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Conformational Dynamics and Binding Free
Energies of Inhibitors of BACE-1: From the
Perspective of Protonation Equilibria
M. Olivia Kim1*, Patrick G. Blachly1, J. Andrew McCammon1,2,3,4

1 Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United
States of America, 2 Department of Pharmacology, University of California San Diego, La Jolla, California,
United States of America, 3 Howard Hughes Medical Institute, University of California San Diego, La Jolla,
California, United States of America, 4 National Biomedical Computation Resource, University of California
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Abstract
BACE-1 is the β-secretase responsible for the initial amyloidogenesis in Alzheimer’s dis-

ease, catalyzing hydrolytic cleavage of substrate in a pH-sensitive manner. The catalytic

mechanism of BACE-1 requires water-mediated proton transfer from aspartyl dyad to the

substrate, as well as structural flexibility in the flap region. Thus, the coupling of protonation

and conformational equilibria is essential to a full in silico characterization of BACE-1. In

this work, we perform constant pH replica exchange molecular dynamics simulations on

both apo BACE-1 and five BACE-1-inhibitor complexes to examine the effect of pH on

dynamics and inhibitor binding properties of BACE-1. In our simulations, we find that solu-

tion pH controls the conformational flexibility of apo BACE-1, whereas bound inhibitors

largely limit the motions of the holo enzyme at all levels of pH. The microscopic pKa values

of titratable residues in BACE-1 including its aspartyl dyad are computed and compared

between apo and inhibitor-bound states. Changes in protonation between the apo and

holo forms suggest a thermodynamic linkage between binding of inhibitors and protons

localized at the dyad. Utilizing our recently developed computational protocol applying the

binding polynomial formalism to the constant pH molecular dynamics (CpHMD) framework,

we are able to obtain the pH-dependent binding free energy profiles for various BACE-1-

inhibitor complexes. Our results highlight the importance of correctly addressing the bind-

ing-induced protonation changes in protein-ligand systems where binding accompanies a

net proton transfer. This work comprises the first application of our CpHMD-based free

energy computational method to protein-ligand complexes and illustrates the value of

CpHMD as an all-purpose tool for obtaining pH-dependent dynamics and binding free

energies of biological systems.
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Author Summary

Formation of insoluble amyloid plaques in the vascular and hippocampal areas of the
brain characterizes Alzheimer’s disease, a devastating neurodegenerative disorder causing
dementia. Site-specific hydrolytic catalysis of β-secretase, or BACE-1, is responsible for
production of oligomerative amyloid β-peptide. As the catalytic activity of BACE-1 is pH-
dependent and its structural dynamics are intrinsic to the catalysis, we examine the depen-
dence of dynamics of BACE-1 on solution pH and its implications on the catalytic mecha-
nism of BACE-1. Also, we highlight the importance of accurate description of protonation
states of the titratable groups in computer-aided drug discovery targeting BACE-1. We
hope the understanding of pH dependence of the dynamics and inhibitor binding proper-
ties of BACE-1 will aid the structure-based inhibitor design efforts against Alzheimer’s
disease.

Introduction
Alzheimer’s disease is a neurodegenerative disorder characterized by loss of memory and fail-
ure in cognitive abilities, resulting from synaptic dysfunction and neuronal death in the brain
[1–5]. Major damages found in the brains of Alzheimer’s patients include cerebral and vascular
deposits of insoluble amyloid plaques, consisting of aggregates of amyloid β-peptide (Aβ) [6–
8]. Aβ occurs in two different forms, Aβ40 and Aβ42, and the overproduction and oligomeriza-
tion of Aβ42 is associated with the early onset of Alzheimer’s disease [9–12]. Aβ is produced by
sequential proteolytic cleavage of the type 1 transmembrane protein amyloid precursor protein
(APP) by β- and γ-secretases [13,14]. While γ-secretase generates several Aβ peptides varying
in the length of C-termini, β-secretase, or β-site APP cleaving enzyme 1 (BACE-1), cleavage
precisely gives the fibrillogenic Aβ42 [13–15]. Therefore, as it catalyzes the initial site-specific
hydrolysis step of Aβ production, BACE-1 is an attractive therapeutic target for the treatment
of Alzheimer’s disease [1–3,16,17].

As an aspartyl protease, the catalytic mechanism of BACE-1 involves two highly conserved
aspartyl residues, Asp32 and Asp228, which form a symmetric dyad at the base of the catalytic
cleft of the enzyme (Fig 1) [16]. Analogous aspartyl dyads are found in the aspartyl protease
family including pepsin, cathepsin D, renin, and HIV-1 protease [18–21]. The dyad is central
to the hydrolytic cleavage of the substrate through a nucleophilic attack of water bound to the
dyad [19–23]. Due to the general acid-base catalytic nature of the mechanism, the enzymatic
activity of BACE-1 is maximal at pH 4.5 and strongly depends on solution pH [24,25].

The active site of BACE-1 is covered by an antiparallel β hairpin (henceforth referred to as
the flap region; residues 67 to 77 shown in green in Fig 1) that is characteristic of aspartyl pro-
teases [16,26–29]. The X-ray crystal structures of other aspartyl proteases indicate that the flap
is inherently flexible [26–29]. The flexibility of the flap region is likely utilized in catalysis, with
transitions between open and closed conformations facilitating the entrance of substrates into
the active site and release of hydrolytic products [21,29–31]. The conserved Tyr71 [20] located
at the tip of the flap region is particularly essential for the conformational transitions of the
flap. Observations from X-ray crystallographic structures and molecular dynamics (MD) simu-
lations suggest that variation in hydrogen bond patterns between Tyr71 and surrounding resi-
dues such as Lys107, Lys75, Gly74, Glu77, and Trp76 enables the flexible motions of the flap
[21,29,31–33]. In the presence of inhibitors, Tyr71 can directly interact with bound inhibitors
and lock the flap in the closed state [31,33,34].
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Given that the enzymatic activity of BACE-1 depends on solution pH and that the structural
flexibility is intrinsic to catalysis, a comprehensive understanding of the pH dependence of
BACE-1 dynamics would greatly benefit drug design efforts. A detailed description of the pro-
tonation state of the aspartyl dyad is also important as all known bound inhibitors directly con-
tact the dyad. Several computational efforts have attempted to determine the protonation state
of the dyad, employing methods such as molecular mechanics (MM) [35], quantum mechanics
(QM) [36], QM/MM [37], molecular docking [38,39], and continuum electrostatics calcula-
tions [40]. However, the conformational flexibility of BACE-1 was not rigorously addressed in
these computations.

The importance of accounting for conformational flexibility in pKa computations has been
well established [41–46]. The instantaneous pKa of a titratable group is determined by its elec-
trostatic environment, which is affected by the given conformation of protein and protonation
states of other titratable residues [47]. Changes to the conformation of the protein can alter the
electrostatics, which may, in turn, induce a shift in the pKa of titratable groups. The prevalence
of such coupling of protonation and conformational equilibria has been observed in various
systems both computationally and experimentally [44,48–59]. Furthermore, complex forma-
tion between protein and small molecules or other proteins can also induce changes in the pKa

values of titratable groups on either binding partner [51,60–70].
Consequently, several computational methods have been developed to explicitly account for

conformational changes in pKa computations [49,71–76]. Among these, various flavors of con-
stant pH molecular dynamics (CpHMD) methodologies have emerged to incorporate pH as an
additional external thermodynamic variable to the conventional MD framework [48,77–81].
CpHMD simulations have been successfully applied to predict pKa values of titratable groups
in proteins [48,77–83] and nucleic acids [84–86], as well as to explain the acid-base catalysis by
RNase A [87] and to understand the mechanisms behind the pH-dependent conformational
changes [59,88].

