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This is the first of several papers in which we propose a new approach to modelling finite-move,
closed-loop games in continuous time.! In the present paper, we focus on "basic timing games"
(BTG)’s: in a BTG, each agent chooses a n’:ﬁe to move, selecting from a finite set of alternative termi-
nation actions. Once one player has moved, the game is over. In the subsequent papers, we entich the

model by allowing finitely many moves in succession.”

A continuous-time formulation is desirable on several grounds. The most obvious is that usually,
agents in realiry can act virtually whenever they wish: we should therefore be concemned about the
predictions of a model in which agents are confined to move once a day, say at 8.00 am, if in the
actual situation being modelled, a great deal may be gained by moving at 7.59 am. The second argu-
ment in favor of continuous time is convenience. Economists usually model quantities and prices as
continuous variables, because these are easier to work with than discrete ones. In particular, differential
calculus techniques can be used 10 make marginal calculations. ‘These reasons appear equally valid

when time is the economic variable being analyzed.

There is a third argument in favor of continuous-time that is related to the second, but less well
understood. It tums out that certain classes of games are much easier to solve in continuous time than
in discrete time. The main goal of this p#per is to make precise the semse in which this is true.
Specifically, the paper develops a "calculus” for continuous-time games.3 For a certain class of games,
our methodology is surprisingly powerful. This class includes many kinds of preemption games that are
of interest to economists. Solutions to these games can be obtained with a minimum of computation.

By contrast, the corresponding discrete-time solutions might be extremely tedious to calculate. More-

over, in contrast to the technology for solving discrete-time games, our solution procedure invokes gen-

eral formulae rather than computations that are specific 10 the problem being analyzed. In many cases,

! In a closed-loop game, agents can tevise their decisions at every point in time; in an open-loop game, by contrast, decisions
are made in advance and cannot be revoked.

2 If agents can move at arbilrary points in time, then, without further restriction, they can also move arbitrarily frequently. As
we discuss in [16) (benceforth SS1), this possibility raises severe technical problems.  As a first stcp, we restrict attention 1o

finite. move gumes and thereby sidestep these problems compieiely.

3 A cakulus is a “partivular method of calculation or reasoning.” (Concise Oxford Dictionary).




these formulae are very simple to apply.

We conclude this introduction with some qualified caveats. First, while our "calculus” is straight-
forward to work with, its conceptual foundations are by no means simple. Nonethcless, the machinery
can be used without a complete understanding of its underpinnings. Sacond, our model has little new 1o
say about many kinds of timing problems--including, for example, games like the war of afirition. On
the other hand, our machinery does yield sharp and intuitive results for a wide range of interesting

economic problems.

The remainder of the paper is organized as follows. Section 0 argues for a closed- rather than an
open-loop formulation of continusous-time games. Section I introduces our notion of a continuous-time
game form. In section TI, we illusirate the model with some classical examples and introduce the ideas
underlying our ecalculus.” The formal model is presented in section Il Sections IV and V develop
the "calculus” introduced above. Section VI contains an example, showing that in 2 certain sense, our
model of continuous time is fundamentally different from the conventional discrete-time model. Proofs

are gathered together in the Appendix.

0. Closed- vs. Open-loop Strategies in Continuous Time,

For the purposes of this heuristic section, we will focus on simplest kind of Basic Timing Game.
The game is played on the unit interval. There are two agents. Each has two strategies, “continue”

(C1) and "terminate” (Tm). In the continuous-time version, agents can move at any point in time: in

--diserete-time;—mey-ean-mave..al_.only..a_ﬁ.nile_number__ot__gt_id_pgims. The game ends either when some

player plays "Tm" for the first time or when iime runs out. Agents choose closed-loop strategies, ie.,
they can revise their decisions at any stage of the game. Wc'will refer to a game in this class as a
2 x 2 BTG. When a game of this kind is played on a discrete-time grid, R ~i.e., a finite subset of the
unit interval--a behavior strategy is a function, ER, that assigns a probability weight to each point in R.
EX has the following interpretation: “for each r € R, if the game has not already ended by r, I will play

“Tm" at this time with probability Ef(r XTm)."
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There is no obvious way to specify the continuous-time analog of the closed-loop game-form just
described. The conceptual problems are discussed in SS1 (section HI). Most studies of iming games
finesse these difficulties by compromising in one of two ways.‘ {A notable exception is
Fudenberg-Tirole {5].) Some consider closed-loop, discrete-time games, and study the limit of subgame
perfect equilibria as the grid-length shrinks to zero (e.g. Dixit 2], Katz-Shapiro {11}). Others (e.g.,
Pitchik [12], Reinganum [13, 14), Hendriks-Wilson [9, 10]) analyze open-loop continuous-time games.
In these games, strategies are declared in advance, and agents have no subsequent opporiunity 10 revise
their decisions. Formally, a open-loop timing game is simply a one-shot game with a continuum of
strategies: it has no proper subgames. A pure strategy for such a game is a point in the unit interval,
representing a time 10 move. A mixed strategy is a probability distribution over this interval. Tradition-

ally, mixed strategies have been represented as cumulative distribution functions (c:.cl.f.’s).5

The open-loop formulation is sometimes, but not always, an adequate proxy for the more compli-
cated closed-loop model. To illustrate the relationship between the two kinds of game, we consider
three examples. The first makes the familiar point that the equilibria of open-loop games may involve
incredible threats. The second and third illustrate a more subtle, and independent issue: there are
mixed-strategy equilibriz of closed-loop discrete-time games that have no analogs in the continuous-
time, open-loop model. Indeed, the open-loop version of our third example has no equilibrium at all.
In each example, we will use the following notation for payoffs. For 1 € [0, 1], let L;(¢) denote the
payoff to i, and F;(r) the payoff to j, if "Tm" is played for the first ume by 7 alone at r. If both move

simulianeously for the first time at 7, denote the payoff to i by S;(1). In each example, if neither player

moves, each earns a payoff of zero.
In our first example, there is a unique subgame perfect equilibrium outcome for the (closed-loop)

BTG. The conesponding' open-loop game has many additional Nash outcomes, all supported by incredi-

ble threats by player #2. Let L,(r}=(% -1, and F,)=S,(1)=0. Let Fa(t)=2-1 and

4 See Gilbert-Harris [7] for siil! another approach.

5 A c.d.f.is a ight continuous, non-decreasing function with range [0, 1}. A strategy G, is interpreted as follows: G, (1) is the
probability that / has chosen a termination timne Jess than or equal to 1.
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L,(1) = §,5(t) = =1. Clearly, the unique SGP equilibrium for the basic uming game is that pl-ayer #1 ter-
minates al time 7 = 1. Now consider the following strategy profile for the open-loop game: player #1
moves at £, = 0, and #2 moves at 0 <1, < %4 This is 2 Nash equilibrium, since against #1's strategy,
42 is indifferent between any two positive termination times. #2's proposed action is, however, not
credible (unless he can precommit to 1,): if 7, were ever reached, #2 would strictly prefer to continue at

this time rather than terminate.

Our second example is the familiar "war of atrition”; the third is a stylized model of preemption,
known as "grab the doliar."®’ 1In the war of attrition, each agent prefers that the other moves first. In
"grab the dollar,” each prefers to move first himself. In either game, the leader prefers to lead sooner
rather than later. Payoffs for the symmetric war of atrition are: Lity=1~1 and F;(1)=5;(t)=~1.
If neither player ever moves, each receives -1. (Think of a declining industry: if two firms remain ac-
tive, each makes losses; if one firm leaves, the other can make a profit.) Payoffs for the smmeﬁc
"grab the dollar" are: L,(r)=1~1¢, F(r)=0and §;(t1) =1 - 1. ¥ neither player ever moves, each re-
ceives zero. (Think of entry into an industry that can profitably suppori only one firm.) We will play
each of these games on. a sequence of increasingly fine, discrete-time grids, (R"}, where
R" = {0, Y, ..., =%]. Payoffs for the game played on R" are derived by restricting the above payoffs
1o R".

The symmetric SGP equilibrium for the closed-loop "war of attrition” on R" is: if the game has
not yet ended by r = %4, player i terminates at r with probability '/4++. The resulting outcome is that

the termination time of the game is distributed uniformly over R®. As n geis large, the probability that

both agents move simultancously shrinks to zero. There are, in addition, two pure strategy equilibnd.
player i terminates with probability one at time ¢ = 0. Each of these equilibria has a counterparn in the
open-loop continuous-time game. The Limit of the symmetric oulcomes is implemented by the following

open-loop strategies: player i 's termination time is distributed uniformly over {0, 1]. Thus, for games

§ The discussion below was motivated by, and overlaps substantially with. section 4.A of Fudenberg-Tiroke [5]. Our perspec-
tive on the issues, however, differs significantly from theirs. We believe these issues are sufficiently impartant and subtke to war-
rant the incvitable overlap.

7 This game was first proposed by Richard Gilbert and is discussed in Fudenberg-Tirole [5}.
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like the war of attrition, the open-loop game is an acceptable proxy for the much more complex BTG.

Not surprisingly, this fortuitous relationship between 2 BTG and its open-loop analog does not
hold in general. The “"grab the dollar" game illustrates how it can break down. When "grab the dollar”
is played on the grid R", the symmetric equilibrium is: if the game has not yet ended by r = “&, player
i terminates at r with probability /4. These strategies generate the following ouicome: at the & 'th grid
point in R", player i alone terminates with probability (¥4)*; with the same probability, both players ter-
minate simultaneously at this grid point. The limit of these outcomes has the game ending with proba-
bility one ai time zero, Each of the three possible termination states is equally likely. This outcome is
not a product distribution and, therefore, cannot be implemented as the noncooperative equilibrium of a
game in which strategies are cumulative distribution functions (unless, of course, correlation is permit-

ted).

The proposition below shows that the problem just described is pervasive. Consider a symmetric,
2 x 2 Basic Timing Game satisfying the following conditions: there exists 7 such that (i) the payoff to
a player who terminates unilnterally‘ al 7 strictly exceeds any payoff he could obtain if the game contin-
ued beyond r; (ii) if a player terminates unilaterally at 7, his payoff stricily exceeds the payoff to the
remaining player, who, in tum, strictly prefers continuing at this ti-me to moving simultancously with the
first player. Both conditions are typically satisfied in, say, preemption games. In any discrete-time,
symmetric equilibium of such a game, players must be randomizing with probability bounded away
from zero on an interval of time, regardless of the period length. The limit of the outcomes generated

by these equilibria will not be a product measure, and so cannot be implemented as the outcome of a

open-loop game.

Prop’n I: Consider a symmetric 2 x 2 BTG with continuous payoffs. Assume that for some
t € [0, 1], the following conditions are satisfied:
- L) > Li(s VFi (s vS;(s), for all s > 1:°
- L) > F;(1) > S; ().
Let (£}, £3) be a symmetric SGP equilibrium when this game is played on (R").
There exists A e_}l, €>0 and ¢ <7 such that for all n > 7, ENrXTm) > €, for
aAlre RN, 1)

§ Forx,v € R, xvy is the maximum of x and y. Similasly, x Ay is the minimum of x and y.
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The above discussion indicates the need for a continuous-time closed-loop framework for analyz-
ing timing games. The only attempl to provide one has been Fudenberg-Tirole [5]. They propose a
model of symmetric 2 x 2 BTG's. Each agent announces a family of “simple strategies." A simple
strategy is a pair of real-valued functions. A "closed-loop” equilibrium is a family of Nash equilibn‘a in
simple strategies, onc for every moment in time. The payoff function is designed so that the "sensible”

SGP equilibria of discrete-time games have closed-loop counterparts in their model.

The model presented in this paper was motivaled by, bdul differs substantially from
Fudenberg-Tirole's. Ours is simpler to work with and can readily be generalized. Moreover, it is more
closely related than theirs to the conventional discrete-time framework. In particular, strategies in our
model are mapped to outcomes rather than directly to payoffs. The ‘payoff function can then be defined
by extending the discreie-time payoff functions in the natural way. The model is ir}Uoduced in the fol-

lowing section.

I. Introduction to the Model.

We take as our starting point the idea that continuous-time should be thought of as "discrete-time,
but with a gnd that is arbitrarily fine," that is, finer than any given grid. To formalize this idea, we
specify a restricted class of continuous-time-behavior-strategies. These stralegies are iniespreted as
"master plans” that instruct agents how to play the game on every conceivable discrete-time grid.
Specifically, the restriction of a master plan to a finite grid is a well-defined discrete-time behavior stra-

tegy. Thus any profile of master plans generates a well-defined discrete-time oulcome On every

discrete-time grid. We will define an outcome f;)r the continuous-ime game to be the limit of the out-
comes generated by restricting a profile of strategies to an increasingly fine sequence of gnds. For this
construction 1o be coherent, we must restrict agents to choose from a family of strategies with the fol-
lowing propenty: whenever an arbitrary profile of stralegies is drawn from this family, there exists a
unique “limit” outcome such that when the profile is restricted to an arbitrary sequence of grids, the
resulling sequence of outcomes converges to the identified outcome. Once we have identified this fami-

ly of strategies, we have a well-defined game-form. We can now assign payoffs to outcomes in the cus-
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tomary way and study the subgame perfect equilibria of the resulting game. When specified in this
way, a continuous-time game is, iD a literal sense, the limit of corresponding discrete-time games.

