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Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
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Analyzing Geographic Clustered Response 

ABSTRACT 

In the study of geographic disease clusters, an alternative to traditional methods based on rates 
is to analyze case locations on a transformed map in which population density is everywhere 
equal. Although the analyst's task is thereby simplified, the specification of the density 
equalizing map projection (DEMP) itself is not simple and continues to be the subject of 
considerable research. Here a new DEMP algorithm is described, which avoids some of the 
difficulties of earlier approaches. The new algorithm (a) avoids illegal overlapping of 
transformed polygons; (b) finds the unique solution that minimizes map distortion; (c) provides 
constant magnification over each map polygon; (d) defines a continuous transformation over the 
entire map domain; (e) defines an inverse transformation; (f) can accept optional constraints such 
as fixed boundaries; and (g) can use commercially supported minimization software. Work is 
continuing to improve computing efficiency and improve the algorithm. 

running head: Analyzing Geographic Clustered Response 

key words: cartogram; density equalizing map projection; disease clusters 
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I. Introduction 

Studies of geographic disease clusters are frequently surrounded by controversy. Often 
such studies, being politically rather than scientifically motivated, are conducted with 
insufficient data and, predictably, yield inconclusive results. There is pressure to publish 
positive results and ignore negative results; as a result, causally unrelated results emerge 
which raise more questions than they answer. Rothman has gone so far as to state: 1 

1) with very few exceptions, there is little scientific or public health purpose to 
investigate individual disease clusters at all; 2) there is likewise very little reason to study 
overall patterns of disease clustering in space-time; and 3) as a consequent of points 1· 
and 2, no new statistical methodologies are needed to refine our study of disease clusters 
or clustering in general. 

Rothman's statement, though perhaps true in a limited context, is so categorically stated 
that it demands discussion. To support the opposite view, we present Figures 1 and 2, 
which are examples of maps in which geographic variation provided important clues 
regarding disease etiology. --

In Figure 1 is the well-known map of Dr. John Snow, in which he plotted cholera deaths 
in central London in 1854.2 The observed clustering of deaths in the vicinity of the 
Broad Street pump (indicated by the circled X near the center of the map) led him to the 
correct conclusion that water from the pump was contaminated and responsible for the 
cholera epidemic. 

In Figure 2 is a map of white male stomach cancer mortality rates, age-adjusted by 
county, 1950-1969.2 The elevated rates observed in northern Minnesota and Michigan 
coincide geographically with high proportions of Northern European immigrants living 
in those areas. The observed correlation is compatible with high rates of stomach cancer 
prevailing in their countries of origin. 3 

The role of statistical analysis is to provide objective criteria for the evaluation of 
alternate hypotheses. A negative result can be as important as a positive one; either must 
be quantitatively stated if it is to contribute usefully to epidemiologic knowledge. For 
example, quantitative statistical techniques are required in order to avoid drawing possibly 
incorrect conclusions from Figures 1 and 2: 

In Figure 1, cases rather than rates were plotted. Without knowledge of the population 
distribution, one cannot know whether the observed cluster of cholera cases demonstrates 
a real health risk, or is simply a reflection of higher population density in the vicinity of 
the Broad Street pump. 

In Figure 2, without knowing the population of individual counties, one cannot know 
whether the high rate in a black-shaded county is statistically significant. Furthermore, 
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large sparsely populated counties such as those in the Southwest are statistically less 
important than their size suggests. 

I.A. Density equalizing map projections (DEMPs) 

An early attempt to deal with such problems is illustrated in the maps of Figure 3, which 
were published in 1927.4 In (a) the number of 1915-1924 smallpox deaths in each 
California county is represented by a number of dots; in (b) each county has been given 
an area proportional to its population, so that population density is everywhere equal. 
The author actually constructed his maps from lumps of plastocine; the weight of 
plastocine put into each county was proportional to the population; the density-equalized 
map in (b) was produced by rolling the counties flat with a rolling pin. The smallpox 
clusters observed in (a) are primarily an artifact of the large populations in one or two 
counties. In this example, the author did not discuss how the transformed map might be 
statistically analyzed. 

Density-equalized maps, frequently called cartograms, have been widely used for graphic 
display, in various applications unrelated to epidemiology or public health. More often 
than not, cartograms have been drawn freehand by a graphic artist. 5•6 Others have been 
constructed with the aid of computers, but no specification has been given for linking the 
transformed map to a variable such as population. 7 

In recent years, a number of computerized algorithms for density equalizing map 
projections (DEMPs) have been described and used to display geographic 

· data. 8•9•10•11•12 In each case, the algorithm iteratively adjusts polygon boundaries 
by ad hoc procedures until each polygon has the desired area. For example, maps of the 
United States before and after a DEMP, from Schulman et al., 8 are shown in Figure 4. 
DEMPs in the references cited here, with the exception of Schulman et al., have not been 
used for quantitative statistical analysis of spatial data. 

I. B. Statistical analysis of DEMPs to study disease clusters 

Previous work at Lawrence Berkeley Laboratory has focused on the application of 
DEMPs to the study of disease clustering.8

•
13

•
14

•
15 A transformed map is particularly 

useful for epidemiologic analysis· of disease because spatial patterns of disease cases are 
generally dominated by the distribution of populations at risk. 

Clusters of disease cases can occur on an ordinary geopolitical map, even if every 
individual is equally likely to contract the disease. Examples are shown in Figure 1 and 
Figure 3(a). The apparent clusters can be the result of (a) non-uniform risk of disease, 
or (b) non-uniform distribution of the population at risk, or (c) both. 
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Typical procedures for eliminating the confounding effect of a non-uniform population . 
distribution include calculation of rates (as shown in Figure 2), or Poisson regression 
analysis. Rates cannot be reliably calculated if the number of cases in each geographic 
subarea is very small, and combining subareas in order to create a region with a 
significant number of cases causes geographic information to be_ lost. 

