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Scalar fields, though simple conceptually and mathematically, can be responsible for a wide

array of emergent phenomena, such as spontaneous symmetry breaking, superconductivity,

and the production of solitons. These fields may be responsible for the creation of, or even

the identity of, dark matter. This manuscript details the production of dark matter from

scalar fields in the form of Q-balls, boson stars, and primordial black holes, and explores the

consequences of the existence of such objects and their interactions.
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CHAPTER 1

Background

1.1 History

One of the most intriguing scientific questions of our time is the identity of “dark matter",

a mysterious substance that pervades the universe. We cannot see it, yet we know that it

is there. First hypothesized by Fritz Zwicky [1] and subsequently confirmed by the work

of Vera Rubin and Kent Ford [2], our understanding of dark matter has developed rapidly

in recent decades. This introductory section is not meant to provide a complete historical

review, but just a glimpse to motivate the interested reader; a more complete review can be

found elsewhere [3, 4].

The existence of dark matter is unambiguous. The evidence in favor includes the observed

flatness of galactic rotation curves [5, 6, 7, 8], the temperature power spectrum of the Cosmic

Microwave Background (CMB) [9, 10, 11], baryon acoustic oscillations (BAO) [12, 13], and

gravitational lensing of galaxy clusters [14, 15, 16]. However, though its existence has been

verified experimentally beyond a doubt, its identity remains unclear. Evidence suggests that

it is not baryonic in nature, and that it must therefore be some exotic or unknown form

of matter. Unfortunately (or perhaps fortunately if you’re a theorist), the fact that we

have only observed the effect of its gravitational interactions allows for a dazzling array of

candidates (see Figure 1.1 courtesy of Tim Tait [17]), including simple TeV-scale particles

such as weakly interacting massive particles (WIMP) [18, 19, 20], superheavy WIMPzillas

[21], supersymmetry(SUSY)-motivated candidates such as the neutralino and gravitino [22,

23], light scalar particles such as axions [24, 25, 26, 19] and galactic-scale ψ-DM or fuzzy

DM [27, 28], scalar solitons such as Q-balls [29, 30, 31], boson stars [32, 33, 34], and axion
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Figure 1.1: Schematic diagram of the theory space of dark matter. Image courtesy of Tim
Tait [17].

miniclusters [35, 36, 37], primordial black holes (PBH) [38, 39, 40, 41], Planck-mass black

hole remnants [42, 43], sterile neutrinos [44, 45], dark photons [46], dark mesons [47], dark

glueballs [48, 49, 50], asymmetric DM [51, 52], etc.

With this plethora of possible dark matter candidates, it is imperative that we explore

all possibilities, including the more exotic candidates. Among the more interesting candi-

dates are those which are composed of or generated by scalar field dynamics in the early

universe. Scalar fields are perhaps the simplest form of matter, but this simplicity can be

deceiving. They are known to be responsible for a wide range of complex phenomena, such

as electroweak symmetry breaking (displacement of the Higgs field) [53, 54, 55, 56, 57, 58]

and superconductivity (Bose-Einstein condensation of Cooper pairs) [59, 60, 61], and could

potentially be responsible for other phenomena as well, such as baryogenesis [62, 63], GUT

symmetry breaking, inflation, strong CP invariance, dark energy, and dark matter.
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This thesis will focus on three specific dark matter candidates either made of or produced

by scalar fields: Q-balls, boson stars, and primordial black holes. The following sections will

provide an exposition on each, including the history of previous work, general properties and

formation mechanisms. In the following chapters, I will detail my specific work on these

subjects, including several published works in their entirety.

1.2 Exotic Dark Matter Candidates

1.2.1 Q-balls

Q-balls were originally formulated and named by by Sidney Coleman [64]. The "Q"

signifies the presence of a conserved global charge, which leads to its stability. We can

construct such a state through a variational method. Given a complex scalar field φ,

S =

∫
d4xL =

∫
d4x [∂µφ

∗∂µφ− V (φ)] (1.1)

we assume that the potential is invariant under the U(1) transformation φ→ eiαφ, such that

this results in a conserved current

Jµ = i ((∂µφ
∗)φ− φ∗(∂µφ)) . (1.2)

Making the appropriate Legendre transformation H = φ̇π+ φ̇∗π∗−L, with π = ∂L/∂φ̇ = φ̇∗,

the Hamiltonian density of the theory is

H = |φ̇|2 + |∇φ|2 + V (φ) (1.3)

3



We can create a modified energy functional by integrating over H, while explicitly enforcing

the charge conservation with a Lagrange multiplier ω:

Ẽ =

∫
d3x

[
|φ̇|2 + |∇φ|2 + V (φ)

]
+ ω

[
Q− i

∫
d3x

(
φ̇∗φ− φ∗φ̇

)]
(1.4)

=

∫
d3
[
|φ̇+ iωφ|2 + |∇φ|2 +

(
V (φ)− ω2|φ|2

)]
+ ωQ (1.5)

When Ẽ is minimized, this gives the equations of motion of the Q-ball. Immediately, we

see that in order for this to be a minimum, φ̇ + iωφ = 0, the solution to which is φ(x, t) =

φ(x)e−iωt. The equation of motion for the spatial distribution of φ can be derived via

δẼ/δφ = 0:

∇2φ−
(
∂V

∂φ∗
− ω2φ

)
= 0 (1.6)

We can see that this equation describes a stationary state in an effective potential of Ṽ (φ) =

V (φ)− ω2|φ|2. Expanding Ṽ to lowest order we have Ṽ ≈ (m2 − ω2)|φ|2 + · · · . We now see

that if ω > m, there are no stable solutions. The stability condition is therefore that there

exists some region of the scalar potential ϕ such that V (ϕ) < m2|ϕ|2. Conceptually, this can
be understood as requiring that the potential has attractive nonlinear interactions.

We can get a variational estimate for the mass, radius and central field value of a Q-ball

with fixed charge Q by assuming a variational ansatz φ(r) = φ0 exp(−1
2
(r/R)2). Normaliza-

tion fixes φ0 =
√
Q/2π3/2ωR3 (we take Q > 0 without loss of generality from now on). For

a scalar potential with a "flat direction", common in supersymmetry, we can approximate

V (φ) ≈ Λ4 inside the soliton and zero outside. Then, minimizing the energy functional Ẽ[φ]

with respect to R and ω gives us

R = 0.56Q1/4/Λ, ω = 2.2ΛQ−1/4, E = ωQ = 2.2ΛQ3/4, φ0 = 0.5ΛQ1/4 (1.7)

We can see that for largeQ, the energy/mass of the soliton grows asQ3/4, whereas a collection

of free particles with the same charge would grow linearly in Q. Therefore, the solitonic

4



configuration is more energetically favorable for large values of Q, as expected. In order to

satisfy the condition ω < m, the Q-ball has a minimum charge of Qmin = 23(Λ/m)4.

There are even more exotic types of Q-balls than the globally-conserved type discussed

above, such as those with a local gauge invariance [65, 66], as well as nonzero angular

momentum [67, 68], but discussion of these types of Q-balls is beyond the scope of this work.

1.2.2 Boson Stars

Similar to Q-balls, boson stars (or Bose stars) are bound configurations of scalar conden-

sates, but with their dynamics dominated by gravitational forces (first considered by Ruffini

and Bonazzola [69] and then further by many others [70, 71]). Because gravity is such a

weak long-range attractive force (as opposed to the surface-tension-like interaction holding

together Q-balls), boson stars can be extremely diffuse, spanning entire galaxies or galactic

clusters. On the other hand, as a boson star’s mass increases, so does the gravitational

binding, causing it to become more compact. Eventually, the density may exceed that of a

neutron star, or even become comparable to a black hole [72].

Unlike Q-balls, boson stars may be composed of both complex and real scalar fields. If

the field is real, it is called an oscillaton (in analogy with oscillons) [73, 74, 75, 76]. If the

field is complex and has no self-interactions in the scalar potential, then is is called a mini

boson star, which are generally extremely compact since there is no nonlinear repulsion to

prevent the star from contracting.

Recently, boson stars have received much attention as potential dark matter candidates,

where the scalar field from which they are composed is the hypothesized axion [77, 36, 35, 78].

These axion stars or axion miniclusters would form in the early universe due to gravitational

instability, and could be responsible for the mysterious fast radio bursts due the axion’s φFF̃

interaction [79, 80, 81].
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1.2.3 Primordial Black Holes

Primordial black holes (PBH) go back to Hawking and Carr [82, 83]. If a region of space

in the early universe could develop a modest overdensity δ = (ρ − ρ̄)/ρ̄ with respect to

the background energy density, then gravitational instabilities could drive these regions to

collapse and form black holes. The possible spectrum of primordial black hole masses is

very broad, constrained by Hawking radiation from below (∼ 1015 g), and the mass of the

Hubble horizon in the early stages of the universe from above (∼ 105 M�). They could be

responsible for a variety of different unexplained phenomena, such as positron excess [84],

gamma ray bursts [85, 84], baryogenesis [86], heavy nuclei [87], and many others.

However, there exist numerous constraints (from a variety of sources) on the abundance

and mass of primordial black holes. If PBH were to make up 100% of the dark matter, these

constraints restrict their masses to a relatively narrow window around 1020 grams. There

has been much discussion of this recently, as the validity of the existing constraints in this

regime has been called into question [88, 89, 90].

In the standard lore, the primary mechanism for producing PBH is due to density fluc-

tuations seeded during inflation. If the inflaton potential has a relatively flat region and the

field trajectory passes over this area, large fluctuations will be generated. These fluctuations

will then be blown up to superhorizon sizes during inflation. Once the inflationary period

has passed, however, these fluctuations may pass back within the horizon during a later

epoch, at which point they will collapse and form PBH. This method makes some strong

assumptions as to the shape of the inflaton potential, and requires relatively fine tuning of

the potential’s parameters. In Chapters 4 and 5, an alternate mechanism is detailed which

does not make such strong assumptions regarding the shape of the inflaton potential.

6



CHAPTER 2

Boson Star Collisions

The content of this chapter has been published in Physical Review D as Collisional

interactions between self-interacting nonrelativistic boson stars: Effective potential analysis

and numerical simulations, E. Cotner, Phys. Rev. D 94, no. 6, 063503 (2016) [91].

Scalar particles are a common prediction of many beyond the Standard Model theo-

ries. If they are light and cold enough, there is a possibility they may form Bose-Einstein

condensates, which will then become gravitationally bound. These boson stars are soli-

tonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the

non-relativistic regime with a coupled Schrödinger-Poisson system. General properties of

single soliton states are derived, including the possibility of quartic self-interactions. Binary

collisions between two solitons are then studied, and the effects of different mass ratios, rel-

ative phases, self-couplings, and separation distances are characterized, leading to an easy

conceptual understanding of how these parameters affect the collision outcome in terms of

conservation of energy. Applications to dark matter are discussed.

2.1 Introduction

One of the outstanding problems facing modern astrophysics and particle physics is the

composition of the dark matter which makes up a large fraction of the energy density of

the Universe. In the quest to identify the characteristics which define this type of matter,

many authors have considered numerous models. One of the main candidates in this quest

is the WIMP, a class of particle with GeV- or TeV-scale mass which (as the name suggests),

interacts weakly with itself and/or normal baryonic matter. Though WIMP models in the
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ΛCDM paradigm can reproduce the observed large-scale structure of the Universe, there is

some tension between ΛCDM simulations and observation on galaxy-sized scales. Specifi-

cally, there are issues concerning how sharply peaked the density profiles of DM-dominated

galaxies are [92], and the abundance and luminosity of satellite galaxies [93]. Simulations

predict singular behavior near the center of a typical galaxy, while observations of dwarf

spheroidal galaxies prefer a smoother, core-like profile. Propositions to explain this discrep-

ancy have invoked processes such as baryonic feedback [94], in which supernovae or other

baryonic astrophysical phenomena near the galactic nucleus push dark matter outward, and

self-interacting dark matter (SIDM) [95], in which infalling particles can transfer momentum

to those in the core, smoothing the density profile. However, baryonic interaction with dark

matter and the SIDM cross-section are highly constrained by measurements from the Bullet

Cluster [96], direct-detection experiments [97], and black hole growth [98].

Indeed, a DM candidate exists which can naturally explain the cusp-core problem while si-

multaneously reproducing the same cosmological-scale structure of the Universe in the same

fashion as ΛCDM [28], and may even be able to resolve the mysteries surrounding the col-

lisions of the Bullet Cluster and Abell 520 [99]. A boson star, or soliton composed of a

self-gravitating Bose-Einstein condensate, has a series of interesting properties which make

it a good candidate to resolve some of the outstanding issues inherent with ΛCDM on small

scales. The component particles making up a boson star can, to good approximation, share a

macroscopic wave function due to their Bose-Einstein statistics. Just as a localized particle’s

wave function naturally spreads with time, a boson star will expand until the attractive force

of gravity balances the outward “quantum pressure", leading to a stable solitonic state. The

shape of the resulting density profile is devoid of a singularity, and is smooth and continuous

at the origin. In addition, collisions between two boson stars may cause the two to either

stick together, scatter inelastically, or pass right through each other (depending on a number

of factors), leading to momentum transfer, agglomeration/fracturing of compact objects, or

spreading of the central density cusps predicted in ΛCDM simulations. This effect exists

regardless of whether or not the scalar field has significant self-interactions in its potential.

There are many theoretically-motivated candidates to make up the scalar field in question.
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The axion, for example, is expected to be an extremely light (m . 1µeV) scalar, and readily

forms a condensate at relatively high temperatures [100]. The existence of the Peccei-Quinn

axion solves the strong CP problem, and axion-like fields are a general prediction of string

theories [101]. Scalar superpartners of the fermionic fields of the Standard Model, though

expected to be relatively heavy, may be good candidates, and have been studied extensively

under the name SUSY Q-balls [102][103] (where the Q refers to a conserved Noether charge)

in the absence of gravitational interaction. Couplings to the Standard Model Higgs or some

other scalar with a Higgs mechanism, if they exist, might also provide a means for creating

stable Q-balls from condensed scalar fields. In addition, microlensing experiments from the

MACHO [104], EROS [105] and OGLE [106] collaborations have detected a significant excess

of events over those expected simply from stellar populations, and puts the expected mass

of these objects between 0.15 − 0.9M� at a 95% confidence interval. Could the detected

compact objects be made up of boson stars?

In this paper, I will outline the existence and classification of stable, non-relativistic boson

stars, and will derive approximate analytical profiles and properties of these stars in section

2.2. I then focus on the binary interactions between two such stars, and the different head-

on scattering outcomes based on initial velocity, distance, relative phase and mass, and the

degree of self-coupling in section 2.3. These findings are then verified through numerical scat-

tering simulations in section 2.4. Finally I end with a discussion of the possible application

of these results to dark matter phenomenology and future research in section 2.5.

2.2 Existence and stability of boson stars in the non-relativistic

limit

We begin with the action for a scalar field minimally coupled with gravity:

S =

∫
d4x
√−g

[
1

2κ
R +∇µϕ

†∇µϕ− V (ϕ)

]
(2.1)
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In the non-relativistic approximation, we can write ϕ in terms of a complex wave function:


ϕ = 1√

2m
(e−imtψ + eimtψ∗) ϕ∗ = ϕ

ϕ = 1√
2m
e−imtψ ϕ∗ 6= ϕ

(2.2)

We may neglect terms containing an exponential factor since they will average out to zero due

to rapid oscillation of the mass frequency, and use the weak-field gravity ansatz g00 = 1+2φ,

gij = −(1+2φ), gi0 = g0j = 0. Variation of the action then leads to the Schrödinger-Poisson

system for a self-interacting scalar field:

iψ̇ = − 1

2m
∇2ψ +

λ

8m2
|ψ|2ψ +mφψ (2.3)

∇2φ = 4πGm|ψ|2 (2.4)

where ψ is the bosonic wave function, φ is the gravitational potential, and λ is the coupling

constant due to a quartic self-interaction: V (ϕ) = λ
4
|ϕ|4. Higher-order effective self-couplings

may exist in principle, but we shall neglect them here. Higher-order self-couplings can lead

to the formation of solitonic states even in the absence of gravity (a good review of this may

be found in Lee and Pang [107]), but a quartic interaction by itself is not enough. These

types of field configurations are referred to as mini-boson stars.

In the Hartree-Fock approximation, we may assume that the entire collection of particles

share a single wave function, as they have formed a Bose-Einstein condensate. The critical

temperature for a non-relativistic condensate is given by [108]:

kTc =
2π

m

(
n

ζ(3/2)

)2/3

(2.5)

= 1.59 MeV
( m

10−9 eV

)−5/3
(

Ω

.25

)2/3

where we have substituted values for a typical uniformly-distributed axion-mass dark matter

particle under the assumption it makes up 100% of the DM. The temperature of such a

particle today is surely below this limit, and in regions of higher density (such as in galaxies
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and solitons), this critical temperature will be even higher.

We may find approximate stable ground states through the use of the variational method.

First, using the Green’s solution for the gravitational potential φ, we may calculate the

expectation value of the Hamiltonian in an arbitrary state |ψ〉 in the following manner [100]:

〈H〉 =
1

2m

∫
d3x |∇ψ|2 +

λ

16m2

∫
d3x |ψ|4 − Gm2

2

∫
d3x

∫
d3x′
|ψ(~x)|2|ψ(~x′)|2
|~x− ~x′| (2.6)

A good first guess for a solitonic ground state may be a Gaussian profile:

ψ(~x) =

(
2N2/3k2

π

)3/4

e−k
2r2 (2.7)

where k is an inverse length-scale variational parameter or wave vector, and |ψ〉 is properly
normalized such that 〈ψ|ψ〉 = N . Substitution of this state into the expectation value for

the Hamiltonian leads to the equation 〈H〉 = 3N
2m
k2 + λN2

16π3/2m2k
3 − Gm2N2

π1/2 k, and variation

with respect to 1/k returns

1/k =
3π1/2

2

1

Gm3N

(
1 +

√
1 +

1

12π2
λGm2N2

)
(2.8)

This is the same result derived by Chavanis [109], and the single-soliton analysis that follows

is nearly identical. He also uses a similar “effective potential" formalism for the radius of the

boson star, though he does not extend it to interactions of solitons as is done in this paper.

Since dark matter is expected to be weakly self-interacting, it is useful to look at the weak

interaction limit where ξ ≡ λGm2N2/12π2 � 1 (more precisely, |ξ| � 1, since there is no

restriction on the sign of λ if we invoke higher-order couplings to prevent the Hamiltonian

from being unbounded from below).

1/k ≈ 3π1/2 1

Gm3N

(
1 +

1

48π2
λGm2N2

)
(2.9)
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In the case of no interactions whatsoever, we have

1/k ≈ 3π1/2

Gm3N
≈ 3π1/2

Gm2M
(2.10)

= 0.88
( m

10−9 eV

)−2
(

M

1 M�

)−1

km

Since the radius scales as M−1, this means that more massive condensates are more tightly

gravitationally bound and have a smaller spatial scale. For the parameters given above, this

condensate is incredibly tiny given its mass; so tiny that it’s actually within its Schwarzschild

radius, meaning it would have collapsed to a black hole at this mass (see maximum mass in

eqn. 2.12). However, even a tiny repulsive self-coupling λ can get around this. It is important

to note that the |ξ| � 1 limit does not necessarily imply |λ| � 1; the particle number of

the condensate must also be small enough to satisfy this inequality. Likewise, ξ � 1 does

not imply λ � 1. This means the self-interaction parameter may be very large for large

particle number, even if the self-coupling λ itself is quite modest. When ξ � 1, the soliton

becomes more diffuse and a Gaussian wave function is no longer a good approximation to

its shape. However, the length scale parameter should be within a factor of order unity of

the real thing, so we can still glean some information from the Gaussian variational wave

function in this regime. In this limit, the length scale parameter is

1/k ≈ 3π1/2

2

1

Gm3N

(
ξ1/2 + 1 + 2ξ−1/2

)
(2.11)

≈ 2.4× 1017
( m

10−9eV

)−2
(

λ

10−6

)1/2

kpc

where the final expression is in the limit N →∞. For this set of parameters (corresponding

to ξ ∼ 1023), the condensate is enormous, stretching beyond the observable universe! Of

course this is an extreme example, but I just wanted to show the enormous effect even a

tiny coupling can have. We can see that the leading order term in this approximation is

independent of the particle number, suggesting that in the limit N →∞, the spatial extent

of such a soliton will approach a finite size. This may have interesting consequences for

black hole formation, since even a tiny self-coupling may prevent black hole collapse. We
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may approximate the critical mass and rough lower bound at which general relativistic effects

take hold and black hole collapse may occur by comparing the Schwarzschild radius to the

soliton radius Rs = 2GM ∼ 1/k which implies:

Mmax ∼
√

3π1/2

2G2m2
≈ 10−1

( m

10−9 eV

)−1

M� (2.12)

in the |ξ| � 1 regime, and

Mmax ∼
1

8m2

√
3λ

πG3
(2.13)

≈ 1032

(
λ

10−6

)1/2 ( m

10−9 eV

)−2

M�

in the ξ � 1 regime. This agrees with the Kaup limit [110][69] in the non-interacting case,

and with the analysis of Colpi, Shapiro and Wasserman [111] in the strongly-interacting

case. As is evident from this comparison, solitons without self-interaction could potentially

readily form many small black holes (especially at higher particle mass), whereas those with

self-interaction are stable against gravitational collapse for all practical purposes, unless the

self-coupling is extremely small. The binding energy is given by

E0 = −8G2m5N3
(
3 + 2ξ + 3

√
1 + ξ

)
36π(1 +

√
1 + ξ)3

(2.14)

Which in the two extreme limits are

E0 ≈


−G2m5N3

6π
+ λG3m7N5

432π3 +O(λ2) |ξ| � 1

−8G3/2m4N2

3
√

3λ
+ 8πGm3N

λ
+O(λ−3/2) ξ � 1

(2.15)

which are in good agreement with several numerical analyses [69][112][70]. The total mass

of the star in this state is given by M = mN + E0, which since the binding energy is

negative due to the gravitational interaction, is energetically favorable to the state in which

the component particles making up the condensate are unbound, ensuring stability against

dissolution of the soliton. The soliton is also classically stable against radiation of single
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particles since E0(N − 1)− E0(N) > 0, meaning that the bound state with N − 1 particles

has a higher energy than the bound state with N particles. Unfortunately, it becomes clear

that the non-relativistic approximation breaks down very quickly once the binding energy

per particle approaches its rest mass, and therefore is only valid in the regime

1� |E0|
mN

≈


G2m4N2

6π
ξ � 1

8G3/2m3N
3
√

3λ
ξ � 1

(2.16)

This analysis therefore only holds for galaxy-mass solitons when the particle mass is very

light, m . 10−21 eV when there is no self-interaction [?], and 30 eV when λ = 10−6. This

upper limit might be relaxed if the dark matter content of the galaxy is instead composed

of many smaller solitons. If we assume boson star masses comparable to a solar mass, the

particle mass can be much larger before the non-relativistic analysis breaks down, as high as

m . 10−9 eV for λ = 0 and 30 MeV if λ = 10−6. It bears repeating that these upper limits

are by no means actual physical limits, just the limits of applicability of this analysis, and a

fully relativistic model must be used for masses beyond this.