In the genperal version of our model (see [17], benceforth S52), the discrete-time instructions en-
coded in master plans take into account both tme and the fineness of the discrete-ime grid.
Specifically, a master plan assigns to each 7 a probability distribution over actions, together with a vec-
tor of "derivatives.” For example, in a 2 x 2 game, a master-plan §; = ({%, {{")) has the following in-
terpretation: "if I am playing on a discrete-time grid and reach ¢, and the distance to the next grid-point

is dt, then I will terminate at this time with

L XTm) if (O Tm) > 0

probability 2 For example, a symmetric equilibrium for

min (l,t’;f'}(t WTm )dt ) otherwise

the continuous time war of attrition is defined as follows: for 1 € {0, 1}, {(tXTm) = (0, 'A=). To see
that these strategies form an equilibrium, consider the sequence of grids (R"), defined above (p. 3). At
k4 e R". i is instructed 1o terminate with probability (1 — %4)dr = "4-. Thus, when n is large, the
restriction of {; to R™ virtually coincides with the discrete-time equilibrium strategy specified on p. 3!
Obviously, therefore, the outcome generated by (&, §p) will be limit of the discrete-time symmetric
equilibrium ouicomes.

In this paper, we restrict attention to a much simpler class of master plans, which we call
grid-independent (GI) strategies. A GI strategy depends only on time: the intensity with which an agent

randomizes is required 1o be independent of the fineness of the grid on which he is playing. Moreover,

we require that strategies be pieoewxse_cﬁnﬁnuourfuncﬁons—of—time.——'—l‘—'hese—tw&-re—suietion&togﬂhﬂ exs
clude strategies such as {; above. On the other hand, the following strategy is admissible:
E(1XTm)=14,foralit. Ttis straightforward to verify that E =, £y, is an an equilibrium profile for

for the continuous time version of “grab the dollar.”

® LU HTm) is interpreted as a derivative--actually a hazard rate--and may thercfore be any nonnegative number. We maxim-
ize G3V(¢ ¥Tm )ds with unity, 1o ensure thal agenls announde a probability of moving st cvery point in time. The problem dees not
arise with L% KTm ), which is assumed to be a probability from the stan.
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Our grid-independence restriction may be challenged on several grounds. It is clearly severe and
ad hoc. Moreover, there are games for which no equilibrium in GI strategies exists. Finally, there are
familiar solutions to familiar games--for example, the symmetric outcome in the war of attrition--that
cannot be implemented by GI strategies. On the other hand, there are compelling pragmatic reasons for
imposing the restriction. First and most obvious, it is a natural first step in a larger research program.
The only consequence of excluding grid-dependent strategies is that the set of equilibria is kept
artificially small: since we are not excluding any pure strategie-s, any equilibrivm in the smaller strategy
space will still be an equilibrium when the sirategy space is expanded. Second, GI strategics are partic-
ularly easy 1o work with and yield sharp and intuitive results. The third reason is more delicate. When
the swategy space is expanded to inclnde grid-dependen: strategies, the equilibrium set may explode.
We illustrate this in the following section, by constructing a game that has a unique GI equilibrium, to-
gether with a continuum of equilibria in grid-dependent strategies. Moreover, these additional equilibria
are often nonintuitive and artificial. It appears, therefore, that in certain contexis, the price of obtaining

sharp and inwitive results is that the strategy space must be restricted in some way.

. Examples.

In this section we illustrate our model with two examples. Each has two players. The first is a
classical game known as the noisy duel.’® The second is a dynamic version of Coumnot’s quantity-
senting game. In each case, our BTG is a reduced-form representation of a more primitive game, in

which each agent can move once. Once one player has moved, the other faces a single-person decision

problem. We reduce the primitive game to a BTG n the usial way, by replacing nodes inwhich-one

player has not yet moved with the payoffs that arise when the second plays his optimal response.

In the noisy duel, two protagonists start moving toward each other at time zero. If i shoots at

time ¢ € [0, 1], he hits j with probability 7. If he misses, j hears the bullet, waits until time ¢t = 1,

18 We are grateful to Carolyn Pitchik for introducing us to this example. A noisy duel is so named because each player can
hear his opponent’s bullct at the instant it is fired. In a silent duel, by contrast, the shots cannot be heard, so that a1 any given
time, i cannot determine whether j has fired and missed or is has been holding his fire. Clearly, the two games have very
different propenties, For other discussions of this game, sec Pichik {12), Hendriks-Wilson [10] and Dixit {2]. Pitchik’s paper
contains a useful list of references.
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shoots at point blank Tange and scores a hit with Cemtainly. This game can be modeled in reduced form
as a BTG. We firgt consider a symmetric version; each player assigns a value 1 10 a hit and -] 1o being
hit. If both Players hit each other simultaneously, each Player eams .1, fr neither player scores a hit,
both earn zero, Using the notation of P- 3, we have Li(ty=1 + (-1}l ~r)y=2; _ LFity=1-2

and S;(1) = -2,

When modeled as a continuous-time BTG, the game has three equilibrigm ouicomes. In each
case, each agent’s €xpected payoff is zero. For each 7, there is an equilibrium in which ; alone ter-
minates at 1 = % with probability one, The third equilibrivm is Symmetric: each player terminates alone

with probability 14, As in grab-the-dolar, this Jast outcome is not a product distribution over terminal

the symmetric outcome is &0 = (&% &), defined as follows:
0 ifr<is .

Euxrm) = L)~ F.) 2 - 1y ifr 14 ° 10 implement the cutcome in which player
T = 22 ifr>nu

Lit) -5y P42

i terminates with Probability one, define &' identically 10 &° except thay Ei(aXTm) = 1.2

We now verify that £ indeed implements the Symmetric outcome specified above. For each

€>0, if £° is restricted 10 a sufficiently fine grid,_lhe..p:obabi}ity-that—scfhe agent will have moved pe-

fore ¥4 + ¢ wil] exceed | - ¢ In the limit, therefore, the Zame must end with probability one at ; = 4,

" This fact is noted by Piwhik [12]. T, sce that no equilibrium Xists, suppose (G G,y)is an cquilibrium in c.d.f’s, From
the Preceding observations, G,{*) must be zero on [0, 44} and Positive on (15, 1]. Moreover, obviously, G A6,k < |. Finally,
by a standard argument, the G, 's must pe continuous on (0, 1. Now assume thar the support of G, s [14, 1], while G5 <1,
k follows that # ', expected pavoff is zerg, By this cannot be an equilibrium because jf ; WerE 10 move at ¥ + ¢, his payoff
would be 2¢(1 - G 2¥2+ €)) — €2, which will be strictly positive for € sutliciently close 10 zerg,

12 Because &' is discontinuous W.LL time, the inlerpretation of this Srategy as a master plan s a subtle matter. Jf we simply
restricted &' 1o an arbitrary grid, the outcome would depend critically on whether of not the grid contained the discontinuity point
=14 Accordingly, we “adapt” the profile 10 cach grid, ensuring that if the grid is sufficiently fine, cach of the profile’s discon-
tinuitics will be “captured” by the grid. Specificaily, we define an operator calied a “graph preserving reswriction” {g.pr.), which
"shifts to the fight” the discontinujtics of a profile in the appropriate way, For example, the g.p.r. of E' 1o the grid R has player j
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Also, if € is sufficiently small, the probability that both agents move simultaneously will be arbitrarily
small relative to the probability that only one agent moves. In the limit, therefore, the probability of a

simultaneous move is zero.

In section V, we apply our theorems to prove rigorously that E° is an SGP equilibrium. The fol-
lowing observations outline the formal argument. We first verify that at every t > 4, player i is
indifferent between terminating at ¢ and continuing at and immediately after 7. If / terminates at 1, his
expected payoff is EN)Tm)S, (1) + (1 - £ )(Tm))L;{1) = F;(r). Suppose now that he continues al
and immediately after 7 and consider the sequence of outcomes generated by restricting §j,—’ 1o an increas-
ingly fine sequence of grids. Since j is terminating vﬁl.h probability bounded away from zero, on each
of an increasingly large number of grid-points, the limit outcome must have j terminating with probabil-
ity one exactly at +! Once again, therefore, s payoff is F;(r). 'f‘o complete the argument, note that as
¢ 4 14, each player's expected payoff in the subgame beginning at f converges 10 zero. Therefore, each

player is indifferent between 1erminating and continuing at ¢ = ‘4.

The example illustrates an impornant difference beiween continuous- and discrete-time games,
which is central 10 the construction of our “calculus." The difference is that discrele-ume games can
only be solved by backward dynamic programming; to solve certain kinds of continuous-time games, on
the other hand, only a minimal amount of backward programming is needed. To be concrete, consider a
strategy profile for the noisy duel that has each agent terminating with positive, nonunitary probability at
some 1 > %. In discrete time, the next grid-point will be reached with positive probability. Therefore,

to determine whether the profile is an equilibrium from 7, one must know what payoffs agents will re-

ceive if they reach this next grid-point. For this reason, discrete-time games can be solved only by
working backwards from the end éf the game. In continuous time, by contrast, the outcomes generated
by a profile from subgames after 7 have no bearing on whether or not the profile solves the subgame at
¢+ "3 This is true because, as we have seen, if one agent is terminating with positive probability at ¢, the

other cannot unilaterally prevent the game from ending with probubility one at 7! In shont, verifying

13 This statzment is preciscly wrue iff each agent's sirategy is continuous at f and cach is serminating with positive probability
immediacly after f,
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that players are playing equilibrium strategies at ¢ is equivalent to verifying that their actions at 1 form
a Nash equilibrium for a kind of one-shot game--we will call it a surrogate game--derived from the
parameters of the game at ¢ Since each agent is terminating with positive probability in such an

equilibrium, we will call it a plural termination Nash equilibfum {PTNE).

The preceding idea forms the comerstone of our “calculus.” To solve simple preemption games
like the duel, we invoke the following formula:*> let 7 denote the largest 7 such that at most one agent
wishes to preempt before 1; before I, have each agent play "continve;" at every s > 7, have them play
PTNE strategies for the surrogate game at 5; 3l 7, define the strategies in one of the three ways specified
above (p. 9). An attractive feature of this formula is that it applies to any game in a class: it is not

necessary to compute a specific solution for each specific problem.

We now consider an asymmetric version of the duel. Suppose that the payoffs are exactly as
above, except that player #1 assigns a value +2 to a hit (provided he is not simultaneously hit himself).
The reduced form payoffs are modified as follows: L(r) = 31 — 1 while all other payoffs are as above.
This game has a unique equilibrium outcome: player / terminates alone with probability 1 at ¢ =%. An
equilibrium profile that implements this outcome is (€, f',z), where E,, = El, defined above (p. 9), and

ift =%

gz(l)(Tm) = Liry- Fo1} _ 5 -2 >4 .

Lit) =85,y P +2-1

Our second example is a reduced-form representation of the following dynamic quantity-setting

game. As in Coumot’s original problem [1], two firms produce mineral water at zero marginal cost.

The masket inverse demand function is given by P(@Y=1-0, whete (- is the-aggregate-quantity pro——————-—
duced. Each firm must specify a quantity at some time in the unit interval. (For technical reasons, we

restrict agents to choose from a finite set of quantities, and consider the limit of the equilibria as this set

14 We add the qualifier “a kind of..." because the outcome funciion for this “onc-shot game” differs from the conventional
one: it simulates the outcome that would have resulied, had the strategics been played in continucus-time. Specifically, if players

werminate at 1 with probability (6, 6,). the probability that { tcrminates alone at ¢ will be ,—Tﬂ%——ff—i—ﬂ—j rather than simply
' 7

G, (1 -0}

15 Note that when applied to the precmption game studied in Fudenberg-Tirole [S)], the answer given by our formula agrees
with their solution.
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grows large.) Once a quantity has been chosen, it cannol be changed. If a firm moves al ¢, a cost c(!)
is incurred. ‘Tthis cost is independent of the quantity that the firm announces: we assume ¢ (0) = - and,
for positive 7, c(1) = 4 — 1. At time 1 = |, fims receive their one-shot Coumot payoffs minus their

"movement costs.”

If only one player moves at ¢ < 1, the other will, obviously, wait until = 1 and then respond op-
timally. As noted above, we can reduce this two-stage game to a BTG, by declaring that the game ends
as soon as one player moves; if the other player continues at this time, assign 10 this ending the payoffs

that result in the original game, when the second player responded optimally at 7 = 1.

Conceptually, this reduced-form game is a straightforward preemption game, very similar to the
noisy duel. From a computational standpoint, however, il is an order of magnitude more complicaied.
Agents must now choose not only when to move but also how to move. In discrete time, the only way
to find the symmetric solution to this game is, once again, to compute the appropriate difference egua-

tion, working backwards from the end of the game.lts

On the other hand, the problem is simple to
solve in continuous-time, using our "calculus.” With one difference, we follow exacily the formula faid
out on p. i1 above. We identify 7 as above and invoke a theorem that guarantees that PTNE’s exists
for every + >7. We now draw an appropriately-behaved selection from the FTNE correspondence 10
define the equilibrium strategies beyond 7. Finally, we define strategies at 1 in one of three ways, just
as in the duel. The difference between the procedure in this complicated game and in the noisy duel is

that we do not attempt to construct the strategies explicitly. This difference is unimportant, however:

our strategies will be explicitly defined along the cquilibrium path. Off this path, all that matters is that

strategies satisfy cenain properties. (This point will be amplified in section V below.) The theorems in
the following sections guarantee that these properties are indeed satisfied by strategies drawn from the

PTNE correspondence.

