“Translator” system capable of integrating existing biomedical data sets and 
“translating” those data into insights intended to augment human reasoning and 
accelerate translational science. Having demonstrated feasibility of the Translator 
system, the Translator program has since moved into development, and the 
Translator Consortium has made significant progress in the research, design, 
and implementation of an operational system. Herein, we describe the current 
system’s architecture, performance, and quality of results. We apply Translator 
to several real- world use cases developed in collaboration with subject- matter 
experts. Finally, we discuss the scientific and technical features of Translator 
and compare those features to other state- of- the- art, biomedical graph- based 
question- answering systems.
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uncertain, and other knowledge representations exist,6 
the DIKW framework has been widely used in fields like 
information science, communications science, and li-
brary science. Within this hierarchical framework, data 
are viewed as abundant and characterized as discrete 
objective facts or observations; information is consid-
ered to be assertions derived from data and intended to 
provide interpretation of the data; knowledge is viewed 
as generally accepted, universal assertions derived 
from the accumulation of information; and wisdom is 
considered to be the most abstract layer of understand-
ing derived from assertions and insights into acquired 
knowledge.7

Approaches for knowledge representation

Application of the conceptual DIKW framework has fo-
cused primarily on knowledge discovery, or the system-
atic process whereby observations or data are organized 
and interpreted into information that is then scrutinized 
or tested in the context of existing knowledge, with any 
subsequent assertions disseminated for peer consensus 
and adjudication before being accepted as new knowl-
edge. Approaches for knowledge discovery date back 
to ancient times and form the foundation of the scien-
tific method.8 Approaches for knowledge representa-
tion likewise date back to ancient times.8 Early forms 
of modern peer- reviewed publication represent one ap-
proach to knowledge representation that remains in use 
today.

Knowledge graphs

In recent years, “knowledge graphs” (KGs) have become 
a common approach for knowledge representation in a 
variety of fields.9,10 In a KG, entities or data types are 
represented as nodes and connected to each other by 
edges with predicates that describe the relationship 
between entities. A “schema” is used to constrain the 
KG by specifying how knowledge can be represented; 
as such, it provides a framework for validating specific 
instances of knowledge representation through rules 
that dictate the syntax and semantics. KGs allow users 
to pose questions that can then be translated into query 
graphs and applied to identify subgraphs within the KG 
that match the general structure of the query graph, 
thereby producing answers to user queries and gener-
ating new knowledge.11 KGs have had many success-
ful applications, with Google’s KG10 perhaps the most 
widely known.

THE TRANSLATOR SOLUTION

The Translator Consortium has adopted a federated KG- 
based approach for biomedical knowledge representation 
and discovery (Figure 1).

Translator comprises four main components: 
Knowledge Providers (KPs); Autonomous Relay Agents 
(ARAs); an Autonomous Relay System (ARS); and a 
Standards and Reference Implementation Component 
(SRI).

The objective of KPs is to contribute domain- specific, 
high- value information abstracted from one or more un-
derlying “knowledge sources,” which may be raw data 
as defined by the DIKW framework or information that 
has been abstracted from the data. ARAs build upon the 
knowledge contributed by KPs by way of reasoning and 
inference and in response to user- defined queries. In 
addition, ARAs may independently expose information 
abstracted from data. The ARS functions as a central 
relay station between ARAs and broadcasts user queries 
to the ARAs. The SRI services are responsible for the 

F I G U R E  1  Overview of the Translator architecture. Note that 
while the high- level architecture depicted in the figure is accurate, 
certain components may deviate slightly from the architecture in 
their approach to implementation. Abbreviations: SRI, Standards 
and Reference Implementation; TRAPI, Translator Reasoner 
Application Programming Interface. (Graphic prepared by Kelsey 
Urgo).
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development, implementation, and community adoption 
of the standards needed to achieve the overall goals of the 
Translator Consortium.

