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ABSTRACT OF THE DISSERTATION

Deep Learning for Puzzles and Circadian Rhythms
By
Forest Agostinelli
Doctor of Philosophy in Computer Science

University of California, Irvine, 2019

Professor Pierre Baldi, Chair

The combination of deep learning with reinforcement learning and the application of deep
learning to the sciences is a relatively new and flourishing field. We show how deep reinforce-
ment learning techniques can learn to solve problems, often in the most efficient way possible,
when faced with many possibilities but little information by designing an algorithm that can
learn to solve seven different combinatorial puzzles, including the Rubik’s cube. Further-
more, we show how deep learning can be applied to the field of circadian rhythms. Circadian
rhythms are fundamental for all forms of life. Using deep learning, we can gain insight into
circadian rhythms on the molecular level. Finally, we propose new deep learning algorithms
that yield significant performance improvements on computer vision and high energy physics

tasks.



Chapter 1

Introduction

Deep learning has shown state-of-the-art performance on a variety of tasks involving vision,
speech, and scientific discovery. Additionally, The combination of deep learning with rein-
forcement learning has yielded human level and super-human level performance on a variety
of games. While much progress has been made in recent years, the space of possibilities that
have yet to be investigated remains large. In this dissertation, we investigate how to learn
to solve problems that have many different possible permutations, but only one solution.
Solutions to these problems carry implications for agents learning in environments with lit-
tle information. Furthermore, we show that deep reinforcement learning can be applied to
the study of circadian rhythms in multiple ways. Finally, we investigate general algorithmic

improvements for deep neural networks.

1.1 Deep Reinforcement Learning for Puzzles

Puzzles such as the Rubik’s cube pose a unique challenge for deep reinforcement learning

problems due to its large state space (4.3 x 10'? different states) that contains only a single



goal state. If an agent only knows whether or not it has reached the goal, then the information
it receives is uniform in all states except one. We design an agent that can learn to solve
this puzzle, among others, by starting in reverse from the goal state. With this method,
the agent learns to solve increasingly difficult states by bootstrapping from knowledge it
has obtained on simpler states. We can then combine this knowledge with path finding
algorithms, in particular, A* search. Application of this technique has yielded success on
the Rubik’s cube and six other puzzles: the 15-puzzle, 24-puzzle, 35-puzzle, 48-puzzle, Lights

Out, and Sokoban, finding a shortest path in the majority of verifiable cases.

1.2 Deep Learning for Circadian Rhythms

Circadian rhythms are fundamental for life. Disruptions in circadian rhythms have been
linked to diseases such as early aging, sleep disorders, and cancer. High throughput technol-
ogy allows us to analyze circadian rhythms on a molecular level, presenting new challenges.
The first challenge is to determine whether or not a molecular species is oscillating in a
circadian fashion. The second challenge is, given a set of measurements taken at a single
timepoint, to infer when that measurement was taken. This second challenge is particularly
applicable to the plethora of experiments that have been taken at a single timepoint but

have not been labeled with a timepoint.

1.3 Learning Activation Functions to Improve Deep

Neural Networks

The state-of-the-art function approximation ability of deep neural networks to is due partly to

the type of activation function used; that is, the point-wise non-linear function applied after



a matrix multiplication. However, while the values of these matrices are learned through
backpropagation, the activation function is usually fixed. In this section, we investigate
learned activation functions and show that they consistently improve the performance of

deep neural networks for computer vision tasks and a high-energy physics task.



Chapter 2

Deep Reinforcement Learning for

Puzzles

The Rubik’s Cube is a prototypical combinatorial puzzle that has a large state space with
a single goal state. The goal state is unlikely to be accessed using sequences of randomly
generated moves, posing unique challenges for machine learning. We solve the Rubik’s Cube
with DeepCubeA, a deep reinforcement learning approach that learns how to solve increas-
ingly difficult states in reverse from the goal state without any specific domain knowledge.
DeepCubeA solves 100% of all test configurations, finding a shortest path to the goal state
60.3% of the time. DeepCubeA generalizes to other combinatorial puzzles and is able to solve
the 15-puzzle, 24-puzzle, 35-puzzle, 48-puzzle, Lights Out, and Sokoban, finding a shortest

path in the majority of verifiable cases.



2.1 Introduction

The Rubik’s Cube is a classic combinatorial puzzle that poses unique and interesting chal-
lenges for artificial intelligence and machine learning. Although the state space is excep-
tionally large (4.3 x 10! different states), there is only one goal state. Furthermore, the
Rubik’s Cube is a single-player game and a sequence of random moves, no matter how long,
is unlikely to end in the goal state. Developing machine learning algorithms to deal with this
property of the Rubik’s Cube might provide insights into learning to solve planning problems
with large state spaces. While machine learning methods have previously been applied to
the Rubik’s Cube, these methods have either failed to reliably solve the cube[76, 113, 16, 59]
or have had to rely on specific domain knowledge[67, 3]. Outside of machine learning meth-
ods, methods based on pattern databases have been effective at solving puzzles such as the
Rubik’s Cube, 15-puzzle, and 24-puzzle [68, 70], but these methods can be memory intensive

and puzzle-specific.

