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Piecewise Linear Thermal Model
and Recursive Parameter Estimation

of a Residential Heating System

Eric M. Burger, Hector E. Perez, Scott J. Moura

Energy, Control, and Applications Lab, University of California, Berkeley

Abstract

Model predictive control (MPC) strategies show great potential for improving the performance and energy
efficiency of building heating, ventilation, and air-conditioning (HVAC) systems. A challenge in the deploy-
ment of such predictive thermostatic control systems is the need to learn accurate models for the thermal
characteristics of individual buildings. This necessitates the development of online and data-driven methods
for system identification. In this paper, we propose a piecewise linear thermal model of a building. To learn
the model, we present a Kalman filter based approach for estimating the parameters. Finally, we fit the
piecewise linear model to data collected from a residential building with a forced-air heating and ventilation
system and validate the accuracy of the trained model.

Keywords: building thermal model, heating and air-conditioning, model predictive control, piecewise
linear model

1. Introduction

Heating, ventilation, and air-conditioning
(HVAC) account for 43% of commercial and 54%
of residential energy consumption [1]. Space
heating alone accounts for 45% of all residential
energy use. HVAC systems are an integral part of
buildings responsible for regulating temperature,
humidity, carbon dioxide, and airflow, conditions
which directly impact occupant health and com-
fort. Estimates suggest that component upgrades
and advanced HVAC control systems could reduce
building energy usage by up to 30% [2]. Such
intelligent systems can improve the efficiency of
building operations, better regulate indoor condi-
tions to improve air quality and occupant comfort,
and enable buildings to participate in demand
response services to improve power grid stability
and reduce energy related carbon emissions [3].
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To effectively control the operation of an HVAC
system, it is essential that a model predictive con-
troller incorporate an accurate mathematical rep-
resentation of a building’s thermal dynamics. The
processes that determine the evolution of tempera-
tures within a building are complex and uncertain.
A reliable model improves the ability of a controller
to forecast conditions and meet efficiency and com-
fort objectives. Simulation software, such as En-
ergyPlus and TRNSYS, is capable of high fidelity
modelling of building HVAC systems. These math-
ematical models play a crucial role in the architec-
tural and mechanical design of new buildings, how-
ever, due to high dimensionality and computational
complexity, are not suitable for incorporation into
HVAC control systems [4].

The American Society of Heating, Refrigeration,
and Air-Conditioning Engineers (ASHRAE) hand-
book [5] describes how to determine the thermal
resistance values of a building surface given it ma-
terials and construction type. However, for exist-
ing buildings, details about the materials in and
construction of walls and windows may be difficult
to obtain or non-existent [6]. Additionally, modi-
fications to the building or changes brought about



by time and use (e.g. cracks in windows or walls)
further diminish the potential for characterizing a
building based on design or construction informa-
tion.

Therefore, an ideal control-oriented model would
capture the predominant dynamics and disturbance
patterns within a building, enable accurate fore-
casting, adapt to future changes in building use,
provide a model structure suitable for optimization,
and be amenable to real-time data-driven model
identification methods. For these reasons, low or-
der RC models are widely employed for control-
oriented thermal building models [6][7][8]. Such
models trade complexity and accuracy for simplic-
ity and efficiency.

In this paper, we present a piecewise linear RC
model for the thermostatic control of buildings and
a recursive Kalman filter method for parameter esti-
mation. The piecewise model structure enables the
approximate identification of unmodeled dynamics,
in particular higher-order dynamics and time de-
lays related to changes in the mechanical state of
the system. By employing a recursive parameter
estimation technique, we are able to perform online
data-driven learning of the model.

We do not model heating from solar gain, build-
ing occupants, or equipment. This does not restrict
the applicability of this work because the model
structure can be extended for such cases. By esti-
mating these effects with a single time-varying gain,
we produce a simpler model better suited for pre-
dictive control.

This paper is organized as follows. Section 2
presents our piecewise thermal model and Section 3
overviews the parameter estimation problem. Sec-
tion 4 provides background for the Kalman fil-
ter (KF) and Section 5 formulates a filter-based
method for recursive parameter estimation of the
piecewise thermal model. Section 6 provides nu-
merical examples of our proposed model and algo-
rithm for the parameter estimation of an apartment
with a forced-air heating and ventilation system.
Finally, Section 7 summarizes key results.