Translator leverages integrated data from over 250 
knowledge sources, each exposed via open application 
programming interfaces (APIs). The knowledge sources 
include, among others, highly curated biomedical data-
bases such as Comparative Toxicogenomics Database,12 
and ontologies such as Mondo, the Monarch Disease 
Ontology.13

In addition, Translator openly exposes data derived 
from several electronic health record (EHR) systems, 
clinical registries, and clinical studies, from which fu-
ture medical knowledge can be generated: Columbia 
University Irving Medical Center; UNC Health; the 
nonprofit Providence Health System; the Drug Induced 
Liver Injury Network (DILI Network); the Personalized 
Environment and Genes Study within the National 
Institute of Environmental Health Sciences; the Institute 
for System Biology’s Wellness cohort; and select cancer 
cohorts from within The Cancer Genome Atlas. Of impor-
tance, the Translator clinical KPs do not expose raw clin-
ical data, but rather aggregated or semi- aggregated data 
and statistical associations or machine learning predic-
tions derived from clinical data, in full compliance with 
all federal and institutional regulations.14

The Translator Consortium has adopted several 
tools and approaches to support standardization, 

harmonization, and interoperability across the diverse 
Translator system. First, all Translator services are accessi-
ble via APIs. The APIs are standardized in their metadata, 
structure, and operations using the Translator Reasoner 
API (TRAPI) standard,15 which defines a standard HTTP 
protocol for transmitting queries and receiving answers, 
with both structured as graphs. Second, all Translator 
services are registered in the SmartAPI registry,16 thus ad-
hering to FAIR principles. Third, the open- source Biolink 
Model17– 20 provides an upper- level graph- oriented univer-
sal schema that facilitates semantic harmonization and 
reasoning across disparate knowledge sources.

With these standards in place, users can query across 
the numerous data sources that are accessible via the fed-
erated Translator system. To demonstrate, we provide a 
simple example. Suppose a user asks what chemical entities 
treat chronic pain? The user is thus asking about approved 
drugs and other chemicals that may treat chronic pain. To 
answer this question, the user question must first be trans-
lated into a TRAPI- compliant directed query graph, struc-
tured in JSON format, with Biolink Model node and edge 
types specified and a compact unique resource identifiers 
(CURIE) used to constrain one node (Figure 2).

In this query, “chronic pain” is specified as a bio-
link:Disease type node n0 with the CURIE HP:0012532, 
which is defined by the Human Phenotype Ontology as 
“chronic pain.” A second node n1 is specified only as a bi-
olink:ChemicalEntity type. Nodes n0 and n1 are related by 

F I G U R E  2  An example of a natural 
language question translated into a TRAPI 
directed query graph in JSON format. 
(a) the natural language question: what 
chemical entity(ies) treats chronic pain? (b) 
the natural language question represented 
as an object- predicate- subject “triple.” (c) 
the TRAPI query that was executed by 
Translator. TRAPI, Translator Reasoner 
Application Programming Interface. 
(Graphic prepared by Kelsey Urgo).
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an edge with the relation defined by a predicate specified 
as biolink:treats. The query graph is thus structured to ask 
what chemical entity(ies) treats chronic pain? The query 
graph is then sent to the ARS, which parses the query and 
distributes it to the ARAs. The ARAs then distribute it 
to those KPs that have provided a meta- graph within the 
SmartAPI registry indicating that they are able to respond 
to queries of this type. The ARAs may apply a variety of 
sophisticated reasoning and inference algorithms to the 
answers returned by the KPs, including different ap-
proaches for ranking and scoring answers such as weight-
ing by supporting publications or abstract co- occurrence 
of subject and object nodes. Finally, the ARS compiles the 
ARA results for the user.

A review of the answers to the query finds expected 
answers such as oxycodone, hydrocodone, codeine, li-
docaine, and ibuprofen. There are also answers that are 
accurate but may not be responsive to the user’s query 
such as methadone, which is used to treat opioid depen-
dence,21 and caffeine, which is an adjuvant in certain pain 
medicine formulations.22 In addition, the answer set in-
cludes perhaps unexpected answers such as naloxone and 
naltrexone, which are opioid antagonists. An examina-
tion of the evidence and provenance that Translator re-
turns in support of these answers identifies publications 
in the form of PubMed identifiers (PMIDs), with links to 
PubMed abstracts that suggest that these compounds may 

be effective in the treatment of chronic pain conditions 
such as fibromyalgia and inflammatory bowel conditions 
(Figure 3). Although a pain specialist may not find these 
findings surprising, many users likely would be surprised 
to find that there are cases in which an opioid antagonist 
is beneficial in the treatment of pain, for which opioid ag-
onists are often administered.

