
UC Merced
UC Merced Electronic Theses and Dissertations

Title
The Complexity Matching hypothesis for human communication

Permalink
https://escholarship.org/uc/item/8kx4m274

Author
Abney, Drew Hamilton

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kx4m274
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, MERCED

The Complexity Matching hypothesis for human communication

A dissertation submitted in partial satisfaction of the requirements
for the degree Doctor of Philosophy

in

Cognitive and Information Sciences

by

Drew H. Abney

Committee in charge:

Professor Christopher T. Kello, Chair
Professor Ramesh Balasubramaniam
Professor Anne S. Warlaumont

2016



Chapter 2 c� 2014 American Psychological Association

All other chapters c� 2016 Drew H. Abney

All rights reserved



The dissertation of Drew H. Abney is approved, and it is acceptable

in quality and form for publication on microfilm and electronically:

Professor Christopher T. Kello, Chair

Professor Ramesh Balasubramaniam

Professor Anne S. Warlaumont

University of California, Merced

2016

iii



This dissertation is dedicated to my family:

to my wife, Rebecca, who has given me endless love and support;

and to my parents who provided the countless opportunities for me to

grow.

My achievements would be impossible without their encouragement and

love.

iv



Contents

List of Figures viii

List of Tables xi

Acknowledgements xii

Curriculum Vita xiii

Abstract xxv

1 Introduction 1
1.1 The production and convergence of hierarchical patterns of

communicative behavior . . . . . . . . . . . . . . . . . . . . 3
1.2 The Complexity Matching hypothesis for human communi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The present work . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Complexity matching in dyadic conversation 8
2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Power law clustering in conversational speech . . . . . . . . 11
2.4 Complexity matching in speech signal clustering . . . . . . . 12
2.5 Current Study . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.3 Apparatus, data collection, and data preparation . . 19

2.7 Inter-event intervals . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Temporal clustering in acoustic onsets . . . . . . . . . . . . 22
2.9 Formal description of AF analysis . . . . . . . . . . . . . . . 22
2.10 Results of AF analysis . . . . . . . . . . . . . . . . . . . . . 24
2.11 Complexity matching . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Behavioral matching . . . . . . . . . . . . . . . . . . . . . . 25

v



2.13 General Discussion . . . . . . . . . . . . . . . . . . . . . . . 28
2.13.1 Complexity matching and theories of conversation,

coordination, and development . . . . . . . . . . . . 29
2.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Multimodal complexity matching and information trans-
mission in a dyadic problem-solving task 33
3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Materials and procedure . . . . . . . . . . . . . . . . 36
3.3.3 Vocalization and Movement analyses . . . . . . . . . 36

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . 40

4 Multiple coordination patterns in infant and adult vocal-
izations 44
4.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Goals of the current study . . . . . . . . . . . . . . . 47
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Volubility and Hierarchical Clustering Across Vocal-

ization Types . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Do coincidence-based, rate-based, and cluster-based

coordination patterns vary depending on the type of
vocalization produced by the infant? . . . . . . . . . 56

4.4.3 Are adults or infants primarily driving these vocal
coordination patterns, and does this change with age? 59

4.4.4 Do the di↵erent coordination measures have unique
developmental trends? . . . . . . . . . . . . . . . . . 62

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.1 Hierarchical vocalization patterns and volubility . . . 65
4.5.2 Vocal coordination patterns vary by vocalization type

and provide unique information based on level of de-
scription . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.3 Di↵erent coordination patterns provide unique infor-
mation about the dynamics of vocal interaction . . . 67

4.5.4 Coordination patterns and infant age . . . . . . . . . 68

vi



4.5.5 Future directions . . . . . . . . . . . . . . . . . . . . 69
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Discussion 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Production and convergence of hierarchical structure . . . . 71
5.3 Quantification of multiscale clustering of communicative be-

haviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Information and information transmission . . . . . . . . . . 74
5.5 Development of hierarchical communicative structure . . . . 75
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

References 77

vii



List of Figures

2.1 (Left) Pickering and Garrod’s (2004, reprinted with permis-
sion) schematic representation of the stages of comprehen-
sion and production processes according to the interactive
alignment model. (Right) An illustration of the nesting of
di↵erent scales of linguistic representations, using four levels
of the six from the interactive alignment model: phonetic,
lexical, semantic, and situation model. . . . . . . . . . . . . 12

2.2 (Left) An example conversational speech signal, shown at
three di↵erent temporal scales. (A) The longest scale roughly
corresponds with conversational turns. The phonetic, lexi-
cal, semantic, and situation model labels approximate the
time scales of these units on the speech signal. (B) The
middle scale roughly corresponds with e.g. thinking pauses
and phrase boundaries. (C) The shortest scale roughly cor-
responds with word, syllable, and phoneme boundaries. Ver-
tical lines show acoustic onsets relative to a threshold chosen
by visual inspection. . . . . . . . . . . . . . . . . . . . . . . 14

2.3 (Left) Examples of synchronization and behavior match-
ing with toy metronome systems. (A) Illustration of two
metronomes interacting along a sliding platform, as a simple
model of synchronization and a form of behavioral matching.
(B) Illustration of interactions between multiple metronomes
with di↵ering frequencies, to aid the intuition of complexity
matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 (Left) IEI probability density functions for individual inter-
locutors in individual conversations, plotted in logarithmic
coordinates using logarithmic binning. Dashed line shows
idealized slope of -2 (per West et al., 2008). . . . . . . . . . 21

2.5 (Left) Mean AF functions for argumentative vs. a�liative
conversation types, with standard error bars. . . . . . . . . . 23

viii



2.6 (Left) Mean summed AF di↵erence functions plotted for the
two conversation types, separately for original pairings ver-
sus randomized controls, with standard error bars. . . . . . . 26

3.1 (Top) Example standardized movement di↵erence series. Hor-
izontal line represents event threshold. (Bottom) Example
event series. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Mean Allan Factor functions for the Vocalization, Move-
ment, and Vocalization/Movement time series. Error bars
represent standard error. . . . . . . . . . . . . . . . . . . . . 39

3.3 Complexity matching predicting tower height (cm). Indi-
vidual dots correspond to each trial. Lines represent linear
fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Schematic depiction of procedure of AF analysis at three
timescales (⇠7 minutes, ⇠30 minutes, ⇠60 minutes). (A-C)
Vocalization events are counted within each timescale win-
dow. Each vertical line is an acoustic onset for one of the
three vocalization types: (A) Infant speech-related, (B) In-
fant non-speech-related, and (C) Adult. The black, grey,
and white rectangles indicate long (⇠60 minutes), medium
(⇠30 minutes), and short timescales (⇠7 minutes), respec-
tively. Notice at each of the three timescales, there are clus-
ters of onsets. AF variance is derived from computing the
normalized squared di↵erence of onset frequencies between
adjacent time windows for the three timescales. AF vari-
ance is a measure of the departure from an equidistributed
distribution of acoustic onsets. (D) The estimates of hier-
archical clustering of vocalization types. The slope, a, of
the log(AF ) vs. log(T ) curve estimates the scaling of AF
variance across scales. The dotted line indicates a slope of 0
which is evidence for a random (Poisson process) vocaliza-
tion event series. The other three curves have slopes closer
to 1, indicating hierarchical clustering. . . . . . . . . . . . . 53

4.2 (A) Mean AF functions for adult and infant vocalizations,
with standard error bars. (B) Scatterplot of each recording’s
A(T ) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Diagonal cross-recurrence profile (DCRP) averaged across all
vocalization types. (Left) Average DCRPs are before nor-
malization. (Right) Average DCRPs normalized for shu✏ed
DCRPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



4.4 (Top row) Cluster-based vocal coordination results for Adult
and (left to right) Infant-combined, Infant-speech-related,
and Infant-non-speech-related. (Bottom row) Rate-based
vocal coordination results. All variables are standardized.
Each circle represents an individual recording. . . . . . . . . 60

4.5 (Top row) Di↵erence Score (DS) results for infant age and
(left to right) Infant-combined hierarchical clustering esti-
mates, speech-related hierarchical clustering estimates, and
non-speech-related hierarchical clustering estimates. (Bot-
tom row) DS results for infant age and (left to right) infant-
combined volubility, speech-related volubility, and non-speech-
related volubility. Note. AF and Volubility DS axes have
di↵erent ranges. . . . . . . . . . . . . . . . . . . . . . . . . . 63

x



List of Tables

4.1 Results of first order correlations and residual analyses pre-
dicting infant age. . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Results of first order correlations (r) and residual correla-
tions (r

residual

) predicting matching of infant vocalization
properties with adult volubility and adult AF slope estimates. 59

4.3 Results of first order correlations (r) and residual correla-
tions (r

residual

) of coordination patterns and infant age. . . . 64

xi



Acknowledgements

I would like to thank my committee members – Chris Kello, Ramesh
Balasubramaniam, and Anne Warlaumont – for their support and mentor-
ship during my graduate studies at UC Merced. Each member provided
unique lessons, encouragement, and critical thoughts that have undoubt-
edly made me a better scientist.

Thanks to my main advisor and mentor, Chris Kello, for always pro-
viding a supportive academic environment to grow and expand my curios-
ity. From the beginning of my graduate career at UC Merced, Chris has
provided endless encouragement, allowing me to explore new ideas, which
ultimately culminated into the body of work in this dissertation.

Thanks to Ramesh Balasubramaniam for the wonderful and important
conversations about science, politics, and co↵ee. From our first interac-
tions, Ramesh treated me as a colleague and provided invaluable insights
for a young scientist. Thanks to Anne Warlaumont for providing a model
of a dedicated, young professor. Anne started her assistant professorship
the same year I started my graduate studies at Merced. I have had the
awesome opportunity to observe what it takes to become a rising star in
our field.

I would also like to acknowledge previous mentors and colleagues who
were influential in my graduate studies at Illinois State University. Chris
Merrill and Josh Brown provided me with the initial launchpad into grad-
uate research. Je↵ Wagman and Dawn McBride have given me endless
mentorship, encouragement, and opportunities. J. Scott Jordan has shown
me how to be groovy and think deeply about the connections between
science and experience.

I would also like to thank the UC Merced Cognitive and Information
Sciences group for providing an exciting intellectual community for me to
test and grow my ideas. From SSM to J&R’s and from Co↵ee Bandits to
the 17th Street Pub, there was always someone in our program willing to
talk and debate ideas.

Finally, I would like to acknowledge the love and support from my
wife, Rebecca, and my family. I met Rebecca during our first week at UC
Merced. I could not imagine this journey without her.

xii



Curriculum Vita

Drew H. Abney

drewabney@gmail.com
http://drewabney.weebly.com

Education

2012–2016 Ph.D in Cognitive and Information Sciences
University of California, Merced

2010–2012 M.S. in Experimental Psychology (Dual Degrees: Cogni-
tive/Behavioral Sciences and Quantitative Psychology)
Illinois State University

2009–2010 M.S. in Science, Technology, Education, and Mathemat-
ics Education and Leadership
Illinois State University

2004–2008 B.S. in Technology Education
Illinois State University

Peer-Reviewed Journal Articles

Ross, J.M., Warlaumont, A.S., Abney, D.H., Rigoli, L.M. & Balasubra-
maniam, R. (2016). Influence of Musical Groove on Postural Sway.
Journal of Experimental Psychology: Human Perception and Per-
formance.

Abney, D.H., &Wagman, J.B. (2015). Direct learning in auditory percep-
tion: An information-space analysis of perception of object length
by sound. Ecological Psychology.

xiii



Abney, D.H., Warlaumont, A.S., & Kello, C.T. (2015). Production and
convergence of multiscale clustering of speech. Ecological Psychol-
ogy.

Abney, D.H., Paxton, A., Dale, R., & Kello, C. (2015). Movement dy-
namics reflect a functional role for weak coupling and role structure
in dyadic problem solving. Cognitive Processing.

Abney, D.H., McBride, D.M., Conte, A. & Vinson, D.W. (2014). Re-
sponse dynamics in prospective memory. Psychonomic Bulletin &
Review.

Abney, D.H., Paxton, A., Kello, C., & Dale, R. (2014). Complexity
matching in dyadic interaction. Journal of Experimental Psychol-
ogy: General, 143 (6), 2304-2315.

Abney, D.H., Warlaumont, A.S., Haussmann, A., Ross, J., Wallot, S.
(2014). Using nonlinear methods to quantify infant motor and vo-
cal developmen. Frontiers in Developmental Psychology, 143 (6),
2304-2315.

Vinson, D.W., Abney, D.H., Warlaumont, A.S., Dale, R., & Matlock, T.
(2014). The influence of linguistic and social information on visual
memory. Frontiers in Cognitive Science.

Abney, D.H., Dale, R., Yoshimi, J., Fusaroli, R., Kello, C.T., & Tylen, K.
(2014). Joint perceptual decision-making: A case study in explana-
tory pluralism. Frontiers in Theoretical and Philosophical Psychol-
ogy.

Abney, D.H., Wagman, J.B., & Schneider, J. (2014). Changing grasp
position on a wielded object provides self-training for perception of
length. Attention, Perception, & Psychophysics.

Wagman, J.B. & Abney, D.H.. (2013). Is calibration of the percep-
tion of length modality-independent? Attention, Perception, & Psy-
chophysics.

Abney, D.H., McBride, D.M., & Petrella, S.N. (2013). Interactive e↵ects
in transfer-appropriate processing for event-based prospective mem-

xiv



ory. Memory & Cognition.

McBride, D.M. & Abney, D.H.. (2012). A comparison of transfer-
appropriate processing and multi-process frameworks for prospec-
tive memory performance. Experimental Psychology.

Wagman, J.B. & Abney, D.H.. (2012). Transfer of recalibration from au-
dition to touch: Modality independence as a special case of anatom-
ical independence. Journal of Experimental Psychology: Human
Perception and Performance. 38 (3), 589-602.

McBride, D.M., Beckner, J. & Abney, D.H.. (2011). E↵ect of placement
of prospective memory cues in an ongoing task on prospective mem-
ory task performance. Memory & Cognition. 39, 1222-1231.

Manuscripts Under Review/Revision

Abney, D.H., Warlaumont, A.S., Oller, D.K., Wallot, S. & Kello, C.T.
(under revision). The multiscale clustering of infant vocalization
bouts.

Abney, D.H., Kello, C.T., & Balasubramaniam, R. (under revision). In-
troduction and application of the multiscale coe�cient of variation
analysis.

Abney, D.H., Gann, T.M., Huette, S., Matlock, T. (under revision). The
Language of Uncertainty and Political Ideology in Climate Change.

Edited Books

Weast-Knapp, J., Malone, M., & Abney, D.H. (Eds.)(2015). Studies in
Perception and Action XIII. Proceedings from the Eighteenth Inter-
national Conference on Perception and Action, Minneapolis, MN.

Commentary

Vinson, D.W., Abney, D.H., Amso, D., Anderson, M.L., Chemero, T.,
Cutting, J.E., Dale, R., Richardson, D., Friston, K., Gallagher, S.,

xv



Jordan, J.S., Mudrik, L., Ondobaka, S., Shams, L., Shi↵rar, M.,
Spivey, M.J. (2015). Perception, as you make it. Commentary of C.
Firestone & B. Scholl’s ”Cognition does not a↵ect perception: Eval-
uating the evidence for ’top-down’ e↵ects”. Behavioral and Brain
Sciences

Refereed Conference Proceedings

Bunce, J.P., Abney, D. H., Gordon, C.L., Spivey, M.J., & Scott, R.M.
(forthcoming). Using Motor Dynamics to Explore Real-time Com-
petition in Cross-situational Word Learning: Evidence From Two
Novel Paradigms. In J. Trueswell, A. Papafragou, D. Grodner, &
D. Mirman (Eds.), Proceedings of the 36th Annual Meeting of the
Cognitive Science Society. Austin, TX: Cognitive Science Society.

Abney, D. H. & Thomas, B. (2015). Exploration in information space
during a↵ordance perception. In Weast-Knapp, J., Malone, M., &
Abney, D.H. (Eds.), Studies in Perception and Action XIII: Pro-
ceedings from the Eighteenth International Conference on Percep-
tion and Action.

Schloesser, D.S., Wagman, J.B. & Abney, D. H. (2015). Flip this rod!
Changing grasp position can recalibrate perception of length by dy-
namic touch. In Weast-Knapp, J., Malone, M., & Abney, D.H.
(Eds.), Studies in Perception and Action XIII: Proceedings from the
Eighteenth International Conference on Perception and Action.

Paxton, A., Abney, D, H., Kello, C. T., & Dale, R. (2014). Network
analysis of multimodal, multiscale coordination in dyadic problem
solving. In P. M. Bello, M. Guarini, M. McShane, & B. Scassellati
(Eds.), Proceedings of the 36th Annual Meeting of the Cognitive Sci-
ence Society. Austin, TX: Cognitive Science Society.

Abney, D. H., Paxton, A., Kello, C., & Dale, R. (2013). Complexity
matching in dyadic interactions. In P. Passos, J. Barrieros, R. Cor-
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Abstract

The study of human communication incorporates disciplines across the
sciences and the humanities. One question that is important for better
understanding and explaining human communication is how information
is transmitted from one person to another person during an interaction.
To communicate, humans produce and perceive complex behaviors such as
vocalizations and body movements. Although researchers are beginning to
better understand the production and perception of communicative behav-
iors, less work has focused on investigating the functions of these behaviors
for information transmission during an interaction. Here, in collaboration
with various co-authors, I present a hypothesis for human communication
that has specific predictions for information transmission across individuals
during an interaction.

The Complexity Matching hypothesis for human communication sug-
gests that when the complex, hierarchical patterns of communicative be-
havior between individuals match, information transmission is enhanced.
This hypothesis is motivated by work in statistical mechanics showing that
when complex properties of two networks match, information transmis-
sion across the networks is optimal. In this dissertation, I present three
projects that seek to test the Complexity Matching hypothesis for human
communication.

First, I present initial observations of the production and convergence of
hierarchical patterns of vocalizations during conversation. This study pro-
vides initial support for the Complexity Matching hypothesis and provides
insights into the hierarchical properties of communicative behavior.

Next, I test the key prediction of the Complexity Matching hypothesis
for human communication: enhanced information transmission. Pairs of
adults were given a dyadic problem-solving task of building a tower struc-
ture out of a limited amount of materials. We observed that dyads built
taller tower structures when their hierarchical patterns of vocalizations and
body movements matched. These results provide initial support for the in-
formation transmission prediction of the Complexity Matching hypothesis.

Finally, I investigate the development of hierarchical structure in human
communication. This study follows daylong vocal recordings of infants and
their caregivers across the first two years of life. We observed evidence
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for hierarchical patterns of vocalizations at the earliest recordings session
(second week of life) and a dynamic trajectory of complexity matching and
other vocal coordination patterns across development.

This dissertation, The Complexity Matching Hypothesis for Human Com-
munication, is submitted by Drew H. Abney in 2016 in partial fulfillment
of the degree Doctor of Philosophy in Cognitive and Information Sciences
at the University of California, Merced, under the guidance of dissertation
committee chair Christopher T. Kello.
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Chapter 1

Introduction

As humans, we produce and perceive behavioral patterns by way of
complex interactions between our brains, our bodies and its modalities, and
the environment. Despite the prevalence of these rich complex patterns in
our world, less is known about their underlying functions.

The study of human communication is a prime example of production
and perception of behavioral patterns within and across people. For exam-
ple, during a conversation with a friend about how to find a specific trail
that leads to a secret climbing area, I will produce vocalizations and body
movements such as gestures to communicate my thoughts. Similarly, my
friend will perceive the patterns of vocalizations and body movements I
produced, and produce his own to communicate whether or not he under-
stands my directions, if he has some follow-up questions, or if he is nervous
about the upcoming arduous hike.

There are decades of research devoted to understanding the patterns of
vocalizations that span multiple levels of linguistic representations. There
has been, perhaps, even more work dedicated to understanding movement
patterns. Despite the long history of studying the production and percep-
tion of vocalization and movement patterns, only in the past decade have
researchers sought to better understand multimodal patterns of behavior
during communicative interactions.

Human communication research is multifaceted and interdisciplinary.
My interest in diving into the vast field of communication research is to bet-
ter understand the functions of complex behavioral patterns during human
conversation and interaction. The key question is: what are the behavioral
and coordination patterns that lead to optimal information transmission
between two people in an interaction? Even a preliminary answer to this
di�cult question would have a significant impact in many intellectual are-
nas, from communication theory to the humanities, and from physics to
developmental psychology.

There are many strategies for attempting to tackle the question of hu-
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man information transmission in communicative settings. I could focus
my attention on a specific level of linguistic representation, like phonetics,
and investigate the phonetic patterns that lead to subjective and objective
outcomes during human interaction. Such work has been done and has
provided a rich account of patterns of convergence during vocal interaction
(Pardo, 2006, 2013) and undoubtedly inspired others to think similarly
about convergence and alignment of vocal patterns and linguistic repre-
sentations during human communication. The strategy I will take in this
dissertation is a more holistic perspective. Instead of focusing on a single
level of linguistic representation or timescale of movement patterns, I will
focus on the hierarchical, nested patterns of human behavior.