Conventional molecular simulations or free energy computations typically employ fixed
protonation states that are identical for both free and bound states, set prior to the computa-
tions. This assumption ignores the possibility of protonation states changing upon binding and

Fig 1. Structure of BACE-1, highlighted with titratable residues considered here and flap region
(residues 67 to 77) in green.

doi:10.1371/journal.pcbi.1004341.g001
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can lead to significant errors when protein-ligand binding is a pH-dependent process [60]. Fur-
thermore, the pH-dependent conformational dynamics cannot be appropriately addressed if
the protonation states are fixed while conformational fluctuations propagate.

Recognizing the lack of a standard protocol to rigorously account for proton-linked ligand
binding to protein, we recently developed a protocol utilizing CpHMD to compute pH-depen-
dent binding free energies [89]. In our computational method, the binding polynomial formal-
ism devised by Wyman [90] is applied with the CpHMD framework to obtain a pH-dependent
correction to a reference free energy of binding obtained at a given level of pH (ΔG°ref,pH). The
proton-linked binding free energy then can be expressed according to Eq 8 provided in Meth-
ods, using the notation used by Tanford [91], where the total charges of the protein-ligand
complex, protein, and ligand in Eq 8 are obtained from the CpHMD simulations. The integral
in the second term in Eq 8 provides a thermodynamic relation that holds for pH-dependent
ligand binding in cases where proton binding to different titratable sites may be cooperative (i.
e., no assumptions are made about sites titrating independently). When applied to binding of
small molecules to the cucurbit [7]uril host, this CpHMD-based free energy method accurately
obtained the pH-dependent binding free energy profiles. Also, the method demonstrated that
the traditional use of fixed protonation states for both free and bound states predicted based on
pH 7 in free energy computations could give errors larger than 2 kcal/mol in the host-guest sys-
tems with a single titratable site [89]. Given the complexity of protein environment where mul-
tiple titratable groups exist, the corresponding error in free energy may be even larger in
protein-ligand binding, highlighting the significance of accurate description of the binding-
induced pKa shifts in free energy computations.

In this work, we have performed constant pH replica exchange molecular dynamics
(pH-REMD) simulations to study the proton-linked conformational dynamics and binding
free energies of inhibitors to BACE-1. The conformational changes of the flap region of BACE-
1 in the absence and presence of inhibitors shown in Fig 2 are analyzed with respect to solution
pH, which is found to act as a conformational switch. The microscopic pKa values of ten titrat-
able residues including the aspartyl dyad in BACE-1-inhibitor complexes are obtained from
the pH-REMD simulations and compared with those computed for free enzyme. The results
show significant binding-induced shifts in the pKa values. We further apply our CpHMD-
based computational protocol to these results, computing the pH-dependent binding free
energy profiles of various inhibitors to BACE-1. The results demonstrate that incorrect assign-
ment of protonation state to the titratable groups can result in errors of over 8 kcal/mol in free
energy computations for the systems considered here, highlighting the significance of correctly
addressing the binding-induced protonation changes. To the best of our knowledge, this work
presents the first application of CpHMD simulations to quantify binding in protein-ligand sys-
tems and shows high utility for addressing pH effects in computer-aided drug discovery
workflows.

Results

pH-Dependent Conformational Dynamics of Apo BACE-1
As conformational transitions of BACE-1 are suggested to play a role in catalysis [29–31], we
first examine the dynamics intrinsic to apo BACE-1 before exploring the effect of inhibitor
binding in the following section. Conventional molecular dynamics (cMD) simulations of
duration 100 ns are carried out prior to constant pH molecular dynamics (pH-REMD) simula-
tions in order to provide equilibration phase for apo and three inhibitor-bound systems pre-
pared by homology modeling (see Methods). Using the protonation states assigned using the
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PROPKA program [75,92–94], the cMD simulations provide a benchmark for comparing
pH-REMD simulations.

In order to quantify the extent to which each residue fluctuates, we compute the root-mean-
square fluctuation (RMSF) of each residue in apo BACE-1 from the cMD trajectory. As shown
in Fig 3A, higher RMSF values are noted for the flap region (residues 67 to 77), consistent with
the suggestion by others [29,31–34]. Taking a closer look at the flap region, we measure the dis-
tance between the center of mass of the aspartyl dyad and Tyr71, which is located at the tip of
the flap region. From the change of the dyad-flap distance plotted in Fig 3B, it is evident that
the flap region undergoes transitions between open and closed conformations, within the dis-
tance range of 10 Å (closed) to 30 Å (open). In the closed conformation of the flap, we observe
a water-mediated hydrogen bond network that includes the dyad, Ser35, Tyr71, Arg128,
Thr231, and Thr329 (Fig 3C), agreeing with the findings from previous studies [23,31,34]. On
the other hand, when the flap is open, the dyad forms contacts mediated by water with Ser35,
Thr231, and Arg235, while Tyr71 is entirely exposed to solvent (Fig 3C).

While the cMD simulation is performed with fixed protonation states, we choose to exam-
ine the effect of protonation equilibria on the conformational flexibility of apo BACE-1 as the

Fig 2. Chemical structures of BACE-1 inhibitors considered in this study. The PDB IDs are shown for complex structures of BACE-1 bound with
respective inhibitors.

doi:10.1371/journal.pcbi.1004341.g002
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enzymatic activity of BACE-1 is shown to be pH-dependent [24,25]. We focus this investiga-
tion on a comparison of the dynamics of the flap region at acidic (pH 1 to 3) and basic (pH 9 to
11) pH levels. The conformational space of the flap region sampled at these differing levels of
pH is quantified by measuring the distances between the center of mass of the dyad and Tyr71
(Fig 4A). Since the pH-based trajectories reconstructed from the pH-REMD simulations are
not time-dependent, distributions of the measured distances are presented here. The distance
between the dyad and Tyr71 exhibits a bimodal distribution at acidic pH, with the flap sam-
pling both open and closed states. When the flap is closed, an average distance between the
dyad and flap is about 8 Å, while open conformations are also populated, having an average
dyad-flap distance of ~ 17 Å. In order to visualize structural characteristics typical at varying
solvent environments, we carry out a clustering analysis based on pairwise RMSDs of Cα
atoms of the conformations sampled at acidic and basic pH. We find three dominant conform-
ers that encompass 86% of total conformations sampled at acidic pH. The flap regions from
representative structures of these three clusters are shown in red in Fig 4B, further illustrating
the flap region sampling both open and closed conformations at acidic pH.

At basic pH, the flap exhibits noticeably different dynamics compared to acidic pH. The
flap region remains over 10 Å away from the dyad and most frequently found in the open con-
formation with a distance of about 17 Å from the dyad (Fig 4A). From the clustering analysis, a
single conformer is found to represent 82% of total conformations sampled at basic pH. In this

Fig 3. (A) RMSF of apo BACE-1 from the cMD simulations. (B) Change in distance between the dyad and Tyr71 in the flap region. (C) Open and closed
conformations of the flap and interactions between the dyad and surrounding residues in each conformation.

doi:10.1371/journal.pcbi.1004341.g003

The pH Dependence of Dynamics and Inhibitor Binding of BACE-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004341 October 27, 2015 6 / 28



typical conformer, the flap is in widely open state with a distance of 17.6 Å from the dyad and
completely exposed to the solvent area, as shown in blue in Fig 4B.

