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A hybrid Gaussian-discrete variable representation approach to molecular continuum

processes II: application to photoionization of diatomic Li+2

F. L. Yip,1, 2 C. W. McCurdy,3, 2 and T. N. Rescigno2

1Department of Chemistry, University of California, Berkeley, CA 94720
2Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, CA 94720

3Departments of Applied Science and Chemistry, University of California, Davis, CA 95616

(Dated: August 9, 2008)

We describe an approach for studying molecular photoionization with a hybrid basis that com-
bines the functionality of analytic basis sets to represent electronic coordinates near the nuclei of
a molecule with numerically-defined grid-based functions. We discuss the evaluation of the various
classes of two-electron integrals that occur in a hybrid basis consisting of Gaussian type orbitals
(GTOs) and discrete variable representation (DVR) functions. This combined basis is applied to
calculate single photoionization cross sections for molecular Li+2 , which has a large equilibrium bond
distance (R = 5.86a0). The highly non-spherical nature of Li+2 molecules causes higher angular
momentum components to contribute significantly to the cross section even at low photoelectron
energies, resulting in angular distributions that appear to be f -wave dominated near the photoion-
ization threshold. At higher energies, where the de Broglie wavelength of the photoelectron becomes
comparable with the bond distance, interference effects appear in the photoionization cross section.
These interference phenomena appear at much lower energies than would be expected for diatomic
targets with shorter internuclear separations.

PACS numbers: 32.80.Eh,34.80.Gs

I. INTRODUCTION

Complete ab initio treatments of photo- double ioniza-
tion processes have previously been limited to the sim-
plest atoms [1–5] and molecules [6–14], owing in large
part to the complexity of representing a fully quantum
mechanical system accurately both before and after the
photon is absorbed. In particular, it is the representation
of the final-state wave function for processes that eject
two electrons into the continuum that presents the great-
est computational challenge. In contrast to the initially
bound state for either an atomic or molecular target, the
wave function for double ionization requires considera-
tion of electron-electron interactions over relatively large
distances because of the long range Coulomb forces in-
herent to the problem [15, 16]. The evaluation of fully
differential cross sections requires accurate computation
of these final continuum states to reveal the full photoion-
ization picture.

Several different methods have been developed to com-
pute double photoionization cross sections extracted from
various treatments of the final continuum states [17–24].
One such method involves a compact support basis in-
corporating exterior complex scaling to treat the radial
coordinates of the electrons on a finite grid [25]. The an-
gular degrees of freedom of each electron in such a single-
center description are represented by spherical harmon-
ics. These methods have proven to be extremely success-
ful for both simple atoms [2–5] and molecules [11–14].

In principle, this framework can be adapted beyond
the cases considered to be able to treat more complex
molecules, but in practice the limitations of describ-
ing both the bound and continuum states of the target
molecule using a single-center expansion are quickly real-

ized. Unlike the atomic case where radial/angular prod-
uct bases are well-suited for expanding the wave func-
tion about the nucleus, the nonspherical symmetry of
molecules couples the various partial waves. This lim-
itation is such that converged treatments of molecular
double photoionization expanded about the origin have
only been reported for H2 and H+

2 . The ultimate goal
of being able to probe electron correlation in a molecule
with N electrons would require a computational frame-
work beyond these existing methods as convergence is-
sues render the problem increasingly intractable. Con-
sidering the wealth of information potentially unlocked
from being able to conduct an investigation of double
photoionization from an N -electron molecule, including
the ability to probe correlation within and between the
different molecular orbitals, the existing framework for
describing these complex systems must be advanced.

Previously, we reported on a method [14], referred to
hereafter as paper I, that offers a possible avenue for con-
sidering more general molecular photoionization prob-
lems beyond the cases that have been illustrated to date.
This method distinguishes between the regions of space
near the nuclei where most of the electron probability
density lies for a molecular bound state and a region just
beyond the nuclei where bound state functions fall off ex-
ponentially while continuum states oscillate as outgoing
waves. By partitioning the physical space into these re-
gions and allowing for some common intersection for the
basis functions that span each area to connect the two,
the representation of the wave function becomes com-
partmentalized according to which type of basis function
is best suited for describing each region. The motivation
for what we have called the “hybrid basis” lies in com-
bining the well-tested technologies involved in both com-



2

puting molecular wave functions bounded near the nuclei
and representing oscillating outgoing wave functions far
from the nuclei using a grid-based scheme.

The utility of the hybrid method was previously
demonstrated in I with illustrative examples involving
the hydrogen molecular ion H+

2 . The hybrid method was
shown to provide accurate results using less computa-
tional resources than a pure grid-based approach to the
problem by avoiding the single-center expansion limita-
tions around the nuclei as discussed above. The ultimate
goal of evolving the hybrid method to be able to treat
double ionization in multi-electron molecular targets re-
quires the development of efficient methods for comput-
ing electron-electron repulsion integrals in a mixed ba-
sis representation. In the present work we investigate
the various classes of two-electron integrals that arise
and provide a framework for their computation with il-
lustrative calculations of single photoionization of the
Li+2 molecule, which has one valence electron outside a
closed-shell core. The interaction of the valence electron
with the four core electrons requires the evaluation of
two-electron integrals in the mixed hybrid basis frame-
work. In addition, the Li+2 molecule provides an inter-
esting case to study in its own right. With an equilib-
rium bond distance of nearly 6 bohr, Li+2 represents a
highly non-spherical molecular system. The large inter-
nuclear separation, compared to other covalently bonded
diatomics, would require many coupled partial waves to
expand the wavefunction about the bonding midpoint,
which is impractical in a pure grid-based framework.
By utilizing traditional quantum chemistry descriptions
within this internuclear region, the hybrid basis repre-
sentation can avoid these complications that plague pure
grid-based partial wave expansions of molecular targets
with severely non-spherical nuclear geometries.