Perhaps the most accessible example of hierarchical patterns of human
behavior is the production of human speech and language. Language dis-
plays hierarchically nested structures: phonemes are nested in syllables,
syllables in words, words in phrases, phrases in sentences, and sentences in
discourse. One consequence of this hierarchy is that the variability within
the system scales across levels of measurement (Bak, 2013; Kello, Beltz,
Holden, & Van Orden, 2007; Kelso, 1997; Van Orden, Holden, & Tur-
vey, 2003; West & Deering, 1994). Consider the variability in timing of
acoustic onsets during speech production: small variations occur in small
clusters of onsets over tens of milliseconds, larger variations in larger clus-
ters spanning hundreds of milliseconds, and even larger variations occur
over minutes and longer periods of time. Variability of measured behavior
that scales across levels of measurement is indicative of a type of nonlinear
relation, a power law, and such power laws emerge for systems exhibiting
hierarchically nested structures like language (Mandelbrot, 1983).

It is reasonable to assume that hierarchical structure of speech and
language has function. After all, it is generally agreed upon that speech
and language display hierarchical structure presumably reflecting how mul-
tiple linguistic representations are structured (Pickering & Garrod, 2004).
When discussing hierarchical structure in communicative behavior, I am re-
ferring to the acoustic structure emerging from vocalization dynamics and
the visual structure emerging from perceived body movements. These hier-
archical patterns are less understood and correspond more to hierarchical
patterns of low-level physical/acoustic energy.

In this dissertation, I am interested in understanding the production
and convergence of hierarchical patterns of behavior during human com-
munication. Uncovering new patterns and properties of human behavior
is essential for progressing our understanding of human interaction. But
merely uncovering new patterns and properties is not su�cient. Is a pat-
tern or property of human behavior incidental? Or, is a pattern or property
functional? Finding function is crucial for the progress of linking newly dis-
covered patterns and properties of human behavior to the understanding of
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development, cognition, physiology, communication, and beyond. The key
question posed within this dissertation is whether or not there is function
to hierarchical patterns of behavior during human communication.

1.1 The production and convergence of hier-

archical patterns of communicative be-

havior

What behavioral and coordination patterns lead to greater informa-
tion transmission across two people in an interaction? Past studies es-
tablished that, during dialogue, interlocutors match properties of pho-
netic productions (Pardo, 2006, 2013), speech pauses (Cappella & Planalp,
1981), syntactic structures (Bock, 1986), and lexical expressions of confi-
dence (Fusaroli et al., 2012), etc. A natural progression is to consider if
these various levels of linguistic representation produced by two individ-
uals during an interaction become correlated with each other. Pickering
and Garrod’s (2004) interactive alignment model provides a framework for
alignment within and across linguistic levels.

Indeed, Pickering and Garrod’s interactive alignment model is a good
starting point for understanding the relationships between levels of lin-
guistic representation during dialogue, more specifically, and for building
intuitions about a hierarchical description of communication more gener-
ally. However, similar to the deep and necessary question of convergence
of a single level of linguistic representation, what is the function of hier-
archical convergence? The null hypothesis for the function of hierarchical
convergence is that the non-random convergence is simply an incidental
property of the interaction.

One alternative hypothesis is that the function of the hierarchical con-
vergence between two or more interacting systems is to facilitate infor-
mation transfer. Classes of complex systems can be formalized statisti-
cally, relative to the dynamics of their interacting components. West et
al. (2008) analyzed the coupling dynamics of complex systems in terms of
the temporal clustering properties of their activity. The temporal cluster-
ing of events follow a power law, which is a precursor to hierarchical nested
patterns. Analyses have shown that information transmission between cou-
pled complex systems are maximal when the properties of their power laws
are similar (Aquino, Bologna, Grigolini, & West, 2010; Aquino, Bologna,
West, & Grigolini, 2011; Turalska, West, & Grigolini, 2011). This observa-
tion has been termed Complexity Matching and has since received interest
from cognitive scientists and psychologists (Abney, Paxton, Dale, & Kello,
2014; Coey, Washburn, & Richardson, 2014; Coey, Washburn, Hassebrock,
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& Richardson, 2016; Fine, Likens, Amazeen, & Amazeen, 2015; Marmelat
& Delignières, 2012; Torre, Varlet, & Marmelat, 2013).

One approach for estimating the hierarchical structure of human behav-
ior has been to quantify the temporal patterns of event series during hu-
man interaction (Abney, Kello, & Warlaumont, 2015). When events cluster
across multiple temporal scales – a term called multiscale clustering – we
can estimate the degree of nested hierarchical structure. For power laws
in the multiscale clustering of point processes, convergence of exponents
corresponds with convergence in the amount of temporal clustering across
timescales. West et al.’s Complexity Matching (2008) provided theoretical
motivation for expecting convergence in the temporal multiscale clustering
of communicative behavior: Under these conditions, information exchange
should be maximized between interlocutors as complex systems (Stephen
& Dixon, 2011; Stephen, Stepp, Dixon, & Turvey, 2008).

1.2 The Complexity Matching hypothesis for

human communication

The Complexity Matching hypothesis for human communication sug-
gests that when the hierarchical structure of communicative behavior (e.g.,
speech or body movements) converge between two people, information ex-
change is enhanced. There is a growing field of research studying coordina-
tion patterns during human interaction (Dale, Fusaroli, Duran, & Richard-
son, 2014; Shockley, Santana, & Fowler, 2003; M. J. Richardson, Marsh,
Isenhower, Goodman, & Schmidt, 2007; Schmidt & Richardson, 2008).
Most of the research on coordination patterns during human interaction has
focused on the temporal or distributional convergence between two people.
For example, Paxton and Dale (2013) observed that the degree of temporal
convergence of body movements during conversation depends on whether
interlocutors are arguing about topics of disagreement or whether they are
discussing topics like their favorite movies, songs, books. But what is the
function of these convergence patterns? Louwerse et al., (2012) observed
that multimodal temporal convergence between two people performing a
challenging joint task strengthened (1) the longer the dyads conversed with
each other and (2) when the task was more di�cult. These studies provide
descriptions of convergence patterns and their consequences during specific
types of conversational and interactional contexts. However, more work is
needed to go beyond description and provide theory-driven explanations of
successful and unsuccessful communication.

The question of why temporal convergence occurs during human in-
teraction has motivated a number of hypotheses that relate to the ques-
tion of function. Pickering and Garrod (2004) suggested that perhaps the
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function of multilevel alignment of linguistic representation is the conver-
gence of shared representations which can be considered communication.
The shared representations build ’common ground’ (Clark & Marshall,
1981), which is understood as a precondition for successful communica-
tion (Pickering & Garrod, 2004).

Another hypothesis is that human interaction, and specifically, interper-
sonal coordination, can be considered a coordinative structure (Bernstein,
1967). A coordinative structure is a self-organized set of interacting com-
ponents that emerge under certain constraints. Researchers have applied
the notion of coordinative structures to interlimb rhythmic coordination
(Fuchs, Jirsa, Haken, & Kelso, 1996), interpersonal interlimb coordination
(Schmidt, Carello, & Turvey, 1990), and interpersonal coordination across
modalities and task constraints (M. J. Richardson et al., 2007; Shockley,
Baker, Richardson, & Fowler, 2007; M. J. Richardson, Marsh, & Schmidt,
2005).

Pursuing the hypotheses of shared representations and coordinative
structures during human interaction has greatly advanced our understand-
ing of communication, coordination, and human interaction. However,
these hypotheses do not have clear predictions for information transmis-
sion during human interaction. Complexity matching, on the other hand,
has a clear prediction for information transmission of interacting complex
systems.

Recent empirical e↵orts applying the concept of complexity matching to
human interaction have focused on the contexts where complexity matching
occurs. However, one prediction of complexity matching (West et al., 2008)
is that information transfer between two complex systems is maximal when
the complexities of the systems are strongly coupled. Less work has focused
on this prediction. In a re-analysis of speech signals similar to Abney et
al. (2014) from a joint perceptual decision-making task where dyads col-
laborated to make visual discrimination judgments (Bahrami et al., 2010),
Fusaroli, Abney, Bahrami, Kello, and Tylén (2013) found that complexity
matching correlated with higher performance on the task. These results
suggest that stronger convergence of multiscale structure of vocal produc-
tions between interlocutors may have led to higher performance by facilitat-
ing information transfer. Additional work is necessary to test the prediction
of maximal information transfer across strongly coupled complex systems,
as well as to relate mathematical notions of information transfer to more
linguistic conceptions of semantic information transfer.
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1.3 The present work

My research in the past few years has focused on quantifying patterns of
human behavior and interaction that can be diagnostic to (1) varying con-
versational contexts, (2) successful and unsuccessful information transfer,
and (3) the development of vocal communication. This dissertation fo-
cuses on better understanding the hierarchical patterns of human behavior
during human communication. I have proposed the Complexity Matching
hypothesis for communication, which suggests that information transmis-
sion is enhanced when the hierarchical structure of communicative patterns
converge between two people during an interaction.

The first section presents the initial observation of the matching of
multiscale clustering of human speech during conversation. Most research
studying human interaction and coordination has focused on local tem-
poral patterns of matching behavior like postural sway (Shockley et al.,
2007), body movement (Richardson et al., 2007), and language (Fusaroli
et al., 2012). This first study provides evidence for complexity matching in
human conversation and shows that hierarchical patterns of vocalizations
during conversation and the degree of matching of these patterns between
interlocutors vary as a function of conversation type. This study is our in-
troduction to the notion of hierarchical patterns of communicative behavior
in human communication: the multiscale clustering of vocalizations.

The next section looks to test the hypothesis that information transmis-
sion is enhanced during human interaction when the hierarchical patterns of
communicative behavior converge. In this study, I focus on the multiscale
clustering of vocalizations and body movements during a dyadic problem-
solving task. The Complexity Matching hypothesis suggests we should
expect that higher rates of complexity matching between the vocalizations
and movements of dyad members should lead to better performance on the
problem-solving task. I provide evidence that complexity matching of both
vocalizations and body movements are associated with increased perfor-
mance on a dyadic problem-solving task. This study provides preliminary
support for the Complexity Matching hypothesis.

The final section investigates the development of the hierarchical struc-
ture of human communication. Up until this point, I have focused on the
production and convergence of multiscale clustering of adult human be-
havior across interaction contexts. However, there are many di↵erent co-
ordination patterns that span various time scales and levels of description.
In order to better understand the complex patterns of human communica-
tion, this study focuses on investigating the relationship between di↵erent
vocalization coordination patterns across development. This study follows
the daylong vocal recordings of fifteen infants and their caregivers across
the first two years of life. Not only do I observe dynamic patterns of com-
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plexity matching between infants and caregivers, I also observe that infants
at the youngest age of recording show complex, hierarchical structure in
their vocalizations. These observations provide additional insights into the
origins and development of communicative structure.



Chapter 2

Complexity matching in
dyadic conversation

2.1 Preface

In this chapter, I will present a published study providing evidence for
complexity matching in human adult conversation. The study re-analyzed
vocalizations from a dataset of di↵erent dyadic conversations (Paxton &
Dale, 2013a). In the study, participants conversed about di↵erent top-
ics that constrained the conversations into a�liative and argumentative
conversation types. The results showed that multiscale clustering of vo-
calizations di↵ered as a function of conversation type. Additional results
provided evidence for complexity matching and that the degree of com-
plexity matching di↵ered as a function of conversation types. These results
provide initial evidence for complexity matching in human interaction and
show the context-specificity of the production and convergence of multiscale
properties of speech.

2.2 Introduction

Conversation is a complex coordination of human behavior (Shockley,
Richardson, & Dale, 2009). Interlocutors need to attend to each other
flexibly and continuously over the course of conversation so that they know
what to say and when to say it in order to, if successful, satisfy their
conversational goals.

One prominent model of dyadic conversation is Pickering and Garrod’s
(2004) interactive alignment model. The model emphasizes the impor-
tance of aligning di↵erent linguistic representations between interlocutors
and predicts that two people in a conversation match representations at dif-
ferent linguistic levels. There are numerous schemes for dividing linguistic
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processing into levels, but Pickering and Garrod (2004) discuss six: pho-
netic, phonological, lexical, syntactic, semantic, and situational. In support
of this model, a range of studies has shown that interlocutors match speech
behaviors at various scales of linguistic structure. Interlocutors have been
shown to match productions of phonemes (Pardo, 2006), speech pauses
(Cappell and Planalp, 1981), syntactic structures (Bock, 1986), and de-
scriptive utterances (Garrod & Anderson, 1987). In these cases, there are
direct correspondences between particular instances of behaviors, such as
mimicking individual utterances, syntactic phrasings, accented words, and
so on. We shall use the term behavioral matching to refer to these phe-
nomena alternately known as alignment, entrainment, convergence, and
synchronization (Louwerse, Dale, Bard, & Jeuniaux, 2012).

A growing body of literature supports the existence of behavioral match-
ing, but the specifics and interpretation are matters of debate. Some argue
that behavioral matching and related processes are integral to dyadic inter-
actions (Pickering & Garrod, 2004), while others emphasize the role of be-
havioral matching in facilitating mutual comprehension (Brennan & Clark,
1996). Others argue that principles and processes of perception and action
give rise to behavioral matching (M. J. Richardson et al., 2007; Sebanz,
Bekkering, & Knoblich, 2006). Still others contend that human commu-
nication is a general framework for situated action in which interlocutors
maximize detection and sensitivity to others (Suchman, 2007).

These ongoing debates have been useful and informative because they
suggest that behavioral matching plays some role in establishing common
ground and, more generally, facilitating communication. However, oppor-
tunities for behavioral matching in natural conversation are limited because
interlocutors do not simply mirror each other’s behaviors. Each person
makes unique, individual contributions to dyadic interactions, but e↵ec-
tive communication necessitates that interlocutors share common ground
and coordinate behaviors (Healey, Purver, & Howes, 2014; Mills, 2014).
Thus many aspects of conversational behavior may be expressed by more
indirect, subtle forms of coordination. Even turn-taking is more complex
than synchronization or syncopation. Turns often do not alternate cleanly
and evenly (Stivers et al., 2009), and interlocutors often speak and gesture
simultaneously during periods of so-called “back channeling” (McClave,
2000).

The irregular, complex nature of dyadic interaction raises the question
of whether behavioral matching may be generalized to more indirect forms
of matching. That is, the drive to establish common ground and facili-
tate communication may be addressed through other means that can be
viewed as extensions of behavioral matching. One natural extension is dis-
tributional matching—the idea that behaviors may match at the level of
statistical, ensemble characterizations, rather than the level of particular
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behavioral acts. For instance, mean speech rates may converge during con-
versations (Webb, 1969), or two interlocutors may converge in their propor-
tions of slang expressions, without directly matching each other slang for
slang. The concept of distributional matching is consistent with Pickering
and Garrod’s (2004) interactive alignment model. Perhaps the best exam-
ple comes from the well-known phenomenon of syntactic priming (Bock,
1986; Pickering & Branigan, 1998, 1999), in which hearing or seeing the
usage of a given syntactic form (e.g., active vs. passive) increases the like-
lihood that speakers will use it themselves. Syntactic priming can arise
from behavioral matching or distributional matching. In the latter case,
the probability distributions over syntactic forms may converge between
interlocutors (Jaeger & Snider, 2008).

The hypothesis of distributional matching takes on a new dimension
when the distributions being matched follow power law functions (Clauset,
Shalizi, & Newman, 2009). A power law function expresses one variable
as a nonlinear function of another variable raised to a power, , where, .
The heterogeneities and irregularities of language behaviors are reflected
in many di↵erent power laws – frequencies of word usage and rank, (Zipf,
1949), frequencies of n-grams in text corpora (Kello & Beltz, 2009), fre-
quencies of syntactic links to words (Ferrer i Cancho, Solé, & Köhler, 2004),
correlations and burstiness across vowels/consonants, letters, words, and
topics (Altmann, Cristadoro, & Degli Esposti, 2012), and spectral density
of fluctuations in audio power of music and human speech (Voss & Clarke,
1978). These power laws reflect the heterogeneity of language in terms of
variability across a wide range of measurement scales. They correspond to
the irregularity of language in terms of rough stochastic patterns, unlike
the highly regular fractals (i.e., power laws) of snowflakes and Mandelbrot
sets. Below, we provide a descriptive example of a power law distribution
in language and outline a method for its estimation.

In the present study, we find evidence for a new power law distribution
in conversational speech signals. The power law is hypothesized to reflect
hierarchical clustering and levels of linguistic information in conversational
speech (Grosjean, Grosjean, & Lane, 1979), akin to levels proposed for the
interactive alignment model. The speech data come from dyadic conver-
sations designed to be either a�liative or argumentative (Paxton & Dale,
2013a), and the speech signals are analyzed in terms of their temporal dy-
namics, as captured by acoustic onset events and subsequent periods of
acoustic energy.

In the present study, the power law in event clustering is measured by
the Allan Factor (AF) function, which computes coe�cients of variation
across multiple timescales. Measured AF functions are found to converge
in dyadic conversations, particularly for a�liative conversations and not ar-
gumentative conversations. We call this convergence complexity matching
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as a special case of distributional matching when distributions are power
laws. The term comes from studies in statistical mechanics (West, Gene-
ston, & Grigolini, 2008) showing maximal information exchange between
coupled complex systems that individually produce similar power laws.

We explore whether conversational speech signals exhibit the condi-
tions predicted from statistical mechanics on the approach that complexity
matching can provide a unique angle into naturalistic conversation. We
compare behavioral and complexity matching to test whether they make
distinct contributions towards explaining dyadic interaction, and whether
complexity matching yields useful evidence beyond behavioral matching.

2.3 Power law clustering in conversational

speech

A simple way to approximately describe a power law distribution is
to say that variability occurs across a wide range of measurement scales,
including timescales. For the latter, imagine that a time series of mea-
surements is windowed and the average measured value is computed for
each window of size S. Variability across scales means that measures of
variance scale up with window size S, e.g. small variations for millisecond
windows, larger variations over seconds, even larger variations over hours,
and so on. Variability across scales is unexpected for most types of simple
systems. For instance, if one measures the temperature fluctuations in a
refrigerator, variations would actually decrease with larger time windows,
because larger windows would yield averages that converge on or near the
temperature setting.

Variability that spans measurement scales is indicative of power laws,
and such power laws will emerge from more complex systems, namely
ones which display hierarchically nested structures and processes (Simon,
1977). In particular, sentences are collections of syntactic phrases, phrases
of words, words of syllables, syllables of phonemes, and so on. Such nested
levels of linguistic representation are integrated in the interactive align-
ment model, as illustrated in Figure 1. We expect the hierarchical nesting
of language to be physically manifested as power laws in speech signals.

Hierarchical nesting in speech signals can be illustrated as follows. At
the coarsest timescales, when two people converse, each interlocutor pro-
duces turns – long, clustered periods of acoustic speech energy interspersed
with mostly no acoustic energy while the other person is talking. At finer
timescales, there are breaks in the signal due to thinking time, phrase
boundaries, rhetorical e↵ects, and the like. At still finer timescales, breaks
occur sometimes at word boundaries, and sometimes at phonemes with
little or no sonority, such as plosive consonants (e.g., p,t,k,b,d,g), quiet
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place via decoupled production and comprehension
processes that are “isolated” from each other (see Fig. 3).
The speaker (or writer) formulates an utterance on the ba-
sis of his representation of the situation. Crudely, a non-lin-
guistic idea or “message” is converted into a series of lin-
guistic representations, with earlier ones being syntactic,
and later ones being phonological. The final linguistic rep-
resentation is converted into an articulatory program,
which generates the actual sound (or hand movements)
(e.g., Levelt 1989). Each intermediate representation
serves as a “way station” on the road to production – its sig-
nificance is internal to the production process. Hence,
there is no reason for the listener to be affected by these in-
termediate representations.

In turn, the listener (or reader) decodes the sound (or
movements) by converting the sound into successive levels
of linguistic representation until the message is recovered
(if the communication is successful). He then infers what
the speaker (or writer) intended on the basis of his au-
tonomous representation of the situation. So, from a pro-
cessing point of view, speakers and listeners act in isolation.
The only link between the two is in the information con-
veyed by the utterances themselves (Cherry 1956). Each
act of transmission is treated as a discrete stage, with a par-
ticular unit being encoded into sound by the speaker, being
transmitted as sound, and then being decoded by the lis-
tener. Levels of linguistic representation are constructed
during encoding and decoding, but there is no particular as-
sociation between the levels of representation used by the
speaker and listener. Indeed, there is even no reason to as-
sume that the levels will be the same, nor that the levels in-
volved in comprehension should constrain those in pro-
duction or vice versa. Hence, Figure 3 could just as well

involve different levels of representation for speaker and
listener.

The autonomous transmission model is not appropriate
for dialogue because, in dialogue, production and compre-
hension processes are coupled (Garrod 1999). In formulat-
ing an utterance the speaker is guided by what has just been
said to him and in comprehending the utterance the lis-
tener is constrained by what the speaker has just said, as in
the example dialogue in Table 1. The interlocutors build up
utterances as a joint activity (Clark 1996), with interlocutors
often interleaving production and comprehension tightly.
They also align at many different levels of representation,
as discussed in section 2. Thus, in dialogue each level of rep-
resentation is causally implicated in the process of commu-
nication and these intermediate representations are re-
tained implicitly. Because alignment at one level leads to
alignment at others, the interlocutors come to align their
situation models and hence are able to understand each
other. This follows from the interactive alignment model
described in Figure 2, but is not reflected in the au-
tonomous transmission account in Figure 3.

