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Abstract

Identifying Program Entropy Characteristics with Symbolic Execution

by

Audrey Annika Dutcher

The security infrastructure underpinning our society relies on encryption, which relies

on the correct generation and use of pseudorandom data. Unfortunately, random data

is deceptively hard to generate. Implementation problems in PRNGs and the incorrect

usage of generated random data in cryptographic algorithms have led to many issues,

including the infamous Debian OpenSSL bug, which exposed millions of systems on the

internet to potential compromise due to a mistake that limited the source of randomness

during key generation to have 215 different seeds (i.e. 15 bits of entropy).

It is important to automatically identify if a given program applies a certain cryp-

tographic algorithm or uses its random data correctly. This paper tackles the very first

step of this problem by extracting an understanding of how a binary program generates

or uses randomness. Specifically, we set the following problem: given a program (or

a specific function), can we estimate bounds on the amount of randomness present in

the program or function’s output by determining bounds on the entropy of this output

data? Our technique estimates upper bounds on the entropy of program output through

a process of expression reinterpretation and stochastic probability estimation, related to

abstract interpretation and model counting.
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Chapter 1

Introduction

The security infrastructure underpinning our society relies on encryption. Encryption

safeguards our personal data, protects our bank accounts, and secures our communica-

tions. The encryption schemes we use today rely on encryption keys that are used to

encrypt and sign data. In turn, these encryption keys are created through the generation

of random data.

Unfortunately, random data is deceptively hard to generate. Truly random data

can be sampled from the environment, but this has low throughput using normal tech-

niques (i.e., measuring radio interferences) or requires specialized equipment. As an

alternative, pseudorandom number generators (PRNG) have been developed to provide

high-throughput, pseudorandom data generation.

A high-quality true-random number generator (RNG) is almost always required for

security, and lack of quality generally provides attack vulnerabilities and so leads to lack

of security, even to complete compromise, in cryptographic systems. Implementation

problems in PRNGs, and the incorrect usage of generated random data in cryptographic

algorithms, have led to many such issues in the past. For example, the infamous Debian

OpenSSL bug [1], which exposed millions of systems on the internet to potential com-

promise, was caused by a mistake in the binary distribution of Debian’s openssl package

that limited the source of randomness during key generation to have 215 different seeds
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Introduction Chapter 1

(i.e., 15 bits of entropy).

The RNG is particularly attractive to attackers because it is typically a single isolated

hardware or software component easy to locate. The entropy introduced to the program

is a critical component of any cryptosystem, and the more the attacker knows about

the programs entropy characteristics, the easier attacks become. With the volume of

software being produced today, manual effort to identify these flaws (such as what was

done to find the Debian OpenSSL bug) cannot scale. It is important to automatically

identify if a given program applies a certain cryptographic algorithm or uses its random

data correctly.

This paper tackles the very first step of this problem by extracting an understanding

of how a binary program uses randomness. Specifically, we set the following problem:

given a program (or a specific function), estimate bounds on the amount of randomness

present in the program or function’s output by determining bounds on the entropy of

this output data. This core technique is meant as a building block upon which the

community can start to build program analysis techniques that can begin to reason

about the safety of cryptographic functionality, among a number of other applications

(for example, estimating the compressibility or error-correction capacity of output data).

Our core contribution is a novel technique to estimate the entropy of the output a

single path through a target piece of code, such as a PRNG. Around this, we build a

proof-of-concept system process that analyzes the entropy of program output across many

paths of the program through a multi-step process. First, symbolic execution is used to

extract paths through target program code. Then, each individual path is analyzed,

reasoning not about the values represented by symbolic expressions in the output of

the program but about the entropy of these values. Finally, the determined entropy of

different output paths is combined into a Multi-path Entropy Distribution.

The end-to-end system is a minimal proof of concept designed to enable discussion
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Introduction Chapter 1

about our use of symbolic execution to reason about entropy. In its current form, our end-

to-end system does not scale to real code and is plagued not only by its own limitations,

but also by limitations in the binary analysis engine on which it is implemented. Instead,

our aim is to foster conversation about potential uses of symbolic execution in binary

analysis beyond crash discovery and testcase generation and to provide an additional

building block for future researchers to utilize. To that end, our prototype will be released

alongside this paper as a usable extension to the underlying binary analysis engine.