Modulo relabelling of agents, there is a unique equilibrium outcome for our quantity-setting

¥ There are trivial, asymmetric “chaitering” solutions 1o this game, in which agents take twms to be the leader in alternate
perivds. We view such solutions as anifaces of the diserete- time formulation, that have no coherent counterpans in continuous
time.
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game.17 This outcome corresponds 1o the Stackleberg solution for the one-shot quahtity-sening game.
Specifically, the reduced form ends at 1°* = /7. The leader produces one-half unit of output; in the
continuation subgame, the remaining firn will produce a quarter unit. Note that the cost incurred by
leading at 1™ (i.e., '), exactly equals the difference between Stackleberg leader’s and the follower's
payoffs. Thus, as one would expect, the rents 10 leading in this game are exactly dissipated when

agents can compete with each other to determine who leads.

To conclude this section, we emphasize an important consequence of our restriction that strategies
be grid-independent. If grid-dependent strategies (déﬁned on p. 7) were introduced in, say, the noisy
duel, the equilibrium set for this game would be much larger. For every T € (14, %), the profile £
below would be an SGP equilibrium, implementing the outcome: player #1 terminates alone with proba-

{0, 0) ifr<t

bility 1 at 1. § is defined as follows: L1, dtXTm) = { while

(1, 0) ifrzt’

0, 0) ifres _ o
St ,diim) = iy , where oft) 2 *A-2 To see that { s an equiibnium, 0b-
G, dTm) = Vo oy ifrzq e O Z Yo To see that § ilibrium, ob

serve first thét for any t € (1, '4), the outcome generated by ¢ from ¢ is that player #1 terminates with
probability one at ¢ (since #2's probability of termination shrinks with the size of the grid, while #1's
does not). Therefore, #2 is indifferent betwe;en playing this grid-dependent strategy and not terminating
at all. On the other hand, #2's strategy does deter #1 from waiting until 5 > T to terminate, since of-) is

chosen so that #1°s gain to waiting until 5 is offset by the risk that #2 will move between T and 5.

1. The Formal Model.

A basic timing game is completely described by a quadruple, FP=(T.1,A,u). Thesat T cR,
represents the interval of ime on which the game is played. We assume 0 € 7. In applications, T will
usually be either [0, 1] or [0, ). Let 1 denote the supremum of T. Let/ denote the set of agents,

with generic element i. The finite se1 A; is called the action set for player i. A, contains a dis-

17 More precisely, there is a unique Timit to the outcomes of the games in which agents choose from finite sets of quantities.
To avoid confusion, we emphasize that we mode! time as continuous but guantities as discrete and then take limits as the set of
guantities converges to the conlinuum.
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tinguished element, denoted a®, that represents the action “continue,” or "don’t move.” The remaining

elements of A, will be called termination options for i.

let A = HA,-. An element ¢ = (q;);; € A will be called an action profile. A profile @ will
‘E

frequently be written as (g;, a.;) or {a;,a;, a_; ;) where a_; = () and a_;; = (@e)esi j- The

profile a®=(a,");.; will be called the continuation profile. All other profiles will be called

termination profiles. The game ends as soon as some termination profile is chosen. A pair

(@, 1) e (A - (a®H x TY U {(a® 1)} will be called 2 terminal state of I. Denote the set of ter-

minal states of I" by T5(I).

Let I, denote  the set of  probability  distributions over A, ie.,

T ={6; = (0@ Vaea € 10,17 T oif@)=1}. A point in E will be caled a

a,eA,

random action for i.'® Denote the suppon of ©; by supp(c;), i.e., supp(c;) = {a; € A;: G,{a;) > 0}.

For a; € A,, let §, denote the degenerate distribution with suppon {a;}. Let £ = HE; denote the set

of product distributions over A. A point in £ will be called a random_action profile. For ¢ € X and

a € A, we will write 6(a) to denote [ &.(a,). Let 8, denole the degenerate distribution with support

{a}. In our subsequent analysis, we will be particularly concemed with strategy profiles in which at

least two agents terminate with positive probability. We will say that o€ Z is a

plural termination profile if for all i there exists j # i such that ¢;(a j°) <l

The last component of T is a "valuation function,” u: TS(I) — RY, that assigns a vector of utili-

ties 10 each terminal state of the game. We normalize wilities so that all agents receive zero if no agent

ever terminates:
ula® #“y=0. {u0)

We now impose a regularity condition on payofis, to ensure that equilibrium strategies will be adequate-

ly well-behaved. Loosely, the assumption is that u can be constructed by splicing together a finite

18 The term "mixed strategy” is reserved for prebability distributions over pure-stratcgies in the BTG game.
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number of real analytic sections. More precisely, we assume:

for all 7, for all @, u,(a, *) is piecewise extendible real analytic on y i (ul)

Our next condition is
for all i, for all @ = 2% for all + < 1**, u;{a, *) is right continuous at 7. (u2)

In the sequel to this paper, we will show that payoffs will automatically satisfy right continuity in the
applications we consider, so that (u2) is innocuous. For the remainder of the game, we will assume im-

plicitly that conditions (u0)-(u2) are satisfied.

Let A'*(1) denote the set of best termination options for i at v, if all agents other than i continue

at this time. That is, AX*(1) = argmgxu.-((d,-,ai’,-). 1). Tt follows from (ul) and (u2) that Aj** will

4, %a,
be a right- and piecewise-continuous ccorra-spondencﬁ.20 We will say that 7 leads at r if i chooses
(possibly randomly) from Al(1), while other agents continue. Let L;{1) denote i's payoff if be leads

at7: Li(1) = max w;((a;, a%), t). Let F;(1) denote the highest payoff that i can attain, if some agent

a, %4,

other than i leads at 12 F;(r) = max max u;((a;,a%) 1)
jni a,eA (1)

Behavior Strategies.

A behavior strategy for agent i is a function, §;, assigning a random action to each t € T. The

scalar £;(t)(a;) denotes the weight that i assigns to the action g; at r. It is convenient to define &; at

94 _ever-if-1"_is not-a-memberof T.—In this case, we adopt the convention that agents assign proba-

bility one to "continue™:

19 Fix an open subset O of T. A function 8 defined on O is real analytic if at every 7 € O, its Taylor series converges. Sece
Rudin [15), Ch. B, for details and properties of real analytic functions. Now fix a subsea B of T and a function ¢ defined on R.
@ is called extendible real anaiytic if there exists an open set O containing the closure of R and a real analytic function € defincd
on (0 whose restriction to R is §. (The function §{1) = Jr is real analytic on (0, s<) but is not extendible real analytic.) A func-
tion ¢: T — R is called piccewise extendible real analytic on T if for all r < 1*™  there exists a finite parsition of [0, 1) such
for each member R of the partition, ¢,z is an extendible real analytic function.

20 A function ® will be called piccewize continuous on T if for alf e T, {5 € [0.): 6¢5) » lim®(s")} is finite. A

correspondence mapping T 1o & finite set X will be called piccewise- {right-} continuvus if, viewed as a function from from T to
the set of subsets of X, it is piccewise- (right-) continuous.
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if1=? ¢ T, then &+ )a® = 1. (X0)

To guarantee thalt our ouicome function is well-gefined--i.e., the discrete-time oulcomes have
well-defined limits--we need some regularity conditions on the way strategies vary with time. First, we
require:

for all i, for all a, £;(-Xa,) is piecewise extendible continuous on Yok 5.4)]

If an agent terminates with probability zero at , and positive probability just beyond 1, then the

. . . . 2
condition we need at 7 is more stringent. We require that for all 1 < gend 2

E:(tXa® =1 and E;(‘Xa%) < 1 on an interval after ¢, then X2)
there exists r € R, such that for all g; # a?, lgirg ﬂ%flﬂ exists and, for at least one q,, is positive.

This condition is not restrictive for the class of games that we will study. To see this, observe that (X2)
will be certainly be satisfied if the restriction of § to an interval after 7 is extendible real analytic (fn.
19): simply choose r to be the first nonzero derivative of its extension. Moreover, condition (ul) en-

sures that equilibrium strategy profiles can indeed be so extended.”

Our final restriction is imposed purely for pragmatic reasons. The assumption is very ad hoc.
Moreover, it is not required in order to define the game. (We do not impose it in 852.) It does, how-
ever, dramatically simplify the specificaiion of the ouicome function. Say thai agenl § is

properly randomizing at r if he continues at s with some positive, non-unitary probability, ie., if

E.(1)a") & (0, 1). We will assume

for all r <1, if i is properly randomizing at 7, then E;(-) is right continuous at 1. (X3)

Summarizing, a behavior strategy for i is a function : cl(T) = I, satisfying (X0)(X3). Let

=, denote the set of behavior strategies for i and let E=H.‘-E,-. A list of behavior strategies,

21 The definition of piecewisc extendible continuity is exactly analogous to that of piecewise exientable real analyiicity (sec
fn. 19 above).

22 This condition is discussed in detail in 552,

23 Sec the proof of Lemma 11.] in the Appendix for details.
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E=(E ) € = will be called a behavior strategy profile. We will write &(7}(a) to denote the product

of the &; (1)(@,)'s, i.e. §r)a) = [T& (@)

As noted earlier, we will be particularly concerned with strategy profiles in which at least two
agents are randomizing at every point in some open interval. Accordingly, we say that a profile §

has plural termination just beyond ¢ if there exists 8> 0 such that for all s € (t, ¢ + 3y, E(syis a

plural termination profile (p. 14).

The Quicome Function.

Our outcome function assigns to each strategy profile and point in time a probability distribution
over terminal states of the game. As explained above (pp. 6-7, fn. 12), the outcome generated by & -
from ? is the limit of the sequence of outcomes generated by restricting & to an arbitrary, increasingly
fine sequence of discrete-time grids, starting from ¢. For the class of strategies defined above, this limit
distribution has an exceedingly simple structure. Assumptions (X1)-(X3) rogether guarantee that the
game must end with probability one, as s00n as some agent assigns positive probability to some termi-
nation action. Precisely, for & &€ Eand 1 <1,

if for some i, £;(-)(a%) < 1, either at or immediately after 7 (3.1
then the game will end with probability 1 at 7. %
A consequence of (3.1) is that we can without loss of gencrality define an outcome to be a pair (i, 1),

where 1€ cl(T) and p is a probability disiribution over A, ie, an element of

A = (= (@ oes € 10, 1171 Y ua) = 1}. Note that A1 contains measures that are not
aeA

product distributions.

#* To see l.h;! (1.1) is true, first assume that for some i, §,-(-}(a,°) < 1 on an interval afier . For & sufficiently small, there ex-
jsts € > 0 such that & (:Ha ) < 1 = € on the interval ( + 5.t + 25). Pick n such that (1 —)" < 8. 1§ is played on a grid with
at least n grid-poinis berween 7 + 8 and 1 + 28, then with probability cxceeding 1 — 8, agent i will move before 1 + 2B. Since §
was chosen arbitrarily, this establishes that in the limit, player i must move with probability 1 at 1. Now suppose that
;(')(a,o) = | on an interval immediately after 1. By hypathesis, E }(a,“) < }. By (X3, ¢ }(a,") = 0. (3.1} now follows trivial-
ly.
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Let v(g)(a ) denote the conditional probability that agents choose a, given that they do not choose

a® and let v(oXa® =1 if agems coniinue with probability 1. That is, for a #a°

ola) . 0
—_— <1
1 - o{a") if ola)

0 ifo@=1." Now fix a strategy profile § € Z and consider the induced

v(o)a) =

function of time, V(E()): T — A™ 1. Assumption (X1) on strategies guarantees thal

v(E(")) is piecewise continuous w.r.t. 3 (3.2)

l&iixg viE(r + &) if 1 <

For r € T and £ € E, we define v'*(§) by: v'*(E) = eng- I follows

8.0 ift=r

a

from (3.2) that this limit is always well-defined.

We can now specify the outcome function using the concepts just defined. Fix7 € T and consid-
er the outcome generated by £ from ¢. If all agents continue from 7 to the end of the game, the out-
come is that the state (a®, 1**) is realized with probability one. Suppose that agents continue until T,
and then some agent ierminates with positive probability, either a1 or immediately after 'r If =1,
then state (a°, 1) is realized with probability £(+*}a). If T < 1*, the probability that state (a, T) is
realized will be a weighted average of (i) the conditional probability that a is chosen at T and {ii) the
limit of the conditional probabilities that @ is chosen immediately after . Formally, we define the out-
come generated by & from ¢ 10 be the pair o(§, 1) = (6%(&, 1), 07§, 1)), where 0%, 1) is the distribu-

tion over A described above and oT(E_,, 1) denotes the first time after 1 that some agent moves with posi-

_____tive probability. Thatis, for (. t) € EXT,

r 1 if E(-Xa®) =1 on s, 1)
0’ 1) = inf{s > 1: E(sXa® < 1} otherwise

and, seiting T = 07 (&, 1),

23 Far a preof of (3.2}, see 552. The key issue in the proof is the exisience of EIEV(E"” + 8)) when ];LTF’U +84a®) T 1. To

prove that this limit exists, we generalize 1."Hospital's rule and invoke assumption (X2).

26 The symbol { denotes converging from strictly above, while T denotes converging from strictly below,
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o3t t¥a) = (1 - EXa®)VE®Na) + &M@ WHE)a).

See SS2 for a proof that o(&, r) is the limit, in the sense defined above (pp. 6-7, fn. 12), of the out-
comes generated by restricting & to discrete-ume grids. It is useful to note the following special cases.