3.2. Channels of alignment

The horizontal links in Figure 2 correspond to channels by
which alignment takes place. The communication mecha-
nism used by these channels is priming. Thus, we assume
that lexical priming leads to the alignment at the lexical
level, syntactic priming leads to alignment at the syntactic
level, and so on. Although fully specified theories of how
such priming operates are not available for all levels, sec-
tions 2.2 and 2.3 described some of the evidence to support
priming at these levels, and detailed mechanisms of prim-
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Figure 2. A and B represent two interlocutors in a dialogue in this schematic representation of the stages of comprehension and pro-
duction processes according to the interactive alignment model. The details of the various levels of representation and interactions be-
tween levels are chosen to illustrate the overall architecture of the system rather than to reflect commitment to a specific model. Links
between interlocutors at multiple levels are included here.
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Figure 2.1: (Left) Pickering and Garrod’s (2004, reprinted with permis-
sion) schematic representation of the stages of comprehension and produc-
tion processes according to the interactive alignment model. (Right) An
illustration of the nesting of di↵erent scales of linguistic representations,
using four levels of the six from the interactive alignment model: phonetic,
lexical, semantic, and situation model.

fricatives (e.g., f,h,th), and even voiced fricatives and nasal stops in some
cases (e.g., v,m,n,ng). All of these breaks are defined as falling below some
threshold of acoustic energy, i.e., we do not assume total silence or even a
total lack of perceptible sound during breaks.

The three illustrative scales just listed are visualized in the speech wave-
form displayed in Figure 2. It is important to note that one could posit
additional or di↵erent scales as well. Whatever the case, their physical man-
ifestations are likely to overlap and blend such that one simply observes
clusters of acoustic energy across a continuous range of scales in the raw
speech signal. In fact, a continuous range of scales is expected to emerge
when interactions propagate across levels of representation (Mitzenmacher,
2004; Holden, Van Orden, & Turvey, 2009), as posited in the interactive
alignment model. Phonetic processes interact with lexical processes, which
interact with syntactic processes and feedback to phonetic processes, and
so on.

2.4 Complexity matching in speech signal

clustering

Our discussion so far leads us to expect power law clustering in speech
signals due to the hierarchical nesting of language representations and pro-
cesses. Thus we need a method for measuring and quantifying clustering
in speech signals across di↵erent timescales. Clustering is expected specifi-
cally in the timing of periods of acoustic energy interspersed with breaks as
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defined by some threshold. Such temporal clustering can be measured in
the onset times when acoustic energy crosses from below to above thresh-
old. Acoustic onset times are not only appropriate for measuring temporal
clustering, but they also are highly salient and important events in speech
perception (Cummins & Port, 1998; Cutting & Rosner, 1974; Liberman,
Harris, Ho↵man, & Gri�th, 1957). Clustering in acoustic onset times is
visible in Figure 2.

The interactive alignment model holds that interlocutors “align” rep-
resentations across levels of linguistic processing. The particular nature of
alignment is an ongoing area of research, and as mentioned earlier, behav-
ioral matching is one manifestation of alignment that is well-documented
in the literature (Louwerse et al., 2012). But also as mentioned earlier,
behavioral matching is limited because direct correspondences alone can-
not explain the rich behavioral diversity in natural conversations (Healey,
2008; Howes, Healey, & Purver, 2010).

Temporal clustering of acoustic onsets across scales, as a physical ex-
pression of linguistic processing across levels of representation, a↵ords the
possibility for a kind of distributional matching distinct from behavioral
matching. The overall amount of temporal clustering can be quantified
as a function of timescale, as we explain more formally below. Conversa-
tional speech signals may converge in terms of the distribution of temporal
clustering across timescales. Such convergence would constitute a complex
coupling in the dynamics of linguistic processing. This coupling would
be complex partly because it would go beyond synchronization and other
simple phase relations between time series, and partly because it would
constitute the coupling of two power law distributions that reflect nested,
interactive scales of processing.

Power law distributions are defining of complex systems in general
(Sales-Pardo, Guimera, Moreira, & Amaral, 2007; Simon, 1977). Specif-
ically, a complex system is one in which microscopic events may cascade
up to alter macroscopic patterns of activity, which in turn may constrain
and shape its microscopic events (Stanley, 1987). By this definition, both
humans and human languages are demonstrably complex systems (Beckner
et al., 2009; Mitchell, 2009; Kugler, 1987; Spivey, 2007; Swenson & Tur-
vey, 1991; Thelen & Smith, 1994). Molecular and cellular events cascade
up to a↵ect behavior via myriad genetic and physiological processes, and
behavior helps shape those processes via evolution and learning, for ex-
ample. Likewise, microscopic changes in phonetic features may alter entire
words, sentences, and conversations as macroscopic patterns, and the latter
provide higher-level constraints on how phonemes are phonetically realized.

Classes of complex systems can be formalized statistically, relative to
the dynamics of their interacting components. West and colleagues (West
et al., 2008) recently analyzed the coupling of complex systems in terms



14

!

Phonetic 

Lexical 

Semantic 

Situation Model A  

B  

C  

Figure 2.2: (Left) An example conversational speech signal, shown at three
di↵erent temporal scales. (A) The longest scale roughly corresponds with
conversational turns. The phonetic, lexical, semantic, and situation model
labels approximate the time scales of these units on the speech signal. (B)
The middle scale roughly corresponds with e.g. thinking pauses and phrase
boundaries. (C) The shortest scale roughly corresponds with word, syllable,
and phoneme boundaries. Vertical lines show acoustic onsets relative to a
threshold chosen by visual inspection.
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of their event dynamics, which amounts to temporal clustering of point
processes analogous to acoustic onsets. Interestingly, analyses have shown
information exchange between coupled systems to be maximal when the
exponents of their power laws are similar (Aquino et al., 2010, 2011; Tu-
ralska et al., 2011) . For power laws in the temporal clustering of point
processes, convergence of exponents corresponds with convergence in the
amounts of temporal clustering across timescales. Thus West et al. (2008)
provide independent theory and rationale for expecting convergence in the
temporal clustering of conversational speech signals—under these condi-
tions, information exchange should be maximized between interlocutors as
complex systems (Stephen et al., 2008; Stephen & Dixon, 2011).

The formal analysis conducted by West et al. (2008) relies on statisti-
cal physics and mechanics and its elaboration is outside the scope of the
current article. However, we can draw an intuitive analogy with simple
oscillators designed to illustrate coupling beyond synchronization. Imagine
two metronomes whose kinematics are coupled through a physical medium
such as a sliding platform (Figure 3a). Provided that their frequencies
are su�ciently similar, and coupling is su�ciently strong, the beats of the
metronomes will tend to synchronize over time (Strogatz & Mirollo, 1991;
Kelso, 1981). The phase-coupled oscillations that result from these inter-
acting forces can be seen as idealized forms of behavioral matching, and a
number of dyadic interaction studies have drawn this parallel (Schmidt &
Richardson, 2008).

Now imagine two sets of metronomes at each end of the platform (Figure
3b) whose resonant frequencies span a wide range of timescales, and do
not correspond one-to-one across the two ends of the platform. Coupling
may still yield a system for which synchronization is an inherently low
energy state, but synchronization and other simple phase relations may no
longer be su�ciently strong attractors to create stable dynamical states
of the system. This is more likely to be true especially when coupling is
relatively weak. In such cases, the system instead is prone to exhibiting
intermittent, irregular transitions from one metastable state to the next
(Kelso, 1997). Such complex dynamics are readily observable in systems as
simple as coupled oscillators, and coupled oscillators provide only a simple
model of human interlocutors. Thus the metronomes serve to illustrate
how complex couplings are not exotic or rare, but rather, quite expected
for interactions between such richly heterogeneous systems like humans.

Expectations of phase couplings and more complex couplings lead us to
predict behavioral matching and complexity matching in human interac-
tions. To our knowledge, this prediction has not been tested previously for
conversational interactions, but we can find support for a similar hypoth-
esis in human perceptual-motor interactions (Coey et al., 2014; Marmelat
& Delignières, 2012). Marmelat and Delignières (2012) recently conducted
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Figure 2.3: (Left) Examples of synchronization and behavior matching with
toy metronome systems. (A) Illustration of two metronomes interacting
along a sliding platform, as a simple model of synchronization and a form
of behavioral matching. (B) Illustration of interactions between multiple
metronomes with di↵ering frequencies, to aid the intuition of complexity
matching.
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an experiment in which each participant in a dyad swung a hand-held pen-
dulum, with instructions to swing in synchrony. Synchronization is a form
of behavioral matching, but deviations from synchrony were analyzed for
power law fluctuations in the form of 1/f alpha noise. Results showed that
alpha estimates for each member of a dyad were correlated to the extent
that coupling was facilitated by visual and physical contact. These alpha
correlations served as a direct measure of complexity matching, and they
could not be explained in terms of behavioral matching because dyadic
time series of deviations from synchrony were uncorrelated at all lags – i.e.,
there were no cross-correlations.

2.5 Current Study

The new contributions of the current study are tests of (1) power law
clustering in the temporal patterning of acoustic onsets in conversational
speech and (2) complexity matching in the temporal clustering of speech
across timescales. Power law clustering is expected to manifest due to the
hierarchical nature of language processes. Complexity matching is expected
to extend and complement behavioral matching, as part of a broader basis
for interactive alignment that enhances communication through increased
information exchange.

Our study was designed to investigate complexity matching through a
number of di↵erent conditions and analyses. First, we analyzed data from
a recent study by Paxton and Dale (2013) in which participants who previ-
ously did not know each other were asked to have two conversations (order
counterbalanced). One was a casual, a�liative interaction about popular
media. The other was on provocative issues based on participants’ closely
held beliefs and designed to evoke more argumentative conversations. Be-
forehand, participants were given questionnaires to gauge their opinions
on these provocative issues, and specific issues were chosen if participants
had strong but di↵ering opinions about them. Partners were instructed
to converse for ten minutes in each condition, which provided ample time
for long stretches of speech to be analyzed. The original aim of the study
was to investigate alignment in asymmetric contexts, that is, interactions
between interlocutors who have conflicting, di↵ering, or opposing goals and
opinions.

These experimental data serve the current goals quite well, because
the time series that can be extracted from audio data are long enough to
a↵ord measurements of temporal clustering across a wide range of scales.
In addition, we can test for a relationship between complexity matching
and a high-level discourse constraint: conversation type. Testing for such a
relationship is important for providing converging evidence that temporal
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clustering of acoustic onsets is reflective of levels of linguistic processing
rather than just matching of low-level acoustic properties of speech. The
experiment also allowed us to compare matches between two speech signals
from an originally paired dyad, with mismatches between signals from two
di↵erent dyads. The latter provides a baseline for measuring complexity
matching above chance and is a common baseline among dyadic interaction
researchers (Bernieri, Reznick, & Rosenthal, 1988).

Another important feature of the experiment by Paxton and Dale (2013)
is that it allows us to compare our measure of complexity matching with
a more traditional measure of behavioral matching, where the latter can
be quantified through cross-correlations in speech signals. As elaborated
below, greater behavioral matching in our case corresponds to the negative
peak of the cross-correlation function, which reflects the complementary
turn-taking relationship between the temporal patterns of acoustic speech
energy produced by each member of a dyadic conversation. We directly test
whether complexity matching can be reduced and attributed to behavioral
matching as measured by negative peaks in cross-correlations, or whether
the two reflect distinct aspects of coordination in dyadic conversation.

2.6 Methods

2.6.1 Participants

A total of 28 undergraduate students (mean age=20.14 years; females=22)
from the University of California, Merced participated in return for ex-
tra course credit. Individual participants signed up for time slots anony-
mously, and participants were not informed of their partner’s identity be-
forehand. Dyads included 8 female-female and 6 mixed-sex pairings. By
chance, male-male pairings did not occur. All participants reported con-
versational fluency in English and normal or corrected hearing and vision.
Participants also reported their native language as either English (n=10),
Spanish (n=10), or other (n=6; two participants did not disclose their na-
tive language).

2.6.2 Procedure

Before conversing with one another, each participant completed a brief
series of questionnaires, including an opinion survey on political, social,
and personal topics (e.g., abortion, death penalty, gay/lesbian marriage,
legalization of marijuana). For each topic, participants were asked to write
a brief synopsis of their opinion and mark how strongly they held their
opinion from 1 (feel very weakly) to 4 (feel very strongly) on a Likert-
style scale. Experimenters determined the topic of argument by comparing
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the two participants’ survey answers to identify the topic on which par-
ticipants held strong but opposing views. This topic was chosen as the
dyad’s argumentative prompt, given along with an instruction to convince
one another of their opinion. Two additional prompts were also selected
by those criteria but were given only if the participants were unable to
continue the conversation on the topic at hand. Of the 14 dyads analyzed
here, 10 required additional prompts (secondary=9; tertiary=1). In addi-
tion to the argumentative conversation, each dyad also had an a�liative
conversation. The a�liative prompt instructed each dyad to identify and
discuss popular media that both participants enjoyed. A�liative prompts
were designed to emphasize the common ground between partners, whereas
the argumentative prompts were designed to emphasize their di↵erences of
opinion. Following the questionnaires, participants were brought together
in a private room and seated facing each other. To provide an opportunity
for partners to become acquainted with each other, they were left alone
for about three minutes to introduce themselves outside the context of the
experiment, without yet knowing the nature of the experimental task. To
make introductions as natural as possible, participants were told that ex-
perimenter had to step out of the room to complete last-minute paperwork
before beginning the experiment. After the introduction period, the exper-
imenter entered the room and delivered the first conversation prompt. The
order of prompts was counterbalanced across dyads, and participants were
not informed of upcoming prompts. During each 10-minute conversation,
the experimenter monitored recording equipment from a seat on the periph-
ery of participants’ range of vision. After each conversation, participants
were separated and asked to complete post-conversation questionnaires. At
the end of the experiment, participants were thanked and debriefed.

2.6.3 Apparatus, data collection, and data prepara-
tion

Conversations were recorded on a Canon Vixia HF M31 HD Camcorder,
mounted on a Sunpak PlatinumPlus 600PG tripod. Audio for each partici-
pant was recorded separately at 44 kHz sample rate, using an Azden CAM-3
mixer and Audio-Technica ATR 3350 lapel microphones a�xed to the up-
per portion of each participant’s shirt. Two audio files were recorded per
conversation (one for each interlocutor), which yielded four files per dyad
and 56 files altogether across the 14 dyads.

After truncating audio files to contain only the conversations, Audacity
was used to remove non-speech signals, as well as any partner cross-talk so
that each file contained only one participant’s speech signal. The Audacity
“sound finder” was then used to locate acoustic onset and o↵set events
in each file. The signal/no-signal threshold of acoustic intensity was set
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at -30db for all dyads, which was judged to be the lowest threshold that
resulted in less than approximately 5 percent spurious onset events. This
threshold yielded an average of 764 paired onset and o↵set events per part-
ner, per conversation. For every audio file, the resulting event time series
was highly irregular and clustered, based on visual inspection. Each event
series was unique, as expected given that each partner made unique con-
tributions to their conversations. However, we are interested in statistical
quantities that abstract away from particular event times and characterize
their temporal properties.

2.7 Inter-event intervals

The interactive alignment model, along with its hierarchically nested
levels of linguistic processing, leads us to predict complexity matching in
the temporal clustering of acoustic onset events. However, West et al.
(2008) showed that complex systems in general are expected to exhibit
complexity matching when their inter-event intervals (IEIs) are power law
distributed with an exponent near two, P(IEI)⇠1/IEIg, where g⇠ 2. West
and colleagues’ analysis suggests that we test IEIs for the predicted power
law.

A histogram of IEIs was computed for the time series from each partic-
ipant in each conversation, where the position of the smallest bin was set
relative to the shortest IEI value in each given time series. The nine sub-
sequent bins were logarithmically spaced to capture IEIs of all lengths for
each time series. Logarithmic spacing accounted for the anticipated power
law in IEI distributions—that is, greatest resolution in the histogram is
needed for at the small end of the scale because the vast majority of IEIs
are relatively short, and resolution can become coarser as IEIs become
larger and less frequent.

Figure 4 shows the resulting histograms for each participant, plotted
together in a single graph. Plotting individual histograms together provides
a picture of the overall trend of the distributions, as well as the individual
variability around that trend. The figure shows a clear trend of a negatively
sloped line in logarithmic coordinates that flattens out for the shortest IEI
values on the left. The slope of the trend is about -2 for both conversation
types, as can be seen by comparing with the dashed line which has a slope
of exactly -2. Thus the data closely resemble the theoretically derived
precondition for complexity matching , i.e., the power law, P(IEI)⇠1/IEIg,
where g⇠ 2.
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Figure 2.4: (Left) IEI probability density functions for individual interlocu-
tors in individual conversations, plotted in logarithmic coordinates using
logarithmic binning. Dashed line shows idealized slope of -2 (per West et
al., 2008).
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2.8 Temporal clustering in acoustic onsets

To quantify temporal clustering in acoustic onsets and test for a power
law across timescales, we adopted Allan Factor (AF) analysis that has
been used to measure temporal clustering in neural spike trains (Teich,
Heneghan, Lowen, Ozaki, and Kaplan, 1997). Spikes and acoustic onsets
are both examples of point processes, i.e., time series of events treated as
occurring at instantaneous points in time. A Poisson process is one whose
events occur unpredictably through time, i.e., for which knowledge of any
and all event times up to a given point in time t provides no information
about when future events may occur. AF is a statistical method that
distinguishes between Poisson processes and those whose events occur non-
randomly. In our case, we are interested in non-Poisson processes whose
events cluster at di↵erent timescales more than would be expected by a
Poisson process.

AF analysis is partly illustrated in Figure 2. Time series are tiled with
adjacent windows of given size T ; in the figure, each bracket represents one
window of a given size. Events are simply counted within each window, and
a measure of variance—AF variance, A(T )—is derived from the di↵erences
in counts between adjacent windows. A(T ) is calculated for a range of
window sizes (i.e., timescales T ), and Poisson processes are those for which
A(T ) approximately 1 for all T. Clustering at a given scale results in A(T )
> 1, and more specifically, clustering across scales means that A(T ) ⇠ T a,
where a ⇠ 0. Finally, complexity matching is measured as the di↵erence
between two A(T ) functions, where more matching corresponds to smaller
di↵erences.

2.9 Formal description of AF analysis

A formal description of AF analysis is as follows. A given point process
is segmented into M adjacent windows of size T (enough to span the entire
series), and the number of events N

j

is counted within each window indexed
by j = 1 to M. The di↵erences in counts between adjacent windows of
a given size T is computed as d(T ) = N

j+1

(T ) – N
j

(T ). d(T ) values
are computed for each of a range of values for T. The AF variance A(T )
for a given timescale T is the expected value of the squared di↵erences,
normalized by mean counts of events per window (i.e., a type of coe�cient
of variation)

A (T ) =

⌦
d (T )2

↵

2 hN (T )i (2.1)
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Figure 2.5: (Left) Mean AF functions for argumentative vs. a�liative
conversation types, with standard error bars.

Poisson processes yield A(T ) ⇠ 1 for all T, whereas power law clus-
tering yields A(T ) approx. (T/T

1

)a, where T
1

is the smallest time scale
considered and alpha the exponent of the scaling relation. Point processes
with a ⇠ 0 are Poisson-distributed, whereas power law clustering means
meaning a > 0 over the measurable range of timescales (Thurner et al.,
1997).

A(T ) was computed for each event time series from each interlocutor
in each conversation. Each time series was 10 min long, and time win-
dows varied as a power of 2, T = 2t where t ranged from 4 to 12. The
resulting timescales ranged from 160 ms to 41 s. Smaller timescales were ex-
cluded because they are heavily a↵ected by measurement error, and larger
timescales could not be reliably estimated given the length of time series.
A(T ) values were averaged across participants for each conversation, and
averages are plotted as a function of T in Figure 5.
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2.10 Results of AF analysis

A clear power law is evident in the roughly linear relationship in loga-
rithmic coordinates for both conversation types. This power law is evidence
of nested clustering of events over the measured timescales, as expected for
nested language processes. The exponent of the AF power law was esti-
mated for each individual time series by taking the slope of a regression
line fit to each AF function in logarithmic coordinates. Mean exponent
estimates for a�liative conversations (M = 0.53, SE = .02) were reliably
less than those for argumentative conversation (M = 0.63, SE = .02),
t(27) = 4.57, p < .001. This e↵ect can be seen in Figure 5 as deriving
from A(T ) di↵erences at the largest timescales. In general, this is evidence
that the clustering of acoustic onsets reflects linguistic processing during
conversations, rather than purely acoustic structure.

