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ABSTRACT OF THE THESIS

Deep Generative Classifier

with Short Run Inference

by

Eric Mercado Fischer

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Song-Chun Zhu, Chair

A deep generative classifier employs Short Run Markov Chain Monte Carlo inference with

Langevin dynamics and backpropagation through time. In contrast to a convolutional neural

network (ConvNet) with analogous architecture, the Short Run classifier approaches the

same classification accuracy and (1) may synthesize data, (2) may learn unsupervised from

additional unannotated data, and (3) exhibits robustness to adversarial attacks, due to

the stochasticity of the Langevin equation and the top-down architecture of the generator

network. The ConvNet classifier lacks the ability to perform (1) or (2) and possesses no

defense against adversarial attacks, a critical concern for any deployed machine learning

system. Meanwhile, the Short Run classifier demonstrates the capacity to improve in both

classification accuracy and the quality of data synthesis, given additional unannotated data.
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CHAPTER 1

Introduction

Introduced in this study is a deep generative classifier employing Short Run Markov Chain

Monte Carlo (MCMC) inference with Langevin dynamics and backpropagation through time

(BPTT). As the Short Run classifier uses a generator network and Short Run MCMC infer-

ence based on the alternating backpropagation algorithm, the generator network is defined

in Section 1.2, the alternating backpropagation algorithm in Section 1.3, and Short Run

MCMC inference in Section 1.4.

The generator network is a top-down convolutional neural network (ConvNet, or CNN).

ConvNets are introduced in Section 1.1, including a bottom-up ConvNet classifier used as a

reference in this study. The network architectures of a generator network and small classifier

that compose the Short Run classifier are given in Appendices A.1 and A.2, respectively.

The network architecture of the ConvNet classifier is given in Appendix A.3.

The Short Run classifier components, i.e., the generator network and small classifier,

with some minor modifications may be combined to form the ConvNet classifier. The four

transpose convolutional layers of the generator network become convolutional layers in the

ConvNet classifier, with the order of layers reversed. As shown in Appendix A, the generator

network receives as input a 200-dimensional latent variable z and transforms the number

of output feature maps, or channels, in the following order: 200, 128, 128, 64, and 3. The

ConvNet classifier receives as input a 3-by-28-by-28 pixel image x and transforms the number

of output channels in the following order: 3, 64, 128, 128, and 200, i.e., the reverse. Excluding

two max pooling layers and a flattening layer, the three remaining layers of the ConvNet

1



classifier are identical to the three layers of the small classifier.

With the analogous architectures of the Short Run and ConvNet classifiers, the Short

Run classifier has a fair discriminative model with which it can be compared. As the models

have roughly the same expressive capacity, any difference in learning outcomes can be at-

tributed to the different learning algorithms. The Short Run classifier approaches the same

classification accuracy and (1) may synthesize data, (2) may learn unsupervised from addi-

tional unannotated, or unlabelled, data, and (3) exhibits robustness to adversarial attacks,

due to the stochasticity of the Langevin equation and the top-down architecture of the gen-

erator network. The ConvNet classifier lacks the ability to perform (1) or (2) and possesses

no defense against adversarial attacks, a critical concern for any deployed machine learning

system. Meanwhile, the Short Run classifier demonstrates the capacity to improve in both

classification accuracy and the quality of data synthesis, given additional unannotated data.

Inference methods related to Short Run MCMC are discussed in Chapter 2 on Prior

Art. The Short Run deep generative classifier is defined in Chapter 3, beginning with

the generative model and learning for a generative model defined in Sections 3.1 and 3.2,

respectively. Short Run inference and an updated learning algorithm and maximization

objective for Short Run inference are defined in Sections 3.3, 3.4, and 3.5, respectively.

BPTT for the Langevin dynamics is defined in Section 3.6 before finally the full learning

algorithm in Section 3.7.

Experimental results are presented in Chapter 4, beginning with a brief introduction to

the Street View House Numbers (SVHN) dataset in Section 4.1. Qualitative and quanti-

tative results for the generative model are displayed in Sections 4.2 and 4.3, respectively,

before comparing the classification accuracies of the Short Run and ConvNet classifiers in

Section 4.4.

The results in Section 4.5 demonstrate the robustness of the Short Run classifier to

adversarial attacks. Namely, the Fast Gradient Sign Attack (FGSM) is performed on both

classifiers and the Short Run classifier displays nearly 20% better classification accuracy in
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response to adversarial perturbations. The conclusion in Chapter 5 summarizes this study.

1.1 Convolutional Neural Network

ConvNets [1, 2] were initially designed for discriminative, bottom-up networks, but input

may propagate through a ConvNet architecture in a bottom-up or top-down direction. In the

bottom-up direction, convolutional layers effectively perform feature extraction to transform

an observed signal x into an energy −fθ(x). Bottom-up ConvNets are used for discriminative

models, such as the ConvNet classifier (A.3) in this study, and energy-based models (EBM),

such as the DeepFRAME model [3] and other exponential family models.

An EBM [4, 5, 6, 7, 8, 9] is defined as pθ(x) = 1
Z(θ)

exp(fθ(x)), in which fθ is parameterized

by a bottom-up ConvNet and −fθ(x) is the energy function. An EBM may be regarded as

the physical analog of a probability distribution. If fθ(x) is linear in θ, it reduces to the

exponential family model in statistics or the Gibbs distribution in statistical physics. pθ(x)

may be considered an evaluator, in which fθ assigns a value to x, and pθ(x) evaluates x

according to a normalized probability distribution [10].

In the top-down direction of a generator network, such as the one (A.1) in this study,

transpose convolutional layers transform a latent variable z into a synthesized signal x̂ =

gθ(z). A latent variable z encodes, and is meant to explain, an observed signal x. Top-

down ConvNets are used for generator networks and other latent variable models, such as

independent component analysis and sparse coding [11].

Hence, the family of generative models can be divided into energy-based models, i.e.,

undirected graphical models, and latent variable models, i.e., directed graphical models,

which consists of generator and inference models. [10] performs joint training of energy-

based, generator, and inference models in a framework referred to as the divergence triangle.