As should be obvious, the binding energy becomes complex when λ < −12π2/2Gm2N2. From

the form of the Schrödinger equation, we can see that the self-interaction term contributes

energy positively when the density rises; therefore it represents a short-range self-repulsion

when λ is positive. When it is negative, this is now a short range attraction. The parameter

range where the energy becomes complex thereby signifies an instability where the combined

attractive force of gravity and self-interaction causes the soliton to either collapse, or split

into multiple smaller solitons until the binding energy of each is no longer complex. This

critical mass occurs at

Mmax ≈
3π√
2G|λ|

= 6.7× 103

( |λ|
10−6

)−1/2

MP (2.17)

which is in general agreement with the work of Eby, Kouvaris, Nielsen, and Wijewardhana

[32]. It is unclear from this variational analysis which of these situations would occur, but

the results of numerical simulations suggest a combination of both.
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2.3 Binary interactions

Once the stable states have been found, the next question is how do two or more of

these solitons interact with each other. Do they stick, recoil, or pass right through each

other during a collision? If we compute the energy of a certain binary configuration, we can

use this to answer that question by comparing the energies of different configurations, using

this energy as an effective potential for the separation distance. A common method used

in undergraduate quantum classes to find the binding energy of the H+
2 molecule will be

applicable here. Once again, we use the variational method to find the expectation value of

the Hamiltonian, only this time our variational states will be a superposition of two solitons,

separated in space, and potentially differing in their relative phase. The separation d will be

the variational parameter, and we shall hold the soliton wave numbers ki constant. In this

work, for computational ease, I will suppose that there is no relative motion, so that the two

solitons are suspended in their separation. Our superposition state, |ψ〉, is normalized such

that 〈ψ|ψ〉 = N = N1 +N2, so that the total particle number is conserved throughout. This

state has the form

|Ψ(~r)〉 = A
[
|ψ(~r − ~d/2)〉+ eiα |ψ(~r + ~d/2)〉

]
(2.18)

where |ψi(~r)〉 are the 1-soliton wave functions solved for in the previous section, α is the

relative phase between the two solitons and A is the overall normalization, which is given by

A =

√
N

N + 2 cosα 〈ψ1|ψ2〉
, (2.19)

〈ψ1|ψ2〉 = 2
√

2N1N2

(
k1k2

k2
1 + k2

2

)3/2

exp

(
−(dk1k2)2

k2
1 + k2

2

)
(2.20)

Substituting this state into the expectation value of the Hamiltonian, we arrive at a very

complicated expression which is better tackled in pieces. There are three terms: the kinetic,
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self-interaction, and gravitational. The contribution to the kinetic term is of the form

Ekin =
π3/2A2

8mk1k2

[
3
√

2(A2
2k1 + A2

1k2)

−16A1A2k
3
1k

3
2

(k2
1 + k2

2)7/2

(
2(dk1k2)2 − 3(k2

1 + k2
2)
)

exp

(
−(dk1k2)2

k2
1 + k2

2

)
cosα

]
(2.21)

where A1 and A2 are simply the normalization factors of the single-soliton wave function

(e.g. A1 = (2N
2/3
1 k2

1/π)3/4). We may observe that there is a length scale ` =
√
k2

1 + k2
2/k1k2

which determines a critical separation distance between the two solitons. If we recognize that

Ri ≡ 1/ki is roughly the characteristic radius of the soliton, then we can also understand

that ` =
√
R2

1 +R2
2 is the geometric mean of the two radii. Rescaling d so that it is in units

of ` (x ≡ d/`), we can rewrite the energy as

Ekin =
A2

2
√

2m

[
3
√

2(N1k
2
1 +N2k

2
2)− 32

√
N1N2

(k1k2)3/2`5
(x2 − 3/2)e−x

2

cosα

]
(2.22)

After substituting in the variational estimate for the ki found for the stationary solitons, we

find that the kinetic energy is of the form Ekin = G2m5f(N1, N2, α, x). Thus, the mass of the

constituent particles only serves to scale the energy and length factors, and cannot change

the features of these curves for fixed particle number.

The phase-dependent bump or well found in the region x� 1 in the N1 ∼ N2 case is remi-

niscent of either the nuclear potential found in nuclear scattering and fusion, or the binding

energy curve found in atomic physics. When the solitons overlap considerably, this suggests

that the two either repel or merge depending on phase. However, the superposition of states

we have used to calculate this energy is not likely to hold when x � 1. This is due to the

fact that the nonlinearity introduced by the gravitational interaction violates the superpo-

sition principle, so that the superposition of solitons we have started with is technically not

allowed. Far from each other, this violation is negligible and assuming superposition is a

good approximation. But in the x� 1 regime, superposition is no longer valid and our trial

wave function for individual solitons suffers in accuracy. The solitons should merge, but this

description does not account for that. Therefore, treat the results of this analysis in this
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Figure 2.1: Total kinetic energy as a function of scaled separation distance x = d/`. Solitons
of comparable size (left column) have a phase-dependent bump or trough. Binaries where one
soliton has much more mass than the other (right column) no longer exhibit this property,
unless the self-interaction is very strongly repulsive. Solitons with weak repulsive interactions
(top row) have different behaviors in these two regimes, while those with strong repulsive
interactions (bottom row) look very similar.

region with a bit of skepticism.

When moving along these energy curves slowly enough, the solitons should track the state

of lowest energy. If the kinetic contribution to the total energy were the only relevant part,

this lowest energy state should be the bottom of the potential well around x = 1.3 when

α = 0, meaning a bound state will form. However, there are still the self- and gravitational

interactions to consider, which will change the shape of this curve.

Performing the same procedure as above, we may compute the self-interaction contribution

to the energy:

Eint =
π3/2λA4

64m2

[
N1k

3
1 +N2k

3
2 +

32
√
N1N2

(k1k2)3/2

(
N1

(
k1

`1

)3

e−3(d/`1)2 +N2

(
k2

`2

)3

e−3(d/`2)2

)
cosα

+
4
√

2N1N2

`3
e−2(d/`)2(2 + cos(2α))

]
(2.23)
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Figure 2.2: Self-interaction energy as a function of scaled separation distance x = d/`.
Solitons of comparable size (left column) exhibit either a repulsive or attractive mutual force
depending on phase difference, the shape of which is independent of self-interaction strength.
Solitons of asymmetric masses (right column) have a more curious behavior.

There are two more length scales in addition to `, `i = `
√

1 + 2k2
i /(k

2
1 + k2

2). It is clear that

if ki/kj � 1, then `i → `, and if ki/kj � 1, then `i →
√

3`, with intermediate cases falling

somewhere in between.

This self-interaction energy is plotted as a function of separation distance in fig. 2.2. We may

see that in the case of λ > 0, the mutual force between the two solitons is not necessarily

repulsive, and depends on both the relative phase and size of the objects. Specifically,

for stars of comparable mass, the interaction is repulsive for wave functions in phase, and

attractive for wave functions out of phase. For stars of asymmetric masses, the interaction

is attractive for in phase wave functions, and repulsive for out of phase wave functions in the

weak self-interaction regime. This behavior is switched in the strong self-interaction regime,

where an additional bump/trough forms just as in the kinetic term. In the λ < 0 case,

there is no such thing as the strongly-interacting regime, as the individual solitons would be

unstable, and behavior is similar to the weak-interaction regime for λ > 0, but with the sign

of the energy switched.
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The third and final term in the Hamiltonian is the gravitational interaction term. It is

composed of four sub-terms which we may break up in the following manner (recalling

ψ = A(ψ1 + eiαψ2) and that the integral is invariant under relabeling ~x ↔ ~x′ since the

integration regions are the same):

Egrav = −Gm
2

2

∫
d3x d3x′

|ψ(~x)|2|ψ(~x′)|2
|~x− ~x′|

= −1

2
Gm2A4

∫
d3x d3x′

ψ2
1(~x)ψ2

1(~x′) + ψ2
2(~x)ψ2

2(~x′)︸ ︷︷ ︸
soliton self-energy

+ 2ψ2
1(~x)ψ2

2(~x′)︸ ︷︷ ︸
classical gravity

+4 cosαψ1(~x)ψ2(~x)
(
ψ2

1(~x′) + ψ2
2(~x′)

)︸ ︷︷ ︸
long-distance interference

+ 4 cos2 αψ1(~x)ψ2(~x)ψ1(~x′)ψ2(~x′)︸ ︷︷ ︸
short-distance interference

 /|~x− ~x′|
(2.24)

The self-energy term is simply the binding energies of the individual solitons, and can be

coordinate transformed so that it is spherically symmetric and is easily solved:

I1 =
√

2π5/2

(
A4

1

k5
1

+
A4

2

k5
2

)
= 8

√
2

π

(
N2

1k1 +N2
2k2

)
(2.25)

This term, along with the “classical gravity" term are what you would expect if we were using

regular mass densities ρ = ρ1 + ρ2 = ψ2
1 + ψ2

2. However, since we are using wave functions,

we must add them together, then square, introducing interference effects. The “long distance

interference" term is identified as such because it contributes more weight to the integral

when ~x′ is close to the center of either one of the solitons, whereas the “short distance

interference" term must have ~x′ near the center of both solitons to contribute significantly.

Besides the first term, this expression is not analytically soluble, but we can make some

headway numerically by using the Green function in cylindrical coordinates [113]:

g(~x, ~x′) =
1

4π|~x− ~x′| =
1

2π2

∞∑
m=−∞

∫ ∞
0

dk Im(ks<)Km(ks>)eim(φ−φ′) cos(k(z − z′)) (2.26)

19



Due to cylindrical symmetry, only the m = 0 term contributes to the sum after integration

over φ, φ′, and the integrations over z, z′ can be performed analytically, leaving us with

a triple integral over s, s′ and k. This must be evaluated numerically. Transforming to

dimensionless units (σ, σ′, κ, x) ≡ (s/`, s′/`, `k, d/`), the expression to integrate shall be

Egrav = −4π2Gm2A4`3

∫ ∞
0

dκ

∫ ∞
0

dσσ

[∫ σ

0

dσ′ σ′I0(κσ′)K0(κσ) +

∫ ∞
σ

dσ′ σ′I0(κσ)K0(κσ′)

]
×
[
A4

1

2k2
1

e−κ
2/4`2k21e−2`2k21(σ2+σ′2) +

A4
2

2k2
2

e−κ
2/4`2k22e−2`2k22(σ2+σ′2)

+4A1A2 cosαe−x
2−`2(k21+k22)σ2

 A2
1 cos

(
xκ
`2k21

)
√

2k1

√
k2

1 + k2
2

e
− κ2`21

8`4k21 e−2`2k21σ
′2

+
A2

2 cos
(

xκ
`2k22

)
√

2k2

√
k2

1 + k2
2

e
− κ2`22

8`4k22


+

4A2
1A

2
2 cos2 α

k2
1 + k2

2

e
−2x2− κ2

2`4k21k
2
2 e−2`4k21k

2
2(σ2+σ′2) +

A2
1A

2
2

k1k2

cos(κx)e−κ
2/8e−2`2(k21σ

2+k22σ
′2)

]
(2.27)

Evaluation of this integral for various values of x and α lead to the plots of fig. 2.3. We can

see that at long distances, the gravitational interaction energy asymptotically approaches

−GM1M2/x−E1−E2, as one would expect from Newtonian theory. As the distance closes,

a prominent rise in energy appears for relative phase α = π. In the N1 ∼ N2 regime, this

rise can even cause the gravitational contribution to become positive (mildly disturbing,

but we don’t expect this analysis to be valid in the x � 1 limit as mentioned before), and

clearly signals a strongly repulsive interaction. For relative phases less than about π/2, the

energy falls, signaling a mildly attractive force, and potential merger. We can see that in the

ξ � 1 regime, the gravitational binding energy is many orders of magnitude smaller than

the equivalent situation with ξ � 1 due to the internal repulsive force spreading out the

soliton.

Having evaluated and discussed the behavior of each of the contributions to the total energy

separately, it is now of interest to see what they look like summed together into an effective

potential, so that we may grasp the overall behavior of the interaction, which is plotted in

fig. 2.4. The effective potential curves in each parameter regime are markedly different from

each other, though with some unifying overall behavior. First, we may observe that in the
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Figure 2.3: Gravitational energy as a function of scaled separation distance x = d/`. Solitons
exhibit a universal behavior of mutual attraction when the relative phase is small, and mutual
repulsion when the relative phase is close to α = π. This repulsive behavior is very strong
at small separations except in the case of asymmetric size solitons with weak self-interaction
(top right).
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Figure 2.4: Effective potential (total energy) as a function of scaled separation distance
x = d/`. Solitons exhibit a complicated interaction based on the physical parameters,
though it is apparent that for ξ � 1 (top row), solitons in phase have a roughly attractive
interaction, while pairs that are out of phase are roughly repulsive. For ξ � 1 (bottom row),
this behavior is switched.
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ξ < 1 regime, in phase solitons are attractive, whereas out of phase solitons are repulsive.

In the ξ > 1 regime, this is switched. This is because the self-interaction contribution to

the energy dwarfs the kinetic and gravitational contributions in this regime, and so the total

energy is decently approximated by that term alone. Interesting to note is that in both the

(N1 ∼ N2, ξ � 1) and (N1 � N2, ξ � 1) regimes, a local minimum appears in the α = 0

energy curve, suggesting a permanent bound state may be formed. In the first case, this does

not appear likely, as the kinetic energy gained falling into this minimum from infinitely far

away should be enough to avoid being bound and make it through the dip to x = 0, where

a merger will occur, unless there is some initial kinetic energy allowing them to escape. In

the second case, provided the initial kinetic energy isn’t too high, a bound state does appear

likely to form since the α = 0 curve turns sharply upwards, creating a barrier to merger.

The α = π curve, however, provides much less resistance to merger due to the much smaller

energy barrier. Curiously, since it is more energetically favorable for the two solitons to be

out of phase in the ξ � 1 regime at small x, it may be possible to have a shell-like structure

where the core of the star is out of phase with respect to the exterior. This would result in

a node in the radial wave function, leading one to believe that excited states may easily be

formed from collisions of this type.

2.4 Numerical Simulation

In order to verify the above scattering predictions, I have employed a number of numerical

simulations. These simulations solve the time-dependent Schrödinger-Poisson system with

nonlinear self-interaction for initial states of two solitons, which are then evolved in time to

determine scattering behavior. The code utilizes a grid method to calculate the wave function

ψ by discretizing Schrödinger’s equation on a 3D Cartesian grid and using a 2nd-order

center-time, 1st-order center-space (CTCS) algorithm (∂ψ/∂t→ (ψ(t+ dt)−ψ(t− dt))/2dt,
∂2ψ/dx2

i → (ψ(xi + dxi)− 2ψ(xi) +ψ(xi− dxi))/dx2
i ) to iterate the value of the field at each

grid point in time. The gravitational potential φ is also discretized on the same grid, and

is solved for using a successive over-relaxation (SOR) algorithm with the ψ field from the
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previous time step as the source. In order to satisfy the boundary condition that both ψ

and φ should vanish at infinity, I have performed an asymptotic coordinate transformation

χi = tanh(xi/R) to map the domain from R3 → [−1, 1]3, which allows Dirichlet conditions

to be imposed on the boundary of the box [−1, 1]3. The relation between the probability

densities in these two coordinate systems is then

|ψ(~x)|2 d3x = |ψ(~χ)|2
∣∣∣∣ ∂(x, y, z)

∂(χ1, χ2, χ3)

∣∣∣∣ d3χ =
|ψ(~χ)|2R3

(1− χ2
1)(1− χ2

2)(1− χ2
3)
dχ1 dχ2 dχ3 (2.28)

The parameter R is a scaling factor which is roughly the spatial extent of the radius within

which the simulation should be contained. Outside this radius, the simulation will still run

correctly, but spatial distances are severely distorted and might not capture all the details of

the evolution. In terms of the discretized χ variables, Schrödinger’s equation can be solved

for the value of ψ at successive time steps:

ψn+1
i1,i2,i3

= ψn−1
i1,i2,i3

+
i dt

(dχR)2m

[
(1− χ2

1)(1− χ2
1 − χ1 dχ)ψni1+1,i2,i3

+(1− χ2
1 + χ1 dχ)ψni1−1,i2,i3

− 2(1− χ2
1)ψni1,i2,i3

]
+ (1↔ 2) + (1↔ 3)− iλ dt

4m2
|ψni1,i2,i3|2ψni1,i2,i3 − 2im dt φni1,i2,i3ψ

n
i1,i2,i3

(2.29)

where n denotes the time step and the i’s index spatial grid points. φ refers to the gravita-

tional potential, which is solved using the aforementioned SOR algorithm:

φn,nr+1
i1,i2,i3

= (1− ω)φn,nri1,i2,i3
+

ω

2
∑3

i=1(1− χ2
i )

2

[
(1− χ2

1)(1− χ2
1 − χ1 dχ)φn,nri1+1,i2,i3

+(1− χ2
1 + χ1 dχ)φn,nr+1

i1−1,i2,i3
+ (1↔ 2) + (1↔ 3)− 4πGmR2 dχ2|ψni1,i2,i3|2

]
(2.30)

where ω = 1.9 is the over-relaxation parameter, and nr denotes the relaxation time step.

This is run repeatedly until the error between steps (φnr+1 − φnr)/φnr+1 < 10−4. As initial

states, I take a superposition of two stationary states, similar to that of eqn. 2.18, though
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with additional non-constant phase factors to account for initial velocities:

Ψ(~r, t0) = A
[
ψ(~r − ~d/2)eim~v1·~r + eiαψ(~r + ~d/2)eim~v2·~r

]
(2.31)

where ψ is the stationary wave function, m is the mass of the scalar particle, α a constant

phase factor, and ~vi are the initial velocities. I do not use initial momentum here because the

quantity in the exponential would be the average momentum per particle, which is somewhat

confusing, especially in scenarios where the two solitons are different masses. In most of the

cases that will follow, nonzero initial velocities will be equal and opposite: ~v1 = −~v2 ≡ ~v. In
order to verify the predictions of the previous sections, I will perform a number of simulations

under different conditions, listed here for clarity:

A. N1 = N2, ξ � 1, α = 0, v0 = 0: predicted to fall together then merge.

B. N1 = N2, ξ � 1, α = 0, v0 6= 0: predicted to fall together, then pass through each other

mostly intact.

C. N1 = N2, ξ � 1, α = π, v0 = 0: predicted to fall towards each other, reflect, then sit

adjacent until eventual merger.

D. N1 = N2, ξ � 1, α = π, v0 = 0: predicted to fall towards each other and merge.

E. N1 � N2, ξ � 1, α = π, v0 = 0: predicted to fall towards each other, reflect, then sit

adjacent until eventual merger.