In Section II we discuss the theoretical framework for
the hybrid basis with exterior complex scaling. Sec-
tion II B provides a brief review of the hybrid basis con-
struction as described in paper I. Section II C catalogues
the various classes of two-electron integrals that occur
in the hybrid basis framework and elaborates on their
evaluation. Section III details the construction of the
Hamiltonian for Li+2 . Section IV illustrates the hybrid
method by computing bound state eigenvalues of Li+2 .
Section V describes the contiuuum state description and
evaluation, with illustative examples of the method used
to compute photoionization cross sections in Section VI.
A brief conculsion follows in Section VII.

II. FORMULATION OF A MULTI-ELECTRON

HYBRID REPRESENTATION

A. Continuum wave function treatment using

Exterior Complex Scaling

One method of addressing the computation of atomic
and molecular states involving continuum electrons has

been to utilize exterior complex scaling (ECS) [26, 27].
Under ECS, the radial coordinate of each electron is ro-
tated into the complex plane beyond some value rECS,

r →
{

r, r ≤ rECS

rECS + (r − rECS)eiη, r > rECS.
(1)

Such a transformation causes oscillatory wave functions
with any number of outgoing electrons to decrease ex-
ponentially in the complex scaled region beyond rECS,
thereby permitting the physical process to be described
over a finite volume. Inside of the complex scaling ra-
dius, however, the wave function is the physical wave
function containing the full information of the outgoing
state. The details of exterior complex scaling, includ-
ing the interrogation of the wave function just inside of
the complex region to evaluate physically relevant am-
plitudes descibing electrons leaving the target are more
fully discussed in a recent review [25]. The ECS method
has been successfully demonstrated for both atoms and
molecular targets with one or two electrons placed into
the continuum.

B. The hybrid Gaussian-DVR basis representation

The basic idea of the hybrid method, as outlined in I,
is to divide physical space into three parts: an interior re-
gion bounded by a sphere of radius r0, which encloses all
the nuclei, an intermediate region which extends to rECS

and an outer (complex) region that extends to a termi-
nal radius rmax. Each region is distinguished by the types
of functions that primarily exist within them. The ba-
sic principles of combining the two unique basis function
types to produce a hybrid basis are illustrated in Fig. 1.
Within the inner region 0 ≤ r < r0, the wave function is
described exclusively by Gaussian functions which can be
centered arbitrarily within the inner sphere. A product
basis of radial, grid-based polynomial functions multi-
plied by spherical harmonics spans the region bounded
by spheres of inner radius r0 and outer radius rmax:

χlm
i (r) =

φi(r)

r
Yl,m(r̂) . (2)

Beyond rECS, which lies between r0 and rmax, the radial
functions are complex. The polynomial functions have
compact support and are only defined between r0 and
rmax. These functions are constructed using a discrete
variable representation employing finite elements (FEM-
DVR) and ECS [28].

The inner and outer regions are connected by Gaus-
sian functions which extend into the intermediate region,
as demonstrated in Fig. 1. The GTOs are all assumed
to be zero beyond rECS. We use ”contracted” Gaussian
basis functions, which are simply linear combinations of
Cartesian functions, centered at RΓ = (XΓ, YΓ, ZΓ), of
the form:

GΓ(r) = NΓ(x−XΓ)lΓ(y−YΓ)mΓ(z−ZΓ)nΓe−αΓ|r−RΓ|
2

,
(3)
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    rr0 rECS

η

Gaussian region

real DVR region complex DVR
region

FIG. 1: (Color online) Division of the radial coordinate in
the hybrid method. Only Gaussians are nonzero inside of r0.
The tails of the diffuse Gaussians extend into the real DVR
region. Near the complex scaling turing point rECS only the
DVR functions are nonzero.

where Γ labels each ”primitive” basis function and NΓ is
a normalization constant. This choice in a standard in
most molecular electronic structure codes [29].

Because of the partitioning of physical space accord-
ing to Fig. 1, we can use a relatively small number of
Gaussian basis functions in the hybrid Gaussian-DVR
basis construction. The ability of the FEM-DVR to es-
sentially completely span the space beyond the nuclei
obviates the need for diffuse GTOs. Moreover, by appro-
priately choosing the orbital exponents αΓ in Eq. (3) and
placing the ECS rotation point sufficiently far from the
nuclei to guarantee that the GTOs have decayed before
rECS, matrix elements between GTO and DVR functions
defined on the complex contour need not be considered.
In fact, the Gaussian basis function extent and number of
real finite elements for which mixed matrix elements are
nonzero by design is flexible, subject to the maintenance
of linear dependence, on the one hand, and an adequate
connection between the two regions, on the other.

The discrete variable representation [30] of the radial
coordinate employs a grid defined by a numerical Gauss-
Lobatto quadrature [31]. The associated radial basis
functions provide an underlying continuous representa-
tion of the wave function while possessing the property
of discrete orthonormality at the quadrature points,

φi(rj) = δi,j/
√

wi . (4)

Thus, the functions provide a diagonal representation
of any local operator evaluated under Gauss-Lobatto
quadrature,

∫ b

a

φi(r)V (r)φj(r)dr ≈
n
∑

k=1

φi(rk)V (rk)φj(rk)wk

= V (ri)δi,j .

(5)

The implementation of this DVR scheme with finite el-

ements facilitates the incorporation of exterior complex
scaling by permitting the border point rECS to be placed
at a finite element boundary [28]. Additionally, the loca-
tion of the first finite element boundary r0 and flexible
control over the Gaussian-DVR overlap region can also
be exercised with this method.