For the bottom-up ConvNet classifier in this study, the objective is to correctly predict

a label y with a prediction ŷ, in which ŷ = fθ(x) is a nonlinear transformation of x. f is a
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composition of L layers, in which each layer consists of a linear mapping and an element-wise

nonlinear rectification. This is shown by

x→ h(1) → h(l−1) → h(l) → · · · → h(L) → ŷ, (1.1)

in which h(l) is a d(l)-dimensional vector defined recursively for l = 1, ..., L by

h(l) = f (l)(W (l)h(l−1) + b(l)). (1.2)

Here, h(0) = x and h(L+1) = ŷ, and θ = (W (l), b(l), l = 1, ..., L + 1). W (l) is the weight

matrix, and b(l) is the bias or intercept vector of layer l. f (l) is an element-wise nonlinear

transformation, i.e., for v = (v1, ..., vd)
>, f (l)(v) = (f (l)(v1), ..., f

(l)(vd))
>. A commonly used

nonlinear rectification is the rectified linear unit (ReLU): f (l)(a) = max(0, a) [12].

A top-down ConvNet, here considered supervised with latent variables h known, trans-

forms an initial latent variable h into a signal x, as shown by

h→ h(L) → ...→ h(1) → x, (1.3)

in which h(l) is a d(l)-dimensional vector defined recursively for l = L+ 1, ..., 1 by

h(l−1) = g(l)(W (l)h(l) + b(l)). (1.4)

Here, h(L+1) = h and h(0) = x. g(l) is an element-wise nonlinear rectification such as ReLU.

The resulting top-down ConvNet may be defined as x̂ = gθ(h), in which θ = (W (l), b(l), l =

1, ..., L + 1) [12]. Often z is used instead of h to refer to a latent variable; following this

convention, the top-down ConvNet may be defined as x̂ = gθ(z).

The generator network uses a top-down ConvNet for unsupervised learning problems

with latent variables unknown.

1.2 Generator Network

The generator network [13, 14] is a nonlinear generalization of factor analysis, a prototype

model in unsupervised learning that maps latent variables to observed signals. It generalizes
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the linear mapping in factor analysis to a nonlinear mapping defined by a top-down ConvNet.

Factor analysis may also be generalized with regard to the prior model or prior assumption

of the latent variables. This led to models such as independent component analysis, sparse

coding, matrix factorization, and nonnegative matrix factorization [11].

The generator network is defined as

x = gθ(z) + ε,

z ∼ N (0, Id), ε ∼ N (0, σ2ID), d < D, (1.5)

in which x is a D-dimensional observed data vector such as an image, g is the generator

network, θ are the model parameters, z = (zk, k = 1, ..., d) is a d-dimensional vector of con-

tinuous latent variables, and ε is a D-dimensional vector of Gaussian white noise. The prior

distribution p(z) is known, such as z ∼ N (0, Id), in which Id stands for the d-dimensional

identity matrix. The generator network provides nonlinearity in comparison to the tradi-

tional factor analysis model defined as x = Wz + ε, in which W is a D× d matrix. It learns

by minimizing the reconstruction error ‖x − gθ(z)‖2 between an observed image x and a

synthesized image gθ(z).

Recall the top-down ConvNet structure of the generator network, defined as

z(l−1) = g(l)(W (l)z(l) + b(l)), (1.6)

in which z(l) is the latent variable at layer l, g(l) is an element-wise nonlinearity at layer l,

W (l) is the matrix of network weights at layer l, b(l) is the vector of bias terms at layer l, and

θ = (W (l), b(l), l = 1, ..., L) are the model parameters at layer l. The top-down ConvNet may

be considered a recursion of the original factor analysis model, in which the latent variables

at layer l − 1 are obtained by a linear superposition of the basis vectors, or functions, that

are column vectors of W (l), with the latent variables at layer l serving as coefficients of the

superposition [11].

For understanding, the top-down ConvNet (1.6) of the generator network may be imag-

ined as a pyramid, in which the top layer, or top of the pyramid, is given a latent variable
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z(L) = z, and the bottom layer, or bottom of the pyramid, outputs a synthesized example

z(0) = gθ(z) = x̂. From the top of the pyramid moving downward, the top-down ConvNet

transforms a latent variable z into a synthesized example gθ(z) = x̂.

The generator network has the following motivating properties, none of which can be

attributed to the ConvNet classifier used as a reference in this study:

(1) Analysis: The model disentangles variations in observed signals into independent

variations in latent variables.

(2) Synthesis: The model can synthesize new signals by sampling latent variables from

their known prior distribution and transforming them into a signal.

(3) Embedding: The model embeds the high-dimensional, non-Euclidean manifold

formed by observed signals into a low-dimensional, Euclidean space of latent variables, such

that linear interpolation in the latent variable space results in nonlinear interpolation in the

data space [11].

In this study, the generator network is learned by Short Run MCMC inference, which is

based on the alternating backpropagation algorithm.

1.3 Alternating Backpropagation

The alternating backpropagation algorithm [11] developed for the generator network gθ(z) is

a nonlinear generalization of the alternating regression scheme of the Ruben-Thayer Expec-

tation Maximization (EM) algorithm [15, 16], used for learning the factor analysis model.

It is a stochastic approximation algorithm that converges to the maximum likelihood esti-

mate. The algorithm iterates between an inferential backpropagation step for inferring latent

variables and a learning backpropagation step for updating model parameters:

(1) Inferential Backpropagation: For each training example, latent variables are inferred

by Langevin dynamics or gradient descent.
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(2) Learning Backpropagation: Given the inferred latent variables, model parameters are

updated by gradient descent.

For every update of the model parameters in the learning step, an inner loop performs

multiple updates of the latent variables with Langevin dynamics or gradient descent in

the inferential step. In this step, Langevin dynamics [17] solves an `2-penalized nonlinear

least-squares problem to guide the evolution of z over k Langevin steps, such that z may

reconstruct x given the current W . Langevin dynamics may be considered a stochastic

sampling counterpart of gradient descent [18]. Short Run MCMC inference also has an inner

loop each learning iteration for the inference of latent variables.

The inference dynamics of alternating backpropagation create an explain-away inference

process, in which the latent variables compete with each other to explain away, i.e., minimize,

the current residual x − gθ(z). Both the inferential and learning steps are guided by the

residual x− gθ(z), and as a result, the computation of their respective gradients share most

of the same chain rule calculations. The updating of the model parameters θ in the learning

step and the latent variable z in the inferential step collaborate to reduce the reconstruction

error ‖x − gθ(z)‖2 for an example x. Some key advantages of the explain-away inference

dynamics of alternating backpropagation and Short Run MCMC inference include:

(1) The latent variables may follow sophisticated prior models, e.g., a dynamic model

such as vector auto-regression for textured motions [19] or dynamic textures [20].