To summarize, this paper makes the following contributions:

• We design and introduce a technique to reason about the entropy of a program’s

output, more precisely than current model-counting and bit-level taint tracking

approaches.

• We implement a prototype of this technique and evaluate it on several sample

programs, one of which approximates the Debian OpenSSL bug.

• We release1 the prototype as open source software to foster advancement in the

field.

Before going into the technical details of our technique, we will provide needed back-

ground to ensure understanding of our work.

1https://github.com/rhelmot/symtropy
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Chapter 2

Background and Related Work

In this chapter, we describe certain concepts that are necessary for a proper understanding

of our technique.

2.1 Randomness and Entropy

The attentive reader will realize that, though our aim is to reason about correct

generation and use of random data, we reason about bounds on entropy. The relationship

between entropy and randomness, and how it impacts cryptographic security, has been

studied in the past [2]. While there is not space in this paper to go into detail, the

summary is that from an information-theoretical perspective, entropy is necessary, but

not sufficient, for randomness.

The implication of this is that a detection of a low bound on entropy by our tool almost

certainly indicates a problem, but a detection of a high bound does not necessarily prove

that the code being tested is safe.

Our technique can reason about the amount of entropy in the output of a given

chapter of code, but not the amount of randomness. This is because, for the estimation

of entropy, it is sufficient to calculate the potential values that can manifest from the

output, but to estimate randomness, one must also reason about the sequential ordering
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Background and Related Work Chapter 2

of such output1. While our technique can reason about the former, we are unaware of

any approach that can reason about the latter.

2.2 Program Analysis

Automated program analysis typically falls into two rough categories: static and

dynamic techniques. We briefly describe both categories, with a specific focus on dynamic

symbolic execution, which is used by our tool.

In this paper, we focus on the analysis of binaries. It is often critical to do security-

focused analyses directly on the binary, rather than the corresponding source code, of a

target application. It is well established that bugs can be introduced or hidden by the

compiler, especially in cryptographic contexts where the use of randomness may register

to the compiler as undefined behavior, or where critical operations can be optimized out.

2.2.1 Static Program Analysis

Static analysis reasons about the behavior or safety of large areas of code, usually by

interpreting programs over an abstract domain [3]. These analysis typically try to deduce

guarantees : for example, a guarantee that a given piece of code is free of a given type of

vulnerability. Static approaches have been proposed to target code issues ranging from

integer bounds errors [4] to race conditions [5].

We eschew a static approach because the imprecision of static analysis severely ham-

pers its use in detecting issues (as opposed to verifying the absence of issues) [6]. Further-

more, static techniques have difficulty reasoning about programs which are obfuscated

or packed, as commercial software tends to be.

1Intuitively, a function that output all of its ones before outputting its zeroes would have quite low
randomness.
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2.2.2 Dynamic Program Analysis

Dynamic analysis is a popular method used for program analysis because it pre-

cisely performs security investigation based on run-time information. Two of the most

commonly used dynamic analysis techniques are taint analysis and dynamic symbolic

execution. Taint analysis performs runtime analysis on the program and determines the

effects of predefined tainted input on different computations in a program. Dynamic

symbolic execution automatically builds a logical formula describing a program execu-

tion path and the relations between the input and the output along that path, which

reduces the problem of reasoning about the execution to the domain of logic. The two

analyses can be combined to build formulas representing only the parts of an execution

that depend upon user-provided values (termed “symbolic values”).

The use of dynamic symbolic execution to trace a program processing a concrete input

is termed “Concolic Execution”, where “Concolic” is a portmanteau of “concrete” and

“symbolic”. In concolic execution, concrete execution of a program is performed on a

specific input and a single control flow path is created. The resulting symbolic values are

represented by trees of computation, with concrete values (e.g. 0x10001) and symbols

(e.g. the third byte of a given input stream) at their leaves. Execution is performed by

a symbolic execution engine, which interprets the target code and maintains for each

explored control flow path: (i) a boolean formula that describes the conditions satisfied

by the branches taken along that path, and (ii) a symbolic memory store that maps

variables to symbolic expressions or values. Branch execution updates the formula, while

assignments update the symbolic store.

