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ABSTRACT: Screening a large number of biologically derived molecules for potential fuel compounds without recourse to
experimental testing is important in identifying understudied yet valuable molecules. Experimental testing, although a valuable
standard for measuring fuel properties, has several major limitations, including the requirement of testably high quantities,
considerable expense, and a large amount of time. This paper discusses the development of a general-purpose fuel property tool,
using machine learning, whose outcome is to screen molecules for desirable fuel properties. BioCompoundML adopts a general
methodology, requiring as input only a list of training compounds (with identifiers and measured values) and a list of testing
compounds (with identifiers). For the training data, BioCompoundML collects open data from the National Center for
Biotechnology Information, incorporates user-provided features, imputes missing values, performs feature reduction, builds a
classifier, and clusters compounds. BioCompoundML then collects data for the testing compounds, predicts class membership,
and determines whether compounds are found in the range of variability of the training data set. This tool is demonstrated using
three different fuel properties: research octane number (RON), threshold soot index (TSI), and melting point (MP). We provide
measures of its success with these properties using randomized train/test measurements: average accuracy is 88% in RON, 85%
in TSI, and 94% in MP; average precision is 88% in RON, 88% in TSI, and 95% in MP; and average recall is 88% in RON, 82%
in TSI, and 97% in MP. The receiver operator characteristics (area under the curve) were estimated at 0.88 in RON, 0.86 in TSI,
and 0.87 in MP. We also measured the success of BioCompoundML by sending 16 compounds for direct RON determination.
Finally, we provide a screen of 1977 hydrocarbons/oxygenates within the 8696 compounds in MetaCyc, identifying compounds
with high predictive strength for high or low RON.

■ BACKGROUND

The assertion that fuel performance is controlled by a finite
number of meaningful fuel properties is essential in the study,
down-selection, and a priori assessment of various fuels and
fuel-related compounds. The challenge in evaluating from
thousands to hundreds of millions of potential known
substances and compounds, without direct experimental
characterization poses a daunting task. A number of techniques
exist for dealing with this problem. A common approach is the
use of chemical intuition to filter compounds by known,
established, and experienced properties.1 Although powerful,
the chief limitation of chemical intuition is the limitation of all
manual human efforts, namely, the efficient and tedious
evaluation of large amounts of data.2 To this end, a
considerable effort has been expended over the last half-
century in generating computational methods for predicting
quantitative structure−property relationship (QSPR) and
quantitative structure−activity relationship (QSAR) of various
fuel properties.3 The techniques for studying these vary
considerably: from regression-based methods (e.g., multiple
linear regression, neural network general regression, and partial
least squares) to classification methods (e.g., ensemble trees,
support vector machines, logistic regression, and linear

discriminant analysis).4 They also cover a large number of
compound properties related to fuel performance, including
cetane number,5 octane number,6 threshold soot index (TSI),7

flashpoint,5 melting point (MP),8 and others. In addition to
these machine-learning methods, other more recent approaches
have developed model-based screens for fuel candidates using
computer-aided molecular design.9

In this paper, we present a general-purpose open-source
machine-learning classifier for screening compounds for
desirable fuel properties. In compound screening, we do not
predict specific values of fuel properties but rather the
probability that a property value is above or below a defined
threshold. For example, spark-ignition (SI) engines require fuel
with a minimum research octane number (RON). Our classifier
can predict the probability that a compound with unknown
RON has a value above the required minimum. In contrast to
more resource-intensive computational tools (e.g., quantum
mechanical methods and density functional theory), our
classifier trains in minutes and processes individual compounds
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in seconds. While BiocompoundML may be used for any
chemical property, we use this tool to present our predictive
classifiers for RON, TSI, and MP. These three properties have
special importance in that they define three key aspects of fuel
performance, namely, the anti-knock performance (RON), the
atmospheric/health impacts (TSI), and the ability for a pure
compound to handle and blend into a fuel (MP).
Our software is a discrete classification tool, which allows it