(2) The model may learn with incomplete or indirect training data. For example, training

images may include occluded regions, and the latent variables can still be obtained and,

moreover, used to reconstruct the occluded regions [11].

1.4 Short Run MCMC

Generator networks involve latent variables that follow some prior distribution, such that the

marginal distribution of observed examples may be obtained by integrating out the latent
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variables. But as this integral is analytically intractable, the learning of generator networks

requires an inference method to sample from the posterior distribution of latent variables,

pθ(z|x). For this inference, some form of MCMC posterior sampling such as Gibbs sampling

[21], Langevin dynamics [17], or Hamiltonian Monte Carlo [22] is often used.

Short Run MCMC [23, 24, 25], employing Langevin dynamics, does not actually sample

from the posterior pθ(z|x) but rather an approximate posterior qθ(z|x). Initialized from the

prior z ∼ N (0, Id) and guided by the negative log posterior, − log pθ(z|x), it is a finite-step

Langevin flow that may serve as an approximate sampler of the posterior distribution of

latent variables.

For each training example, Short Run MCMC initializes a nonconvergent, nonmixing,

nonpersistent Markov chain from a prior such as the uniform noise distribution and performs

a given number of steps k, e.g., 20 or 100, of Langevin dynamics toward a target distribution.

In this study, the target distribution is − log pθ(z|x), but it may also be an EBM such as in

[23], which applies Short Run MCMC to learning the EBM. An EBM, pθ(x) = 1
Z(θ)

exp(fθ(x)),

directly specifies the marginal distribution of observed examples, pθ(x), and does not involve

any latent variables.

The gradient-based dynamics of Short Run MCMC make it a k-step residual network or

recurrent neural network (RNN), which transforms an initial distribution z0 into a learned

approximate distribution q. Each learning iteration, a fixed number of Langevin steps k

are taken toward the target distribution, such as the current EBM in [23], or the negative

log posterior − log pθ(z|x) in this study, and the learned approximate distribution q is fur-

ther refined through an update of the parameters θ of the generator network. The learned

approximate distribution q is effectively kept across learning iterations, as opposed to the

EBM, as in [23], or the true posterior pθ(z|x), as in this study, that only serves as the guide

and is discarded.

The only purpose, then, of the target distribution, such as the EBM or − log pθ(z|x), at

any given learning iteration is to guide the k-step Langevin dynamics. To update the gen-
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erator parameters θ, the difference between synthesized examples, produced by the k-step

Langevin flow, and observed examples is calculated to perform an update based on the maxi-

mum likelihood learning gradient, as if the synthesized samples were true samples of the tar-

get distribution, although again they are samples from an approximate distribution q. In the

case of learning the posterior distribution of latent variables, pθ(z|x), the learning objective

becomes both to minimize the Kullback-Leibler (KL) divergence between the approximate

and posterior distributions, KL(qθ(z|x)‖pθ(z|x)), and to maximize the data log-likelihood

L(θ) = 1
n

∑n
i=1 log pθ(xi) as in usual maximum likelihood estimate (MLE) learning. With

this objective, the synthesized examples eventually come to match the observed examples in

terms of some statistical properties defined by the model [23].

Short Run MCMC, then, unlike traditional research in EBM and MCMC methods, does

not adopt the traditional goal of learning an EBM with convergent MCMC. As a result of

relinquishing this goal, it is liberated from the pursuit of traditionally sought-after MCMC

properties, such as convergence, mixing, and persistence. Although typically undesirable,

the nonconvergence, nonmixing, and nonpersistence exhibited by Short Run MCMC may

actually be regarded as beneficial, as it allows for greatly reduced computational expense

while not compromising learning integrity. It is easy to motivate the rationale of Short Run

MCMC in giving up these MCMC properties:

(1) Convergence to an EBM using MCMC may be impractical, especially if the energy

function is multimodal, as is the case with natural images.

(2) For a multimodal EBM, MCMC usually does not mix. MCMC chains from different

starting points typically get trapped in different local modes, as opposed to traversing modes

and mixing with each other to discover more of the landscape.

(3) Nonpersistent MCMC, by eschewing the requirement that Markov chains should have

some nonzero probability of returning to a previous state, is less computationally expensive

and more convenient [23].
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In the alternating backpropagation algorithm, persistent MCMC chains are used, i.e.,

the Langevin dynamics is initialized from the values of the latent variables at the end of the

previous learning iteration. Although inspired by alternating backpropagation, Short Run

MCMC differs in this fundamental regard by design.
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CHAPTER 2

Prior Art

A prominent alternative to MCMC posterior sampling for the inference of latent variables

is variational inference, as is used in the variational autoencoder (VAE) [14]. Variational

inference methods employ a simple factorized distribution to approximate the posterior dis-

tribution of latent variables. These methods assume, for each observed example, an approx-

imate posterior with variational parameters specific to the example. These parameters may

be optimized by minimizing the Kullback-Leibler divergence between the approximate and

true posterior distributions of the latent variables.

To perform inference, VAE uses an extra inference network that maps each input example

to a mean vector and diagonal variance-covariance matrix of the approximate multivariate

Gaussian posterior distribution of the latent variables. Despite its success, VAE has the

following disadvantages:

(1) VAE does not perform explicit explain-away inference of the latent variables.

(2) To perform inference, VAE employs an extra inference network with a separate set

of parameters, adding to both computational expense and model complexity.

(3) The design of the extra inference network is not automatic and may be difficult,

especially if the corresponding generative model has multiple layers of latent variables.

In a deep generative model with one layer of latent variables at the top layer, such as

the one in this study, designing the VAE inference network may be challenging but within

reason. In a multi-layer generative model with multiple layers of bottom-up and top-down

interactions, it may be exceedingly difficult. Short Run MCMC inference, on the other hand,
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does not require the design of an extra inference network and is unchanged even for models

with multiple layers of latent variables [25].

Another successful approach for training the generator network is the Generative Ad-

versarial Network (GAN) [13], which also uses an extra network with a separate set of pa-

rameters. In the GAN, a discriminator network plays an adversarial role in a game against

the generator network as a means to train the generator. Compared to Short Run MCMC

inference that performs explicit explain-away inference of the latent variables and VAE that

infers the latent variables with the help of an assisting network, GAN uses this learning

algorithm to avoid the inference of latent variables altogether.