2. Building Thermal Model

2.1. Linear Thermal Model

In this paper, we focus on the modeling of an
apartment with a forced-air heating system. We
employ a first order RC model to represent the pre-
dominant thermal characteristics of the conditioned

space, specifically the heat transfer between the in-
terior and the environment and power delivered by
the mechanical system. Solar gain and radiative
heat transfer from the ambient are not considered.
The capacitive elements within the apartment (e.g.
air, walls, furniture) are lumped into a single capac-
itor. Likewise, the resistance values of exterior sur-
faces are aggregated into a single resistance. There-
fore, the change in temperature within the apart-
ment can be represented by the continuous time
state equation [9][10][11]

Ṫ t =
T t∞ − T t

RC
+
Pmt

C
(1)

where T t ∈ R, T t∞ ∈ R, and mt ∈ {0, 1} are the
indoor air temperature (state, ◦C), outdoor air tem-
perature (disturbance input, ◦C), and heater state
(control input, On/Off), respectively. The param-
eters R (◦C/kW ), C (kJ/◦C), and P (kW ) rep-
resent the thermal resistance, thermal capacitance,
and forced-air heater power, respectively.

The model can be expressed in the state-space
form

Ṫ t = AcT
t +Bcu

t (2)

where

Ac =

[
−1

RC

]
Bc =

[
1

RC

P

C

]
ut =

[
T t∞

mt

] (3)

Assuming a zero-order hold on the input u, the
model can be discretized using the transforms

Ad = eAc∆t

Bd = A−1
c (Ad − I)Bc

(4)

where ∆t defines the length in hours between each
time step. In this paper, we define this as ∆t =
1/60 (hours). Therefore, the state-space model be-
comes

T k+1 = AdT
k +Bdu

k (5)

where

Ad =
[
e−

∆t
RC

]
Bd =

[
(1− e− ∆t

RC ) (1− e− ∆t
RC )RP

]
uk =

[
T k∞

mk

] (6)
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and k = 1, 2, . . . , n denotes the integer-valued time
step.

Finally, we can express the discrete time model
in a form that is linear in both the states and the
parameters.

T k+1 = θaT
k + (1− θa)T k∞ + θbm

k + θc (7)

where T k ∈ R, T k∞ ∈ R, and mk ∈ {0, 1} are the
indoor air temperature (state, ◦C), outdoor air tem-
perature (disturbance input, ◦C), and heater state
(control input, On/Off), respectively.

The parameter θa corresponds to the thermal
characteristics of the conditioned space as defined
by θa = exp(−∆t/RC), θb to the energy transfer
due to the systems mechanical state as defined by
θb = (1 − exp(−∆t/RC))RP , and θc to an addi-
tive process accounting for energy gain or loss not
directly modeled.

As noted in [12][10], the discrete time model im-
plicitly assumes that all changes in mechanical state
occur on the time steps of the simulation. In this
paper, we assume that this behavior reflects the
programming of the systems being modeled. In
other words, we assume that the thermostat has
a sampling frequency of 1/(3600∆t) Hz or once per
minute.

2.2. Piecewise Linear Thermal Model

The linear discrete time model (7) is capable
of representing the predominant thermal dynamics
within a conditioned space. Unfortunately, because
it does not capture any higher-order dynamics or
time delays related to changes in the mechanical
state of the system, the model is fairly inaccurate
in practice. Research into higher-order models, in
particular multi-zone network models and the mod-
eling of walls as 2R-1C or 3R-2C elements, have
shown potential for producing higher fidelity build-
ing models [6][7][8]. However, this comes at the cost
of increasing the model complexity and the need for
temperature sensing (in particular, within interior
and exterior walls).

In this paper, we present a piecewise linear
model capable of approximating dynamics related
to changes in the mechanical state of the system.
Our piecewise modelling approach is related to lin-
ear parameter-varying (LPV) systems which em-
ploy a linear model whose parameters change ac-
cording to a time-varying state. This parameter

dependency enables LPV systems to approximate
nonlinear dynamics.