to be used to quickly screen compounds. Included in this
package are two additional important features: (1) a clustering
tool and (2) a feature reduction function. The clustering tool
was designed with screening in mind. Because we anticipate
one common use case is the screening of a large number of
compounds, our automated clustering algorithm helps ensure
that tested compounds bear structural resemblance to training
compounds, prior to classification. Our feature reduction
function implements Boruta feature selection10 to automatically
reduce the number of features in the model. The Boruta
selection feature is important because our feature selection
protocol includes an automated feature collection package for
obtaining data directly from the open chemical repository
PubChem,11 an implementation of PaDEL-Descriptor (http://
padel.nus.edu.sg/software/padeldescriptor/) for generating
QSAR descriptors (called using the chemofeatures parameter
in BioCompoundML), and an interface for providing user-
supplied features. The interface is especially useful when
including experimental, proprietary, or closed-licensed data
sources. Users can, in fact, provide separate substance data files
(SDFs) in training and testing directories to collect QSAR
descriptors for prediction using PaDEL-Descriptor.
This software is evaluated using three strategies. The first

strategy is leave-out resampling, using 50% build versus 50%
test data sets, for RON, TSI, and MP. The second strategy
directly measured RON for 16 compounds not included in our
training data set. The third strategy involved testing the 8696
compounds stored in the MetaCyc database.12 Nearly all of
these compounds are known to be biologically produced and
were thus evaluated to screen for potentially high-performance
biofuel blendstocks.
This software differs in a variety of ways from other general-

purpose chemical model development tools. Unlike camb, an
open-source chemical model development tool, written in R,
BioCompoundML does not focus specifically on protein
activity or quantification focusing but rather on chemical
characterization and classification.13 BioCompoundML is a fully
packaged distribution, which allows it to be run on user data,
directly from a personal computer, server, or cloud instance.
This separates BioCompoundML from other tools, such as
OCHEM, which provide an online development environment

for chemical property prediction and classification.14 Bio-
CompoundML is a fully functional executable program, created
in Python. With the exception of selecting parameters and
providing training and testing data, users should not have to
directly interact with the provided libraries, unlike scikit-chem
(https://github.com/richlewis42/scikit-chem) and RDKit
(https://github.com/rdkit/rdkit), which provide a set of
Python libraries for designing chemical analysis workflows,
predicting common features, and converting between data
formats.

■ METHODS AND IMPLEMENTATION
Feature Collection. BioCompoundML is designed to be used in

conjunction with PubChem Entrez application programming interface
(API) of the National Center for Biotechnology Information (NCBI).
We include with this package a feature extraction package that directly
collects experimental and fingerprint data from NCBI using either the
compound identifier (CID) of NCBI or standard Chemical Abstracts
Service (CAS) Registry Numbers. Two main sets of features are
extracted: experimental/estimated features and fingerprints. The
experimental/estimated features that are used by the feature extraction
package include experimentally measured properties (e.g., MP, boiling
point, and vapor pressure), inferred structural features (e.g., rotatable
bond count and heavy atom count), chemical properties (e.g.,
molecular weight and formal charge), and inferred chemical properties
(e.g., XLogP3, which estimates the octanol−water partitioning, a
property directly related to hydrophobicity). PubChem fingerprints are
881 properties relating to the compound structure. These include, for
example: >4H, ≥1 any ring size 6, and simplified molecular-input line-
entry system (SMILES) patterns [e.g., C(−C)(−C)(C)]. A full list
of fingerprints is available at ftp://ftp.ncbi.nlm.nih.gov/pubchem/
specifications/pubchem_fingerprints.txt. BioCompoundML is de-
signed to connect directly to PubChem and extract these features
for any compound in its training or testing set. These retrievals can,
however, also be turned off directly. Additionally, this package also has
the capacity to retrieve SDFs from NCBI. These may be useful in
downstream QSPR/QSAR feature extraction.

BioCompoundML additionally includes a copy of PaDEL-
Discriptor, a molecular descriptor calculator, that takes as input a
SDF and provides thousands of individual QSPR and QSAR
descriptors for each compound.15 By default, BioCompoundML
calculates 1444 of these descriptors (1D/2D descriptors). This
software is provided with its open source Apache 2.0 license.