F. N1 � N2, ξ � 1, α = 0, v0 = 0: predicted to fall towards each other, reflect, then sit

adjacent to each other for an extended period (possibly indefinitely).

G. Single large soliton with self-interaction parameter past critical range ξ < −1: predicted

to fracture into multiple smaller solitons.

There are too many parameter combinations to cover the entire parameter space, so we will

focus on those with possibly interesting effects. In what follows, I will present the results

of the simulations in the form of snapshots of the system at relevant times (where t refers
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Figure 2.5: Snapshots of two colliding boson stars with N1 = N2 = 1060, ξ1 = ξ2 = 10−2,
α = 0 and v0 = 0, explained in section (2.4.1).

to the number of timesteps since the simulation was initiated). The plots are of surfaces of

constant |ψ|2, with different contours representing half-logarithmic steps (cn = 10n/2).

The numerical stability of these simulations are governed by three different stability pa-

rameters s, sλ, sG, that determine the numerical instability corresponding to the dynamical,

λφ4, and gravitational interactions, each of which scales linearly with the time step ∆t. For

stability to reign, we need all three parameters to be significantly less than unity. This can

always be accomplished by making ∆t smaller, at the cost of increased CPU time, which

scales as ∆t−1 for simulations of the same length of time. This means that for reasonable-

length simulations I can run on commercially-available hardware, I constrain s ∼ 10−1.

Unfortunately, the ratio sλ/s ∼ ξ1/2/M2 for large ξ, where M is the number of grid points

along one dimension of the simulation, so that simulating very strongly interacting systems

becomes infeasible from a computational standpoint. This forces us to consider simula-

tions of only mildly self-interacting systems with ξ = 101 rather than the ξ = 104 sys-

tems considered in section 2.3. Animations of these simulations can be found online at

(http://ecotner.bol.ucla.edu/Research/Solitons/BoseStars.html).

2.4.1 N1 = N2, ξ � 1, α = 0, v0 = 0

In this first simulation, we look at the behavior of two equal-mass boson stars with

a negligible self-interaction and no relative phase or initial velocity. As we can see from

fig. 2.5, the solitons fall under gravitational attraction toward each other (taking time to

accelerate, which explains the large delay between snapshots 1 and 2), merge together, and
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Figure 2.6: Snapshots of two colliding boson stars with N1 = N2 = 1060, ξ1 = ξ2 = 10−2,
α = 0 and v0 = 7× 10−15, explained in section (2.4.2).

then sit stationary in the center of mass while experiencing mild radial oscillations which are

symmetric under rotations about the axis of approach. This is in line with the prediction

from the effective potential: that the system doesn’t have enough energy to overcome the

hump at the origin and the two solitons merge.

2.4.2 N1 = N2, ξ � 1, α = 0, v0 6= 0

In this second simulation, we look at the behavior of two equal-mass boson stars with

negligible self-interaction and no relative phase. However, they do have initial velocities

(directed towards each other). As we can see from fig. 2.6, the solitons accelerate towards

each other, merge briefly, then continue onwards, their trajectories unaltered. This is as

expected, as now the system has enough kinetic energy to get over the hump at the origin

of the effective potential. Not shown is that significantly after passing through each other,

the solitons bloom outward as though torn apart by the interaction. I believe this to be a

numerical artefact, and will check with further simulations. If not, collisions of this type

might be a possible mechanism for fracturing of larger boson stars into smaller ones.

2.4.3 N1 = N2, ξ � 1, α = π, v0 = 0

This next simulation looks at the effects of initial relative phase differences on the col-

lision. From the effective potential, it appears that a collision between two out-of-phase

solitons will result in a repulsive force at close range. As we can see from fig. 2.7, the two

stars collide and rebound from each other. The scattering is inelastic, with translational
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t = 5000 t = 10000 t = 15000 t = 20000

Figure 2.7: Snapshots of two colliding boson stars with N1 = N2 = 1060, ξ1 = ξ2 = 10−2,
α = π, and v0 = 0, explained in section (2.4.3).

t = 50 t = 6250 t = 7500 t = 11250 t = 20000

Figure 2.8: Snapshots of two colliding boson stars with N1 = N2 = 1060, ξ1 = ξ2 = 101,
α = π, v0 = 0, explained in (2.4.4).

kinetic energy being converted into vibrational energy with each collision. At much later

times, the solitons will eventually merge together, as the phase of their wave functions in the

overlap region rotates into some mutual value, and this has been confirmed with extended

simulations.

2.4.4 N1 = N2, ξ � 1, α = π, v0 = 0

In this case, we consider a collision between equal mass solitons out of phase with each

other in the strongly-interacting regime. From our effective potential plot, we would expect

the two solitons to merge easily. Instead, as we can see from fig. 2.8, the solitons rebound

off each other (three times in the span of this simulation before merging). The deviation

from the potential prediction is likely because the potential is plotted for ξ = 104, whereas

the simulation was performed with ξ = 101, so that the actual potential is more dominated

by the kinetic energy contribution (which is repulsive for out of phase collisions) than the

attractive effect of out of phase self-interactions, similar to the simulation of section 4.3.
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t = 50 t = 1250 t = 2500 t = 3750 t = 5000 t = 20000

Figure 2.9: Snapshots of two colliding boson stars withN1 = 10N2 = 1060, ξ1 = 102ξ2 = 10−2,
α = π, v0 = 0, explained in (2.4.5). Star one begins the simulation in the bottom left corner,
and star two begins the simulation in the top right.

2.4.5 N1 � N2, ξ � 1, α = π, v0 = 0

In this case, we consider a collision between asymmetric masses in the weakly-interacting

regime. The two stars are out of phase and so we expect them to repel from each other as

they approach. However, this prediction is dependent on the assumption that the soliton

stays intact throughout the collision. As we can see from fig. 2.9, the less massive of the two

stars is torn apart by tidal forces from the larger one, and material is accreted onto the star.

There is mild feedback due to the fact that the two wave functions are out of phase (as seen

in the rippling effect as material is siphoned from the smaller star). Since the two bodies

cannot merge at once due to the phase mismatch, the smaller star must shed its mass in

chunks, which then have their phase rotated to align with the phase of the larger star, and

are subsequently absorbed. If there was no phase difference, this piece-by-piece accretion

would not occur and would be akin to that of fig. 2.6.

2.4.6 N1 � N2, ξ � 1, α = 0, v0 = 0

Another asymmetric-mass system, we would expect from the effective potential that the

binary might be effectively stable against merger, since there is a local minimum in the energy

around x = 1.5`. However, just as the situation of section 4.5, the simulation deviates from

expectation, likely due to the effect of tidal forces. As we can see from fig. 2.10, the less

massive star (upper right corner) is elongated by tidal forces and quickly accreted onto the

more massive one (lower left corner). Due to the underlying grid of the simulation, especially

dense configurations (such as the more massive star in this case) can get stuck on a specific

grid point if the change in velocity is low enough. In this case, the more massive partner stays
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t = 50 t = 6250 t = 7500 t = 8750 t = 15000

Figure 2.10: Snapshots of two colliding boson stars with N1 = 4N2 = 1060, ξ1 = 42ξ2 = 101,
α = 0, v0 = 0, explained in (2.4.6). Star one begins the simulation in the bottom left corner;
star two in the top right.

t = 50 t = 1250 t = 2500 t = 5000 t = 15000 t = 19900

Figure 2.11: Collapse and evolution of an unstable soliton with N = 1060 and ξ = −10,
explained in section (2.4.7).

in the same position until the less massive partner collides with it, transferring momentum

and pushing it further into the corner, as observed.

2.4.7 Behavior of unstable soliton with ξ < −1

In this situation, we initialize a condensate in the regime ξ < −1, which makes the

variational energy/wave vector/length scale complex, signifying instability. Since there is no

variational state to initialize in, we choose the initial state wave vector to be the imaginary

part of the variational wave vector (since the real part is independent of ξ in this regime).

We then initialize the simulation with one soliton having these parameters and allow it to

evolve undisturbed. What we find is that the condensate collapses under its own gravity

to an extremely dense core, with the density jumping up almost three orders of magnitude.

Surrounding this core is a cloud of fluctuating points with densities roughly two orders of

magnitude below the density of the core. The fact that the wave function has this discrete

nature suggests large amounts of interference. This core then further fractures until it is

composed of a handful of individual points of roughly the same particle number/mass. This

fracturing of the condensate is reminiscent of the same process found in Affleck-Dine models
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t = 50 t = 1250 t = 2500 t = 5000 t = 15000 t = 19900

Figure 2.12: Same simulation results as fig. 2.11 from section (2.4.7), but with fluctuations
filtered out. Note condensate core which forms at early times t = 2500 further breaks up
into smaller pieces as time goes on.

of baryogenesis, only in this case the condensate is nonuniform and spherically symmetric to

begin with, so it stands to reason it should collapse to a roughly spherical final state.

2.5 Discussion

2.5.1 Results of this paper

This study has explored the various properties of non-relativistic boson stars with a stan-

dard φ4 self-interaction. Though this system has been studied before, both analytically and

numerically, it has historically been done just for a stationary field configuration of a single

soliton [114][115][107]. In recent years, some studies have looked at collisions between bo-

son stars, though they are primarily numerical in scope [116][117][118][119]. This effective

potential analysis provides good predictions for collisional behavior under a variety of cir-

cumstances and parameter ranges, and gives one the advantage of being able to understand

qualitatively the outcome of a collision simply using concepts of conservation of energy. Of

course, energy of translational motion of the solitons may be converted to radial oscilla-

tions, or even excite the solitons into a higher energy radial state with multiple nodes (as

seen in some merger simulations), leading to dissipation of translational motion and even-

tual merger in most cases. Scattering from a nonzero impact parameter may lead to states

with nonzero angular momenta, numerical simulations of which have been studied in [118].

Especially interesting (from an academic point of view) may be the possibility of forming

stable bound states in strongly repulsive regimes, with the possibility of a centrifugal barrier

provided by a nonzero angular momentum, effectively using this to construct “molecules"
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from gravitationally-bound, astrophysical-scale objects.

In terms of support for the predictive ability of the effective potential, it is well supported

by the results of many numerical scattering simulations of boson stars. Though not all the

parameter space has been adequately explored in the literature, we can make some compar-

isons with previous numerical studies. Simulations of self-interacting solitons with nonzero

relative velocities carried out in [116] appear consistent with the prediction of the effective

potential and the results of this studies’ simulations. In Bernal and Guzmán’s (BG) paper,

they study the head-on collision of two in phase (α = 0) boson stars with weak quartic

self-interaction (ξ � 1) for both equal mass and asymmetric mass stars. The main result of

the paper is that systems with “negative" energy (systems with kinetic and self-interaction

energy smaller than the gravitational binding energy) will combine and merge, whereas sys-

tems with “positive" energy will behave solitonically and pass right through each other. This

is exactly what one would predict from the effective potential, and is confirmed with sim-

ulations 2.4.1 and 2.4.2. The effective potential for both mass ratios shows no “hump" at

zero separation distance (for α = 0), and so traversing through each other is no obstacle

provided there is enough translational kinetic energy to make it out of the gravitational well.

As mentioned before, there are energy losses from excitation and scalar radiation during the

collision, which can be treated as frictional effects, and so one cannot simply expect a system

of two boson stars initially at rest with a large separation distance (such as in simulation

2.4.1) to have enough kinetic energy at the point of contact; an initial translational kinetic

energy at infinite separation distance is required. This is also confirmed in BG’s figures 4

and 5, where they explore the outcome of scattering simulations for varying initial momenta;

high relative p leads to solitonic behavior, whereas low p leads to mergers. One downside to

the effective potential formalism is that since the two stars are assumed to remain intact,

it does not allow for particle transfer during the collision. This is observed in BG’s paper,

where scattering between asymmetric-mass boson stars appear to transfer mass between each

other.

The results of non-self-interacting (ξ = 0) boson-boson soliton scattering with different ini-

tial phases performed in [117] can be explained easily using the effective potential as well. In
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this paper, Palenzuela, Olabarietta, Lehner, and Liebling (POLL) use the full Einstein-Klein-

Gordon system, rather than the Schrödinger-Poisson, though the results are quite similar.

They consider scattering between both boson-boson and boson-antiboson systems with equal

masses and no initial velocities for a variety of initial relative phases, though we will only

compare with the boson-boson experiments, for obvious reasons. Their simulation of in-phase

scattering and merger agrees with BG’s and my simulations, which were discussed above.

Their simulation of out-of-phase scattering, which results in the two boson stars rebounding

inelastically off each other, agrees perfectly with both the effective potential prediction and

the results of my simulation 2.4.3. The effective potential for out-of-phase systems can be

seen to rise steeply as the separation distance decreases, indicating a short-range repulsive

force, resulting in a gravitationally-bound state, as observed in both POLL’s paper an this

paper’s simulation 2.4.3.

Unfortunately, there appear to be no discussions in the literature regarding collisions between

very strongly self-interacting (ξ � 1) boson stars, nor collisions between asymmetric-mass

stars with α 6= 0. Consequently, we cannot compare the results of this study to the existing

literature, and it appears that this is the first attempt at simulating collisions in this param-

eter range. However, this is precisely this parameter range that likely requires further study,

as there are multiple instances where the effective potential does not give good predictions

that coincide with the outcome of the simulations. In particular, asymmetric-mass boson

stars with low initial velocities are highly influenced by tidal forces, causing the smaller

partner of the binary to be torn apart and accreted onto the larger partner, regardless of the

value of α. I expect that for nonzero initial velocities, where the time the two solitons spend

in each other’s company is reduced, the effect of tidal forces should also be reduced. The

timescale of the evolution of the wave function is roughly 1/m and a collision that occurs

on a timescale shorter than this should therefore not affect the overall shape of the boson

star. As for simulations in the strongly-interacting regime, the reason the literature does not

focus on this regime is likely for the same reason given in section 2.4: increasing the value of

ξ increases the instability associated with the self-interaction term in the simulation, which

requires the use of smaller and smaller time steps, making simulation in the ξ � 1 regime
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very computationally expensive. In addition, there is almost no discussion of boson stars

with ξ < 0, likely due to the resultant collapse of the star.

2.5.2 Implications for dark matter

Dark matter of this composition can take on a phenomenally large array of forms, and

depending on the mass of the constituent particles, can form astrophysical objects as massive

as entire galaxies, and as far as I know, no lower bound on their mass exists. They can be

extremely diffuse (especially in the ξ � 1 limit), leading some to interpret the galactic DM

halo as a single boson star [114][120]. This has the advantage of naturally resolving the

cusp-core problem without invoking self-interactions, and their propensity to merge through

low relative-velocity collisions may help explain the lack of predicted satellite galaxies. On

the other hand, head-on collisions at sufficient speed can cause the DM halos to pass right

through each other, as is observed in the Bullet Cluster. They can also be extremely com-

pact, guarded against collapse to a black hole by a strong repulsive self-interaction, or if

attractive, can readily collapse to a black hole at some critical mass. If this is the case,

supermassive black holes at the centers of galaxies may be made of - or initially formed

from - boson stars [72]. Somewhere between these two extremes, these configurations can

form roughly stellar-mass objects that may have interesting interactions with themselves

or existing stellar populations in the disk. As mentioned before, the MACHO, EROS and

OGLE collaborations have all independently found a significant excess of gravitational lens-

ing events over the number expected. Though limits have been placed on the maximum

fraction of the halo mass that these objects can make up, they may still exist in a partially

condensed phase, where some of the particles are contained in compact objects while others

would be free-streaming. Objects on an infall trajectory from the outer parts of the halo

could transfer momentum to stars and other dark objects in the galactic center through the

collisional interactions elucidated in this paper, reducing the central density, as is observed

in multiple DM-dominated dwarf spheroidal galaxies. Even in the non-self-interacting limit,

these solitons can rebound off each other to transfer momentum and mass purely through

gravity and BE statistics. Though I do not explore any of these ideas in detail in this paper,
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further work must be done to determine if any of these scenarios are consistent or desirable.

2.6 Conclusion

I have presented approximate analytical solutions to the nonlinear Schrödinger-Poisson

system, constructed stable solitonic states, and explored the collisional interactions between

two solitons. I have found that these boson stars can exist in a wide range of stable states,

with a number of properties that make them good candidates for dark matter, such as mo-

mentum transfer (or lack thereof) through scattering and gravitational encounters, and their

wide range of possible masses, densities, and length scales make them a general prediction

of practically any theory of a cold, light scalar particle. I have elucidated the mechanism

behind the results of direct collisions, finding it to be dependent on the relative phase, mass

ratios, and self-coupling of the solitons in a way that is easily understandable in terms of

energy conservation once the effective potential has been calculated. Some of these results

in the weakly self-interacting regime have been confirmed by other numerical studies, while

collisions with strong self-coupling and nonzero orbital angular momentum should be tested

and treated in future work.
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CHAPTER 3

Infection of Neutron Stars by Baryonic Q-balls

The content of this chapter has been published in Physical Review D as Astrophysical

constraints on dark-matter Q-balls in the presence of baryon-violating operators, E. Cotner

and A. Kusenko, Phys. Rev. D 94, no. 12, 123006 (2016) [121].

Supersymmetric extensions of the standard model predict the existence of non-topological

solitons, Q-balls. Assuming the standard cosmological history preceded by inflation, Q-balls

can form in the early universe and can make up the dark matter. The relatively large

masses of such dark-matter particles imply a low number density, making direct detection

very challenging. The strongest limits come from the existence of neutron stars because, if

a baryonic Q-ball is captured by a neutron star, the Q-ball can absorb the baryon number

releasing energy and eventually destroying a neutron star. However, in the presence of baryon

number violating higher-dimension operators, the growth of a Q-ball inside a neutron star is

hampered once the Q-ball reaches a certain size. We re-examine the limits and identify some

classes of higher-dimensional operators for which supersymmetric Q-balls can account for

dark matter. The present limits leave a wide range of parameters available for dark matter

in the form of supersymmetric Q-balls.

3.1 Introduction

Supersymmetric (SUSY) extensions of the standard model predict a scalar potential with

a large number of flat directions [122]. Such potentials admit stable configurations, SUSY

Q-balls [29, 31, 123]. Even if the scale of supersymmetry breaking is well above the reach

of the present collider experiments, the flat directions can exist at a high scale and can
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play an important role in cosmology. If inflation took place in the early universe, a scalar

condensate can form along the flat directions, leading to matter–antimatter asymmetry[62,

63, 124]. In general, this scalar condensate is unstable with respect to fragmentation into

Q-balls [31, 125, 126, 127], which can be entirely stable and can play the role of dark matter

[31, 124, 128, 129]. This scenario offers a common origin to ordinary matter and dark matter.

Dark-matter Q-balls have relatively large masses, and, therefore, very small number

densities. A direct detection of such dark matter is extremely challenging [125, 130]. These

flat directions are only flat at tree level, and in general they are lifted by non-renormalizable

terms in the potential coming from loop corrections and GUT or Planck-scale physics, taking

the form of polynomials in the squark fields and their conjugates

Vlifting =
g

Λn+m−4
φn(φ∗)m + c.c. (3.1)

suppressed by some energy scale Λ ∼ 1016 GeV. If n 6= m, then baryon number is no

longer conserved, fulfilling one of the Sakharov conditions for baryogenesis [131]. The same

operators will destabilize the Q-ball [132] and allow it to decay via processes that do not

conserve the baryon number. If supersymmetric Q-balls make up the main component of

dark matter, limits on their lifetimes (namely τ & H−1) restrict the set of operators in the

lifting potential in order to prevent their decay on too short of a timescale.

However, one can set additional constraints on the types of operators in the lifting poten-

tial by examining the effects of a star infected with a Q-ball. A Q-ball composed of squarks

in the presence of baryonic matter absorbs the net baryon number and radiates pions on

its surface [133]. For a main sequence star, a Q-ball should pass through with a negligible

change in velocity, due to the relatively low density of the star, and high inertia of the Q-ball.

A neutron star, however, has a high enough density of baryons that a collision with a Q-ball

should slow it to a crawl, at which point it would sink to the center of the star and begin to

consume it from the inside out [134, 133]. If the Q-ball is absolutely stable, it grows without

bound as it absorbs more neutrons until either the neutron star is completely consumed, or

the Q-ball collapses into a black hole, causing the neutron star to collapse. Either way, we
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find the star dies relatively quickly on cosmological timescales, on the order of 108 years.

However, the baryon number violation at a high scale is both plausible and necessary for

the Affleck-Dine baryogenesis to work. In the presence of baryon-number violating operators,

the growth of aQ-ball inside a neutron star may be stymied by the baryon number destruction

in the Q-ball interior, which becomes important once the Q-ball VEV reaches a certain

magnitude [133, 135]. In this paper, we will re-examine the astrophysical bounds taking into

account the baryon number violating operators. The paper is organized as follows: section

3.2 provides a brief review of allowed Q-ball states, section 3.3 explains the machinery of

calculating the decay rate of the Q-ball, section 3.4 details the interaction of the Q-ball with

a neutron star, and section 3.5 explains the evolution of the baryon number within the Q-ball

and star. Section 3.6 takes this analysis and applies limits to the class of baryon-violating

operators.