A dynamic symbolic execution engine can also function independent of a concrete

input, in a technique termed “symbolic exploration”, which is frequently used for testcase

generation. Symbolic execution-based methods for testcase generation gather information
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about the execution of a program using a directed search across a state space. Constraint

solvers (SMT) are used to check path constraints generated along each execution path, to

prune unsatisfiable paths. Even strong SMT solvers such as iSAT and Z3 cannot handle

complex, nonlinear constraints efficiently. Since the possible number of execution paths

to be considered is so large, only a small part of the program path space can actually be

explored (a phenomenon known as “path explosion”).

Various techniques have been proposed to mitigate this, from advanced path merg-

ing [7] to the approximation of symbolic exploration through the combination of fuzzing

and concolic tracing [8]. Any of these path discovery techniques can be used in our tool.

2.3 Model Counting

Our technique attempts to estimate the amount of entropy in the output of a given

piece of code. As the measure of entropy is linked to the total number of output values,

the clever reader will see the relevance of model counting.

Much work has been done on the approximate model-counting problem on SMT

formulae, which is effectively equivilent to the problem we are trying to solve. The most

recent and most accessible such work is SearchMC [9], a model counting program which

works with a number of SMT solvers, and which has an open-source prototype available

for evaluation.

2.4 Program Analysis of Cryptography

Program analysis techniques have been previously applied to cryptographic code. For

example, a number of static and dynamic techniques to identify cryptographic functions

and determine their inputs and outputs have been proposed [10, 11, 12, 13, 14, 15]. In an

7
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end-to-end system utilizing our approach, these techniques would be used to identify the

code that should be checked against low-entropy input (i.e. a low-entropy source being

used for key generation).

Recently, researchers have begun to develop techniques that analyze the proper usage

of cryptographic code. One such example, K-Hunt, uses dynamic taint tracking to do

a limited check that cryptographic key generation is provided with enough entropy [16].

Since this check is done using dynamic taint tracking, K-Hunt can only reason about the

number of bytes used in key generation, and is blind to loss of entropy resulting from

complex operations on these keys. In contrast, our technique is able to reason about

the amount of entropy provided by each bit of input to a cryptographic routine. In K-

Hunt’s pipeline, our approach would replace their dynamic taint checking pipeline in the

determination of, as they term it, “Deterministically Generated Keys”.

Finally, techniques have explored other aspects of cryptography-relevant security us-

ing program analysis techniques. For example, model counting has been used to quantify

the leak of private information in crash reports [17] and to reason about the type of

quantity leaked in information disclosure vulnerabilities [18].
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Chapter 3

System Overview

In this paper, we describe a proof-of-concept end-to-end system built around our core

contribution: the use of symbolic execution, taint tracking, and model counting to es-

timate bounds on output entropy of a single symbolic path. We detail the end-to-end

system here, and cover the specifics of our entropy estimator and the combination of

entropy across multiple symbolic paths in future chapters.

Our system expects the following input:

Mandatory: the program. Our prototype is built upon the angr binary analysis frame-

work [6]. This allows us to directly analyze binary code, without need for source

code or debug information.

Optional: randomness sources. The places where randomness (and thus, entropy)

can be introduced into the program must be provided, so that the system can

reason about any reductions in this entropy that occur during program execution.

If this is not specified, the system assumes that all input to the program (e.g. bytes

read from stdin) represents random input.

Optional: output sinks. To reason about the amount of entropy in the output of a

piece of code, our system must know what constitutes such output. This could

be an instruction address (e.g. a write system call), a memory location (e.g. a

9



System Overview Chapter 3

destination buffer), or a custom condition. If this is not specified, the system

assumes that all output from the program (e.g. bytes written to stdout) represent

output sinks.

Give these inputs, our system operates in three stages, as follows. Stages 2 and 3 are

further described in their own chapters.

Path discovery using dynamic symbolic execution. First, our system uses sym-

bolic exploration to sample paths from the randomness sources to the output sinks.

In our proof-of-concept prototype, this is implemented very naively: angr’s default

mode of symbolic execution is used with uniform-random concrete constraints on

the input sources, producing a representative distribution of paths.

Single-path entropy estimation. We use our core technique of entropy tracking and

approximate model counting to estimate the amount of output entropy on every

path. This shown in an example in Section 3.1, and described in detail in Chapter 4.