Commonly, analysts with interest in fuel properties will have access
to proprietary data, experimental results, curated features, or licensed
calculators. BioCompoundML includes the option of adding these
features to the training and testing data sets. These features may be
provided to the program as separate columns in the input data files.

Feature Reduction/Selection and Value Imputing. The most
obvious means of feature reduction is to remove all non-variable
features. This is performed as a first step, following feature collection.
The next step of imputing missing values is achieved using a two-step
approach. The first step is to perform k-nearest neighbor (k-NN)

Figure 1. Feature imputation and selection. The first panel of this figure shows the raw data for RON-selected compounds using the fingerprint of
NCBI and experimental data. In this panel, white cells correspond to missing data. These data are then imputed using k-NN and mean value in the
second panel. Boruta feature selection/reduction is this used to remove uninformative features. The third panel shows the removal (in white) of
uninformative features from the data set.
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imputation.16 This process takes a distance matrix and imputes missing
values using the k-NN. The distance matrix in this tool is calculated
using the Jaccard distance/Tanimoto score,17 using the 881 NCBI
fingerprint variables. This allows for the distance matrix to be collected
separately from value imputation. This matrix is used to identify the
nearest neighbors. The default for BioCompoundML is k = 5. The
distance matrix is then used to assign a weight to each value for the
nearest neighbors and return a weighted average, such that nearer
neighbors (in this case, compounds) are more heavily weighted. This
approach is generalizable and has shown consistent success as an
approach to missing data.18 In cases where features were too sparse to
fully resolve using k-NN, we used the mean value for the feature as a
minimum information imputer (see Figure 1).
In addition to feature reduction, we were also interested in reducing

data complexity through feature selection. We used the Boruta
algorithm for selecting features for random forest classification.10 The
original Boruta algorithm was written in R. We use a separate package,
written by Daniel Homola for Python https://github.com/
danielhomola/boruta_py/. This algorithm works by generating a set
of shadow random features, by duplicating and then shuffling the
variables. These are used to create z-score distributions for each
feature, through random iteration, followed by classification using
random forest. Each original feature is compared to the maximum z
score for shadow features. Features that do not score significantly
better than the shadow features are excluded from the model. These
can dramatically reduce the complexity of the model, by eliminating
uninformative features (see Figure 1).
Random Forest Classification. Random forest classifiers work by

creating ensembles of decision trees using randomized “bags of
features”.19 These features are randomly sampled and classified into
decision trees. These trees are then used in the process of “voting” for
a machine-learned model. The incorporation of randomness into the
training stage19 means that, as the error rate decreases in the training
set, through the addition of trees, the error rate in the testing set
remains constant.20 This is due to strong classifiers dominating the
decision process, at the expense of weak (overfitting-prone)
classifiers.21

An additional feature of the random forest classifier is its ability to
separate tree-solving steps on parallel processes.22 This makes the
steps prior to voting, embarrassingly parallel. This time-consuming
step can be handled by separate central processing units (CPUs),
allowing the classifier to scale efficiently.
Use of Clustering To Limit Tests. As part of BiocompoundML,

we include a clustering tool, which screens and selects compounds that

are structurally similar to the training set. First, our clustering tool
evaluates similarities and differences between compounds in the
training data set. PubChem fingerprints, prior to feature reduction by
Boruta, are transformed using the random trees embedding
algorithm.23 This unsupervised transformation algorithm uses a forest
of random trees to encode data (compounds) by the indices of leaves
that each compound falls into, resulting in a high dimensional sparse
binary code. Dimensionality reduction by truncated singular value
decomposition (SVD) is then implemented on the sparse binary
codes.24 Using this transformed model of the training data set, we
identify the distinct number of clusters in the training data by
calculating the silhouette coefficient and k-means clustering for 2−8
clusters. The cluster number with the highest average silhouette score
is selected as the number of clusters that exist within the training data.