3.2 Stable Q-ball states

We begin with a review of the stable ground states of Q-balls. The minimum necessary

ingredients are a complex scalar field φ with a U(1) symmetry unbroken at the origin φ = 0.

Given a theory of multiple scalar fields with the action

S =

∫
d4x

[
∂µφ

†
i∂

µφi +
1

2
∂µχj∂

µχj − V (φi, χj)

]
(3.2)

We can perform a Legendre transformation to get the Hamiltonian density of the theory,

which gives us a functional for the energy.

E =

∫
d3xH (3.3)

H = |φ̇i|2 + |∇φi|2 +
1

2
χ̇2
j +

1

2
(∇χj)2 + V (φi, χj) (3.4)
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Explicitly adding a Lagrange multiplier ωi
(
Qi − i

∫
d3x

(
φ̇†iφi − φ†i φ̇i

))
to enforce charge

conservation, we get a modified energy functional

E =

∫
d3x H̃ + ωiQi (3.5)

H̃ = |∇φi|2 +
1

2
(∇χj)2 + Ṽ (φi, χj) (3.6)

Ṽ (φi, χj) = V (φi, χj)− ω2
i |φi|2 (3.7)

where we have assumed time dependence φi = φi(x)eiωit and χj = χj(x). If for any value of

φ, χ 6= 0 and 0 < ωi < m there exists a point where Ṽ < 0, then stable Q-ball states exist.

Furthermore, we can postulate that the stable states will be spherically symmetric, so that

they depend only on the radial coordinate r.

3.2.1 Flat direction Q-balls

Assuming V (φ) ≈M4 ∼ (1 TeV)4 far from the origin, the vev in the interior of the Q-ball

is not well-localized in φ-space and the thin wall approximation does not hold. Instead, one

can consider a thick-wall variational ansatz φ = φ0 exp (−(r/R)2). While the r → 0 behavior

may be better described by sin(ωr)/ωr, the analysis of Ref. [136] shows that the exponential

ansatz is in good overall agreement with a numerical solution. Evaluating Eq. (3.5) with the

assumption that
∫
d3xV ≈ 4πR3M4/3, extremizing with respect to R and using Hamilton’s

equation of motion ω = θ̇ = ∂E/∂Q, we arrive at

ω = ±M
[
4π · 33/2/Q

]1/4
φ0 = M

[
8Q

33/2π2

]1/4

R =
1

M

[
31/2Q

4π

]1/4

E = M
[
4π · 33/2Q3

]1/4
(3.8)

We can see that these types of Q-balls are stable in the large Q limit since ω < m for large

charge (the critical charge is Qc = 12
√

3π(M/m)4 with m the mass of the scalar at φ = 0),

and E ∝ Q3/4.

Q-balls of this type are common in supersymmetric theories where a flat direction de-
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Λ
|ϕ|

M

V

Figure 3.1: Schematic scalar potential with a flat direction which is lifted by higher-dimension
terms near |φ| ∼ Λ. Potentials of this form admit flat direction Q-balls which eventually
grow into the curved direction type once the critical charge is surpassed.

velops in the scalar potential for the superpartners of the quarks and leptons [134, ?]. The

conserved U(1) charge in these cases are then lepton and/or baryon number and are referred

to in the literature as L-balls and B-balls. In addition to being able to form stable solitons,

the interior of these Q-balls can sometimes support lepton- or baryon-violating vacuua [?],

which may be exploited in theories of baryo- or leptogenesis. Theories with charged inflatons

may also be able to support these types of Q-balls since inflaton potentials must be relatively

“flat" to satisfy the slow-roll conditions.

3.2.2 Curved direction Q-balls

As the charge of a flat direction Q-ball grows, and the value of the scalar field vev φ0 slides

to higher values, the corrections introduced by the lifting potential Vlifting begin affecting the

Q-ball (see figure 3.1). This happens when φ0 ∼ Λ. If the lifting potential is of a form

that respects the baryon number conservation, it can continue growing, albeit in a different

manner. The vev hits a wall when it reaches its maximum at φ0 = Λ and cannot climb any
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higher, so we can approximate the scalar potential near this point as

V (φ) ≈M4 + V
/B=0

lifting = M4 +
2Re(g)

Λ2n−4
|φ|2n (3.9)

Since the vev is constrained to be near Λ, we can use the thin wall approximation. Substi-

tuting into equation 3.5 and fixing φ0 = Λ, we vary with respect to R to get

ω = ±Λ
√

2Re(g) + (M/Λ)4 φ0 = Λ

R =
1

2Λ

[
3Q

π
√

2Re(g) + (M/Λ)4

]1/3

(3.10)

E = Λ
√

2Re(g) + (M/Λ)4Q

Since we expect M/Λ� 1, we can neglect those terms under the square roots for simplicity.

The critical charge at which point a flat direction Q-ball will become a curved direction

Q-ball is Qc ≈ 6.4(Λ/M)4 ∼ 1052.

If the lifting potential is not baryon-conserving, the U(1) symmetry is no longer respected

and the Q-ball destabilizes, rapidly decaying until the lifting term is negligible and the Q-ball

has reverted back to the flat direction type. Since curved direction Q-balls are necessarily

more massive than the flat direction type (and their baryon consumption rate even faster),

any limits obtained for flat direction Q-balls will also apply to the curved direction type, so

we need only consider those belonging to the flat direction classification from now on.

3.3 The decay rate

We would now like to calculate the decay rate of the quanta of the Q-ball to other

particles. The decay of Q-balls to neutrinos was first treated as an evaporation phenomenon

due to the Pauli exclusion principle preventing decays in the interior of the Q-ball [137].

Bosons present no such obstacles, and therefore decays to scalar and vector particles can

occur throughout the volume of the Q-ball, provided their mass is less than ω. This may

be difficult to achieve in general since most coupled scalar/gauge fields will get a mass term
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due to the nonzero expectation value in the Q-ball interior. However, the Nambu-Goldstone

modes of the Q-ball field itself do not suffer this mass term, and decays to these modes can

occur if the U(1) symmetry is very slightly broken by the lifting potential.

Much work has been done calculating the decay and evaporation rates and energy spectra

of Q-ball decays to fermions (both massless and massive) [138, 139]. However, these previous

studies did not treat decay of the condensate to bosons, and are related, but not relevant

to the problem at hand. In this situation, we can utilize a simple method of calculating the

decay rate that uses regular perturbation theory (with some extra steps).

3.3.1 Mathematical background

The probability for an initial state |{φi}〉 to evolve into the final state |{φf}〉 is given by

P = | 〈{φf}|{φi}〉 |2. In the case of decays from a Q-ball, we are interested in the situation

where the initial state is simply the scalar condensate describing the Q-ball: |φc〉. Since the

condensate is a persistent feature of the vacuum, the expectation value of the fields operator

is simply the wave function: 〈φ(x)〉 = φc(x), a c-number function. φc(x) is the solution to

the classical equations of motion in vacuum, which admit Q-ball solutions. Therefore, we can

decompose the field operator into a classical and quantum part: φ = φc+ φ̂ (we later employ

a different decomposition in order to properly separate the field into its mass eigenstates,

but it is conceptually similar to this one).

However, we are interested in how the Q-ball decays, so we must consider the state

in which the scalar condensate is in the background of an interacting vacuum: |Φc〉. The

transition probability to any set of final state particles {φf} is then P = | 〈Φc|Φc{φf}〉 |2.
Using the single-particle expansion of the final particle states

|{φf}〉 =

∫ ∏
f

(
d3pf
(2π)3

φf (pf )√
2Ef

)
|{pf}〉 (3.11)
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the transition probability is then

P =

∣∣∣∣∣
∫ ∏

f

(
d3pf
(2π)3

φf (pf )√
2Ef

)
〈Φc|Φc{pf}〉

∣∣∣∣∣
2

(3.12)

Instead of using arbitrary wave functions as the final state, we can simply use the states of

definite momentum, as is typically done, so that φf (pf ) = (2π)3δ3(pf−p)/
√
V . In this case,

the differential transition probability is then

dP =
∏
f

(
d3pf
(2π)3

1

2Ef

)
| 〈Φc|Φc{pf}〉 |2 (3.13)

The matrix elementM = 〈Φc|Φc{pf}〉 can be computed perturbatively just as is normally

done in QFT, except that we have to keep in mind the expansion of the scalar field operator

φ = φc + φ̂. This leads to a bit of a complication, since working in the momentum space

involves a Fourier transform of φc, introducing an additional integral which consumes some

of the delta functions that normally can be separated from the scattering amplitudeM. In

addition, there is also no integral over the impact parameter since there are no collisions

involved in this decay process. Depending on the number of interaction vertices in the

process, we find the matrix element can be written schematically as

M = 〈Φc|Φc{pf}〉 = An({pf})(2π)δ(nω − ΣfEf ) (3.14)

where ω is the Q-ball energy per particle (chemical potential), n is the number of Q-ball

quanta consumed by the decay (determined by the number of external legs attached to the

condensate), and A is a “reduced" matrix element. The delta function enforces global energy

conservation, and although momentum is conserved at each vertex internal to the diagram,

global momentum is not. This can be understood by the fact that the existence of the

condensate breaks the spatial translation invariance of the vacuum, and therefore momentum

is no longer a conserved quantity, the condensate instead absorbing the difference, similar to

how a crystal lattice will absorb the recoil from a nuclear decay in the Mössbauer effect.

43



Now, one will find that equation 3.13 implicitly contains the square of a delta function,

which is a little troubling. However, integration over the final state momenta will eat up

one of the delta functions, leaving a δ(0), which is proportional to an infinite period of time

T = 2πδ(0), in the sense that the limit of T is this quantity, so that stripping this from the

RHS gives us a probability per unit time per unit phase space; in other words, the differential

decay rate

dΓ =
∏
f

(
d3pf
(2π)3

1

2Ef

)
|An({pf})|2(2π)δ(nω − ΣfEf ) (3.15)

This method has wide applicability in calculating the decay of condensates and background

fields, as the final state particles can be of either bosonic or fermionic type (the initial

states can only be bosonic since fermions can’t form condensates). The authors have also

verified in the limit that the condensate wave function is that of a single zero-momentum

particle φc ∼ 1/
√
V , the Fourier transform of which is a zero-momentum delta function,

the decay rate reduces to that of a familiar single particle decay, as one would expect. The

only drawback of this method is that it cannot handle decays that significantly alter the

condensate wave function since φc would then be different in the initial and final states and

it would not be appropriate to expand around. Thankfully, we will only be interested in

decays involving ∆Q . 10 from Q-balls with Q ∼ 1025, so the change in charge per decay is

entirely negligible.

3.3.2 Mass eigenstates and phonons

As briefly mentioned earlier, we would like to use a decomposition of the field operator

that respects the mass eigenstates of the theory. For a theory with an unbroken U(1), a polar

decomposition φ = ρeiθ/
√

2 shows that the scalar potential depends only on the radial field

ρ. Therefore, this field is massive with the same mass as the original complex field: m2|φ|2 =

1
2
m2ρ2. The potential is completely devoid of any terms containing θ however, due to the

U(1) symmetry. This angular degree of freedom is therefore a massless Goldstone boson of

the theory (inside the Q-ball it picks up a small mass due to the fact that has a minimum
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wavelength λ ∼ R). Therefore we need a representation of the phonon operator that captures

perturbations around the condensate while keeping the mass eigenstates separate. This leads

us to consider the decomposition of the phonon field into a radial and angular part:

φ =
1√
2
ρeiθ =

1√
2

(ρc + ρ̂)ei(θc+θ̂)

≈ φc +
1√
2
ρ̂eiωt +

i√
2
ψ̂eiωt + · · · (3.16)

where ψ̂ ≡ ρcθ̂, θc ≡ ωt, and the · · · refers to the higher-order terms in the Taylor expansion

of the exponential. Although there is no way to invert the full relationship for ρ̂ and ψ̂

in terms of φ̂ and φ̂∗, the expansion to linear order can be inverted, and this gives us an

approximate dictionary between the different phonon operators:

φ̂ =
1√
2

(ρ̂+ iψ̂)eiωt φ̂† =
1√
2

(ρ̂− iψ̂)e−iωt (3.17)

ρ̂ =
1√
2

(
φ̂†eiωt + φ̂e−iωt

)
ψ̂ =

i√
2

(
φ̂†eiωt − φ̂e−iωt

)
Unfortunately, we cannot simply substitute the above relationships into the Lagrangian

because these are only correct to first order; we must expand around ρc and θc in each term,

then do a Taylor expansion in the exponential.

The φ̂ operator is complex, yet is not charged under the U(1) of the theory inside the

Q-ball because φ̂→ φ̂eiα is not a symmetry of the Lagrangian unless φc = 0 (in which case

we are outside the Q-ball). Neither of the ρ̂ or ψ̂ is charged either, so a charged current

cannot exist in the interior unless it is via bulk motion of, or interaction with, the condensate

field φc.

3.3.3 Calculation of the matrix element

We will now use the method of sections 3.3.1 and 3.3.2 in order to derive the matrix

element for decay of several Q-ball quanta to phonons within the Q-ball (the Feynman

diagram representation of which is given by figure 3.2). We consider the lifting potential
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n
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m

−
N
ρ
−
N
ψ Nρ

Nψ

Figure 3.2: Feynman diagram representation of the matrix element responsible for decay of
the Q-ball into phonons. External lines on the left marked by a cross are interactions of
the operator with the condensate φc, whereas external lines on the right are the phonons
produced from the decay. Arrows denote flow of momentum, not charge.

discussed earlier and expand it in polar form:

Llifting = − g

Λn+m−4
φn(φ†)m + c.c.

= −gnm
(
ρ√
2

)n+m

ei(n−m)θ + c.c. (3.18)

where gnm ≡ g/Λn+m−4. We now expand around the Q-ball condensate in the way prescribed

above, giving us

Llifting = − gnm
2(n+m)/2

n+m∑
j=0

∞∑
k=0

(
n+m

j

)
ik(n−m)k

k!
(ρn+m−j−k
c ei(n−m)θc)ρ̂jψ̂k + c.c. (3.19)
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Now we calculate the matrix element for the decay of the condensate to Nρ ρ’s and Nψ ψ’s:

M =
i

2(n+m)/2

∑
j,k

(
n+m

j

)
(n−m)k

k!

∫
d4x ρn+m−j−k

c

[
ikgnme

i(n−m)ωt + c.c.
]

×
〈

0
∣∣∣ ρ̂jψ̂k ∣∣∣ p1, · · · , pNρ , k1, · · · , kNψ

〉
(3.20)

=
2πi

2(n+m)/2
Cnm
NρNψ

∫ ( qD∏
q=q1

d3q

(2π)3
ρc(q)

)
(2π)3δ3 (Q− (P +K))

×
[
iNψgnmδ((n−m)ω − (P 0 +K0)) + (−i)Nψg∗nmδ((m− n)ω − (P 0 +K0))

]
(3.21)

where Cnm
jk ≡ j!

(
n+m
j

)
(n −m)k, D ≡ n + m − Nρ − Nψ and Q =

∑
q, P =

∑
p, K =

∑
k

are the sums of the various 4-momenta. We substitute in the Q-ball wave function to the

Fourier transform ρc(q) =
√

2φc(q) =
√

2π3/2R3φ0e
−q2R2/4:

M =
i(2π)4−3D2D/2

2(n+m)/2
Cnm
NρNψ

(√
2π3/2R3φ0

)D ∫ ( qD∏
q=q1

d3q e−
R2

4
q2

)
δ3(Q− (P +K))

×
[
iNψgnmδ((n−m)ω − (P 0 +K0)) + (−i)Nψg∗nmδ((m− n)ω − (P 0 +K0))

]
(3.22)

Now, we use an interesting geometric argument to solve this integral. Since d3q = dq1 dq2 dq3

and q2 = q2
1 + q2

2 + q2
3, we observe that (besides the delta functions), the integral is hyper-

spherically symmetric in the 3D-dimensional q-space. The three delta functions each define a

hyperplane in this space, the union of which is a 3(D−1)-dimensional hypersurface which is a

subspace of the larger 3D-dimensional space. This hypersurface is displaced from the origin

by the vector v = (P+K)/
√
D (notice the hyperplane defined byQi−(Pi+Ki) = 0 has a unit

normal vector of n̂ = (1, 1, · · · , 1)/
√
D and is displaced from the origin by a distance of |Pi+

Ki|/
√
D). This integral therefore represents a spherically symmetric Gaussian integral over a

3(D−1)-dimensional space offset from the origin by v. We can therefore rotate our coordinate

system so that v points in the new “ ẑ" direction and transform to a type of “hypercylindrical

coordinates": (s, φ, θ1, · · · , θ3(D−1)−2, x, y, z) where the coordinates x, y, and z are Euclidean

and a specification of (x, y, z) = (0, 0, v) constrains one to the hypersurface. Then, we simply
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perform the spherically symmetric integral over this surface:

∫ ( qD∏
q=q1

d3q e−
R2

4
q2

)
δ3(Q− (P +K)) =

∫
d3(D−1)se−

R2

4
(s2+v2)

= Ω3(D−1)−1e
−R

2

4
v2
∫ ∞

0

ds s3(D−1)−1e−
R2

4
s2 (3.23)

where Ωn−1 = 2πn/2/Γ(n/2) is the solid angle of the (n − 1)-sphere, and the remaining

integral can be written in terms of a gamma function as well (it actually cancels with the

one from Ω3(D−1)−1). After the dust has settled, the matrix element is found to be

M = 2iπ5/22(n+m)/2−Nρ−NψCnm
NρNψ

R3φD0 e
−R

2

4D
(P+K)2

×
[
iNψgnmδ((n−m)ω − (P 0 +K0)) + (−i)Nψg∗nmδ((m− n)ω − (P 0 +K0))

]
(3.24)

The number of Q-ball quanta that decay in each event (and thereby amount of charge

violation) can be read off from the delta function, and is ∆Q = |n −m|, as expected. One

important note is that since mρ � ω, the condensate cannot decay to ρ’s unless |n−m|ω >
mρ, which requires the amount of charge violation to be very high. Decays to ψ’s might

appear to proceed unimpeded, however, because they are massless. However, these phonons

pick up a small mass from two different sources. First, as mentioned before, because the

phonons are confined to the Q-ball, they are essentially standing waves with a maximum

(Compton) wavelength of λ ≈ 2R, which implies a minimum rest energymψ = 1/k = 1/4πR.

Since in a thick-wall Q-ball ωR =
√

3, we have mψ = ω/4π
√

3 ≈ ω/22, which is small, but

still a significant fraction of ω! Second, the baryon-violating term itself introduces a small

mass, which we can see by expanding to second order in ψ̂:

Llifting ⊃
1

2

[
(n−m)2ρn+m−2

c

2(n+m)/2−1
(Im(gnm) sin((m− n)ωt)− Re(gnm) cos((m− n)ωt))

]
ψ̂2

(3.25)
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where the quantity in square brackets can be identified with m2
ψ. Not only is this mass

small in magnitude compared with the first contribution, but it also has harmonic time

dependence, and therefore averages out to zero over timescales longer than about |n−m|/ω.
Thus, it is safe to assume that the mass from the Compton wavelength is the only mass that

contributes.

3.3.4 Calculation of the decay rate

We now apply equation 3.15 to calculate the decay rate, focusing on decays to only the

Goldstone modes and setting Nρ = 0 and N ≡ Nψ. We take the squared amplitude (which

can be simplified because the cross-terms are zero due to the conflicting delta functions),

drop one of the delta functions, and integrate over the final state phase space:

ΓNnm = 4π52n+m−2N |gnm|2(Cnm
0N )2R6φ2D

0 IN

(
|(n−m)|ω,R/

√
2D,mψ

)
(3.26)

where

IN(Ω, a,m) =

∫ ( pN∏
p=p1

d3p

(2π)3

1

2
√
p2 +m2

)
e−a

2(
∑
p)2δ

(
Ω−

∑√
p2 +m2

)
(3.27)

For N = 1 we can get an exact answer:

I1(Ω, a,m) =
1

(2π)2
e−a

2(Ω2−m2)
√

Ω2 −m2Θ(Ω−m) (3.28)

49



However, using the relationships mψ = ω/4π
√

3 and R =
√

3/ω, we can reduce the integral

to something even simpler:

IN(|n−m|ω,R/
√

2D,mψ)

=

∫  pN∏
p=p1

d3p

(2π)3

1

2
√
p2 +m2

ψ

 e−
R2

2D
(
∑
p)2δ

(
|(n−m)ω| −

∑√
p2 +m2

ψ

)

= ω2N−1

∫ ( pN∏
p=p1

d3(p/ω)

(2π)3

1

2
√

(p/ω)2 + (mψ/ω)2

)
e−

24π2

D
(
∑

(p/ω))2

× δ
(
|n−m| −

∑√
(p/ω)2 − (mψ/ω)2

)
(3.29)

We then change coordinates to ξ ≡ p/ω and substitute the phonon mass so that mψ/ω ≡
µ = 1/4π

√
3:

= ω2N−1

[∫ ( ξN∏
ξ=ξ1

d3ξ

(2π)3

1

2
√
ξ2 + µ2

)
e−

24π2

n+m−N (
∑
ξ)2δ

(
|n−m| −

∑√
ξ2 + µ2

)]
(3.30)

where we will define the integral in square brackets as JNnm (note JNnm = JNmn and J = 0 if

N ≥ n+m or n = m). Because n,m, and N are integers and J is a dimensionless number,

we can simply tabulate all its possible values using numerical integration such as Monte

Carlo. However, because of the delta function, we can’t do MC until we integrate that out.