C. Matrix element evaluation in the hybrid

representation

Matrix elements in the hybrid method can be grouped
into three catagories: (1) those that involve only Gaus-
sian basis functions GΓ(r), (2) those that involve only
grid-based functions χlm

i (r) and finally, (3) those that in-
volve both GΓ(r) and χlm

i (r). The evaluation of integrals
involving only Gaussians is an established part of elec-
tronic structure theory [32] and there is no need to dis-
cuss the subject here. The various one-electron integrals
(overlap, kinetic energy and nuclear attraction) are accu-
rately calculated using Lobatto or Legendre quadrature
for the radial coordinate and a high-order Gauss-Markov
angular quardrature [33], as outlined in I. In many-
electron problems, the majority of the work goes into
computing four-index two-electron integrals that arise
from the electron-electron repulsion,

〈ij||kl〉 ≡
∫

φ†
i (r1)φ

†
j(r2)

1

r12
φk(r1)φl(r2) dr1 dr2 , (6)

where r12 = |r1 − r2|. The notation φ†(r) indicates com-
plex conjugation, but only of angular functions. The
Gaussian functions are real in any case; the grid-based
functions are products of radial DVR functions, which
are evaluated on the (complex) ECS grid and used with-
out complex conjugation [25], and spherical harmonics
which are complex conjugated.

The various classes of two-electron integrals encoun-
tered in the hybrid Gaussian-DVR scheme are consid-
ered in some detail below. In what follows, Gaussian ba-
sis functions are denoted Gi(r) and DVR basis functions
are denoted χa

j (r) = r−1φj(r)Yla,ma(r̂).

1. Class 1 integrals: 〈GiGj |Gkχd
l 〉 and 〈Giχ

b
j |Gkχd

l 〉

The class of integrals involving either three GTOs or
two GTOs with the same electron coordinate are evalu-
ated by first carrying out the electron repulsion integral

Ii,k(r2) ≡
∫

Gi(r1)
1

r12
Gk(r1) dr1 , (7)

to give a local potential that is a function of the second
electron coordinates. This integral can be done analyt-
ically [32]. The integration over the remaining electron
coordinate is done by quadrature. In both cases, the
discrete orthonormality of the radial DVR functions un-
der Gauss-Lobatto quadrature (Eq. (4)) reduces the in-
tegration to an angular quadrature over the surface of a
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sphere, which is efficiently handled using Gauss-Markov
quadrature [33]:

〈GiGj |Gkχd
l 〉 = rl

√
wl

×
∫

Ii,k(rl; r̂2)Gj(rl; r̂2)Yℓd,md(r̂2) dr̂2 .

(8)

〈Giχ
b
j |Gkχd

l 〉 = δj,l

∫

Ii,k(rj ; r̂2)Y
∗
ℓb,mb(r̂2)Yℓd,md(r̂2) dr̂2 .

(9)

2. Class 2 integrals: 〈χa
i χb

j |χ
c
kχd

l 〉 and 〈Giχ
b
j |χ

c
kχd

l 〉

The evaluation of these integrals follows a general
scheme that we outlined in our recent review [25], with
modifications needed to accomodate an FEM-DVR that
begins at an arbitrary r0. We represent the electron-
electron repulsion as a multipole expansion,

1

r12
=
∑

λ,µ

4π

2λ + 1
Yλ,µ(r̂1)

rλ
<

rλ+1
>

Y ∗
λ,µ(r̂2) . (10)

We first integrate over the electron coordinate shared by
two DVR functions:

∫

φj(r2)

r2

φl(r2)

r2

rλ
<

rλ+1
>

Yℓd,md(r̂2)Y
∗
ℓb,mb(r̂2)Y

∗
λ,µ(r̂2) dr2

= C(ldmd|lbmb, λµ)

∫ rmax

r0

φj(r2)φl(r2)
rλ
<

rλ+1
>

dr2

≡ C(ldmd|lbmb, λµ)Uλ
j,l(r1) ,

(11)
where the angular integral,

C(ldmd|lbmb, λµ) =

∫

Yℓd,md(r̂2)Y
∗
ℓb,mb(r̂2)Y

∗
λ,µ(r̂2) dr̂2 ,

(12)
is well known from atomic spectroscopy [34]. Gauss-
Lobatto quadrature cannot be used in the radial integral
defining Uλ

j,l(r1) because of the derivative discontinuity

in the potential
rλ

<

r
λ+1
>

. However we can restore the valid-

ity of the underlying Gauss quadrature by applying the

DVR to solving an equivalent Poisson’s equation for the
potential due to the charge distribution corresponding to
the product of the two radial DVR basis functions:

(

d2

dr2
− λ(λ + 1)

r2

)

rUλ
j,l(r) = −2λ + 1

r
φj(r)φl(r) , (13)

along with the boundary conditions

Uλ
j,l(r0) = δj,lr

λ
0 /rλ+1

j

Uλ
j,l(rmax) = δj,lr

λ
j /rλ+1

max

(14)

The general solution of Poisson’s equation can be writ-
ten as

rUλ
j,l(r) = Arλ+1 + B/r−λ + rU

λ(0)
j,l (r) , (15)

where A and B are coefficients of the two linearly inde-
pendent solutions of the homogeneous equation, which
are determined by the boundary conditions of Eq. (14)

and rU
λ(0)
j,l (r) is the particular solution that vanishes at

the endpoints r0 and rmax. We can obtain the particular
solution by expanding that function in the FEM-DVR
basis:

rU
λ(0)
j,l (r) =

N
∑

m=1

Cmφm(r) (16)

Substituting this expansion into Eq. (13) gives an expres-
sion for the coefficients Cm:

Cm = (2λ + 1)

[

T
(λ)
m,j

]−1

δj,l

rj
√

wj

, (17)

with
[

T
(λ)
m,j

]−1

denoting the m, j element of the inverse

of the matrix

T (λ)
n,m = −

∫ rmax

0

φn(r)

(

d2

dr2
− λ(λ + 1)

r2

)

φm(r)dr

(18)

Equations (15)-(17), along with Eq. (14), are combined
to obtain

rUλ
j,l(r) = δj,l

[

(2λ + 1)