Conformational Dynamics of BACE-1 in Complex with Inhibitors
We continue to probe the changes in dynamics of BACE-1 that accompany inhibitor binding.
While the shifts between open and closed conformations of the flap region are observed in the
cMD simulations of apo BACE-1, the flap remains in a closed state in the inhibitor-bound
cMD simulations. The distances between the center of mass of the dyad and Tyr71 observed in
the cMD simulations of BACE-1 in complex with the inhibitors 2B8L and 2FDP, respectively,
are shown in Fig 5A. In comparison to the distribution of distances observed in the cMD simu-
lation of apo BACE-1 (Fig 3B), we observe significantly less flexibility in the flap region in the
2B8L and 2FDP systems. Fluctuation of the dyad-flap distance in the 2B8L system during the
early stage of the simulation is likely due to structural instability arising from the homology

Fig 4. (A) Distributions of distances between the dyad and Tyr71 in apo BACE-1 at acidic (pH 1 to 3;
red) and basic (pH 9 to 11; blue) pH. (B) Conformations of the flap region in the cluster representative
structures of apo BACE-1 at acidic and basic pH. The distances between the dyad and flap of the
representative structures are 9.17 Å, 11.0 Å, and 15.7 Å at acidic pH; and 17.6 Å at basic pH.

doi:10.1371/journal.pcbi.1004341.g004

The pH Dependence of Dynamics and Inhibitor Binding of BACE-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004341 October 27, 2015 7 / 28



modeling. However, after 40 ns, the flap region in the 2B8L complex achieves a stable state and
remains closed at a distance of about 15 Å from the dyad. It is worth noting that the measured
dyad-flap distances in the inhibitor-bound systems are inherently longer than that in apo
enzyme; for instance, the open conformation of the flap in apo BACE-1 has the dyad-flap dis-
tance of ~ 15 Å whereas the closed conformation of the flap in the 2B8L system has the distance
of 15 Å as well. This is because the flap is unable to penetrate into the active site as deep as in
apo BACE-1, due to the presence of the bound inhibitors in the binding site. Similarly, the flap
region in the 2FDP system maintains an average dyad-flap distance of ~ 11 Å. The bound
inhibitors have hydrophobic interactions with Tyr71 and Phe108 while forming hydrogen
bonds with the polar residues including the dyad, Tyr71, Thr231, and Ser325. These hydrogen
bond networks effectively lock the flap in the closed state, as shown in Fig 5B for the 2B8L sys-
tem. Similar trends in the dyad-flap distance are observed in other inhibitor-bound systems
(S1 Fig).

As we observe the pH-controlled dynamics of the flap region in apo BACE-1, we also carry
out similar analyses on the holo systems to examine the effect of pH on conformations of the
flap in the presence of inhibitors. Unlike the apo system, a clear distinction in the dynamics of

Fig 5. (A) Change in distance between the dyad and flap region in the 2B8L (purple) and 2FDP (green)
systems in the respective cMD simulations. (B) Interactions between the bound inhibitor in the 2B8L
complex and surrounding residues.

doi:10.1371/journal.pcbi.1004341.g005

The pH Dependence of Dynamics and Inhibitor Binding of BACE-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004341 October 27, 2015 8 / 28



BACE-1 contingent on pH levels is not found in the inhibitor-bound systems. The distances
between the center of mass of the dyad and Tyr71 indicate that a closed state of the flap is dom-
inant in the 2B8L system at both pH, with average distances of ~ 15 Å, as well as slightly open
conformation of the flap with the dyad-flap distance of ~ 19 Å at basic pH (Fig 6A). From the
clustering analysis, the flap is in closed state in the typical structure representing 67 to 77% of
the total conformations sampled at both pH conditions, as shown in Fig 6C, forming similar
contacts with the bound inhibitor and dyad as observed in the cMD simulations (Fig 5B).
Other cluster representative structures also exhibit similarly closed conformations the dyad-
flap distances varying in the range of 15 to 19 Å. In the 2FDP system, the flap region exhibits
essentially identical dynamics; the flap is in closed state at acidic pH and has both slightly open
and closed conformation at basic pH. On average, the flap is found primarily in a closed con-
formation where the dyad-flap distance is 15.2 Å (Fig 6B). Consistent with these findings, the
cluster representative structures of the 2FDP system at both acidic and basic pH have the flap
in closed state, similar to the 2B8L complex (Fig 6C). Similar trends in the distributions of
the dyad-flap distance in varying pH conditions are observed in other inhibitor-bound systems
(S2 Fig).

Computation of pKa Values of Apo BACE-1
We further investigate the acidic properties of the aspartyl dyad and surrounding titratable
sites in both apo and holo BACE-1. The pKa values of the different titratable residues consid-
ered are obtained by fitting the Hill equation (Eq 3; Methods) to titration data obtained from
the pH-REMD simulations conducted at different levels of pH (Table 1). We first analyze the
computed pKa values of the titratable groups in apo BACE-1 and compare the values obtained
for inhibitor-bound systems in the following section.

The predicted pKa values of the aspartyl dyad, Asp32 and Asp228, are 5.0 ± 0.2 and
5.9 ± 0.5, respectively. Titration curves for the dyad are shown in Fig 7, plotted as fraction of
deprotonated species of each residue as a function of pH. From the titration curves, both aspar-
tates are completely protonated at acidic pH levels (pH< 3), while fully deprotonated at basic
pH (pH> 8). Between pH 4 and 8, Asp32 and Asp228 exist in an ensemble of protonated and
deprotonated forms. To illustrate this, Asp32 and Asp228 are approximately 20% and 40%
deprotonated, respectively, at pH 4.5, the pH at which BACE-1 is most active. These observed
shifts from the typical pKa of Asp residues (4.0) [95,96] may aid in the proton transfer step
required in BACE-1 catalysis. The Hill coefficients of the dyad deviate from one, suggesting
that titration of Asp32 and Asp228 is coupled. The coupled titration observed for these residues
also contributes to greater noise in their respective titration curves, leading to larger errors in
in their pKa (Table 1).

The pKa values of the remaining titratable residues are also reported in Table 1. All ionizable
residues besides the dyad appear to titrate independently of each other, as suggested by their
Hill coefficients that are approximately one. Furthermore, the statistical errors from fitting pro-
cedure to obtain the pKa’s of these residues are minimal. Similar to those of the dyad, the com-
puted pKa values of Asp138, Asp223, Glu116, and Glu339 are shifted higher than the canonical
pKa values for Asp (4.0) and Glu (4.4) [95,96], whereas Asp106 exhibits titration behavior in
line with model Asp. As these residues are distant from the active site, these deviations in the
computed pKa values arise mainly from the microenvironments surrounding them. For
instance, Glu116 and Glu339 are buried in the protein interior (Fig 1), where the microscopic
dielectric constants can be different from that of the bulk solvent [43,44,97,98]. In order to
compensate for the desolvation energy, the neutral, protonated forms of the glutamates are

The pH Dependence of Dynamics and Inhibitor Binding of BACE-1
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Fig 6. Distribution of distances between the dyad and flap in the 2B8L system at acidic (pH 1 to 3; red)
and basic (pH 9 to 11; blue) pH. (A) 2B8L. (B) 2FDP. (C) Conformations of the flap in the cluster
representative structures of the 2B8L system at acidic and basic pH.

doi:10.1371/journal.pcbi.1004341.g006
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Table 1. pKa values obtained from pH-REMD simulations. The corresponding Hill coefficients are shown in parentheses.