In comparison to the VAE and GAN, Short Run MCMC inference is simpler and less

computationally expensive. Taking the place of the inference network in VAE is only a

noise-initialized, finite-step Langevin flow that adds no extra parameters to the model other

than the few required for tuning the Short Run inference dynamics [25]. The explain-away

inference of alternating backpropagation also lead to better learning from incomplete or

indirect data, which may be difficult or inconvenient for VAE and GAN [11]. Short Run

MCMC inference, furthermore, outperforms the VAE with regard to data reconstruction

and synthesis [25].

As mentioned, Short Run MCMC introduced by Nijkamp, Hill, et al. [23] is unique

amongst research in EBM and MCMC by not adopting the traditional goal of learning an

EBM with convergent MCMC. Although Short Run MCMC is not a valid sampler of the

EBM, it is indeed a valid model for the data in terms of matching statistics of the data

distribution, and arguments can be found in [23]. Grenander [26] referred to maximum

likelihood learning of the EBM as an “analysis by synthesis” scheme. Various works that

parameterize the energy function of the EBM with a ConvNet, including works using Short

Run MCMC, have shown that the “analysis by synthesis” scheme generates highly realistic

images [23, 27, 28].

A popular MCMC method related to Short Run MCMC is contrastive divergence (CD)
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[29], in which MCMC samples are initialized from observed data. Data initialization meth-

ods such as CD are often called “looking-forward” methods, as samples are initialized from

the latent space to which they are intended to converge. There are also persistent initializa-

tion methods, often called “falling-behind” methods, in which the the MCMC samples are

initialized from the values of the latent variables at the end of the previous learning iteration.

Persistent CD [30] was then introduced as a generalization of CD.

All CD frameworks seek to learn the EBM, whereas Short Run MCMC does not retain

a learned EBM but only a learned approximate distribution. In contrast to Persistent CD,

Short Run MCMC is less computationally expensive and more convenient due to MCMC

nonpersistence [23]. In contrast to MCMC methods that use persistent initialization in

general, Short Run MCMC differs in this fundamental regard by design. Short Run MCMC

has also been used to investigate the anatomy of MCMC-based maximum likelihood learning

of the EBM in [24] and to learn deep generative models with one or more layers of latent

variables organized in top-down architectures in [25].

As of yet, there is no prior art using Short Run MCMC for a deep generative classifier,

or with backpropagation through time. However, the alternating backpropagation algorithm

has indeed been used to perform BPTT in [20], which uses a dynamic generator model for

spatial-temporal processes such as dynamic textures and action sequences.
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CHAPTER 3

Deep Generative Classifier

A deep generative model [31, 32, 33] consists of one or more layers of latent variables orga-

nized in a top-down architecture (1.6). Learning such a model requires, for each example

x, the inference of a latent variable z based on the posterior distribution of latent variables,

pθ(z|x), for which MCMC posterior sampling is often used.

Short Run MCMC sampling does not sample from the posterior pθ(z|x) but rather an

approximate posterior qθ(z|x), in a Short Run learning algorithm discussed in greater detail

beginning in Section 3.4. First, the generative model, learning, and Short Run inference are

introduced.

3.1 Model

Let x be an observed example, such as an image, and let z be the corresponding latent

variable.

(1) The joint distribution of (x, z) is pθ(x, z), in which θ are model parameters.

(2) The marginal distribution of x is pθ(x) =
∫
pθ(x, z)dz.

(3) Given x, z may be inferred based on posterior distribution pθ(z|x) = pθ(x, z)/pθ(x).

Recall the generator network gθ(z), a top-down ConvNet, used in this study:

x = gθ(z) + ε,

z ∼ N (0, Id), ε ∼ N (0, σ2ID), d < D,
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in which x is a D-dimensional observed data vector such as an image, g is the generator

network, θ are the model parameters, z = (zk, k = 1, ..., d) is a d-dimensional vector of con-

tinuous latent variables, and ε is a D-dimensional vector of Gaussian white noise. The prior

distribution p(z) is known, such as z ∼ N (0, Id), in which Id stands for the d-dimensional

identity matrix.

For the generator network, pθ(x, z) is such that [x|z] ∼ N (gθ(z), σ2ID), in which D is the

dimensionality of x. Hence, the log-joint distribution of the model is defined as

log pθ(x, z) = log[p(z)pθ(x|z)] (3.1)

= −1

2
[‖z‖2 + ‖x− gθ(z)‖2/σ2] + c, (3.2)

in which c is a constant independent of θ.

Intuitively, with this distribution, (1) the generator parameters θ may be learned such

that the reconstruction error ‖x − gθ(z)‖2 is minimized, and (2) z may be regularized, i.e.,

learned such that ‖z‖2 is minimized.

Learning and inference may be accomplished by maximizing the complete-data log-

likelihood log pθ(x, z), but it is more rigorous to maximize the observed-data log-likelihood

L(θ) = 1
n

∑n
i=1 log pθ(xi) = 1

n

∑n
i=1 log

∫
pθ(xi, zi)dzi (3.3), which takes into account uncer-

tainties in inferring z.

3.2 Learning

Let pdata(x) be the data distribution that generates the observed example x. The learn-

ing of the parameters θ of pθ(x) may be based on minθKL(pdata(x)‖pθ(x)). KL(p‖q) =

Ep[log(p(x)/q(x))] is the KL divergence from p to q.

For observed training examples {xi, i = 1, . . . , n} ∼ pdata, minimizing the KL divergence
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may be approximated by maximizing the observed-data log-likelihood,

L(θ) =
1

n

n∑
i=1

log pθ(xi), (3.3)

which lends the maximum likelihood estimate (MLE).

The gradient of the log-likelihood, L′(θ), may be computed according to the following

identity that underlies the EM algorithm:

∂

∂θ
log pθ(x) =

1

pθ(x)

∂

∂θ
pθ(x) (3.4)

=
1

pθ(x)

∂

∂θ

∫
pθ(x, z)dz (3.5)

=

∫
∂

∂θ
log pθ(x, z)

pθ(x, z)

pθ(x)
dz (3.6)

= Epθ(z|x)
[
∂

∂θ
log pθ(x, z)

]
. (3.7)

This identity links the gradient of the observed-data log-likelihood log pθ(x) to the gradient

of the complete-data log-likelihood log pθ(x, z). For the generator network, ∂
∂θ

log pθ(x, z) is

in closed form. The above expectation (3.7) may be approximated by MCMC samples from

pθ(z|x), but again, Short Run learning (3.4) samples from an approximate posterior qθ(z|x).