This clustering tool can then be used to evaluate the training data in
the context of the testing data and extracts test data similar in structure
to the compounds in the training. Initially, all testing data, prior to
feature reduction by Boruta, are transformed using random trees
embedding and dimensions are reduced via truncated SVD, creating a
model of the testing data. Training data are then fitted to the testing
data model. Each cluster (determined in the first step) of the fitted
training data is used to next create a OneClassSVM model for each of
the clusters. OneClassSVM is an unsupervised outlier detection
method, which allows for the prediction of whether test data are
similar to the training clusters or outlie them. Each of the fitted test
compounds are run through each of the OneClassSVM training cluster
models. If a compound is determined to be similar to at least one of
the clusters, further classification and prediction of the compound
occurs; otherwise, the compound is disregarded.

■ RESULTS

RON Classifier Development. A principle fuel property of
interest for contemporary SI engines is the RON. RON is a
measure of the resistance of a chemical to autoignition, which
can occur in the fuel−air mixture ahead of the flame front
created by the spark if temperature and pressure become too
high for the autoignition resistance of the fuel. RON is one of
the hallmark properties of SI engine fuels, and future, high-
efficiency engines may require significantly higher RON than
available in the market today.25

For this analysis, we collected RON measurements from 148
pure training compounds from our review of the literature26−29

Figure 2. Distribution of RON values in training data. RONs in the literature range from 0 to 120. Our classifier is particularly interested in
compounds that are higher than 94.4. The change in color on this figure corresponds to this boundary.
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and 36 internally tested compounds. All but three of the
internally tested compounds were tested according to the
ASTM D2699 standard. The other compound RON values
were estimated using derived cetane numbers, which is not
exact but allows for discrete classification.30 These compounds
had a median RON of 94.4 (see Figure 2). We chose this RON
as the threshold for the classifier, because it (1) evenly split the
data set and (2) generally measures high versus low RON, as it
is experimentally evaluated. To build our BioCompoundML
model, we selected 881 NCBI fingerprint features and 26 NCBI
experimental features. Only 157 of these features were variable
in our training set. After Boruta feature selection (following k-
NN imputation), only 9 features proved to be useful for model
prediction (Table 1).

Using 100 random 2-fold splits of the data, we observed high
accuracy, precision, and recall. The average accuracy in these
50% leave-out experiments was 87.79%, with a standard
deviation of 5.8%. Precision was 88.16%, with a standard
deviation of 11.4%. Recall was 88.17%, with standard deviation
of 11.3%. The receiver operator characteristic (ROC) area
under the curve (AUC) was 0.88, with 0.056 standard
deviations. Figure 3 shows the ROC curves for 10 random
50% leave outs. It is expected that the performance of the RON
classifier will dramatically improve as the diversity of training
data increases, expanding the functional group space. The
current functional groups for the training set include alkenes,

alkanes, alkynes, benzenes, cycloalkenes, cycloalkanes, alcohols,
esters, ketones, and naphthalenes.
The heaviest weighted features in the classifier are shown in

Table 1. The most heavily weighted feature, XLogP3, is a
measure of water−octanol partitioning. A high XLogP3 is
predictive of a high RON value. The other LogP-related
features (i.e., LogP and XLogP-AA) are alternatively calculated
estimates of LogP. The temperature of autoignition, boiling
point (at 760 mmHg), and vapor pressure (mmHg at 25 °C)
are also important features in predicting whether a compound
has a RON value greater than or less than 94.4. The structural
features C−C−C−C−C−C and C−C−C−C−C, which are
SMILES patterns that refer to the presence of six- and five-
carbon structures, are also important. It is necessary to note
that, although some features correlated directly with RON,
ensembles of decision trees work hierarchically, meaning that
feature interactions are not necessarily additive or direct. These
weightings can, however, give insight into the physical
attributes that govern the property of interest (in this case,
RON) and, hence, the attributes that could merit further
experimental investigation.
Using our RON model, we tested our results using 16

additional compounds not used to build the model. RON for
these compounds was measured using the ASTM D2699
standard and has not previously been measured. They were
selected on the basis of our interest in them as potential targets
for synthetic bioengineering.
From the SI engine fuel perspective, there are essentially two