In our piecewise thermal model, the number of
time steps since the system turned on or off serves
as the time-varying state with which the parameters
are determined. Specifically, we define Na models
for when the mechanical system is off (mk = 0)
and Nb model for when the mechanical system is
on (mk = 1). Each of the i = 1, . . . , Na and j =
1, . . . , Nb submodels describe a particular range of
time steps after the mechanical system has switched
from an on to an off state or vice versa. When the
system is off, we define the length of each range as
δa, the number of ranges as Na, and the number
of time steps since the system was last on before
switching off as λa (i.e. if mk−1 = 1 and mk = 0
then λa = 1). Likewise, when the system is on, we
define the length of each range as δb, the number of
ranges as Nb, and the number of time steps since
the system was last off as λb (i.e. if mk−1 = 0 and
mk = 1 then λb = 1). Thus, the piecewise thermal
model is given by

T k+1 =



θa,1T
k + (1− θa,1)T k∞ + θc,1

if mk = 0

and λa ≤ δa
θa,2T

k + (1− θa,2)T k∞ + θc,2

if mk = 0

and δa < λa ≤ 2δa
...

θa,Na
T k + (1− θa,Na

)T k∞ + θc,Na

if mk = 0

and λa > (Na − 1)δa

θa,Na
T k + (1− θa,Na

)T k∞
+ θc,Na + θb,1

if mk = 1

and λb ≤ δb
θa,Na

T k + (1− θa,Na
)T k∞

+ θc,Na
+ θb,2

if mk = 1

and δb < λb ≤ 2δb
...

θa,Na
T k + (1− θa,Na

)T k∞
+ θc,Na

+ θb,Nb

if mk = 1

and λb > (Nb − 1)δb

(8)
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where θa,i and θc,i are the parameters for the i-th
model i = 1, . . . , Na and θb,j is the parameter for
the j-th model j = 1, . . . , Nb. When the system is
on, we employ the θa,Na

and θc,Na
parameters re-

gardless of λa. In the following sections, we describe
a recursive method for estimating the parameters in
(8) using a Kalman filter.

3. Parameter Estimation Background

A fundamental machine learning problem in-
volves the identification of a linear mapping

yk = θTxk (9)

where variable xk ∈ RX is the input, yk ∈ RY is
the output, and the linear map is parameterized by
θ ∈ RX×Y . Additionally, X and Y are the number
of inputs and outputs, respectively.

3.1. Batch Parameter Estimation

Learning can be performed in a batch manner
by producing estimates of the parameters θ̂ given
a training set of observed inputs and desired out-
puts, {x, y}. The goal of a parameter estimation
algorithm is to minimize some function of the error
between the desired and estimated outputs as given
by ek = yk − θ̂Txk.

3.2. Recursive Parameter Estimation

The parameter estimation problem can be ex-
pressed in a recursive form using a discrete-time
state-space model representation

θk = θk−1 + nk (10a)

yk = (θk)Txk + ek (10b)

where θk represents the parameter estimates at
time step k and nk ∈ RX corresponds to the pa-
rameter update noise (i.e. change in parameter val-
ues). The goal of a recursive parameter estimation

algorithm is to produce θ̂k so as to minimize some
function of the error ek.

4. Kalman Filter Background

The Kalman filter (KF) is a recursive estimator
for linear models such as the discrete-time state-
space model

xk = Axk−1 +Buk + vk (11a)

yk = Cxk +Duk + wk (11b)

where variable xk ∈ RX is the state of the system,
uk ∈ RU is the known exogenous input, and yk ∈
RY is the observed measurement signal. The state
transition model is given by A ∈ RX×X and the
control-input model by B ∈ RX×U . The process
noise vk ∈ RX has covariance Qv ∈ RX×X , vk ∼
N(0, Qv). The observation model is given by C ∈
RY×X and the feedthrough model by D ∈ RY×U .
The measurement noise wk ∈ RY has covariance
Qw ∈ RY×Y , wk ∼ N(0, Qw). The variances of
vk and wk (i.e. diagonal elements of Qv and Qw,
respectively) must be known in order to implement
a Kalman filter.

The Kalman filter (KF) algorithm consists of a
prediction step and an update/correction step. The
KF will model xk as a Gaussian random variable
(GRV) with estimated mean x̂k ∈ RX and co-
variance Qkx ∈ RX×X . To provide clarity, it is
helpful to expand the k notation to distinguish be-
tween the state estimates produced before and af-
ter the KF correction step. Therefore, at each time
step k, the predicted (a priori) state estimate, de-
noted as x̂k|k−1, is the mean estimate of xk given
measurements y0, . . . , yk−1. The corrected (a pos-
terior) state estimate, x̂k|k, is the mean estimate
of xk given measurements y0, . . . , yk. To reiterate,
throughout this paper, the uncorrected predictions
(a priori) are denoted by k|k − 1 or k + 1|k whereas
the corrected predictions (a posterior) are denoted
by k|k, k − 1|k − 1, or k + 1|k + 1.