More broadly, a major goal in artificial intelligence is to create algorithms that are able
to learn how to master various environments without relying on domain-specific human
knowledge. The classical 3x3x3 Rubik’s Cube is only one representative of a larger family
of possible environments, broadly sharing the characteristics described above, including: (1)
cubes with longer edges or in higher dimension (e.g. 4x4x4 or 2x2x2x2); (2) sliding tile
puzzles (e.g. the 15-puzzle, 24-puzzle, 35-puzzle, and 48-puzzle); (3) Lights Out; as well as
(4) Sokoban. As the size and dimensions are increased, the complexity of the underlying
combinatorial problems rapidly increases. For instance, while finding an optimal solution
to the 15-puzzle takes less than a second on a modern day desktop, finding an optimal
solution to the 24-puzzle can take days, and finding an optimal solution to the 35-puzzle is
generally intractable[35]. Not only are the aforementioned puzzles relevant as mathematical
games, but they can also be used to test planning algorithms [14] and to assess how well a

machine learning approach may generalize to different environments. Furthermore, since the
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Figure 2.1: A visualization of a scrambled state (top) and the goal state (bottom) for four
of the puzzles investigated in this paper.

operation of the Rubik’s Cube and other combinatorial puzzles are deeply rooted in group
theory, these puzzles also raise broader questions about the application of machine learning
methods to complex symbolic systems, including mathematics. In short, for all these reasons,

the Rubik’s Cube poses interesting challenges for machine learning.

To address these challenges, we develop DeepCubeA which combines deep learning [109, 42]
with classical reinforcement learning [122] (approximate value iteration[11, 98, 13]) and path
finding methods (weighted A* search[50, 97]). DeepCubeA is able to solve combinatorial
puzzles such as the Rubiks Cube, 15-puzzle, 24-puzzle, 35-Puzzle, 48-puzzle, Lights Out,
and Sokoban (see Figure 2.1). DeepCubeA works by using approximate value iteration to
train a deep neural network (DNN) to approximate a function that outputs the cost to reach
the goal (also known as the cost-to-go function). Since random play is unlikely to end in
the goal state, DeepCubeA trains on states obtained by starting from the goal state and

randomly taking moves in reverse. After training, the learned cost-to-go function is used as



a heuristic to solve the puzzles using weighted A* search [50, 97, 29].

DeepCubeA builds upon DeepCube [85], a deep reinforcement learning algorithm that solves
the Rubik’s Cube using a policy and value function combined with Monte Carlo tree search
(MCTS). MCTS combined with a policy and value function is also used by AlphaZero which
learns to beat the best existing programs in chess, Go, and shogi [112]. In practice, we
find that, for combinatorial puzzles, MCTS has relatively long runtimes and often produces
solutions many moves longer than the length of a shortest path. In contrast, DeepCubeA
finds a shortest path to the goal for puzzles for which a shortest path is computationally
verifiable: 60.3% of the time for the Rubik’s Cube, and over 90% of the time for the 15-puzzle,

24-puzzle, and Lights Out.

2.2 Deep Approximate Value Iteration

Value iteration [98] is a dynamic programming algorithm [11, 13] that iteratively improves
a cost-to-go function J. In traditional value iteration, J takes the form of a lookup table
where the cost-to-go J(s) is stored in a table for all possible states s. Value iteration loops

through each state s and updates J(s) with a new value J'(s) until convergence:

J'(s) = min, Z P(s,8")(g%(s,8") +~vJ(s)) (2.1)

Here P%(s, s') is the transition matriz representing the probability of transitioning from state
s to state s’ by taking action a; g*(s, s') is the cost associated with transitioning from state
s to s’ by taking action a; and ~ is the discount factor. In principle, this update equation

can also be applied to the puzzles investigated in this paper. However, since these puzzles



are deterministic, the transition function is a degenerate probability mass function for each
action, simplifying Equation 2.1. Furthermore, because we wish to assign equal importance

to all costs, 7 = 1. Therefore, we can update J(s) using:

J'(s) = ming(g°(s, A(s,a)) + J(A(s,a))) (2.2)

where: A(s,a) is the state obtained from taking action a in state s and g*(s, s') is the cost
to transition from state s to state s’ taking action a. For the puzzles investigated in this

paper, g%(s,s’) is always 1.