Again lenting T = o7 (&, 1), we have:

(1) if either 1=t or E((a®) =0
v(E(T) if 1< 1™ E(M@® <1 and E1) = E(r+)
vHE) ift<¢™ and E(t)a®) =1

5,0 ft=reT

oI 1) = 3.3)

Cleatly, o*E, 1) is trivial to compute, except if %E.l (1 + O)a®) T 1. In this case, we need to generalize

L'Hospital's rule to compute v*(§). If § has a real analytic extension at ¢, then v™(§) has a simple

form. Let E denote this extension and let m € N be the smallest integer such that for at least one i, the

m’th partial derivative, EM(¥a®<1. In SS2, we show that for iel and & #aP,

" ()a)
> > e, a8

1
Jelaed,

vH(EXa;, al) =

Let O () denote the image of the outcome function, i.e.,
O = {(, 7)€ A~ x cI(T): there exists (§, 1) € Zx T such that 0§, 1) = (W, D).

A pair (i, 1) € O(I) will be called an outcome. We will say that (i, 7) is implemented by & from ¢

if =0 ). If (1) is implemented by E from t =0, we say simply that (i, T) is

implemented by &

Payoffs and Equilibrium Notions.

Given 2 valuation function, u, the expected valuation function, Eu, assigns an expected payotf

S uta, np@)  ifr <™
aza"

vector to cach outcome. That is, Eu(p, 1)= Z“ (@, Dpla) (Note that if

ifr ="
eEA

(1, 1) € O(T), then pia®y>Oonlyif r = 1) The payoff function P:ExT - R* assigns a payoff

vector to each strategy profile and each point in time. P;(§, 1) is player i’s payoff if agents play § from
1
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the subgame beginning at 7. Thus, serting T = 0" (§, 1),
PE 1) = E(0%E, 1), 1) = (1 - E@@™NE (vET), D + §NaME, (v E)L B (34

For t € T, we will say that £ is Nash from ¢ if for all #, and all §;, P;(E. 1) 2P (. E ) 1) Say

that (i, T) is Nash_implementable from ¢ there exists a Nash equilibrum from ¢ that implements (&, 7)

from ¢. A profile £ is a subgame perfect equilibrium (SGP equilibrium} if § is Nash from each ¢. Fi-

nally, (4, ¢} is SGP-implementable there exists an SGP equilibrium that implements it.

Existence of Subgame Perfect Equih'bn‘a.z?
In addition to (u0)-(u2), a2 number of conditions are needed to guarantee existence. The first con-
dition is: if some agent j moves at 1, then agent i # j does at least as well by continuing at ¢ as he

does by moving simultaneously with j. Formally, we will assume that for all j and all a; # a’,
for all i € I, for all a; = a2 for all 1 € T, u;((a’ a;, a% ), ) 2w (@, @, al ), 1) (Al

In many applications, this restriction \ﬁli be satisfied zutomaucally. In particular, mosi two-person
BTG’s are reduced-form representations of games in which the player who follows at ¢ has an oppor-
‘ tunity to move after ¢. In such a game, if j moves at ¢ and i moves immediaiely afterwards, the out-
come will be the same as if both had moved simultaneously. Therefore Al is cenainly satisfied. In the
sequel 10 this paper, we show that the condition is also satisfied in many multi-player BTG’s dernived

from more primitive “generalized" liming games.

The other two conditions are relatively innocuous. They are:

for all i, for all + < 1™, L;{°) is upper semi-conlinzous at 28 (A2)

either for all i, L;(") > F:() on (s, 1]

: end
there exists 5 <™ such that or there exists § such that L;(-) is nonincreasing on {5, :"'{'?.3)

27 ] am greatly indebied to Bill Zame for introducing me to the mathematics needed to prove exisience.

I A funciion 8 R, — R is upper semi-continuous atsif 8(1) 2 limsup 8(s).
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In many applications, L;(-) will in fact be continuous, so that assumption (A) will be satsfied. Assump-
tion (A) is satisfied in most of the applications that interest us: "either” is usually satisfied in “pure”
preemption games with a finite me horizon; "or" is satisfied by almost all infinite horizon timing
games.

These three conditions are sufficient for existence in either a 2 x 2 game or a game that is sym-
metric, in the following sense. First, each agent must have the same set of available actions. Now, for

a € A, let '™ denote the action profile which is identical to g, except that the actions of players

a; ifj =1
and 1 are interchanged. That is, @’ is defined by: a/*! = {a, ifj=i . In a symmetric
a; otherwise

J
game, player i ’s payoff from the terminal state (a, 1) is identical to player 1's payofl from (@', 1).
Summarizing, we will say that a game I'=(7, 4,17, u) is symmetric if forall i > 1, A; = A, and if for
ali,alla e Aandallt € T,u;(a,t) = ul(a"‘"‘; t). We can now state our existence result:

Th'm II: A 2 x 2 game, or a symmetric game, satisfying (A1)}-(A3) has an SGP equilibrium.

Section V contains an example of an asymmetric game with no equilibrium. On the other hand,
symmetry is by no means a necessary condition. It remains an open question, therefore, how far sym-

metry can be relaxed without losing existence.

Introduction to Sections IV and V.

In the next two sections, we formalize our computational procedure for solving a class of

continuous-time games. Formally, this "calculus” is a characterization of the set of equilibria for a game

in terms of the payoffs to leading and certain “local” properties of the game. (Call a property local at !
if one can determine whether a game has the property by considering only the parameters of the game
in a neighborhood of 1.) In simple games such as the duel, these properties are easy to check. In more
complicated games--e.g., our Coumot example above--additional machinery will be invoked to check

them.

There are two sieps 1o our characterization, First, we identify possible “equilibrium endings” for a
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game. That is, we fix r and classify the Nash implementable outcomes from ¢ in which the game ends

immediately. Second, we single out those equilibrium endings that no agent would wish to preempt.

A BTG ib the class we consider can end in one of two ways. We will refer 1o these as "type k
endings,” where k is 1 or 2. Type 1 endings are the more interesting and less familiar: all of the exam-
ples in section II had endings of this kind. We focus on these in section IV. Section V begins with a
description of the other kind of ending; this is followed by our chara;terization theorem. The section

concludes with a counter-example 1o existence.

IV. Type I Endings.

We begin by defining two kinds of one-shot games: a "stage-game” and a “surrogale game.”
Each is obtained by freezing a BTG at an instant of time. The first concept is familiar from discrete-
time game theory; the second is novel. We idenﬁﬁ sufficient conditions for existence of a "plural ter-
mination Nash equilibrium” (PTNE) for a surrogate game. We then establish our key result: if £ has
plural termination just beyond 1, then to verify that £ is Nash from 7, we need only check that (i) &(1)
solves the stage-game induced by & at ¢; (i) for every s in an interval after ¢, &(s) is a PTNE for the
sufTogate game at 5. We then say that an outcome is a "type 1 outcome from ¢" if it is implementable

from 1 by a profile satisfying the above conditions.

Fix a basic timing game I'=(T,1,A, u). For each 1 < 1 and smrategy profile § € =, we

denote by SigG (1, &) the stage game induced by (I ) at r. This is the one-shot game defined as

follows: if agents play a termination profile “a", they eam eam the payoff vector u{a, t); if they play

the continuation profile, a° they receive the "continuation payoff vector” P(E, 1+) = 1&319(5,,: + 8).

(This is the payoff vector that would be generated in T, if all agents continued at 7 and played 4
thereafier.) Thus, SigG (1, £) is the one-shot game identified by the triple (7, A, P'%), where, for each

random action profile G, P'No) = z ula, 1)ola) + P&, 1+)6(a®. We will say that ¢ solves

ana®

§1gG (1, B) if it is a Nash equilibrium for this game Gie, if for all i and all o, € I;,

P,'E‘(U) > P‘-";(G,', a.))




-23.

A surrogate game is exacily like a regular one-shol game, excepl thai the payoff function is
specified in a novel way. We first define the concept and then motivate it. Denote by SurrG (1) the

surrogate game _induced by T at r. If agents playing this “game”™ choose any profile 6 except the con-

tinuation profile &, the outcome that results is the diswibution over A that would have resulted at
t—i.e., v(c)--had agents playing I" chosen a right-continuous profile § such that E(r) = 6. Specifically,

the payoff assigned to this & in SurrG (1) is Eu(w(o), 1) = (1 — 6(@®)™" 3, o(a)u(a, 1). If agents play

awna®

the continuation profile with probability one, they each receive a payoff of zero. Summarizing SurrG(t)

0 ifo= 8‘,0.
is identified by the wmiple (Z, A, @'), where Q'(0) = Note that v, and

Eu(v(s), 1) otherwise ~
hence, possibly, Q' (), is discontinuous at 6 = §,.. This does not concem us, however, becanse we will
be concemed only with equilibria of SurrG (1) in which at least two agents terminate with positive pro- -

bability. We will say that & is a Nash equilibrium_with plural termination (PTNE) for SurrG (1} if ¢

is a plural termination profile and a Nash equilibrium for this surrogate game (i.e., if for all / and all
6, €X,0'(@20(0,,8,)

The reason for our interest in the PTNE’s of a sumrogate game will be apparent from the discus-
sion in section TI. To recapitulate, if in the original BTG, § has plural termination just beyond 7, then
no individual agent can prevent ﬁe game from ending exactly at 7. If in addition, § is right-continuous
at 1, then the strategic possibilities facing agents in the original game at ! will be exactly equivalent 10
their possibilities in the one-shot game SurrG (r)."’9 Consequently, there is an intimate relationship

between the Nash equilibria for subgames of a BTG and the solutions to the corresponding

surrogate games.

The following Proposition is a useful tool for analyzing surrogate games. Fix o_; such that
6.;(a%) < 1. A random action o; will be a best response against ._; in a surrogate game if and only if
each action in the suppont of @, does at least as well against G_; as any other nonrandom response.

This fact is not at all obvious, since if 6_;(a%) € (0, 1), 0'(-, 8.;) depends nonlinearly on o;. Stated

2% This follows immediatcly from the second line of expression (3.3) above.
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precisely, we have:

Prop'n IV: Fix &; € Z_; such that 6_;(2%) < 1. A necessary and sufficient condition
for 6, to maximize G/(-, G.;) is that supp(g;) C argmax Qi,. &)
a, e,
Surrogate games of a 2 x 2 game are very easy to solve. Let I" be a 2x2 BTG in which
I={1,2} and A;={C1,Tm}. In this case, L; =u((Tm,Ct),"), F;=wu;({(C1,Tm}, ") and
S; = u;((Tm, Tm}, -). (Whenever we write u;{(, 9, ), the first argument refers to i’s acton.) By

definition of v, if c; > 0, then

Qi(8¢i, ©;) = Eu(v(8¢,, 0, 1) = Fi (1) 4.1a)
Q,!(STM, U}) = Eu,'(V{&‘m, G})’ l) = OJ.(Tm )S,(f) + (l - GJ(Tm ))L‘(’). (4.lb}

The proposition below characterizes the PTNE’s of SurrG (7). Since the proof is basic and instructive,

L()-F,n) :
o' AU A4 . -
pasn L) > Fi)

we include it in the text. Define the profile ¢ by: oi(Tm) = 1 We

if §;(1) = F;1) °

have:

Prop’n V: Let T be a 2 x 2 BTG satisfying (Al) and fix ¢ < 1", The following condi-
tions are necessary and sufficient for existence of a PTNE for SurrG (1) for
each i, either S;(r) = F:(r), or L;(r) > F;(r). If these conditions are satisfied
then a solution is o, defined above. If L,(1) > F;(1) > S;(t), for each i, then
this solution is unigue. In any PTNE for SurrG (1), player i’s expected payoff
is F;(2).

Proof of Proposition V: We first prove that the conditions are necessary. Suppose that for some i,

$:(¢) # F;(t). and L;(1) £ F;(1). By (Al), §;(t) < F;(t). Fix ¢; such that 6;(Tm) > 0. It follows im-

mediately from (4.1) that continuing is a better response for than terminating against ¢;. From Propo-
sition TV, if o, is a best response to g;, then ¢;(Tm)=0. Therefore, there is no PTNE for this

surrogate gamc.

To prove that the conditions are sufficient, we will show that ¢ is an equilibrium: If 6;(Tm) = 1,

then from (4.1) and the definition of o', Q/(8y,,. 6}) = 8,(1) = F;(1) = 0/(8¢,. ©}).  j(Tm) < 1, then
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Q/Brm, G) = ©;TmS, (1) + (1 = G;TmNL;1) @2)
Li(1)-F;(t) Fi(1) - 5;{1) , .
= Loosn Ot Lo-sw O = A = 0eo)

In either case, it follows from Proposition IV that o} is a best response to ;.

Finally, assume that for each 7, L;(t) > F:(t) > §;(). We will show that ¢ is the unique PTNE
for SurrG (¢). If player i terminates with probability one, j will strictly prefer to continue. Therefore,
in any plural solution to this surrogate game, both agents must be properly randomizing. But from the
calculations in (4.2), i will be indifferent between continuing and terminating only if j plays a}. The

proof of the last sentence of the proposition is straightforward, and therefore left to the reader. ]

In games with multiple termination options, the PTNE's of surrogate games will generally be
hard to compute. However, as we noted in section II, we do not usually need to have explicit solutions
in applications (see Section V below). We only need to know that under certain conditions, such equili-
bria exist and satisfy centain properties. For a symmetric game, there is an simple suﬁicienl condition
for existencé: the payoff to leading at + must exceed the payoff to following.

Prop’n VI:  Assume that I" is a symmetric game. Fixr € T, 1 < rend, L) > F),
then a PTNE for SurrG (1) exists.

We now come to the main result of the section. Informally, Proposition VII below states that if a
profile £ has plural termination just beyond 7, then E is a Nash equilibrium for the subgames beginning
at and immediately after ¢ if and only if: (i) §(r) solves the stage-game induced by £ at ¢ and (ii) for s

immediately after 1, E(s) solves the surrogate game at 5.