Apo 2B8L 2P4J 2G94 2IRZ 2FDP

Asp32 5.0 ± 0.2 (0.51) 9.7 ± 0.2 (1.72) 8.7 ± 0.6 (0.34) 9.54 ± 0.05 (2.19) 8.4 ± 0.7 (0.40) 8.9 ± 0.7 (0.33)

Asp106 3.99 ± 0.01 (1.05) 3.94 ± 0.01 (0.89) 4.00 ± 0.01 (0.97) 3.91 ± 0.01 (0.97) 3.85 ± 0.01 (0.96) 3.85 ± 0.01 (0.99)

Asp138 6.26 ± 0.01 (1.16) 6.10 ± 0.02 (0.93) 5.59 ± 0.04 (0.86) 5.72 ± 0.01 (0.92) 6.16 ± 0.01 (1.04) 6.40 ± 0.01 (1.11)

Asp223 5.20 ± 0.03 (0.91) 5.99 ± 0.03 (1.07) 5.03 ± 0.02 (0.92) 5.34 ± 0.01 (0.95) 4.53 ± 0.03 (1.02) 5.46 ± 0.02 (1.06)

Asp228 5.9 ± 0.5 (0.41) 8.4 ± 0.1 (1.26) 8.3 ± 0.1 (1.75) 8.1 ± 0.2 (0.90) 8.3 ± 0.1 (0.79) 9.7 ± 0.6 (0.30)

Glu116 7.23 ± 0.02 (1.02) 7.9 ± 0.1 (0.77) 7.51 ± 0.04 (0.86) 7.08 ± 0.01 (1.26) 7.42 ± 0.04 (0.77) 8.27 ± 0.09 (1.34)

Glu265 4.31 ± 0.01 (0.96) 4.39 ± 0.01 (0.95) 4.28 ± 0.01 (0.95) 4.32 ± 0.01 (0.97) 4.32 ± 0.01 (0.98) 4.33 ± 0.01 (0.98)

Glu339 6.6 ± 0.1 (0.73) 7.01 ± 0.07 (0.88) 7.46 ± 0.02 (1.01) 6.16 ± 0.03 (1.03) 7.35 ± 0.02 (1.66) 6.88 ± 0.02 (1.00)

His45 5.6 ± 0.1 (1.15) 4.3 ± 0.1 (0.91) 6.33 ± 0.02 (1.06) 6.26 ± 0.02 (1.16) 5.99 ± 0.08 (0.87) 5.95 ± 0.02 (1.17)

Tyr71 9.68 ± 0.01 (1.02) 9.4 ± 0.3 (1.05) 9.62 ± 0.02 (1.13) 9.71 ± 0.03 (1.99) 9.4 ± 0.03 (0.86) 9.92 ± 0.09 (0.85)

doi:10.1371/journal.pcbi.1004341.t001

Fig 7. Titration curves from the pH-REMD simulations of apo BACE-1. (A) Asp32. (B) Asp228.

doi:10.1371/journal.pcbi.1004341.g007
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favored in the protein interior at the solution pH where they would normally be charged if they
were not buried. Titration curves for the remaining titratable residues are provided in S3 Fig.

Binding-Induced pKa Shifts of Titratable Residues in BACE-1
Having observed the pKa values of various titratable groups in apo BACE-1, we shift our atten-
tion to the inhibitor-bound systems. First considering the dyad, the pKa values of Asp32 and
Asp228 are shifted toward more basic values of pH when various inhibitors are present, with
computed pKa values greater than 8.1. Representative titration curves for the dyad in 2B8L and
2FDP systems (purple curves) are compared with those in apo BACE-1 (green curves) in Fig 8.
Similar curves corresponding to other inhibitor-bound systems are shown in S4–S6 Figs.

In the 2B8L system, Asp32 and Asp228 have pKa values of 9.7 ± 0.2 and 8.4 ± 0.1, respec-
tively (shifted + 4.7 and + 2.5 pK units relative to their values in apo BACE-1). From the titra-
tion curves in Fig 8A and 8B, it is apparent that both Asp32 are Asp228 are significantly
protonated under pH 8–9 in the 2B8L system. Above this pH, the dyad exists in an ensemble of
different protonation states between pH 8 and 10. Similar binding-induced pKa shifts are
observed for the dyad in 2FDP system. In this case, the computed pKa’s of Asp32 and Asp228
are 8.9 ± 0.7 and 9.7 ± 0.6, respectively. As shown in Fig 8C and 8D, in the 2FDP complex,
both aspartates are predominately protonated at the pH levels below 7, and exist as an ensem-
ble of different protonated forms at basic pH. In both cases, as in the apo enzyme, we observe
the coupled titration behavior of the dyad and relatively large errors during the fitting of titra-
tion data to the Hill equation.

The remaining titratable groups examined, all of which are distant from the binding site, do
not undergo pKa shifts larger than 1.3 pK units upon inhibitor binding (S4–S8 Figs). The nar-
row pKa shifts of these titratable groups upon complex formation suggest that binding of inhib-
itors to BACE-1 is thermodynamically linked to a proton transfer that is primarily localized at
the catalytic dyad.

pH Dependence of the Binding Free Energy of Inhibitors
The large shifts in pKa’s of the aspartyl dyad upon binding of inhibitors to BACE-1 indicate
that proton binding is linked to complex formation in BACE-1 systems. Utilizing our recently
developed computational protocol [89], we present the pH-dependent changes in free energies
of binding of inhibitors to BACE-1. Application of the binding polynomial formalism to the
results obtained from the pH-REMD simulations provides pH-dependent corrections to the
reference binding free energies obtained for a given pH, ΔG°ref,pH (Eq 8). The reference free
energies of binding of inhibitors for BACE-1-inhibitor systems are obtained from experimental
association constants measured at pH 4.5 [99–102].

Binding free energy profiles as functions of pH of the 2B8L and 2FDP complexes are shown
in Fig 9. Significant changes in binding free energies from the reference free energies at pH 4.5
are observed as solution pH increases. Considering the 2FDP complex, we see that binding is
most favorable at acidic pH, where the maximum affinity is -11.2 kcal/mol. As pH increases,
binding becomes less favorable. This is most pronounced in the pH range of 5 to 10, where the
aspartyl dyad that interacts directly with the bound inhibitor begins to populate deprotonated
states, leading to an ensemble of protonated and deprotonated species of the dyad at the pH
levels between 5 and 10 (Fig 8B). As the deprotonated forms of the dyad develop, hydrogen
bonds made between the diprotonated dyad and bound inhibitors at low pH are lost, and con-
sequently, the binding affinity becomes weaker in this pH range and is least favorable with an
affinity of 2.2 kcal/mol at pH 12. Similar binding free energy profiles as functions of pH for
other inhibitor-bound systems can be found in S9 Fig.
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In Table 2, the binding free energies are compared in the pH ranges that are most relevant
to biological conditions. The binding free energy for the 2FDP system changes by 5.1 kcal/mol
between pH 4.5 and 7. Comparison to the binding free energy at pH 10 leads to more dramatic
changes; for instance, the binding affinity differs by 10.8 kcal/mol between pH 4.5 and pH 10
for the 2FDP complex. As mentioned above, such large changes are due to the shifts in proton-
ation state of the dyad at these pH levels from the diprotonated state observed at pH 4.5, and
further highlight the significance of correctly accounting for the protonation states of the titrat-
able groups which accompany a net proton transfer upon inhibitor binding.