Multi-path entropy estimation. Finally, our system combines the entropy estima-

tions across single paths into an entropy probability distribution to reason about

the possible amounts of output entropy across multiple program paths. This tech-

nique is described in detail in Chapter 5.

As previously mentioned, this end-to-end system is meant to evaluate our core technique

on simple sample programs, and does not scale to real software due to a number of

reasons, described in Chapter 7.

3.1 Example

Here, we provide a high-level example of the estimation of entropy on a single program

path, before describing it in-depth in the next chapter. Throughout this paper we will

10
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use the function true rand() as a function returning a true-random 32 bit integer, each

call independent of its previous ones. Consider the following program:

i n t x = true rand ( ) ;

x ˆ= 0x55555555 ;

x &= 0 x f f f f f f ;

x |= 0 xf f 0000 ;

x ∗= 0x12345678 ;

wr i t e (0 , &x , s i z e o f ( x ) ) ;

A casual inspection reveals that there are 16 bits of entropy present in this program’s

output, even though 32 bits of randomness are generated and there are 32 bits of output.

We would like our analysis to be able to tell us this fact.

First, we run through the program with angr’s symbolic execution engine. The

true rand function is implemented as the creation of a new symbol (R), the generation

of a random 32 bit number, and the addition of a constraint to the symbolic state that

the two be equal. When the emulation finishes, the following AST will be present in the

storage region for standard output: (((R ^ 0x55555555) & 0xffffff) | 0xff0000)

* 0x12345678.

Then, independently of the generated path predicates, we interpret this AST with

our abstract operations to recover the bits of information from the input present in the

output. The abstraction begins at the root of the tree:

1. The initial variable R has 32 bits, and each bit of its abstracted form contains one

equality assertion over the corresponding bit of the variable R. This will look like a

list: Abstract(R) = [R[0] == 1, R[1] == 1, R[2] == 1, ...] and so on.

2. The XOR operation preserves the entropy characteristics, so the abstracted form

from this operation is the same as the previous one.

11
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3. The implementation of the AND operation knows that R & 0 == 0, so it will

erase the upper 8 bits from the abstracted form: Abstract((...) & 0xffffff)

= [R[0] == 1, ..., R[23] == 1, 0, 0, 0, ...].

4. The implementation of the OR operation knows that R | 1 == 1, so it will erase

the next 8 bits from the abstracted form: Abstract((...) | 0xff0000) = [R[0]

== 1, ..., R[15] == 1, 1, 1, 1, ..., 0, 0, 0, ...]

5. the MUL operation scatters bits upwards, since any bit in the multiplication can af-

fect any bits more significant than it in the result: Abstract((...) * 0x12345678)

= [R[0] == 1, R[0] == 1 && R[1] == 1, R[0] == 1 && R[1] == 1 && R[2] ==

1, ...]

The final result indicates that each of the low 16 bits of the output are dependent

on between 1 and 16 of the low 16 bits of the initial value of R, and high 16 bits of the

output are dependent on all of the low 16 bits of the initial value of R. There are only 16

bits of assertions present in the 32 bits of the output!

This is a simple example which could also be handled by a basic bit-level dynamic

taint tracker. Our technique is designed with the intuition of a bit-level dynamic taint

analysis in mind, with improvements in precision and tractability.

12



Chapter 4

Single-path Entropy Approximation

.

The simplest way to view the problem of counting the amount of entropy present

counting the number of possible outputs to a program: the number of bits of entropy

present in the program is equivalent to the logarithm (base 2) of the number of possible

outputs, if every output is equally likely. This calculation of this number directly is

effectively impossible - it is a particularly difficult satisfiability problem known as “model

counting”.

We can establish some simple upper and lower bounds on this number by rudimentary

dynamic analysis. The upper bound is the number of possible inputs, as measured by

bits of entropy observed to be used as inputs, for example, by a system-call tracer paired

with a dynamic taint tracer (such as what is used in K-Hunt [16]). The lower bound

is the number of outputs that can be directly observed by running the program many

times. This bound can be probabilistically increased quadratically due to the so-called

“birthday paradox”, so after n trials and no observed collisions, your best estimate to

the number of possible outputs should be n2. Both of these bounds are fairly loose. We

focus our efforts on decreasing the upper bound by analyzing the actual uses of these

bits of entropy via symbolic execution.