We convert to spherical coordinates and separate the Nth coordinate from the rest, then

integrate over it to remove the delta function, leaving us with

JNnm =
1

(16π3)N

∏
ξ,φ,θ

′

(∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

ξ2√
ξ2 + µ2

)∫ 2π

0

dφN

∫ π

0

dθN sin θNξN({ξ})

× e−
24π2

n+m−N

(∑′
i ξ

2
i+
∑′
i 6=j ξi·ξj+ξ2N ({ξ})+2

∑′
i ξN ({ξ})ξi(sin θN sin θi cos(φN−φi)+cos θN cos θi)

)

(3.31)
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where the primed sums/products mean we sum/multiply over all coordinates except the

Nth, and

ξN({ξ}) ≡
√(
|n−m| −

∑
′
√
ξ2 + µ2

)2

− µ2 (3.32)

ξi · ξj = ξiξj (sin θi sin θj cos(φi − φj) + cos θi cos θj) (3.33)

Some sample values of JNnm (I’ll restrict to n+m > 4 and |n−m| = 1 for now) are:

N = 1 : J1
23 = 5.5× 10−28, J1

34 = 1.9× 10−19, J1
45 = 3.8× 10−15, J1

56 = 1.4× 10−12, J1
67 = 7.1× 10−11

N = 2 : J2
23 = 1.× 10−7, J2

34 = 3.× 10−7, J2
45 = 5.× 10−7, J2

56 = 8.× 10−7, J2
671.2× 10−6

N = 3 : J3
23 = 2.× 10−11, J3

34 = 5.× 10−10, J3
45 = 1.× 10−9, J3

56 = 2.× 10−9, J3
67 = 7.× 10−9

N = 4 : J4
23 = 8.× 10−17, J4

34 = 6.× 10−14, J4
45 = 9.× 10−13, J4

56 = 5.× 10−12, J4
67 = 2.× 10−11

N = 5 : J5
34 = 3.× 10−19, J5

45 = 7.× 10−17, J5
56 = 3.× 10−15, J5

67 = 2.× 10−14

Clearly, final states involving more phonons have a smaller amount of phase space volume.

The exception is N = 1, which gets extra suppression from the fact that any decay involving

one final state particle does not conserve momentum. It should be noted that repeated

evaluation of the Monte Carlo shows that the uncertainty in these answers is quite large;

variation in the first digit is common, though the order of magnitude remains consistent

over repeated evaluations. It turns out that this is not terribly important for computing

the neutron star lifetimes; variations of O(1) in J translate to variations of O(10−3) in the

lifetimes. This is because the dependence of Γ on Q is most important. There is also a

small imaginary part attached to some of these numbers which is not shown. This is from

integrating over a region in phase space which is not kinematically allowed, and it does not

contribute to the decay rate, so we can simply ignore it.

If the dimension of the lifting potential is extremely high (n + m → ∞), then the

exponential in the integrand becomes order unity, and we can reduce this even further by

transforming to a dimensionless energy coordinate σ =
√
ξ2 + µ2 and integrating out all the
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angles. The integral JNnm approaches

JNnm →
1

(2π)2N

(
σN∏
σ=σ1

∫ |n−m|−(N−1)µ

µ

dσ
√
σ2 − µ2

)
δ
(
|n−m| −

∑
σ
)

(3.34)

This can be calculated via Monte Carlo in a similar manner to equation 3.31. Note that in

this limit JNnm only depends on ∆Q = |n−m| and N . Now, putting all of this together, we

can express the decay rate to N Goldstone bosons as

ΓNnm = 4π52n+m−2N |gnm|2(N !)2(cnm0N )2R6φ2D
0 ω2N−1JNnm (3.35)

Writing outR, φ0 and ω in terms ofQ (see equations 3.8) and lumping all the non-dimensional

constants together,

ΓNnm = |g|2KN
nmQ

1
4

(7+2(n+m−2N))M

(
M

Λ

)2(n+m)−8

(3.36)

KN
nm ≡ 2

1
2

(5(n+m−N)−3)3
3
8

(1−2(n+m−2N))π
13
4
−(n+m−3N/2)(n−m)2NJNnm (3.37)

where M is the mass scale associated with the potential energy density in the flat direction

of the scalar potential (V0 = M4). We can now simply tabulate the KN
nm and have a semi-

analytic expression for the decay rate that will be easy to use in the analysis of section

3.5.

3.4 Interactions between Q-balls and neutron stars

We would now like to understand how a Q-ball interacts with its host star in order to

determine the neutron consumption rate. As discussed in the work of one of us, Loveridge,

and Shaposhnikov (KLS) [133], the transport mechanism of neutrons inside a neutron star

is complicated and is not very well understood. The authors outline two different possible

situations for neutron accretion, which we will summarize here for clarity.
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3.4.1 Surface conversion of neutron flux

As a rough estimate, KLS assume the rate of neutron absorption is simply equal to the

flux of neutrons moving across the surface of the Q-ball. In this scenario, the growth rate of

the Q-ball is given by

Q̇ = b−14πR2n0v =
4 · 35/4n0

M2(4π)1/2
Q1/2

≈ (2× 10−8 GeV)Q1/2 (3.38)

where b = 1/3 is the baryon number of a squark, n0 ≈ 1015 g/cm3 = 4 × 10−3 GeV3 is the

neutron number density at the center of the star, and v ≈ 1 is the speed of the neutrons,

assumed to be of the order of the speed of light. This estimate for the absorption rate is

likely too high, as it does not take into account the pressure backreaction from the pions

and antineutrons produced on the surface of the Q-ball.

3.4.2 Hydrodynamic considerations due to pion production

Using a couple different methods, KLS determine the pressure at the center of the star

in hydrostatic equilibrium is approximately P ≈ (0.1 GeV)4. For light degrees of freedom

such as pions, electrons and neutrinos, this implies a temperature of about 100 MeV from

the relation P ≈ gT 4/π2. This temperature cannot be maintained by thermal effects alone,

but can be maintained by the pions produced on the surface of the Q-ball. The rate of pion

loss to decay inside the star is given by

Ṅπ ≈ 2π3/2

√
λ

3τ
nπ(0)R2 (3.39)

where λ ≈ n
−1/3
0 and τ ≈ 108 GeV−1 are the mean free path and neutral pion lifetime,

respectively. They also assume nπ(0) ≈ n0 in order to maintain pressure. Each neutron only

has enough mass and energy to supply about 4-5 pions, so the rate of neutron absorption is
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about that much lower, giving us

Q̇ =
10π3/2n

5/6
0 R2

b
√

3τ
=

5πn
5/6
0

31/4bM2τ 1/2

≈ (10−11 GeV)Q1/2 (3.40)

This estimate is slightly lower than the raw neutron flux estimate and is a little more realistic.

3.5 Baryon number evolution in an infected neutron star

Now that have expressions for both the growth rate and decay rate of the Q-ball, we can

set up a simple set of differential equations to model the evolution of the baryon number in

both the Q-ball and the neutron star:

ḂQ = bQ̇ = −Ṅn − b |n−m|Γnm (3.41)

ḂNS = Ṅn = −(10−11 GeV)Q1/2 (3.42)

where Γnm ≡
∑

N ΓNnm. Or, eliminating Nn and assuming decays are dominated by a specific

N (usually either 1 or 2), we can put it in a more aesthetically pleasing form:

Q̇ ≈ 3Ṅ0Q
1/2 − Γ0Q

α (3.43)

where Ṅ0 = 10−11 GeV, Γ0 = |g|2KN
nmM(M/Λ)2(n+m)−8, and α = 1

4
(7 + 2(n + m − 2N))

(α > 1 unless N is some ridiculously high number, which is unlikely). The initial conditions

for this system are Q(0) = Q0 ≈ 1025 and Nn(0) = BNS = 1057, and the total number of

neutrons absorbed by the Q-ball is given by integrating equation 3.42:

∆Nn(t) = −
∫ t

0

dt′ Ṅ0Q
1/2 (3.44)

We can see that equation 3.43 has late-time attractor solutions, whereby setting Q̇ = 0,

we solve for the equilibrium charge: Qeq = (3Ṅ0/Γ0)
1

α−1/2 (see figure 3.3). If this charge is
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Figure 3.3: Plot of the evolution of charge within the Q-ball at the center of a neutron star
with decay channels attributed to various ∆Q = 1 operators, indexed by (n,m) = (n, n+ 1).
The Q-ball very quickly equilibrates so that the rate of decay is equal to the rate of neutron
consumption. Not shown are the contours for n = 2 and n = 3, which are ruled out because
the corresponding operators would destabilize the Q-ball in free space on short timescales.

reached relatively quickly compared to the total lifetime of the neutron star, then equation

3.44 implies that the neutron depletion is linear in time, and the lifetime of the star is then

τNS ≈
BNS

Ṅ0

(
3Ṅ0

Γ0

) 1/2
1/2−α

(3.45)

In free space, the evolution of the charge of a Q-ball is given by equation 3.43 with Ṅ0 = 0,

which can easily be solved for:

Q(t) ≈
[
(α− 1)

(
Q1−α

0

α− 1
+ Γ0t

)] 1
1−α

(3.46)

The Q-ball lifetime can then be solved for by setting Q(τQ) = 1, which gives us

τQ ≈
1−Q1−α

0

(α− 1)Γ0

(3.47)
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Baryon number evolution of Q-ball-infected NS (n=4,m=6)

Figure 3.4: Plot of the charge Q contained within a Q-ball and the number of neutrons
consumed by the Q-ball over the life of the neutron star. Once −∆Nn = BNS = 1057,
integration is stopped and the star is gone. This specific example is for a Q-ball with decays
mediated by a (n,m) = (4, 6) operator, resulting in a neutron star lifetime of τNS = 1× 1020

years.

If we want to be more exact and take into account decays from all channels (not just the

dominant one), we can numerically solve for τNS and τQ by evolving equations 3.41 and 3.42

until Nn = 0 or Q = 1, at which point either the neutron star has been consumed or the

Q-ball has decayed, and we stop integration (a specific example is given in figure 3.4). This

is how we will derive the limits in the next section.

3.6 Limits on baryon-violating (and conserving) operators

Using equations 3.41 and 3.42 and the algorithm prescribed in the previous section, we

can tabulate the lifetimes of infected neutron stars and free Q-balls endowed with the lifting

potential of equation 3.1, indexed by the integers n andm. We will find that baryon-violating

terms are necessary if an infected neutron star is to survive to present day.
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Figure 3.5: Plot of Q-ball lifetimes with an initial charge of Q0 = 1025 as a function of
various n, m corresponding to the terms in the lifting potential. The diagonal n = m is
actually completely stable because decays are not permitted due to restoration of the U(1)B
symmetry.

3.6.1 From decay of Q-balls in free space

We solve the baryon number evolution equations with Ṅ0 = 0 in order to model the

decay of the Q-ball in free space. The results are plotted in figure 3.5 and tabulated in table

3.1 in the appendix. The most striking feature is that for n = m, the Q-ball is completely

stable because the Goldstone field does not appear in the potential. We can also see that

in general, as the dimension of the operator increases, so does the lifetime of the Q-ball. In

fact, all Q-balls with lifting potentials of dimension 5 or less are unstable and decay in a

matter of hours or less, whereas those with dimension greater than 5 are stable on timescales

much longer than the age of the Universe. This immediately rules out dark matter Q-balls

with n + m ≤ 5. In the high-dimension limit (n + m → ∞), we can calculate JNnm using
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Figure 3.6: Plot of neutron star lifetimes after being infected by a Q-ball with initial charge
Q0 = 1025 as a function of various n, m corresponding to the terms in the lifting potential.
The diagonal n = m is ruled out because the B-violating decays are forbidden, and the
stability of the Q-ball causes it to grow without bound, quickly consuming the star.

equation 3.31 and solve the baryon evolution equations again, though this doesn’t lead to

any interesting revelations; the Q-ball lifetime continues to increase as the dimension of the

operator increases, and is pretty much independent of ∆Q. The largest lifetime calculated

(dim = 100) was over 102000 years!

3.6.2 From lifetime of neutron stars

Solving the baryon number evolution equation with Ṅ0 6= 0 and integrating until Nn = 0

gives us the lifetime of an infected neutron star. This information is plotted in figure 3.6 and

table 3.2. As we can see, the diagonal where n = m is ruled out, with a lifetime of about 108

years. This is due to the fact that the Q-ball is absolutely stable in this regime, and therefore
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grows without bound as it eats away at the neutron star, quickly consuming it. In fact, this is

an upper limit on the lifetime; the final charge of the Q-ball in this situation is 3×1057, which

is beyond the critical charge for a flat direction Q-ball to change into a curved direction type,

which as mentioned before, has an even higher rate of neutron consumption. The highest

charge for a Q-ball with baryon-violating decays is only 1042, well below the critical charge.

Interestingly, in the regions with operator dimension ≤ 4, the Q-ball decays so quickly that it

breaks down completely before the neutron star is consumed. As mentioned in the previous

subsection, Q-balls in this regime aren’t stable in free space anyway. We can see that as

we move away from the n = m diagonal (increasing ∆Q), the lifetime of the star begins to

drop, then levels out, with the magnitude of the drop decreasing as the operator dimension

increases. In order to study the effects of very high-dimension operators (n + m → ∞),

we once again use equation 3.31 to calculate JNnm and solve the baryon number evolution

equations. This is plotted in figure 3.7. What we find is quite interesting: the lifetime

appears to approach a limiting value around 1012 years as the operator dimension increases.

The lifetime is roughly independent of ∆Q, though it does drop slightly near ∆Q = 0. This

appears to match the trend of figure 3.6 as the operator dimension is increased.

3.7 Conclusion

We have shown here that Q-balls can make up dark matter if baryon-violating terms of

dimension n+m > 5 are present in the scalar potential. Cases in which there is no baryon

violation (n = m) are ruled out as well due to unrestricted Q-ball growth. The baryon

number violation is also necessary for the Affleck-Dine mechanism to work. This eliminates

the neutron star bounds. Beyond this, there appears to be no restriction on these operators,

even at very high dimension. The low level of baryon number violation does not affect the

experimental limits based on IceCube [130], Super-Kamiokande [140] and other direct detec-

tion experiments. However, one should keep in mind that Q-balls may carry some electric

charge [125, 140, 141], making them almost invisible to most direct-detection searches. (A

positively charged Q-ball cannot destabilize nuclei because the Coulomb repulsion prevents
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Figure 3.7: Plot of neutron star lifetimes after being infected by a Q-ball with initial charge
Q0 = 1025 as a function of the charge violation per decay ∆Q > 0 and the dimension of
the operator in the lifting potential. The white region in the lower right corner is where
∆Q > dim, which is not allowed since it implies one of either n or m is negative.
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any strong interactions between non-relativistic Q-balls and matter nuclei.) This leaves a

wide range of parameters available for dark matter in the form of supersymmetric Q-balls.
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3.9 Appendix: Tables of Q-ball and neutron star lifetimes

These tables correspond to figures 3.5 and 3.6, and list the lifetimes ofQ-balls and neutron

stars infected by Q-balls with baryon-violating decays.

n\m 1 2 3 4 5 6 7 8 9 10

1 ∞ 7·10−55 9·10−31 6·10−6 1·1020 4·1045 7·1071 1·1097 2·10123 2·10149

2 7·10−55 ∞ 4·10−4 1·1021 1·1046 3·1071 1·1097 2·10123 7·10148 6·10174

3 9·10−31 4·10−4 ∞ 1·1048 5·1072 6·1097 1·10123 8·10148 1·10175 4·10200

4 6·10−6 1·1021 1·1048 ∞ 9·1099 3·10124 4·10149 1·10175 5·10200 9·10226

5 1·1020 1·1046 5·1072 9·1099 ∞ 7·10151 3·10176 4·10201 1·10227 4·10252

6 4·1045 3·1071 6·1097 3·10124 7·10151 ∞ 7·10203 3·10228 4·10253 9·10278

7 7·1071 1·1097 1·10123 4·10149 3·10176 7·10203 ∞ 7·10255 3·10280 > 10300

8 1·1097 2·10123 8·10148 1·10175 4·10201 3·10228 7·10255 ∞ > 10300 > 10300

9 2·10123 7·10148 1·10175 5·10200 1·10227 4·10253 3·10280 > 10300 ∞ > 10300

10 2·10149 6·10174 4·10200 9·10226 4·10252 9·10278 > 10300 > 10300 > 10300 ∞

Table 3.1: Table of Q-ball lifetimes (in years) for various lifting potentials. Lifetimes with
an ∞ are absolutely stable due to restoration of the U(1)B symmetry.
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n\m 1 2 3 4 5 6 7 8 9 10

1 5·108 ∞ ∞ 6·1032 1·1028 1·1025 7·1022 2·1021 1·1020 2·1019

2 ∞ 5·108 2·1032 7·1027 9·1024 8·1022 2·1021 1·1020 2·1019 3·1018

3 ∞ 2·1032 5·108 2·1026 5·1022 2·1021 1·1020 2·1019 3·1018 7·1017

4 6·1032 7·1027 2·1026 5·108 3·1023 1·1020 1·1019 3·1018 7·1017 2·1017

5 1·1028 9·1024 5·1022 3·1023 5·108 3·1021 4·1018 6·1017 2·1017 7·1016

6 1·1025 8·1022 2·1021 1·1020 3·1021 5·108 1·1020 9·1017 6·1016 3·1016

7 7·1022 2·1021 1·1020 1·1019 4·1018 1·1020 5·108 1·1019 2·1017 1·1016

8 2·1021 1·1020 2·1019 3·1018 6·1017 9·1017 1·1019 5·108 1·1018 7·1016

9 1·1020 2·1019 3·1018 7·1017 2·1017 6·1016 2·1017 1·1018 5·108 3·1017

10 1·1019 3·1018 7·1017 2·1017 7·1016 3·1016 1·1016 7·1016 3·1017 5·108

Table 3.2: Table of infected neutron star lifetimes (in years) for various lifting potentials.
Lifetimes with an ∞ are absolutely stable.
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CHAPTER 4

Primordial Black Holes from Q-ball Clustering

The content of this chapter has been published in Physical Review D as Primordial black

holes from scalar field evolution in the early universe, E. Cotner, A. Kusenko, Phys. Rev.

D, no. 10, 103002 (2017) [142].

Scalar condensates with large expectation values can form in the early universe, for

example, in theories with supersymmetry. The condensate can undergo fragmentation into

Q-balls before decaying. If the Q-balls dominate the energy density for some period of time,

statistical fluctuations in their number density can lead to formation of primordial black

holes (PBH). In the case of supersymmetry the mass range is limited from above by 1023g.

For a general charged scalar field, this robust mechanism can generate black holes over a

much broader mass range, including the black holes with masses of 1–100 solar masses,

which is relevant for LIGO observations of gravitational waves. Topological defects can lead

to formation of PBH in a similar fashion.

4.1 Introduction

It is well established that stellar core collapse can lead to formation of black holes.

However, it remains an open question whether some processes in the early universe could

produce primordial black holes (PBH) [143, 82, 83, 144, 145, 146, 147, 148, 149, 150, 151,

152, 153, 154]. PBHs can account for all or part of dark matter [143, 82, 83, 144, 145, 146,

148, 149, 150, 151, 152, 153, 154]. Furthermore, they could be responsible for some of the

gravitational wave signals observed by LIGO [155, 156, 157], In addition, PBHs can invade

and destroy neutron stars, ejecting neutron rich material in the process, which can account
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for for all or part of the r-process nucleosynthesis, as well as the 511-keV line in the galactic

center [87]. Finally, PBHs could provide seeds for supermassive black holes [147]. A number

of scenarios for black hole formation have been considered [145], and many of them rely on

a spectrum of primordial density perturbations that has some additional power on certain

length scales, which can be accomplished by means of tuning an inflaton potential.