The KF prediction step is given by

x̂k|k−1 = Ax̂k−1|k−1 +Buk (12a)

Qk|k−1
x = AQk−1|k−1

x AT +Qv (12b)

and the update/correction step by

ŷk = Cx̂k|k−1 +Duk (13a)

Qy = CQk|k−1
x CT +Qw (13b)

K = Qk|k−1
x CTQ−1

y (14a)

rk = yk − ŷk (14b)

x̂k|k = x̂k|k−1 +Krk (14c)

Qk|kx = Qk|k−1
x −KQyKT (14d)

Figure 1 illustrates the KF algorithm. The block
TD represents a time delay (commonly denoted in
controls literature by z−1 or 1/z, the Z-transform
of the delay operator).
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Figure 1: Kalman Filter Diagram

5. Recursive Parameter Estimation
of Piecewise Thermal Model

In this section, we present a parameter estima-
tion method for the piecewise linear thermal model
(8) using the Kalman filter (KF) algorithm. To be-
gin, we consider the recursive parameter estimation
problem for the linear model (7), which can be ex-
pressed with the state-space model

θk = θk−1 + nk (15a)

yk =
[
T k − T k∞ mk 1

]
θk + T k∞ + qk (15b)

where (15b) combines (7) with the observation
model yk = T k+1 +wk. The noise term qk ∈ R has
covariance Qq ∈ R, qk ∼ N(0, Qq), and represents
the sum of the process noise vk and the measure-
ment noise wk. The parameter update noise nk ∈
R3 has covariance Qn ∈ R3×3, nk ∼ N(0, Qn).

If we model (15) using the Kalman filter with

A =

1 0 0
0 1 0
0 0 1

 B =

0
0
0


C =

[
T k − T k∞ mk 1

]
D =

[
1
]

uk =
[
T k∞
]

yk =
[
T k+1

]
(16)

then the estimated state θ̂k|k ∈ R3 will be a time-
varying estimate of the thermal model parameters
θa, θb, and θc. Note that the values of the C matrix
will also be time-varying.

To learn the piecewise thermal model, we define
a Kalman filter for each of the Na + Nb models in
(8). When the mechanical system is off (mk = 0),

the state-space model is

θki = θk−1
i + nki (17a)

yk =
[
T k − T k∞ 1

]
θki + T k∞ + qki (17b)

and thus the filter models take the form

A =

[
1 0
0 1

]
B =

[
0
0

]
C =

[
T k − T k∞ 1

]
D =

[
1
]

uk =
[
T k∞
]

yk =
[
T k+1

] (18)

for each of the i = 1, . . . , Na models. Therefore,

the estimated state θ̂
k|k
i ∈ R2 is a time-varying es-

timate of the thermal model parameters θa,i and
θc,i. Additionally, nki ∈ R2 and qki ∈ R are noise
terms for each model.

When the mechanical system is on (mk = 1), the
state-space model is

θkj = θk−1
j + nkj (19a)

yk = θkj + (T k − T k∞)θa,Na
+ T k∞ + θc,Na

+ qkj
(19b)

and the filter models are given by

A =
[
1
]

B =
[
0
]

C =
[
1
]

D =
[
1
]

uk =
[
θa,Na

(T k − T k∞) + T k∞ + θc,Na

]
yk =

[
T k+1

] (20)

for j = 1, . . . , Nb where θa,Na
and θc,Na

are the cur-
rent parameter estimates of model i = Na. There-

fore, the estimated state θ̂
k|k
j ∈ R is an estimate

of θb. Additionally, nkj ∈ R and qkj ∈ R are noise
terms for each model.
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Figure 2: Examples of piecewise thermal models with Na = Nb = 1 (top), Na = 3 and Nb = 2 (middle), and Na = 8 and
Nb = 3 (bottom) used to produce a 2 hour forecast.

When training the models, the temperature mea-
surement T k+1 at each time step is used as an ob-
servation to train only one of the Na +Nb submod-
els as given by (8). In this way, each submodel is
learning to represent a particular characteristic of
the thermal dynamics of the system. For the re-
mainder of the submodels, the parameter estimates
are unchanged (i.e. θ̂ki = θ̂k−1

i for each filter i where
i is not the observed model).