APPLICATION USE CASES

The chronic pain use case illustrates basic Translator func-
tionalities in the context of a simple “one- hop” Translator 
query (i.e., two nodes connected by one edge) and the types 
of insights and discoveries that the Translator Consortium 
intends to achieve. Here, we provide an overview of three 
additional use cases (Figure 4).

Explore: Immune- mediated 
inflammatory diseases

The immune- mediated inflammatory disease (IMID) use 
case was motivated by an interdisciplinary team that was 
interested in learning more about immunomodulatory 
drugs that are used to treat IMIDs, including systemic scle-
rosis, which is a spectrum of rare diseases involving excess 

F I G U R E  3  Screenshots demonstrating an example of Translator evidence and provenance in support of naltrexone hydrochloride as an 
answer to the query in Figure 2.
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collagen that can lead to fibrosis of the skin and/or inter-
nal organs. The team was interested in many classes of 
drugs, including Janus kinase inhibitors (JAK- Is), which 
have been suggested in the literature as a potential treat-
ment for systemic sclerosis. The team thus approached the 
Translator Consortium with the following question: what 
real- world evidence is there for the use of JAK- Is in patients 
with systemic sclerosis?

Structured EHR data do not track the condition for 
which a medication is prescribed to a given patient. An 
investigator can examine co- occurrence rates between 
diagnoses and medications, but those rates can be decep-
tive due to the prevalence of commonly prescribed drugs 
such as acetaminophen among the general population. 
Translator clinical KPs have overcome this limitation of 
EHR data by allowing users to openly explore both co- 
occurrence rates and relative frequencies of medications, 
as well as information on whether a medication is contem-
poraneously predictive for a given disease or phenotype, 
thus provisioning informative EHR data and assertions 
without regulatory hurdles.

In this case, the Translator Consortium approached 
the user’s question by executing a one- hop query that 
targeted Translator clinical KPs (Figure  4a). They first 
queried on a set of multiple IMIDs simultaneously. 
Translator answer sets comprised between 360 and 905 
specific answers each and included drugs commonly 
used to treat IMIDs such as methotrexate and dexameth-
asone. A subsequent query focused specifically on the 
IMID systemic sclerosis. For this more restrictive query, 
Translator answer sets comprised between 128 and 366 
specific answers each, including expected results such 
as mycophenolate, cyclophosphamide, and rituximab. 
Real- world evidence also was returned in the answer 
sets. For example, the observed- expected frequency 
ratio for co- occurrence of mycophenolate and systemic 
sclerosis was 3.91 (99% confidence interval: 3.67– 4.11). 
When examining JAK- Is, Translator found evidence 
of co- occurrence in patients with systemic sclerosis, 
although the results were not among the top- ranked 

answers. However, Translator reported that the JAK- I 
tofacitinib was predictive of systemic sclerosis in a real- 
world logistic regression model, indicating that JAK- Is 
have been prescribed to certain patients with systemic 
sclerosis. In addition, Translator provided PubMed ab-
stracts suggesting mechanisms by which JAK- Is might 
treat systemic sclerosis, including evidence from mouse 
models and case studies. One example publication was 
titled: “Generation of a novel CD30+ B cell subset pro-
ducing GM- CSF and its possible link to the pathogenesis 
of systemic sclerosis.”23

The investigative team is now using Translator to fur-
ther explore mechanistic evidence connecting JAK- Is and 
IMID disease processes.

Explain: Crohn’s disease and 
Parkinson’s disease

This use case was motivated by clinical observations that pa-
tients with Crohn’s disease are at higher risk of Parkinson’s 
disease— two apparently unrelated diseases. Specifically, the 
investigative team approached the Translator Consortium 
with the following question: why do patients with Crohn’s 
disease have a higher risk of developing Parkinson’s disease?

The Translator Consortium addressed this question by 
constructing a two- hop query that sought biomedical en-
tities that might be shared by both Crohn’s disease and 
Parkinson’s disease (Figure 4b). The query was structured 
with two specified biolink:Disease nodes, each connected 
to an unspecified biolink:NamedThing node (i.e., a root 
class for all things and informational relationships).