N
∑

m=1

φm(r)

rj
√

wj

[

T
(λ)
m,j

]−1

+

(

r2λ+1
0

r2λ+1
0 − r2λ+1

max

)(

rλ+1

rλ+1
j

+
rλ
j

rλ
−

rλ+1rλ
j

r2λ+1
0

− r2λ+1
max

rλrλ+1
j

)]

(19)

We can now complete the evaluation of the two-
electron matrix elements by using the result above for
rUλ

j,l and integrating over the coordinates of the remain-

ing electron, using Gauss-Lobatto quadrature. The result
for 〈χa

i χb
j |χc

kχd
l 〉 is:
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〈χa
i χb

j |χc
kχd

l 〉 =

ℓa+ℓc

∑

λ=|ℓa−ℓc|

4π

2λ + 1
Rλ

i,j,k,l ×
λ
∑

µ=−λ

(−1)µC(ℓcmc|ℓama, λµ)C(ℓdmd|ℓbmb, λ−µ) , (20)

where the radial factor Rλ
i,j,k,l is given by

Rλ
i,j,k,l =

∫ rmax

r0

φi(r1)φj(r2)
rλ
<

rλ+1
>

φk(r1)φl(r2) dr1 dr2

= δi,kδj,l

[

2λ + 1

rirj
√

wiwj

[

T λ
i,j

]−1

+

(

r2λ+1
0

r2λ+1
0 − r2λ+1

max

)(

rλ
i

rλ+1
j

+
rλ
j

rλ+1
i

−
rλ
i rλ

j

r2λ+1
0

− r2λ+1
max

rλ+1
i rλ+1

j

)]

.

(21)

Similarly, for 〈Giχ
b
j |χc

kχd
l 〉, the final working expression is:

〈Giχ
b
j |χc

kχd
l 〉 =

ℓb+ℓd

∑

λ=|ℓb−ℓd|

4π

2λ + 1
Uλ

j,l(rk)

[

λ
∑

µ=−λ

C(ℓdmd|ℓbmb, λµ)

(

∫

Gi(rk; r̂1)Yℓc,mc(r̂1)Yλ,µ(r̂1) dr̂1

)]

, (22)

where

Uλ
j,l(rk) =

∫

φj(r2)φl(r2)
rλ
<

rλ+1
>

dr2

= δj,l

[

(2λ + 1)

rkrj
√

wkwj

[

T λ
k,j

]−1
+

(

r2λ+1
0

r2λ+1
0 − r2λ+1

max

)(

rλ
k

rλ+1
j

+
rλ
j

rλ+1
k

−
rλ
krλ

j

r2λ+1
0

− r2λ+1
max

rλ+1
k rλ+1

j

)]

.

(23)

The angular integration in Eq. (22) is again performed
with Gauss-Markov quadrature.

3. Class 3 integrals: 〈GiGj |χ
c
kχd

l 〉

The class of ”exchange” integrals, where a Gaussian
and DVR basis function are paired for each electron,

〈GiGj |χc
kχd

l 〉 =

∫∫

Gi(r1)Gj(r2)
1

r12
χc

k(r1)χ
d
l (r2) dr1 dr2 .

(24)
are the most difficult to evaluate. The strategy here is
to construct a single-center expansion of the product of
a Gaussian and the spherical harmonic part of the DVR
function,

rGi(r)Yl′,m′(r̂) =
∑

l,m

Ri,l′,m′

l,m (r)Yl,m(r̂) , (25)

with exapnsion coefficients defined as

Ri,l′,m′

l,m (r) = r

∫

Gi(r̂; r)Yl′,m′(r̂)Yl,m(r̂) dr̂ . (26)

The electron-electron repulsion is again represented by
its multipole expansion. Substituting these expressions

into the two-electron matrix element of Eq. (24) gives

〈GiGj |χc
kχd

l 〉 =
∑

λ,µ

4π(−1)µ

2λ + 1

×
∫

Ri,ℓc,mc

λ,−µ (r1)φk(r1)
rλ
<

rλ+1
>

Rj,ℓd,md

λ,µ (r2)φl(r2) dr1 dr2 .

(27)
We now follow they same procedure used in the pre-
vious subsection, carrying out the integration over the
first electron coordinate by solving an equivalent Poisson
equation. Defining the densities,

ρ1(r) ≡ Ri,ℓc,mc

λ,−µ (r)φk(r)

ρ2(r) ≡ Rj,ℓd,md

λ,µ (r)φl(r)
(28)

we can write

〈GiGj |χc
kχd

l 〉 =
∑

λ,µ

4π(−1)µ

2λ + 1
=

〈

ρ1

∣

∣

∣

∣

rλ
<

rλ+1
>

∣

∣

∣

∣

ρ2

〉

, (29)

and proceeding as we did above gives:
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〈

ρ1

∣

∣

∣

∣

rλ
<

rλ+1
>

∣

∣

∣

∣

ρ2

〉

= (2λ + 1)

[

Ri,ℓc,mc

λ,−µ (rk)

rk

Rj,ℓd,md

λ,µ (rl)

rl

]

[

T λ
k,l

]−1

+

(

r2λ+1
0 − r2λ+1

l

r2λ+1
0 − r2λ+1

max

)

Ri,ℓc,mc

λ,−µ (rk)Rj,ℓd,md

λ,µ (rl)
√

wkwlr
λ
k

rλ+1
l

+

(

r2λ+1
l − r2λ+1

max

r2λ+1
0 − r2λ+1

max

)

Ri,ℓc,mc

λ,−µ (rk)Rj,ℓd,md

λ,µ (rl)
√

wkwlr
2λ+1
0

(rkrl)λ+1
.