It was recently pointed out that PBHs can form in a very generic scenario, which does

not require any particular spectrum of density perturbations from inflation [158]. Scalar

fields with slowly growing potentials form a coherent condensate at the end of inflation

[159, 160, 161, 162]. In general, the condensate is not stable, and it breaks up in lumps,

which evolve into Q-balls [31]. The gas of Q-balls contains a relatively low number of

lumps per horizon, and the mass contained in these lumps fluctuates significantly from place

to place. This creates relatively large fluctuations of mass density in Q-balls across both

subhorizon and superhorizon distances. Since the energy density of a gas of Q-balls redshifts

as mass, it can come to dominate the energy density temporarily, until the Q-balls decay,

returning the universe to a radiation dominated era. The growth of structure during the

Q-ball dominated phase can lead to copious production of primordial black holes. In this

paper we will investigate this scenario in further detail.

Formation of Q-balls requires nothing more than some scalar field with a relatively flat

potential at the end of inflation. For example, supersymmetric theories predict the existence

of scalar fields with flat potentials. PBH formation in supersymmetric theories is, therefore,

likely, even if the scale of supersymmetry breaking exceeds the reach of existing colliders.

A similar process can occur with topological defects, which can also lead to relatively

large inhomogeneities. The discussion of topological defects is complicated by their non-

trivial evolution. We will focus primarily on Q-balls, and will briefly comment on topological

defects.

The format of this paper is as follows: in Section 4.2, we describe the fragmentation of

the condensate and the production of Q-balls, then in Section 4.3 we derive the formalism

for calculating the statistical moments of collections of Q-balls. In Section 4.4 we use the
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results of the previous Section to calculate the expected PBH density and mass spectrum,

and in Section 4.5 we account for the effects on cosmological thermal history and evolve

the PBH distribution to the present day. In Section 4.6, we then compare our results with

current observational constraints, and in Section 4.7 explore the available parameter space.

In Section 4.8, we comment on the applicability of this mechanism to topological defects.

4.2 Formation of Q-balls

Formation of a scalar condensate after inflation and its fragmentation [31] is a fairly

generic phenomenon. While supersymmetry is a well-motivated theory for scalar fields

carrying global charges and having flat potentials [161, 124], our discussion can be eas-

ily generalized to an arbitrary scalar field with a global U(1) symmetry in the potential.

Supersymmetric potentials generically contain flat directions that are lifted only by super-

symmetry breaking terms. Some of the scalar fields that parameterize the flat directions

carry a conserved U(1) quantum number, such as the baryon or lepton number. During

inflation, these field develop a large vacuum expectation value (VEV) [159, 160, 161, 162],

leading to a large, nonzero global charge density. When inflation is over, the scalar conden-

sate φ(t) = φ0(t) exp{iθ(t)} relaxes to the minimum of the potential by a coherent classical

motion with θ̇ 6= 0 due to the initial conditions and possible CP violation at a high scale.

The initially homogeneous condensate is unstable with respect to fragmentation into

non-topological solitons, Q-balls [64]. Q-balls exist in the spectrum of every supersymmetric

generalization of the Standard Model [29, 163], and they can be stable or long-lived along a

flat direction [31, 123]. In the case of a relatively large charge density (which is necessary for

Affleck-Dine baryogenesis [161, 124]), the stability of Q-balls can be analyzed analytically

[31, 126, 136]; these results agree well with numerical simulations [127]. One finds that

the almost homogeneous condensate develops an instability with wavenumbers in the range

0 < k < kmax, where kmax =
√
ω2 − V ′′(φ0), and ω = θ̇. The fastest growing modes of

instability have a wavelength ∼ 10−2±1 of the horizon size at the time of fragmentation, and

they create isolated lumps of condensate which evolve into Q-balls. Numerical simulations
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[127, 164] indicate that most of the condensate ends up in lumps. However, since the mass

of Q-balls is a non-linear function of the Q-ball size, Q-ball formation, in general, leads

to a non-uniform distribution of energy density in the matter component represented by

the scalar condensate. Q-balls can also form when the charge density is small or zero, in

which case both positively and negatively charged Q-balls are produced [127]; here we do

not consider this possibility.

Depending on the potential, the Q-balls with a global charge Q have the following prop-

erties [123, 31, 133, 121]:

ω ∼ ΛQα−1, R ∼ |Q|β/Λ, (4.1)

φ0 ∼ Λ|Q|1−α, M ∼ Λ|Q|α, (4.2)

where Λ is the energy scale associated with the scalar potential, Q is the global U(1) charge

and 0 < α < 1, 0 < β < 1 denotes which type of Q-ball is under consideration (and also

depends on the form of the scalar potential). For “flat direction" (FD) Q-balls, α = 3/4

(β = 1/4), and for “curved direction" (CD) Q-balls, α = 1 (β = 1/3) [123, 31].

4.3 Q-ball charge/mass distributions

Numerical simulations of condensate fragmentation and Q-ball formation have been per-

formed in the past, from which we are able to determine the resulting charge and mass

distributions [165, 164]. These distributions appear to be very sensitive to initial conditions

in the condensate, such as the ratio of energy to charge density (x = ρ/mq), and to the

details of the scalar potential. In addition, the resultant charge distribution can be very

non-Gaussian due to the high degree of nonlinearity and chaos in the fragmentation process.

It should be understood that the results of these simulations are statistical in nature:

a large number of Q-balls are created within the simulation volume so that the charge

distribution tends towards a statistical average. In reality, if one were to perform a large

simulation and look at the charge distributions in a number of small sub-volumes, you will
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Figure 4.1: Schematic illustration of 4 histograms each containing 100 samples from the
same Poisson distribution (λ = 100). The differences due to fluctuations are clearly visible.

find a large degree of variation, with more variation on smaller scales due to small sample

sizes (this is not to say that the variance will be larger, just that the differences between

distributions are large), as can be seen in Fig. 4.1. It is these large fluctuations relative to

the mean that will be the source of density perturbations.

Once the resultant charge distribution of Q-balls fQ(Q) dQ has been calculated from these

numerical simulations, we can use this to calculate the mass distribution for single Q-balls

using M = Λ|Q|α (we will absorb all numerical factors into the definition of Λ without loss

of generality):

fM(M) =
M

1−α
α

αΛ1/α

[
fQ((M/Λ)1/α) + fQ(−(M/Λ)1/α)

]
. (4.3)

It is important to note that a distribution well-localized in charge is also well-localized in

mass. We can also use probability theory to calculate the mass of a collection of Q-balls.

Under the assumption that a charge Qtot is distributed amongst N Q-balls whose distribution

is described by fQ(Q), the probability distribution function (PDF) for the total mass of this
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collection of Q-balls is given by

fM(M,Qtot, N) =
ψ(M,Qtot, N)∫
dM ψ(M,Qtot, N)

, (4.4)

ψ(M,Qtot, N) =

∫ ( N∏
i=1

dQi fQ(Qi)

)
(4.5)

× δ
(
M − Λ

N∑
i=1

|Qi|α
)
δ

(
Qtot −

N∑
i=1

Qi

)
,

where ψ admits a simple-looking Fourier transform in M and Qtot:

ψ̃(ξM , ξQtot , N) =

[∫
dQ ei(ξM |Q|

α+ξQtotQ)fQ(Q)

]N
. (4.6)

The power of α prevents analytic calculation of this PDF for all but the simplest charge

distributions. Specifically, if we take the charge distribution to be a delta function: fQ(Q) =

δ(Q−Q0), then the mass distribution is also a delta function: fM(M,Qtot, N) = δ(M−NM0),

where M0 = ΛQα
0 , and Q0 = Qtot/N to satisfy charge conservation (this constraint comes

from a mathematical issue that arises due to the canceling of a delta function of the form

δ(Qtot −NQ0)/δ(Qtot −NQ0); we can see that if we consider δ(x) as the limit of a smooth

function that approaches this distribution, then this ratio is unity provided Q0 = Qtot/N).

For ease of computation, we will assume the delta function charge/mass distribution

for the rest of this paper. This also has good theoretical motivation, as the Affleck-Dine

baryogenesis scenario requires a large nonzero charge density, which tends to result in a

highly-localized charge distribution.

4.3.1 Single length scale

One should notice that the mass distribution function calculated earlier is also a function

of both the total charge Qtot and the number of Q-balls N . During the chaotic fragmentation

procedure, the number of Q-balls will fluctuate between horizons. So in order to get a full

description of the fluctuations, we must supplement the mass distribution with a number

distribution p(N). This can be calculated from a simulation by simply counting the number
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of Q-balls within the simulation volume. Here, we will assume that the number of Q-balls

per horizon N is described by a Poisson distribution, as is typical for a random process such

as fragmentation:

p(N) = e−Nf
NN
f

N !
, (4.7)

where Nf is the average number of Q-balls per horizon at fragmentation. We then combine

Equations 4.4 and 4.7 to create a joint PDF which describes the distribution of massM within

a horizon composed of N Q-balls (we also set Qtot = Qf , the total charge on the horizon at

tf ): FQ(M,N) = fM(M,Qf , N)p(N). This is manifestly normalized since
∑

N

∫
dM FQ =∑

N(
∫
dM fM)p =

∑
N p = 1. We can then use this to calculate statistical moments such as

the average horizon mass, average horizon Q-ball number, RMS fluctuations, etc:

〈M〉 =
∞∑
N=1

∫ ∞
0

dM MFQ(M,Qf , N) ≈Mf , (4.8)

〈N〉 =
∞∑
N=1

∫ ∞
0

dM NFQ(M,Qf , N) = Nf , (4.9)

NRMS =

[
∞∑
N=1

∫ ∞
0

dM N2FQ(M,Qf , N)

]1/2

= Nf , (4.10)

whereMf = ΛQα
fN

1−α
f is the horizon mass of Q-balls at tf (the first relation is only approxi-

mate because 〈N1−α〉 ≈ N1−α
f , though the relative error scales as | 〈N1−α〉−N1−α

f |/ 〈N1−α〉 ≈
1/10Nf , so totally negligible for large Nf ).

4.3.2 Multiple length scales

The previous treatment has the shortcoming that it can only describe Q-ball distributions

with spatial extent the size of the horizon at the time of fragmentation. We now generalize

this to handle distributions on an arbitrary scale. First, when considering a physical volume

V at the time of fragmentation, the charge contained within this volume (assuming initial

uniformity of the condensate) is given by Qtot = QV = Qf (V/Vf ), where Vf = 4π
3
t3f is the

horizon volume at tf . Second, the number distribution is altered so that the number of
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Q-balls within volume V (assuming the same average number density nf = Nf/Vf across all

scales) is described by

p(N, V ) = e−NfV/Vf
(NfV/Vf )

N

N !
. (4.11)

The joint PDF for a mass M composed of N Q-balls contained within a volume V at the

time of fragmentation tf is then given by

FQ(M,V,N) = δ

(
M −Mf

(
N

Nf

)1−α(
V

Vf

)α)
p(N, V ). (4.12)

Note that if V = Vf , this reduces to the single-scale, horizon-size treatment.

In addition to being able to calculate quantities on each scale V individually, we will also

want to sum the contributions from each scale in some cases (such as contributions to the

PBH density from both subhorizon and superhorizon modes). To do so, we will sum over all

volume scales from Vmin to Vmax using a coarse-graining method. We consider an arbitrary

function of volume g(V ). The sum of the contributions from each scale Vi = Vmax/χ
i−1 is

then given by

∑
{V }

g(V ) =

b1+logχ
Vmax
Vmin

c∑
i=1

g(Vi) (4.13)

≈
∫ 1+logχ

Vmax
Vmin

1

di g(Vmax/χ
i−1) (4.14)

=
1

lnχ

∫ Vmax

Vmin

dV

V
g(V ), (4.15)

where we have used Euler-Maclaurin to approximate the sum, and χ ∼ few is a parameter of

the spacing between intervals of the coarse-graining procedure. We will take χ = e from now

on for simplicity; another choice does not significantly affect the outcome provided it is not

too close to unity. Vmin is the smallest volume under consideration; there will be a natural

cutoff due to the fact that Q-balls have a finite size, and so this scale is generally defined as

the volume which contains some number Nmin ∼ 10 Q-balls on average: Vmin/Nmin = Nf/Vf .
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4.4 Q-ball and PBH densities

Using the framework of Section 4.3, we are now in a position to begin calculating the

energy densities associated with the Q-balls, fluctuations in that energy density, and the

resulting density of black holes.

4.4.1 Q-ball density at fragmentation

Using the formalism of Section 4.3.2, we can calculate the background energy density

(over the largest scales) of Q-balls at tf :

〈ρQ(tf )〉 = lim
V→∞

〈M〉
V

=
Mf

Vf
, (4.16)

which will be important in the discussion of density perturbations in Section 4.4. Since Q-

balls are formed at rest, the evolution of the Q-ball density after fragmentation is simply that

of decaying nonrelativistic matter 〈ρQ(t)〉 = 〈ρQ(tf )〉 (af/a)3e(tf−t)/τQ , where τQ = 1/ΓQ is

the lifetime of the Q-balls. Q-balls are generally considered stable with respect to decay into

the quanta of the scalar field, but it is possible to decay through other processes. For example,

if a coupling of the scalar field to a light fermion with mass m < ω exists, Q-balls can decay

to these fermions through an evaporation process [166, 167, 168]. Q-balls can also decay if

the U(1) symmetry is broken by some higher-dimension operators [133, 132, 135, 121]. We

define ΓQ to include all such decay channels.

4.4.2 Q-ball density perturbations due to fluctuations

Due to the stochastic nature of the fragmentation process, volumes of space can arise

within which the number density of Q-balls exceeds the average number density. Due to the

nonlinear relationship between Q-ball mass and charge M = Λ|Q|α, this also gives rise to

fluctuations in the energy density within that volume. The density contrast in Q-balls at
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fragmentation δ(tf ) for a volume V containing mass M is defined as

δ(tf ) =
δρQ
〈ρQ〉

=
M/V

〈ρQ〉
− 1 =

(
N/Nf

M/Mf

) 1−α
α

− 1 (4.17)

where in the last line we have used the argument of the delta function in Equation 4.12

to eliminate V (this will be justified by an integral over V later). Note that if the Q-ball

mass-charge relationship were linear (α = 1), the perturbations would vanish identically.

The subhorizon density perturbations (V < Vf ) are frozen during the initial radiation

dominated era, but they grow linearly in the scale factor during the Q-ball dominated epoch:

δ(t) = δ(tf )(a/aQ) = δ(tf ) = (t/tQ)2/3, where tQ is the beginning of the era of Q-ball dom-

ination. The structure growth generally goes nonlinear and decouples from the expansion

around δ > δc ∼ 1.7, at which point the overdense regions collapse and become gravi-

tationally bound. However, some structures with δ < δc can still collapse, and not all

structures with δ > δc are guaranteed to collapse into black holes. Due to nonsphericity

of the gravitationally-bound structures, only a fraction β = γδ13/2(tR)(M/MQ)13/3 (where

γ ≈ 0.02 is a factor due to the nonsphericity, MQ = Mf (tQ/tf )
3/2 is the horizon mass at the

beginning of the Q-ball dominated era, and tR is the end of the Q-ball dominated era, when

the radiation comes to dominate again) will actually collapse to black holes [149, 169, 170]

by the end of the Q-ball dominated era. We assume that structures with δ ≥ δc do not

continue to grow past the point of nonlinearity, as they have already collapsed and had their

chance to form a PBH; for these perturbations we set β = γδ
13/2
c (M/MQ)13/3 for δ(tR) > δc.

This refinement may not be necessary, as the average density perturbations are generally so

small they never reach δc, and indeed, changing the value of δc does not seem to significantly

alter the outcome.

Additional care must be taken to extend this to scales which enter the horizon at later

times, and thus may not subject to the same amount of growth as subhorizon modes. Those

that enter the horizon between tf < t < tQ can be treated as effectively subhorizon since

they enter the horizon before the Q-ball dominated epoch begins, and thus fluctuations are

subject to the same amount of amplification as initially subhorizon modes. This includes
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all volumes V < VQ, where VQ = 4π
3
t3Q(tf/tQ)3/2 is defined as the (initially superhorizon)

physical volume at tf which enters the horizon at tQ: (aQ/af )
3VQ = 4π

3
t3Q. Fluctuations

which enter the horizon during the Q-ball dominated epoch are treated slightly differently,

as they are only subjected to amplification from the time they enter the horizon th until the

radiation comes to dominate again at tR. We can account for this by calculating th for a

given scale V via (a(th)/af )
3V = 4π

3
t3h (which gives us th = (3/4π)(V/t

3/2
f t

1/2
Q )), and then

replacing the scale factor aR/aQ with aR/a(th) in the definition of β above. This treatment

is valid for all scales between VQ < V < VR, where VR = (4π/3)t3R(tQ/tR)2(tf/tQ)3/2 is the

physical volume at tf which enters the horizon at tR.

In addition to these details, we also enforce the constraint β ≤ 1 in order to prevent PBH

production probabilities over unity, though this does not become relevant unless the Q-ball

dominated era is extremely long.

4.4.3 Primordial black hole density

We are now in a position to calculate the average energy density in PBH created during

the Q-ball dominated era. We do this by calculating the energy density of Q-balls at tf

that will eventually form black holes by tR by weighting the Q-ball energy density M/V

by the collapse fraction/probability β evaluated at tR, summing over all scales V , and then

redshifting this value appropriately. The expression for this procedure is given by

〈ρBH(tR)〉 =

(
af
aR

)3 ∞∑
N=1

∫ VR

Vmin

dV

V

∫ ∞
0

dM

(
β
M

V

)
FQ, (4.18)

where it should be understood that the integral over V is broken up into two separate

domains, [Vmin, VQ] and [VQ, VR], where separate definitions of β apply, as described in Section

4.4.2. Due to the complicated piecewise nature of the function β, the authors are unaware

of any analytic solution, and further progress must be made numerically.

We find that Equation 4.18 can be rewritten in such a way that it only depends on

the dimensionless numbers Nf , rf = tQ/tf , and r = tR/tQ. rf and r can be interpreted

as measures of the duration of the era between the fragmentation and the beginning of Q-
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Figure 4.2: Fraction of Q-ball energy that goes into black holes. The ratio roughly scales
as 〈ρBH〉 / 〈ρQ〉 ∼ (4.6 × 10−4)r−5.9

f r4.4N−3.7
f . The thick black line is the unity bound where

100% of the Q-ball energy goes into creating black holes.

ball domination, and the length of the Q-ball dominated era, respectively. The effect of

these parameters on the black hole density can be seen in Figure 4.2. Larger rf will reduce

the fraction of Q-ball energy that goes into making black holes due to the dilution of the

number density and increased horizon mass at tQ due to the delay of the Q-ball dominated

era. Larger r leads to an increased fraction of Q-ball energy that goes into black holes due

to more amplification of the density perturbations, leading to a higher probability of PBH

formation. Larger Nf reduces the fraction because of higher suppression of fluctuations due

to the Poisson statistics. The form of the contours in this plot suggest that this ratio roughly

scales as 〈ρBH〉 / 〈ρQ〉 ∼ (4.6× 10−4)r−5.9
f r4.4N−3.7

f .
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4.4.4 Black hole mass spectrum

One can derive the mass spectrum of the black holes by not integrating over M in

Equation 4.18:

d 〈ρBH〉
dM

=

(
af
aR

)3 ∞∑
N=1

∫ VR

Vmin

dV

V

(
β
M

V

)
FQ. (4.19)

This yields the differential black hole energy density d 〈ρBH〉 /dM . We find that the spectrum

can be rewritten in terms of the parameter η = M/Mf (fraction of horizon mass at tf ), along

with the previously mentioned parameters rf = tQ/tf , r = tR/tQ, and Nf . Calculation of

this function can be done by evaluating Equation 4.19 at multiple values of η and then

interpolating. An example is given in Figure 4.3. First, it’s obvious from the normalization

of each curve that the lower the number of Q-balls per horizon, the more black holes that

are created. This is expected, as the Poisson statistics suppress the density fluctuations for

large Q-ball number. The normalization also increases with r, as explained in Figure 4.2.

Second, there is a hard lower cutoff in the PBH mass, which occurs at η = Nmin/Nf , which is

due to the lower cutoff in the volume mentioned earlier. Above that, the BH number sharply

increases with a power law ∝ η2.85±0.15; the extent of this region depends on the magnitude

of r, with larger values leading to a larger range. We suspect that this is due to the fact

that the small-scale density fluctuations have already reached their critical value δc and can

no longer continue growing, whereas the large-scale fluctuations (which started out smaller)

still have room to do so. Above that, the spectrum becomes approximately flat (∝ η−0.15),

meaning that the number of black holes in each decade of mass are comparable. Of course,

the upper end of this range dominates the energy density of the distribution. Then, at around

M = MQ, there is a sharp transition and the slope becomes strongly negative (∝ η−4.5) due

to the reduced growth the superhorizon modes are subject to. Then, there is an upper

exponential cutoff at η ∼ 108/Nf due once again to the Poisson statistics (the cutoff appears

to take precedence over previously mentioned transitions).
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Figure 4.3: Differential PBH/Q-ball density ratio as a function of η = M/Mf . The density
of black holes at tR has been blueshifted back to tf for comparison with the initial Q-ball
density. The integral of these curves over η is the fraction of energy in Q-balls that goes
into black holes, as shown in Figure 4.2. Notice that as r increases, the flat region shrinks.
Parameters for the given spectra are shown in the lower left corner.
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Figure 4.4: Evolution of energy density over cosmological history. The evolution of three
“species" is plotted: radiation ρR (orange, long dash), Q-balls 〈ρQ〉 (blue, short dash), and
black holes 〈ρBH〉 (black, solid). Inset in the upper right corner is a zoomed-in view of the
Q-ball dominated era (tQ < t < tR). The vertical axis is scaled by a factor of a3, so that
the decay of the Q-balls is evident (non-decaying matter would be represented by a straight
horizontal line). The parameters of this model are Nf = 106, tf = 9.7 × 10−18 s, rf = 10,
and r = 1.3× 104, which corresponds to production of PBH with peak mass of 4.4× 1020 g
making up 100% of the dark matter.