More importantly, combination of .subareas can introduce bias, since the choice of 
subarea groups is arbitrary and can be affected by prior knowledge of the data. The 
notorious practice of "Texas sharpshooting" (for example defining a study area which 
would group together the high-rate counties of Figure 2) is guaranteed to produce a 
biased and meaningless result. 

A DEMP in general provides an unbiased method of assessing geographic clustering both 
visually and statistically, free from the confounding distribution of the population at risk. 
Exact case locations can be used, so that no geographic detail is lost. The statistical 
analysis of a DEMP is simplified, since a disease whose risk is spatially uniform (the null 
hypothesis) produces a random distribution of-cases over the transformed map. As a 
result, on a DEMP, the expected moments of the distribution of cases (calculated under 
the assumption of uniform risk) depend only on the external boundary of the transformed 
map and can be calculated analytically. 8•

13
•
14 

.-- ~ -

I. C. Limitations of previous DEMP algorithms 

In the present paper we discuss features of DEMP algorithms per se, without repeating 
previous worJ:cl·13•

14
•15 concerning the statistical analysis of density equalized maps. 

Although the DEMP greatly simplifies the analyst's task, the specification of the DEMP 
itself is not simple and continues to be the subject of considerable research. With minor 
exceptions, the previously published DEMP algorithms8

•
9

•
10

•11 •12 share the following 
drawbacks: 

(a) Sparsely populated areas are necessarily transformed into thin snakelike areas, and 
repeated iterations are frequently unable to reduce their area to the desired value. 
Without special procedures, some transformed polygons overlap each other, 
corresponding to a multivalued mapping function and areas with negative population 
density. 

(b) Even when correct polygon areas are achieved, there is an infinite number of possible 
solutions, and no objective criterion by which to judge their relative merit. 

(c) Only the transformed polygon area is important for most display purposes. A stricter 
condition -- constant area magnification within each polygon -- is required if the 
transformed map is to be used for statistical analysis of point locations. This condition 
is not guaranteed by most of the previous algorithms. 
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(d) Only the transformation of boundary points is specified, and not the transformation of 
points within the polygons (for example, the locations of disease cases). 

(e) An inverse transformation is not specified. This could be used, for example, to plot on 
the original map contours which include equal numbers of people. 

(f) Imposition of additional constraints (for example, requiring a fixed boundary) is usually 
not possible. 

(g) The previous algorithms incorporate ad hoc iteration procedures. They do not take 
advantage of important recently developed optimization techniques. 

In this paper we introduce a new DEMP algorithm that eliminates all of the deficiencies 
(a)-(g). 

Section n describes pre-DEMP map processing. Latitude and longitude are converted to 
Cartesian coordinates, unneeded geographic details are removed, and each polygon in the 
map is subdivided into triangles. 

Section ill describes the DEMP algorithm itself. A linear transformation is defined for 
every triangle in the map; then the parameters of the transformation are adjusted with 
standard nonlinear optimization techniques, so as yield the correct transformed area for 
each triangle while holding overall map distortion to a minimum. 

Section IV describes post-DEMP map processing. The linear transformation within each 
triangle is used to determine the transformed location of arbitrary points in the map. The 
transformed locations of cases of disease are statistically analyzed by methods which have 
been described elsewhere. 8•

13
•
14

•
15 

ll. Pre-DEMP map processing 

In this section we describe the methods used to prepare a geographic map, with 
coordinates given in latitude and longitude, for DEMP processing. Because the DEMP 
requires calculation of polygon areas, we first convert latitude and longitude to 
approximate distance units, e.g. kilometers. In order to reduce computation time we 
remove unnecessary detail by filtering out points which contribute little to map definition. 
Then we subdivide the map polygons into triangles so that the DEMP can be described 
as a continuous piecewise linear transformation with a finite number of parameters. 

We assume that the map file to be processed is free of errors, and that unwanted features 
such as small islands and lakes have been removed. One can show that an error-free map 
of a simply connected region (i.e., without islands or lakes) obeys the relationship 
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(number of segments) - (number of points) = (number of polygons) - 1 

ll.A. Transformation of map coordinates 

Coordinates in geographic base files (GBF) are customarily stored in degrees as 
Oong,lat), where 

long = I east longitude I or -I west longitude I 

lat = I north latitude I or -I south latitude I 

In order to facilitate area calculations, the geographic Oong,lat) coordinates are first 
transformed into Cartesian coordinates (x,y), using any desired map projection. For 
example, for small areas far from the poles (noting that one degree of latitude is 
approximately 111.195 Ian) one might use the equirectangular projection 

x = 111.195 c0 Oong -ao) cos ( b0 '" I 180) 

y = 111.195 c0 Oat- bo) 

where (tJo,bo) are the Oong,lat) coordinates of the approximate center of the map, and c0 
is a scale factor approximately equal to the number of map units in one kilometer. If (for 
example) c0 = 1000, x andy are in meters, and areas are in square meters. We calculate 
maxkm, the maximum linear extent of the map in kilometers; then choose 

c0 = 1 if 4000 s maxkm; 

c0 = 10 if 400 s maxkm < 4000; 

c0 = 100 if 40 s maxkm < 400; 

c0 = 1000 if 4 s maxkm < 40; 

etc. With this choice, x and y can be stored as 16-bit integers, and exact area 
calculations can be performed with 32-bit integer arithmetic. (In order to use integer 
arithmetic and avoid division by 2, it is necessary to calculate and compare values equal 
to twice the area, rather than area.) 