More specifically, results showed greater temporal clustering of onsets in
argumentative conversations relative to a�liative ones, at longer timescales.
Longer timescales mainly reflect turn-taking dynamics, which suggests that
there were fewer, longer turns in argumentative conversations. To confirm
this interpretation of the observed di↵erence in AF functions, we compared
the number and mean duration of IEIs greater than four seconds. Four
seconds was approximately where the AF functions diverged, and was a
cuto↵ that should capture mostly turn intervals, i.e., an utterance without
a break in acoustic energy, followed by a pause before the partner begins
the next turn. We did not expect this automated method to capture turns
perfectly—some turns will be missed or cuto↵, and some intervals will
reflect utterances within turns—but it is safe to assume that the majority
of these few very long intervals (less than 5 percent of all intervals on
average) mostly correspond with turns. As expected, estimated turns for
argumentative conversations were found to be fewer (M = 21.7 versus M
= 26.8, t(27) = 2.9, p < .01) and longer (M = 12.6 versus M = 8.0, t(27)
= 5.2, p < .001), compared with a�liative conversations.

2.11 Complexity matching

The previous two sections established two preconditions necessary to
test for complexity matching, i.e., (1) power law distributions in IEIs that
approach an exponent of two and (2) power law clustering of acoustic on-
sets, as expressed in the AF function, that ostensibly reflects the hierar-
chical nesting of linguistic processing during conversation. Now, to test
for complexity matching, we need a measure of similarity between two AF
functions and a baseline for the amount of complexity matching expected
by chance. Our measure of AF similarity is the summed absolute di↵erence
between two AF functions a and b, with a negative log transformation:
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Da,b = �
X

log |A (Ta)� A (Tb)| (2.2)

The log transformation takes into account the scaling law over T, and
the negative simply makes greater values correspond with greater complex-
ity matching, relative to a baseline control.

For baseline controls, we used surrogate comparisons between event
series. Specifically, condition controls were created by comparing event
series of two interlocutors from the same conversation type (either both
a�liative or both argumentative) but who did not converse with each other.
Fifty-two condition controls were created for each dyad in each condition,
and the resulting Da,b values were averaged for each dyad. Mean Da,b
functions are plotted in Figure 6 for original pairings and condition controls,
separated by conversation type.

D
a,b

values for original pairings in the a�liative conversation (M =
11.91, SE = 1.40) were greater than their condition controls (M = 9.80,
SE = .44), t(13) = -1.95, p

one-tailed

< .05. However, there was no such e↵ect
in the argumentative conversation, t(13) = -.06, p

one-tailed

= .48. These re-
sults provide evidence for complexity matching in the power law clustering
of acoustic onsets in a�liative conversations, but not argumentative con-
versations. A qualitative inspection showed that AF di↵erences generally
occurred across timescales between a�liative originals and controls. Thus
matching did not vary significantly over the range of timescales in which
phonological, lexical, syntactic, and discourse processes unfold.

Finally, we note that the e↵ect of conversation type was so strong that
complexity matching for a�liative controls was a little more than that
for argumentative original pairings, albeit not reliably so, t(13) = 1.59,
p = .134. The reason for this result needs further investigation, but one
possibility is that argumentative conversations create a repelling dynamic
that opposes complexity matching, thereby making speech signals no more
similar than chance. This possibility is supported by analyses of behavioral
matching reported next.

2.12 Behavioral matching

The previous section reported evidence for complexity matching, but it
is important to test whether this evidence can be attributed to behavioral
matching. Interlocutors’ speech signals may exhibit “align-able” patterns
in their periods of acoustic energy, possibly with some temporal lag between
the signals. Phase-shifted alignment would constitute behavioral matching,
and if the patterns are power law clustered, the same signal similarity that
yields behavioral matching would also yield complexity matching. Here we
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Figure 2.6: (Left) Mean summed AF di↵erence functions plotted for the
two conversation types, separately for original pairings versus randomized
controls, with standard error bars.
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test for behavioral matching in conversational speech signals and compare
with complexity matching results to determine whether the complexity
matching results may be attributed more simply to behavior matching.
The most directly related measure of behavioral matching would be to
use the same time series of acoustic onsets as used for complexity matching
and simply cross-correlate them. However, point processes are theoretically
instantaneous, which means their lack of duration complicates direct use
of the cross-correlation function. Rather than assign each onset a temporal
range, we used the duration of ongoing acoustic energy that followed each
acoustic onset, i.e., the periods of acoustic energy from each onset to each
subsequent o↵set. The resulting time series of acoustic energy periods were
then cross-correlated to test for evidence of behavioral matching. Surrogate
cross-correlation functions were also computed using the same method as
that for AF functions.

Cross-correlations yielded no evidence of alignment at any lag: Peak
positive correlation coe�cients for a�liative pairings (M = .06, SE =.006)
were not reliably di↵erent from their surrogate controls (M = .06, SE
=.001), t(13) = -1.14, p = .274, and the same was true for argumentative
pairings (M = .09, SE =.01) compared with their surrogate controls (M
= .07, SE = .002), t(13) = -1.67, p = .119. These null results provide an
initial suggestion that our complexity matching results cannot simply be
attributed to behavioral matching.

Inspection of the cross-correlation functions reveal that, unlike peak
positive correlations, peak negative correlations are far greater in mag-
nitude for original pairings compared with surrogate pairings. This e↵ect
holds for both a�liative and argumentative conversations, t(13) = 4.77 and
5.92 (respectively), both p < .001. These negative peaks reflect comple-
mentarity in the time series of acoustic energy periods, which likely derives
from turn-taking in conversational speech. Thus maximal misalignment
is also a kind behavioral matching, albeit one where each speech act is
matched with a lack thereof. While this may be considered as behavioral
mismatching, it is demonstrative of a strict temporal coordination between
partners that is very much in line with the spirit of behavioral matching
research. This turn-taking measure of behavioral matching was stronger
for argumentative conversations (M = -.32, SE = .16) compared with af-
filiative conversations (M = -.23, SE = .14), t(13) = 4.16, p < .001. Thus
the e↵ect of conversation type on behavioral matching was di↵erent and
opposite from its e↵ect on complexity matching: Behavioral matching re-
sults point to stricter turn-taking in argumentative conversations, whereas
complexity matching highlights stronger coupling across levels of linguis-
tic processing in a�liative conversations. However, it is possible that our
measure of complexity matching is somehow the converse of our measure
of behavioral matching. If so, the two measures should be negatively cor-
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related. Results did not bear out this hypothesis: A correlation of D
a,b

values with peak minimum cross-correlations yields a coe�cient of r(28)
= .23, which is not reliable, p = .243. This null result suggests that the
complexity matching we observed cannot be straightforwardly attributed
to behavioral matching.

2.13 General Discussion

Perhaps the most salient coordination we experience in conversations is
behavioral matching. We take turns, echo speech acts of our partners, and
strive for mutual understanding by sharing and in some sense matching our
states of knowledge. The saliency of behavioral matching in firsthand ex-
perience has an analog in the scientific study of interpersonal coordination.
Synchronization is a salient form of coordination dynamics, and one that is
relatively easy to formalize and investigate mathematically (Schmidt, Morr,
Fitzpatrick, & Richardson, 2012). Other phase relations—like anti-phase
(Haken, Kelso, & Bunz, 1985; Keller & Repp, 2004) are also investigated
in this area, but all such phase relations can be conceptualized as di↵erent
types of behavioral matching.

If we introspect further into the nature of conversational interactions, we
can find other more indirect forms of coordination in speech. The “tone”
of a conversation, for instance, is not just carried by particular matches
between turns, words, or other speech acts. Tone can be partly expressed
as an approximate statistical convergence in, for instance, pitch, loudness,
and pace of speech (Manson, Bryant, Gervais, & Kline, 2013; Neumann
& Strack, 2000; Webb, 1969). Similarly, regional accents and dialects can
be considered as a kind of convergence (Coupland, 1980) in the temporal
dynamics of speech over multiple timescales and partly stem from common
allophonic variations that are coordinated among populations of speakers
over countless conversations.

In this study, we introduced complexity matching to the interpersonal
interaction literature. Complexity matching was imported from West et
al. (2008) to measure broad, statistical forms of coordination in conversa-
tional speech. By analyzing data from naturalistic conversations, we found
that complexity matching provides a new window into interpersonal coor-
dination beyond behavioral matching. We measured temporal dynamics
in speech as expressed through clustering of acoustic onset events across
timescales. We chose this measure in part because it is a purely tempo-
ral index of speech dynamics—each acoustic onset varies only in time and
nothing else—and in part because it expresses temporal dynamics across
timescales, from phonetic to lexical to turn-taking variations in speech tim-
ing.
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Using AF analysis, we found evidence for multiscale dynamics in the
power law clustering of acoustic onsets, as measured by the AF function,
and we found greater clustering at longer timescales for argumentative
conversations, as measured by greater AF exponent estimates. This ef-
fect of conversation type on AF exponents indicates that multiscale clus-
tering reflects more than just low-level acoustic properties of speech. It
also indicates that argumentative conversations are more structured at the
larger timescales of turn-taking, and this interpretation is supported by
cross-correlation analyses indicating stricter turn-taking in argumentative
conversations.

While argumentative conversations show stricter turn-taking, only a�l-
iative conversations demonstrated complexity matching, i.e., convergence
in multiscale clustering. We interpret this di↵erence as reflective of the
more subtle forms of coordination in speech that we mentioned earlier.
When people engage in a�liative interactions to converge on some mutual
understandings and opinions, this convergence can be reflected in subtle
aspects of their speech dynamics that operate similar to constructs like
tone, pace, and style. AF analysis of acoustic onsets was able to capture
such subtle aspects of convergence.

The present findings also are consistent with previous multimodal anal-
yses of the conversations. As mentioned above, herein we found no ev-
idence of complexity matching in argumentative conversations, yet there
was more behavioral matching compared with a�liative conversations, as
measured by peak negative cross-correlations. Consistent with this di↵er-
ence, analyses of movement dynamics also found no behavioral matching
during argumentative conversations (Paxton & Dale, 2013a). In the future
we plan to work on complexity matching analyses that may be applied
to both movement and speech dynamics, in order to investigate whether
multimodal coordination may further illuminate the coupling of interlocu-
tors during a�liative conversations, and lack thereof during argumentative
conversations.

2.13.1 Complexity matching and theories of conver-
sation, coordination, and development

As discussed in the Introduction, our interpretation of complexity match-
ing is consistent with the interactive alignment model (Pickering & Garrod,
2004). Language systems and processes are inherently multilevel, i.e., mul-
tiscale, and the interactive alignment model posits coupling across levels.
The concept of complexity matching is exactly this—a kind of coupling
across the scales of two interactive systems. The concept comes from work
in statistical mechanics (West et al., 2008) that connects to the idea of
interactive alignment. Multiscale systems with interactive levels of pro-
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cessing generally are expected to exhibit power laws as signatures of the
complexity that is concomitant in such cross-scale interactions. West and
colleagues report formal analyses to show that two multiscale, complex sys-
tems are most responsive to each other when their power laws converge,
particularly near a specific exponent in the power law distribution of inter-
event intervals.

We find it somewhat remarkable that data from dyadic conversations
fit the theoretical predictions of a theory from statistical mechanics that
was formulated for a very broad class of physical systems. In the current
study, we found the estimated exponents of inter-event intervals during
conversations indeed were near the predicted exponent value of two. Thus
our study is an example of how work from statistical mechanics can inform
and enhance specific theories (such as interactive alignment) in the psycho-
logical and cognitive sciences, and how interdisciplinary research can yield
new disciplinary insights.

To illustrate this point further, formal analyses of complexity matching
yield another theoretical prediction that has been pursued in other behav-
ioral studies. As noted earlier, complexity matching is predicted to corre-
spond with increased information exchange between two complex systems.
The experiment analyzed herein did not include a direct measure of infor-
mation exchange, but Fusaroli and colleagues (Fusaroli, Abney, Bahrami,
Kello, & Tylén, 2013) re-examined data from a joint perceptual decision-
making task (Bahrami et al., 2010) in which dyads collaborated on vi-
sual discrimination judgments. Speech signals were analyzed using similar
methods to those herein, and measures of complexity matching were found
to correlate with increased performance derived from joint decision-making.
These results suggest that greater increased complexity matching can cor-
respond with enhanced joint decision making. This might also relate to
work suggesting that mutual comprehension is facilitated by behavioral
matching (Brennan & Clark, 1996; Brennan & Hanna, 2009).

Thus far, we have discussed complexity matching primarily in the con-
text of the interactive alignment model, but it is also related to theories of
interpersonal synergy (Ramenzoni, Riley, Shockley, & Baker, 2012; Riley,
Richardson, Shockley, & Ramenzoni, 2011) that have grown from syner-
gies as theorized in motor systems (Bernstein, 1967; Turvey, 1990, 2007).
Synergy is the emergence of coordination via reduction in the degrees of
freedom in a system of many interacting components. This concept can be
extended from physical systems into the interpersonal interaction domain.
By extension, Fusaroli, Raczaszek-Leonardi, and Tylén (2014) proposed
that interpersonal synergies should 1) be highly sensitive to conversational
context; 2) adapt flexibly to changing needs of the task, and 3) self-assemble
to minimize variance to manage the degrees of freedom within the interac-
tion (Riley et al., 2011). These entailments of synergies may lead to specific,



31

testable hypotheses about functional specificity and reciprocal compensa-
tion in interpersonal coordination.

Processes of perception and action have been argued to give rise to
behavioral matching. For example, interpersonal postural coordination
has shown to be constrained by social (Shockley et al., 2003), articula-
tory (Shockley et al., 2007), and visual (Giveans, Pelzer, Smith, Shock-
ley, & Sto↵regen, 2008) dynamics. Whether the approach to understand
conversation and interpersonal coordination entails shared representations
(Sebanz et al., 2006) or coordinative structures (M. J. Richardson et al.,
2007), these proposals only investigate coordinative behaviors at a singular
timescale. The current study supports the notion that conversation and
interpersonal coordination can also be investigated using theory and tools
emphasizing multiple scales of analysis, furthering the notion that language
and conversation are hierarchically scaled phenomena. Therefore, complex-
ity matching might entail processes of perception and action, however, it
is very plausible that the same multiscale exploratory dynamics found to
constrain perception (Stephen, Arzamarski, & Michaels, 2010; Stephen &
Hajnal, 2011), might also constrain the perception and action of conver-
sation and interpersonal coordination. Future work should consider the
relationships between research studying the multiscale behaviors of agents
interacting with the environment and research studying the multiscale be-
haviors of agents interacting with other agents.

Complexity matching and the application to conversation also relate
to work in language and situated action (Suchman, 2007). Most gener-
ally, this work emphasizes the role of situations – and therefore, context
– to constrain actions. This is in contrast to the general proposal that
plans constrain actions. The current study showed that conversation type
constrained the AF exponents of the clustering of speech signals, thereby
constraining action in the form of speech production during conversation.
The results herein support the notion that the situation, or context, con-
strains action.

Finally, complexity matching may be a fundamental building block for
communication and social interaction across the lifespan. Evidence and
theory have led developmental researchers to hypothesize that rhythmic
coordination between infant and caregiver, akin to behavioral matching, is
supportive of infant language learning (Feldman, 2007; Ja↵e et al., 2001).
But like speech in adult conversations, there is evidence that infant vocal-
izations also are organized into hierarchical clusters during typical devel-
opment (Lynch, Oller, Ste↵ens, & Buder, 1995; Oller, 2000). Recent re-
sults using AF analyses revealed complexity matching between infant pre-
linguistic vocalizations and caregiver speech (Abney, Warlaumont, Oller,
Wallot, and Kello, in preparation). Taken together, these studies suggest
that complexity matching may be foundational to the learning and devel-
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opment of interpersonal coordination and communication.

2.14 Conclusion

Interaction research has relied on measures of behavioral matching as a
measure of interpersonal coordination for decades. Complexity matching is
a new, complementary measure of coordination. Behavioral and complexity
matching provided unique insights into the di↵erent interactions that oc-
cur during a�liative versus argumentative conversations—arguments had
stricter turn-taking, whereas friendly conversations yielded distributional
similarities that may reflect the establishment of common ground. To-
gether, these analyses provide a richer view of interaction than either alone.
These complementary analyses may be generalized and applied to yield sim-
ilar insights in other areas of language and interaction research, wherever
hierarchical nesting may yield power law scaling in the temporal dynamics
of behavior.



Chapter 3

Multimodal complexity
matching and information
transmission in a dyadic
problem-solving task

3.1 Preface

A key prediction of Complexity Matching is that information transmis-
sion between complex networks is optimal when complex behaviors con-
verge. To test this hypothesis in human interaction, I developed a dyadic
problem-solving task that serves as a method for quantifying indirect in-
formation transmission. Participants were instructed to build the tallest
tower possible in fifteen minutes using only marshmallows and uncooked
spaghetti. The problem-solving task provides su�cient constraints to in-
crease communication between members of a dyad. The key hypothesis is
that performance on the task – taller spaghetti-marshmallow tower – would
relate to higher rates of convergence in the complexities of vocalization and
movement dynamics. Results from this study will provide insights into the
general hypothesis of complexity matching in addition to the patterns of
communicative dynamics that lead to increased rates of communication.

3.2 Introduction

Problem solving with another person is an important and necessary
skill. Understanding the dynamics that lead to successful and unsuccess-
ful problem solving is important for theoretical developments of human
interaction and communication as well as for applications for increasing
e�ciency and quality of life for people working in groups on a daily ba-
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sis. Underlying successful problem solving is the expectation of su�cient
information transmission across group members. In the current study, I
investigate whether specific dynamic patterns of human behavior lead to
successful problem solving, and by proxy, su�cient information transmis-
sion.

There is a long tradition of capturing the dynamics of interpersonal co-
ordination across a diverse range of tasks. Among these coordination pat-
terns, two distinct types have emerged: synchrony and complementarity.
From interlimb rhythmic coordination (Schmidt et al., 1990) to postural
sway (Shockley et al., 2003, 2007) and eye movements (D. C. Richardson
& Dale, 2005), observations of a close temporal coordination between peo-
ple has led many researchers to suggest that synchronous behavior might
be a defining dynamic pattern of human interaction. However, in many
contexts, ‘doing the same thing at the same time’ would lead to negative
consequences. For example, in mature adult conversations, speech overlap
is to be avoided (Stivers et al., 2009). Many interactional contexts require
people to do similar actions that are not temporally aligned. Such com-
plementary behavior has shown similar functional benefits as synchrony
for many interactional contexts (Dale et al., 2014; Fusaroli & Tylén, 2015;
M. J. Richardson et al., 2015).

Considering the two classes on coordination patterns known to be func-
tional across interactional contexts, synchrony and complementarity, it
is important to understand how multiple coordination patterns coalesce
throughout interactions. It seems likely that group members use a variety
of coordination patterns throughout an interaction. In the current study, I
focus on understanding the relationship between multiple, nested patterns
of behavior across interactional contexts and how these patterns relate to
performance on a dyadic problem solving task.

Previous work has observed that the patterns of conversational speech
can be quantified as hierarchical, nested communicative structures termed
multiscale clustering (Abney, Paxton, et al., 2014). The multiscale clus-
tering of interlocutors’ conversational speech di↵ered across argumentative
and a�liative conversations. Importantly, the degree of matching of mul-
tiscale clustering between interlocutors di↵ered as a function of conversa-
tional context. This matching was interpreted through the lens of a hy-
pothesis in statistical mechanics termed Complexity Matching (West et al.,
2008). Complexity Matching is the hypothesis that when the complexities
of two complex systems match, information transmission between the sys-
tems is optimal. Similarly, Abney et al. observed preliminary evidence for
Complexity Matching: the complexities of conversational speech between
interlocutors matched in di↵erent ways depending on the conversational
context.

The observation that the hierarchical, nested structure of speech matches
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or aligns between interlocutors can be connected to Pickering and Garrod’s
(2004) interactive alignment model. The model emphasizes the alignment
of linguistic representations at multiple linguistic levels: phonetic, phono-
logical, lexical, syntactic, semantic, and situational. The notion of hi-
erarchical, nested patterns of behavior can be extended to other human
behaviors like body movements. Instead of considering the synchronous
or complementary behaviors of group members, we can look at how simi-
lar patterns of behavior between interlocutors match at various temporal
scales.

Do dyad members produce similar movements patterns across multiple
temporal scales? Similar to language, we can consider movement patterns
to be hierarchical and nested (Gibson; 1979; Reed, 1996). Take for in-
stance a conductor guiding an orchestra. A conductor’s role is to guide
the orchestra through a musical score using visible gestures from localized
movements of the hands, to more gross body movements spanning the entire
body. Similar to levels of nestedness of linguistic representations during a
conversation, throughout an Act, a composer’s movement patterns can oc-
cur at small timescales like cuing the string section with her baton to larger
timescales like gesturing the tempo and meter across multiple measures.

In line with the example of the orchestra conductor, we might expect
that people working together on a di�cult task might produce similar move-
ment patterns that span across multiple temporal scales. In this study, I
focus on measuring the hierarchical, nested patterns of two modalities - vo-
calizations and body movements - for group members working together on
a joint problem-solving task. Analogous to a functional hypothesis for syn-
chrony or complementarity, I hypothesize that dyad members with similar
hierarchically structured vocalizations and movement patterns will perform
better on the problem-solving task. This hypothesis is motivated by the
Complexity Matching hypothesis suggesting that when the complexities of
two systems match, optimal information transmission occurs.