(30)

This class of integrals requires the most computational
effort of any of the hybrid two-electron integrals encoun-
tered. Note in particular that there is no fixed upper limit
on the angular quantum numbers µ and λ in Eq. (27),
so the upper limits must be determined empirically. The
computational workload can be minimized by designing
the hybrid basis to keep the Gaussians confined to as
few DVR finite elements as possible. This will help to
avoid having to evaluate many of these mixed-basis ex-
change integrals beyond the range of the Gaussian basis
functions.

III. CONSTRUCTION OF THE HAMILTONIAN

FOR LI+2

Equipped with the list of possible two-electron inte-
grals that occur in a hybrid Gaussian-DVR basis, we
turn our attention now to representing the Hamiltonian
of Li+2 in this basis. The 2Σ+

g ground state of Li+2 is
well represented by a single-configuration wave function
(1σg)

2(1σu)2(2σg), representing a molecular system with
one electron outside of a filled inner core. In order to con-
sider photoionization of the valence electron, an accurate
description of the interaction of this electron with those
of the core is essential. The molecular orbitals that hold
the core electrons are well described as +/- combinations
of Li 1s atomic orbitals and can be accurately described
by a few s-type GTOs centered on the nuclei. The core
orbitals were obtained from a self-consistent field (SCF)
calculation on Li++

2 . The strategy was to represent the
interaction of the valence electron with the closed-shell
core via a non-local static exchange potential.

The effective one-electron Hamiltonian for the Li+2
molecule is (in atomic units)

H = T + Vnuc + 2J − K, (31)

where

T = −1

2
∇2,

Vnuc = − Z

|r− A| −
Z

|r + A| ,
(32)

are the kinetic energy and nuclear attraction operators,
respectively. The charge on each nuclei is Z = 3 with
coordinates at each end of the molecular axis defined by

A. The repulsion of the valence electron with those con-
stituting the core is given by the Coulomb and exchange
operators 2J − K, where

J(r) =

∫

dr′
(1σg(r

′)2 + 1σu(r′)2)

|r − r′| , (33)

and

K(r, r′)f(r′) =1σg(r)

∫

dr′
1σg(r

′)f(r′)

|r − r′|

+ 1σu(r)

∫

dr′
1σu(r′)f(r′)

|r − r′| .

(34)

The one-electron kinetic energy and nuclear attraction
integrals in the hybrid representation were evaluated as in
paper I, while the matrix elements of the core potential
are expressed in terms of the appropriate two-electron
integrals and the density matrix ρ for the occupied core,

ρk,l = [c
1σg

k c
1σg

l + c1σu

k c1σu

l ]. (35)

where the c’s are the expansion coefficients of the core
orbitals constructed in a pure Gaussian basis. To repre-
sent the outer valence electron, the core Gaussian basis
is augmented with additional Gaussian functions and the
Coulomb operator is constructed as

〈fi|J |fj〉 =
∑

k,l

ρk,l〈fiGk|fjGl〉, (36)

where fi and fj are functions in the hybrid basis con-
sisting of DVR functions and the augmented Gaussian
basis, but the two-electron integral 〈fiGk|fjGl〉 involves
only the core Gaussians indexed by k and l. Similarly, the
exchange operator can be constructed using the density
and various two electron integrals,

〈fi|K|fj〉 =
∑

k,l

ρk,l〈fiGk|Glfj〉. (37)

We note that this construction requires two-electron in-
tegrals of class 1 and class 3, but not class 2. Having
outlined the computation of all integrals needed to con-
struct a representation of Eq. (31) in a hybrid basis, we
turn next to some some illustrative calculations on Li+2 .

IV. NUMERICAL TESTS OF THE BOUND

STATES OF LI+2

Previous calculations [35–39] and experimental re-
sults [40, 41] report the equilibrium bond distance of
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TABLE I: Gaussian basis function parameters for Li+2 . The
location of the Gaussian center is either on each atomic nuclei
or at the center of the bond. The first three atomic s functions
are used to build the core orbitals of the inner electrons; those
that follow are used for the valence electron.

location type exponent contraction coef.

atomic s 921.3 0.002651

138.7 0.020140

31.94 0.096436

9.353 0.310677

3.158 0.666990

atomic s 1.157 1.0

atomic s 0.4446 1.0

atomic s 0.7 1.0

atomic s 0.2 1.0

atomic p 1.0 1.0

atomic p 0.5 1.0

atomic p 0.75 1.0

atomic p 0.1 1.0

atomic d 0.5 1.0

center s 0.1 1.0

center s 0.05 1.0

center p 0.3 1.0

center p 0.1 1.0

center d 0.1 1.0

center f 0.5 1.0

ground state Li+2 at R ∼ 5.9a0, substantially larger than
the bond distances of other covalently bonded diatomic
molecules. Because of the design of the hybrid basis, the
region inside of r0 must be adequately described by only
the Gaussian basis functions. The Gaussian basis set de-
tails utilized for the following calculations is displayed
in Table I. The core orbitals were expanded in a set of
3 s-type contracted functions. These were obtained by
contracting the first five and dropping the two most dif-
fuse functions (with exponents 0.0767 and 0.286) from
the 9s primitive set given by Dunning and Hay [29]. The
augmented basis used to describe the valence electron in-
cludes GTOs with angular momentum contributions up
to l = 3 f -type functions. This basis was adequate for
describing Li+2 at internuclear distances up to 6.0 bohr.
The following results were robust to changes of the va-
lence basis. The inclusion of more diffuse GTOs, includ-
ing the addition of more Gaussians along the bond axis,
did not change the results, indicating convergence of the
inner region with this modest basis.

For the DVR portion of the hybrid basis, the radial grid
started 0.1a0 beyond the nuclei positions and employed
radial finite elements at intervals of 5 bohr up to r =
20a0, followed by three finite elements of 10 bohr leading
up to the exterior complex scaling point rECS = 50a0

and a 20 bohr complex decay element with ECS rotation
angle η = 30◦. Within each finite element 17th order

DVR was used. The angular basis included spherical
harmonics of the appropriate symmetry with lmax = 7.