For larger areas such as the continental United States, a different projection such as a 
conic projection would be more suitable. The projection parameters (for example lJo, b0 
and c0) and the specification of what projection was used should be stored along with the 
(x,y) map coordinates to permit later conversion back to Oong,lat) coordinates. 

7 



ll.B. Polygon area calculations 

The DEMP algorithm relies on polygon area calculations, which are illustrated in Figure 
S. Map files are stored in a Dual Independent Map Encoded (DIME) format, similar to 
that used by the U.S. Bureau of ~e Census for its 1990 Census TIGER (Topologically 
Integrated Geographic Encoding and Referencing) files. 16 Records corresponding to 
individual line segments, stored in arbitrary order, contain: 

• code(s) of polygon on left side of segment 

• code(s) of polygon on right side of segment 

• x andy coordinates of start ("from") point of segment 

• x andy coordinates of end ("to") point of segment 

Each segment has an arbitrary "direction" indicated by its "from" and "to" point. The 
contribution to a given polygon's area is positive or negative if the polygon lies 
immediately to the left or right of the segment, respectively, and zero if the segment is 
not part of the polygon's boundary. The contribution of the segment to the polygon's 
area is 

± 1h ( Xerom Yto - X,o Yerom ) 

Polygon areas are calculated by summing over all segments in the file, in any order. 
"Polygon 00" in FigureS is the external area not included in polygons 01 and 02. By 
the convention just described, the areas of polygons 01, 02 and 00, respectively, are 
equal to 

Ordinary polygons like 01 and 02 are traced counterclockwise and have positive area. 
Polygon "holes", like polygon 00, are traced clockwise and have negative area. 
Including the "holes", the net area of the entire map file is zero. 
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n.c. Point removal 

Before proceeding with the DEMP, ·we remove unnecessary geographic detail from the 
map file in order to reduce computation time. The method illustrated in Figure 6 is 
simple, and retains the most important features of the map. The preservation of nodes, 
i.e. points that cannot be removed without altering the map topology, is an important 
feature of the point removal algorithm. 

In (a), nodes A and Fare connected by line segments through points B, C, D and E, 
which are candidates for removal. We wish to retain geographic features larger than a 
certain size, for example 10 km2• The areas of all triangles involving three adjacent 
points (ABC, BCD, CDE, and DEF) are calculated, as shown. The smallest triangle is 
CDE (with an area of 3 km2). We therefore remove point D; the segments CD and DE 
are replaced by the single segment CE. 

In (b), the areas of the remaining affected triangles are recalculated and the process is 
repeated. The smallest triangle is CEF (with an area of 1 km2) so point E is removed. 

In (c), no triangles smaller than 10 km2 remain, so points B and C are retained. 
Processing of the chain AF is complete. 

The entire map file contains multiple chains similar to ABCDEF. In practice the smallest 
triangle in the entire map is always the next one considered for point removal, until the 
limit of 10 km2 is reached. If removal of the considered point would cause two line 
segments anywhere in the map to intersect, the next smaller triangle in the map is 
considered instead. No polygon is reduced below three points. 

In Figure 7 and Table I we illustrate point removal in a 1980 Census tract map of San 
Francisco. The map, with a total area of 120 km2, has 152 polygons (excluding the 
external boundary polygon) and 415 chains connecting 264 nodes. All maps in Table I 
and Figure 7 obey the relationship 

(number of segments) - (number of points) = (number of polygons) - 1 

because each step in the point removal algorithm simultaneously removes one point and 
one segment, without altering the number of polygons. 

The 0 km2 map (not shown) differs from the original map in that collinear segments have 
been consolidated. The 0.01 km2 map in (b) appears only slightly less detailed than the 
original map in (a) even though the number of points has been reduced from 1920 to 656. 
Even in the 1 km2 map in (c), with only 268 points, the map still recognizably portrays 
San Francisco census tracts. The minimum map in (d), corresponding to an infinite point 
removal criterion, contains only the 264 nodes, which are necessary to preserve the 
original map topology; each of the 415 chains has been reduced to a single line segment. 
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Because excessive detail exacts a large computation penalty, we recommend a 1 km2 point 
removal criterion for tract level DEMPs in dense urban areas like San Francisco. A point 
removal criterion between 100 km2 and 1000 km2 is appropriate for most county level 
maps. 

U.D. Triangulation of polygons 

We wish to represent the DEMP transformation by a finite number of parameters which 
are closely related to the available data; namely, the populations and polygon boundaries 
of the original map. Triangulation of each polygon allows a piecewise linear description 
of the DEMP transformation, while introducing no arbitrary new parameters. 

It bas been argued that, for purposes of interpolation, 17 

the Delaunay triangulation is most appropriate because, besides being unique for a given 
set of data points, it simultaneously maximizes the number of triangles and produces 
triangles that are as equiangular as possible. This is important in the interpolation 
process since it ensures that triangle edge lengths and thus the distances between 
interpolation points are minimized. 

A simple process-Is used which yields the uniquely defined Delaunay triangulation of 
every polygon. (In triangulating a quadrilateral all of whose points lie on a circle, there 
are two possible choices, both equally valid.) The algorithm is based on the properties 
of Voronoi (or Thiessen) polygons17 and a theorem which is proved in Appendix A: 

Given n points in a plane, if the circle drawn through three of those points 
does not contain or touch any other of the n points, the triangle connecting 
those three points belongs to the Delaunay triangulation. 

Application of the theorem is illustrated in Figure 8 for a sample polygon ABCDE. We 
want the triangulation of the plane to include all the pre-existing polygon boundaries, so 
we need only triangulate each polygon, one polygon at a time. Three adjacent points in 
the polygon boundary which form an interior angle less than 180 degrees, for example 
ABC, are arbitrarily selected. The (unique) circle is drawn which passes through all 
three of the points ABC. If the circle contains no other points of the ABCDE polygon 
boundary (which is the case), then triangle ABC is part of the Delaunay triangulation. 
Triangle ABC is separated out, and the same process is applied to the remaining polygon 
ACDE. 