4.5 Cosmological history

We now give a detailed account of how the Q-balls, radiation, and black holes evolve

throughout the history of the universe up until the present day, as seen in Figure 4.4. In

summary: we assume an initial period of inflation and reheating in order to create a radiation

dominated era with a uniform charged scalar field as a subdominant component of the energy

density. The scalar field fragments into Q-balls at tf , which then come to dominate the energy

density at tQ. During the Q-ball dominated epoch, primordial black holes are produced, and

at tR, their density is frozen in and evolves as nonrelativistic matter. After this initial matter

dominated epoch, the Standard Model of cosmology resumes, and evolves through all the

eras we are familiar with (BBN, matter-radiation equality, etc.) up to the present day.
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The functions used to model the energy density evolution for each species is summarized

in Appendix 4.12.

4.5.1 Initial radiation dominated era

After the end of inflation, the Universe enters a brief matter dominated era due to

the coherent oscillations of the inflaton field. The decay of the quanta of this field at time

tRH = Γ−1
I reheats the Universe, which enters a radiation dominated epoch with temperature

TRH = 0.55g
−1/4
∗ (ΓIMp)

1/2 and radiation energy density

ρR(tRH) =
π2

30
g∗(TRH)T 4

RH ≈
π2

327
Γ2
IM

2
p , (4.20)

where ΓI ∼ 1/tRH is the decay width of the inflaton oscillations. The radiation density

redshifts as ρR(t) = ρR(tRH)(aRH/a)4 = ρR(tRH)(tRH/t)
2 during this epoch, which ends up

canceling the factor of ΓI to give us

ρR(t) =
π2M2

p

327t2
; tRH < t < tQ (4.21)

At some point tf , the scalar condensate fragments into Q-balls, resulting in an energy density

given by Equation 4.16. The Q-balls then redshift as decaying nonrelativistic matter:

〈ρQ(t)〉 = 〈ρQ(tf )〉
(af
a

)3

e−(t−tf )/τQ (4.22)

=
3ΛQα

fN
1−α
f

4πt
3/2
f t3/2

e−(t−tf )/τQ ; tf < t < tQ (4.23)

4.5.2 Q-ball dominated era

At some point tQ, the Q-balls come to dominate the energy density. This time is defined

by ρR(tQ) = 〈ρQ(tQ)〉, using the equations of the previous section. During this era, Q-ball

decays begin to affect the radiation density, causing the radiation temperature to decrease

less slowly than it normally would due to the expansion. Following the analysis of Scherrer

78



and Turner [171], the radiation density in this epoch due to the decay of the Q-balls can be

modeled as

ρR(t) =

[
ρR(tQ) + 〈ρQ(tQ)〉

∫ x

x0

dx′ z(x′)e−x
′
]
z−4, (4.24)

where x ≡ ΓQt, x0 = ΓQtQ, and z = (x/x0)2/3. The Q-balls continue to redshift and decay,

leading to

〈ρQ(t)〉 =
3ΛQα

fN
1−α
f t

1/2
Q

4πt
3/2
f t2

e−(t−tf )/τQ ; tQ < t < tR (4.25)

As the Q-balls decay, eventually the radiation comes to dominate again at tR, defined by

ρR(tR) = 〈ρQ(tR)〉. Using Equations 4.21, 4.22, 4.24 and 4.25, this gives us the relation

1 +

(
tR
τQ

)−2/3

Γ

(
5

3
,
tQ
τQ
,
tR
τQ

)
=

(
tR
tQ

)2/3

e(tQ−tR)/τQ , (4.26)

where Γ is the generalized incomplete gamma function. This allows us to solve (numerically)

for rQ ≡ τQ/tQ as a function of r = tR/tQ. At this point, if we specify tf , rf and r, we can

calculate the other parameters tQ, tR, τQ, and ΛQα
f via

tQ = tfrf , tR = tfrfr, τQ = tfrfrQ(r), (4.27)

ΛQα
f =

4πM2
p tf

3 · 327r
1/2
f N1−α

f

e(1−1/rf )/rQ(r), (4.28)

from which we can calculate all other quantities of interest (Mf = ΛQα
fN

1−α
f , MQ = Mfr

3/2
f ,

etc.).

4.5.3 Standard cosmological era

After the Q-balls have decayed sufficiently, the universe returns to a radiation dominated

era, and the standard cosmology begins. In order to evolve the radiation, Q-ball, and

black hole densities to the present day, one would naïvely use a1/a2 = (t1/t2)n, where

79



n = 1
2

(2
3
) in a radiation (matter) dominated era, keeping in mind that the universe transitions

between the two at zeq ≈ 3360, or teq ≈ 4.7 × 104 yr. However, due to the extended era of

matter domination, the time at which cosmological events (such as BBN, matter-radiation

equality, or recombination) occur are not the same as in the standard cosmology. Instead,

one must evolve according to the universe’s thermal history, where cosmological events occur

at specific temperatures. In this case, one must use a1/a2 = g
1/3
∗S (T2)T2/g

1/3
∗S (T1)T1 and evolve

from TR (defined by ρR(tR) = (π2/30)g∗(TR)T 4
R) to T0 = 2.7 K = 2.3 meV. This has the

advantage of accurately accounting for any deviation from cosmological history. We can

then find the time at which some event X occurs by solving ρR(tX) = (π2/30)g∗(TX)T 4
X =

ρR(TR)(a(tR)/a(t))4. In order to ensure that this early matter dominated era does not spoil

the canonical cosmological thermal history, we enforce an additional constraint TR > TBBN ∼
MeV, so that the entropy injection from Q-ball decays does not interfere with nucleosynthesis.

4.6 Observational constraints

We now examine the observational constraints on primordial black holes and where our

results fit in. The constraints come from a wide variety of sources, such as extragalactic

gamma rays from evaporation [172, 173], femtolensing of gamma ray bursts (GRB) [174],

capture by white dwarfs [175], microlensing observations from HSC [90], Kepler [176, 177],

and EROS/MACHO/OGLE [178], measurements of distortion of the CMB [179, 180], and

bounds on the number density of compact X-ray objects [181] (constraints summarized in

[182, 146, 183]). The constraints are typically expressed in a form that assumes a monochro-

matic distribution of PBH masses. However, in the case of an extended mass distribution

(such as we have in this scenario), care must be taken to apply the limits correctly. To do

this, we follow the procedure outlined in [149, 183], which amounts to dividing the mass

spectrum into a number of bins (labeled by the index i), then integrating the dark matter

fraction over the interval contained in the bin:

fi =
1

ρDM

∫ Mi+1

Mi

dM
d 〈ρBH(t0)〉

dM
, (4.29)
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Figure 4.5: Comparison of observational PBH constraints fcon(M) = ΩPBH(M)/ΩDM (or-
ange, shaded) with the dark matter fraction per logarithmic interval (black), defined by
f(M) = M

ρDM

d〈ρBH(t0)〉
dM

. This is a crude comparison, and to be rigorous one should use
the procedure outlined by the use of Equation 4.29. Parameters for the three curves are
tf = 1.12× 10−17 s, rf = 1.1, r = 4.47× 102, Nf = 106, f = 1 (solid line), tf = 2.0× 10−11 s,
rf = 1.1, r = 1.58 × 103, Nf = 106, f = 0.2 (dashed line), and tf = 1.0 × 10−3 s, rf = 1.1,
r = 4.47 × 102, Nf = 105, f = 0.001 (dot-dashed line). The HSC constraints reported in
[90] do not apply below 10−10 solar masses because the Schwarzschild radius of the black
hole becomes smaller than the wavelength of light, and the wave effects suppress the magni-
fication [184, 185]. Also shown is the boundary of the parameter range (dark green) above
which PBH collisions with neutron stars can account for all r-process element production in
the Milky Way [87].

which is then compared with the constraints on a bin-by-bin basis. We find that for sufficient

choices of the parametersNf , tf , rf , and r, our model can produce black holes over practically

the entire parameter space allowed by the constraints (see Fig. 4.5). Notably, this Figure

illustrates two interesting points: 1) that this mechanism is capable of generating black

holes which can account for both 100% of the dark matter in the region M ∼ 1020 g and

production or r-process elements [87], and 2) it is also capable of generating black holes with

sufficient mass to explain the recent LIGO observation GW150914 [186]. Some studies have

even argued that PBH can account for 100% of the DM in this range by contesting the CMB
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constraints [155]. The three contours in Figure 4.5 are, however, simply chosen by hand

for illustrative purposes, and are therefore not representative of the entire parameter space

allowed to this mechanism, which is much wider than suggested by the given parameters.

4.7 Parameter space

We now explore the parameter space available to this mechanism in which it is possi-

ble to account for a considerable fraction of the dark matter while avoiding observational

constraints. To do so, we develop an algorithm to accomplish this task in the following

manner: since the function ((af/aR)3/ 〈ρQ(tf )〉) (d 〈ρBH(tR)〉 /dη) is determined solely by the

parameters rf and r, we generate a list of such functions by sampling the r − rf plane at

various points. Then, for each (r, rf ) pair, we vary tf using a weighed bisection method until

max(|1 − fi/fcon(Mi)|) < ε = 10−1, with fi given by Equation 4.29. This determines the

value of tf which gives the maximum dark matter fraction allowed by the constraints for the

given values of r and rf . Once that has been determined, we can calculate all other relevant

quantities of interest, such as MBH,peak, TR, and the dark matter fraction f = ΩPBH/ΩDM.

The results for Nf = 106 are shown in Figure 4.6.

We can see from this Figure that the contours of constant f are highly correlated with

the values of MBH,peak. This is due to the fact that the observational constraints are solely

a function of M , and the calculated spectrum f(M) is quite sharply peaked at MBH,peak.

The region of f ≥ 1 roughly follows the contour of MBH,peak = 1020 g, where the constraints

are weakest, due to this fact. The general tendency appears to be that for increasing r, the

spectrum favors heavier black holes, while for increasing rf , it favors lighter black holes. This

is because the longer the period of structure formation, the more the large mass perturbations

(which initially have small δ) grow, increasing the probability that they collapse to black

holes, whereas the longer the period between fragmentation and Q-ball domination, the more

the energy density of Q-balls is diluted, so that the value of tf has to be lower in order to

achieve the same value of f that one would with smaller rf . The smaller tf , the smaller the

horizon mass, and the smaller the PBH masses. This can be quantified, as the contours of
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Figure 4.6: Parameter space available to the model with Nf = 106. Color gradient denotes
the peak black hole mass MBH,peak (warmer colors denote higher masses), and the black
contours are surfaces of constant f = ΩPBH/ΩDM. Different levels of cross-hatching between
f contours indicate the range of maximum f values, with the densest corresponding to f ≥ 1
(highly correlated with MBH,peak = 1020 g), the next dense 10−1 < f < 1, and so on, down
to f < 10−3. Pink shaded region to the bottom right is ruled out due to TR ≥ 1 MeV for
that set of parameters. Jagged edges of the contours are likely due to shortcomings of the
interpolation method.
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constant f very roughly follow r0.63/rf ∼ const.

However, at around r & 3.2×105, the character of the plot changes so that the spectrum

appears to no longer depend on r, only on rf . This is likely due to the definition of β

discussed in Section 4.4.2, in which density perturbations are not allowed to grow past

δc, which makes it so that further increases in r have no effect on the spectrum. Further

increases in rf , however, serve to further dilute the Q-ball density before structure formation

can occur, lowering the necessary tf as mentioned above.

The pink region where TR > 1MeV is ruled out since in this region Q-ball decays begin

to interfere with nucleosynthesis. We can see that it is correlated with high mass, as the

later the fragmentation (meaning larger horizon mass), the less time there is for the Q-balls

to dominate before the universe cools sufficiently enough that nucleosynthesis begins. One

might notice that the mass of the black holes seen at LIGO in the GW150914 event lies

beyond the range indicated in this Figure, but in Figure 4.5 we have plotted a contour that

has MBH,peak ∼ 30 M�. This is because the contour in Fig. 4.5 is for Nf = 105, whereas

Fig. 4.6 has Nf fixed at 106. We can see in Fig. 4.3 that the density spectrum has a peak

at higher masses for lower values of Nf , so that the equivalent plot to Fig. 4.6 for Nf < 106

would see the TR < 1 MeV constraint pushed to higher values of MBH,peak; enough so that

they could explain the 30 M� black holes while avoiding the nucleosynthesis constraint.

4.8 Topological defects

Topological defect formation can also lead to the production of PBHs if the topological

defects come to dominate the energy density. The analysis is sufficiently different from

that of Q-balls, primarily because typically only one defect per horizon is produced at the

time of formation due to the Kibble mechanism [187]. However, the general mechanism

remains the same: small number densities of defects lead to large fluctuations relative to the

background density, these fluctuations become gravitationally bound and collapse to form

black holes once the relic density has come to dominate, and the relics decay due to some

instability (such as gravitational waves or decay to Nambu-Goldstone bosons in the case of
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cosmic strings). In order to accurately model production of PBHs from these defects, one

should calculate the expected density perturbations on initially superhorizon scales, which

only begin to grow once these scales pass back within the horizon and the defects come to

dominate the universe’s energy density.

Cosmic strings are probably the most likely candidate for primordial relics due to the

fact that they are typically cosmologically safe, as the energy density in string loops is

diluted during expansion at the same rate as radiation, a−4 [188, 189]. In contrast, the

string “network" (i.e. infinitely long strings) energy density redshifts as a−2 so that they

quickly come to dominate the universe’s energy density. However, once long strings start

intercommuting to produce loops, and these loops subsequently self-intersect to fragment

into smaller loops, the string network approaches a scaling solution which leads to the a−4

dilution of string loops [190].

However, this scaling solution critically relies on the probability of string intercommuta-

tion being very close to unity so that the long strings can efficiently break into small loops.

If this probability was sufficiently low, then the string density could redshift as a−2 or a−3,

survive until a matter/string dominated era, initiate structure formation, collapse to form

PBHs, and then subsequently decay. As long as these conditions are satisfied, cosmic strings

could act as a source of PBH. In addition, there exists a large class of solutions to the string

equations of motion which never self-intersect [191], making this scenario plausible.

4.9 Discussion

The mechanism we have discussed has a number of advantages over some other models.

It is extremely effective in creating primordial black holes across a broad range of masses,

and it does not require the tuning of the inflaton potential [151, 144, 150, 148]. In addition,

we did not have to make any ad-hoc assumptions regarding density contrast fluctuations;

the fluctuations are calculable from first principles.

The mechanism is also generally applicable to practically any complex scalar field with

a conserved global charge and flat potential, so that the formation of PBH is now a gen-

85



eral prediction of any theory containing such charged scalars. In particular, supersymmetric

extensions to the Standard Model typically have such fields, making the production of pri-

mordial black holes a general prediction of such theories. For the case of supersymmetric

Q-balls with the SUSY-breaking scale ΛSUSY > 10 TeV, the fragmentation time cannot be

much longer than the Hubble time H−1 ∼ Mp/g
1/2
∗ ΛSUSY . 8 × 10−15 s, which corresponds

to peak PBH masses of about 1023g (assuming Nf ∼ 106). The solid black curve illustrated

in Figure 4.5 satisfies this bound, thus primordial black holes from supersymmetric Q-balls

can account for 100% of the dark matter.

Supersymmetric Q-balls themselves have been suggested as the source of dark matter

in models where they are entirely stable [133, 121, 29, 168, 31]. However, the stability is

model-dependent, and it only applies to Q-balls carrying baryonic charge (so-called B-balls),

since those carrying leptonic charge (L-balls) would quickly evaporate to neutrinos [166]. In

our scenario, a short evaporation timescale is precisely what is needed to end the early era

of Q-ball domination before nucleosynthesis begins. The L-balls would then be composed

of slepton fields which subsequently decay to neutrinos at an early time. Since neutrinos

do not decouple from the plasma until just before nucleosynthesis (T & few MeV), they

thermalize quickly. If they decay early enough, it may even be possible to generate the

baryon asymmetry through conversion of lepton number to baryon number via sphaleron

processes during the electroweak phase transition [192].

Just like the typical scenario for PBH formation during the radiation-dominated era, the

primary factor in determining the mass of the resultant PBH is the horizon mass at the time

of PBH production. In Fig. 4.3, you can see that the peak BH mass is typically within an

order of magnitude or two of the horizon mass at the time of fragmentation (η = 1) (since

the curves plotted are dρBH/dη, one must multiply by η to get an idea of the total PBH

density within a specific mass interval, which puts the peak of η dρBH/dη near the location

of the exponential cut-off as you go to higher η). The variation in the location of the peak

for different Nf can be explained due to the observation that smaller numbers of Q-balls

lead to higher initial density contrast, which makes it easier to form larger black holes, and

in greater numbers. Larger numbers of Q-balls per horizon would have the opposite effect.
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But the mass of the horizon at fragmentation remains the primary factor. The horizon mass

at the time of fragmentation is simply the energy density of Q-balls (which is diluted by

t−2) times the horizon volume (which scales as t3), though in order to calculate this in a

self-consistent way that takes the parameters of this mechanism into account we can use Eq.

4.28 along with the comment immediately following it. The main takeaway is that it is linear

in t, so that later fragmentation leads to larger black holes in general. Though the value of

Mpeak has a very large range, it cannot be made arbitrarily high. Specifically, the constraint

that fragmentation (and decay) of the Q-balls must occur before BBN acts as a constraint

on the horizon mass at fragmentation, and therefore restricts the masses of the largest black

holes produced to be less than about 10M�.

There are some remaining open questions, such as how well the assumption that all

Q-balls within the volume V are the same charge models this scenario. Simulations show

that for scalar condensates with a high ratio of charge density to energy density, this is a

good prediction, as all the Q-balls formed from this initial condition typically have similar

sizes. This is also theoretically understood for a scalar condensate with a sufficiently large

charge density [31, 126, 124]. However, condensates with a large energy density and small

charge density generally produce broad charge distributions, nearly symmetric about Q = 0,

since the excess energy cannot be contained in Q-balls with the same sign of Q while also

conserving charge. We suspect that in this scenario the production of PBH will be reduced,

since the charge conservation does not play as significant a role. Loss of energy due to

scalar radiation in the fragmentation process may still be able to produce energy density

inhomogeneities, but this will require further study. In the same manner, the production

of oscillons from the fragmentation of a real scalar field may be able to produce significant

numbers of PBH as well.

One may also wonder what sort of mechanism is needed in order to ensure the Q-balls

decay at the correct time. As an example, following the work of [121], the lifetime of a

Q-ball with initial charge Q0 decaying to pseudo-Goldstone bosons through the effects of a
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charge-violating operator of the form V/Q(φ) = gφn(φ∗)m/Λn+m−4
∗ + c.c. is given by

τ ≈ 1−Q1−a
0

(a− 1)Γ0

, (4.30)

where

a =
1

4
(7 + 2(n+m− 2)), (4.31)

Γ0 = 112.7|g|2e−0.236(n+m)(n−m)2JnmΛ(Λ/Λ∗)
2(n+m)−8, (4.32)

and Jnm ∼ O(10−7 − 10−6). For g ∼ 0.1, Λ∗ ∼ 1016 GeV, and Λ ∼ 109 GeV, the lifetime of

a Q-ball decaying through an operator with (n,m) = (2, 3) is about τ ∼ 10−13 s, which is

sufficient to explain the curve of Figure 4.4 (and satisfies the SUSY bound). Decay through

these higher-dimension operators isn’t the only way to induce the decay of Q-balls though;

many other scenarios have been explored in the literature [133, 132, 135].

This work also begs the question of what possible observables exist that could show the

Q-ball clusters collapse to black holes. We assume that the collapse will produce a stochastic

gravitational wave background [193], which could be detected by future observatories (or put

constraints on the model). Further evolution of the PBH population could see successive

mergers, which in addition to creating another stochastic GW background [194], could also

alter the distribution of black hole masses (in addition to evaporation/accretion effects [195,

196]). We propose to calculate the gravitational wave spectrum in a future publication.