The calculation of the Li+2 potential energy curves of
the ground and first few excited states are displayed in
Fig. 2. The solid lines are results from a previous calcula-
tion [42] while the corresponding symbols are results cal-
culated using the hybrid basis at several internuclear dis-
tances. The agreement amongst these results and those
of another model potential calculation [43] is excellent.
The accuracy of the Rydberg state energies is a strong
test of the completeness of the hybrid basis. The ground
state minimum energy was calculated at R = 5.86a0,
agreeing with these previous results. It should be noted
that the DVRs are essential for accurately describing the
first few excited states of Li+2 , since the GTO list lacks
diffuse functions. Indeed, calculations at R = 5.5a0 em-
ploying only the GTOs listed in Table I and no DVRs
gave a 0.65eV error for the 2Σg state and for the 3Σg

state the error is more than 2 eV. The potential energy
curves of Fig. 2 illustate that the DVR portion of the
hybrid basis is correctly connecting to the inner GTO
region, accurately describing the Rydberg states of the
molecule. This proper coupling between the components
of the hybrid basis is essential to ensure that the physical
space of the problem is adequately spanned by the full
basis.

V. CALCULATION OF CONTINUUM STATES

OF LI+2

A. Theoretical framework for evaluation of

photoionization amplitudes

The results of Section IV confirm that the Hamiltonian
constructed in Eq. (31) correctly describes the Li+2 sys-
tem. The task now remains to construct the continuum
states of Li+2 with outgoing electron momentum k. The
details of this construction were given in paper I and will
not be repeated here. We write the full wave function as

Φ(+)(k, r) = ξ(k, r) + g(r)Ψ(+)
c (k, r) , (38)

where Ψ
(+)
c (k, r) is an atomic Coulomb function with

Z = 2 representing the incoming part of the full solu-
tion, g(r) is an arbitrary cutoff function that becomes
unity at large distances and ξ(k, r) is the unknown scat-

tered wave. By expanding Ψ
(+)
c (k, r) in partial waves

and substituting Eq. (38) into the Schrödinger equation,
one obtains driven equations

(k2

2
− H

)ξl0,m(r)

r
=

(

H − k2

2

)

g(r)
φ

(c)
l0,k(r)

r
Yl0,m(r̂)

(39)
for each partial wave component l0, m of the Coulomb
wave channel. By expanding ξl0,m(r) in the hybrid basis,
Eq. (39) is converted to a set of linear equations for the
unknown expansion coefficients. The cutoff function g(r)
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FIG. 2: (Color online) Potential energy curves of Li+2 for var-
ious symmetries. Solid curves are results of a previous ab

initio calculation [42]. The corresponding discrete points are
results calculated in the hybrid representation at internuclear
distances from 3 to 6 bohr.

must have continuous first and second derivatives and go
to one for r < rECS, but is otherwise arbitrary. In this
work, we chose g(r) as

g(r) =











0, r < a

6x5 − 15x4 + 10x3, a ≤ r ≤ b

1, r > b,

(40)

where x = (r − a)/(b − a). We generally chose a and
b to coincide with finite element boundaries on the real
portion of the grid and verified that for a > 20bohr, the
results were independent of the choice. By choosing g(r)
to be nonzero only beyond the range of the Gaussian
basis functions, we eliminate the need for any matrix
elements between GTOs and the Coulomb functions on
the right-hand side of Eq. (39).

The photoionization amplitude for a fixed-in-space
molecular orientation is defined by

〈Φ(−)(k, r)
∣

∣ǫ · r
∣

∣Φ0(r)
〉

where k is the outgoing electron momentum, Φ0(r) is the
initial state with energy E0, ǫ · r is the dipole operator

for a photon with polarization direction ǫ and energy ω
and the final state Φ(−)(k, r) is related to the function in
Eq. (38) by

Φ(−)(k, r) =
[

Φ(+)(−k, r)
]∗

. (41)

The photoionization amplitude can be computed from
the solution of the perturbative first-order equation

[

E0 + ω − H
]

Ψsc = (ǫ · r)Ψ0 , (42)

by writing

〈

Φ(−)(k, r)
∣

∣ǫ · r
∣

∣Φ0(r)
〉

=
〈

Φ(−)(k, r)
∣

∣(E − H)(E − H + iǫ)−1ǫ · r
∣

∣Φ0(r)
〉

=
〈

Φ(−)(k, r)
∣

∣E − H
∣

∣Ψsc(r)
〉

.
(43)

As described in I, this amplitude can be converted to
a surface integral using Green’s theorem. Moveover, by
placing the surface well outside the range of the Gaus-
sians and just inside the complex turning point rECS, we
need only include DVR contributions from Φ(−)(k, r) and
Ψsc.

B. Convergence tests

Having outlined the tools necessary to evaluate cross
sections for photoionization of Li+2 , we next test the ro-
bustness of the method. Fig. 3 shows the behavior of the
differential cross section at 20 eV ejected photoelectron
energy with a linearly polarized photon direction 15◦ rel-
ative to the molecular axis (at R = 5.86a0) as various
parameters are varied. All angles are measured relative
to the molecular axis throughout the following examples.
Panel (a) displays the results derived using different inner
region Gaussian basis sets. The solid curve was obtained
using the GTO basis in Table I. Augmentation of the
basis with additional f -type functions placed along the
bond axis yields the broken curve, indicating that the in-
ner region is adequately spanned by this basis. Panel (b)
displays the convergence of the results with respect to the
number of angular terms in the DVR basis. The results
also show convergence is essentially reached by including
partial waves up to lmax = 7, with the angular distribu-
tion only slightly altered by adding partial waves up to
lmax = 9. Panels (c) and (d) indicate robustness of the
results with respect to the radial DVR basis details. Nei-
ther the addition of another real finite element changing
the radial grid size, nor a change in the extraction surface
radius is seen to appreciably change the results. These
tests indicate that these calculations are completely con-
verged with respect to the parameters of the calculation.
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FIG. 3: (Color online) Convergence test of the hybrid method.
Each panel displays angular photoionization cross sections
of Li+2 at R = 5.86a0 with photon polarization 15◦ and
20eV ejected electron energy. (a) Gaussian basis convergence
demonstrated with additional f -type functions. Γ refers to
the total number of contracted Gaussian functions in the ba-
sis. (b) Convergence of results with higher partial waves in
the DVR angular basis. (c) Stability of results with larger
radial DVR grid size. (d) Convergence of results with respect
to the extraction surface location inside of rECS.