MLE learning may be accomplished by gradient descent. Each learning iteration, the

MLE update of the parameters θ is

θt+1 = θt + ηt
1

n

n∑
i=1

Epθt (zi|xi)
[
∂

∂θ
log pθ(xi, zi)|θ=θt

]
, (3.8)

in which ηt is the learning rate. Similarly, the above expectation (3.8) may be approxi-

mated by MCMC samples from pθt(zi|xi), but Short Run learning (3.4) samples from an

approximate posterior qθt(zi|xi) [25].

3.3 Short Run Inference

To infer a latent variable z, recall that Short Run MCMC, for each training example x,

initializes a nonconvergent, nonmixing, nonpersistent Markov chain from a prior such as
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the uniform noise distribution and performs a given number of steps k, e.g., 20 or 100, of

Langevin dynamics toward a target distribution, in this study the negative log posterior

distribution of the latent variables, − log pθ(z|x).

To sample from the posterior pθ(z|x) at each step k, Langevin dynamics [17] iterates

zk+1 = zk + s
∂

∂z
log pθ(zk|x) +

√
2sεk, (3.9)

in which k indexes the time step, s is the step size, and εk ∼ N (0, I). The white noise

diffusion term
√

2sεk in Langevin dynamics creates randomness for sampling from the pos-

terior pθ(z|x). If the posterior pθ(z|x) is of low entropy or temperature, the gradient term

s ∂
∂z

log pθ(zk|x) dominates the diffusion noise term
√

2sεk, and Langevin dynamics behaves

like gradient descent.

The step size s plays the role of annealing or tempering. If s is very large, pθ(z|x) remains

more similar to the flat, uniform prior z ∼ N (0, Id), which exhibits the maximum amount

of noise, or entropy. If s is very small, pθ(z|x) may become multimodal, but the evolving

energy landscape of pθ(z|x) alleviates to some degree the trapping of local modes [23].

Initialized from the prior p(z) ∼ N (0, Id), k Langevin steps with step size s are guided

by the negative log posterior − log pθ(z|x). This amounts to gradient descent on ‖z‖2/2 +

‖x − gθ(z)‖2/2σ2, the penalized reconstruction error. The Langevin dynamics create an

explain-away inference process, in which the latent variables compete to explain away, i.e.,

minimize, the current residual x − gθ(z). As a result of the k-step Langevin, zk is taken to

be an approximate sample from pθ(z|x).

For a small step size s, the marginal distribution of zk converges to pθ(z|x) as k → ∞,

regardless of the initial distribution of z0. That is, if qk(z) is the marginal distribution

of the latent variables zk, then KL(qk(z)‖pθ(z|x)) → 0 monotonically. In this respect,

Short Run MCMC is consistent with variational approximation, as both seek to minimize

KL(q(z)‖pθ(z|x))→ 0 over the marginal distribution q within a certain class [25].
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3.4 Learning with Short Run Inference

Each learning iteration, the Short Run MLE update of the parameters θ is

θt+1 = θt + ηt
1

n

n∑
i=1

Eqθt (zi|xi)
[
∂

∂θ
log pθ(xi, zi)|θ=θt

]
, (3.10)

in which ηt is the learning rate. The above expectation (3.10) may be approximated by sam-

pling from qθt(zi|xi) using noise-initialized, k-step Langevin dynamics. The only difference

between this and a standard MLE update (3.8) for a generative model is that Short Run

learning replaces the posterior pθ(z|x) with the approximate posterior qθ(z|x), from which

MCMC samples may be obtained exactly.

Given θt, the noise-initialized, k-step Langevin dynamics seeks to maximize

Q(θ) =
1

n

n∑
i=1

Eqθt (zi|xi) [log pθ(xi, zi)] (3.11)

by a single gradient ascent step in θ. Notably, in an approximate Monte Carlo EM algorithm

such as this, Q(θ) may actually be maximized with multiple gradient ascent steps [25]. Q(θ)

is an approximation to the complete-data log-likelihood in the EM algorithm [15, 16].

Thus, instead of the usual log-likelihood function (3.3) used in MLE learning, L(θ) =

1
n

∑n
i=1 log pθ(x), we have a Short Run maximization objective:

Q(θ) = L(θ) +
1

n

n∑
i=1

Eqθt (zi|xi) [log pθ(zi|xi)] (3.12)

= L(θ)− 1

n

n∑
i=1

KL(qθt(zi|xi)‖pθ(zi|xi)) (3.13)

+
1

n

n∑
i=1

Eqθt (zi|xi) [log qθ(zi|xi)] . (3.14)

Since θ may be factored out of the last term, maximizing Q(θ) is equivalent to maximizing

L(θ)− 1
n

∑n
i=1 KL(qθt(zi|xi)‖pθ(zi|xi)), which is a lower bound of L(θ) [25].
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3.5 Objective and Estimating Equation

The objective −Q(θ) is equivalent to

KL(pdata(x)qθt(z|x)‖p(z)pθ(x|z)), (3.15)

up to a constant independent of θ.

The Short Run learning algorithm (3.10), a Robbins-Monro EM algorithm for stochastic

approximation [34], solves the following estimating equation:

1

n

n∑
i=1

Eqθt (zi|xi)
[
∂

∂θ
log pθ(xi, zi)

]
= 0. (3.16)

For a fixed Langevin step size s, as in this study, the convergence of the algorithm follows

from regular conditions of Robbins-Monro. Unlike original MLE learning (3.8), qθ(z|x) may

be sampled exactly so that Robbins-Monro theory applies [25].

The bias of the learned θ based on Short Run inference dynamics relative to the MLE

depends on the gap between qθ(z|x) and pθ(z|x).

3.6 Backpropagation through Time

Backpropagation through time [20, 35, 36] is a gradient-based technique for training certain

types of recurrent neural networks. In this study, the gradient-based dynamics of Short

Run MCMC ultimately make it a k-step residual network or RNN, for which BPTT may

be performed. Short Run BPTT consists of backpropagation through the k-step Langevin

dynamics of the MCMC inference of z. A differentiable form of Short Run inference is

employed in the third stage of Short Run classifier learning (3.7) to accommodate BPTT.