Due to the open structure of the query, Translator re-
turned a variety of biomedical entities, including genes, 
diseases, chemicals, and drugs. Five genes were found to be 
associated with both Crohn’s disease and Parkinson’s dis-
ease, supporting the initial observation and suggesting at 
least partial common susceptibility pathways between these 
diseases. The identified genes were: LRRK2 (leucine rich re-
peat kinase 2); PARK7 (Parkinsonism associated deglycase); 

F I G U R E  4  Schematic of three 
generalizable Translator workflows 
applied to support specific use- case 
queries on (a) immune- mediated 
inflammatory diseases, (b) Crohn's– 
Parkinson's disease relationship, and 
(c) drug- induced liver injury. (Graphic 
prepared by Kelsey Urgo).
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NOD2 (nucleotide binding oligomerization domain con-
taining 2); GPR65 (G protein- coupled receptor 65); and 
MUC19 (mucin 19). Moreover, Translator provided quan-
titative publication support for each gene’s involvement in 
both Crohn’s disease and Parkinson’s disease. In addition 
to genes, Translator found that the antibiotic rifaximin was 
associated with both diseases. Whereas the association be-
tween rifaximin and Crohn’s disease was not surprising to 
the investigative team, given that antibiotics are used to 
control bacterial overgrowth in patients with Crohn’s dis-
ease,24 the association between rifaximin and Parkinson’s 
disease was surprising. In fact, Translator provided publica-
tion support showing that rifaximin reduced motor fluctu-
ations in a small clinical trial on Parkinson’s disease, with a 
publication titled: “Small intestinal bacterial overgrowth in 
Parkinson’s disease: tribulations of a trial.”25

The investigative team had expected LRRK2 to be 
among the answers returned to the query, so the fact that 
this gene indeed was returned by Translator provided the 
team with confidence in the accuracy and sensitivity of 
Translator answers and convinced them that a conver-
gence of evidence, even if modest, such as the evidence 
exposed in this use case, can guide the emergence of un-
known or unconventional KG paths and thereby assist 
with the identification of new treatment approaches to 
disease. The investigative team now plans to take a deeper 
dive into the supporting evidence and generate new que-
ries to determine if there are common biological processes 
that might explain how these shared genes contribute to 
two diseases that were not previously thought to be re-
lated. The team also plans to search for additional data 
sources to incorporate into Translator, including special-
ized data sources on gene expression, functional genom-
ics, and pharmacogenomics.

Repurpose: Drug- induced liver injury

The DILI use case was motivated by shared interests be-
tween the Translator Consortium and the DILI Network. 
A high priority for the DILI Network, which is the long-
est running cohort- based study funded by the National 
Institutes of Health, is to initiate a DILI clinical trial. This 
priority is motivated by the fact that the only consensus 
treatment for DILI is to discontinue the causal agent, leav-
ing patients with few therapeutic options until the drug 
injury resolves, and leaving underlying diseases and con-
ditions untreated. DILI Network investigators have been 
unable to identify a suitable therapeutic, namely, one that 
is generally safe, with sufficient biological justification to 
support a clinical trial.

Hence, one of the investigators of the DILI Network 
approached the Translator Consortium with this goal in 

mind. The specific question that was asked was what drug 
candidate(s) might be repurposed for the treatment of DILI, 
and is there sufficient biological plausibility to justify the use 
of that candidate(s) in a clinical trial?

The Translator Consortium approached this question 
with a two- fold solution (Figure 4c): (1) implement a com-
plex asynchronous three- hop query to identify candidate 
drugs, leveraging the knowledge provided by Translator 
clinical KPs; and then (2) implement a simple one- hop 
query to find additional support for any candidate drugs 
thus identified, leveraging the real- world and curated 
knowledge provided by all KPs.

Translator successfully executed both queries and 
identified two candidate drugs, both antioxidants that are 
available over- the- counter and in prescription formula-
tion: resveratrol and quercetin. Translator provided addi-
tional evidence to justify the use of these candidates in a 
clinical trial, including: the identification of intermediary 
genes that suggest biological plausibility; evidence of ef-
fectiveness in rodent models of DILI; and clinical trial pre-
cedence in other diseases and conditions such as chronic 
obstructive pulmonary disease. Moreover, Translator pro-
vided real- world evidence that these drugs are prescribed 
to patients.