Propn VII: Fixfe Zand 1 < 7o —If & has plural termination just-beyond—+-then
statements (i) and (ii) below are equivalent:
(i) there exists & > 0 such that for all 5 € [¢,t +8), § is a Nash equilibrium
for the subgame beginning at s;
(i) (a) E(r) solves StgG(t,E) and (b) there exists $§>0 such that
for all 5 € (1, t +8), E(s) solves SurrG (s).*

It is useful to note that

if £(-) is right continuous at 7, then {i) above is equivalent 10! {4.3)
there exists 8 > 0 such that for all s € (1, # + 8), §ts) solves SurrG(s ).
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The verification of (4.3) is tedious and deferred to the Appendix (following the proof of Proposition

ViI).

We now define an outcome (M, 1) to be a type 1 outcome from ¢ if it can be implemented by a

profile that has plural termination just beyond r and satisfies condition (ii) of Proposition VII. A

type 1 outcome is a type 1 outcome from f, for some r € 7.

To illustrate, we will characterize the type | outcomes for the symmetric noisy duel. When
r <, both §,(r) and L,(r) are strictly less than F,(t) From Proposition V, therefore, the
surrogate games before t = 4 have no PTNE’s. Therefore, there can be no type 1 outcome before
¢ = 14 On the other hand, we will show thal for every 7 2 4, there are exactly three type 1 ouicomes
from ¢. Define the profile £* as follows: each player continues at every s < 4 at 5 > 12, E¥is)=¢
(defined above, p. 24). Now fix ¢ 2 %4 Clearly, §* has plural termination just beyond ¢. Moreover,
from Proposition V, we know that for every s > 1, §*(s) is a PTNE for SurrG(s). Since E* is coﬁ—
tinuous at ¢, it follows from (4.3) that E* satisfies condition (ii) of Proposition VIL. The outcome im-
plemented by E* from f--i.e., V'*(§* )--is therefore a type 1 outcome. Now define £'“ identically to £*
except that exactly at ¢, player i terminates, and j continues, with probability one. Obviously, the oui-
come implemented by &'¥ from 7 is that i leads with probability one at 1. To see that E'Y satisfies con-
dition (i} of Proposition VII, observe that from (4.2), if i were to contnue al 7, his payoff in the stage-
game at 7 would be P (&', 1+) = F;(t) < L;(+). Moreover, if j were to terminate at ¢, his payoff would

be S;(r) < F;(t). Therefore, &'(1) indeed solves the stage-game induced by E'¥ at 1. Using condition

(X3),1r15 s‘ﬁﬁgﬁtfdﬁifzr‘crlb—verifrtlnrthere—aﬁmo-oﬂ:ertype--r-outcomes—fmm =

To find type | outcomes in a more complicated game, we proceed exacily as above, except that
some additional theorems must be invoked. To illustrate, we retum to the Coumnot example discussed in
section 1. Recall that Jeading is dominated by following at each ¢ < %47, so that no PTNE exists be-

fore this time.>' On the other hand, we will show that for every 7 > /s, there are exactly three type 1

31 To sce this, observe that in any surrogate game, any quantity level strictly exceeding Y2 is a strivtly duminated strategy. In
a PTNE, therefore, no agent will aanounce a yuantity swricly greater than ¥, Therefore, the payofl 1o continuing in any
sumogate game must be at least 'A. AL7 < "/, however, the largest possible payofl an agent can oblain by terminating a1 ¢ is
strictly lkess than 4. Therefore, there can be no PTNE at 1.
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outcomes from 1. Choose a right-continuous profile §* satisfying: each player continues at every
{ € %A% at 1 > "4, EX (1) is a PINE for SurrG(1). (From Proposition VI, such an equilib:il-xm exists
for every s > %47 Moreover, il can be shown (see Lemma IL1) that the PTNE correspondence is
sufficiently nicely behaved that §* can be chosen to satisfy restrictions (X1), (X2) and right-continuity).
Once again, it follows from (4.3) that for every 7 2 1645, E* satisfies condition (ii) of Proposition VII,
so that the outcome V(E*(2)) is a type 1 ouicome. Now, once again, construct the profile &'~ that
agrees with E* except that at 7, i plays his Stackleberg output and j continues. Observe that player i’s
payoffs in the PTNE’s immediately after ¢ are strictly lower than his payoff from leading at 1.2 There-
fore, we can repeat the argument above that E"(t) solves the stage-game induced by £ at r. Summariz-
ing, the example just analyzed shows that our simple 1echnique for characterizing the type 1 outcomes

of the duel can readily be generalized to handle much more complex problems.

V. Characterizing the SGP equilibria of a class of BTG’s

In this section, we characterize the equilibrium set of a game satisfying the following conditions:
(i) there exists some SGP equilibrium for the éame; (i) each agent’s payoff 1o leading is strictly iﬁcreas-
ing wn.h time; (iii) assumption Al is sausfied.

As we have observed, a game in this class can end in one of two ways. The first of these was

described in the preceding section. The other kind of ending is very simple. We will say that (4, #) is

a type 2 ouicome from ¢ if it can be implemented by a profile in which at least two players terminate

with probability one at 7.

Our theorem states that for a game in the class specified above, an outcome will be SGP imple-
mentable if and only if it is one of the two kinds of outcomes described above and no agent wishes 1o

preempt it.

32 This fact is intuitive, yet tedious to verify formally. The following is a (tersc) verbal summary of the algebra: i 's payeff
from a PTNE at s = ¢ is a strict convex combination of i s conditional payoffs given that (a) i moves and j doesn’t, (b) j moves
and i docsn't and (c) they both move. €all these numbers, respectively ;. Yy and v,. From Al, ¥, > ¥, Therefore. ¥, > ¥,
{otherwise, "continue” would be the unigue best response for i ). But by definition, L ()= L, (s), which is at Jeast as greal as ;.
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Th'm VIII: Let T be a BTG satisfying assumption Al. Assume that an SGP equilibri-
um for T exists and that for each #, L; is strictly increasing with ime. An
outcome (i, 1) will be SGP implementable if and only if (i) it is a type &
ouicome, for some k € (I, 2}, and (ii) for each j,

Euj([.l. I) 2 LJ.(') on {0, f) (5.1)

To illustrate the theorem, we first characterize the equilibrium sets of the symmetric and asym-
metric versions of the noisy duel. First observe that there can be no type 2 outcome, since the §;’s are
strictly smaller than the F;’s. Moreover, from Proposition V, there exist type 1 outcomes from 1 iff
{ 215 However, if (4,7) is a type ! outcome from ¢ > %, then there exists some j such that
Eu,(u, 1) = F;(1). Therefore, in either version of the game, the no-preemption condition--ie.,
7(5,1)--wi]l be satisfied only if 1 = %. Finally, as we showed in the preceding section, each version of
the game has three type I ouicomes at ¢ = %4, In the symmetric game, condition (5.1) is satisfied by all
three of these, so that all three are SGP implementable. In the asymmetric game, L,(}4) exceeds F,(}2),
so that (5.1) will be satisfied only when player #1 leads at 2. Therefore, the asymmetric duel has a

unique SGP implementable outcome.

An exactly similar argument eliminates all but three endings in the Cournot example. The three
outcomes are implemented by the profiles g4 and E* defined on pp. 26-27 above. For each i,
§,1°""‘ implements the outcome: player i plays his Stackleberg quantity at %41, and j continues. The
third equilibrium is analogous to the symmetric equilibrium for the duel: each player is the Stackleberg
leader with probability ¥ at 47, the players move simultaneously with probability zero. To see that

this is indeed the outcome implemented by §*, first note that as ¢ 4 147, the probability that agent i

fefttinates at  must converge to-zevor— is-is-true-because-immediately-afier %42, an agemt is vinually

indifferent between being the Stackleberg leader and being the follower; by continuity, therefore, if one
playes were terminating with probubility bounded away from zero in a neighborhood of 7, the other
would strictly prefer 1o continue at this time. Moreover, by 2 similar argument--see expression (7.2) in
the proof of Proposition VI for details--there must be an interval immediately after 1 on which agents
are assigning probability zero to any quantity other than g =14 It now follows immediately that the

limit outcome is as claimed above,
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We can now explain our earlier remark that computing the equilibrium strategies explicitly is
often unnecessary. The argumeni we have just given will apply to a large c!a.ss of applications, provid-
ed lthat the payoff to leading is continuocus in, and increases with, 1. As in the preceding example, the
game will end at the moment 7 that the payoff to leading crosses the payoff 10 following. Moreover, in
the PTNE's immediately after r, agent / will be terminating with vanishingly small probability, and as-
signing positive probability only to actions that are optimal given that other players are continuing {i.e.,
only to elements of the set A*“/(-)). The limit oulcome at 7 can therefore be computed from these gen-

eral principles, without needing further information about the specific solutions to the PTNE's.

An Asymmetric Game with no SGP Equilibrium.
Except in the 2 x 2 case, it is difficult to guarantee existence in an asymmetric game. The reason
is that the following propeny plays a key role in the exisience proof:
if at least two agents strictly prefer leading to following at 7, then a PTNE exists for SurrG (r). (5.2)
This property is satisfied both by symmetric and by 2 x 2 games. In asymmetric games, it is very
difficult to guarantee. The two-person BTG below illustrates what can happen when the propenty fails.

Let T = [0, 1]

A BTG with No Equilibrium: u(a, t)

Ct Tm! Tm?

Ct 0, 0) 0,1+31) | (10, =1 + 31)

Tm‘ ("‘2 + 3’. o) ("2, -3) (_2'- —})

in this game, Leow =31 = 2, Legy = 1 + 31 and Fpow = Feor = 0. For 5 > 34, therefore, both agents

strictly prefer leadiﬁg 1o following. We will show that no PTNE exists for SurrG (s}, so that property
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(5.2) fails. To see this, note that if one player terminates with probability one at s, the other strictly

prefers to continue. If a PTNE exists, therefore, both players must be properly randomizing at 5. If

COL is properly randomizing, but puts no mass on Tm!, then ROW eamns 10 if he continues, and so

strictly prefers to do so. Therefore, to induce ROW to raqdonﬁze, COL must assign positive

probability both to Ct and to Tm'. However, if ROW terminates with probability &, COL’s best
Tm! ifx €14

responses are {Tm? if o € ['A, *4+a] . Since s > 24, there exists no o such that player COL
Ct if & 2 3Ass

is indifferent between Ct and Tm!. This establishes that the surrogate game at s has no PTNE.

To verify that this game has no SGP equilibrium, we need only check the necessary conditions
identified by Theorem VIII. No type 2 outcome exists, because if COL terminates with probability
one at ¢, ROW prefers continuing to terminating. No PTNE exists before ¢ < 24, since following
strictly dominates leading for ROW. Finally, we have checked that no PTNE exists after 24. There-

fore, no type 1 outcome exists.

¥1. Continuous- and Discrete-time Games.

A natural conjecture is that the equilibria of a continuous-time BTG will be close to approxi-

3 In §S1 we show that under very weak conditions,

mate equilibria of nearby discrete-time games.
this conjecture is true when agents are constrained to play pure strategies.“ This section demon-

strates that the relationship no longer holds when behavior strategies are introduced. We present an

— example of a continuous-fime game with two SGP-implementable outcomes. The first involves ran-

domization; the second is a pure-strategy equilibrium. When the game is restricted to an arbitrarily
fine discrete-time grid, nothing close to the former equilibrium can be implemented even as an

approximate equilibrium.

3% Scc Fudenberg-Levine [3, 4] for a related discussion of the relationship between the equilibria of infinite-horizon games
and the approximate equilibria of nearby finite-horizon games.

3 Sec also Fudenberg-Levine {3] for a discussion and examples of the relationship between discrete- and continuous-time
gamea.
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This result is at first sight surprising, for the following reason. If a piecewise-continuous stra-
tegy profile for a continuous-time BTG is restricted to a sufficiently fine grid, the graphs of the origi-
nal function and its restriction will be almost identical. One would expect, therefore, that the two
profiles would have very similar properties in their respective games. This intuition turns out to be
valid only if agents are playing pure strategies. The reason is that when agents are randomizing, the
outcomes implemented by the continuous time profile from certain subgames may differ significantly
from the corresponding discrete-time outcomes. To see this, suppose that a master plan & has
exactly one discontinnity at, say, ¢ and that agents are randomizing immediately before r. From
expression (3.3), we know that for every ¢ < ¢ the continuous-time outcome implemented by & from
t is completely determined by the values of & before 1. On the other hand, for every discrete-time
grid, R, there will be grid points before ¢ from which the discrete-time outcomes are partially deter-
mined by values of & afrer 1. Obviously, these outcomes may differ significantly. For example,
consider a 2 X 2 game in which each agent terminates with probability 1% at every ¢ < t, and contin-
ues with probability one thereafter. Fix an arbitrary grid and let 7 be the last grid-point before 4.
The continuous-time outcome from r is that the game ends with probability one at r. In discrete
time, the game ends with probability % at r; with the remaining probability, players continue to the
end.