Given the size of the state space of the Rubik’s Cube, maintaining a table to store the cost-
to-go of each state is not feasible. Therefore, we resort to approzimate value iteration [13].
Instead, .J is represented by a parameterized function implemented by a DNN. The DNN is
trained to minimize the mean squared error between its estimation of the cost-to-go of state
s, J(s), and the updated cost-to-go estimation J'(s). We call the resulting algorithm deep

approximate value iteration (DAVI).

In order to train the DNN, we have two sets of parameters: the parameters being trained 6,
and the parameters used to obtain an improved estimate of the cost-to-go .. The output of
Jo.(s) is set to 0 if s is the goal state. The DNN is trained to minimize the mean squared
error between its estimation of the cost-to-go and the estimation obtained from Equation
2.2. Every C iterations, the algorithms checks if the error falls below a certain threshold e;
if so, then 6, is set to 6. The entire DAVI process is shown in Algorithm 1. While we tried
updating 6. at each iteration, we found that the performance saturated after a certain point
and sometimes became unstable. Updating 6, only after the error falls below a threshold e

yields better, more stable, performance.



Algorithm 1: Deep Approximate Value Iteration
Input:
B: Batch size
K: Maximum number of scrambles
M: Training iterations
C: How often to check for convergence
e: Error threshold
Output:
@: Trained neural network parameters
0 < initialize_parameters()
0, <~ 6
for m =1 to M do
X < get_scrambled_states(B, K)
for x; € X do
L i < ming(g9*(zi, Awi, a)) + Jo. (A(zi, a)))
0,loss < train(Jy, X,y)
if (M mod C' = 0) and (loss < €¢) then
| 0.« 0

f{eturn 0

While the update in Equation 2.2 is only a one-step lookahead, it has been shown that, as
training progresses, J approximates the optimal cost-to-go function J*[13]. This optimal
cost-to-go function computes the total cost incurred when taking a shortest path to the goal.
Instead of Equation 2.2, multi-step lookaheads such as a depth-N search or Monte Carlo
tree search can be used. We experimented with different multi-step lookaheads and found
that multi-step lookahead strategies resulted in, at best, similar performance to the one-step

lookahead used by DAVT (see Results for more details).

2.2.1 Training Set State Distribution

In order for learning to occur, we must train on a state distribution that allows information
to propagate from the goal state to all the other states seen during training. Our approach
for achieving this is simple: each training state x; is obtained by randomly scrambling the

goal state k; times, where k; is uniformly distributed between 1 and K. During training,



the cost-to-go function first improves for states that are only one move away from the goal
state. The cost-to-go function then improves for states further away as the reward signal is
propagated from the goal state to other states through the cost-to-go function. This can be
seen as a simplified version of prioritized sweeping[88]. Exploring in reverse from the goal
state is a well-known technique and has been used in means-end analysis[90] and STRIPS[36].

In future work we will explore different ways of generating a training set distribution.

2.3 Batch Weighted A* Search

After learning a cost-to-go function, we can then use it as a heuristic to search for a path
between a starting state and the goal state. The search algorithm that we use is a variant
of A* search [50], a best-first search algorithm that iteratively expands the node with the
lowest cost until the node associated with the goal state is selected for expansion. The cost
of each node z in the search tree is determined by the function f(z) = g(z) + h(x), where
g(x) is the path cost, which is the distance between the starting state and z, and h(z) is
the heuristic function, which estimates the distance between x and and the goal state. The

heuristic function h(z) is obtained from the learned cost-to-go function:

0 if x is associated with the goal state

h(z) = (2.3)

J(x) otherwise

We use a variant of A* search called weighted A* search [97]. Weighted A* search trades
potentially longer solutions for potentially less memory usage by using instead the function
f(z) = Ag(x) + h(x), where X\ is a weighting factor between zero and one. Furthermore,

using a computationally expensive model for the heuristic function h(z), such as a DNN,

10



could result in an intractably slow solver. However, h(z) can be computed for many nodes
in parallel by expanding the N lowest cost nodes at each iteration. We call the combination
of A* search with a path-cost coefficient A and a batch size of N batch weighted A* search
(BWAS).

In summary, the algorithm presented in this paper uses DAVI to train a DNN as the cost-
to-go function on states whose difficulty ranges from easy to hard. The trained cost-to-go
function is then used as a heuristic for BWAS to find a path from any given state to the goal

state. We call the resulting algorithm DeepCubeA.

2.4 Description of Puzzles

2.4.1 The Rubik’s Cube

The Rubik’s Cube state space has 4.3 x 10! possible states. Any valid Rubik’s Cube state
can be optimally solved with at most 26 moves in the quarter-turn metric, or 20 moves in
the half-turn metric [104, 102]. The quarter-turn metric treats 180 degree rotations as two
moves, whereas the half-turn metric treats 180 degree rotations as one move. We use the

quarter-turn metric.