3.3 Method

3.3.1 Participants

Seventy-four undergraduate students from the University of California,
Merced, participated in 36 dyads in return for extra course credits. Par-
ticipants individually signed up using the anonymous online subject pool
system and could not see their partners identity before arriving at the study
location.
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3.3.2 Materials and procedure

The materials and procedure were identical to what was reported in
Abney, Paxton, Dale, and Kello (2015). Participants were asked to sit in
one of two stationary chairs near a square table (76.2 cm by 76.2 cm W
by 71.1 cm H). Seating arrangement was participant-initiated and exper-
imenters were careful to not provide any explicit direction toward any of
the two chairs. The two chairs and table were oriented such that the chairs
were placed adjacent to each other, with the table rotated 45 degrees in
line of sight of the camcorder (Canon Vixia HF M31 HD camcorder).

Once seated and oriented with a comfortable sitting posture, partici-
pants were outfitted with Shure Beta 54 super-cardioid microphone head-
sets. Participants were then instructed to construct the tallest tower struc-
ture possible within 15 mins using only the materials provided: one box
(⇠10 oz) of large marshmallows and one box (⇠1 lb) of raw spaghetti.
The participant seated on the right was only allowed to handle the marsh-
mallows and the participant on the left was only allowed to handle the
spaghetti. This constraint was imposed to increase the di�culty of the
task and to stimulate interaction. Participants were not allowed to use
partial or broken pieces of materials, and were instructed to remove any
pieces of material that broke during the construction. Participants were
instructed to remain seated during the task. Experimenters monitored the
rules throughout the construction phase and reminded participants if they
violated any rules.

Experimenters answered any questions participants had before begin-
ning the task. An experimenter provided 5- and 1-min warnings. Once
the time limit (15 min) expired, the experimenters recorded the height and
weight of the tower, in addition to the amount of materials used in the final
tower and the amount of broken materials discarded.

3.3.3 Vocalization and Movement analyses

Video files were truncated to contain only interactions occurring during
the 15-min construction phase. For each truncated video file, an audio
file (.wav) was extracted for the left and right channel, respectively, for
subsequent audio cleaning and coding. A research assistant listened to each
.wav file and omitted cross-talk and noise from non-communicative breaths.
Each file was then analyzed using the Audacity ”sound finder” to locate
acoustic onset/o↵set intervals. The threshold of acoustic intensity was set
at -30dB for all audio files (Abney, Paxton, et al., 2014). Acoustic intensity
was not consistent across all audio files. Therefore, where appropriate,
acoustic intensity was amplified by 6dB for an entire .wav file. Vocalization
onsets were used in subsequent analyses.

The truncated video files were analyzed using a frame-di↵erencing method
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Figure 3.1: (Top) Example standardized movement di↵erence series. Hor-
izontal line represents event threshold. (Bottom) Example event series.



38

(FDM) to obtain time series of standardized movement indices computed
from pixel-to-pixel changes from frame to frame (Paxton & Dale, 2013b).
The FDM provided an objective measure of overall body movement. Higher
FDM values indicated higher amounts of overall movement for each partic-
ipant.

Binary spike trains of vocalization events were calculated by using the
onsets estimated by the Audacity ”sound finder”. Vocalization onset events
were coded as ”1” and other states were coded as ”0”. Binary spike trains
of movement events were calculated by creating a threshold of movement
indices. A movement event was defined as a sample in the FDM movement
series that exceeded 2 standard deviations above the mean movement in-
dex. Movement events defined by this threshold were coded as “1” and
other states were coded as “0” (See Figure 3.1). Binary spike trains for
vocalizations were downsampled to 8Hz to match the samping rate of the
movement events. A multimodal spike train was also computed, combining
vocalization and movement events. For each interlocutor, vocalization and
movement spike trains were summed.

Allan Factor (AF) analysis (Allan, 1966) was used to estimate the multi-
scale clustering of vocalization and movement dynamics for each interlocu-
tors’ vocalizations and movement time series. The AF analysis estimated
the variance of vocalization or movement events (e.g., onsets of vocalization
or movement) at particular timescales and computed correlation estimates,
a, across those multiple time scales. The AF analysis is a point process
analysis that inputs a binary spike train of events (1s) and nonevents (0s)
(see Figure 3.2).

A (T ) =

⌦
d (T )2

↵

2 hN (T )i (3.1)

To compute a measure of complexity matching of a dyad, I used an
AF similarity metric introduced in Abney, Paxton, Dale, and Kello (2014).
The AF similarity metric was the summed absolute di↵erence between two
AF functions, with a negative log transformation:

Da,b = �
X

log |A (Ta)� A (Tb)| . (3.2)

For each dyad, a complexity matching metric was computed for vocal-
izations, movements, and vocalization/movements.

The log transformation takes into account the scaling law over T, which
is used to estimate the AF function. The negative sign makes larger values
of Da,b correspond with greater complexity matching.
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3.4 Results

Average height of the spaghetti-marshmallow towers was 46.6 cm (18.36
in, SDcm = 15.40). To determine if complexity matching occurred be-
yond random pairings of interlocutors, I computed the average complexity
matching scores for each participant and a random pairing of a partici-
pant who was not their partner. Empirical complexity matching scores
for vocalizations (M=9.78, SD = 5.61) and movements (M=15.16, SD =
4.15) were significantly higher than surrogate complexity matching scores
(M

vocalizations

=6.74, SD
vocalizations

= 3.25,M
movements

=11.47, SD
movements

=
4.12), ts(74) > 2.76, ps < .006.

Vocalization complexity matching significantly predicted tower height,
b = .46, t(35)=2.87, p = .007. Vocalization complexity matching also
explained a significant proportion of variance in tower height, R2 = .17,
F (1,35)= 8.21, p=.007. Movement complexity matching significantly pre-
dicted tower height, b = .38, t(35)=2.49, p = .02. Movement complex-
ity matching also explained a significant proportion of variance in tower
height, R2 = .13, F (1,35)= 6.18, p=.02. Vocalization/movement complex-
ity matching significantly predicted tower height, b = .47, t(35)=2.39, p
= .02. Vocalization/movement complexity matching also explained a sig-
nificant proportion of variance in tower height, R2 = .12, F (1,35)= 5.71,
p=.02. (See Figure 3.3).

It is possible that the relationship between complexity matching and
tower height is driven by overall AF estimates. To test this possibility,
for each modality, AF estimates were averaged across dyads and were
submitted to correlational analyses with tower height. Averaged AF es-
timates for vocalizations (r [35]=-.19,p=.24) or vocalizations/movements
(r [35]=-.26,p=.12) did not reliably correlate with tower height. Aver-
aged AF estimates for movement did positively correlate with tower height,
r(35)=.40,p=.01. Next, I residualized out averaged AF estimates for each
modality with tower height and submitted the residual variables to regres-
sion models with the corresponding complexity matching metrics. Con-
trolling for averaged AF estimates, vocalization complexity matching sig-
nificantly predicted tower height (b = .40, t [35]=2.45, p = .02), whereas,
movement complexity matching (b = .06, t [35]=.38, p = .71) and vocal-
izations/movement complexity matching (b = .32, t [35]=1.60, p = .12) did
not predict tower height.

3.5 Discussion and Conclusions

In this study, I found that complexity matching occurred across vo-
calizations and movement patterns during a dyadic problem-solving task.
The observations of vocal and movement complexity matching add to a
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short, but growing list of conversational and interaction contexts that dis-
play descriptive di↵erences in the degree of complexity matching (Abney,
Paxton, et al., 2014; Coey et al., 2014, 2016; Fine et al., 2015; Marmelat
& Delignières, 2012). The results presented here show evidence for the
functional hypothesis of complexity matching: the degree of complexity
matching predicted an indirect measure of information transmission.

This study also uncovered a novel coordination pattern: the match-
ing of hierarchically structured movements across dyad members. In the
vein of movement dynamics, there were three observations from this study
that are new to the literature on coordination. First, I observed that over-
all body movement patterns are hierarchical and nested across multiple
temporal scales. Second, dyad members’ hierarchical patterns of move-
ments matched more than surrogate dyads. Third, dyad members with
higher rates of matching between their hierarchical movement patterns con-
structed higher towers. This final result is consistent with the Complexity
Matching hypothesis: the matching between complexities of two systems
related to increased information transmission.

Overall body movement patterns were hierarchically nested across timescales.
Specifically, the onset patterns of movements were clustered across multi-
ple temporal scales. To my knowledge, this is the first observation of this
class of behavior in the literature on movement coordination. Shockley et
al., (2003, 2007) observed that the postural sway between two people in a
conversation matched in terms of the overall recurrence. The results in this
study add nuance to local recurrence patterns of movements and suggest
that there are clustered patterns of movements that occur across multiple
nested temporal scales.

Higher degrees of matching between dyad members’ hierarchical, nested
pattern of vocalizations and overall body movements were associated with
better performance on the problem-solving task. These results are consis-
tent with the Complexity Matching hypothesis. When dyad members used
similar vocalization and movement patterns spanning temporal scales, they
constructed taller tower structures. It is likely this type of coordination pat-
tern consists of both synchronous and complimentary patterns of behavior.
Indeed, it is important to understand the contribution of multiple coordina-
tion patterns spanning levels of description and temporal and spatial scales.
However, it is important to note that when controlling for overall hierar-
chical structure, only vocal complexity matching predicted tower height.
One interpretation of this result is that vocal complexity matching match-
ing was functional for the task, whereas movement complexity matching
was an emergent coordination pattern, constrained by task properties, and
therefore incidental to the task.

It is important to point out that a limitation of this study is the dif-
ficulty to define information and information transmission. The proxy for
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information transmission in the current study was performance on the task:
higher tower structures. Of course, building tower structures does not di-
rectly equate to information transmission, but rather is an indirect measure
of information transmission.

This study uncovered novel patterns of vocalization and movement co-
ordination in a dyadic problem-solving task. A key observation was that
vocalization and movement patterns could be quantified as hierarchical and
nested across multiple temporal scales. Additionally, greater matching of
hierarchical nested vocal and movement patterns between dyad members
scale with better performance on a problem solving tasks. Future work
should focus on understanding the contributions of multiple coordination
patterns to successful and unsuccessful communication.



Chapter 4

Multiple coordination patterns
in infant and adult
vocalizations

4.1 Preface

In the last chapter, I provided preliminary evidence for a potential func-
tional role for developing hierarchical structure in communicative behavior.
One important question is how hierarchical properties of communicative
behavior develop. Previous work has shown that hierarchical structure is
present in mature adult vocalizations (Chapters 2 and 3), therefore it is
possible that hierarchical structure is a vocalization property indicative
of typical development. Furthermore, it is possible that the vocal inter-
actions between infants and adults impact the development of important
vocalization properties. In this chapter, I will present a study that investi-
gated a large-scale corpus of naturalistic daylong recordings of infant and
adult vocalizations across the first two years of life (Abney, Warlaumont,
Oller, Wallot, & Kello, under review). The results show that the hier-
archical structure of vocalizations produced by infants and adults match,
even when controlling for other vocalization properties. Additional results
suggest that the adults in the infants’ auditory environments adapt the
complexity of their vocalizations to be more similar to the infants’ vocal-
izations over the first two years. Overall, the results provide evidence for
complexity matching in early development and provide insights into vocal
coordination and communicative development.

44
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4.2 Introduction

The progression to speech-like vocalizations is a fundamental compo-
nent of language learning (Oller, 2000) and is influenced by infant-adult
vocal interaction (Bateson, 1975; K. Bloom, Russell, & Wassenberg, 1987;
Goldstein, King, & West, 2003; Goldstein & Schwade, 2008; Ja↵e et al.,
2001; Kokkinaki & Kugiumutzakis, 2000; Nathani & Stark, 1996; Northrup
& Iverson, 2015; Papoušek & Papoušek, 1989; Ramı́rez-Esparza, Garćıa-
Sierra, & Kuhl, 2014; Warlaumont, Richards, Gilkerson, & Oller, 2014;
Weisleder & Fernald, 2013). Likewise, the quality of these vocal interac-
tions has been shown to predict other social and cognitive behaviors later
in development. For example, in the seminal work by Ja↵e et al. (2001),
the authors found that the degree of vocal rhythmic coordination at four-
months-of-age predicted levels of attachment and cognitive outcomes at
twelve-months-of-age. There are additional studies exemplifying the no-
tion that the degree of vocal interaction, either characterized in terms of
temporal coordination (e.g., Feldman and Greenbaum, 1997) or in terms of
other properties such as vocalization rate (e.g., Allely et al., 2013), predicts
important developmental outcomes. Studies of vocalization properties and
vocal coordination patterns are used to build theories of attachment (e.g.,
Bowlby, 1969) and social learning (e.g., Landry, Smith, & Swank, 2006) in
addition to being markers of typical and atypical development (e.g., Oller
et al., 2010; Patten et al., 2014; Warlaumont et al., 2014).

Finding new vocal coordination patterns and understanding the rela-
tionships between existing vocal coordination patterns might provide new
insights into development. Furthermore, to advance our understanding on
vocalization properties and vocal coordination, it is important to under-
stand the similarities and di↵erences between di↵erent measures of vocal
coordination. In the current study, we investigate three di↵erent types
of vocal coordination: coincidence-based, rate-based, and cluster-based.
Coincidence-based and rate-based coordination have been previously used
in a number of studies to study vocal interactions. Cluster-based coordina-
tion is a new measure recently introduced in the study of vocal interaction
during adult conversation (Abney, Paxton, et al., 2014).

Coincidence-based coordination is based on the co-occurrence of vo-
calizations produced by two interlocutors within some minimal period of
time. It includes both co-vocalizations (Harder, Lange, Hansen, Væver,
& Køppe, 2015) and turn taking. Ja↵e et al. (2001) observed that infant
and adult vocalizations were contingent on each other up to a lag of 60s.
They also observed that the strongest coordination patterns recurred ev-
ery approx. 20s-30s (see also, Feldstein et al., 1993), which they suggested
was the optimal interaction “rhythm”. The degree of coincidence-based
coordination was predictive of various measures of attachment and devel-
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opment. To quantify coincidence-based coordination in the present study,
we used cross-recurrence quantification analysis to measure the degree to
which infant and adult vocalizations occurred close together in time (Coco
& Dale, 2013; Cox & van Dijk, 2013; Dale, Warlaumont, & Richardson,
2011; Fusaroli, Konvalinka, & Wallot, 2014; Marwan, Romano, Thiel, &
Kurths, 2007; Warlaumont et al., 2014).

We based our measure of coincidence-based coordination on the timing
of acoustic onsets of infant and adult vocalizations. Many previous stud-
ies have used similar measures of vocalization to study coordination. For
example, van Egeren et al. (2001) found coordinated interaction within
a temporal window of 3s between the onset of a vocalization produced
by an infant and the onset of a vocalization response by the mother or
vice versa (Harder et al., 2015). Akin to the measure of coincidence-based
vocal coordination used in the present study, Warlaumont et al. (2014)
observed that local coordination in timing of vocalizations across children
and their caregivers di↵ered as a function of vocalization type, and whether
the infant was typically-developing (TD) or diagnosed with Autism Spec-
trum Disorder (ASD). Child speech-related vocalizations were more likely
to receive an adult response relative to non-speech-related vocalizations.
Children were also more likely to produce a speech-related vocalization if
their previous speech-related vocalization received a response from their
caregiver. Furthermore, relative to ASD children, TD children had more
frequent vocal interaction with their caregivers and were more likely to lead
vocalization interactions.

Rate-based vocal coordination is the degree of matching in the frequency
or rate of a particular vocal behavior or property. One example of rate-
based coordination is volubility matching. Volubility is the quantity or rate
of vocalization per unit time, and volubility matching quantifies the simi-
larity between infant and adult volubility across a given recording session.
Much work has demonstrated volubility to be an important predictor of
vocal development and communication (Franklin et al., 2014; Gilkerson &
Richards, 2008; Goldstein & West, 1999; Goldstein, Schwade, & Bornstein,
2009; Hart & Risley, 1995; Hsu, Fogel, & Messinger, 2001; Oller et al., 2010;
Oller, Eilers, Basinger, Ste↵ens, & Urbano, 1995; Rescorla & Ratner, 1996;
Warlaumont et al., 2014), but less work has quantified its coordination
across infant and caregiver pairings. In one study, Hart and Risley (1999)
found a positive relationship between infant and adult volubility. Other
studies have examined e↵ects of adult interactions more generally on in-
fant volubility (K. Bloom et al., 1987; Franklin et al., 2014; Goldstein et al.,
2009), and e↵ects of adult volubility on child language learning (Ramı́rez-
Esparza et al., 2014; Weisleder & Fernald, 2013), and cognitive and per-
ceptual abilities (Greenwood, Thiemann-Bourque, Walker, Buzhardt, &
Gilkerson, 2011; Ja↵e et al., 2001).
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Cluster-based vocal coordination measures the degree to which tempo-
ral events cluster similarly in infant and adult vocalizations. The acoustic
energy in human vocalizations tends to be clustered in time (Abney, Kello,
& Warlaumont, 2015; Abney, Paxton, et al., 2014; Luque, Luque, & Lacasa,
2015), in that there are frequent starts and stops due to many factors, in-
cluding breathing, fluctuations in intensity, emotion, and so on. Clustering
in speech vocalizations also emerges from variations in the sonority of pho-
netic features, prosody, and pauses due to thought and emphasis. Cluster-
ing in acoustic speech energy may also relate to the hierarchical clustering
of linguistic units (Grosjean, Grosjean, and Lane, 1979): phonemes clus-
ter into syllables, syllables cluster into words, words cluster into phrases,
phrases cluster into sentences, sentences cluster into larger discourse-like
structures, etc. (Pickering & Garrod, 2004).

Prelinguistic vocalizations, although not yet bounded by linguistic struc-
ture, show precursors to the hierarchical grouping of vocal events of mature
speakers. For example, prelinguistic vocalizations produced by infants have
been observed to follow a structure of hierarchical clustering at the group-
ing levels of syllables, utterances, and phrases (Lynch et al., 1995). Here we
aim to extend this work by Lynch et al. by quantifying the degree to which
infant vocalizations, and the adult vocalizations to which they are exposed,
cluster across the day at timescales ranging from seconds to hours. In the
present study, we investigate the developmental relationship between hier-
archical clustering of temporal events in infant vocalization bouts versus
adult vocalizations heard by infants, in addition to other vocal coordina-
tion patterns reflecting temporal-based and rate-based vocal coordination.
It is generally accepted that the conversational exchange between inter-
locutors is a dynamic interplay with reciprocal e↵ects (Snow, 1977) and
that understanding how infants and adults modulate vocalization proper-
ties during conversational exchanges and across development is crucial for
understanding typical and atypical communicative development.

In addition to investigating di↵erences in the degree of coordination
across the three levels of description (coincidence-based, rate-based, and
cluster-based coordination), we can also investigate directions of conver-
gence of these vocalization properties across infants and adults. For ex-
ample, does volubility rate of caregiver vocalizations adapt to that of the
infant? Or vice versa? Additionally, does clustering of caregiver vocaliza-
tions adapt to the hierarchical clustering of the infant?

4.2.1 Goals of the current study

The purpose of the current study was to examine the development of
various types of vocal coordination across infancy and determine whether
di↵erent patterns are interrelated or independent. We used the LENA

TM



48

(Language ENvironment Analysis) system (LENA Foundation, Boulder,
CO) to collect naturalistic, daylong audio recordings from fifteen infants.
The recordings are from an ongoing study in which infants are followed lon-
gitudinally during the first two years of life. The LENA system captures
and automatically locates both infant and adult vocalizations. The present
study seeks to answer three main questions revolving around the general
theme of coordination patterns in vocal interaction: (1) Do coincidence-
based, rate-based, and cluster-based coordination patterns vary depending
on the vocalization type produced by the infant? (2) Do di↵erent coordi-
nation patterns provide unique information about the dynamics of vocal
interaction? (3) How do the various coordination patterns relate to infant
age?

4.3 Method

4.3.1 Participants

Participants were fifteen infants (7 females, 8 males) from an ongoing
longitudinal study. Fourteen were exposed primarily to English and one was
exposed primarily to German. The final analysis included 706 recording
sessions; thus, the average number of recordings per participant was 47.06
recording sessions (SD = 11.53). The range of earliest recording session
age was from 11 days-old to 162 days-old. The range of oldest recording
session age was from 292 days-old to 885 days-old. Thus, the overall span
in age range of infants was 11 days to 2 years; 5 months.