classes: RON significantly >94.4 and RON not significantly
>94.4. These compounds considerably expanded the range of
variability, from the training data, and serve as a test of the
expandability of our model. A linear regression model of
classification probability of RON > 94.4 by observed RON has
a R2 = 0.653 (p < 0.001) (see Figure 4). On the basis of this
linear regression, the classification decision boundary (the point
where the model intersects 94.4, given y = 0.0074x + 0.1547) is
0.849. Using this decision point, all tested molecules have been
correctly assigned. However, including the 95% confidence
interval at the decision boundary (94.4), the range of marginal
values covers from p > 0.800 to p < 0.897. One compound
(linalool with an observed RON = 96.7) falls within this
marginal region. This suggests that the observed accuracy
[(true positives + true negatives)/total] is between 93.75 and
100% (see Table 2).

RON Evaluation for Large Numbers of Compounds
Using BioCompoundML. We collected a large corpus of
biologically produced compounds, using MetaCyc.12 This
database includes 8696 potentially biologically produced
compounds. A much smaller proportion is of interest to us,
and therefore, we included a feature in BioCompoundML that
automatically clusters compounds using a Tanimoto fingerprint
similarity criterion, which has been shown to be a powerful
functional clustering technique.17 Clustering training data to
the total MetaCyc database allowed us to exclude a large set of
compounds that would otherwise stretch the limits of any
machine-learned model (see Figure 5).
We used the classifier to investigate the 1977 hydrocarbons

and oxygenates in MetaCyc, to identify which compounds had
the highest and lowest probability for being high RON
compounds. Supplemental Table 1 of the Supporting
Information shows 107 compounds that score as having high
RON (on the basis of the threshold defined above of p >
0.897). It is important to note that the choice of compounds for

Table 1. RON Predicting Features by Weight and Type

features weight type

XLogP3 0.2689 physical
autoignition 0.1845 physical
C−C−C−C−C−C 0.1360 structural
LogP 0.1144 physical
XLogP-AA 0.0928 physical
complexity 0.0918 physical
boiling point 0.0488 physical
vapor pressure 0.0415 physical
C−C−C−C−C 0.0213 structural

Figure 3. ROC curves for 10 random 50% leave-out experiments.
Average AUC is 0.82. This figure shows 10 random ROC curves with
50% for training and 50% left out for testing.
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Figure 4. Regression of observed RON by probability in a high RON class (RON > 94.4) for experimentally measured compounds. The 95%
confidence intervals are included. On the basis of this regression, the expected threshold for classification in high/low RON is p = 0.8487.

Table 2. Experimentally Tested Compounds with Model Predictions

CAS Registry Number compound measured RON prediction probability in high RON class accurate

106-21-8 3,7-dimethyl-1-octanol 64.9 not high RON 0.707 yes
13466-78-9 3-carene 68.9 not high RON 0.754 yes
13877-91-3 ocimene 72.9 not high RON 0.463 yes
78-69-3 3,7-dimethyl-3-octanol 76.3 not high RON 0.76 yes
123-35-3 myrcene 82.5 not high RON 0.799 yes
80-56-8 α-pinene 83.3 not high RON 0.63 yes
5989-27-5 (R)-(+)-limonene 87.6 not high RON 0.695 yes
78-70-6 linalool 96.7 unclear 0.869 marginal
470-82-6 eucalyptol 99.2 high RON 0.916 yes
142-62-1 butyl acetate 100.7 high RON 0.99 yes
123-92-2 isoamyl acetate 101 high RON 0.967 yes
93-58-3 methyl benzoate 101.1 high RON 0.998 yes
115-18-4 2-methyl-3-buten-2-ol 103.5 high RON 0.967 yes
110-19-0 isobutyl acetate 108.7 high RON 0.977 yes
67-64-1 acetone 111.3 high RON 0.908 yes
209-117-3 isopropyl acetate >120 high RON 0.971 yes