13
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4.1 Recovering Information

Our insight is to treat each boolean piece of knowledge from the input present in the

output as a bit of entropy. Specifically, our approach is to run a single-path dynamic sym-

bolic execution trace through the program, and then reinterpret the output ASTs using

“abstract operations” (implementations of the ordinary SMT operations which produce

data in a custom domain, named as such because they are a reduced form of the mecha-

nism underlying Abstract Interpretation) which produce mappings from bits of computer

words to the assertions over the input values whose satisfiability uniquely determines the

output value. This is key: an ordinary bit-level taint analysis only notes that certain bits

are dependent on other bits, but this approach captures the minimal set of assertions

that can control the output, a critical insight for reducing the upper bound on an entropy

approximation. These assertions are similar in form but fundamentally different from the

path predicates generated by dynamic symbolic execution. For ordinary output-bit-is-

computed-from-input-bit relations, the assertion is Extract(input, bit, bit) = 1. However,

if actual boolean expressions appear in the computation (which can happen because of

simplifications on the symbolic formula, conditional move instructions, etc), these are

also treated as assertions.

An important advantage of the abstract operation approach over a true taint analysis

is that it correctly captures loss of information by destructive operations such as OR,

AND, MUL, MOD, DIV, etc. The abstract operations understand the ways in which

bits are propagated and mixed, and also understand how the presence of certain bits can

erase data present in other bits. Abstract operations can also choose to represent the

computation as comparisons directly against parts of the AST if they believe that it will

produce a more minimal set of assertions. Furthermore, analysis benefits significantly

from simplifications that can be performed on the entire formula. This is a huge advantage

14
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of implementing such a taint analysis as a series of abstract operations instead of as a

strict dynamic taint analysis.

4.2 Model Counting

Computing the actual quantity of information in the assertions (the entropy) is diffi-

cult. The ideal information-theoretic construction is as follows:

• There is a notion of an assertion C

• There is a probability of satisfiability P (C), which is the probability of a random

model satisfying the assertion

• There is an information measure I(C), which is the amount of information conveyed

by the satisfiability of the assertions (specifically, the fact that the assertions are

satisfied), computed from P (C)

• From this, the entropy in a series of assertions H(Cn), can be computed from

the joint probabilities and information measures of each possible combination of

negated and true constraints.

Unfortunately, this is infeasible. First, computing P (C) is itself the model-counting

problem, which is currently unsolved in the literature. Second, “each possible combi-

nation of negated and true constraints” is a set of 2n elements. However, the following

construction is a reliable upper bound:

• There is a conditional probability measure P (Ca|Cb), the probability of a random

model satisfying Cb also satisfying Ca

15
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• There is a conditional information measure I(Ca|Cb), which is the amount of infor-

mation conveyed by the satisfiability of Ca given that Cb is satisfiable, computed

from the joint probability P (Ca ∩ Cb) and the probability P (Cb)

• There is a conditional entropy measure H(Ca|Cb), which is the amount of uncer-

tainty present in Ca once the satisfiability of Cb is known, computed from the four

conditional information measures I(Ca ∩ Cb), I(Ca ∩ ¬Cb), etc.

• From this, an upper bound on a series of assertions H1(Cn) can be computed by the

sum of the conditional entropies of each assertion conditional on the intersection of

all the previous assertions.

• This is necessarily an overapproximation because the predicate in the conditional

entropies is necessarily less information than is actually known. The intersection

of all the previous assertions is a destructive operation and can be at most a single

bit of information.

This has a sum of only n elements! Unfortunately this approach still involves the use

of model-counting techniques. While these problems are much smaller than what seem

to be typical model-counting workloads, our experiments with the current state of model

counting prototypes imply that even this formulation is too complex.

We evaluated a state-of-the-art model counter (specifically, SearchMC [9]), which was

unable to give tight bounds on model counting problems that show up often in our output

assertions without dozens of minutes of CPU time. Our tests were with simple, single

constraints such as BitV ec(A, 32) < 231 or Extract(BitV ec(A, 32), 0, 0) == 1 (both

answers should be that there are exactly 231 satisfying models, so P (C) = 1/2), and

SearchMC produced answers in the billions of solutions.