VI. COMPUTED PHOTOIONIZATION CROSS

SECTIONS OF LI+2

A. Total cross sections

A plot of the total photoionization cross section at
equilibrium geometry at various photoelectron energies
is shown in Fig. 4. The lower curve displays results for
pure Σ polarization while the upper curve results are for
the pure Π case. The total cross sections were calculated
via two methods: by integrating the differential cross sec-
tion over all angles and by evaluating the optical theorem
expression

σtot =
4πω

c
Im
〈

Ψ0

∣

∣ǫ · r
∣

∣Ψsc

〉

. (44)

Table II compares the numerical values of the total
cross section calculated using these two methods at differ-
ent energies and in different symmetries. The agreement
of the results is excellent, providing further confirmation
that the calculations are sufficiently converged.

It is interesting to note the striking differences in the
total cross sections for H+

2 and Li+2 . The Σ component in
Li+2 decreases monotonically from threshold, while in H+

2

is rises to a maximum near 1 eV photoelectron energy
and then decreases. Moreover, the ratio of Π to Σ at low
energies is much larger for H+

2 than for Li+2 . This ratio
is ∼6 in H+

2 at 1 eV, while in Li+2 , the ratio is close to 2
near threshold.

0 10 20 30 40 50
energy (eV)

0

0.5

1

σ 
(M

b)

Σ

Π

FIG. 4: (Color online) Total photoionization cross section of
Li+2 versus ejected photoelectron energy. Lower curve: pho-
ton polarization parallel to the molecular axis; upper curve:
photon polarization perpendicular to the molecular axis.

TABLE II: Comparison of the total photoionization cross sec-
tions for Li+2 calculated using both the optical theorem and
integrating the differential cross section. Results are shown at
various photoelectron energies for photon polarizations both
parallel and perpendicular to the molecule.

energy (eV) σtot (Mb)

Op. Th. Integral

Σ 5 0.1567962 0.1567961

10 0.0755934 0.0755954

15 0.0540898 0.0540892

20 0.0493177 0.0493171

Π 5 0.5701969 0.5701905

10 0.3355458 0.3355456

15 0.2168718 0.2168742

20 0.1522864 0.1522889

B. Angular distributions at 10eV

To illustrate the detailed information of molecular pho-
toionization calculated in the hybrid scheme, the differ-
ential cross sections (DCS) for photoionization from Li+2
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FIG. 5: (Color online) Differential cross sections and angular
distributions for photoionization of Li+2 at R = 5.86a0 eject-
ing a 10eV photoelectron. The polarization vector is ϕ = 0◦,
30◦, 60◦ and 90◦ from top to bottom. The relative angu-
lar distributions are shown beside the absolute cross sections
with the polarization vector (green arrow) measured from the
molecular axis.

with internuclear distance R = 5.86a0 are shown in the
following sections. Figure 5 considers the case for 10eV
photoelectron energy. The cross sections display a more
complex angular distribution than those observed for H+

2

with internuclear separation R = 2.0a0 for the same pho-
toelectron energy [9, 14]. The larger internuclear distance
appears to give angular distributions different from the
more spherical H+

2 molecule, whose angular distributions
at 10eV appear more atomic-like.

While the shape of the DCS in Fig. 5 is similar to
H+

2 for pure Σ polarization results , the angular distri-
butions for other polarizations are more complicated. In
particular, the pure Π polarization case gives an angu-
lar distribution with three lobes reminiscent of classical
interference patterns from double-slit experiments. Such
phenomena have been studied in H+

2 [6, 44] and H2 [45],
requiring a significantly larger photoelectron energy to
make the electron wavelength comparable to the inter-
nuclear separation [46]. However, with such a large equi-
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FIG. 6: (Color online) Differential cross sections and angular
distributions for photoionization of Li+2 at R = 5.86a0 eject-
ing a 2eV photoelectron, with polarization ϕ = 0◦, 30◦, 60◦

and 90◦ from top to bottom. Even at this low energy, the an-
gular distributions do not appear as atomic-like as observed
for less severly non-spherical diatomics like H+

2 , indicating the
contribution of higher partial wave components closer to the
photoionization threshold for longer bond distances.

librium internuclear separation in Li+2 , the photoelectron
wavelength becomes comparable to the bond distance at
much lower energies. The de Broglie wavelength for a
10eV photoelectron is λe ∼ 7.3a0, making the energy
ranges for observing classical interference effects in the
angular distributions more accessable for the long bond
length of Li+2 compared to smaller molecules.