The 3x3x3 Rubik’s Cube consists of smaller cubes called cubelets. These are classified by
their sticker count: center, edge, and corner cubelets have 1, 2, and 3 stickers, respectively.
The Rubik’s Cube has 26 cubelets with 54 stickers in total. The stickers have colors and
there are six colors, one per face. In the solved state, all stickers on each face of the cube
are the same color. The representation given to the DNN encodes the color of each sticker
at each location using a one-hot encoding. Since there are 6 possible colors and 54 stickers

in total, this results in a state representation of size 324.

11



Moves are represented using face notation: a move is a letter stating which face to rotate.
F, B, L, R, U, and D correspond to turning the front, back, left, right, up, and down faces,
respectively. Each face name is in reference to a fixed front face. A clockwise rotation is
represented with a single letter, whereas a letter followed by an apostrophe represents a
counter-clockwise rotation. For example: R rotates the right face by 90° clockwise, while R’

rotates it by 90° counter-clockwise.

2.4.2 Sliding Tile Puzzles

Another combinatorial puzzle we use to test DeepCubeA is the n piece sliding puzzle. In
the n-puzzle, n square sliding tiles, numbered from 1 to n, are positioned in a square of
length v/n + 1, with one empty tile position. Thus, the 15-puzzle consists of 15 tiles in
a 4x4 grid, the 24-puzzle consists of 24 tiles in a 5x5 grid, the 35-puzzle consists of 35
tiles in a 6x6 grid, and the 48-puzzle consists of 48 tiles in a 7x7 grid. Moves are made
by swapping the empty position with any tile that is horizontally or vertically adjacent to
it. The objective is to move the puzzle into its goal configuration shown in Figure 2.1.
The 15-puzzle has 16!/2 ~ 1.0 x 10'3 possible states, the 24-puzzle has 25!/2 ~ 7.7 x 10*
possible states, the 35-puzzle has 36!/2 ~ 1.8 x 10" possible states, and the 48-puzzle has
49!/2 ~ 3.0 x 10% possible states. Any valid 15-puzzle configuration can be solved with
at most 80 moves [17, 69]. The largest minimal number of moves required to solve the 24-
puzzle, 35-puzzle, and 48-puzzle is not known. For both puzzles, the representation given
to the neural network uses one-hot encoding to specify which piece (tile or blank position)
is in each position. For example, the dimension of the input to the neural network for the

15-puzzle would be 16 * 16 = 256.

12



2.4.3 Lights Out

Lights Out is a grid-based puzzle consisting of an N by N board of lights that may be either
active or inactive. The goal is to convert all active lights to inactive from a random starting
position as seen in Figure 2.1. Pressing any light in the grid will switch the state of that
light and its immediate horizontal and vertical neighbors. At any given state, a player may
click on any of the N? lights. However, one difference of Lights Out compared to the other
environments is that the moves are commutative. The representation given to the DNN is a
vector of size N2. Each element is 1 if the corresponding light is on and 0 if the corresponding

light is off.

2.4.4 Sokoban

Sokoban [26] is a planning problem that requires an agent to move boxes onto target locations.
Boxes can only be pushed, not pulled. The Sokoban environment we use is a 10 by 10 grid
which contains four boxes that an agent needs to push on to four targets. In addition to the
agent, boxes, and targets, Sokoban also contains walls. Since boxes can only be pushed, not
pulled, some actions are irreversible. For example, a box pushed into a corner can no longer
be moved, creating a sampling problem because some states are unreachable when starting
from the goal state. To address this, for each training state, we start from the goal state and
allow boxes to be pulled instead of pushed. The representation given to the DNN contains
four binary vectors of size 102 that represent the position on the agent, boxes, targets, and

walls.
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2.5 Results

To test the approach, we generate a test set of 1,000 states by randomly scrambling the goal
state between 1,000 and 10,000 times. Additionally, we test the performance of DeepCubeA
on the three known states that are the furthest possible distance away from the goal (26
moves)[102]. In order to assess how often DeepCubeA finds a shortest path to the goal, we
need to compare our results to a shortest path solver. We can obtain a shortest path solver by
using iterative deepening A* search (IDA*)[66] with an admissible heuristic computed from a
pattern database. Initially, we used the pattern database described in Kort’s work on finding
optimal solutions to the Rubik’s Cube[68]; however, this solver only solves a few states a
day. Therefore, we use the optimal solver provided by Rokicki [103]. This human-engineered
solver relies on large pattern databases [21] (requiring 182GB of memory) and sophisticated
knowledge of group theory to find a shortest path to the goal state. Comparisons between

DeepCubeA and shortest path solvers are shown in Table 2.3.