,. In the remaining polygon ACDE, the circle through triangle ADE contains no other 
points, so triangle ADE (and hence also ACD) is valid. On the other hand, the circle 
through triangle CDE contains points A and B, so triangle CDE is not valid (nor is 
ACE). 
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The triangulation process is repeated for every polygon in the entire map. Because the 
interior angle EAB is greater than 180 degrees, triangle EAB may be included in the 
triangulation of another polygon, but not of ABCDE. 

In Figure 9 we illustrate the triangulated map of San Francisco, obtained by applying the 
triangulation algorithm to the 1 km2 map shown in Figure 7(c). The triangulated map 
in Figure 9 contains 498 triangles, 268 points and 765 segments. Like all the maps in 
Figure 7 and Table I, it obeys the relationship 

(number of segments) - (number of points) = (number of polygons) - 1 

since each step in the triangulation algorithm simultaneously adds one segment and one 
polygon, without altering the number of points. 

ill. DEMP algorithm 

The DEMP algorithm itself will now be described. The DEMP transformation is 
assumed to be continuous and piecewise linear; every triangle is mapped into another 
triangle, and adjacency of the triangles is preserved. The parameters of the DEMP are 
the transformed coordinates of the triangle vertices. The transformed area of each 
triangle is uniquely determined by requiring that (a) total area be unchanged (b) 
transformed areas be proportional to population, and (c) magnification be constant within 
each polygon. The DEMP parameters are optimized to determine the transformed map 
configuration which satisfies the area constraints and is least distorted relative to the 
original map. 

m.A. Piecewise linear transformations 

Once the Delaunay triangulation has been performed on the entire map file, our density 
equalizing map projection (DEMP) is performed. For simplicity, we require that the 
transformation within each Delaunay triangle be constant and linear; under such a 
transformation, each triangle maps into another triangle. 

In the example of Figure 10, all points (x,y) within triangle 01 are mapped into points 
(u, v) by the linear transformation 

u = tlo1 X + bo1 Y + eo1 

V = C01 X + do1 Y + fo1 

In matrix notation, 
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( 

u ) = ( Dot bot eot ) ( x ) 
v Cot dot lot Y 

1 0 0 1 1 

The area of triangle 01 is Ao1 before the transformation and Bot after the transformation. 

Similarly, all points (x,y) within triangle 02 are mapped into points (u, v) by the linear 
transformation 

u = iJo2X + b02 y + e02 

V = C02 X + doo Y + /02 

In matrix notation, 

The area of triangle 02 is Am. before the transformation and B02 after the transformation. 

The two linear transformations in Figure 10 can be defined by specifying the twelve 
coefficients Dot throughfot and Dol. through/02• Four constraints on the coefficients are 
required in order to preserve the adjacency of triangles 01 and 02 in the transformation. 
Necessary (but not sufficient) conditions are: e0t = e02 and lot = / 02• More 
economically, one can defme the transformation by simply specifying the eight 
transformed triangle coordinates (ut, vt), (~, v~, (UJ, v3), (u4, v4). Expressions for a ... f 
in terms of u and v (and the original coordinates x and y) are as follows. For example, 
for triangles 01 and 02: 
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( 
: ~ ;: ) = ( :: ~ :: ) [ ;: ~ ;: )-1 
0 01 111 111 

By considering the transformation of an infinitesimally small map region, one can show 
that at any point the map magnification, i.e., the ratio of transformed to original map 
area, is equal to the Jacobian 

au av av au ----- = od-bc 
& c3y & c3y 

In order that spurious disease clusters not be produced by the DEMP, we require not only 
that transformed polygons have the correct area, but also that area magnification be 
constant within each polygon associated with a given population. This is automatically 
true within each triangle, since a, b, c, and d are constant for a linear transformation. 
In the next section we describe the additional constraints required to guarantee constant 
magnification within each entire polygon. 

If Aot " 0, the DEMP transformation is defined. The Jacobian is equal to Bot/ Aot = 
llotdot-b01c0t, the area magnification factor of triangle 01. 

If Bot " 0, the inverse transformation is defined, with an area magnification factor of 
AotiBot = (Dotdot-botCot)-t. 

lli.B. Area constraints 

In Figure 11 we illustrate the area constraints that are applied to polygons in a DEMP. 
Two polygons, a triangle 01 and a quadrilateral 02, are defined by coordinates (xt,yt) 
through (x5,y5), which are transformed into coordinates (uh vt) through (u5, v5). The 
Delaunay triangulation divides the quadrilateral 02 into triangles 02.1 and 02.2 (and the 
triangle 01 into a single triangle 01.1). Areas before and after the DEMP are denoted 
by A and B respectively. We require that: 

• total map area be unchanged by the transformation; i.e., 

Btot = ~ 

• after the transformation, transformed polygon areas be proportional to population; i.e., 
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Bo1 I popo1 = :8o2 I pop02 

• areas of triangles within each polygon are in the same proportion before and after the 
transformation; i.e. , 

:8o2.1 I Am.1 = :8o2.2 I Am.2 

Hence we require the target areas B0u, Bm.1 and B02.2 to be equal to 

where 

Bou = popOI X [Am. I popcoJ X [Aou I Ao1l 

B02.1 = pop02 X [Am. I popcoJ X £Am.1 I Am] 

:8o2.2 = pop02 X [Atot I popcoJ X £Aol.2l Ao2] 

poptot = popOl + pop02 

~ - Ao1 + Ao2 - Aou + Am.1 + Am.2 

-~ - B01 + Bm - Bou + Bo2.1 + Bo2.2 

In the (u, v) space, then, we require the transformed triangle areas to be equal to their 
target values, which sets up the following three quadratic constraints on (u1, v1) through 
(us, Vs): 