To exemplify the knowledge and data that Translator 
reasons over, we highlight the answers and additional ev-
idence that Translator provided in support of quercetin. 
Specifically, for the initial three- hop query, Translator 
provided real- world evidence that DILI is associated with 
a variety of other diseases, including autoimmune hepa-
titis, psoriasis, and osteoarthritis. One answer subgraph 
indicated that toxic liver disease (equivalent to DILI) 
co- occurs with infectious bacterial disease with sepsis in 
patients, with an observed- expected frequency ratio of 
4.48 (99% confidence interval: 3.63– 5.00). Tumor necrosis 
factor (TNF), a proinflammatory cytokine, was identified 
as the gene in the path between infectious bacterial dis-
ease with sepsis and quercetin, with Translator indicat-
ing that the evidence was derived from a resource called 
SemMedDB. Translator provided more than two dozen 
publications, including PubMed abstracts, supporting a 
relationship between TNF and quercetin, with most pub-
lications derived from primary rodent studies. The first 
publication was titled: “Quercetin inhibits LPS- induced 
nitric oxide and tumor necrosis factor- alpha production 
in murine macrophages”; and the abstract suggests that 
quercetin inhibits TNF.26 The second one- hop query 
then asked for additional evidence related to quercetin. 
Translator provided evidence that quercetin is effective 
in the treatment of DILI, drug- induced dyskinesia, and 
drug- related side effects and adverse reactions in rodent 
models. The first publication27 in one answer subgraph 
was titled: “Involvement of P450s and nuclear receptors in 
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the hepatoprotective effect of quercetin on liver injury by 
bacterial lipopolysaccharide”; and the abstract contained 
the sentence: “In this study, we used liposomal nanopar-
ticles to entrap quercetin and evaluated its protective and 
therapeutic effects on drug- induced liver injury in rats.” 
In addition, Translator provided real- world evidence 
that quercetin was prescribed to patients with a variety 
of diseases, including allergic rhinitis, with an observed- 
expected frequency ratio of 2.24 (99% confidence interval: 
1.30– 2.79). Moreover, Translator provided evidence that 
quercetin is in clinical trials as a treatment for chronic 
obstructive pulmonary disorder,28 thus establishing prece-
dence for a clinical trial on DILI.

Having met the criteria for viable drug candidates 
in clinical trials of DILI, members of the Translator 
Consortium now plan to prepare a formal report on 
Translator’s findings for consideration by the DILI 
Network Steering Committee.

DISCUSSION

The Translator program is in its third year of develop-
ment, having first demonstrated feasibility. (See Figure S1 
for complete timeline and notable milestones.) Several 
key advancements have been achieved since we first de-
scribed the Translator system in 2019.3,4 For example, at 
the time of our first report, a unified Translator “system” 
functionally did not exist; rather, Translator was com-
prised of many individual tools and services that were 
not truly integrated or harmonized. This is in contrast to 
the prototype Translator system that now exists, which 
functions as a truly unified system. This achievement is 
due, in part, to the consortium- wide adoption of ontolo-
gies and standards, such as Biolink Model and TRAPI, as 
well as tools to support their adoption and continued use. 
These ontologies and standards allow for the seamless in-
tegration and harmonization across completely disparate 
“knowledge sources,” including observational clinical 
datasets and curated biomedical datasets. The Translator 
program has also moved beyond its initial two use cases on 
Fanconi anemia and asthma to include the use cases de-
scribed here on IMIDs, Crohn’s disease/Parkinson’s dis-
ease, and DILI, as well as others. Moreover, the Translator 
program now has a nontechnical component, the SRI, that 
aims to create and maintain the collaborative framework 
required to support the adoption and implementation of 
standards and references, including services to support 
technical Translator components and teams. Through 
these standards and services, Translator has been able to 
readily expand the number of knowledge sources from 
which it draws data and knowledge and the number of use 
cases that it is able to support. A final achievement worth 

mentioning is that the Translator Consortium has main-
tained a unique culture of open collegial collaboration and 
communication, despite the addition of new teams and 
the inevitable turnover of team members.

Whereas a prototype Translator system now exists, 
with demonstration of its success in returning valid an-
swers to user questions, there are several areas of im-
provement required to truly achieve a production- level 
Translator system.

First, the scoring and ranking algorithms that are in-
voked by the ARAs are intentionally varied to provide 
breadth in answer sets and associated evidence. We ac-
knowledge a need to refine the scoring and ranking al-
gorithms in order to prioritize those answers with strong 
evidence, more complete provenance, and high confi-
dence, thereby enriching for answers that are likely to 
provide the greatest insights to users.