The first two hidden layers of the DNNs have size 5,000 and 1,000 respectively, with full
connectivity. This is then followed by 4 residual blocks [51], where each residual block has
two hidden layers of size 1,000. Finally, the output layer consists of a single linear unit
representing the cost-to-go estimate (see Figure 2.2). We used batch normalization [56] and
rectified linear activation functions [40] in all hidden layers. The DNN was trained with a
batch size of 10,000, optimized with ADAM [61], and did not use any regularization. The
maximum number of random moves applied to any training state K was set to 30. The error
threshold € was set to 0.05. We checked if the loss fell below the error threshold every 5,000
iterations. Training was carried out for 1 million iterations on two NVIDIA Titan V GPUs,
with six other GPUs used in parallel for data generation. In total, the DNN saw 10 billion
examples during training. Training was completed in 36 hours. When solving scrambled
cubes from the test set, we use 4 NVIDIA X Pascal GPUs in parallel to compute the cost-

to-go estimate. For the 15-puzzle, 24-puzzle, and Lights Out we set K to 500. For the
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35-puzzle, 48-puzzle, and Sokoban, we set K to 1,000. For the 24-puzzle, we use 6 residual
blocks instead of 4. When performing BWAS, the heuristic function is computed in parallel
across four NVIDIA Titan V GPUs.

fc 1000
fc 1000
fc 1000
fc 1000
fc 1000
fc 1000

fc 1000

fc 1000

fc 1000

fc 5000

ip 480

Figure 2.2: The deep neural network architecture used by DeepCubeA. The cube state is
entered in the input layer (ip) and activities are propagated forward through a series of fully
connected layers (fc) to produce the cost-to-go estimate at the output layer.

To choose the hyperparameters of BWAS, we did a grid search over A and N. Values of A
were 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 while values of N were 1, 100, 1,000, and 10,000. The
grid search was performed on 100 cubes that were generated separately from the test set.
The GPU machines available to us had 64GB of RAM. Hyperparameter configurations that
reached this limit were stopped early and thus not included in the results. Figure 2.3 shows
how A and N affect performance in terms of average solution length, average number of

nodes generated, average solve time, and average number of nodes generated per second.
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The figure shows that as A increases, the average solution length decreases, however, the
time to find a solution typically increases as well. The results also show that larger values of
N lead to shorter solution lengths, but generally also require more time to find a solution;
however, the number of nodes generated per second also increases due to the parallelism
provided by the GPUs. Since A = 0.6 and N = 10,000 resulted in the shortest solution
lengths, we use these hyperparameters for the Rubik’s Cube. For the 15-puzzle, 24-puzzle,
and 35-puzzle we use A = 0.8 and N = 20,000. For the 48-puzzle we use A\ = 0.6 and
N = 20,000. We increased N from 10,000 to 20,000 because we saw a reduction in solution
length. For Lights Out we use A = 0.2 and N = 1,000. For Sokoban we use A = 0.8 and
N =1.
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Figure 2.3: Effects of BWAS hyperparameters on Rubik’s Cube solving performance.

Pattern databases (PDBs)[21] are used to obtain a heuristic using lookup tables. Each
lookup table contains the number of moves required to solve all possible combinations of
a certain subgoal. For example, we can obtain a lookup table by enumerating all possible

combinations of the edge cubelets on the Rubik’s cube using a breadth-first search. These
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Figure 2.4: The performance of DeepCubeA. The plots show that DeepCubeA first learns
how to solve cubes closer to the goal and then learns to solve increasingly difficult cubes.
The dashed lines represent the true average cost-to-go.

lookup tables are then combined through either a max operator or a sum operator (depending
on independence between subgoals)[68, 70] to produce a lower bound on the number of steps
required to solve the problem. Features from different pattern databases can be combined

with neural networks for improved performance [106].

For the Rubik’s Cube, we implemented the pattern database that Korf uses to find optimal
solutions to the Rubik’s Cube [68]. For the 15-puzzle, 24-puzzle, and 35-puzzle, we implement
the pattern databases described in Felner et. al’s work on additive pattern databases[35].
To the best of our knowledge, no one has created a pattern database for the 48-puzzle. We
create our own by partitioning the puzzle into 9 subgoals of size 5 and one subgoal of size 3.
For all the n-puzzles, we also save the mirror of each PDB to improve the heuristic and map
each lookup table to a representation of size p* where p is the total number of puzzle pieces
and k is the size of the subgoal. Though this uses more memory, this is done to increase
the speed of the lookup table[35]. For the n-puzzle, the optimal solver algorithm (IDA*[66])
adds an additional optimization by only computing the location of the beginning state in

the lookup table and then only computing offsets for each subsequently generated state.
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Figure 2.5: The performance of DeepCubeA vs pattern databases (PDBs)[68] when solving
the Rubik’s cube with BWAS. N = 10, 000 and A is either 0.0, 0.1, or 0.2. Each dot represents
the result on a single state. DeepCubeA is both faster and produces shorter solutions.