The imposition of separate area constraints on triangles Bm.1 and Bo2.2, and not just on 
the quadrilateral B02, is a critical feature of the DEMP algorithm. This feature prevents 
the occurrence of negative-area triangles, which would produce double-valued regions of 
the mapping function and self-intersecting polygon boundaries. 
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ID.C. Map distortion 

The area constraints described in the previous section are insufficient to completely define 
the DEMP. In the example of Figure 11, the ten parameters (u1, v1) through (u5 , v5) are 
restricted by the three constraints Hou = 0, Hm.1 = 0, and Hou = 0. Three further 
constraints are imposed by requiring that the transformed map not be rotated or translated 
(in x or y) relative to the original map. Four degrees of freedom remain, which means 
that the number of possible solutions is infinite. 

Tobler recommends that a unique optimum solution be defmed by making the DEMP be 
as nearly conformal as possible. 18 Conformal transformations are those that locally 
preserve the shape (but not necessarily the size, location, or orientation) of each 
infinitesimal portion of the map. As illustrated in Figure 12, conformal linear 
transformations include all combinations of translations, rotations and magnifications, 
corresponding to the following transformation matrices: 

( 

1 0 e) 
o 1 1 ; 
0 0 1 

( 

cose -sine o ) 
sin9 case 0 ; 

0 0 1 
( 

M 0 0) 
0 M 0 

0 0 1 

but not reflections, compressions or shear transformations, corresponding to the following 
transformation matrices: 

( 

1 0 

0 -1 

0 0 
~ ) ; - . ( ; A~l : ) ; 

1 0 0 1 
( 
1 B 0) 
0 1 0 

0 0 1 

Tobler's suggested measure of non-conformality (which we write in more customary 
notation)19 is the integral over the original map of 

&u &u &v &v 
-+-+-+-
at2 ay2 &2 ay2 

This quantity is identically equal to zero for conformal transformations, which by 
definition obey the Cauchy-Riemann conditions19 

au av au av -=- - =--ay ax 

However Tobler's measure does not properly reflect the non-conformality of of 
reflections, compressions or shear transformations; i.e., linear transformations of the form 
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where a "d orb " -c, since his measure is equal to zero in this situation also. 

Instead of using Tobler's measure, we define instead the non-conformal distortion of a 
triangle 01.1 as 

where tlo1.h b01.., c0u and dou are functions of (x,y) and (u, v) defined as in ~tion 
m.A. The resulting expression is quadratic in ult vh ~' v2, u3 and v3, the transformed 
coordinates of triangle 01.1: 

6 o1.1 = { [ Ut(y2-Y3) +~(y3-Yt) +u3(yt-Yv -v1(x3-xv -v2(X1-x3) -v3{x2-xl) 12 

+ [ u1(x3-x~ +~(xl-x3) +u3(x2-x1) +vt(y2-Y3) +v2(y3-Yt) +v3(y1-Y~ 12 } I detl 

where 

The distortion of the entire map is calculated as a sum of G over all triangles, weighted 
by the area of each triangle. We choose the weighting coefficients to be A+ B, the sum 
of the original area A and the target area B. (Using A instead of A +B yields unstable 
solutions for triangles which are initially small and which are magnified by large factors; 
using B alone yields unstable solutions for triangles which are magnified by small factors. 
In addition, the symmetric form A+ B has the aesthetic property that the DEMP 
transformation, and the inverse transformation to return to the original map, have equal 
distortion.) 

The assumed transformation functions u(x,y) and v{x,y) are continuous and piecewise 
linear; however, they have discontinuous first and second derivatives at triangle 
boundaries. At this time it is not clear how to quantify that component of map distortion. 

ID.D. Summary of DEMP algorithm 

In summary, the DEMP algorithm consists of finding the set of transformed coordinates 
u1, v1, ~, v2 ... which minimize overall map distortion subject to the triangle area 
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constraints. That is, for the example of Figure 11, finding the values u1, vi, ... Us, Vs 
which minimize 

where 

subject to the three quadratic constraints 

Hou = 0; H01.1 = 0; H02.2 = 0 

or, equivalently, to the single constraint 

which is fourth order in u1, v1, ••• us, vs; g0 and ho are arbitrary constants. The 
constants ho1.~t ~.1 and ~.2 must be positive and non-zero; good convergence is 
obtained for the choice 

1 
hot.t = B + B 

01.1 miD 

"1 1 ; hoo.t = ; h02.2 = ----
B02.1 + Bmm. B02.2 + Bmin 

where Bmin = Atot/poptot; namely, the area on the transformed map equivalent to a 
population of one person. The-Bmin term is required to avoid infmitely large coefficents 
h, for triangles having population and target area B equal to zero. 

During the DEMP process, three of the ten parameters U~t v1, ••• us, Vs should be fixed 
in order to prevent arbitrary x translation and/or y translation and/or rotation of the entire 
transformed map. As illustrated in Table ll, 

(number of parameters) = 2 • (number of points) - 3 

In order to fix three parameters, a convenient choice for a map whose x range exceeds 
its y range is: 

where (XwesuYwe.J and (Uwe.,Vwe.J are respectively the original and transformed (x,y) 
coordinates of the westernmost point of the original map; Yea• and veast are respectively 
the original and transformed y coordinate of the easternmost point of the original map. 
A convenient choice (with similar definitions) for a map whose y range exceeds its x 
range is: 
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After the DEMP, the resulting map can then be translated and/or rotated as desired. 

Optionally, additional constraints. can be imposed during the DEMP optimization, 
provided a feasible solution of the area constraints exists. For example, one could · 
require ui-xi and vi=Yi for all points ion the external map boundary. 