4.3.2 Data Collection

Recordings of infant and adult vocalizations were made using the LENATM

(Language ENvironment Analysis) system. The LENA system consists of
an audio recorder that fits in the front pocket of custom-made clothing
and a software system designed to automatically identify various speakers
within the recordings (Xu, Yapanel, & Gray, 2009; Xu, Yapanel, Gray, &
Baer, 2008). The automated system uses speech recognition technology,
trained on human-annotated LENA recordings, to segment and identify
onset times for specific vocalization types, taking into account the age of
the infant (Xu et al., 2008, 2009). The procedure imposes a limit such that
the minimal durations of an infant or adult vocalization segment are 600
ms and 1000 ms, respectively. Accuracy and reliability of the automated
system has been tested against human transcribers for over 70 hours of
American English data (Xu et al., 2009). Segment classification agreement
between human transcribers and the automated system was 82% for adult
vocalizations and 76% for infant vocalizations. For infant vocalizations,
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segment classification agreement between human transcribers and the au-
tomated system was 75% for speech-related vocalizations and 84% for non-
speech-related vocalizations (Xu, Yapanel, and Gray, 2009). Timestamps
of classified vocalization segments are reported in the LENA ITS (Inter-
preted Time Segments) file (Xu, et al., 2008). Infant and adult vocalization
onset times were extracted from this ITS file (Warlaumont et al., 2014).

There are a few noteworthy limitations of the present study due to using
the LENA system. Segments labeled as having overlap between an infant
or adult and any other sound source, a very common label occurring in
LENA automated analysis at all ages, were excluded because the system
does not indicate the types of sound sources present in those segments.
Although the excluded overlapping segments often include infant and/or
adult segments, there is no way of knowing based on the automated labels
when this is the case. There are also a number of factors that can po-
tentially reduce the accuracy of classification. For example, environmental
noise (Soderstrom & Wittebolle, 2013), infant age, speaker variation, and
clothing type (VanDam, 2014) have been observed to influence accuracy
(Xu et al., 2009). Our choice to use this system despite these limitations
compared to human transcriptions is driven by the fact that the analy-
sis of hierarchical structure of infant vocalization requires long time series
in order to incorporate large temporal windows of analysis. The study de-
scribed here would be impractical to conduct without automatic labeling of
event onsets. Many of the same limitations also apply to a number of stud-
ies that have also used the LENA system to study language development
(Ambrose, VanDam, & Moeller, 2014; Caskey & Vohr, 2013; Greenwood
et al., 2011; K. Johnson, Caskey, Rand, Tucker, & Vohr, 2014; Oller et al.,
2010; VanDam et al., 2015; Warlaumont et al., 2010; Warren et al., 2010);
future studies and technological advances will be necessary to overcome
these limitations.

The recorder captured each infant’s voice as well as other sounds in the
environment including adult vocalizations. In the present study, we utilized
the automated speaker labeling provided by the software. Only timings
of the onsets of each infant’s vocalizations and of vocalizations produced
by adults in the infant’s proximal auditory environment were considered.
We treated all recorded adult vocalizations, regardless of which particular
individual produced them, as part of the same auditory stream, so when
we refer to infant-adult interactions we are referring to the infant and all
adults in the infant’s auditory environment. Thus, our analyses do not
distinguish between dyadic or triadic interactions where multiple adults are
speaking. For the infant, vocalizations included speech-related sounds (e.g.,
babbling, singing, and gooing), reflexive sounds (e.g., cries and laughs), and
vegetative sounds (e.g., burps and grunts). The vocalization onset times
were obtained through a program that searched for onset times of CHN (i.e.,
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Child) segments and AN (i.e., Adult) segments within the LENA ITS file.
The program is available at https://github.com/HomeBankCode/lena-its-
tools/releases/tag/v1.0 (Warlaumont, 2015).

Caregivers were instructed to begin recording when their infant awoke
in the morning and to stop recording when their infant was put to bed at
night. Audio recordings could be paused by the parents for privacy reasons
throughout the recording sessions. If the caregiver paused and resumed
recording in the same day, we treated each segment as a unique session.

1322 recordings sessions were collected across all infant-adult interac-
tions. Recording sessions were omitted if the duration was less than 6hrs
(505 session; 37.9 percent of original sample excluded), if the analysis of
hierarchical structure could not converge due to low number of onsets (less
than 200 onsets; 105 sessions; 7.9 percent), or if the estimate of hierarchical
structure or volubility was 3.5 SDs above or below the mean (16 sessions;
1.2 percent). This left 706 sessions (⇠ 8492 recording hours) to be used
in all the analyses reported below. Average session length was 12.03 hours
(SD=2.72 hours). Sessions omitted due to the 6hrs criterion typically re-
flected the caregiver stopping the recorder at some point in the day and
resuming recording at a later point.

For each session, four time-series of onset times were created, one for
adult vocalizations, and three for the infant: speech-related (speech, non-
word babble, and singing), non-speech-related (laughing, crying, burping,
coughing, etc.), and the combination of speech-related and non-speech-
related. These onset times served as the temporal events used to measure
coincidence-based and cluster-based coordination.

4.3.3 Analyses

Coincidence-based coordination

To quantify the coincidence of infant and adult onset events, we used
Cross-Recurrence Quantification Analysis (CRQA) to obtain a diagonal
cross-recurrence profile (DCRP) (Coco & Dale, 2013; Dale et al., 2011;
Warlaumont et al., 2014). A DCRP uses a 10s sliding window to assess
overall quantity of coincidence-based coordination at a range of lags. For-
mal mathematical descriptions of CRQA and DCRP have been documented
elsewhere (Coco & Dale, 2013; Dale et al., 2011; Fusaroli et al., 2014; Mar-
wan et al., 2007), therefore, we limit our description to how the analysis
relates to quantifying coordination between infant and adult vocalizations.

To obtain DCRPs, vocalization time series were divided into 1s bins.
Each segment of either infant or adult vocalization was treated as occu-
pying one time bin. This ensured that the interactivity estimated by the
DCRPs was not a↵ected by the durations of the segments, but only the
timing between infant and adult vocalizations (Warlaumont et al., 2014).
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Each DCRP returned the rate of co-occurrence of events across the two
vocalization time series at 1s lags +/- 10s. Note that because overlapping
segments between infant and adult vocalizations were excluded from all
analyses, there are no lag- 0 recurrences reported here. DCRP height was
computed by finding the total area under the DCRP profile between lag
-10s and lag 10s. DCRP height measures the quantity of the infant-adult
vocal interaction across a 10s sliding window. We estimated DCRP height
for all three types of vocal interactions (infant speech-related and adult,
infant non- speech-related and adult, and infant combined and adult) for
each session.

Rate-based coordination

Vocalization rate was measured in terms of volubility, which was com-
puted as the total amount of vocalization time in each recording ses-
sions,divided by the duration of the recording session. Infant volubility
measures were computed separately for speech-related vocalizations, non-
speech-related vocalizations, and both types of infant vocalization. Adult
vocalizations were not broken down by type. Volubility matching was mea-
sured in terms of the correlations between infant and adult volubilities
across sessions and infants.

Cluster-based coordination

The hierarchically nested clustering of vocal onset events was estimated
using Allan Factor analysis (Allan, 1966). Each time series of acoustic on-
sets was segmented into M adjacent and nonoverlapping windows of size
T, then the number of events N

j

was counted within each window indexed
by j = 1 to M. The di↵erences in counts between adjacent windows of a
given size T were computed as d(T ) = N

j+1

(T ) – N
j

(T ). The AF variance
A(T ) for a given timescale, T, is the mean value of the squared di↵erences,
normalized by two times the mean count of events per window (i.e., similar
to coe�cient of variation, but being constituted from di↵erences between
adjacent windows, whereas the typical coe�cient of variation ignores tem-
poral relations among elements),

A (T ) =

⌦
d (T )2

↵

2 hN (T )i . (4.1)

Poisson processes (i.e. random, independent events with exponentially
distributed inter-event intervals) yield A(T ) > 1 for all T. In contrast,
power law clustering yields A(T ) > 1, specifically with A(T ) ⇠(T/T

1

)a,
where T

1

is the smallest timescale considered, a the exponent of the scaling
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relation (Thurner et al., 1997), and a > 0. This is a power law with positive
exponent awhere aprovides a metric for the degree to which vocalization
events are clustered across timescales. acorresponds to the slope of the plots
in panel D of Figure 1, which plots Allan Factor, A(T ), vs. timescale, T,
on a log-log plot. The further a is from 0 and the closer it is to 1, the
more structured we say the clustering of vocalizations is across scales. AF
slope does not necessarily reflect the degree of mature linguistic hierarchical
structure although it does reflect the degree of hierarchical structure in the
clustering of temporal events.

Ten timescales were used for all event time series. The time bins used
were roughly the same across all recordings; there were small di↵erences
due to the dependency of the time binning algorithm on the total record-
ing length. The average smallest timescale was ⇠10 s and the average
largest timescale was ⇠88 min. Cluster-based coordination was measured
by computing correlations between AF slopes for infant versus adult vocal-
izations. These correlations measure the extent to which the hierarchical
clustering of infant vocalization bouts is similar to that of the adults in
their environment across time.

4.4 Results

4.4.1 Volubility and Hierarchical Clustering Across
Vocalization Types

First, we tested for di↵erences in overall volubility across vocaliza-
tion types. A one-way ANOVA with volubility as the dependent vari-
able, vocalization type as the predictor variable, and infant as random
intercept, indicated that volubility di↵ered as a function of vocalization
type, F (3,2806)=456.02, p<.001. A post-hoc Tukey test revealed that vol-
ubility for adult vocalizations (M=.06, SE=.002) was significantly higher
than that for infant-combined vocalizations, i.e., non-speech-related and
speech-related, (M=.05, SE=.0008), which was significantly higher than in-
fant non-speech-related (M=.03, SE=.0006), which was significantly higher
than infant speech-related (M=.02, SE=.0004), ps<.001.

Second, we tested for di↵erences in hierarchical clustering across vocal-
ization types. A(T ) values and timescales were averaged across recordings
and then A(T ) was plotted as a function of T in Figure 2A. See Figure 2B
for a scatterplot of each individual recording’s values.

The linear trends in Figure 2 suggest that both infant and adult AF
functions follow a power law. Flattening at the smallest timescales is ex-
pected to occur due to limitations in accuracy of the event onset labeling.
To test against the null hypothesis that event time series are random (Pois-
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Figure 1. Schematic depiction of procedure of AF analysis at three timescales (~7 
minutes, ~30 minutes, ~60 minutes). (A-C) Vocalization events are counted within each 
timescale window. Each vertical line is an acoustic onset for one of the three vocalization 
types: (A) Infant speech-related, (B) Infant non-speech-related, and (C) Adult. The black, 
grey, and white rectangles indicate long (~60 minutes), medium (~30 minutes), and short 
timescales (~7 minutes), respectively. Notice at each of the three timescales, there are 
clusters of onsets. AF variance is derived from computing the normalized squared 
difference of onset frequencies between adjacent time windows for the three timescales. 
AF variance is a measure of the departure from an equidistributed distribution of acoustic 
onsets. (D) The estimates of hierarchical clustering of vocalization types. The slope, α, of 
the log(AF) vs. log(T) curve estimates the scaling of AF variance across scales. The 
dotted line indicates a slope of 0 which is evidence for a random (Poisson process) 
vocalization event series. The other three curves have slopes closer to 1, indicating 
hierarchical clustering.  
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Figure 4.1: Schematic depiction of procedure of AF analysis at three
timescales (⇠7 minutes, ⇠30 minutes, ⇠60 minutes). (A-C) Vocalization
events are counted within each timescale window. Each vertical line is an
acoustic onset for one of the three vocalization types: (A) Infant speech-
related, (B) Infant non-speech-related, and (C) Adult. The black, grey,
and white rectangles indicate long (⇠60 minutes), medium (⇠30 minutes),
and short timescales (⇠7 minutes), respectively. Notice at each of the
three timescales, there are clusters of onsets. AF variance is derived from
computing the normalized squared di↵erence of onset frequencies between
adjacent time windows for the three timescales. AF variance is a measure of
the departure from an equidistributed distribution of acoustic onsets. (D)
The estimates of hierarchical clustering of vocalization types. The slope,
a, of the log(AF ) vs. log(T ) curve estimates the scaling of AF variance
across scales. The dotted line indicates a slope of 0 which is evidence for a
random (Poisson process) vocalization event series. The other three curves
have slopes closer to 1, indicating hierarchical clustering.
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Figure 4.2: (A) Mean AF functions for adult and infant vocalizations, with
standard error bars. (B) Scatterplot of each recording’s A(T ) values.
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son distribution), we performed one-sample t-tests for AF slopes against a
mean of 0. AF functions for all vocalization types were reliably greater than
0, ts(705)>147, ps<.001. Thus the positive linear trends in AF functions
provide evidence that the onsets for all vocalization types were clustered
across multiple timescales.

A one-way ANOVA with AF slope as the dependent variable, vocaliza-
tion type as the predictor variable, and infant as random intercept indi-
cated that the hierarchical clustering di↵ered as a function of vocalization
type, F (3,2806)=413.17, p<.001. A post-hoc Tukey test showed that AF
slopes for the adult vocalizations (M=.76, SE=.004) were significantly
steeper than for the infant-combined vocalizations (M=.71, SE=.004),
which were in turn significantly steeper than infant non-speech-related
(M=.62, SE=.004), which were significantly steeper than infant speech-
related (M=.59, SE=.004), ps<.001. Shallower slopes indicate relatively
less nesting of clusters in vocal onset events. (See Appendix for an addi-
tional power law analysis).

Finding the same pattern of e↵ects on volubility and AF measures sug-
gests that they may co-vary. Indeed, correlation analyses showed weak
linear relationships between the two measures for infant speech-related
(r [704]=.21, p<.001) and infant-combined (r [704]=.19, p<.001) vocaliza-
tions, and moderate relationships for adult (r [704]=.44, p<.001) and infant
non-speech-related (r [704]=.41, p<.001) vocalizations. Volubility and AF
measures appear to reflect one or more common sources of variation, but
also exhibit unique e↵ects, as the following analyses show.

To determine whether there was change in volubility and hierarchical
clustering over the first year of the infants’ lives, we regressed AF slope and
volubility on infant age, performing separate analyses for the three types
of infant vocalizations and the adult vocalizations. To determine unique
e↵ects on each dependent measure, all subsequent analyses were conducted
by first computing the correlation between volubility and. hierarchical
clustering estimates, then obtaining the residual values of either volubility
or hierarchical clustering after factoring out their correlation. We then
tested for a relationship between the residual values and other variables
of interest. For example, if we were interested in the relationship between
hierarchical clustering of infant-combined vocalizations and age of infant,
we would first compute the residual values of hierarchical clustering after
factoring out the (linear) relationship between hierarchical clustering and
volubility of infant-combined vocalizations. We then tested if the residual
(unique variance of hierarchical clustering) correlated with age of infant
using a first-order correlation, r

residual

. To control for infant-level variance,
we computed the residuals using linear mixed e↵ects models with infants as
random intercepts (Baayen, Davidson, & Bates, 2008). We also present the
results of correlation analyses without other variables factored out, to show
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whether the directions of any e↵ects changed as a result of residualization.
Although we present both the first-order correlations (r) and the correlation
coe�cients from the residuals analyses (r

residual

), we interpret all results
using the magnitude, direction, and statistical significance of the r

residual

values.

Table 4.1: Results of first order correlations and residual analyses predict-
ing infant age.

All Infant Vocalizations r r
residual

Volubility .002 .01
AF -.10** -.12**
Speech-related
Volubility .20*** .26***
AF .05** -.03
Non-speech-related
Volubility -.15*** -.16***
AF -.24*** -.25***
Adult
Volubility -.24*** -.19***
AF -.28*** -.18***

Note. #p<.1, *p.05, **p.01, ***p.001. For all analyses, degrees of
freedom = 704. AF = Allan Factor estimate.

Table 1 shows how AF and volubility vary as a function of age. Volu-
bility increased with infant age for infant speech-related vocalizations, and
decreased with infant age for infant non-speech-related vocalizations and
adult vocalizations. No change in volubility was observed for infant vo-
calizations when both speech-related and non-speech-related vocalizations
were included. AF slopes decreased for infant vocalizations overall as well
as for non-speech-related vocalizations, but did not change with age for
infant speech-related vocalizations. AF slopes also decreased with age for
adult vocalizations. We discuss the implications of this below when pre-
senting results on the relation between infant and adult AF slopes.

4.4.2 Do coincidence-based, rate-based, and cluster-
based coordination patterns vary depending on
the type of vocalization produced by the infant?

The primary goal of the current study is to investigate the di↵erent
vocal coordination patterns of infant and adult vocalizations. For each of
the three coordination patterns, we (1) assessed whether the coordination
pattern existed beyond baseline controls, (2) whether such coordination
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patterns still held after controlling for the other coordination patterns, and
(3) if the degree of the coordination di↵ered as a function of the vocalization
type produced by the infant.

To measure coincidence-based vocal coordination between infants and
adults we used DCRP height, derived from CRQA. Higher DCRP heights
suggest more coincidence-based vocal coordination. The first step was to
set up a baseline measure to compare against empirical pairings of in-
fant and adult vocalization series. Our baseline measure consisted of shuf-
fling the empirical infant and adult time series then submitting them to
CRQA to get baseline DCRP height. We chose this baseline measure
because it preserves the number of vocalizations and it keeps the shuf-
fled time series the same length as the original time series. We obtained
the DCRP height and baseline DCRP height for all three vocalization
types. A one-way ANOVA with infant as random intercept indicated that
DCRP height for the original time series was on average higher than shuf-
fled DCRP height across all vocal interaction types, F (1,4220)=221.68,
p<.001. Because shu✏ed DCRP height di↵ered as a function of vocal in-
teraction type, we normalized the original DCRP height by subtracting
the corresponding shu✏ed DCRP height from the original DCRP height
for each vocal interaction type. A one-way ANOVA with normalized DCRP
height as the dependent variable, vocal interaction type as the predic-
tor variable, and infant as random intercept indicated that the degree
of coincidence-based coordination di↵ered as a function of vocal interac-
tion type, F (2,2101)=74.81, p<.001. A post-hoc Tukey test showed that
normalized DCRP heights for the infant-combined and adult vocalizations
(M=.001, SE=.00009) were significantly taller than those for the infant
speech-related and adult vocalizations (M=.0009, SE=.00005), which were
in turn significantly taller than infant non-speech-related and adult vocal-
izations (M=.0002, SE=.00004), ps<.001. The same patterns of di↵erences
were found when using non-normalized DRCP heights. These results sug-
gest that there was coincidence-based coordination above and beyond a ran-
dom baseline. Furthermore, coincidence-based coordination was stronger
for speech-related relative to non-speech-related interactions. See Figure 3
for DCRPs for the three vocalization types.

To determine the degree of rate-based and cluster-based coordination
between infant and adult vocalizations we correlated volubility and AF
slopes measured for adult vocalizations with those for each of the three
corresponding infant vocalization types. Correlations were computed be-
tween raw infant and adult measures as well as between residuals of the
infant and adult measures after taking out any correlation with age of in-
fant and AF slope, volubility, or DCRP height (whichever two were not
the focus of a given comparison). For example, to assess cluster-based
coordination, infant and adult AF slopes were each residualized against
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Figure 3. Diagonal cross-recurrence profile (DCRP) averaged across all vocalization 
types. (Left) Average DCRPs are before normalization. (Right) Average DCRPs 
normalized for shuffled DCRPs.  
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speech-related volubility of the same speaker type, speech-related DCRP
height, and age of infant. As before, to control for infant-level variance,
we computed the residuals using linear mixed e↵ects models with infant as
random intercepts. See Table 2 and Figure 4 for results.

Table 4.2: Results of first order correlations (r) and residual correlations
(r

residual

) predicting matching of infant vocalization properties with adult
volubility and adult AF slope estimates.

Rate-based Vocal Coordination r r
residual

All Infant Vocalizations .26*** .10***
Speech-related .21*** .13***
Non-speech-related .23*** .06
Cluster-based Vocal Coordination
All Infant Vocalizations .15*** .20***
Speech-related .14*** .25***
Non-speech-related .14*** .04

Note. #p<.1, *p.05, **p.01, ***p.001. For all analyses, degrees of
freedom = 704.

For rate-based coordination, Infant-combined and infant speech-related
vocalization types reliably matched the volubility pattern of adult vocal-
izations. Using the Fisher r -to-z transformation to test for di↵erences be-
tween correlation strength, infant speech-related volubility matching was
marginally stronger than matching between infant non-speech-related vo-
calization, z = 1.75, p = .08. For cluster-based coordination, infant com-
bined and infant speech-related vocalization types reliably matched the
structure found in adult vocalizations. Cluster-based vocal coordination
between adult vocalizations and infant speech-related vocalizations was sig-
nificantly stronger than matching between adult vocalizations and infant
non-speech-related vocalizations, z = 4.25, p < .001.

4.4.3 Are adults or infants primarily driving these vo-
cal coordination patterns, and does this change
with age?

In the previous section, we observed that di↵erent measures of vocal
coordination were not statistically reducible to each other. Thus these
measures appear to provide unique information about the relationships be-
tween infant and adult vocalization properties. In this section, we explore
the question of what information the di↵erent vocalization measures pro-
vide about whether it is infants or adults who are the primary drivers of
vocal coordination during the first two years of life.
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Figure 4. (Top row) Cluster-based vocal coordination results for Adult and (left to right) 
Infant-combined, Infant-speech-related, and Infant-non-speech-related. (Bottom row) 
Rate-based vocal coordination results. All variables are standardized. Each circle 
represents an individual recording. 
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Figure 4.4: (Top row) Cluster-based vocal coordination results for Adult
and (left to right) Infant-combined, Infant-speech-related, and Infant-non-
speech-related. (Bottom row) Rate-based vocal coordination results. All
variables are standardized. Each circle represents an individual recording.
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For coincidence-based coordination, we can measure leader-follower pat-
terns in vocalizations. We computed a leader-follower ratio from the orig-
inal DCRP for each coincidence-based coordination by taking the ratio of
the sum of the right side (infant leading side) to the sum of the left side
(adult leading side) of the ±10s DCRP profile (Warlaumont et al., 2014).
A leader-follower ratio greater than 1.0 indicates that the infant led the
adult whereas a ratio less than 1.0 indicates the adult led the infant.