2.5.1 Performance

DeepCubeA finds a solution to 100% of all test states. DeepCubeA finds a shortest path
to the goal 60.3% of the time. Aside from the optimal solutions, 36.4% of the solutions are
only two moves longer than the optimal solution, while the remaining 3.3% are four moves
longer than the optimal solution. For the three states that are furthest away from the goal,
DeepCubeA finds a shortest path to the goal for all three states (see Table 2.3). While
we relate the performance of DeepCubeA to the performance of shortest path solvers based
on pattern databases, a direct comparison cannot be made because shortest path solvers

guarantee an optimal solution while DeepCubeA does not.

While pattern databases can be used in shortest path solvers, they can also be used in
BWAS in place of the heuristic learned by DeepCubeA. We use Korf’s pattern database
heuristic for BWAS and compare to DeepCubeA. We perform BWAS with N = 10,000 and
A =0.0,0.1,0.2. We compute the pattern database heuristic in parallel across 32 CPUs. Note
that at A = 0.3 BWAS runs out of memory when using pattern databases. Figure 2.5 shows
that performing BWAS with DeepCubeA’s learned heuristic consistently produces shorter

solutions, generates fewer nodes, and is overall much faster than Korf’s pattern database
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heuristic.

We also compare the memory footprint and speed of pattern databases to DeepCubeA. In
terms of memory, for pattern databases, it is necessary to load lookup tables into mem-
ory. For DeepCubeA, it is necessary to load the DNN into memory. Table 2.1 shows that
DeepCubeA uses significantly less memory than pattern databases. In terms of speed, we
measure how quickly pattern databases and DeepCubeA compute a heuristic for a single
state, averaging over 1,000 states. Since DeepCubeA uses neural networks, which benefit
from GPUs and batch processing, we measure the speed of DeepCubeA with both a single
CPU and a single GPU, and with both sequential and batch processing of the states. Table
2.2 shows that, as expected, pattern databases on a single CPU are faster than DeepCubeA
on a single CPU, however, the speed of pattern databases on a single CPU is comparable to

the speed of DeepCubeA on a single GPU with batch processing.

During training we monitor how well the DNN is able to solve the Rubik’s cube using greedy
best-first search; we also monitor how well the DNN is able to estimate the optimal cost-to-
go function (computed with Rokicki’s shortest path solver [104]). How these performance
metrics change as a function of training iteration is shown in Figure 2.4. The results show
that DeepCubeA first learns to solve states closer to the goal before it learns to solve states
further away from the goal. Cost-to-go estimation is less accurate for states further away

from the goal; however, the cost-to-go function still correctly orders the states according to

difficulty.

Comparison to Multi-Step Lookahead Update Strategies

Instead of using Equation 2.2, which may be seen as a depth-1 breadth-first search (BFS), to
update the estimated cost-to-go function, we experimented with a depth-2 BFS. To obtain

a better perspective on how well DeepCubeA’s learning procedure trains the given DNN,
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we also implemented an update strategy of trying to directly imitate the optimal cost-to-go
function calculated using the handmade optimal solver[104] by minimizing the mean squared
error between the output of the DNN and the oracle value provided by the optimal solver.
We demonstrate that the DNN trained with DAVI achieves the same performance as a DNN
with the same architecture trained with these update strategies. The performance obtained
from a depth-2 BFS update strategy is shown in Figure 2.6. While the final performance
obtained with depth-2 BFS is similar to the performance obtained with depth-1 BFS, its
computational cost is significantly higher. Even when using 20 GPUs in parallel for data
generation (instead of 6), the training time is 5 times longer for the same number of iterations.
Figure 2.7 shows that the DNN trained to imitate the optimal cost-to-go function predicts
the optimal cost-to-go more accurately than DeepCubeA for states scrambled 20 or more
times. The figure also shows the performance on solving puzzles using greedy best-first search
with this imitated cost-to-go function suffers for states scrambled fewer than 20 times. We
speculate that this is because imitating the optimal cost-to-go function causes the DNN to

overestimate the cost to reach the goal for states scrambled fewer than 20 times.
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Figure 2.6: The performance of DeepCubeA using a depth-2 breadth-first search. While a
depth-2 breadth first search uses more information than a depth-1 breadth-first search, the
plots show that the performance of a depth-2 breadth-first search is the same as DeepCubeA.
However, it is considerably more expensive computationally. The dashed lines represent the

true average cost-to-go.
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Figure 2.7: The performance of imitating the optimal cost-to-go function. Attempting to
imitate the optimal value function leads to, at best, similar performance to DeepCubeA. The
dashed lines represent the true average cost-to-go.
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Conjugate Patterns and Symmetric States