IV. Post-DEMP map processing 

In analyzing the geographic distribution of disease, the primary purpose of the DEMP is 
to plot cases on a transformed map where population density has been equalized. In 
addition one may wish to transform the locations of various geographic features. For 
example, one would normally wish to plot on the transformed map the location of a 
supposed environmental hazard such as a microwave tower or a toxic waste dump. 
Contours of equal distance from a point source, although no longer circular, could still 
serve to identify areas of supposedly equal risk. A transformed latitude-longitude grid 
could help the analyst locate additional features on the transformed plotted map. 

Case locations or geographic features are transformed as follows: 

• With the transformation described in Section ll.A, the (long,lat) location of a disease case 
or geographic feature k is frrst projected into (xt,y,), in the same coordinate system as the 
pre-DEMP polygon map. 

• The DEMP solution, determined as in Section m.D, provides values of (u, v), the vertices 
of all triangles in the DEMP-transformed map. From these, as explained in Section 
m.A, one can calculate ai,bi,q,di for each triangle i, and a global e and f. 

• A point-in-triangle routine, along with the pre-DEMP triangle coordinates (x,y), is used 
to determine in which polygon i each point k is located. A point k lies inside or on the 
boundary of a triangle with vertices (xhy1), (x2,y:J, (x3,y3) (labeled in counterclockwise 
order) if and only if all three of the following quantities are non-negative: 

• Then the appropriate ai,bi,ci,di (and e and/) are used to transform the point (xt,Yt) into 
density-equalized coordinates (utt vJ. 
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In a density equalized map, analysis of disease distributions is relatively straightforward. 
As described in Section I.B, a number of quantitative techniques have been developed, 
which have certain advantages over traditional rate comparisons or relative risk 
calculations. 8•

13
•
14

•
15 

V. Preliminary results 

V .A. NAG optimization 

In our preliminary tests of the DEMP algorithm we have used the NAG ·(Numerical 
Algorithms Group) Fortran library routine E04VDF, which minimizes the quadratic 
objective function G(u, v) subject to the fourth order constraint condition H(u, v) = 0. 20 

(An attempt to separately apply the quadratic constraints H0u = 0, H02.1 = 0, H02.2 = 
0 led to excessive memory usage when the size of the problem was increased.) 

E04vt>F uses a sequential quadratic programming method described by Gill et al. 21 

Explicitly calculated first derivatives of the objective function G(u, v) and constraint 
function H(u, v), with respect to the variables ult vlt u2, v2, etc. are required. We note 
that G(u, v) and the individual Hi(u, v) are sums of separate terms, each of which is a 
quadratic function of only six parameters; namely, the transformed u and v coordinates 
of the vertices of a single triangle. 

In addition, E04VDF requires an initial estimate of the solution, for which we use the 
original map (u1 = x1, v1 = y1, etc.) 

Without affecting the final solution, the objective function G(u, v) and its derivatives can 
be multiplied by an arbitrary constant g0• Similarly, the constraint function H(u, v) and 
its derivatives can be multiplied by an arbitrary constant lzo. Larger values of g0 and ho 
produce more precise solutions, with more iterations. The ratio hoi g0 determines the 
relative weights of the two functions. Large values of hoi g0 can produce solutions in 
which distortion may not be minimized; small values can produce solutions in which the 
final triangle areas are not exactly correct. Some trial and error is required to obtain 
satisfactory solutions without an excessive number of iterations. 

V .B. Examples 

To illustrate the results of the preliminary DEMP implementation, we have chosen the 
state of Vermont, which has 14 counties. A point removal criterion of 500 km2 was 
applied as described in Section II.C; then the filtered map was triangulated as described 
in Section ll.D. The filtered and triangulated Vermont map, which is shown in Figure 
13(a), has 30 points and 43 triangles; i.e., 57 parameters and 43 area constraints. 
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In Figure 13(b) the same map has been transformed by a DEMP as described in Section 
m.D; in this example the variable equalized by the DEMP is the 1980 total population. 
Note that in the transformed map (b) the areas of triangles within a given county are 
proportional to their areas in the original map (a). 

Figure 14 illustrates the optimization path corresponding to the total 1980 population 
DEMP map of Figure 13(b), for three different values of holg0• Optimization proceeds 
from lower right to upper left. The numbers on the curves represent the number of major 
iterations taken by the NAG routine E04VDF. 

For any DEMP, the original map by defmition has distortion G(u, v) equal to zero; in this 
example (1980 total population) the initial violation of the area criterion was such that 
log10 H(u, v) = -1.62. During minimization, the area violation H(u, v) was forced smaller 
and smaller, so that log10 H(u, v) became more and more negative; at the same time, 
distortion G(u, v) necessarily increased from zero to a value around 0.52. 

Consider frrst the middle curve, the solid line labeled "optimum area constraint." After 
about 90 major iterations (2.8 minutes of central processor time on a Sun SPARCstation 
1), log10 H(u, v) reached a value around -6, at which point further changes in the map 
were invisible. Repeated trials from different starting points (not shown) consistently 
converged to the same solution. 

In the lower dashed curve, labeled "weak area constraint," major iterations are indicated 
in parentheses ( ). Here the area constraint was weakened relative to the distortion 
function by decreasing the value of hoi g0• Distortion was low throughout the 
optimization, but more iterations were required. The final solution was the same as for 
the middle curve. 

In the upper dashed curve, labeled "strong area constraint," major iterations are indicated 
in square brackets [ ] . Here the area constraint was strengthened relative to the distortion 
function by increasing the value of hoi g0• The area constraint was satisfied more quickly 
but distortion was increased. At the final solution, distortion remained around 0.53 and 
could not be reduced by further iterations. The final map configuration from the upper 
curve (not shown) was visibly different from those from the two lower curves. 