If agents play pure strategies, this discrepancy between the discrete- and continuous-time out-
come functions does not arise. To see this, suppose that & is a pure-strategy profile with exactly one

discontinuity point, at . (Since the range of £ is finite, the image of £ must be two points.) Let R

be a sufficiently fine grid that the graphs of & and &, are similar. In this case, the continuous- and

the discrete-time outcomes are both completely determined by one or other of the values of &,
Specifically, there are now only two possibilities. If some agent is terminating before 7, then for
every r < 1, both the discrete- and continuous-time games will end at r. Alternatively, if all agents

continue until 7 and then some agent terminates, the continuous-time game will end at 7, and the

discrete-time one soon after.
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The game is constructed in the following way. We begin with a two-player game. Each player
has two termination options (Tm' and Tm?). Both the discrete- and continuous-time versions of this
game have a "grab-the-dollar-type” equilibrium (see section II) and a second, pure-strategy equili-
brium. To implement the former, both agents must randomize at every point in time. We then aug-
ment the game by adding a third and fourth player. The new players have one termination option
each (Tm) and their payoffs are independent of the original players’ actions. In any approximate
equilibrium of the augmented game, each of the new players continues with probability close to one
at the beginning of the game, and terminates with probability close to one beyond time %. The
continuous-time augmented game has the same set of equilibria. This is not the case in discrete-
time: the "grab-the-dollar-type” equilibrium completely disappears. The reason is that at the last
grid point before the new players switch from “continue™ to "terminate,” the continuous- and
discrete-time ontcomes differ significantly and it is no longer even approximately optimal for the first
two agents 10 randomize at this time. Backward induction now destroys evety approximation to the
original equilibrium, |

Our augmented game is in no way pathological (the valuation function is linear w.r.t. time).
Moreover, the discrepancy between continuous- and discrete-time survives the introduction of an
arbitrarily large discount facfor. The example thus highlights a serious difficulty with the discrete-
time framework. A basic intuition is that an event occurring far out in the future will have a
minimal effect in the present, if agents are sufficiently impatient, Applying this intuition to our

example, we would expect that the set of approximate equilibria would be affected only slightly by

the addition of players who are inactive at the beginning of the game. As we have seen, our

continuous-time model supports this intuition, while the conventional discrete-time model does not.

We now specify the example. In the original two-person game, payoffs are independent of the

time at which the game ends. The valuation function, ¥, is defined as follows:
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The 2-person game: (i:'l((al, az), t), ¥allay, a2), ¢ ))
Ct Tm! Tm?

Ct .0 (U )] (-9, 3)

Tm! (1, 0} (-3,-3) -9, -9)

T'm? 3, -9 (=9, -9 (1. 1)

The following outcome is an equilibrium for the continuous-time version of this game: the game

ends with probability one at time zero; player / terminates alone with probability 4 with probabil-

ity '4, both players terminate simultaneously. Strategies that implement this equilibrium are: at

every ¢, each player plays Tm' with probability ¥ and continues with the remaining probability.

Expected payoffs are (0, 0). The restriction of these strategies to any grid form an equilibrium for

the corresponding discrete-time game. In the second equilibrium, each player plays Tm? with proba-

bility one at every point in time,

We now augment this game by adding a third and a fourth player. The valvation function for

the augmented game is &, defined as follows:

fas=a,=Tm

1

uila, 1) = uxla, t) = i@
1

us(a, 1y = ugla, t) = {2
-9

otherwise
ifa;=a,=Ct
fay=a,=Tm

otherwise

In continuous time, both of the outcomes described above are equilibria for the augmented

game, On the other hand, we will show that in any approximate equilibrivm for the discrete-time

version of the game, agents #1 and #2 must each be playing Tm? with probability close to one. To
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see this, fix a discrete-time grid, R, and an approximate equilibrium for the game pléyed oh this grid.
First observe that players #3 and #4 must be playing the same action with probability close to one at
every grid point in R, Moreover, there must exist * =~ 14 such that at every s < %, #3 and #4 are
almost certain to continue, while at r*, they are almost certain to terminate. Let |#*|® denote the
last grid-point in R before £* and consider the situation facing players #1 and #2 at this time, If
they both play continue at this node, then ¢* will be reached and they will each earn a payoff of
approximately 1. At [¢*]®, therefore, Tm' is strictly dominated by Ct for each player. Moreover,
provided that player j assigns probability zero to Tm?, Tm? is a strictly better response for { than Cr.
Therefore each / must be playing playing Tm? with probability close to one at this node. Summariz-
ing, in any approximate equilibrium, the expected payoff vector for the subgame beginning at fex]R
must be approximately (1, 1),

Now observe that at the grid point before |#*|®, if both agents continue at this time, the

game will almost certainly end at the next grid point, and they will earn a payoff vector approxi-
mately equal to (1, 1). Thus, the situation at the grid point before |#*[® is virtnally identical at the
situation at |#*]%, Now proceed by induction to establish that in any approximate equilibrium for

the augmented game, the original players will almost certainly play Tm? at time zero.




APPENDIX: PROOFS.
The propositions are proved first, then the two theorems.
Proof of Proposition I: Given s € [0, 1], we will denote by {r]" the largest grid point in R"
strictly before r; similarly, [r]" is the small grid point in R" striclly after r. For convenience, we will

assume that 7 € (\R" and that 7 <1 (if 7 = 1, the proof is slightly easier). Fix 8> 0 sufficiently
L .

small that L() is strictly decreasing on (1, r +28). Pick a subsequence, indexed by n, such that the
(symmetric) outcomes generated by (") from the subgame beginning at 1 converge. Let (0°) = (97, ¢7)
denote the sequence of payoffs generated by (E") and let ¢ = (¢, $,) be the limit of the (¢")’s. Neces-
sarily, &, €L, (N+F () <Li(). Fix t<r such that en (, 1, @ L()>9, and (ii)
L) > Fy(-y> 5,(). Pick n® sufficiently large that for all » > n® and all r € R" Nn(. 1),
Li(r) > %(L([r]") + F\(Jr]")). By the obvious argument, agents must be terminating with positive
probability at every node in the interval (1, 7), for every n > n°. Since St,() < F() on this interval,
they must be terminating with probability less than 1. Pick n’ sufficiently large that for n > n',

7 <L(|7]"). Since player 1 is indifferent berween moving at 7 and at at |1}, we have
(1 = EIE" DL ™) + B8 (11" = (1 - Bl ] ned + 8T )F o L ™).
Therefore, there exists € > 0 such that forall n > n”, E}(|7]") > €.

Now fix r € (z, 7) such that [r]" 7. Also, fix n > n’. Once again, agents must be terminating

with positive, nonunitary probability, so that

(= L+ GOS0 = @ = [ = B + 8Os HHORe)

Rearranging terms,

L = [ = BT IL ") + B8 (1) |

= ?(r){Lt(r) = Syr) + Fyr) —[u - B L 1) + é’f(frl")&(fr]“)] }

Therefore,



(L) = Ly([r1") + &P 1" WLy (fr1™) = Sy([r 17D
= E,?(r)[u.,(r) = Ly([r}* ) + (Fy(r) - 8300 + EHr 1" XLy ([r]") - s,(rr1"))]

Define d=(L,(r}-L,([r]"). B=(Fi{r)~5,(r)) and T=(L1([f.|")—sl(rf-|")). We have

8 n A
") = +EM[r1" <o that

S+ B+EFTNY

501 - 5[V + K10 [10 - g1 - B]
8+ +&([r]")y

Ery-EX[r]") =

By assumption, B <y, Lete” = %E We can pick i > n' such that for n > 7, § will be sufficienly

small thai whenever ENr) <€”, E'r) - EX[r]") > 0. Let €=€'A€”. Since £}([7]") > & we have
established that for n > 7, player #2 must terminate with probability at least € at every grid point in

RN 1. DO

Proof of Proposition III: We begin with some definitions. The expressions defined below will

also be used in subsequent proofs. Given a random action o; for i, let W(c;) denote that conditional

distribution over A; ~ {a,°] induced by 6;, given that i chooses nor to play . That is, for a; # 4,

VU,' a,; .
(o, Xa;) = __mf__}_o__ Denote by ({c;, y(o;)) the mixed strategy o/ defined by:
1 -0:(a)

c; ifa; =a®

Gia) = (1=c)o(a,)_____olherwise °

Now, fix a BTG, '=(T,1,A,u) and 1 < " and con-

sider the surrogate game SurrG (7). Fix 6 € I such that 6;(a®) < 1 and 6_;(a%) < 1. Define the fol-

lowing terms:
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M,'(G) = z uu'((aii agi)! F)"L‘:I‘)_'

P 1-g (f{;o)
Pl = T u@d a n—=dl

a mal 1- 0_;(0.2’)

- G_;la_; G;la;

Sie) = 3 [ 3 willa.ai)t) o-) )o@

axa’ o »al 1 - c_,-(af,-) 1- 0’,'(0,'0)
My(6) = 6.(a%)Ldi(c) + (1 -0, (ad)Nst (o)

" Now fix @.; €I, such that 3.(a%)<1 and define: Term(5.;) = maxMy,(3,,8;) and
a,EA,

Cont;(8_;) = Fl;(8,s 8.;). Term;(G.;) is the highest payoff i can get by terminating, given that other

agents are playing &.;. Note that in particular,

Term,-(ﬁ'._,-) = man Q;;(agl, C.; ) (7-3)

Cont; is i’s payoff if he continues. The proof of Proposition IiI follows from the follc;ving three Lem-

mas.

Lemma HI1. I o € argmaxQ/(, 8.) and o6;@% e (0,1), then for all ¢ € [0,1],

{¢;» WO, )) € argmax Q;,-('! G.)

Proof of Lemma II1: Suppose that &, € argmaxQ[(,3.) and (@™ e (0, 1). Let

G = (G;, 6_;). Rearranging terms, we have

Q.-'-(C) = —'""i—o(a.-(af’)(l -8 @)Lz + (1~ 3;(0.-0))1\4";(5})
1 -8(a")
= MBFL(B) + (1 - AME)Mv,(B)
L _ 8N -5.al) TN - n _
where A(G) = . That is, Q/(5) is a convex combination of FI,(3) and Mv,(D).

1~ 5(a%)
Therefore, g; € argmax Qf(c,-) implies FI,(5) = Mvy;(6) so that any convex combination of these two

terms yields the same payoff.
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Lemma I11.2. If 6; € argmax Q;T(‘. G.;), then
() Qi(5;. B_;) 2 Cont(6_; ), with equality holding if 6;(a°) > 0;
() Q/(o:, B.,) 2 Term(8_,) 2 Mv;(6;, 8_,); if 6;(a0) < 1, then Q(0;, 5_;) = Mv;(0;, B_,).

(iii) for each a; such that 5,(2;)> 0, §, € argm;ax Q,?(-, 8.)
6, &

Proof of Lemma II12: Fix G; € argmaxQ,—F(-. G_;). Let 6 =(G;, G_;). The inequalities in pan (i)
and {(ii) are obvious. The equalities follow from the fact tha Q,-F(c‘s) is a convex combination of FL,(3)
and Mv,(8). For a; = a, pan (iii) follows from pan (i), since Q/(S;, 8_;) = FI;(5;, 6_;). Now assume

that 8,(a;) > 0, for some a; # a°. We have

Qi@ = QIO, () 8.) = 3, 03, 5.)W(G:Xa,).

a,xa

The first equality follows from Lemma IMI.1 the second from the definitions of Q,-F and {0, W(5;)}). Pant
(iii) now follows immediately from the fact that G, € argmaxQ,;(y G_;) and Q,?(B,-, 8_;} is a convex

combination of the Q,-?(S,.,, G, )'s.

Lemma 11.3: For all 6_; such that &_;(a%) < 1, the sei a.rgn}..ax Qf(c,-, 6_;) is nonempiy and con-
g,&

vex.

Proof of Lemma I1.3: If 8_;(a%) < 1, then v(:, G_;) is continuous w.rt. ¢;. Thercfore Q,-T(-, G.;)

attains a maximum. Now assume that 6 # 6, bul that both maximize Q/(-, &.;). Assume w.Lo.g. that

6i(a) S 6/(a” and that 6/(a®) < 1. Fix a e (0, 1) and let 3, = as/ + (1 - )G, There are several

cases 1o consider.
(1 I 6/(a® = 6/(a0 = 0, then

Q;"’(G;; 6.;) = Mv;(0], &_;) = Term;(8_;) = Mv,(6, B_;,) = QXo!", G_;)

But My, {-, 6_;) is linear, and hence convex, in G,, so that &; yields the same payoff.




-AS5-

(2) If 6°(a®) = 1, then & = {&5/(a,"), y(c;)) and the Lemma follows from Lemma IIL.1.