A one-way ANOVA with leader-follower ratio as the dependent vari-
able, vocal interaction type as the predictor variable, and infant as ran-
dom intercept indicated that infant leading di↵ered as a function of vo-
calization type, F (2,2101)=14.85, p<.001. A post-hoc Tukey test showed
that leader-follower ratios for the infant-combined and adult vocalizations
(M=1.049, SE=.002) were higher than the ratios for infant non-speech-
related and adult vocalizations (M=1.041, SE=.002, p=.006), and in-
fant speech-related and adult vocalizations (M=1.035 SE=.002, p<.001).
Leader-follower ratios for infant non-speech-related and adult vocalizations
were higher relative to ratios for infant speech-related and adult vocaliza-
tions, p=.048.

To determine whether leader-follower ratios changed across infant age,
we tested for correlations between ratios for each vocalization type and in-
fant age. We observed no reliable association between infant speech-related
(r [704]=-.05, p=.19) or infant-combined (r [704]=-.05, p=.19) leader-follower
ratios and age. We did observe a reliable negative association between in-
fant non-speech-related leader-follower ratios and age (r [704]=-.08, p=.04),
suggesting that as infants grew older, there was a decrease in the tendency
for infant non-speech-related vocalizations to precede adult vocalizations
rather than vice versa.

For volubility and hierarchical clustering, we computed absolute simi-
larity scores and then tested for correlations between the di↵erence scores
and infant age. For the di↵erence score (SS), we computed an absolute
similarity score by subtracting infant vocalization property (AF or Volu-
bility) from the adult vocalization property, taking the absolute value, and
subtracting the value from 1, e.g.,

SSAF = 1� abs(AdultAFSlope� InfantAFSlope.) (4.2)

A similarity score of 1.0 suggests the vocalization properties across in-
fant and adult were identical. A positive correlation between SS and age
indicates greater matching between infant and adult on that characteristic
as age increased. Figure 5 provides a graphical depiction of these results.

Adults and infants showed statistically significant increases in coincidence-
based vocal coordination for all infant vocalization types (speech-related:
r [704]=.27, p<.001; non-speech-related: r [704]=.21, p<.001, all: r [704]=.21,
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p<.001) as well as in cluster-based vocal coordination for infant speech-
related vocalizations (r [704]=.18, p<.001) but not in cluster-based vocal
coordination for infant all vocalizations (r([704]=.04, p=.25), or infant non-
speech-related vocalizations, r(704)=.05, p=.18.

Using the Fisher r -to-z transformation to test for di↵erences between
correlation strength, we observed stronger convergence for speech-related
vocalizations relative to non-speech-related vocalizations for both volubility
(z=9.04, p<.001) and hierarchical clustering, z = 7.31 p<.001.

For infant speech-related hierarchical clustering, combining the obser-
vation that infants and adults converge with age with the result that infant
hierarchical clustering does not change with age and the result that adult
hierarchical clustering decreases with age, we can infer that the adult vo-
calization environment is adapting its hierarchical clustering to that of the
infant over the course of the first two years of life. Because infant speech-
related volubility increases whereas adult volubility decreases over infant
age, the results from the di↵erence score analyses suggest bidirectional con-
vergence: Both infants and adults adjust volubility rates towards each other
over infant age.

4.4.4 Do the di↵erent coordination measures have
unique developmental trends?

In the previous sections, we established that the three vocal coordina-
tion patterns are not reducible to each other and provide di↵erent perspec-
tives on the interpersonal dynamics of infant-adult vocal coordination. In
this final section, we investigate whether the various coordination patterns
are independently associated with infant age.

In addition to the three vocal coordination patterns that have been
the foci of this study, for this section we also included a conversational
turn taking measure computed by the LENA system. The conversational
turn taking measure computed by LENA is frequently used in the literature
(Caskey, Stephens, Tucker, & Vohr, 2011; Gilkerson & Richards, 2008; Gilk-
erson, Richards, & Topping, 2015; Greenwood et al., 2011; Suskind et al.,
2015; Warren et al., 2010) and is therefore an important measure to include
when assessing independent associations with infant age. A conversational
turn is identified when a sequence of speech-related sound segments from
an adult then an infant, or vice versa, occurs within 5s without an inter-
vening non-speech-related segment or speech-related segment from another
adult or infant. Conversational turn count can be considered a measure of
infant-adult interaction (Warren et al., 2010). Because recording sessions
in our sample greatly varied in length, we computed turn taking rate by
dividing conversational turn count by the length of the recording session.

Because the turn taking rate is computed using only speech-related seg-
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Figure 5. (Top row) Difference Score (DS) results for infant age and (left to right) Infant-
combined hierarchical clustering estimates, speech-related hierarchical clustering 
estimates, and non-speech-related hierarchical clustering estimates. (Bottom row) DS 
results for infant age and (left to right) infant-combined volubility, speech-related 
volubility, and non-speech-related volubility. Note. AF and Volubility DS axes have 
different ranges.  
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Figure 4.5: (Top row) Di↵erence Score (DS) results for infant age and
(left to right) Infant-combined hierarchical clustering estimates, speech-
related hierarchical clustering estimates, and non-speech-related hierarchi-
cal clustering estimates. (Bottom row) DS results for infant age and (left to
right) infant-combined volubility, speech-related volubility, and non-speech-
related volubility. Note. AF and Volubility DS axes have di↵erent ranges.
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ments, we limited our analyses in this section to speech-related coordina-
tion patterns. Table 3 reports first-order correlations and also correlations
with residualized variables. Coincidence-based coordination (r

residual

=.07,
p=.05), rate-based coordination (r

residual

=.31, p<.001), and conversational
turn-taking rate (r

residual

=.15, p<.005) were all independently positively
associated with infant age. Cluster-based coordination was not indepen-
dently associated with infant age, r

residual

=.02, p=.61.

Table 4.3: Results of first order correlations (r) and residual correlations
(r

residual

) of coordination patterns and infant age.
Coordination Pattern r r

residual

Coincidence-based <.001 .07*
Rate-based .27*** .31***
Cluster-based .18** .02
Turn-taking rate -.03 .15***

Note. #p<.1, *p.05, **p.01, ***p.001. For all analyses, degrees of
freedom = 704. Rate-based and Cluster-based coordination reflect

di↵erence scores.

4.5 Discussion

This study examined coordination patterns that arise from di↵erent
measures of infant and adult vocalizations. We aimed to answer three
specific questions: (1) Do coincidence-based, rate-based, and cluster-based
coordination patterns vary depending on the vocalization type produced
by the infant? (2) Do di↵erent coordination patterns provide unique infor-
mation about the interpersonal dynamics of vocal interaction? (3) How do
the various coordination patterns relate to infant age?

We observed that all three coordination patterns displayed higher rates
of coordination for infant speech-related vocalizations relative to infant
non-speech-related vocalizations. These results point to a di↵erence in co-
ordination as a function of speech- relatedness, and could perhaps be due to
speech-related vocalization holding more social value to caregivers. Prop-
erties derived from the coordination patterns provided new insights into
unidirectional and bidirectional adaptation between infants and their care-
givers. Finally, we observed unique trajectories between the coordination
patterns and infant age.
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4.5.1 Hierarchical vocalization patterns and volubil-
ity

To answer the three research questions provided at the outset of this
paper, estimations of vocalization properties such as hierarchical cluster-
ing and volubility were required. An important finding from this study
was that the onsets of infant vocalization bouts have hierarchical struc-
ture at timescales ranging from seconds to hours. This result expands
upon previous work using subjective ratings to assess hierarchical struc-
ture or phrasing of infant vocal productions at shorter timescales (Lynch
et al., 1995) and also converge with evidence of hierarchical structure in
speech based on other algorithms evaluating other vocalization patterns
(Abney, Warlaumont, Haussman, Ross, & Wallot, 2014; Abney, Paxton,
et al., 2014; Luque et al., 2015). Lynch et al. identified the hierarchical
organization of syllables, utterances, and prelinguistic phrases, and identi-
fied hierarchical structure spanning the typical duration of syllables (<500
ms) to less than several seconds in duration. Because of the temporal res-
olution of the automated vocalization segmentation used in our study, the
shortest timescale included in our estimate of hierarchical clustering was
approximately 10s. The hierarchical structure we identified spanned from
⇠10s to ⇠1.5hrs. Therefore, the hierarchical clustering observed in the
present study is at the level of bouts of vocalization and does not reflect
the structure within utterances. Future work is required to better under-
stand the hierarchical structure of infant vocalizations at shorter timescales,
e.g., spanning milliseconds to seconds. These results also suggest that in-
fant prelinguistic vocalizations are not equidistributed and are power-law
distributed. Follow-up analyses (not reported here) demonstrated that the
inter-event intervals of the vocalization events were power-law distributed
with a slope approximating -2. Our results therefore provide evidence for
fractal properties of prelinguistic vocalizations.

Evidence for hierarchical clustering of vocalizations was found at even
the youngest session, recorded from an infant who was 11-days-old. Al-
though estimates of hierarchical clustering for infant speech-related vo-
calizations were not observed to change with age, we observed a reliable
decrease of hierarchical clustering (more random) for infant non-speech-
related vocalizations. The results presented here suggest that infant vocal-
ization bouts exhibit non-random temporal patterning from shortly after
birth and that, for speech-related vocalizations, this hierarchical nature
of vocalization bouts is fairly stable across the period of prelinguistic and
early linguistic development.

We also investigated patterns of infant volubility. Previous work has
suggested that by about 3–5 months of age, infants learn that vocalizations
have social value, with more communicative types of vocalizations influenc-
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ing parental engagement (Goldstein et al., 2009). Previous work has also
found that adult responsiveness to infant vocalizations increases during the
second year (L. Bloom, Margulis, Tinker, & Fujita, 1996). In the present
study, volubility for infant speech-like vocalizations increased with infant
age, replicating prior findings that also used the LENA system (Green-
wood et al., 2011) and strengthening the idea that, over time, infants learn
that vocalizations hold social value and serve a communicative function.
We also found that volubility for infant non-speech-related vocalizations
decreased with infant age (similar to Warlaumont et al., 2014).

It is important to point out a few possible limitations to the observed
results. It is always possible that the increases in volubility are influenced
by decreasing sleeping time relative to neonates. Although this is a possibil-
ity, naps are a component of an infant’s daily routine and among the many
factors of the complex interaction between infant vocalization bouts and
adult vocalization bouts. Additionally, the ability of the LENA system to
discern infant vocalizations may improve with age. Therefore, it is possible
that changes in volubility across age are at least partially due to di↵erences
in the ability of the LENA system to discern between infant vocalizations
across age. Future work combining automatic and manual coding proce-
dures is important to establish the reliability of increased volubility across
age.

We found that changes in hierarchical clustering and in volubility across
age held even when other variables were factored out through residualiza-
tion. These results, combined with the di↵erent developmental patterns
observed for volubility vs. hierarchical clustering, suggest that volubility
and hierarchical clustering provide at least partially independent informa-
tion about infant prespeech and early speech development. The estimation
of hierarchical clustering of vocalizations may provide additional measures
that can help predict later infant behaviors and abilities. For example, the
hierarchical clustering of infant behavior may reflect the daily routines of
a family and/or daycare environment, and the predictability of these rou-
tines may be reflected in the consistency of AF slopes across recordings.
Future work is required to test whether or not hierarchical clustering is
a vocalization property with predictive value for important developmental
outcomes.

4.5.2 Vocal coordination patterns vary by vocaliza-
tion type and provide unique information based
on level of description

We introduced a typology of coordination patterns that spans across
levels of description and time scale: coincidence-based, rate-based, and
cluster-based vocal coordination. Using CRQA, we observed that coincidence-
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based coordination was greater than a random baseline based on shu✏ed
time series. One potential issue with the data collection technique used in
the current study is that we are not directly aware of specific bouts of in-
teraction relative to incidental vocalizations made by infants and adults in
the infants’ auditory environments. Showing that empirical DRCP heights
were greater than surrogate-based DRCP heights provides evidence for the
non-incidental, vocal interaction of infants and adults in close proximity to
the infant.

Across the di↵erent vocal coordination patterns, we found that coordi-
nation patterns based on infant speech-related vocalizations were stronger
and more frequent relative to coordination patterns based on infant non-
speech-related vocalizations. These results point to the sensitivity of the
coordination patterns based on child vocalization type.

4.5.3 Di↵erent coordination patterns provide unique
information about the dynamics of vocal inter-
action

For coincidence-based vocal coordination, we computed leader-follower
dynamics across vocalization type and across temporal lag. We found that
within a 10s window, infant vocalizations precede adult vocalizations and
more so for non-speech- related vocalizations. Rate-based and cluster-based
vocal coordination patterns o↵ered a di↵erent perspective on leading and
following in vocal dynamics. Focusing on rate-based patterns, we found
bidirectional convergence of volubility across infant age: infants and adults
both adjusted volubility rates towards each other across age. Focusing on
cluster- based vocal coordination, we found that adults adapted the hierar-
chical clustering of their vocalizations to that of their infants’ vocalizations
as infant age increased.

Also studying daylong home audio recordings. Ko, Seidl, Cristia, Reim-
chen, & Soderstrom (2015) investigated the relationship between acoustic
properties of mother and infant/toddler vocalizations. Ko et al. observed
that mothers and infants/toddlers converged across various vocalization
properties such as pitch. Specifically, mothers adapted their speech to
the infant/toddler more than vice versa. The results of the current pa-
per extend what Ko et al. observed by pointing to another vocalization
property, hierarchical clustering, that shows similar convergence patterns.
Notably, there was adult-to-infant convergence of both hierarchical clus-
tering and volubility. Our results diverge from Ko et al. in the timescales
of convergence: Ko et al. found convergence of pitch at the local level
of conversational exchange whereas the results in the current study found
convergence of hierarchical clustering and volubility across the entire span
of daylong recording session, e.g., �6hrs.
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The observation that adults adapted the hierarchical clustering of their
vocalizations to that of their infants’ vocalizations adds additional sup-
port to the fine- tuning hypothesis (Snow, 1989, 1995),suggesting that
adults adapt the complexity of their child-directed language in response
to properties of child-produced language. Most of the support for the fine-
tuning hypothesis focused on measures of linguistic complexity (Kunert,
Fernández, & Zuidema, 2011; Snow, 1995; Sokolov, 1993). Our results sup-
port the fine-tuning hypothesis, but use a metric focused on the hierarchical
organization (a hallmark of ‘complex systems’) of vocal clustering instead
of linguistic complexity. Future work testing the fine-tuning hypothesis
should consider multiple measures of ‘complexity’ spanning various levels
of linguistic and vocal alignment.

4.5.4 Coordination patterns and infant age

Since Bateson (1975) and Stern et al., (1975) first proposed that an
important property of interpersonal exchange and communicative function
was the development of turn taking dynamics, several studies have illu-
minated developmental patterns of vocal interaction (Caskey et al., 2011;
Harder et al., 2015; Hilbrink, Gattis, & Levinson, 2015). These studies pro-
vide important information about the timing of turn taking (e.g., Hilbrink
et al., 2015) or the transition from covocalizations to turn taking across
development (e.g., Harder et al., 2015; Rutter & Durkin, 1987). But turn
taking is only one type of vocal coordination. Our investigation of multiple
vocal coordination patterns across development adds to prior research by
showing the relationships between vocal coordination patterns focusing on
di↵erent levels of analysis, and infant age. We found that di↵erent coordi-
nation patterns had di↵erent associations with infant age. Rate-based vocal
coordination had the strongest association with infant age: speech-related
rate-based vocal coordination increased with infant age. Turn-taking rate
and coincidence-based coordination both increased with infant age as well.
When controlling for all other coordination patterns, cluster-based coordi-
nation was not associated with infant age. Although cluster-based speech-
related vocal coordination did not change significantly with increasing in-
fant age once other coordination patterns were controlled for, cluster-based
coordination may nevertheless reflect an aspect of coordination between in-
fant and caregivers that has developmental significance, e.g., by facilitating
information transfer between infant and caregiver across the first year (see
paragraphs below).

We found that infants’ vocal timing became more similar to their care-
givers’ vocal timing across the first two years of life. In other words, within
a 10-second temporal window, infant and caregiver vocalizations occurred
more frequently across infant age. This finding, in conjunction with the
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results of increased turn taking rate and increased rate-based matching
across age suggests a dynamic trajectory of vocal development. Through-
out the first few years of life, infant and caregiver vocalizations become
more temporally coordinated (coincidence-based vocal coordination), vo-
calize at similar rates across the day (rate-based vocal coordination) and
increase the rate of structured turn taking patterns (turn-taking rate).

4.5.5 Future directions

An important potential application of infant-adult vocal coordination
patterns is to the study of language development and atypical development.
Ja↵e et al.’s (2001) contribution is an example of the utility of using coor-
dination patterns to predict developmental outcomes. Future work should
incorporate a pluralistic approach to coordination patterns to determine
the predictive value of di↵erent coordination patterns for important de-
velopmental outcomes. To that end, it is important to understand what
information di↵erent coordination patterns provide.

Coincidence-based vocal coordination provides information about the
similarities and di↵erences in vocal timing. Rate-based vocal coordination
provides information about the similarities and di↵erences in overall vol-
ubility rates across a recording session. Cluster-based vocal coordination
provides information about the similarities and di↵erences in the produc-
tion of hierarchical clustering across a recording session.

Although all three coordination patterns provide important informa-
tion about vocal interaction, cluster-based vocal coordination is motivated
by a theory in statistical mechanics investigating the outcomes of inter-
acting complex networks. More specifically, work in statistical mechanics
has showed that when two complex systems interact, information transfer
between them is enhanced and may even become optimal when their mul-
tiscale dynamics are matched (West et al., 2008), a term called complexity
matching. Previous research studying adult conversations has shown that
the degree of cluster-based vocal coordination or complexity matching dif-
fered depending on specific conservational contexts (Abney, Paxton, et al.,
2014). Perhaps a function of cluster-based vocal coordination is increased
communication? Indeed, the question of function for any coordination pat-
tern or collection of coordination patterns should be the focus of future
research.

This information transfer hypothesis requires much more empirical at-
tention before any substantive conclusions can be made. For example,
recent work on infant language development has utilized the LENA system
along with various standardized measures of language and communication
development (e.g., MacArthur-Bates, Communicative Development Inven-
tory; Fenson et al., 2007) to investigate language learning in naturalistic
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environments (Ramı́rez-Esparza et al., 2014; Weisleder & Fernald, 2013).
Future studies should investigate the role of the production and convergence
of specific vocalization properties like volubility and hierarchical clustering
on vocabulary or other aspects of language development (Northrup & Iver-
son, 2015).

4.6 Conclusion

Our results support the proposal that various vocal coordination pat-
terns spanning multiple levels of description provide unique information
about infant-adult vocal interactions. We found increased coincidence-
based, rate-based, and cluster-based vocal coordination for infant speech-
related vocalizations relative to non-speech-related vocalizations. We also
found di↵erent infant-adult convergence patterns depending on the mea-
sure used. For instance, leader-follower dynamics derived from coincidence-
based coordination measurements suggest that infants lead vocal exchanges
whereas adults adapt their hierarchical clustering to that of the infant over
time. Finally, we found divergent associations between infant age and the
various vocal coordination patterns. In particular, higher degrees of speech-
related coincidence-based, rate-based, and conversational turn taking were
independently associated with increased rates of turn taking. Future work
should address the question of how the various coordination patterns re-
late to the di↵erent contexts and event types the infant experiences over
the course of the day and should attempt to discover the unique functions
the di↵erent coordination patterns serve (if any). Future work should fo-
cus on utilizing multiple vocal coordination patterns in combination to test
whether multiple levels of description increase the predictive value for iden-
tifying important developmental milestones or diagnosing various clinical
disorders.



Chapter 5

Discussion

5.1 Introduction

Research on human communication is a case study on interdisciplinar-
ity, incorporating diverse fields of science, engineering, mathematics, and
the humanities. At the outset of this dissertation, I introduced the Com-
plexity Matching hypothesis for human communication. The Complexity
Matching hypothesis for human communication predicts that when the hi-
erarchical structure of communicative patterns match between two people,
information transmission is enhanced.

Along with investigating the Complexity Matching hypothesis for hu-
man communication, this dissertation addressed the question of whether
there is function to the behavioral and coordination patterns during human
conversation and interaction. Chapter 2 introduced the notion of Complex-
ity Matching as a potential function of information transmission in adult
conversations. Chapter 3 presented a preliminary test of the hypothesis
of information transmission. Chapter 4 investigated the development of
the production and convergence of hierarchical patterns in vocal produc-
tion and interaction. Below, I summarize the important observations and
contributions from each of these chapters.