The data for the k-step RNN Langevin dynamics may be written as an ordered sequence

of k input-ouput pairs of latent variables, {(z0, z1), . . . , (zk−2, zk−1)}. All the Langevin time

steps share the same network parameters θ, making BPTT necessary in the first place.
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Recall the log-joint distribution (3.2):

log pθ(x, z) = −1

2
[‖z‖2 + ‖x− gθ(z)‖2/σ2] + c. (3.17)

Up to an additive constant and assuming σ2 = 1, the log-joint may be written as

L(θ, z) = −1

2

T∑
t=1

[‖zt‖2 + ‖xt − gθ(zt)‖2], (3.18)

in which t indexes the time step of the Langevin dynamics. The log-joint log pθ(x, z) may

be used, as opposed to the log-posterior log pθ(z|x) term found in the Langevin dynamics

equation (3.9), as ∂
∂z

log pθ(z|x) = ∂
∂z

log pθ(x, z).

The derivative of the log-joint with respect to θ is

∂L

∂θ
=

T∑
t=1

(xt − gθ(zt))
∂gθ(zt)

∂θ
. (3.19)

To infer z for any fixed Langevin time step t0,

∂L

∂zt0
=

T∑
t=t0+1

(xt − gθ(zt))
∂gθ(zt)

∂zt

∂zt
∂zt0
− zt0 , (3.20)

in which ∂zt
∂zt0

can be computed recursively.

BPTT backpropagates loss across the entire unfolded k-step network to find, for each

Langevin time step t, the derivative of the log-joint L(θ, z) (3.18) with respect to the latent

variable zt0 for that time step, i.e., ∂L
∂zt0

.

∂L
∂zt0

at each time step t depends not only on the input zk−1 but also on the gradients ∂L
∂zt0

of previous steps. As such, the BPTT gradient calculation for the entire Langevin dynamics

is an accumulated gradient over all the T Langevin steps,
∑T−1

t=0
∂L
∂zt0

[20].

3.7 Algorithm

Let (X, Y ) be the training data with observed example x and label y. Let z be the inferred

latent variable for x. The three stages of learning include:
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(1) Generative: The generator network learns with x using Short Run inference.

(2) Discriminative: The small classifier learns with (z, y), in which z is generated by

the generator network using Short Run inference.

(3) Backpropagation through Time: The generator network and small classifier both

learn, as backpropagation occurs through the inference of z.

In the first stage, the generator network (A.1), facilitated by Short Run inference based on

the alternating backpropagation algorithm, learns to infer a latent variable z for an example

x. This stage learns based on generative loss.

In the second stage, the generator network is only employed for evaluation, generating

z using Short Run inference so the small classifier (A.2) may learn to classify with (z, y).

This stage learns based on discriminative loss, and only the small classifier parameters are

updated.

In the third stage, the generator network and small classifier both learn. As in the second

stage, the generator network produces z using Short Run inference so the small classifier may

learn with (z, y), but in this stage, Short Run BPTT backpropagates through the inference

of z to further improve classification accuracy. Overall, the third stage is fully supervised

with (x, y, z), consisting of backpropagation through the generator network, as in the first

stage, backpropagation through the small classifier, as in the second stage, and backpropa-

gation through the inference of z. As in the second stage, the third stage learns based on

discriminative loss.
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Algorithm 1: 3-Stage Learning of Deep Generative Classifier

input: Generative learning iterations Tgen, discriminative learning iterations Tdis,

BPTT learning iterations Tbptt, generator g, classifier f , classifier loss

function Ldis, initial generator weights θgen0 , initial classifier weights θdis0 ,

observed examples {xi, yi}ni=1, batch size m, learning rate η, BPTT learning

rate α, number of Langevin steps k, Langevin step size s

output: Weights θgent+1 and θdist+1

for t = 0 : Tgen do

1. Draw observed examples {xi}mi=1.

2. Draw latent vectors {zi,0 ∼ p(z)}mi=1.

3. Infer {zi,k}mi=1 using {xi}mi=1 by k steps of Langevin dynamics (3.9).

4. Update θgen according to (3.10).

end

for t = 0 : Tdis do

1. Draw observed examples {xi, yi}mi=1.

2. Draw latent vectors {zi,0 ∼ p(z)}mi=1.

3. Infer {zi,k}mi=1 using {xi}mi=1 by k steps of Langevin dynamics (3.9).

4. Get {ŷi}mi=1 by {f(zi)}mi=1.

5. Update θdis according to Ldis({ŷi}mi=1, {yi}mi=1).

end

for t = 0 : TBPTT do

1. Draw observed examples {xi, yi}mi=1.

2. Draw latent vectors {zi,0 ∼ p(z)}mi=1.

3. Infer {zi,k}mi=1 using {xi}mi=1 by k steps of a differentiable form of Langevin

dynamics (3.9).

4. Get {ŷi}mi=1 by {f(zi)}mi=1.

5. Update θgen and θdis according to Ldis({ŷi}mi=1, {yi}mi=1), effectively performing

BPTT (3.20).

end
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CHAPTER 4

Experiments

In this section are results demonstrating (1) data synthesis, (2) faithful reconstruction of

observed examples, (3) comparable classification accuracy to the ConvNet classifier, (4) the

capacity to improve in both accuracy and the quality of data synthesis given additional

unannotated data, and (5) robustness of the Short Run classifier to adversarial attacks.

The SVHN image datasets are resized to 28-by-28 pixels and scaled to [−1, 1]. The

number of Langevin steps k = 20, and the Langevin step size s = 0.015. σ = 6.4. The

learning rate for the first two stages of learning is η = 0.0005, and the learning rate for the

third stage with BPTT is α = 0.0001.

Model updates for the generator network and small classifier are optimized by Ranger

[37], and the activation function is Mish [38]. Cosine annealing is applied after 75% of

the training epochs, as recommended by [37], for classification stages of learning. Batch

normalization, dropout, and other optimization techniques are not used.