Discussion
The dependence of BACE-1 enzymatic activity on solution pH and the need for conforma-
tional change to accompany the catalysis are both well established [24,25,30,31,34]. As a prom-
ising therapeutic target for the treatment of Alzheimer’s disease, understanding the detailed
mechanism underlying the pH dependence of BACE-1 dynamics and enzymatic activity is
imperative for structure-based drug design. In this work, we have performed constant pH rep-
lica exchange molecular dynamics (pH-REMD) simulations to examine the proton-linked con-
formational dynamics and inhibitor binding properties of BACE-1.

Significant flexibility of the flap region (residues 67 to 77), resulting in transitions between
open and closed conformations, is noted for apo BACE-1 during conventional molecular
dynamics (cMD) simulations (Fig 3). As we further probe the effect of pH on conformational
flexibility of apo BACE-1, distinctive conformations that are characteristic of different pH

Fig 8. Titration curves for the aspartyl dyad in the 2B8L and 2FDP systems, shown in purple. (A)
Asp32, (B) Asp228 in the 2B8L system; (C) Asp32, (D) Asp228 in the 2FDP system. Respective titration
curves of the dyad in apo BACE-1 are shown in green.

doi:10.1371/journal.pcbi.1004341.g008
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environments are captured from the pH-REMD simulations. At acidic pH, both open and
closed conformations of apo BACE-1 are significantly populated, whereas a single conformer
with the flap closed predominates in basic conditions (Fig 4).

While we observe the flexible nature of apo BACE-1, the presence of inhibitors at the active
site of BACE-1 greatly reduces conformational mobility of the enzyme (Fig 5). The bound
inhibitors form various hydrophobic and polar interactions with the surrounding residues,
holding the flap in a tightly closed state. Similarly closed conformations of the flap are observed

Fig 9. Binding free energy profiles of inhibitors as functions of pH. (A) 2B8L. (B) 2FDP.

doi:10.1371/journal.pcbi.1004341.g009

Table 2. Binding free energies of the inhibitors upon complex formation with BACE-1. All energies are reported in kcal/mol.

ΔG°ref, pH (pH 4.5) ΔG° (pH 7) ΔΔG°pH7-ref ΔG° (pH 10) ΔΔG°pH10-ref

2B8L -9.1 [99] -6.6 2.5 -1.3 7.8

2P4J -12.3 [99] -8.7 3.6 -4.0 8.3

2G94 -13.1 [100] -9.4 3.7 -4.9 8.2

2IRZ -10.1 [101] -6.1 4.0 -2.6 7.5

2FDP -10.4 [102] -5.3 5.1 0.4 10.8

doi:10.1371/journal.pcbi.1004341.t002
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regardless of the varying pH conditions, indicating that the structural flexibility of BACE-1 is
largely limited by the presence of bound inhibitors.

We determine the microscopic protonation states of the dyad residues and surrounding
titratable residues to further probe the mechanism underlying the pH dependence of the cata-
lytic activity of BACE-1. First, the pKa values of ten titratable residues in various BACE-1 sys-
tems are obtained from the pH-REMD simulations (Table 1). The computed pKa values of
Asp32 and Asp228 in apo BACE-1 are 5.0 ± 0.2 and 5.9 ± 0.5, respectively, shifted from the
typical pKa of Asp (Fig 7). At acidic pH, protonated states are dominant for both aspartates of
the dyad. This allows the dyad to form hydrogen bonds with the flap residues, i.e., Tyr71 and
Thr72 and allows for closed conformations to be sampled at low pH. On the other hand, open
conformations of the flap are also populated at acidic pH; these open conformations likely aid
in substrate binding and product release in the course of catalysis [29–31]. When we solvate
the open and closed conformers from the pH-REMD simulations, which are performed in
implicit solvent, similar water occupancies to those in the cMD simulations are observed (Fig
3C). When the flap is open, the active site becomes largely accessible to water, which is needed
to act as nucleophile for the hydrolytic catalysis by BACE-1. Also, water molecules entering the
active site help to compensate for the breaking of hydrogen bonds between the dyad and flap
by forming alternative hydrogen bonds and mediating the hydrogen bond networks with sur-
rounding charged residues such as Ser35 and Arg235. Therefore, conformational transitions
between open and closed states of the flap at acidic pH allow for channeling of solvent, sub-
strates, and hydrolytic products to and from the active site in catalysis. With the pKa values
near the pH of optimal enzymatic activity, i.e., pH 4.5, the dyad is also able to easily gain and
release proton(s) during the catalytic cycle. Hence the pKa values of the dyad of BACE-1 shifted
from the typical value may be an evolutionary result to achieve the maximal activity at pH 4.5.

As pH increases, deprotonated species of both the dyad and Tyr71 start to emerge. Conse-
quently, the hydrogen bond networks observed in acidic conditions no longer persist and are
instead replaced by water molecules, leading to the primarily open conformation of the flap at
basic pH. While this open state of the flap is stabilized energetically through water-dyad inter-
action, it is likely that the persistence of the open conformation at basic pH disables the
enzyme’s ability to corral the substrate into the binding site for catalysis. Therefore, observation
of the invariably open state of the flap at basic pH is consistent with the suggested role of flexi-
bility of flap in the catalysis at acidic pH [29–31]. Our results thus indicate that the conforma-
tional dynamics intrinsic to the enzymatic catalysis of BACE-1 are modulated by solution pH,
further suggesting the enzyme’s structural adaptation during the evolution for its maximal
activity.

The Hill coefficients for fitting the titration data to the Hill equation suggest the titration for
the aspartyl dyad is cooperative in both free and complexed BACE-1, while independent,
uncoupled titrations are observed for other residues considered. Such coupled titration behav-
ior makes computing the microscopic pKa values difficult. Hence, the statistical errors associ-
ated with computing the pKa’s of the dyad are higher than those of other titratable residues.

At pH 4.5, the aspartyl dyad exists in an ensemble of protonated and deprotonated species
in apo BACE-1 (Fig 7). Upon binding of inhibitors, however, significant shifts in the pKa values
are observed for the dyad, with both Asp32 and Asp228 having pKa values between 8 and 10
(Table 1). Inhibitor binding effectively alters the protonation state of the dyad at pH 4.5 to its
diprotonated form in all cases studied here. The protonated forms are preferred for both aspar-
tates in the presence of inhibitor. This diprotonated state likely compensates for the unfavor-
able energetics associated with desolvation upon inhibitor binding, allowing for hydrogen
bonds between the dyad and the bound inhibitor. The minimal pKa shifts observed for the
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remaining titratable residues of BACE-1 upon complex formation imply a thermodynamic
linkage between inhibitor binding and proton transfer primarily localized at the dyad.