16
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Instead, we measured the probabilities directly instead of counting models and infer-

ring probability from those. We built a simple stochastic probability tester that simply

evaluates the expression for uniform random values of its roots and measures the number

of successes. Anecdotally, this approach works well for probabilities that are not very

large or very small, and provides acceptable answers for the purpose of evaluating the

entropy of an application. Theoretically, this approach takes advantage of an interesting

characteristic of this problem — that negligible probabilities have negligible effects on

the result.

4.3 Mix Masking

The above approach is good, but it does not solve the problem of redundant entropy.

Imagine a program with a random number generator seeded as pseudo srand(true rand()

^ true rand(). All abstracted outputs will be shown to depend on all 64 bits of entropy

that has been generated, even though only the program has only 32 bits of entropy in

its output. The program has effectively formed a new entropy source as a reduction

of a larger entropy source. To resolve this, whenever more bits of entropy are present

in a value than the value is wide, we treat this value as a new independent source of

information—a mix mask, since it is a mask over several mixed bits of entropy, and since

that name sounds very cool.

This has some caveats. Imagine the case of a 512-bit hash being constructed from

32 bits of input, 8 bits at a time. The correct answer is that the output has 32 bits of

entropy. Naive mix masking will assign a mask to each of the individual 8 bits of output,

and then concatenate them to form an output with 512 different bits of entropy. Our

approach is to add the restriction that all mix masks must be independent. If at any

point during abstraction we detect that two separate mix masks present in the same value
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are rooted in the same bits of input entropy, we incrementally remove the mix masks by

replacing their bits with the bits of their original abstractions, until no conflicts remain.

Ideologically, this approach to the mix masking fallback is in conflict with the model-

counting approach. It effectively plasters over the nuances of any partial bits of informa-

tion that fall out of the abstraction with the simple input-bits. The ideal solution to this

would be to represent the mix masks not as fresh variables, but rather as the actual AST

nodes that were noted to contain too many bits of entropy. These could be fed to the

model counter, which could determine their actual information gain over interdependent

bits, and no fallback would be needed. However, our entropy approximation is too coarse

to handle this correctly. The overapproximation that each new bit adds the information

conditional on the intersection of all previous bits works very poorly when we generate

many interdependent bits, but very well when we generate a few fresh bits. If we had a

better tractable approximation for the entropy of many bits, the algorithm could take a

leap forward in precision.

18



Chapter 5

Multi-path Entropy Estimation

So far, we have only considered analysis of a single path through the program. In this

chapter, we extend our technique to combine the estimations of output entropy across

multiple paths.

Consider the program in Figure 5.1. How many bits of entropy are present in this

program? No answer is sufficient, as this program has a distribution of entropy in its

output, depending on the number of iterations of the loop executed.

Now consider the program in Figure 5.2. This is an example of a maliciously nonran-

dom program. 1% of the time, it will produce one of 100 (independent) predetermined

outputs. This construction creates an asymmetry between the likelihood of usefulness to

an attacker in a given output (1/A) and the likelihood of a black-box analyst detecting

the weakness (1/(A×
√
B).

Any analysis which wants to reason about cases like these must dip its toes into

Figure 5.1: A program with path-dependent entropy.

char va l ;
do {

va l = true rand ( ) ;
putchar ( va l ) ;

} whi le ( va l ) ;
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Figure 5.2: A program with malicious entropy reduction.

.

i n t A = 100 ;
i n t B = 100 ;

i n t (∗ rand ) ( void ) ;
i n t va l = true rand ( ) ;
i f ( va l % A == 0) {

pseudo srand ( va l / A % B) ;
rand = &pseudo rand ;

} e l s e {
rand = &true rand ;

}
f o r ( i n t i = 0 ; i < 100 ; i++) {

putchar ( rand ( ) ) ;
}

the world of testcase generation. We note that our problem has different properties

than traditional testcase generation: any “interesting” input must actually occur with

some non-negligible probability, since entropy cannot be crafted. With this in mind,

we randomly sample a large number of inputs uniformly from the input space, so the

entropy values in the paths corresponding to each input are a valid sampling of the entire

program’s entropy.