(3) If 6/(a® > 0, while 6/'(a®) <1, then by Lemma HL2(i) and (ii), Cont;(G_;) = Term;(5.;).
Also, by Lemma IN.1 and Lemma IIL2Gi), (0, yio! » &)= (40, W), 8;) = Term (B.;).
Therefore Q,-T((O, Y(G;)), 8;) = Term;(G_;). Bu Q,-"(B,-. G.;) is a convex combination of Conr;(c‘r__,-) and

Term;(G_;), so that § € argmax Q,T( &)

We can now prove Proposition III. Since Lemma T1.2(iii) establishes that the condition is neces-

sary, we need only check that it is sufficient. By Lemma IH.2(i), if §; ¢ argmgaxQ,—F(G,, o_;) and
- GLE

a; € supp(§;), then §, € argmzax Q,-?(c,-. G.;). Therefore, 4; € argmaxQ,-?(Ba.. &) implies
[

a,ed,

T

5, € argniax Q(6;, 6.;). Fix G; such that supp(3;) © argmax Q!(8,, ;). From the previous observa-
* g.€ . wEA,

tion, G; is a convex combination of {3, € argniaxQ,-"-(c,-,B_,-)}. By Lemma II3, therefore,
d,E

3,- € argmax Q"’(ciq C—,..,' ) |
o,eL,

Proof of Proposition V: Fix T < 1 and assume that Ly(1) > F1(r). We will use exiensively the
notation and Lemmas from the proof of Proposition IIl. First note that there exists § > 0 sufficiently

small that whenever 1 > 6_,(a%) > 1 - 23,

if o, isa best response to 0_; then supp(s,) € AY*(r) L {8} (7.4)

if supp(o_y) € (A @) U ta? )" then Term (o) > Conty(0.y) .5

(7.4) states that if other agents terminate with sufficiemly low probability, then it cannot be a best
response for #1 1o play some termination action that is nof an element of Ald(1). (7.5) states that if
other agents terminate with sufficiently low probability and assign zero probability to nonoptimal termi-
nation actions, then #1 will strictly prefer moving to not moving. (7.4) follows the definition of A/

and continuity. (7.5 holds because for ) sufficiently small

Term(6.y) = L,(1) > Fy(N) = max uy((@z a%). 1) 2 Conty(o,).
azeA ™ (1)
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Define £} by £ = {0, € £,: 6,{a’) £ 1 - 8}. Define the correspondence BR,S: Zf —» 55 by:

BR,S(U,)=argmaxQ§(-, {G). .... 6;)). By modifying Lemma III.3 in the obvious way, it can be

Ci€d)

shown that BR, is convex-valued. Also, Qi is ‘continuous on 5.‘?. Therefore, by standard argumenits,
BR} is uh.c. and there exists &, such that 8, € BR}(3,). Let 3=(3,, ..., 8,). We will show that

8, € argmax Qf(-, T_). We first show that
giely

Gi(af)<1-28 a.7

Consider &, such that &af)>1-258 let 6,=(,...6) By (7.4),

supp(8,) € A¥(1) U {a°); Therefore,

016, 6.p) 2 mng(S,',o_,-) = Term\(8.) > Cont (&) = Q1(8,0.6.))

The first inequality holds because for all a; = a°, 8, € £ the first equality from the definition of

Term; (i.e., (7.3)); the next inequality from (7.5). But in this case, #1 should ierminate with probabiliry

one, since Q) ({0, w(&,)), 6_) > 0} (8, 6.,). This contradicts the assumption that &, € BR (3,) and

establishes that (7.7) must hold. It follows immediately from (7.7) that Term,(G_,) 2 Cont(G_;).
(Otherwise, Qg((l -3, W(@,)), 6,) > Q) (5, 6.1). Therefore, 8, is indeed a best reply to &._,.

To complete the proof that G is a Nash equilibrium for SurrG (1), we need to show that for i # 1,

O, is a best reply to &_;. It follows from Proposition II that for each a, € supp(5,) and a, € A,,

Q,-;(S..,. 6.4)2 QE(S,,, &_;). Also, using the definition of symmetry, we have that for & € A;:

.
ST Y vile o a6 (@16

a'ed; o, €4,
1
i

S Y v o a8 400008/ = 018, 8.)

a'eA; 964,

e

J'F(Bw 6«;‘)

Therefore, for a; € supp(s,) and a, € A,, ,-;(5,,‘, o) 2 Q,?(B,., &_;). This verifies that ¢, is a best

replyto©_;. O
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Before proving Proposition VI, we prove the following Lemma, which establishes the relationship
between the Nash equilibria of subgames of a BTG and the solutions to the corresponding stage-games.

It will be used in the proof of several of the following propositions. Define a random action profile G 1o

be a strongly plural termination profile (SPTP) if for each {, there exists j # i such that cj(af’) =0.

Lemma VI.1: Fixt € T and a profile § for I
(i) If £ is a Nash equilibrium for T" from 1, then &(r) solves S1gG (1, §).
(ii) If E(r) solves S1gG(t, &) and there exists & > 0 such that for every
s € (t,¢ + ), E is a Nash equilibrum for the subgame of T" beginning
at s, then £ is a Nash equilibrium for the subgame of I beginning at ¢.
(iii) If E(¢) solves S1gG(t, &) and is an SPTP, then & is a Nash equilibrium
for the subgame of I beginning at 1.

Proof of Lemma VI1: We first establish a preliminary fact. Fix EeZand reT. If

oT(E, 1) =1 then
P(E, t+)=Eu vrE. ). (7.8)

To see that (7.8) is true, observe that we can pick § > 0 sufficiently small that for all 5 € (t, 1 +8: (D
if E(r)(@®) > 0, then by (X3), E(s)}a® < 1, s0 that o7 G, 1 + ) = 7 + & (ii) by (X1), () is continuous
at 1 + &, so that by (3.3), oz(E; t + 8) = v(E( + &) Therefore, P;(E, 7 + 8) = Eu;(v(E( + 3}, T+ 8).
Finally, since u is right-continuous (ul), P 14)= Eu;(v*E), ). This concludes the verification of

(7.8).

We now prove part (i). Assume that E € Zis a Nash equilibrium for the subgame of T beginning

at7. Fix i and g; € A;. We need to establish that

PR, E,() < PREDY (19

Letx.; =infls >7:E,(s¥a%) < 1). First assume that T; > 7. In this casc,

PE D2 LGWPE 1) (7.10)
To see this, observe that since no player other than i moves at T, i can attain the payoff L,(s), by play-
ing some action from A/4(7). Now suppose that P;(E, 1+) > L(1). Since L; is right-continuous, it fol-
lows that P;(E, 1+) > L, (1+). Since T_; > 1, il must be that E{(-Xa"y =1 on an interval after 1. But

then i can attain P;(€, 7+) by playing a” at 1. (7.10) now follows from the fact that E is a Nash equili-
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We now show that (ii) implies (i). Assume that E(r) is a Nash equilibrium for StgG(r, £) and
that for all s € (7,7 +8), E(s) is a Nash equilibrium for SurrG(s). Pick § € (1,7 +3). Since

o%E, 5)VE(F)), we have, forall ; € I,
PiE 5) = Eu;,vEGN.F) = QXEG) 2 0o LG = Euvo, E(5).5).  (7.16)
Pick§ ¢ £ andlet § = (§;, &) Leto? = §:(5) and o} = £,(5+). We have

PE D

( - EDa™NE, (). 1 + EOXa®)Ew (v E), D)
(1 = E@Xa®NEw (v(e?, LGN, 1) + EONa®Ew (v¥(ef, LGN D) < P.(E ).

The first equality because E(F) is a PTP, so that oT(E, ¥) = §; the second equality is obtained by substi-
wting ¢ and ¢f in the appropriate places; the inequality follows because, using (7.16), P F)isa
convex combination of two scalars, and each one is weakly greater than the comresponding term in the
definition of P;(E, ). This establishes that for all s € (1, ¢ + &), § is a Nash equilibrium for T from s.
Also, since E(7) is a Nash equilibrium for $12G (, E), it follows from Lemma VLI that £ is a Nash

equilibrivm for I" from 1. I

Proof of (43): Fix t and E. Assume that E(7) = E(1+) and E satisfies condition (ii)Xb) of Proposi-

tion VI. We have

PIRED) = 3, wla @) + Ea®)(lim Eu(vET + ), 7 +8)
= Y u(@)EXa) + EHa")Eu(vED)), 1)
_ 1B § By e o@D S L anE GG
1~ Eayad) e M)+ = B d:ﬂ“-(ﬂ—-)ﬁ(i-)(ﬂ
Y u@ ) xa)
= TPeees = Eu(vE(IN, 1)
1 - Era® :

Fix a; € A;. Let 6=(8,, E.;(r)). Since the E(s)'s solve the surmogate games immediately afier 1, and

since all variables are continuous, we have Eu(v(3), 1) € Eu(W(E(1)), 1). Therefore,
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PTG, BN = (1~ 6@ NEuv) 1) + SaNlim Eu(vEG +8), 1 + 8)

N

(1 = 8@ NEu(vE), 1) + 8@ NEutvE(N)), 1)
Eu(vE@), 1) = PPREMY

This establishes that E(r) solves StgG (1, E). O

Proof of Theorem ll: Fix a game I that is either a 2 X 2 game or a symmetric game. Define
T = {1 <r™:Vi,3j=#istL{t)>F;()). We first establish the following Lemma.
Lemma IL1:  There exists E¥ e Esuchthat forall 1t € T*,
o ] (Lo -2 an ) 20

(ii) £* (r) is a PTNE for SurrG(1):

Proof of Lemma 11.1: We first show that condition (i) can be satisfied. First suppose T'isa2x2
game. From Proposition IV, for all t € T*, Q/(§* (1)) = Eu;(V(c'), t) = Fi{r). 1f r € T*, then for all-
i, L;(t) > F,(t). Therefore, the condition is cerainly saiisfied. Next assume that T is a symmetnc
game. Clearly, in this case, we can take £* to be symmetric, so that for all i and j,
L(ty- QNE* (r')) = L,{r) = Q](E* (1)). Once again, therefore, condition (1) is satisfied.

We now establish pant (ii) of the Lemma. From Propositions IV and V, we know that for every
t € T*, a PTNE for SurrG (1) exists. To obtain £ € = satisfying condition (ii) above, we need to be
able 10 extract an extendible piecewise continuous selection from the PTNE correspondence on 7 that
satisfies restiction (X2) on stralegies. We will prove that we can do this for symmetric games. The ar-

gument for 2 x 2 games is similar but much simpler.

For convenience, we will assume that the time interval T is bounded. The extension to unbound-

ed time intervals is trivial. We first establish that a piecewise continuous selection can be taken from
the symmetric PTNE correspondence on T*. The proof uses h result from the theory of semi-algebmic
sets (see Van den Dries [18)] for a lucid summary of the relevant facls).' A set is semi-algebraic if it is
defined by a finite number of polynomial inequalities. An immediate consequence of Hardt’s (8] "gen-

eric triviality” result for semi-algebraic maps is: if the graph of a correspondence is semi-algebruic, then

} 1 am grateful to Bill Zame for introducing me 1o this puper and the requisite mathematics,
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there exists a finite, semi-algebraic panition of the domain of the correspondence such that the restric-

tion of the correspondence to each set in the partition is a continuous correspondence.

Let V = (R*"" denote the set of symmetric payoff vectors for surrogate games. A pointv € V

((*i(@))gen ier» Where v{(a®) = 0. Let @ denote the graph of

is a list of payoff vectors, (v{a))sea
the PTNE comespondence, ie., @ = {(v,0)€ V xX: ¢ is a symmetric PTNE for v}. Thus,
v.o)e® if () o =0, for al i>1 (i) o@d)y<t () for all a;zaf,
Gov, 2 (1 — 6@™oov i@y, % (V) (4 - o6.4{ad Noov; 2 (1 - 6la’No.ov (ad, ). Cleatly, @ is
defined by a finite number of quadratic inequalities and is hence a semi-algebraic set. It follows from
the piecewise continuity result cited above that there exists a finite partition, ..., V" L V) of
V, such that for each n, V" is semialgebraic and the correspondence ¢:V — I defined by
o(v) = [oc € I (v, 6) € ®] is continuous on V". Now consider the payoff function u: T — V. Since
u is piecewise real analytic, there exists a finite partition, T, ... T ..., T%), of T such that for each
k, there exists # such that u(-, T*) € V*. (To see this, observe that the Soundmy of V" is defined by a
finite set of polynomial equalities and the image of an analytic fanction can cross a polynomial only
finitely many times.) 1t follows that there exists a piecewise continucus selection from (. ) ie., a
fanction E* defined on T* such that for every t € T*, §* (1) is a symmetric PTNE for SurrG (¢).

We now show that E* satisfies condition (X2). We will prove this when there are at least three
players. The argument for the two player case is similar, but simpler. Also, we consider only the case
in which A*(1) is a singleton set. The generalization is straightforward but very messy. For every

t € T+, E*(1) is a PTNE, so that by definition, §() < 1. It follows that lgirg?,;(a?, r+8 T1 onlyif

7 is a boundary point of T*, so that lailngl. (7 +8) - F(r + 8 { 0. To simplify notation, we will consid-
er the case in which d_(_l._{_r‘};T—l_"_(_[”)_)_ > 0. (Since both functions are locally real analytic at 1, there must

_d'_(l;(_rl:_f_@ is positive. If deurFuy 0, then find the first r such that

be some r such that
dt dt

iﬁ&%}{m > 0 and replace the di’s in the argument below with dr”'s.) By (7.4), we can pick &

sufficiently small that for 7 < 1 <7 + 8, Ej-, 1) assigns positive probability only to a{ and a{™’. Let
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€(t) denote the probability assigned to a!*® . e(t) has been chosen so that these payoffs to playing these
two strategies are equalized. Ignoring terms that are “little oh" of €(¢) and 4t, and setting df =1 — 1,

the payoff to moving at f is approximately

(1 —c &t D@l ak®, al ), 1) + c e al, af™, al™, a%,)1)

= (1 = €KL + 1dt) + c€XL () + .dt + k2)

where ¢, Y;, 7> and k, are constants, possibly zero. On the other hand, the payoff to terminating at 7 18

approximately

(1 = c5e()ua’™®, a8, 1) + ey (la™, a¥™ . a% ). 1)

= (1 = cs€(ONL (D) + 13dt) + (L) + Yedt + k)

where by assumption, y; — Y, > 0. Also, since &(r) is arbitrarily close to zero, &, — k, must be strictly

positive. Since player #1 must be indifferent between moving and continuing at ¢, we have

(1 — c €L () + 1dt) + €LY + Yodt + k2)
= (1 = (UL + Yadt) + CRGUL(E) + Yadt + k4)

Rearranging terms and cancelling, we have:

nar + e(r)c,((y;—'y,)dt +k2) = y;d; + e(t)c;((n-—y;)dt +k4)

50 that €t) = (= nd . Therefore,
(6‘1(72 ) )dr +(erka = c3kd)
‘;’ ) . = € (0, ). establishing that
! (C' 2 =~ 1) = c3(Ya— Ya) )df + (¢ ks — C3ky)
BT +8,a7) e . N
lim —m = ].’li? 5 exists and is positive.