Among several computational efforts to determine protonation state of the aspartyl dyad in
BACE-1, a recent work by Domínguez et al. also examined the pKa’s of buried titratable groups
in the 2B8L and 2IRZ systems [40], whose computed values are compared with ours in Table 3.
At first glance, the predicted pKa values differ the most between the two works for Asp138 and
Asp228. In Domínguez et al., the pKa of Asp228 does not deviate much from pKa,ref of Asp
(4.0) in both systems compared, while Asp32 was predicted to undergo more significant pKa

shift relative to its dyad partner. On the other hand, pKa’s of both aspartates in the dyad shifted
to more basic values of pH in our calculations.

When comparing the results in Table 3, several distinctions in the methods used in two
studies for pKa prediction should be noted. First, the GB-OBC implicit solvent model [103]
was used in Domínguez et al. [104] while the GB-Neck 2 model, in which improved results
have been obtained with the added parameters to the GB-OBC [105], was employed in the
pH-REMDmethod used here. Also, the internal dielectric constant of 10 [104] was used in
their work while the GB-Neck 2 implementation in Amber 14 employs 1 [105]. In addition to
the difference in the force fields utilized, perhaps more importantly, the conformational
changes upon inhibitor binding were not rigorously accounted for in their study. Although the
detailed comparison of the algorithms used for pKa calculation is beyond the scope of this
work, addressing the conformational aspect is particularly important for studying BACE-1 due
to its flexible dynamic nature. This is especially crucial when computing the pKa values of the
titratable groups in the absence of bound inhibitors, as the conformational fluctuations in the
flap also imply the change in solvent accessibility. Hence, the dielectric response of the aspartyl
dyad can be different in the presence and absence of bound inhibitors, which in turn can affect
the computed pKa values. Consequently, it is evident that conformational transitions accompa-
nying binding of inhibitors should be accounted for in calculation of pKa values of BACE-1. As
all previous attempts to compute the pKa’s of the titratable groups in BACE-1 have been largely
limited to the use of static X-ray crystallographic structures, our results obtained from concur-
rent sampling of protonation and conformational spaces by pH-REMD provide a new insight
into the microscopic pKa values of BACE-1.

Application of our recently developed constant pH molecular dynamics (CpHMD)-based
computational protocol [89], which applies the binding polynomial formalism to address the
pH dependence of binding free energies, enables us to obtain proton-linked binding free energy
profiles of various inhibitors. As shown in Fig 9 and S9 Fig, all inhibitors bind most strongly at
acidic pH. The changes in binding free energies are most pronounced in the pH range of 4 to
10, which essentially encompasses most biological reactions. The deviations in binding free
energies within this pH range from the reference binding free energies at pH 4.5 arise from the

Table 3. Comparison of computed pKa values of the titrable groups in 2B8L and 2IRZ.

2B8L 2IRZ

This work Domínguez et al. [40] This work Domínguez et al. [40]

Asp32 9.7 ± 0.2 8.35 8.4 ± 0.7 6.88

Asp138 6.10 ± 0.02 3.23 6.16 ± 0.01 3.38

Asp228 8.4 ± 0.1 4.47 8.3 ± 0.1 4.01

Glu116 7.9 ± 0.1 5.95 7.42 ± 0.04 6.09

Glu339 7.01 ± 0.07 6.10 7.35 ± 0.02 6.26

doi:10.1371/journal.pcbi.1004341.t003
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shift in populations of major protonated species of the titratable residues, primarily those of
the dyad. Between pH 5 and 10, the dyad starts to populate the deprotonated species (Fig 8),
and as the deprotonated forms of the dyad develop, hydrogen bonds made between the dipro-
tonated state of the dyad and bound inhibitors at low pH break. Subsequently, the binding free
energies of the inhibitors become very unfavorable as pH increases. Such observations are
impossible with cMD simulations where the protonation states are fixed and fractional proton-
ation is not allowed. This highlights the benefit of using CpHMDmethod in order to address
cases in which changes in protonation states are critical.

Furthermore, our results emphasize the importance of correctly addressing the binding-
induced changes in protonation states in protein-ligand systems where binding accompanies
a net proton transfer. In conventional molecular modeling or free energy computations, the
protonation states of the titratable groups, which are set ahead of time, are fixed and assumed
to be identical for both free and bound states. Consistent with this convention, consider a
hypothetical scenario in which both Asp32 and Asp228 are assumed to be completely pro-
tonated in both apo and holo states. In the case of 2B8L system, such protonation state of
the dyad will result in binding free energy of the inhibitor of -9.3 kcal/mol (Fig 9A). On the
other hand, when both aspartates are considered fully deprotonated, the binding free energy
of the inhibitor is -1.3 kcal/mol. In these two extreme scenarios where the identical, discrete
protonation state of the dyad is assumed for both free and bound states, the binding free
energies deviate from the true free energy in which the protonation states are considered sep-
arately for apo and holo states and fractional protonation is allowed. The errors are as large
as 8 kcal/mol for the 2B8L system and similar deviations are noted for other inhibitor-
bound systems considered here, ranging between 8 and 12.6 kcal/mol. Such errors are non-
trivial and the magnitude is in great excess of typical errors from free energy computations
[106,107].

In addition, we note the lack of binding free energies of inhibitors to BACE-1 that are exper-
imentally measured at pH levels other than pH 4.5. For BACE-1, the inhibition assays are tradi-
tionally carried out at pH 4.5 where the catalytic activity of BACE-1 is maximal. However,
from a free energy computational standpoint, it would be greatly beneficial if binding free ener-
gies were measured at other pH levels to incorporate the effect of pH into free energy computa-
tions. Availability of experimental reference binding energies at various pH will be of great
importance to pushing the free energy computation field forward.

The results presented here demonstrate the dynamics of BACE-1 controlled by solvent
pH. The flexible motions of the flap region at low pH, assisted by the diprotonated state of
the aspartyl dyad, enable the enzyme’s optimal catalytic mechanism at acidic environment,
implying a linkage between the protonation equilibria, conformational dynamics, and cata-
lytic activity of BACE-1. In addition, we show the thermodynamic relation between binding
of inhibitors and protons at the active site of BACE-1. Our results highlight the importance
of accurately accounting for the protonation states of the titratable groups in protein-ligand
systems where ligand binding is pH-dependent. Furthermore, we show that the CpHMD
method can be used as an all-purpose tool to assess the pH-dependent dynamics and to quan-
tify the binding free energies for protein-ligand systems where the protonation equilibria
play an important role. To the best of our knowledge, this work presents the first application
of our CpHMD-based free energy method to protein-ligand systems. In using the method,
absolute binding free energies obtained by computational free energy calculations such as
thermodynamic integration can be used in cases where experimental association constants
are not available. Our results highlight high utility of CpHMD method to address the effect of
pH on conformational dynamics and inhibitor binding in computer-aided drug discovery
workflows.
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Methods

Constant pH Replica Exchange Molecular Dynamics
Baptista et al. developed the constant pH molecular dynamics (CpHMD) method to enable
concurrent sampling of discrete protonation states and conformational space according to the
semi-grand canonical ensemble [78]. In this work, we apply the flavor of CpHMD coupled
with replica exchange (pH-REMD) [108] implemented in the AMBER 14 suite of programs
[95] with generalized Born (GB) electrostatics. In the CpHMD simulations, a conventional
molecular dynamics (MD) simulation is periodically interrupted by a Monte Carlo (MC) step,
in which a change in the protonation state of a random titratable residue is considered [81].
Acceptance of the new protonation state is contingent on the computed transition free energy,
ΔGtrans:

DGtrans ¼ kBTðpH� pKa;refÞln10þ DGelec � DGelec;ref ; ð1Þ

where pH enters as an external thermodynamic parameter and kBT is the Boltzmann constant
multiplied by the temperature of the system. For a given value of pH, the difference in electro-
static free energy that accompanies the change in protonation being considered, ΔGelec, is com-
puted with respect to the difference in electrostatic free energy that accompanies analogous
change in protonation for a model compound, ΔGelec,ref, which has a known pKa value (pKa,

ref). As all titratable residues in this study are protein residues, the model compounds refer-
enced in Eq 1 are individual amino acids in GB solvent. The respective pKa,ref values for
CpHMD in AMBER 14 are 4.0 for Asp, 4.4 for Glu, 6.5 and 7.1 for His, 9.6 for Tyr, and 10.4 for
Lys [95]. Computing ΔGtrans with respect to these model compounds enables cancellation of
non-classical terms. The Metropolis criterion is then applied to ΔGtrans to determine whether
to accept the proposed change in protonation, and the MD simulation is resumed. Repeated
application of these steps builds an ensemble of protonation states along the MD trajectory.

In pH-REMD, the exchange between adjacent replicas is achieved in the pH dimension at a
fixed conformation, whose acceptance ratio is dependent on the MC exchange probability for
replicas i and j:

Pi!j ¼ min 1; exp ln10ðNi � NjÞðpHi � pHjÞ
h in o

; ð2Þ

where Ni is the number of titratable protons in replica i and pHi is the pH of replica i prior to
the exchange attempt [108,109]. By enhancing the sampling through an application of replica
exchange scheme, the method has been shown to achieve faster convergence and better sam-
pling in both conformational and protonation spaces compared to original CpHMD [83,108].

From the pH-REMD simulations, the pKa of a given residue is computed as the midpoint of
titration by fitting titration data to the Hill equation:

s ¼ 1

1þ 10nðpKa�pHÞ ; ð3Þ

where s is the fraction of deprotonated species for a given residue and n is the Hill coefficient.
The fraction of deprotonated species (s) for a titratable group is obtained at each value of pH
from the pH-REMD simulations. In using Eq 8 shown below, the fractions of protonated spe-
cies (1-s) of the protein-inhibitor complex and protein can be translated into ZPL and ZP,
respectively.

The pH Dependence of Dynamics and Inhibitor Binding of BACE-1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004341 October 27, 2015 18 / 28



Computing the pH Dependence of Protein-Ligand Binding Free Energies
The binding polynomial formalism devised by Wyman [90] was used by Tanford to study pro-
tein denaturation [91] and by several groups to examine the pH dependence of protein-protein
binding [68,110]. Following their theoretical foundations, we recently applied it to binding of a
general receptor to a ligand with a single titratable site, and the detailed derivation of the for-
malism can be found therein [89]. Here we briefly outline the theoretical basis of the method
and show its usage for protein-ligand binding with multiple titratable sites.

First, consider complex formation between a protein (P) with a single titratable site and a
ligand (L) that does not titrate in the biological range of pH levels. The association can be
expressed as a general equation with the apparent equilibrium constant, Kapp:

fPg þ L⇄
Kapp fPLg; ð4Þ

where the curly braces indicate that the ensembles of protein and protein-ligand complex (PL)
may contain different protonated forms of the titratable species. Kapp can be expressed in terms
of binding polynomials through an application of the thermodynamic cycle for proton-linked
ligand binding shown in Fig 10:

Kapp ¼
½PL� þ ½HPLþ�
ð½P� þ ½HPþ�Þ½L� ¼ K�

b

1þ ½HPLþ�
½PL�

� �
1þ ½HPþ�

½P�

� � ; ð5Þ

where the concentrations of the given species, instead of activities, are shown assuming ideal
dilute solutions and K°b is the equilibrium constant of binding for a reference reaction in
which net proton transfer is ignored.

The overall free energy of binding (ΔG°) can then be expressed by using logarithmic repre-
sentations of the acid dissociation constants for the free protein (pKa

F) and protein-ligand
complex (pKa

C):

DG�ðpHÞ ¼ DG�
ref � kBTln

1þ 10pK
C
a �pH

1þ 10pK
F
a�pH

 !
; ð6Þ

where ΔG°ref is the free energy of binding for the reference reaction.
In cases where proton binding to different titratable sites may be cooperative, Wyman [111]

derived a relation between Kapp and pH such that

@lnKapp

@ln½Hþ� ¼ DnHþ ¼ ZPL � ðZP þ ZLÞ; ð7Þ

where, using the notation used by Tanford [91], ΔνH+ is the change in the number of bound
protons in the protein-ligand complex, relative to the number of protons bound to the protein
and ligand individually. With ΔZ = ZPL−(ZP + ZL), integration of Eq 7 provides a thermody-
namic relation for proton-linked ligand binding where titratable sites may interact:

DG�ðpHÞ ¼ DG�
ref ;pH � kBT lnð10Þ

ðpH
pHref

fZPLðpHÞ � ZPðpHÞ � ZLðpHÞgdpH; ð8Þ

where ZPL, ZP, and ZL are the total charges for protein-ligand complex, protein, and ligand,
respectively, obtained from the pH-REMD simulations. Eq 8 provides framework for comput-
ing the pH-dependent binding free energy through a correction term to the reference free
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energy of binding. In this work, ZL is omitted from consideration since the inhibitors consid-
ered here do not titrate in the physiological pH range.

Preparation of the BACE-1 Systems for Simulations
The X-ray crystallographic structures of BACE-1 in complex with inhibitors N-[(1S,1R)-ben-
zyl-3-(cyclopropylamino)-2-hydroxypropyl]-5-[methyl(methylsulfonyl)amino-N’-[(1R)-
1-phenylethyl]isophthalamide (PDB ID 2B8L) [112]; N-[(1S,2S,4R)-2-hydroxy-1-isobutyl-5-
({(1S)-1-[(isopropylamino)carbonyl]-2-methylpropyl}amino-4-methyl-5-oxopentyl]-5-methyl
(methylsulfonyl)amino]-N’-[(1R)-1-phenylethyl]isophthalamide (PDB ID 2P4J) [113]; N~2~-
[(2R,4S,5S)-5-{[N-{[3,5-dimethyl-1H-pyrazol-1-yl)methoxy]carbonyl}-3-(methylsulfonyl)-L-
alanyl]amino}-4-hydroxy-2,7-dimethyloctanoyl]-N-isobutyl-L-valinamide (PDB ID 2G94)
[100]; 3,{5-[(1R)-1-amino-1-methyl-2-phenylethyl]-1,3,4-oxadiazol-2-yl}-N-[(1R)-1-(4-fluor-
ophenyl)ethyl]-5-[methyl(methylsulfonyl)amino]benzamide (PDB ID 2IRZ) [114]; and N1-
((2S,3S,5R)-3-amino-6-(4-fluorophenylamino)-5-methyl-6-oxo-1-phenylhexan-2-yl)-N3,
N3-dipropylisophthalamide (PDB ID 2FDP) [102] were used to study the pH-dependent
inhibitor binding to BACE-1. The chemical structures of the inhibitors are shown in Fig 2. A
segment between residues Gly158 and Ser169 is not solved in 2B8L, 2IRZ, and 2FDP crystal
structures and hence this loop was built by homology modeling using the Structure Prediction
Wizard module of Schrödinger’s Prime program [115–117]. The FASTA sequence of protein
including the missing loop region for each X-ray structure was obtained from UniProt [118].
The mutation AWA that exists in 2B8L and 2IRZ structures made for crystallography were
corrected to the original sequence of KWE [112,114]. Using the homologs found by BLAST
search algorithm [119], a chimera model containing the missing loop region was built for each
structure. The homology-modeled loop region was energy-refined for relaxation using the
Refine Loops panel of the Prime program [115]. Apo structure of BACE-1 was generated by
removing the bound inhibitor from the refined 2B8L structure to even out any effects that may
arise from homology modeling.