Second, the TRAPI standard and Biolink Model are 
critical to standardize queries and answers across the fed-
erated Translator system. However, standardization can 
result in a lack of granularity and an inability to pose nu-
anced queries. For instance, workflow operations are only 
minimally supported in the current TRAPI standard. We 
are working to provision a variety of logical operations 
such as a graph overlay operation. We are also extending 
the Biolink Model to support nuanced statements by de-
veloping a core set of qualifiers (e.g., disease severity) that 
can be used to capture semantic richness.

Third, the clinical insights provided by the Translator 
system should be interpreted with caution. For instance, 
in our IMID use case, we provided real- world EHR evi-
dence that JAK- Is co- occurred with systemic sclerosis and 
were predictive of systemic sclerosis in a logistic regres-
sion model, thus supporting the assertion that they are 
prescribed to patients with systemic sclerosis. However, 
we did not provide evidence of clinical benefit when pre-
scribed to treat systemic sclerosis. Translator clinical KPs 
rely primarily on structured EHR data. Structured EHR 
data can be used to derive information on clinical benefit, 
for example, by examining the frequency of emergency 
department visits for condition X among patients with a 
diagnosis of disease Y who were prescribed medication 
Z compared to those who were not prescribed the same 
medication. However, TRAPI currently does not support 
such nuanced queries, although efforts are underway to 
adapt TRAPI to allow for more sophisticated queries. For 
certain use cases (e.g., DILI), Translator clinical KPs ex-
pose study data, which do support TRAPI- compliant as-
sertions regarding clinical outcomes, but such data are not 
available for all use cases. At present, the approach that 
we are taking is to use curated knowledge sources to ex-
plore mechanistic evidence for how JAK- Is might reduce 
inflammation in systemic sclerosis.
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Finally, whereas several Translator teams have devel-
oped user interfaces (UIs) that support TRAPI queries and 
answers, a uniform cross- component UI is not yet avail-
able, although NCATS recently funded a team to develop 
one (see timeline in Figure S1). We recognize the urgent 
need for such an interface, which will allow us to more 
effectively engage users, thus serving a broader commu-
nity and promoting long- term sustainability. We note that 
a mock- up Translator UI has been developed and is now 
being vetted by users, with an early- phase prototype UI 
expected to be deployed by the end of calendar year 2022.

We note that the Translator system is one of several 
available biomedical KG- based question- answering 
systems. Others include Causaly,29 Elsevier’s Biology 
Knowledge Graph30 and related Pathway Studio,31 and 
Google’s Knowledge Graph.10 We emphasize a few differ-
ences among these systems. First, the Translator system 
is the only open- source, community- contributed sys-
tem; Causaly and Elsevier’s systems are commercial, and 
Google’s Knowledge Graph is largely proprietary. For the 
IMID and DILI use cases reported here, the open- source 
nature of Translator allowed us to run queries that openly 
explored EHR evidence on co- occurrence rates of obser-
vations, relative frequencies, and disease risk predictions, 
without regulatory hurdles. Second, these systems are 
narrower in scope than Translator. Elsevier’s systems are 
highly specific to basic biology and do not span the trans-
lational spectrum. Causaly’s system supports a broader 
set of translational questions, but only a subset of those 
supported by Translator. Thus, our use cases included 
queries that spanned multiple biomedical entities (e.g., 
genes, chemical entities, small molecules, drugs, phe-
notypes, diseases) and numerous knowledge sources, 
including clinical knowledge sources. Third, Translator 
supports a more sophisticated set of queries than the 
other systems. For instance, Google’s Knowledge Graph 
only supports simple “lookup” operations, albeit with 
highly sophisticated natural language parsing of user 
questions. Causaly’s system is currently limited to linear 
two- hop queries. Neither Causaly’s nor Elsevier’s sys-
tems support batch or asynchronous queries, in contrast 
to the Translator system. Our DILI use case leveraged 
Translator’s advanced capabilities, including three- hop, 
batch, and asynchronous queries. Finally, none of the 
other systems support clinical knowledge, such as EHR 
data, which provided key support for two of the three use 
cases reported herein.

In conclusion, we have developed a biomedical KG- 
based Translator system capable of integrating a wide 
range of data sets and translating those data into insights 
intended to augment human reasoning and accelerate 
translational science. We are now working on refinements 
to the prototype Translator system.
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