Since the operation of the Rubik’s Cube is deeply rooted in group theory, solutions produced
by an algorithm that learns how to solve this puzzle should contain group theory properties.
In particular, conjugate patterns of moves of the form aba™! should appear relatively often
when solving the Rubik’s Cube. These patterns are necessary for manipulating specific
cubelets while not affecting the position of other cubelets. Using a sliding window, we
gathered all triplets in all solutions to the Rubik’s Cube and found that aba~! accounted
for 13.11% of all triplets (significantly above random) while aba accounted for 8.86%, aab
accounted for 4.96%, and abb accounted for 4.92%. To put this into perspective, for the
optimal solver, aba™!, aba, aab, and abb accounted for 9.15%, 9.63%, 5.30%, and 5.35% of

all triplets, respectively.

In addition, we found that DeepCubeA often found symmetric solutions to symmetric states.
One can produce a symmetric state for the Rubik’s Cube by mirroring the cube from left to
right, as shown in Figure 2.8. The optimal solutions for two symmetric states have the same
length; furthermore, one can use the mirrored solution of one state to solve the other. To see
if this property was present in DeepCubeA, we created mirrored states of the Rubik’s Cube
test set and solved them using DeepCubeA. The results showed that 58.30% of the solutions
to the mirrored test set were symmetric to those of the original test set. Of the solutions that
were not symmetric, 69.54% had the same solution length as the solution length obtained
on the original test set. To put this into perspective, for the handmade optimal solver, the
results showed that 74.50% of the solutions to the mirrored test set were symmetric to those

of the original test set.
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Figure 2.8: An example of symmetric solutions that DeepCubeA finds to symmetric states.
Conjugate triplets are indicated by the green boxes. Note that the last two conjugate triplets
are overlapping.

Mirrored Starts

Mirrored Starts

Web Server

We have created a web server, located at http://deepcube.igb.uci.edu/, to allow anyone to
use DeepCubeA to solve the Rubik’s Cube. In the interest of speed, the hyperparameters
for BWAS are set to A = 0.2 and NV = 100 in the server. The user can initiate a request to
scramble the cube randomly or use the keyboard keys to scramble the cube as they wish.
The user can then use the “solve” button to have DeepCubeA compute and post a solution,
and execute the corresponding moves. The basic web server’s interface is displayed in Figure

2.9.
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RC 15-p | 24-p | 35-p | 48-p | LightsOut | Sokoban
PDBs 4.67 851 | 1.86 | 0.64 |4.86 |- -
PDBs™ 182.00 | - - - - -
DeepCubeA | 0.06 0.06 | 0.08 | 0.08 | 0.10 | 0.05 0.06

Table 2.1: Comparison of the size (in GB) of the lookup tables for pattern databases (PDBs)
and the size of the DNN used by DeepCubeA. The RC column corresponds to the Rubik’s
Cube and columns with a “p” suffix correspond to n-puzzles. PDBs™ refers to Rokiki’s
pattern database combined with knowledge of group theory[103, 104]. The table shows that

DeepCubeA always uses memory that is orders of magnitude less than PDBs.

RC 15-p | 24-p | 35-p | 48-p | LightsOut | Sokoban
PDBs 2E-06 | 1E-06 | 2E-06 | 3E-06 | 4E-06 | - -
PDBs™ 6E-07 | - - - - - -
DeepCubeA (GPU-B) | 6E-06 | 6E-06 | 7TE-06 | 8E-06 | 9E-06 | TE-06 6E-06
DeepCubeA (GPU) 3E-03 | 3E-03 | 3E-03 | 2E-03 | 3E-03 | 4E-03 3E-03
DeepCubeA (CPU-B) | 7TE-04 | 6E-04 | 9E-04 | 9E-04 | 1E-03 | 1E-03 7E-04
DeepCubeA (CPU) 6E-03 | 6E-03 | 8E-03 | 8E-03 | 1E-02 | 2E-01 6E-03

Table 2.2: A suggestive comparison of the speed (in seconds) of the lookup tables for pattern
databases (PDBs) and the speed of the DNN used by DeepCubeA when computing the
heuristic for a single state. Results were averaged over 1,000 states. DeepCubeA was timed
on a single CPU and on a single GPU when doing sequential processing of the states and
batch processing of the states (batch processing is denoted by the “-B” suffix). The RC
column corresponds to the Rubik’s Cube and columns with a “-p” suffix correspond to
n-puzzles. PDBs™ refers to Rokiki’s pattern database combined with knowledge of group
theory[103, 104]. On a GPU, DeepCubeA is comparable to PDBs.
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Solve the Rubik's Cube Using Deep Learning
EENEEY

Solution:

Use the mouse to turn the cube.
Turn the faces with the U/D/L/R/B/F keys. Hold shift to turn faces couter-clockwise.
Press scramble to randomly scramble the cube. Press solve to solve the cube using deep learning!