The geometries of the inhibitors were optimized at the B3LYP/6-31G(d) level of theory
[120–123] using the Gaussian 09 suite of programs [124]. The electronic potentials (ESP) for
the optimized geometries of the inhibitors were computed using MK radii [125] at the HF/6-
31G(d) level of theory. Subsequently, the atomic point charges were computed from the ESPs
by applying the RESP procedure using the antechamber module [126] in the AmberTools 14
suite of programs [95]. All other force field terms including Lennard-Jones parameters for use

Fig 10. Thermodynamic cycle for complex formation between a protein (P) with a single titratable site
and a ligand (L).

doi:10.1371/journal.pcbi.1004341.g010
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in molecular dynamics (MD) simulations were taken from the general AMBER force field
(GAFF) [127].

Conventional Molecular Dynamics Simulations
Prior to the pH-REMD simulations, each system was subject to short conventional molecular
dynamics (cMD) simulations for equilibration purposes. Protonation states of the titratable
groups are assigned using the PROPKA web server [75,92–94]. All protein force field parame-
ters are taken from the AMBER ff14SB force field [95], while the ligand parameters are taken
from the AMBER GAFF force field [127]. Each system was solvated with TIP3P water [128]
and counterions were added to neutralize the system by tleap program [129]. Water molecules
were first minimized and simulated for 150 ps in the NPT ensemble with a harmonic restraint
of 2.0 kcal/mol Å2 on the protein and ligand heavy atoms to relax the water. The entire system
was then minimized and heated to 300 K over 500 ps. Two equilibrations with respective dura-
tion of 200 ps were performed. First, the system was equilibrated at constant volume and tem-
perature (NVT) using a Langevin thermostat [130]. Following this, the second equilibration
was carried out at constant pressure and temperature (NPT) using a Berendsen barostat
(ntp = 1) [131] with isotropic position scaling to bring the system to a stable density. A 100 ns
cMD production was then performed in the NVT ensemble. The Particle Mesh Ewald summa-
tion method was used to compute long-range electrostatic interactions [132,133], and short-
range non-bonded interactions are truncated at 8 Å in the periodic boundary conditions. All
dynamics are conducted using the pmemd.cudamodule of AMBER 14 suite of programs
[95,130,134]. The RMSD of the apo structure indicated a convergence to the starting confor-
mation after first 20 ns, ensuring the stability of the system (S10 Fig).

Constant pH Replica Exchange Molecular Dynamics Simulations Details
Preliminary investigation of the pKa shift of the titratable groups of BACE-1 upon inhibitor
binding was carried out using the PROPKA web server by submitting the apo and holo struc-
tures [75,92–94]. The results indicated binding-induced pKa shifts for a number of ionizable
residues, with the most pronounced shift for the aspartyl dyad. A total of ten ionizable residues
within 12 Å of the active site were chosen for titration, Asp32, Asp106, Asp138, Asp223,
Asp228, Glu116, Glu265, Glu339, His45, and Tyr71. As the titratable groups in the inhibitors
considered in this study have pKa’s above 12, the titration was carried out on the chosen pro-
tein side chains only.

pH-REMD simulations were performed using the pmemd.cuda.MPImodule of AMBER 14
suite of programs for the pH range between 1 and 12 stepped by 1 pH unit [95,108]. All simula-
tions employed the generalized Born (GB)-Neck 2 implicit solvent model (igb = 8) [105] with a
salt concentration of 0.1 M. To ensure equilibration in the implicit solvent, a 5,000 step mini-
mization was carried out for each system starting from the conformation obtained from the
cMD simulations, with positional restraints on all heavy atoms with a force constant of 20 kcal/
mol Å2. The system was then heated to 300 K over 500 ps using a Langevin thermostat while
maintaining the positional restraints applied to all heavy atoms with a force constant of 5 kcal/
mol Å2, followed by a 1 ns equilibration. The Monte Carlo (MC) moves for titration were per-
formed during the production stage only, where the MC steps taken every 10 fs and exchange
between replicas at adjacent pH attempted every 100 steps, i.e., 200 fs with a 2 fs time step. The
production simulations were carried out for 60 ns and data from last 50 ns were used for analy-
ses. In the equilibration and production steps, the bonds involving hydrogen atoms were con-
strained using the SHAKE algorithm [135].
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Simulation Analyses
RMSF and clustering analyses, and reconstruction of the pH-based trajectories from the
pH-REMD simulations were performed using cpptraj program in the AmberTools 14 suite of
programs [95]. Clustering analyses for the pH-based trajectories used pairwise RMSDs com-
puted for Cα atoms between frames to divide the trajectories into five clusters using the aver-
age-linkage algorithm [136]. Fitting of titration data to the Hill equation (Eq 3) to obtain the
pKa values was carried out using Matlab [137].

Supporting Information
S1 Fig. Change in distance between the dyad and flap region observed in the cMD simula-
tions. (A) 2P4J. (B) 2G94. (C) 2IRZ.
(TIF)

S2 Fig. Distribution of distances between the dyad and flap at acidic (pH 1 to 3; red) and
basic (pH 9 to 11; blue) pH. (A) 2P4J. (B) 2G94. (C) 2IRZ.
(TIF)

S3 Fig. Titration curves from the pH-REMD simulations of apo BACE-1.
(TIF)

S4 Fig. Titration curves from the pH-REMD simulations of the 2P4J system, shown in pur-
ple. Respective titration curves of the dyad in apo BACE-1 are shown in green.
(TIF)

S5 Fig. Titration curves from the pH-REMD simulations of the 2G94 system, shown in pur-
ple. Respective titration curves of the dyad in apo BACE-1 are shown in green.
(TIF)

S6 Fig. Titration curves from the pH-REMD simulations of the 2IRZ system, shown in pur-
ple. Respective titration curves of the dyad in apo BACE-1 are shown in green.
(TIF)

S7 Fig. Titration curves from the pH-REMD simulations of the 2B8L system, shown in pur-
ple. Respective titration curves of the dyad in apo BACE-1 are shown in green.
(TIF)

S8 Fig. Titration curves from the pH-REMD simulations of the 2FDP system, shown in
purple. Respective titration curves of the dyad in apo BACE-1 are shown in green.
(TIF)

S9 Fig. Binding free energy profiles of inhibitors as functions of pH. (A) 2P4J. (B) 2G94. (C)
2IRZ.
(TIF)

S10 Fig. RMSD of apo BACE-1 in the cMD simulation.
(TIF)
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