This is not a sufficient answer in cases where a single path analysis is very slow and a

large number of paths must be studied in order to achieve a strong guarantee. Here, one

can turn to studied binary analysis and fuzzing techniques for testcase generation. Unless

the path predicates can be model-counted in order to determine the probability of each

path, this forgoes an actual distribution and can only be used to find the minimum and

maximum statistics about the entropy distribution. This is perhaps not a huge problem,

since merely the presence of any path with low entropy output could be a sign of an

issue.
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We do not consider error condition paths, or errors resulting from misconfiguration.

If there is any condition of the entropy which will cause the program to output an error,

the program should be written in the form of retrying until valid entropy is obtained.

This analysis should be considered to run independently on each configuration. In other

words: our implementation checks for entropy reduction in an otherwise well-formed

program, and does not handle other types of errors.
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Chapter 6

Evaluation

We evaluted our tool on three basic examples that we believe demonstrate the capabilities

and limitations of our technique. Our analysis correctly determines that there are 15 bits

of entropy present in the first example (replicating the OpenSSL bug) and that there

is the possibility of having a low entropy output in the second and third examples (the

programs from chapter 5).

6.1 Case Study: Debian OpenSSL Approximation

Our replication of the OpenSSL bug mentioned in the introduction can be found in

Figure 6.1. Every path through the program uses the same amount of entropy, so the

entropy sampling returns a flat distribution. This program is, however, a good example

for how difficult achieving any semblance of path coverage can be - a branch occurs for

each charcter of output, so there are 232 paths.

The actual single-path entropy computation is straightforward — every single bit of

the input is present in the output, so the result is just the size of the input symbols that

contribute in any way to the output — 15 bits.

Interestingly, in this sample, analyzing a single path takes 40 seconds on a modern

CPU. The reasons for this are:
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Figure 6.1: An approximation of the Debian OpenSSL bug.

#inc lude <s t d l i b . h>
#inc lude <uni s td . h>
#inc lude <s t d i o . h>

char hexchar ( unsigned i n t va l ) {
i f ( va l < 10) {

r e turn ’0 ’ + va l ;
} e l s e {

r e turn ’ a ’ + va l − 10 ;
}

}

void hexconv ( char ∗out , unsigned char ∗ in , s i z e t i n s i z e ) {
whi le ( i n s i z e −−) {

∗out++ = hexchar (∗ in & 0 xf ) ;
∗out++ = hexchar (∗ in++ >> 4 ) ;

}
∗out = 0 ;

}

i n t main ( ) {
srand ( getp id ( ) ) ;
unsigned char randbuf [ 1 6 ] ;
char outbuf [ 6 4 ] ;
i n t i ;

f o r ( i = 0 ; i < 16 ; i++) {
randbuf [ i ] = rand ( ) ;

}

hexconv ( outbuf , randbuf , 1 6 ) ;
puts ( outbuf ) ;

}
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1. Because our tool is implemented on top of angr, we are bound by many of the

performance limitations inherent in that framework.

2. The constraint checks performed at each program branch (to determine viable paths

to explore) spend a significant amount of time in the constraint solver.

3. The stochastic probability evaluator is implemented using replacement operations

on angr’s Claripy datatypes, which are heavyweight hash-consed ASTs designed for

SMT solving.

None of these are performance limitations are inherent to our prototype, and they

could potentially be resolved with internal optimizations to angr for single-path execution

and concrete evaluation.

6.2 Case Study: Loop-determined Entropy Distri-

bution

Our loop example, in Figure 5.1, with the long-tail entropy distribution, motivates the

need for characterizing program entropy as a distribution. Its output is raw, unmutated

input, so the abstract operations easily discover the relationships between the input

entropy and the program output. Each sampling of the program’s entropy will discover

a path with a number of loops in it (N), and the amount of entropy in its output will

be 8 × N bits. The probability of terminating on any given loop is λ = 1/256, so the

probability density function of N is an P (n) = λe−λx.

This does, in fact, match the probability distribution reported by our system.
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6.3 Case Study: Malicious Entropy Reduction

Figure 5.2 from Chapter 5 provides a case of maliciously-injected entropy. This sample

had an issue and had to be tweaked in a subtle way before it could even be analyzed.

The definitions of A and B were originally preprocessor #defines, rather than variables.