With respect to the covariances Q
k|k
θ , there are

two ways of updating the matrices. The first is to
set each covariance matrix to the previous value.
This expresses that, even though we did not ob-
serve the model in the current time step, we have
not lost confidence in the parameter estimates. Al-
ternatively, we can add the process noise covariance
(as done in the Kalman filter prediction step (12b)),
expressing a increasing loss of confidence in the pa-
rameter values. In this paper, we assume the for-
mer and only alter the covariance matrix when the
model is observed.

6. Residential Heating System
Parameter Estimation Experiments

In this section, we present parameter estimation
results for an 850 sq ft apartment with a forced-air
heating and ventilation system. The apartment is
located in Berkeley, California and equipped with
a custom thermostat designed and built for this re-
search. Therefore, we are able to control the op-

Figure 3: Piecewise thermal model parameters with Na = 8
and Nb = 3 used to produce a 2 hour forecast.

eration of the heating system and to measure the
indoor air temperature. Local weather data, specif-
ically ambient air temperature, is retrieved from the
Internet service, Weather Underground [13].
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Figure 4: Examples of piecewise thermal models used to produce a 24 hour forecast with various covariance values for the nj

and qj noise terms. In each case, Na = 15, δa = 5, Nb = 2, δb = 4, ni,1 ∼ N(0, 10−4), ni,2 ∼ N(0, 10−4), qi ∼ N(0, 10−1).

Data was collect at a time-scale of one minute
for 6 weeks during December and January of 2015-
2016. With this data, we are able to perform recur-
sive parameter estimation of the piecewise thermal
model (8). The results presented in this section fo-
cus of quantifying and qualifying the advantages of
the piecewise model and the Kalman filter based
learning method.

Fig. 2 presents a comparison of thermal models
using varying numbers of Na and Nb submodels.
In each subplot, a 2 hour forecast is produced us-
ing the model parameters as estimated at the start
of the time horizon. The vertical lines designate
the start and end of each model’s corresponding
range. The top subplot shows the most basic case
where Na = Nb = 1, for a total of 2 submodels.
As shown, the model is simply incapable of rep-
resenting the evolution of the indoor air tempera-
ture. Most notably, the forecast poorly accounts for
the thermal dynamics immediately after the heat-
ing system turns off. These dynamics are related
to the interaction between the air and the other
thermal masses (walls, furniture, etc.) within the
conditioned space. These dynamics could, in the-
ory, be captured by a higher order model, but this
would increase the model complexity and the need
for temperature sensor measurements.

By increasing the number of submodels, as shown
in the second and third subplots of Fig. 2, the piece-
wise thermal model is able to better approximate
the dynamics of the apartment and heating system

without significantly increasing the model complex-
ity. Fig. 3 presents a forecast produced by a piece-
wise model with Na = 8, δa = 4, Nb = 3, and
δb = 2. The top subplot shows the 2 hour fore-
cast and the measured air temperature within the
apartment. The remaining subplots show the θa,
θb, and θc parameter values employed by the piece-
wise model at each time step of the forecast.

Fig. 4 illustrates the ability of the model to pro-
duce accurate multi-hour forecasts and the influ-
ence of the noise covariances on the parameter esti-
mates. In each subplot, different covariance values
are used to represent the nj and qj noise terms and
the forecasts are produced using the model param-
eters as estimated at the start of the time hori-
zon. In the top subplot, the model is very accu-
rate for the first several hours before the forecasted
temperature begins to drift downward. The root
mean squared error (RMSE) over the first 3 hours
is 0.039 ◦C and over the first 12 hours is 0.573 ◦C.
In the bottom subplot, the error is less varied with
an RMSE of 0.162 ◦C over the first 3 hours and
0.240 ◦C over the first 12 hours.

7. Conclusions

This paper addresses the need for control-
oriented thermal models of buildings. We present a
piecewise linear thermal model of a building that is
suitable for model predictive control applications.
To estimate the model parameters, we present a

7



Kalman filter based system identification method.
Finally, we present experimental results using real
temperature data collected from an apartment with
a forced-air heating and ventilation system. These
results demonstrate the potential of the model and
parameter estimation method to produce accurate
forecasts of the air temperature within the apart-
ment.
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