5.2 Production and convergence of hierar-

chical structure

Across the three studies presented in this dissertation, I focused on
the production and convergence of hierarchical structure in vocalization
and movement behaviors. I observed that both speech and movement are
hierarchical and nested across multiple temporal scales.

Multiscale clustering of human behavior reflects hierarchical nested pat-
terns across temporal scales. For speech, this is related to the notion of
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hierarchical structure in language. From phonemes (Pardo, 2006) and syn-
tax (Bock, 1986) to language style (Niederho↵er & Pennebaker, 2002; Ire-
land et al., 2011) and turn taking timing (Manson et al., 2013), there
are many examples of the matching, alignment, or convergence of spe-
cific levels of linguistic representation between interlocutors. In Chapter
2, I observed that the hierarchical structure of speech di↵ers as a function
of conversational context. Specifically, argumentative conversations have
more correlated clustering of speech onsets relative to a�liative conversa-
tions. Follow-up analyses showed that argumentative conversations have
stronger anti-correlated speech activity, suggesting that there were stricter,
more structured, turn-taking dynamics, relative to a�liative conversations.
Therefore, having higher correlated clustering of onsets across multiple tem-
poral scales might equate to more structured patterns of speech onsets.

Relative to speech, the observation that there are hierarchical nested
patterns of overall movement behavior is less understood. There is a large
collection of research displaying 1/f scaling and long-range correlations in
motor performance (Stephen et al., 2010; Stephen & Hajnal, 2011; Palati-
nus, Kelty-Stephen, Kinsella-Shaw, Carello, & Turvey, 2014; Riley & Tur-
vey, 2002; Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009; Ster-
giou & Decker, 2011). The observation of multiscale clustering of movement
onsets adds to this collection of literature showing hierarchical structure in
specific movement patterns. However, the observation of multiscale clus-
tering in movement onsets requires more description with potential insights
into patterns of variability or bouts of activity that are nested across mul-
tiple temporal scales.

In Chapter 3, I observed multiscale clustering of movement onsets dur-
ing a dyadic problem-solving task. During the task, there are specific be-
haviors that the dyad members would have to perform on a regular basis
such as reaching for objects, stabilizing an object, and gesturing an idea.
All of these bouts of movements likely recur throughout the construction
phase. Going even further, it is likely combinations of these bouts of move-
ment occur and recur as well. For example, we could imagine a sequence
of movement bouts that recur such as (1) Person A gestures an idea, (2)
Person A picks up an object, and (3) then Person A stabilizes the object
while Person B connects two objects together. Future work is required to
better understand the hierarchical nested patterns of movement behavior
across interaction contexts.

The convergence of hierarchical patterns of speech and movement is con-
sistent with the notion of the functional hypothesis of complexity matching.
Indeed, this is a key insight of the Complexity Matching hypothesis. In
Chapter 2, I observed that the degree of matching of hierarchical patterns
of speech di↵ered as a function of conversational context. In Chapter 3, I
observed that the degree of matching of multiscale clustering patterns of
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vocalizations and movement predicted performance on a dyadic problem-
solving task. Crucially, the observations in Chapter 3 provided prelimi-
nary evidence for this dissertation’s hypothesis that there is function to
the structure of multiscale communicative behaviors.

Additional attention must be given to the possibility that complexity
matching might not be independent from local coordination patterns of
the two systems. For a functional hypothesis of converging complex phe-
nomena, is it the global coordination patterns of the two complex systems,
the local coordination patterns, or a mixture of coordination patterns that
explain information transmission? In Chapter 5, we found that multiple
coordination patterns provide unique information about vocal development
and interaction.

Questioning the potential mutual influence of local and global coordi-
nation patterns requires additional inquiry into the coupling medium of the
two systems. In the famous case of Huygen’s coupled pendulum clocks, two
pendulum clocks become synchronized when they were mechanically cou-
pled by being mounted on the same base structure. It is the motion of the
base structure that determines the rate of synchronization (see Pantaleone,
2002, for an overview). It has been shown that visual (M. J. Richardson et
al., 2005), auditory-speech (Shockley et al., 2007), and haptic (Marmelat &
Delignières, 2012) coupling between humans can lead to local coordination
patterns like synchronization. However, what is the coupling medium for
global coordination? Clues to this answer can be seen in work by Marme-
lat and Delignières (2012). They found that the visual and haptic coupling
between two people led to global coordination patterns that were indepen-
dent of any observed local coordination patterns. However, what does this
coupling reduce to? It is possible that the coupling medium between two
people during an interaction reduces down to explanations at the level of
neuronal and large-scale synchrony of brain regions. Indeed, recent work
has provided evidence for brain-to-brain coupling during various interac-
tion tasks (Stephens, Silbert, & Hasson, 2010; Dikker, Silbert, Hasson, &
Zevin, 2014; Hasson, Ghazanfar, Galantucci, Garrod, & Keysers, 2012).

5.3 Quantification of multiscale clustering of

communicative behaviors

In this dissertation, novel methods were developed to estimate the mul-
tiscale clustering, and by extension, the hierarchical structure, of commu-
nicative behaviors. The Allan Factor (Allan, 1966) was adapted to estimate
the clustering of event onsets of communicative behaviors like vocalizations
and body movements. This is a novel methodological contribution to many
diverse literature areas.
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Assessing the hierarchical complexity of language has been a consid-
erable research program since the late 1960s (Miller & Chomsky, 1963;
S. C. Johnson, 1967; Levelt, 1969; Suci, Ammon, & Gamlin, 1967). How-
ever, most of the techniques used to assess hierarchical structure relied
primarily on human raters or breaking down various sentence structure
types. The utilization of the Allan Factor analysis to estimate multiscale
clustering of events provides a new method for assessing hierarchical struc-
ture in vocalizations and other behaviors. It is important to note major
di↵erences between previous methods and the AF analysis used herein.

First, the AF analysis requires a binary spike train, where ’1’ denotes
a specific event. The user defines the conditions required in the data for
an event to occur, and is therefore an important set of free parameters
that need to be justified and communicated e↵ectively for transparency.
The utilization of a binary spike train of events diverges from the previous
methods that were more directly mapped onto the linguistic properties
of sentence structure. Second, the AF analysis can be used to estimate
the hierarchical structure of event series without the need of human raters,
which greatly reduces the subjectivity of estimates. Finally, the AF analysis
can be applied to any type of event series of su�cient size. For example, in
Chapter 3, I was able to investigate Complexity Matching across multiple
modalities.

5.4 Information and information transmis-

sion

For a functional hypothesis of information transmission to be empiri-
cally falsifiable, considerable work is needed to operationalize information
and information transmission. Operationalizing these terms is important
for empirical investigations and for theory building. In the case of simu-
lations (Aquino et al., 2011; Beggs & Plenz, 2003), information transmis-
sion is the activation of another component in the network, e.g., neuron.
How does this scale up to other levels of inquiry? For example, how can
researchers operationalize information transmission during human interac-
tion? Is there a ‘ground truth’ measure? These are important questions
to be answered if a functional hypothesis of multiscale phenomena is to be
regarded as tenable and empirically falsifiable by cognitive scientists.

Complexity Matching (West et al., 2008) was originally developed to for-
malize the relationship between complex networks and information trans-
mission. Recent e↵orts in Psychology and Cognitive Science have made
great strides in understanding the complex coordination patterns in human-
human interactions (Abney, Paxton, et al., 2014; Coey et al., 2016; Fine et
al., 2015; Marmelat & Delignières, 2012; Washburn, Kallen, Coey, Shock-
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ley, & Richardson, 2015) and human-environment interactions (Coey et al.,
2014; Stephen et al., 2008, 2008; Marmelat & Delignières, 2012; Torre et
al., 2013). Despite the progress in understanding the complex coordination
patterns in human models, less work has focused on the main expectation of
Complexity Matching: the consequence of information transmission. The
results from Chapter 3 suggest that indirect information transmission, as
measured by task performance, increases with greater matching of complex
nested movement patterns across group members.

Future work in the Cognitive Sciences should focus on the operational-
ization of information and information transmission. For example, compu-
tational linguistics utilizes information theoretic measures of information
in discourse analyses. One stronger test of the Complexity Matching hy-
pothesis could test whether the convergence of complex human behaviors
(e.g., hierarchical patterns of speech and/or movement) leads to increased
rates of information in the linguistic structure of the conversation.

5.5 Development of hierarchical communica-

tive structure

In Chapter 4, the production and convergence of hierarchical patterns in
vocalizations were observed for infants and their caregivers across the first
two years of life. Even at the youngest age of recording, 11-days-old, there
was evidence for multiscale clustering of vocalizations. This observation
points to the developmental origins of hierarchical nested communicative
behavior. Moreover, I also observed that complexity matching between
infant and caregiver vocal interactions was not fully explained by other
coordination patterns like coincidence-based and rate-based vocal coordi-
nation.

There is a long history of studying coordination patterns in infant-
caregiver interactions to gain insights into linguistic, social, emotional, and
physiological aspects of development (Bateson, 1975; K. Bloom et al., 1987;
Goldstein et al., 2003; Goldstein & Schwade, 2008; Ja↵e et al., 2001; Kokki-
naki & Kugiumutzakis, 2000; Nathani & Stark, 1996; Northrup & Iverson,
2015; Papoušek & Papoušek, 1989; Ramı́rez-Esparza et al., 2014; War-
laumont et al., 2014; Weisleder & Fernald, 2013). However, most of this
research only focuses on one type of coordination pattern and level de-
scription. Such focus has undoubtedly progressed our understanding of the
development of communication. Despite the benefits of focusing on a single
level of description, multi-level theoretical frameworks can provide insights
not a↵orded at a single level of description. The results from Chapter 4
provide an example of how taking a pluralistic approach (Abney, Dale, et
al., 2014) to human interaction can yield insights into multiple areas of the
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phenomenon researchers are studying.
In addition to better understanding the role of multiple coordination

patterns in infant-caregiver interaction, other patterns of unidirectional
and bidirectional convergence were observed. Across the first two years
of life, adults adapt the complexity of their vocalizations to their infants.
It is possible that this convergence pattern is related to the fine-tuning
hypothesis (Snow, 1977) that suggests that adults adapt their linguistic
complexity during infant-directed speech to that of their child. Previous
work on the fine-tuning hypothesis has observed that adults adapt their
linguistic complexity to their infant across the age of the infant (Kunert
et al., 2011; Snow, 1995; Sokolov, 1993). Showing a similar convergence
pattern at a di↵erent communicative level provides support for the fine-
tuning hypothesis but also adds a new dimension to this literature. Future
research should focus on additional levels of communicative structure for
converging evidence of the fine-tuning hypothesis.

5.6 Conclusion

This dissertation focused on testing the Complexity Matching hypoth-
esis for human communication. I have presented three studies that focused
on the production and convergence of hierarchical communicative behaviors
across a variety of interactional contexts and populations. This disserta-
tion also touched on new properties of communicative behavior such as the
hierarchical and nested structure of speech and movement patterns. Future
work should focus on the sensitivity of production and convergence of hier-
archical behavioral patterns across more diverse contexts and populations
along with seeking a better understanding of the necessary and su�cient
conditions of optimal information transmission in human communication.
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Ramı́rez-Esparza, N., Garćıa-Sierra, A., & Kuhl, P. K. (2014). Look who’s
talking: speech style and social context in language input to infants
are linked to concurrent and future speech development. Develop-
mental science, 17 (6), 880–891.

Rescorla, L., & Ratner, N. B. (1996). Phonetic profiles of toddlers with
specific expressive language impairment (sli-e). Journal of Speech,
Language, and Hearing Research, 39 (1), 153–165.

Richardson, D. C., & Dale, R. (2005). Looking to understand: The coupling
between speakers’ and listeners’ eye movements and its relationship
to discourse comprehension. Cognitive science, 29 (6), 1045–1060.

Richardson, M. J., Harrison, S. J., Kallen, R. W., Walton, A., Eiler, B. A.,
Saltzman, E., & Schmidt, R. (2015). Self-organized complemen-
tary joint action: Behavioral dynamics of an interpersonal collision-
avoidance task. Journal of Experimental Psychology: Human Percep-
tion and Performance, 41 (3), 665.

Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., &
Schmidt, R. C. (2007). Rocking together: Dynamics of intentional
and unintentional interpersonal coordination. Human movement sci-
ence, 26 (6), 867–891.

Richardson, M. J., Marsh, K. L., & Schmidt, R. (2005). E↵ects of visual
and verbal interaction on unintentional interpersonal coordination.
Journal of Experimental Psychology: Human Perception and Perfor-



85

mance, 31 (1), 62.
Riley, M. A., Richardson, M. J., Shockley, K., & Ramenzoni, V. C. (2011).

Interpersonal synergies. Frontiers in psychology , 2 , 38.
Riley, M. A., & Turvey, M. T. (2002). Variability and determinism in

motor behavior. Journal of motor behavior , 34 (2), 99–125.
Sales-Pardo, M., Guimera, R., Moreira, A. A., & Amaral, L. A. N. (2007).

Extracting the hierarchical organization of complex systems. Proceed-
ings of the National Academy of Sciences , 104 (39), 15224–15229.

Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase transitions
and critical fluctuations in the visual coordination of rhythmic move-
ments between people. Journal of experimental psychology: human
perception and performance, 16 (2), 227.

Schmidt, R. C., Morr, S., Fitzpatrick, P., & Richardson, M. J. (2012). Mea-
suring the dynamics of interactional synchrony. Journal of Nonverbal
Behavior , 36 (4), 263–279.

Schmidt, R. C., & Richardson, M. J. (2008). Dynamics of interpersonal co-
ordination. In Coordination: Neural, behavioral and social dynamics
(pp. 281–308). Springer.

Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and
minds moving together. Trends in cognitive sciences , 10 (2), 70–76.

Shockley, K., Baker, A. A., Richardson, M. J., & Fowler, C. A. (2007). Ar-
ticulatory constraints on interpersonal postural coordination. Journal
of Experimental Psychology: Human Perception and Performance,
33 (1), 201.

Shockley, K., Richardson, D. C., & Dale, R. (2009). Conversation and
coordinative structures. Topics in Cognitive Science, 1 (2), 305–319.

Shockley, K., Santana, M.-V., & Fowler, C. A. (2003). Mutual interpersonal
postural constraints are involved in cooperative conversation. Journal
of Experimental Psychology: Human Perception and Performance,
29 (2), 326.

Simon, H. A. (1977). The organization of complex systems. In Models of
discovery (pp. 245–261). Springer.

Snow, C. E. (1977). Mothers’ speech research: From input to interaction.
Talking to children: Language input and acquisition, 31–49.

Snow, C. E. (1989). Understanding social interaction and language acqui-
sition; sentences are not enough.

Snow, C. E. (1995). Issues in the study of input: Finetuning, universality,
individual and developmental di↵erences, and necessary causes. The
handbook of child language, 180–193.

Soderstrom, M., & Wittebolle, K. (2013). When do caregivers talk? the
influences of activity and time of day on caregiver speech and child
vocalizations in two childcare environments. PloS one, 8 (11), e80646.

Sokolov, J. L. (1993). A local contingency analysis of the fine-tuning



86

hypothesis. Developmental psychology , 29 (6), 1008.
Spivey, M. (2007). The continuity of mind.
Stanley, H. E. (1987). Introduction to phase transitions and critical phe-

nomena. Introduction to Phase Transitions and Critical Phenomena,
by H Eugene Stanley, pp. 336. Foreword by H Eugene Stanley. Ox-
ford University Press, Jul 1987. ISBN-10: 0195053168. ISBN-13:
9780195053166 , 1 .

Stephen, D. G., Arzamarski, R., & Michaels, C. F. (2010). The role of frac-
tality in perceptual learning: exploration in dynamic touch. Journal
of Experimental Psychology: Human Perception and Performance,
36 (5), 1161.

Stephen, D. G., & Dixon, J. A. (2011). Strong anticipation: Multifrac-
tal cascade dynamics modulate scaling in synchronization behaviors.
Chaos, Solitons & Fractals , 44 (1), 160–168.

Stephen, D. G., & Hajnal, A. (2011). Transfer of calibration between hand
and foot: Functional equivalence and fractal fluctuations. Attention,
Perception, & Psychophysics , 73 (5), 1302–1328.

Stephen, D. G., Stepp, N., Dixon, J. A., & Turvey, M. (2008). Strong
anticipation: Sensitivity to long-range correlations in synchroniza-
tion behavior. Physica A: Statistical Mechanics and its Applications ,
387 (21), 5271–5278.

Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker–listener
neural coupling underlies successful communication. Proceedings of
the National Academy of Sciences , 107 (32), 14425–14430.

Stergiou, N., & Decker, L. M. (2011). Human movement variability, non-
linear dynamics, and pathology: is there a connection? Human
movement science, 30 (5), 869–888.

Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann,
T., . . . others (2009). Universals and cultural variation in turn-taking
in conversation. Proceedings of the National Academy of Sciences ,
106 (26), 10587–10592.

Strogatz, S. H., & Mirollo, R. E. (1991). Stability of incoherence in a
population of coupled oscillators. Journal of Statistical Physics , 63 (3-
4), 613–635.

Suchman, L. (2007). Human-machine reconfigurations: Plans and situated
actions. Cambridge University Press.

Suci, G., Ammon, P., & Gamlin, P. (1967). The validity of the probe-
latency technique for assessing structure in language. Language and
speech, 10 (2), 69.

Suskind, D. L., Le↵el, K. R., Graf, E., Hernandez, M. W., Gunderson,
E. A., Sapolich, S. G., . . . Levine, S. C. (2015). A parent-directed
language intervention for children of low socioeconomic status: a ran-
domized controlled pilot study. Journal of child language, 1–41.



87

Swenson, R., & Turvey, M. T. (1991). Thermodynamic reasons for
perception–action cycles. Ecological Psychology , 3 (4), 317–348.

Thelen, E., & Smith, L. (1994). A dynamic systems approach to the devel-
opment of perception and action. MIT Press Cambridge, MA.

Thurner, S., Lowen, S. B., Feurstein, M. C., Heneghan, C., Feichtinger,
H. G., & Teich, M. C. (1997). Analysis, synthesis, and estimation of
fractal-rate stochastic point processes. Fractals , 5 (04), 565–595.

Torre, K., Varlet, M., & Marmelat, V. (2013). Predicting the biological
variability of environmental rhythms: Weak or strong anticipation for
sensorimotor synchronization? Brain and cognition, 83 (3), 342–350.

Turalska, M., West, B. J., & Grigolini, P. (2011). Temporal complexity
of the order parameter at the phase transition. Physical Review E ,
83 (6), 061142.

Turvey, M. T. (1990). Coordination. American psychologist , 45 (8), 938.
Turvey, M. T. (2007). Action and perception at the level of synergies.

Human movement science, 26 (4), 657–697.
VanDam, M. (2014). Acoustic characteristics of the clothes used for a

wearable recording device. The Journal of the Acoustical Society of
America, 136 (4), EL263–EL267.

VanDam, M., Oller, D. K., Ambrose, S. E., Gray, S., Richards, J. A.,
Xu, D., . . . Moeller, M. P. (2015). Automated vocal analysis of
children with hearing loss and their typical and atypical peers. Ear
and hearing , 36 (4), e146–e152.

Van Orden, G. C., Holden, J. G., & Turvey, M. T. (2003). Self-organization
of cognitive performance. Journal of Experimental Psychology: Gen-
eral , 132 (3), 331.

Voss, R. F., & Clarke, J. (1978). ”1/f noise”in music: Music from 1/f noise.
The Journal of the Acoustical Society of America, 63 (1), 258–263.

Warlaumont, A. S., Oller, D. K., Dale, R., Richards, J. A., Gilkerson, J.,
& Xu, D. (2010). Vocal interaction dynamics of children with and
without autism. In Proceedings of the 32nd annual conference of the
cognitive science society (pp. 121–126).

Warlaumont, A. S., Richards, J. A., Gilkerson, J., & Oller, D. K. (2014).
A social feedback loop for speech development and its reduction in
autism. Psychological science, 0956797614531023.

Warren, S. F., Gilkerson, J., Richards, J. A., Oller, D. K., Xu, D., Yapanel,
U., & Gray, S. (2010). What automated vocal analysis reveals about
the vocal production and language learning environment of young
children with autism. Journal of autism and developmental disorders ,
40 (5), 555–569.

Washburn, A., Kallen, R. W., Coey, C. A., Shockley, K., & Richardson,
M. J. (2015). Harmony from chaos? perceptual-motor delays enhance
behavioral anticipation in social interaction. Journal of experimental



88

psychology: human perception and performance, 41 (4), 1166.
Webb, J. T. (1969). Subject speech rates as a function of interviewer

behaviour. Language and Speech, 12 (1), 54–67.
Weisleder, A., & Fernald, A. (2013). Talking to children matters early

language experience strengthens processing and builds vocabulary.
Psychological science, 24 (11), 2143–2152.

West, B. J., & Deering, W. (1994). Fractal physiology for physicists: Lévy
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