Ranger is a synergistic optimizer combining Rectified Adam (RAdam) [39], the Looka-

head Optimizer [40], and Gradient Centralization [41]. RAdam uses a warmup heuristic to

improve variance calculations in early epochs to more effectively adjust the adaptive mo-

mentum of Adam. The Lookahead Optimizer chooses a search direction by “looking ahead”

at a set of fast weights generated by another optimizer, which, in the case of Ranger, is

the RAdam optimizer. RAdam explores the landscape, while the Lookahead weights “stay

behind” to provide stability and a facilitate a potential backtracking of the RAdam weights.

Gradient centralization is similar in spirit to batch normalization, as it exploits first and sec-
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ond order statistics, i.e., mean and variance, but as opposed to operating on activations, it

operates directly on the gradient by centralizing gradient vectors to have zero mean. Gradi-

ent centralization may be viewed as a projected gradient descent method with a constrained

loss function [41, 42, 43].

Mish is the best activation function thus far for the Ranger optimizer [37]. A modified

gated form of the softplus activation function f(x) = ln(1 + ex), Mish is defined as

f(x) = x tanh(ln(1 + ex)). (4.1)

Mish is non-monotonic with a range [≈ −0.31,∞]. Its slight allowance for negative values

allows for improved gradient flows in comparison to ReLU [38]. It is smooth and has a distinct

concavity on the negative side of the x-axis and almost a linear graph on the positive side.

4.1 SVHN Dataset

The Street House Views Number dataset [44] provides photographs of house addresses from

a street-level perspective, originally taken for Google Street View. Recognizing characters in

natural scenes is a significantly harder problem than handwritten digit recognition, a chal-

lenge provided by the often-used MNIST dataset [45]. The characters in SVHN images vary

in style and font and may also be corrupted by natural phenomena such as blur, distortion,

and illumination effects. Good performance on the SVHN dataset can be expected to carry

over to realistic applications [44].

The Cropped Digits format of the dataset is used, in which each 32-by-32 pixel red-green-

blue (RGB) image is meant to represent one digit and has a label from zero to nine, for a

total of 10 classes. The images are resized to 28-by-28 pixels and scaled to [−1, 1]. Many

images have distracting digits, but the digit of interest is most centrally featured [44].

For both the ConvNet classifier and the classification stages (second and third) of the

Short Run classifier, 1,000 annotated, or labelled, images per class are randomly sampled
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during training, and 100 annotated images per class are randomly sampled during testing.

Hence, both classifiers during training are given 10,000 annotated images.

The generative learning stage of the Short Run classifier is trained with 40,000, 80,000,

and 120,000 training examples to demonstrate that additional unannotated data may be

given to the Short Run classifier to improve in both classification accuracy and the quality

of data synthesis.

4.2 Qualitative Results

The learned generative model gθ(z) may be evaluated by the fidelity of its synthesized and

reconstructed samples. In contrast to conventional MCMC posterior sampling with persistent

chains, Short Run MCMC uses the same dynamics for evaluation.

Figure 4.1 shows synthesized samples for each amount of unannotated training data

given to the generative model: 40,000, 80,000, and 120,000 examples. These synthesized

samples were obtained from the generator network and associated hyperparameters that

ultimately produced the best classification accuracy.

Figure 4.1: Synthesized samples using 40,000, 80,000, and 120,000 training examples

Figure 4.2 shows reconstructed samples for each amount of unannotated training data

25



given to the generative model: 40,000, 80,000, and 120,000 examples. An observed image

x is reconstructed simply by running gradient descent on the least-squares loss function

L(z) = ‖x − gθ(z)‖2. The Langevin dynamics is initialized from z0 ∼ p0(z) and iterates

zt+1 = zt − ηtL
′(zt). The inferred z and the learned θ weights of the generative model

collaborate to reconstruct the observed example x.

Figure 4.2: Reconstructed samples using 40,000, 80,000, and 120,000 training examples

Figure 4.3 shows reconstructed samples in which each row represents a digit.
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Figure 4.3: Reconstructed samples in which each row represents a digit

4.3 Quantitative Results

The mean-squared error (MSE) of reconstructed samples and the Fréchet Inception Distance

(FID) [46] score of synthesized samples are used to quantitatively evaluate the learning of

the generative model.

The MSE is calculated between training examples and their reconstructions. The FID

evaluation metric uses the Inception v3 classifier [47]. The FID is a calculation of the distance

between the Inception v3 classifier activations for observed and synthesized examples; a lower

FID score corresponds to higher-fidelity synthesized samples.
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Table 4.1 displays the MSE and FID values obtained for each amount of unannotated

training data given to the generative model: 40,000, 80,000, and 120,000 examples.

Training Examples

40,000 80,000 120,000

MSE 3.74 3.74 3.70

FID 66.76 63.66 59.81

Table 4.1: MSE and FID using 40,000, 80,000, and 120,000 training examples

4.4 Classification

During evaluation, the Short Run classifier may generate multiple latent variables {zi, i =

1, . . . , n} for one test example x, as a means to improve classification accuracy. This form of

inference is made reasonable by the stochasticity of the Langevin equation. z is a random

variable. With multiple z sampled for one x, it becomes feasible to take advantage of various

accuracy methods:

(1) Multiple z may be averaged to then give to the classifier to obtain a prediction ŷ.

(2) Multiple z may be given to the classifier to then average over the logits output by

the classifier, i.e., the output of the last layer before it is fed to an activation function.

(3) Multiple z may be given to the classifier to then obtain multiple predictions ŷ for

which to find the mode, which is the final predicted label.

Table 4.2 displays the classification accuracy of the Short Run classifier given each amount

of unannotated training data given to the generative model: 40,000, 80,000, and 120,000

training examples. The ConvNet classifier achieved 86.5% accuracy in comparison. However,

the improvements in accuracy given additional unannotated data suggest the accuracy of the

Short Run classifier could surpass that of the ConvNet classifier.
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Training Examples

40,000 80,000 120,000

Accuracy (%) 79.0 80.0 80.8

Table 4.2: Classification accuracy using 40,000, 80,000, and 120,000 training examples

4.5 Adversarial Robustness

The vulnerability of neural networks to adversarial attacks is a fundamental problem in deep

learning today. Neural network sensitivity may be exploited to create adversarial signals that

cause trained networks to produce defective results, undermining model robustness. In many

cases, only small perturbations, hardly perceptible to a human, are necessary to induce a

misclassification.

Szegedy et al. [48] was the first to point out that several machine learning models, includ-

ing state-of-the-art neural networks, are vulnerable to adversarial examples. Interestingly,

models of different architectures or trained on different subsets of training data often all

misclassify the same adversarial example [49].