Figure 5. Non-metric multiple dimensional scaling of the first two principal components. RON training data maximally clustered into two classes
(using the k-means algorithm and maximizing silhouette score). Black- and green-colored regions illustrate boundaries around these two clusters.
Only 4.5% (n = 398) of 8696 compounds within MetaCyc fall into this category.
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inclusion into a fuel is complicated, and there are a variety of
reasons why a compound would be chosen for inclusion or
exclusion from a fuel blend. However, the general purpose of
this tool is to rank and classify a large number of compounds
based on individual properties. It is the combination of these
properties that ultimately inform us about which compounds
will be useful in fuels.
TSI Classification. Soot formation is important in many

types of combustion for both environmental and engineering
reasons. Soot formation can be measured as the smoke point
(ASTM D1322 standard, the height in millimeters of a
smokeless flame when the fuel is burned in a specific lamp),
with lower values indicating a higher sooting tendency. Aviation
turbine fuels are limited to a minimum smoke point because
high levels of soot cause a higher level of the fuel energy
content to be released as thermal radiation, reducing engine
durability and efficiency. The TSI was developed to provide a
comparison of the soot-forming tendency of different fuels that
takes into account differences in air−fuel combustion
stoichiometry and different experimental setups. TSI is defined
as a value between 0 and 100 for evaluating the onset of soot
formation in both premixed and diffusion flames31 and is
defined mathematically by the equation

= +
⎛
⎝⎜

⎞
⎠⎟a bTSI

molecular weight
smoke point

where a and b are experimental constants. TSI corresponds to
the inverse of the smoke point, scaled by the molecular weight
and experimental constants to between 0 and 100. In some
cases, SI engines that employ direct injection can produce high
levels of soot particles, and TSI is one metric that has been
proposed for predicting fuel effects.32 Our study used the TSI
value of a previous study to determine success of our
classification technique in predicting this value using 98
compounds.33 Training data for this feature were found to
optimally cluster into two classes (using the k-means algorithm
and optimizing silhouette score; see Figure 6). The TSI

classification boundary was chosen as the median, which for this
data set was 5.9.
Using NCBI fingerprint and NCBI experimental and

computed features, Boruta reduced the total number of features
from 907 to 16 important features. The majority of selected
features correspond to SMILES patterns (10 of 16). These may
ultimately correspond to bond availability. Complexity is
unsurprisingly the most strongly weighted feature (weight =
0.1639). It has been well-known for decades that increasing
complexity in general leads to greater resistance to oxidation
and corresponds to increased soot formation.34,35 Features
relating to mass and molecular weight are also heavily weighted,
which is unsurprising, given that they are important features in
the definition of TSI. XLogP3 is also heavily weighted (weight
= 0.0639).
Using 100 random 2-fold splits of the data, we observed high

accuracy, precision, and recall. The average accuracy in these
50% leave-out experiments was 87.21%, with a standard
deviation of 9.2%. Precision was 90.71%, with a standard
deviation of 12.4%. Recall was 82.30%, with standard deviation
of 19.3%. ROC AUC was 0.87, with 0.09 standard deviations.

MP Classification. MP is an example of a fuel property in
which there is a large body of experimental data from which to
build a machine-learning classifier. MP is important in that fuels
are required to be in the liquid state for handling and blending.
Additionally, MP of a proposed bioblendstock is related to the
minimum wintertime operability temperature of the final fuel
blend. We set the classification criterion at 20 °C. This
temperature corresponds to identification of compounds that
are liquid at room temperature and is the maximum allowable
boundary for a fuel blendstock. To build our classifier, we used
the Jean-Claude Bradley Open Melting Point Dataset.36 After
the removal of redundancies and low-quality measurements,
this data set provided 14 869 individual MP measurements.
To classify MP, we adopted two distinct approaches: we

classified using exclusively NCBI fingerprints and separately
using NCBI fingerprints and a small number of “computed
properties”. These computed properties include 20 basic