The final step is to verify that £ is piecewise extendible continuous. This fact is an immediate
consequence of the following facts about “finitely subanaltyic sets,” contained in Van Den Dries [18].
VdD(i): the restriction of any real analytic function f: U = R, where U < R, 10 a compact interval

contained in U is a finitely subanalytic map (i.c., its graph is a finitely subanalytic set) VdD(i): if

each of the component functions of £: U — R" is a finitely subanalytic map, then the function itself is
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finitely subanalytic. VdD(iii): the composition of a finitely subanalytic function and a semialgebraic
corresondence is a finitely subanalytic correspondence (i.e., its graph is a finitely subanalytic set).
VdD(iv): the projection of a finitely subanalytic set is a finitely subanalytic set. VdD(v): finitely analyt-
ic functions of one variable are piecewise monolone.

We now relate these facts to our problem. By assumption, each component function u;(a, +} of
our payoff function u is piecewise extendible real analytic function of time. By VdD(i),
_ therefore,u;{(a, ). is a piecewise finitely subanalytic function. By VdD(ii), u itself is a piecewise finite-
ly subanalytic functon. Now the correspondence ¥, defined by
¥(1)= {6 € I: 6is a symmetric PTNE for SurrG (1)} is the composition of a piecewise finitely suba-
nalytic function and a piecewise semi-algebraic correspondence, and so, by VdD(iii), has a piecewise
finitely subanalytic graph. Therefore, we can choose £* to be a piecewise finitely subanalytic selection

from this graph. By VdD{iv), each component function, E}(*)a,), is piecewise finitely subanalytic and

s0, by VdD(v), is this function is piecewise monotone. Moreover, &;(-}(a} is clearly bounded. It fol-

lows immediately thai each of the finitely many continuous sections of this function has a continuous

extension. [

We can now prove the theorem. We begin with some more definitions. For 1 > 0, define the

L) - . . w 3— . _@_—— T L,(r)-l-,(f - 5)
exiended-lefi-derivative 3 L;(t) by: > Li{t)= léﬁ)l 3

. If L,{-} is continuous at ¢,

%L;(r) is just the usual left derivadve. If L;() jumps up at ¢ then %L,—(r} is +oo. Define the "nght-

closure” of a set X c R, denoted c/*(X), to be the closure of the set minus it’s left boundary pomts,

ie, el*X)={re R:38>0st.(x -8, x)e X} For re(0,r") and &€ (0, 1), define
1) = i e I:Vs e(t-51] %Li(s)SO} and let I,(1) = gl,,a. For ¢ = 0, define 1, (1) = @.
For each j, choose a ﬁghl-cominuouslselcction a}“'f’(-} from A /() such that for each i # j, and each ¢

Fi() = u;(@%(), a%;) except al finitely many points in T N [0, 1], (7.17)

If T has only two players, such a selection obviously exists. If T is symmetric, then i ’s payoff will be

independent of the identity of the leader, so thut once again, the required selection will exist.>

L may happen that A,"“(:) contins an clement that is not an element of l_irnAf""‘(:). In this case, it may be that
S
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We now proceed to the proof. Choose &* that satisfies the two conditions of Lemma IL1. Set
2= 1f®€ T, let o® be a Nash equilibrium for the one-shot game with payoff matrix u(, ¢%;
now set E(r") =0 Define ' by ' = infls € T: assumption (A3) is satisfied for s}. If
(1), 1%) & T*, then by (A3), there exists 1° € I such that L () is nonincreasing on this interval. Define

1 if (1!, 1% e T _
! by Y= {2 otherwise . Define 50 on 1 by:

E*(1) ifY=1
B) = 8gmmgpaty =2 and Le(t)20 .

8,0 otherwise

Now, fix n € IN. Assume that 1" has been defined and that &(-) has been defined on (", 1)

We now distinguish between three states of the system. This state is flagged by v'. We will

proceed in different ways, depending on the value of this flag. Define ¥° as follows.

1 if 1" € el (T*)
Y = {2 if 1" ¢ cI*(T*)and 3i € L") st L,¢"=) 2 P, E. 1"4) .
3 otherwise

Note that for 1" =0, [,(t") = @. Also, 0 € cI*(T*). Therefore, 1" = 0 implies " = ¢. If there exists

i € I such that L;(t"=) = P;(E, 1" +), define 1" by:

'min{i € L") L;(""~) 2 P, +"+)} ify =2

L") 2 Pi(E, t"+)and

T S . eon L . .
" = ‘min)i € I'L,.(:"—) > F,(1"+) if ¥ =3 and this set is nonempty

min{i € 1: L;(t"=) 2 P; & 1" )} otherwise

Note that by assumption (A2), L;(t"-) 2 P;(§, 1"+) implies L;(+") 2 P, (€, " +), so that, in paniéular, if

" is defined, then

L.{t")y2 PLuE ") (7.18)

lmfu,(af“(s + 8, af'J) < F,(s). However, A** can have only finitely many discontinuity peints in Tnlo ¢}

I =0, define L {t"=)= L{0).
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8“?_..(,,_ a2 if 1" has been defined

Define §(1") by &™) = limE* (1" + 5) otherwise . Now define 1"* as follows:
&lo

inflr € [0, 1"} V(1,1") c T*) ify =1
"t = Jinf{r € [0,f"): Vs € (7. t"), %Ll.(s)sm ify =2,

inf{r € [0, 1"): Vi, Vs & (1, 1"), Lis)SPE "))  ify =3

) ify =1
Define §() on (¢"*, 1") by: §(1) = [8umyy b0,y Y =2 .
8‘,0 lfyn =3

We now establish that E is an SGP equilibrium. We first establish that for all n € N, 1"* < 1",
I Y = 1, this follows directly from the definition of " and "*\. If ¥" =2, then " € I,(t"). By
definition of 7, ("), there exists & > 0 such that on (" - 3, 1"), %Lr(') <€ 0. Therefore, 1"* <" - §.
Finally, suppose that ¥' = 3. We need to establish that for all 7:
L;(-y £ P,(E, 1) on an interval before 1". (7.19)
Since 17 @ cl*(T*), there exists al most one i such that L;(1") > F;(t"+). Also, by definition of
¥, it must be the case that for each §

either i @ 1,(1") or L,(1"} < P;(E, 1"+). (7.20)

Choose i € 1. There are several cases 10 consider.

Case (ay L;(¢t")<P;E, 1"+), for all i. In this case, £ is continuous at 17, so that
PE, 1"y = P(E, 1"+). Inequality (7.19) now follows from the upper semi-continuity of L, (A2). Now
suppose there exists i such that L;(#") 2 P;(E, 1"+), so that 1" has been defined. We first show that
v'~' € {a, b}. By definition of 1" and 1", we have mL(" - & 2 P 2 13?1.1.'(;" +8).
Also, since L; is upper- and right-continuous, !gg:l.,.(r" -8 £ L.(t") = lls':igl;l.(:" + 8). Therefore,

L.(") = P‘.(E, "y = P|.(E, t"+). Moreover, by definition of 1", there exists some interval on
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which L.(} > L.(t") =Pl.(E. t"""). Therefore, 1" € I,(t"), so that Y‘" € |a,b}. There are three
remaining possibilities:

Case (b): i =1". By definition of 1", we have L;(s") 2 P;(§, "+). By construction, / leads at 1",
so that L;(t") = P,(E, t"). Moreover, by (7.20), %_;-Ll.(t") >0 on an interval before 1*. Therefore,
(7.19) must be satisfied.

Case (c): t" = j #i; L;(1") < P;(E, 1"+). By construction, L.(s") 2 P (E, 1"+); Lemma IL1(i)
therefore implies that "~ # a. Therefore y-! = b. Moreover, since L; is us.c., PG, 1"+) > Li(t"4).

Therefore, i # 1"~! so that by (7.17), P;(&, 1"+) = F;(1"+). But in this case:

L™ < RE ") = lg.tmnu,-((a{f‘ff(r +8),a%a), 1 +93) (7.21)

= gﬁu;<(afz“(: +8),a% ).t +8) = w(ak(r), al. N, 1) = Fi(i")

The second equality follows because either there are only two players, in which case 1""! =", or be-

cause I" is symmetric; the third equality follows because u is right-continuous (ul) and because, by con-

struction, g% (1) = a'e*(r+); the last equality follows from (7.17) and the fact that i #1".

Case (d): 1" = j #i; L;(1") 2 P;E, 1"+). Since 1" ¢ cI*(T*), there exists at most one such
that L;(") > F:(t"+) on an interval before (", Therefore, by definiion of 1", if i =1" and

L") 2 P,E, 1"+), then L(t") SF,(t"+). Since i continues at ¢, it follows from (7.21) that

P, (g,. 1") = F;(1"+) 2 L,{r"). Moreover, by (7.20), we must have %Ll.(-) < {) on an interval before

1". Condition (7.19) now foliows immediately.

Since payoffs are pera, the above procedure must terminate in finitely many steps.

Finally, we need to verify that £ is an SGP equilibrium. If " & T, then by construction, & is a
Nash equilibrium for I’ from ¢, Now fix n € N {0} and assume that for every s € [t", %], § is
a Nash equilibrium for T from s. We will show that for every ¢ € [1"*, "), £ is a Nash equilibrium

for T from 7. There are several cases to consider.
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Case (a): r € (+**', 1") and ¥* = 1. By definition of £*(-), £* is right continuous at ¢ and condi-

1ion the condition in (4.3) is satisfied. By Proposition V1, therefore, £ is Nash from 7.

Case (b): r € (+"*, 1") and y* = 2. First consider agent \". By assumption, %Lt.(-) <0 on

{t, 1"} By construction, t" leads at ¢"*' and, by assumption, E is a Nash for I" from 1"*!, Therefore,
forall s € (1, 1"), Lo(t) 2La(s) 2 La(t") = P (€, t"). Therefore, 1"'s best action at 1 is to lead with
some action from A?“(r). For j #1", it follows from (Al) that j weakly prefers following to moving

simultaneously.

Case (¢): £ € (¢"*), 1"} and ¥" = 3. For all i, by definition of ¥", L,(-) £ P;(, ¢"), so that i can- '

not gain by preempting.

Case (d): f =1"*". First suppose that ¥" =1. If \"* is defined, then by construction,
L") 2 Pou(E, 1"*'+). Since all other agents but "*! are continuing at "*, it is a best response
for t"*' 10 lead at this time. Moreover, by (A1), following is optimal for j # 1"*'. Therefore, §(+"*!) is
a Nash equilibrium for the stage-game at t"*. Since the E()'s are Nash equilibia for the
surrogate games immediately afier 1"+, it follows from Proposition V1 that E(7**') is a Nash equilibri-
um for T from "*'. If "* is not defined, then for each i, P;(E, 1**'4) > L(r"*'). Since the §()'s are
Nash equilibria for the surrogate games immediately after 7"*!, it follows from (4.3) that £(/"*') must
be Nash equilibrium for SurrG(1**'). Therefore, by Proposition VI, £ is Nash from 1. Next suppose

that ¥* = 2, so that some agent is leading immediately after 1"*). Since L; is us.c., 1"*! is defined in

this case. By (7.18), L.(1") 2 P, 1"+). By (Al), therefore, §(¢"*') is a Nash equilibrium for
SigG (", E). Also, from Case (b) above, £ is a Nash equilibrium for T for s > "*'. By Lemma VLI,
therefore, £ is a Nash equilibrium for T" from ¢**!. Finally, suppose that ' = 3. In this case, there ex-
ists i such that L,(1""'=)2 P,E, 1"V'+) =P, 1"). Since L; is u.s.c., "' is again defined. Once

again, it follows from Lemma V1.1 that £ is a Nash equilibrium for T from /"*'. D
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Proof of Theorem VII (necessity):  Fix an SGP outcome (H, 7) and a equilibrium profile § that
implements this outcome. Obviously, (5.1) must be satisfied. Assume that (f, 7) is not a type 1 out-
come. We will establish that it must be a type 2 outcome. By assumption, forevery s € T, E is Nash
from s. By Lemma VI.1@), therefore, E(7) must solve the stage-game induced by E at 7. Therefore, §
cannot have plural termination just beyond 1; if it did, then by Proposition VI, (f, 1) would be a type 1
outcome, contradicting our hypothesis. Moreover, since payoffs are swictly increasing, there can be no
interval after 7 on which exactly one player is moving (if there were, this player could do bener by
waiting.) Therefore, there exists an interval afier t on which no agent is moving. Since the game ends
al 1, restriction (X3) implies that some agem is moving with probability one at t. But a second player
must also be moving at this 'n'me. otherwise the first would rather wait. Applying (X3) again, the

second must be moving with probability one.

Proof of sufficiency:  Assume that {{I, 1) satisfies condition (5.1). We first agsume that it is a
type | outcome. Let &* be an SGP profile for I'. Let E be a profile that implements (f1, 1), has plural

termination just beyond 7 and satisfies condition (ii) of Proposition V1 for 5>0. Define § by:

Bau ifs < ?
E ifs=1 -

Eis) = g(i: fs=(,1+0 " Clearly, £ implements (fi, ). From (3.1}, £ is Nash from s,
E*(s) otherwise -

for every s <. From Lemma VL! and Proposition V1, E is Nash from s, for every 5 such that
E(s) = E(s). Since £* is an SGP equilibrium,  is Nash from the remaining decision nodes. If (it, 1) is

a type 2 outcome, proceed exactly as above, except choose E 1o be a SPTP that implements (f, 1) and

seto=0 0
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