C. Angular distributions at 2eV

To further investigate the interplay of the nuclear ge-
ometry and possible interference effects in the photoion-
ization differential cross sections, we move to an energy
near threshold where the photoelectron possesses a longer
wavelength λe. At 2eV, this wavelength is ∼ 16.4a0, sig-
nificantly longer than the R = 5.86a0 Li+2 bond distance.
Thus, the possibility of double-slit interference effects im-
pacting the angular distributions is significantly dimin-
shed at this lower ejection energy. Differential cross sec-
tions and relative angular distribution plots for this case
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are shown in Fig. 6.
The angular distribution in the perpendicular polariza-

tion case again shows a three-lobe structure, indicating a
signifcant contribution from the l = 3 f -wave component
to the outgoing wave function. Figure 7 plots the real
part of the outgoing Ψsc(r) in the xz-plane for pure Π
polarization. The lobes in the cross section have their
origins in the visible jets of outgoing amplitude in the
wave function. By analyzing the partial-wave T-matrix
elements of the scattered wave function, as we did in
I, we found that the f -wave contributes significantly to
the outgoing wave function even at 2eV above the pho-
toionization threshold for both polarizations parallel and
perpendicular to the moleculear axis. In contrast to H+

2

at R = 2.0a0, the significantly larger internuclear sepa-
ration of Li+2 represents an equilibrium geometry vastly
more non-spherical, thereby introducing higher angular
momentum components into the wave function. These
higher partial waves impact the angular distributions at
much lower energies for large internuclear separations
relative to more spherically-shaped diatomic molecules.
Thus, what appears to be a double-slit interference ef-
fect in the angular distributions for near-threshold pho-
toionization is more likely attributed to the importance
of higher angular momentum terms for severely non-
spherical molecular target geometries.

D. Angular distributions at 20eV

Finally, turning to a higher energy range readmits the
possibility of interference effects between the ejected pho-
toelectron and the target. Figure 8 displays angular cross
sections for photoionization of Li+2 for a 20eV photoelec-
tron. The corresponding de Broglie wavelength of the
electron is ∼ 5.2 bohr, slightly smaller than the internu-
clear separation.

In this case, we expect interference-like structures to
be more evident than the previous results at 10eV. Fig-
ure 9 compares the three-dimensional cross sections for
these two photoelectron energies with parallel and per-
pendicular polarizations. Indeed, a comparison of the
pure Σ polarization angular distributions reveals that the
higher energy photon leads to more prominent structure
in directions off the molecular axis, with distinct lobes
emerging in going from 10eV to 20eV. Furthermore, the
perpendicular polarization angular distributions at these
energies exhibit the expected behavior of a double-slit
interference result as the energy is increased. The peaks
symmetric with the main peak along the polarization axis
are observed to move closer to the central peak, with all
lobes becoming more sharply defined about their max-
ima. The corresponding minima also move towards the
polarization direction as expected.

The examples at polarization directions ϕ = 30◦ and
ϕ = 60◦ also change consistent with what would be ex-
pected for an interference pattern as the photoelectron
wavelength is shortened from Fig. 5 to Fig. 8, with lobes
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FIG. 7: (Color online) Upper panel: Real part of the outgo-
ing scattered wave function Ψsc(r) in Πu symmetry plotted
above the xz-plane. Lower panel: Contour plot of the above
wavefunction projected in the xz-plane. The angular distri-
bution of the ϕ = 90◦ polarization in Fig. 6 correlates to the
directions of outgoing amplitude in the scattered wave, indi-
cating stronger contribution from the l = 3 partial wave than
is observed for H+

2 at equilibrium geometry.

becoming sharper and more defined as the energy is in-
creased. In summary, the angular distributions of cases
where the photoelectron wavelength λe becomes compa-
rable to the large bond distance of Li+2 begin to display
interference characteristics for photon energies lower than
are required to produce such effects for diatomic systems
with shorter bond lengths.

VII. CONCLUSIONS

The hybrid representation derives its attractiveness for
use in treating continuum problems involving molecular
targets by combining the advantageous qualities of its
component basis sets. Simultaneously harnessing both
the ability of analytic Gaussian type basis functions to
describe electronic coordinates near the nuclei in bound
orbitals and the power of grid-based DVR methods em-
ploying exterior complex scaling for description of con-
tinuum electronic coordinates renders the hybrid basis
suitable for molecular photoionization problems. This
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FIG. 8: (Color online) Differential cross sections and angular
distributions for photoionization of Li+2 at R = 5.86a0 eject-
ing a 20eV photoelectron, with polarization vector ϕ = 0◦,
30◦, 60◦ and 90◦ from top to bottom. At this higher photo-
electron energy, the appearance of interference phenomena is
more markedly observed than in the lower energy cases.

marriage of both bound state basis set methods and grid-
based technologies capitalizes on the decades of research
and refinement that have been spent to improve and op-
timize both constituent components.

The hybrid method has been extended beyond the eval-
uation of one-electron operators with the complete cata-
log of possible two-electron integrals that occur in this
scheme tabulated in Sec. II C. These classes of two-
electron integrals differ in the possible combinations of
Gaussians or DVR-type functions among the four indices
and are evaluated according to the properties of the com-
ponent bases. The overall basis is designed to minimize
the number of these two-electron integrals that need be
evaluated.

The method has been successfully applied to treat pho-
toionization of Li+2 , where the large equilibrium inter-
nuclear distance would complicate a purely single-center
approach with existing grid-based formulations. This
large bond distance leads to interesting consequences in
the angular distributions of the computed cross sections,
namely the large contribution from higher angular mo-

mentum components even at low photoelectron energies
and the appearence of double-slit interference phenom-

FIG. 9: (Color online) Three-dimensional angular distribu-
tions of the photoelectron from Li+2 with energies of 10eV
(left column) and 20eV (right column). Results with Σ po-
larization are on the upper row, Π polarization on the lower
row. The changes in the cross section shapes as the photo-
electron energy is raised are consistent with the behavior of
interference phenomena.

ena at energies above 10eV.
Since the manifestations of molecular interference phe-

nomena appear similar to the near-threshold behavior of
the angular distributions that is a consequence of the
non-spherical molecular geometry, it is difficult to pin-
point exactly at what energies the observed angular pat-
terns in the cross sections are dominated by interference
effects alone. Indeed, the role of internuclear separation
on the angular structure arising from the interplay be-
tween molecular geometry and interference effects when
energetically possible remains an interesting topic requir-
ing further investigation.
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