Currently, the most successful defense method is adversarial training, in which a classifier

is trained with adversarial examples created during learning. Another approach is adversar-

ial purification, in which an input image is purified to remove adversarial signals before it is

classified. [50] uses MCMC sampling with an EBM for adversarial purification. The mem-

oryless behavior of long-run MCMC sampling removes adversarial signals, while metastable

behavior preserves consistent appearance of the MCMC samples after many steps, allowing

for accurate long-run prediction. It is the first use of an EBM as an effective adversarial

defense against white-box attacks, for naturally trained image classifiers [50].

[49] introduces the Fast Gradient Sign Attack, which is a remarkably powerful and yet

intuitive adversarial attack. FGSM attacks neural networks by leveraging the way they learn,
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i.e., their gradients. Instead of minimizing loss by updating parameters based on backprop-

agated gradients, typical of neural networks, FGSM perturbs input data to maximize loss.

FGSM is a white-box adversarial attack, in which it is assumed the adversary has full knowl-

edge of the classifier, including the architecture, inputs, outputs, weights, and in particular,

gradients. White-box attacks are the strongest attacks against the majority of adversarial

defenses [50].

Let θ be the parameters of the classifier under attack, in this case the Short Run classifier

or the ConvNet classifier. Let x be an observed example, y the associated label for x, and

Ldis(θ, x, y) the discriminative loss function used to train the classifier. The loss function

may be linearized around the current value of θ to obtain an optimal, max-norm constrained

perturbation of

η = εsign(
∂

∂x
Ldis(θ, x, y)). (4.2)

The FGSM attack backpropagates the gradient back to the input data to calculate

∂
∂x
Ldis(θ, x, y). Then, it adjusts the input data by a small step ε in the direction that

maximizes loss, i.e., sign ∂
∂x
Ldis(θ, x, y) [49].

Figure 4.4 shows the effect of the FGSM adversarial attack on the ConvNet and Short

Run classifiers. The parameter ε controls the degree of perturbation added to the images.

Increasing the value of ε further degrades model accuracy as more perturbation is introduced.

With even a small amount of adversarial perturbation added, i.e., ε = 0.01, the Short Run

classifier (68.4%) already achieves better classification accuracy than the ConvNet classifier

(59.5%). At ε = 0.03, the difference between the Short Run classifier (48.4%) and the

ConvNet classifier (30.6%) is nearly 20%.

The Short Run classifier exhibits robustness due to (1) the stochasticity of the Langevin

equation, which adds randomness to the process used to form classification prediction ŷ, and

(2) the top-down architecture of the generator network, which adds a layer of indirection,

i.e. x→ z → ŷ, to the process used to form ŷ, in comparison to the ConvNet process x→ ŷ.

30



Figure 4.4: Effect of adversarial attack on ConvNet and Short Run classifiers

Figure 4.5 shows an example of misclassified training examples due to the FGSM adver-

sarial perturbations. The first row shows original images with no perturbation. The title of

each image has an arrow pointing from the original prediction to the adversarial prediction.

Note how the perturbations start to become evident at ε = 0.4 and are quite evident at

ε = 0.6. However, in almost all cases humans are capable of identifying the correct class

for the digit despite the added perturbation, implying that an ideal machine learning model

should do the same.
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Figure 4.5: Misclassified training examples due to adversarial attack
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CHAPTER 5

Conclusion

Introduced in this study is a deep generative classifier employing Short Run MCMC infer-

ence with Langevin dynamics and backpropagation through time. Based on the alternating

backpropagation algorithm, the Short Run classifier performs explicit explain-away inference

of latent variables, and without the need for an extra inference network. The top-down ar-

chitecture of the generator network allows for data analysis, synthesis, and embedding and

helps to counteract the effect of adversarial perturbations. The non-convergent, non-mixing,

non-persistent nature of Short Run MCMC lends an efficient inference method for the gen-

erator network, with the Langevin dynamics acting as a k-step residual network, or RNN,

for which backpropagation through time may occur.

In contrast to a ConvNet classifier with analogous architecture, the Short Run classifier

(1) may synthesize data, (2) may learn unsupervised from additional unannotated data,

and (3) exhibits robustness to adversarial attacks, due to the stochasticity of the Langevin

equation and the top-down architecture of the generator network. The ConvNet classifier

lacks the ability to perform (1) or (2) and possesses no defense against adversarial attacks,

a critical concern for any deployed machine learning system. Furthermore, improvements in

accuracy given additional unannotated data suggest the accuracy of the Short Run classifier

could surpass that of the ConvNet classifier.

33



APPENDIX A

Appendix

A.1 Model Architectures

In the following, nf denotes the number of output feature maps and nf ∈ {64, 128}.

ConvT(nf ) denotes a transposed convolutional operation with nf output feature maps and

corresponding bias terms.

Generator

Layers Output Size Stride Padding

Input 200

3 x 3 ConvT(nf 2), Mish (nf 2 x 3 x 3) 1 0

4 x 4 ConvT(nf 2), Mish (nf 2 x 7 x 7) 2 1

4 x 4 ConvT(nf 1), Mish (nf 1 x 14 x 14) 2 1

4 x 4 ConvT(3), Mish (3 x 28 x 28) 2 1

Sigmoid (3 x 28 x 28)

Table A.1: Generator network structure

In the following, Conv(nf ) denotes a convolutional operation with nf output feature

maps and corresponding bias terms.
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Small Classifier

Layers Output Size

Input 200

Linear, Mish 140

Linear, Mish 80

Linear, Mish 10

Table A.2: Small classifier network structure

ConvNet Classifier (3 x 28 x 28)

Layers Output Size Stride Padding

Input (3 x 28 x 28)

4 x 4 Conv(nf 1), Mish (nf 1 x 25 x 25) 1 0

4 x 4 Conv(nf 2), Mish (nf 2 x 22 x 22) 1 0

2 x 2 MaxPool (nf 2 x 11 x 11) 2

4 x 4 Conv(nf 2), Mish (nf 2 x 8 x 8) 1 0

3 x 3 Conv(200), Mish (200 x 6 x 6) 1 0

2 x 2 MaxPool (200 x 3 x 3) 2

Flatten 1800

Linear, Mish 140

Linear, Mish 80

Linear, Mish 10

Table A.3: ConvNet classifier network structure
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