Figure 6. Clustering of TSI training compounds. The left panel shows the cumulative silhouette score for each class, with the red line representing
the average silhouette score. The right panel shows the multiple dimensional scaling plot for the first two principle components. Compound types
are labeled by point shape.
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chemical properties: density, hydrogen-bond donor count,
rotatable bond count, XLogP3, formal charge, undefined atom
stereocenter count, molecular weight, hydrogen-bond acceptor
count, XLogP3-AA, LogP, defined atom stereocenter count,
complexity, covalently bonded unit count, isotope atom count,
undefined bond stereocenter count, heavy atom count, exact
mass, monoisotopic mass, topological polar surface area, and
defined bond stereocenter count. Notably, this custom feature
list excludes boiling point, MP, autoignition, vapor density, flash
point, and vapor pressure, which were likely to dominate
feature weights.
Running Boruta feature selection on the fingerprint-only data

set reduced the number of features from 881 to 288. This data
set resulted in a large number of features of very small
classifying power. The five most heavily weighted features
include the SMARTS patterns: C(∼H)(∼H)(∼H) (weight =
0.0259), ≥2 O (weight = 0.021), ≥1 O (weight = 0.0205), ≥1
any ring size 6 (weight = 0.0201), and ≥2 N (weight = 0.0178).
The case of many features of limited discriminating power can
lead to a problem of overfitting. In this case, having a wide
breadth of data can be a huge benefit. Figure 7 maps MP data
relative to MetaCyc. In contrast to RON, this map covers a
huge span of likely data. The average accuracy using 100
random 50% leave-out experiments was 92.3% (±0.5%);
average precision was 94.7% (±0.6%); average recall was
96.2% (±0.5%); and average ROC AUC was 0.8438 (±0.01).
Using fingerprint plus computed properties let Boruta reduce

the number of features from 901 to 194. The most heavily
weighted features primarily include structural fingerprints but
weighs the selected features much more heavily than fingerprint
only. The five most heavily weighted features include
complexity (weight = 0.0903), computed property topological
polar surface area (weight = 0.0670), molecular weight (weight
= 0.0582), exact mass (weight = 0.0578), and monoisotopic
mass (weight = 0.0556). For this classifier, the average accuracy
using 100 random 50% leave-out experiments was 93.7%
(±0.5%), the average precision was 95.4% (±0.6%), the average

recall was 97.1% (±0.4%), and the average ROC AUC was
0.8662 (±0.01).

■ DISCUSSION

In this paper, we present a general-purpose fuel property
characterization tool. This tool uses a variety of machine-
learning techniques to perform automatic random forest
classification of compounds. BiocompoundML can be adapted
to rapidly screen compounds for any desired compound
property. We used this technique on a variety of compounds to
classify three key fuel properties (i.e., RON, TSI, and MP). We
found that this technique provided accurate and precise
classification of compounds into high and low classes. We
also found that it accurately classified high RON compounds
and, when it failed to accurately classify low RON compounds,
most errors were marginal. We further ran this tool on a large
set of biologically producible hydrocarbons and identified
numerous strong predictions of compounds with high and low
RONs. This tool proved accurate and precise in predicting TSI
class. For data sets with a large number training set (MP),
BioCompoundML proved accurate and precise, even with
exclusively structural data.
This tool is fully open-source and is usable by a broad range

of fuel researchers and industry. The use of this tool is not
restricted to the three properties chosen, and it is intended that,
in the future, it will find applicability to a wide number of
chemical properties.
Name of tool, BioCompoundML; tool home page, http://

www.github.com/sandialabs/BioCompoundML; operating sys-
tem, Linux/Unix; programming language, Python; compatible
versions, Python 2.6, 2.7, 3.3, and 3.4; license, BSD-2 clause;
and documenta t ion , h t tp ://sand ia l abs .g i thub . io/
BioCompoundML/.

Figure 7. MetaCyc compounds with MP compounds mapped. Data are visualized using non-metric multiple dimensional scaling of the first two
principal components. Compounds with available MPs are plotted in black.
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■ NOMENCLATURE
NCBI = National Center for Biotechnology Information
RON = research octane number
TSI = threshold soot index
MP = melting point
QSPR = quantitative structure−property relationship
QSAR = quantitative structure−activity relationship
CID = compound identifier
CAS = Chemical Abstracts Service
SDF = substance data file
k-NN = k-nearest neighbor
SVD = singular value decomposition
ROC = receiver operator characteristic
AUC = area under the curve
SMILES = simplified molecular-input line-entry system
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