In general, the optimum value of hofg0 (here, the middle curve) is that which yields the 
least distorted solution in the fewest iterations. The user must experiment to determine 
optimum values of g0 and ho, and to determine at what value of log10 H(u, v) a stable 
solution has been reached. 

Occasionally two or more distinct local minima of the distortion function G(u, v) were 
found, both of which satisfy the area constraint H(u, v) =0. Figure 15 illustrates the 
results of a DEMP (again Vermont with a 500 km2 point removal criterion) which 
equalized the 1980 Native American population. 
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The optimization path is illustrated in Figure 15(a). In this example (1980 Native 
American population) the initial violation of the area criterion was such that log10 
H(u,v)= -0.97. Two distinct solutions were found, with distortion G(u,v)=1.14 and 
1.01 in (b) and (c) respectively. The second solution, which is less distorted, is 
preferred. 

The initial value of log10 H(u, v)= -0.97 for the Native American population, compared 
with log10 H(u,v)= -1.62 for the total population, indicates that for the Native American 
population the area constraint (in the original map) is more severely violated than for the 
total population. This is consistent with the result that distortion (in the final transformed 
map) for the Native American population (G(u,v)=l.14 or 1.01) is larger than for the 
total population (G(u, v) =0.52). 

For the Native American population the less distorted solution in Figure 15(c) was 
consistently obtained for weaker area constraints (smaller values of hofg0). However, in 
other cases (e.g., Black population, not shown) the reverse situation occurred. 

The numbers given in this section for hoi g0, G(u, v), and log10 H(u, v) are for comparison 
purposes only; they have no meaning in an absolute sense. A necessary condition for a 
DEMP "solution" is that repeated trials from various starting points converge to that 
solution, and that no solutions with lower distortion be found. However, one cannot 
prove that better solutions do not exist. When performing repeated trials, note that 
G(u, v) is always the distortion of (u, v) relative to the true starting point (z,y), not relative 
to the perturbed starting point. 

V.C. Computing Requirements 

Approximate computing requirements for the NAG routine E04VDF are summarized in 
Table II. In order to estimate computing time for larger problems, we created a 
triangulated Vermont map (not shown) with a point removal criterion of 50 km2, which 
had more points and more triangles than the 500 km2 triangulated map in Figure 13(a). 
We performed DEMPs on both Vermont maps, equalizing both on 1980 total population 
density and using the same g0 and ho and termination criterion Oog10 H(u,v)= -6). 

Other factors being equal, computation time increased from 2.8 to 30 CP minutes (on a 
Sun SPARC station 1) when the number of points increased from 30 to 66, and the 
number of triangles increased from 43 to 103. Consistent results (an increase from 1.3 
to 14 CP minutes) were obtained on a VAX 6510 computer. 

For the example studied, computation time increased approximately as the third power 
of map complexity. The San Francisco 1 km2 triangulated map in Figure 9 has about 
four times as many points and five times as many triangles as the Vermont 50 km2 map 
(not shown). Therefore, if other factors remain comparable, we estimate that a San 
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Francisco tract level DEMP may take 2 to 3 days on a SPARC station 1. It is not known 
how the number of required iterations will increase with map complexity. 

Runs of more than a few hours are impractical and expensive, especially since multiple 
runs are required to check the validity of a solution. Problems of interest may have 
thousands or even tens of thousands of points. The NAG routine E04VDF is not 
intended for large sparse problems, of which our DEMP algorithm is an example. Work 
is continuing to improve computation efficiency, and to find minimization tools which are 
better suited to the particular characteristics of our DEMP algorithm. 

VI. Conclusions 

As explained in Section I.B, density equalizing map projections (DEMPs), correct for the 
confounding effect of varying population density, thereby providing a useful tool for 
analyzing the geographic distribution of disease. The statistical analysis of a density 
equalized map is straightforward, since under the null hypothesis of equal risk, the 
distribution of disease cases on such a map is expected to be uniform. 

Although a DEMP simplifies the task- of the analyst, the specification of the DEMP 
transformation itself -is not simple and continues to be the subject of considerable 
research. The algorithm described here represents a radical new approach to DEMP 
calculations, and has important advantages over previous techniques. In particular (cf. 
Section I.C.): 

(a) application of the area constraint separately to each triangle avoids overlapping of 
transformed polygons, corresponding to a multivalued mapping function and areas of 
negative population density; 

(b) competing solutions can be quantitatively compared, permitting a comparative evaluation 
of various optimization techniques; 

(c) constant magnification within each polygon ensures that the DEMP cannot enhance 
spurious disease clusters; 

(d) the solution determines a continuous transformation over the entire map surface; 

(e) unless zero-population areas are present, the inverse transformation is uniquely defined; 

(f) optional boundary constraints can be easily imposed, provided a solution exists that is 
compatible with the area constraints; 

(g) commercially supported optimization software can be used. 
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Work is continuing to improve computation efficiency. Provided that the difficulties of 
numeric optimization can be resolved, the new DEMP algorithm can be put to practical 
use in routinely analyzing specific geographic disease distributions. 
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Appendix A. Voronoi polygons and Delaunay triangles. 

In this appendix we prove the theorem used in Section ll.D: 

Given n points in a plane, if the circle drawn through three-of those points 
does not contain or touch any other of the n points, the triangle connecting 
those three points belongs to the Delaunay triangulation. 

For illustration, a set of Voronoi polygons is shown in Figure A-1. Given n points in 
the plane (for example A,B,C,D,E), the Voronoi polygon associated with one point i is 
defined as that region which is as close or closer to point i than to any other of the n 
points. For example, the quadrilateral indicated by dashed lines in Figure A-1 encloses 
the region which is closer to point A than to point B, C, D or E. 