4.10 Conclusion

In summary, we have shown that the number density fluctuations of a Q-ball population

in the early universe can lead to production of primordial black holes with sufficient abun-

dance to explain the dark matter. Scalar fields and Q-ball formation are general features of

supersymmetric extensions to the Standard Model, which provides a good motivation for this

mechanism. A similar mechanism using solitons, topological defects, or other compact ob-
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jects associated with scalar fields in the early universe can also lead to a copious production

of primordial black holes.
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4.12 Appendix: Evolution of energy densities

Here we tabulate the functional form of the energy density for each species (radiation,

Q-ball, black hole) up until the present day. The values for tf , tQ, tR, and τQ are taken as

input parameters (subject to some self-consistency conditions), while the values of teq and

t0 are calculated from the procedure described in Section 4.5.3.

4.12.1 Radiation

The radiation density begins after reheating and is given by Equation 4.21. From this

point we evolve it through time to the present day, taking into account the contribution due

to Q-ball decays during the period tQ < t < tR.

ρR(t) =



π2M2
p

327t2
tRH < t < tQ

π2M2
p

327t2Q

[
1 +

( τQ
t

)2/3
Γ
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3
,
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, t
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)](
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teq < t < t0

(4.33)
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4.12.2 Q-balls

The Q-balls are created at the time of fragmentation tf , and evolve as decaying nonrela-

tivistic matter. The magnitude of the energy density becomes insignificant shortly after tR.

Mf = Λ|Qf |αN1−α
f can be determined from specifying tf , rf , r, and Nf , as given in Section

4.5.

〈ρQ(t)〉 =



3Mf

4πt3f

(
tf
t

)3/2

e−(t−tf )/τQ tf < t < tQ

3Mf

4πt3f

(
tf
tQ

)3/2 (
tQ
t

)2

e−(t−tf )/τQ tQ < t < tR

3Mf

4πt3f

(
tf
tQ

)3/2 (
tQ
tR

)2 (
tR
t

)3/2
e−(t−tf )/τQ tR < t < teq

3Mf

4πt3f

(
tf
tQ

)3/2 (
tQ
tR

)2 (
tR
teq

)3/2 ( teq
t

)2
e−(t−tf )/τQ teq < t < t0

(4.34)

4.12.3 Black holes

The black holes are created towards the end of the initial Q-ball dominated era, and their

density at tR is given by Equation 4.18:

〈ρBH(tR)〉 =

(
af
aR

)3 ∞∑
N=1

∫ VR

Vmin

dV

V

∫ ∞
0

dM

(
β
M

V

)
FQ (4.35)

=

(
t
3/2
f t

1/2
Q

t2R

)
Mf

Vf

∞∑
N=1

∫ xR

xmin

dx β(x,N)xN+α−2e−x (4.36)

where

β(x,N) =


((

N
x

)1−α − 1
)(

tR
t∗

)2/3

≥ δc : min

(
1, γδ

13/2
c

(
N
Nf

xα

Nα

)13/3

r
−13/2
f

)
((

N
x

)1−α − 1
)(

tR
t∗

)2/3

< δc : min

(
1, γ

((
N
x

)1−α − 1
)13/2 (

tR
t∗

N
Nf

xα

Nα

)13/3

r
−13/2
f

)
(4.37)
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and

t∗ =


tQ xmin < x < xQ

3Vfx

4πNf t
3/2
f t

1/2
Q

xQ < x < xR

(4.38)

where xmin = NfVmin/Vf = Nmin, xQ = NfVQ/Vf , and xR = NfVR/Vf . After this has been

evaluated, the evolution of the black hole density is fairly straightforward:

〈ρBH(t)〉 =


〈ρBH(tR)〉

(
tR
t

)3/2
tR < t < teq

〈ρBH(tR)〉
(
tR
teq

)3/2 ( teq
t

)2
teq < t < t0

(4.39)
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CHAPTER 5

Primordial Black Holes from Inflaton Fragmentation into

Oscillons

The content of this chapter has been submitted for publication and can be found on the

arXiv as Primordial Black Holes from Inflaton Fragmentation into Oscillons, E. Cotner, A.

Kusenko, and V. Takhistov, arXiv:1801:03321 (2018) [197].

We show that fragmentation of the inflaton into long-lived spatially localized oscillon

configurations can lead to copious production of black holes. In a single-field inflation model

primordial black holes of sublunar mass can form, and they can account for all of the dark

matter. We also explore the possibility that solar-mass primordial black holes, particularly

relevant for gravitational wave astronomy, are produced from the same mechanism.

5.1 Introduction

Primordial black holes (PBHs) can form in the early Universe and can account for all or

part of the dark matter (DM) (e.g. [143, 82, 83, 144, 145, 146, 148, 158, 149, 150, 151, 198,

181, 152, 199, 200, 201]). They have also been linked to a variety of topics in astronomy,

including the recently discovered [202, 203, 204] gravitational waves [205, 206, 155, 207, 208,

157, 209, 210], formation of supermassive black holes [211, 147, 206] as well as r-process

nucleosynthesis [87] and gamma-ray bursts [84] from compact star disruptions.

Many proposed scenarios of PBH formation assume that inflation has generated some

excess of density perturbations on certain scales, which produce PBHs when they re-enter the

Hubble horizon during the radiation dominated phase or during some intermediate matter-
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dominated stage (for review, see [169, 145]). The required inflaton potentials could be ad

hoc, or can be well-motivated in the context of hybrid inflation [144], supergravity [148],

etc. PBHs can also form from large extended objects, such as non-topological solitons in

supersymmetric theories, which behave as matter and come to dominate the universe for

a short time before decaying [158, 142]. In this case, the overdensities needed for PBH

formation result from statistical fluctuations in a system with a relatively low number of

very massive “particles" and not from the spectrum of primordial density fluctuations. In

this Letter we show that if the inflaton potential admits long-lived oscillon solutions, their

formation can lead to copious production of PBHs.

5.2 Oscillons

Oscillons [212, 213, 214, 215, 216, 217] arise in many well motivated theories with scalar

fields, such as models of inflation [218], axions [77] or moduli [219]. The oscillons are lo-

calized, metastable, pseudo-solitonic configurations of real scalar fields. The stability of an

oscillon is not guaranteed by a conserved charge and its long lifetime is associated with

an approximate adiabatic invariant [220, 216]. Early Universe oscillons have been recently

studied in connection with primordial gravity waves [221] as well as baryogenesis [222].

For definiteness, we consider the model with a single inflaton field φ that has a canonical

kinetic term, minimal coupling to Einstein gravity and a potential [223, 224, 218, 225]

V =
m2

2
φ2 − λ

4
φ4 +

g2

6m2
φ6 . (5.1)

Here λ > 0 and for convenience, following the original studies, we take λ, g,m/Mpl � 1,

where Mpl is the Planck mass. The model [223, 224, 218, 225] is inspired by a class of well

motivated supergravity and string theories [226, 227, 218] and could be considered as a Taylor

series expansion of a more general potential for some range of the scalar field. We assume

that the density perturbations that seed cosmological structures are generated when the

inflaton field has a much larger value, for which the shape of the potential is not necessarily
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described by Eq. (5.1). After the inflationary phase, the inflaton begins to oscillate near the

minimum of the potential as described by Eq. (5.1). At this time, the inflaton condensate

fragments into oscillons.

A necessary condition for oscillon formation is that the potential is shallower than

quadratic near the minimum (making the scalar self-interactions attractive). This is the

case for λ > 0. For (λ/g)2 � 1, the above potential admits “flat-top” oscillons, which are

extremely stable on the cosmological time scales and for which the analytic description is

known [223, 224, 218, 225].

5.3 Parametric Resonance

An initially homogeneous inflaton condensate can fragment into lumps, corresponding to

oscillons. The inflaton self-resonance parametrically amplifies field fluctuations δφk in some

band of wave-numbers k around the background field φ. This can be analytically investigated

through Floquet analysis, where the most unstable modes behave as δφk(t) ∝ eµktP (t),

with µk denoting the Floquet exponent and P (t) a periodic function. In an expanding

background significant amplification of fluctuations requires µk(a)/H � 1, where a(t) is the

cosmic scale factor and H = Hi/
√
a3 is the Hubble parameter at the bottom of potential. At

fragmentation Hi '
√
λ/10g2(m/Mpl)m and ai = 1. The amplification condition translates

to [223]

µk(a)

H
=
Mpl

m

(λ3/2

g

)[√9

4

k̃2

a2

(
1− 1

a3

)
−
( k̃4

a

)]
� 1 , (5.2)

where k̃ = (g/λm)k, with k being related to the physical wavenumber via k = a kp. The total

amplification of fluctuations as they pass through the instability band is found by integrating

over the Floquet exponent as

δφk(a) ∼ 1√
2ωk

1

a3/2
eβf(k̃,a) , (5.3)
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where

f(k̃, a) =

√
5

2

∫
C

d log a
[
k̃

√
9

10a2

(
1− 1

a3

)
− k̃2

a

]
(5.4)

and C = a3−1
a4

> 10
9
k̃2, β =

√
λ(λ/g)(Mpl/m) and ω2

k ' k2 + m2. Since β ∼ µ/H, we are

interested in the β � 1 regime.

The condition [223] for formation of oscillons from amplified perturbations can be for-

mulated as k3/2δφ ∼ φ. The average number density of oscillons can then be estimated as

n ∼ (knl/2π)3/a3, where knl ∼ β−1/5(λ/g)m label the modes that become non-linear the

earliest. While the model supports several distinct oscillon populations, we focus on the flat-

top oscillons due to their stability. Unlike the usual Gaussian-profile oscillons, they possess

an approximately uniform core density of ρc ' m4(9λ/20g2) [224]. Taking the characteristic

radius of oscillons to be R ∼ π/knl, we can estimate their energy as

E ∼ 4πρcR
3

3
' 3π4m4

5k3
nl

( λ
g2

)
. (5.5)

The above provides n(E) through knl substitution.
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Figure 5.1: Fraction of super-critical overdensities as a function of the scale factor a(t).
Results are shown for several different volumes, which are expressed in terms of the Hubble
horizon as V/VH = 3 × 10−5 , 3 × 10−4, 3 × 10−3 , 3 × 10−2 , 3 × 10−1 and labeled “1”, “2”,
“3”, “4” and “5”, respectively. The values of the input parameters (λ/g)2 = 0.2 and β = 56.1
correspond to those of Model A.
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5.4 Density Perturbations

Given an average number density n of uniformly distributed objects, the probability of

finding N objects within a volume V follows the Poisson distribution

PN(N) =
(nV )N

N !
e−nV . (5.6)

The total mass of a cluster of oscillons is M = NE. Hence, the probability distribution of

oscillon cluster mass is given by PM(M) =
∑

N PN(N)δ(M −NE). The delta-function can

be eliminated through a Fourier transform

P̃M(µ) =

∫
dM PM(M) eiMµ = enV (eiEµ−1) , (5.7)

followed by an inverse transform

PM(M) =
1

2π

∫
dµ e−iMµ enV (eiEµ−1) . (5.8)

An approximate analytic non-integral form of Eq. (5.8) can be found through the method

of steepest descent. The resulting expression is

Pη(η) =
1√

2πβ3/5η
eβ
−3/5[η(1−ln{(2π)3η/v})−v/(2π)3] , (5.9)

where v = V (λm/g)3 = V [Mpl(λ/g)(m/Mpl)]
3 and η = M/E0, with E0 = (3π4/5)[Mpl(λ/g)/β2(m/Mpl)],

denote the rescaled dimensionless volume and mass, respectively.

Using Pη(η) we can now calculate the distribution of the initial density contrasts δ0. In

terms of η, δ0 is

δ0 =
δρ

ρ
=
ρ− ρ
ρ

=
M/V − ρ

ρ
= (2π)3

(η
v

)
− 1 , (5.10)

where ρ = nE = E0(λm/g)3/(2π)3 denotes the average background energy density of os-

cillons. The η prefactor can be restated in terms of n as (ρV/E0) ' (λm/g)3V/(2π)3 =
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β−3/5nV . The probability distribution of δ0 is then

Pδ0(δ0) = Pη(η)
∣∣∣ dη
dδ0

∣∣∣ =
v

(2π)3
Pη

( v

(2π)3
[1 + δ0]

)
. (5.11)

Figure 5.2: [Left] DM fraction in primordial black holes. Fits for parameter choices cor-
responding to Model A, B, C are shown. Constraints from extragalactic γ-rays from BH
evaporation [182] (EGγ), femto-lensing [174] (FL), white dwarf abundance [228] (WD), Ke-
pler star milli/micro- lensing [177] (K), Subaru HSC micro-lensing [90] (HSC) and MA-
CHO/EROS/ OGLE micro-lensing [178] (ML) are displayed. Dashed line indicates that
HSC constraints [88] are expected to be weaker than reported when PBH Schwarzschild
radius becomes smaller than the wavelength of light [185, 184]. [Right] Evolution of cosmo-
logical density for parameters of Model A. Contributions from the un-fragmented inflaton,
oscillons, PBHs as well as the radiation sector are shown.

The initial overdensities evolve due to gravitational self-attraction and grow according to

the scale factor during the oscillon matter-dominated era as δ(t) = δ0a(t) = δ0(t/t0)2/3. Once

overdensities δ exceed the critical threshold δc ∼ 1, regions start collapsing and forming black

holes. Using Eq. (5.10) to exchange δc for ηc, we obtain the condition for η to be super-critical

η ≥ ηc(a, V ) =
ρV

E0

(
δc
a

+ 1

)
. (5.12)

The total fraction of super-critical overdensities as a function of scale factor a can be found

through integration

P (δ ≥ δc) =

∫ ∞
δc=1

dδ

a
Pδ0(δ/a). (5.13)

In Figure 5.1 we display this fraction for several different volume values. As can be seen,
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already within a few a from the time of fragmentation the amount of super-critical regions

becomes significant.

5.5 Formation of black holes

Not all super-critical regions result in a black hole. Unlike the radiation-era PBH forma-

tion [229], absence of pressure gradient in the matter-dominated era greatly enhances black

hole production [169]. On the other hand, non-spherical density anisotropies now play a

dominant role with final stages of collapse being described by a “Zel’dovich pancake” [230],

whose parameter distribution can found in [231]. Using Thorne’s hoop conjecture [232] as

a requirement for formation of the black hole horizon, PBH production was recently re-

analyzed in [233] (see discussion in text for comparison with [169]). The probability for a

super-critical overdensity region to result in a black hole is given by

B(M) ' 0.05556 δ5

(
M

M(VH)

)10/3

, (5.14)

whereM(VH) = (4π/3)ρ/H3
i denotes the average mass in the Hubble horizon volume VH(t) =

(4π/3)t3 at fragmentation, with t = 1/H. We have further checked that including the effects

of PBH spins [234], relevant for small overdensities, will not significantly alter our results.

Model β (λ/g)2 aR mφ φfrag Hi Γφ TR fPBH

(GeV) (GeV) (GeV) (GeV) (GeV)

A 56.1 0.2 70 5·10−5 6.7·1015 4.6·10−7 1.2·10−10 6.6·103 1.0

B 35.5 0.2 20 9·10−8 1.1·1016 1.3·10−9 2.2·10−12 9.0·102 1.0

C 10.7 0.2 2 1·10−20 5.3·1016 7.2·10−22 3.8·10−23 3.8·10−3 5.1·10−2

Table 5.1: Parameter sets for three specific model realizations (Model A, B, C). In Models
A, B PBHs can account for all of the DM, while model C allows for PBHs to contribute to the
observed LIGO black hole merger events. Vertical double line divides the input quantities
[left-side] β, (λ/g)2, reheating time aR = a(TR), inflaton mass mφ and the derived quantities
[right-side]: inflaton VEV at fragmentation φfrag, initial Hubble rate Hi, inflaton decay rate
Γφ, reheating temperature TR and the fraction of DM in PBHs fPBH.

At some scale factor aR the oscillon matter-dominated era ends and the Universe is
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reheated, entering the radiation-dominated phase. Specifying the energy density of the

overdensities as ρ = M/V = E0η/V , the PBH spectrum at aR is given by

d〈ρPBH〉
dη

=

∫ Vmax

Vmin

dV

V

(
B(η)

E0η

V

)
Pη(η)

× θ[η − ηc(aR, V )]θ

[
ρ0 −

E0η

V

]
, (5.15)

where θ[x] is the Heaviside step function and Vmin, Vmax are the average volume of a single

oscillon and the Hubble horizon volume, respectively. The first step function selects super-

critical regions. The second step function imposes energy conservation by requiring that an

overdensity doesn’t exceed the inflaton energy density, assuming that both have the same

volume. The inflaton energy density ρ0 at the bottom of its potential can be found from the

mass term ρ0a
3
i = (1/2)m2φi, where φi =

√
3λ/5g2m. A similar relation can be obtained

directly from the Friedmann equations.

5.6 Evolution to present day

In order to get the present day distribution we must redshift the results obtained at

fragmentation time. The redshift factor (aF/aR) = g
1/3
∗S (TF )TF/g

1/3
∗S (TR)TR accounts for

evolution from TR (defined by ρR(TR) = (π2/30)g∗(TR)T 4
R) to T0 = 2.7K = 2.3 meV. Here,

g∗ denotes the relevant number of relativistic degrees of freedom. Reverting from η back to

M , the fraction of DM residing in PBHs is then

dfPBH
dM

=
1

ρDMa3

d〈ρPBH〉
dM

, (5.16)

where ρDM is the present-day DM density and the 1/a3 factor accounts for the redshift

In Figure 5.2 we display the fraction of PBHs as DM for several specific parameter sets

(denoted as “Model A”, “B”, “C”) along with the current experimental constraints. Model

A, B correspond to the region where PBHs can make up all of the DM, while Model C

covers the region where PBHs can contribute to the observed LIGO black hole merger events
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[155, 157, 209]. Exact values of the parameters, including both the input and the derived

quantities, can be found in Table 5.1. We note that Model C is phenomenologically not

viable; the relevant parameters are shown for completeness.

In Figure 5.2 we display the cosmological history of the setup, showing energy density

evolution of the inflaton, oscillons, PBHs as well as radiation from reheating. During infla-

tion, the inflaton dominates the Universe. As the inflaton settles at the bottom of potential

the Universe becomes matter-dominated with the density scaling as a−3. After fragmenta-

tion of the inflaton into oscillons and PBH formation the Universe is reheated, becoming

radiation-dominated with the density scaling as a−4. At redshift z ≈ 3600 dark matter in

the form of PBHs, whose density scales also as a−3, overtakes the radiation contribution, and

the Universe again enters matter-dominated regime. Unlike the case of Q-balls [142, 158],

there is no intermediate radiation-dominated era before the fragmentation time in our setup,

since oscillons form directly from the inflaton during the early stages of reheating.

We further comment on two important cosmological aspects of the setting, the inflation-

ary phase and reheating. Taken at face value, the potential of Eq. (5.1) produces unphysical

perturbation spectrum during inflation due to the dominance of φ6 term (see [218] for discus-

sion). However, the field value φ at the bottom of potential is far below the Planck scale that

sets the initial inflaton displacement. Hence, our region of interest where inflaton oscillates

near the potential minimum is decoupled from the large values that determine the inflation-

ary phase. In this work we remain agnostic regarding the exact shape of the potential and

the early Universe dynamics. We focus on the effective potential at a relatively small vacuum

expectation value (VEV), well below the values that are relevant for structure formation.

5.7 Reheating

The Universe is reheated from oscillon decay. If PBHs are to constitute a significant

fraction of DM, the inflaton must be very light, and the reheating temperature is very low

(see Table 5.1). To avoid affecting the Big Bang nucleosynthesis (BBN), reheating should

occur above T & 4 MeV scale (e.g. [235]). While it is commonly assumed that the Universe
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was reheated to a much higher temperature, a cosmological history with ∼MeV reheating is

possible and is consistent with observations [236, 237]. Neglecting the oscillon quantum decay

[238], the allowed direct inflaton decay channels are limited by the total invariant mass. The

simplest decay mode is to photons φ→ γγ, proceeding through an effective (gγγ/4)FµνF
µνφ

operator, where Fµν is the electromagnetic field strength tensor and gγγ is the coupling. The

relevant decay rate is given by Γφ→γγ = (g2
γγ/64π)m3

φ. However, axion-like particle searches

already strongly constrain this channel [239, 240]. Thus, without an extended dark sector,

Model C is not viable. In a more complicated model, the reheating may be possible if the

inflaton decays into some dark sector particles, which produce the Standard Model degrees

of freedom via mixing (e.g. [241, 242]). Generating the matter-antimatter asymmetry in a

low-reheating scenario also presents a model building challenge.

In summary, inflaton fragmentation into oscillons can lead to formation of primordial

black holes in a single-field inflation model or other models that admit oscillon solutions.

This novel production mechanism can generate a sufficient density of PBHs to account for

all or part of dark matter. It is also possible that solar-mass black holes can be produced

this way, but the required mass of the inflaton is very small, and the need for reheating and

baryogenesis will lead to more complicated models.
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