However, this caused the C compiler to optimize the constant division and modulus

operations into multiplications by large constants, which the abstract operations were

totally unable to reason about in terms of entropy loss. While this specific case could

be solved with a optimization pass in angr to detect such division implemenations and

replace them with actual division operators, such optimizations are hard to handle in

general. In this case, we configured the compiler to insert a real division instruction.

The modulo operation here provides an excellent case study for mix masking, and also

an excellent demonstration of its limitations. The correct answer is that the minimum

output contains log2(100) = 6.64 bits of entropy. Without mix masking, we detect that

the output contains approximately 25 bits of entropy, since the division operation in the

seed will be interpreted as causing the lower 25 bits of the output to depend on all of

the upper 25 bits of the input, and the modulo operation will be dependent on all of

these 25 bits. With mix masking, the modulo operation will be identified as outputing a

maximum of 7 bits and masked to a fresh 7 bit value.
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Chapter 7

Limitations

Our end-to-end system is intended as a simple proof-of-concept to enable discussion

about the core technique of using taint tracking and model counting to reason about

novel properties of symbolic expressions. As such, it has a magnitude of limitations,

ranging from inapplicability on real code, to performance issues, to insufficencies in our

entropy models.

Our intent with this paper is not to provide a turnkey solution for identification of

entropy problems in software, but a first step toward the creation of such tools in the

future.

7.1 angr-induced Limitations

There are a number of issues introduced by limitations in the underlying binary

analysis framework, angr. These are:

• angr’s environment model is quite limited, and many system calls are simply un-

supported. This causes most programs to be emulated incorrectly.

• angr is impacted by a number of performance issues due to internal implementation

details.
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• angr is impacted by performance and capability issues of underlying libraries, such

as the Z3 constraint solver.

Improvements in angr itself will likewise improve the functionality of our system, but

this is outside of the scope of our paper.

7.2 Approximation bounds

The intent of the system is to produce strict over-approximations at all times, but

there are some circumstances where it would currently fail to do this, and could be

tricked into claiming a lower entropy than actuality. This can currently occur in the

abstract implementations of the DIV and MOD operations, and is related to the discussed

differences between the assertion propagation analysis and an ordinary taint propagation

analysis. This is not necessarily a failure of the approach itself, which only requires that

each bit of the output contain the assertions necessary to uniquely determine its value,

but instead a failure of the system to implement abstract operations which conform to

this requirement.

On the other hand, it would be easy for an attacker to take advantage of the inherant

overapproximations of mix-masking in the system. A program with many conditional

values of the form (unsigned int)true rand() > 0 ? 1 : 0 would appear to our

analysis to each contain one bit of entropy, but actually contain 2−27 bits of entropy. Ad-

dressing this issue requires improving the entropy estimator, as described in Section 4.3.

This is a fundamental issue with the approach: there is no upper bound to the over-

approximations it produces.
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7.3 Inapplicable programs

The above assertion that the analysis should be considered to run on a given program

configuration is convenient, but does not allow analysis of programs where output de-

pends on both user input and entropy input. A system capable of reasoning about these

scenarios could detect flaws in encryption and signing programs in addition to random

number generators.
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Conclusion

Random numbers have obvious importance in cryptographic applications. If a program’s

PRNG out is predictable, its security may be totally compromised. Yet, such flaws are

generally undetectable by current techniques.

In this paper we presented a novel method to analyze the entropy provided by code

such as a PRNG using symbolic execution. We have developed a technique to extrapo-

late the relations between input bits and output bits of a binary by interpreting program

output with abstract operations and estimate the entropy of the output via approximate

model counting. While existing techniques to analyze cryptographic primitives are fo-

cused on identifying program components which perform known cryptographic functions

instead of analyzing full-program cryptographic behavior, or are language dependent, our

method is free of these limitations.

This work represents an push to apply binary analysis techniques to identify information-

theoretical vulnerabilities. The knowledge it recovers, a distribution of output entropy, is

useful, but the scope on which the proof-of-concept end-to-end system functions (small

programs with fixed user input) is limited. However, generic nature of the approach,

requiring only a single-path dynamic symbolic execution pass, makes it highly extensible

and can be used as a building block of future work. To that end, we open source the

core technique as a library that can be used in conjunction with the angr binary analysis
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