The Delaunay triangulation is defined by the set of pairwise connections between points 
i whose Voronoi polygons are contiguous. In Figure A-1, the Delaunay triangulation is 
the set of eight line segments AB, AC, AD, AE, BC, CD, DE and EB. 

Consider the circle centered at 0, drawn through the three points A, D and E. If the 
circle does not contain or touch any other of the n points in the plane, then points A, D, 
and E are equally- close to point 0, and no other of then points (e.g. B and C) is as 
close. Therefore, 0 belongs to the Voronoi polygons associated with A, D and E, but 
to no other Voronoi polygons. Exactly three Voronoi polygons (A, D and E) coincide 
at point 0, so the three polygons must be mutually contiguous. By definition, AD and 
DE and EA belong to the Delaunay triangulation, so ADE is a Delaunay triangle. 

--· 
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area criterion 

original map 

Okm2 

0.001 km2 

0.01 km2 

0.1 km2 

1 km2 

minimum map 

II km
2 

. triang~lated 

Table I. Point removal and triangulation, 
San Francisco, 1980 census tracts 

number of number number of 
polygons* of points segments 

152 1920 2071 

152 1547 1698 

152 1268 1419 

152 656 807 

152 321 472 

152 268 419 

152 264 ~15 

1498 1268 1765 

figure 

7(a) 

not shown 

not shown 

7(b) 

not shown 

7(c) 

7(d) 

19 

• excluding external boundary polygon for "rest of world" 
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Table ll. DEMP Computing requirements 

two three Ver- Ver- San 
tri- tri- mont mont Francisco 
angles angles 500 km2 50km2 1-km2 

figure 5, 10 11 13 not 7(c), 9 
shown 

points 4 5 30 66 268 

polygons • 2 2 14 14 152 

triangles 2 3 43 103 498 

parameters 5 7 57 129 533 

area 2 3 43 103 498 
constraints 

degrees of 3 4 14 26 35 
freedom 

iterations 90 128 2()()-300 

CP time on 2.8 min 30 min 2-3 days 
SPARC 1 

CP time on - 1.3 min 14 min 1-2 days 
VAX 6510 

• excluding external boundary polygon for "rest of world" 
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Figure 1. Cholera in London, 1854 
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Figure 2. Stomach cancer, white males, 
age-adjusted r~te by county, 1950-1969 
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Figure 4. United States 

{a) Geopolitical 

Transformed 
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Figure 5. Polygon area calculations 
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Ao1 = 1/2 [ x1 Y2- X2 Y1 + X2 Y3- x3 Y2 + X3 Y1- X1 Y3] = +1 

Ao2= 1/2 [ x1 Y3- x3 Y1 + x3 Y4- x4 Y3 + X4 Y1- X1 Y4] = +1 

area contribution 

-1/2 (x2y1- x 1y2) 

+1/2 (x2y3- x3y2) 

0 

0 

+ 1/2 (x3y1- x 1 y3 ) 

Aoo= 1/2 [ X2Y1- X1 Y2+ X1 Y4- X4 Y1 + X4 Y3- X3 Y4 + X3 Y2--: X2 Y3] = -2 

X8L916-7001 
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(a) 

(b) 

(c) 

Figure 6. Point removal 

Example: remove details having 
area < 1 0 km 2 : 
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Numbers in triangles represent area 
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Figure 7. San Francisco, 1980 census tracts 

6 
(a) Original #points= 1920 

6 
(b) 0.01 km2 # points = 656 
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Figure 8. Triangulation of polygons 

. . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . 

.. 

Circle ABC contains no other points, 
so triangle ABC is valid. 

Circle ADE contains no other points, 
so triangle ADE (and hence also ACD) 
is valid. 

Circle CDE contains points A and 8, 
so triangle CDE is not valid (nor is ACE). 

XBL916-7002 
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Figure 10. Piecewise linear transformations 

v 

1 1 

2 4 2 

3 3 

a, b, c, d, e, f determine u, v: 

ao1 bo1 X u 
= within triangle 01 

Co1 da1 y v 

0 0 1 1 

ao2 bo2 X u 
= within triangle 02 

Co2 do2 y v 

0 0 1 1 

Conversely, u and v determine a, b, c, d, e, f: 

a b e u1 u2 u3 x1 x2 x3 

c d f = v1 v2 v3 Y1 Y2 Y3 

0 0 1 1 1 1 1 1 1 

a b e u1 u3 u4 x1 x3 x4 

c d f = v1 v3 v4 Y1 Y3 Y4 

0 0 1 1 1 1 1 1 1 
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Figure 11. Area constraints 
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5 

Given: 

(x1 • Y1) · · · · (xs, Ys), POJ:b1• POPo2 

P0 Ptot = P0 Po1 + P0 Po2 
A tot= Ao1 + Ao2 = Ao1.1 + Ao2.1 + Ao2.2 

Btot = Bo1 + Bo2 = Bo1.1+ Bo2.1 + Bo2.2 

Require: 

Btot = Atot 

Bo1/ POPo1 = Bo2/ POPo2 

B 02.1/ Ao2.1 = Bo2.2/ A 02.2 

Solution: 

8 o1.1 = P0 Po1 
A tot Ao1.1 

P0 Ptot Ao1 

8 o2.1 = popo2 · 
A tot Ao2.1 

P0 Ptot Ao2 

802.2 = pop 02 · 
A tot Ao2.2 

POP tot Ao2 
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Figure 12. Conformal and non-conformal 
linear transformations 
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Figure 13. Vermont counties, 500 km2 
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Figure 15. Vermont, 500 km2
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Figure A-1. Voronoi polygons and 
Delaunay triangles 
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