Figure 2.9: A visualization of the DeepCubeA web server (http://deepcube.igb.uci.edu/).

2.5.2 Generalization to Other Combinatorial Puzzles

The Rubik’s Cube is only one combinatorial puzzle among many others. To demonstrate the
ability of DeepCubeA to generalize to other puzzles, we applied DeepCubeA to four popular
sliding tile puzzles: the 15-puzzle, the 24-puzzle, 35-puzzle, and 48-puzzle. Additionally,
we applied DeepCubeA to Lights Out and Sokoban. Sokoban posed a unique challenge for

DeepCubeA because actions taken in its environment are not always reversible.

Sliding Tile Puzzles

For these sliding tile puzzles, we generated a test set of 500 states randomly scrambled
between 1,000 and 10,000 times. The same DNN architecture and hyperparameters that are
used for the Rubik’s Cube are also used for the n-puzzles with the exception of the addition
of two more residual layers. We implemented an optimal solver using additive pattern
databases[35]. DeepCubeA not only solved every test puzzle, but also found a shortest path
to the goal 99.4% of the time for the 15-puzzle and 96.98% of the time for the 24-puzzle. We

also test on the 17 states that are furthest away from the goal for the 15-puzzle (these states
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are not known for the 24-puzzle)[63]. Solutions produced by DeepCubeA are, on average, 2.8
moves longer than the length of a shortest path and DeepCubeA finds a shortest path to the
goal for 17.6% of these states. For the 24-puzzle, on average, pattern databases take 4,239
seconds and DeepCubeA takes 19.3 seconds, over 200 times faster. Moreover, in the worst
case we observed that the longest time needed to solve the 24-puzzle is 5 days for pattern
databases and two minutes for DeepCubeA. The average solution length is 124.76 for the
35-puzzle and 253.53 for the 48-puzzle; however, we do not know how many of them are
optimal due to the optimal solver being prohibitively slow for the 35-puzzle and 48-puzzle.
The performance of DeepCubeA on the 24-puzzle and 35-puzzle are summarized in Table

2.3.

Although the shortest path solver for the 35-puzzle and 48-puzzle was prohibitively slow, we
compare DeepCubeA to pattern databases using BWAS. The results show that, compared
to pattern databases, DeepCubeA produces shorter solutions and generates fewer nodes, as
shown in Figure 2.10 and Figure 2.11. In combination, these results suggest that as the size

of the n-puzzle increases, DeepCubeA scales favorably compared to pattern databases.

Lights Out

We tested DeepCubeA on the 7 by 7 Lights Out puzzle. A theorem by Scherphuis[107] shows
that, for the 7 by 7 Lights Out puzzle, any solution that does not contain any duplicate moves
is an optimal solution. Using this theorem, we found that DeepCubeA found a shortest path

to the goal for all test cases.

Sokoban

To test our method on Sokoban, we train on the 900,000 training examples and test on the

1,000 testing examples used by previous research on single-agent policy tree search applied to
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Sokoban[4]. DeepCubeA successfully solves 100% of all test examples. We compare solution
length and number of nodes expanded to this same previous research[91]. Although the goals
of the aforementioned paper are slightly different than ours; DeepCubeA finds shorter paths
than previously reported methods and also expands, at least, 3 times fewer nodes (see Table
2.3).
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Figure 2.10: The performance of DeepCubeA vs pattern databases (PDBs) when solving the
35-puzzle with BWAS. N = 10,000 and A = 0.0, 0.3, 0.6. Each dot represents the result on
a single state. DeepCubeA is almost always faster than PDBs and always produces shorter
solutions. The large shapes represent the average of the respective run. The results show
that DeepCubeA, on average, always produces shorter solutions and, on average, is faster
than PDBs for two of the three assignments of \.

2.6 Discussion

DeepCubeA is able to solve planning problems with large state spaces and few goal states
by learning a cost-to-go function, parameterized by a deep neural network, which is then
used as a heuristic function for weighted A* search. The cost-to-go function is learned by
using approximate value iteration on states generated by starting from the goal state and
taking moves in reverse. DeepCubeA’s success on solving the seven problems investigated in
this paper suggests that DeepCubeA can be readily applied to new problems given an input
representation, a state transition model, a goal state, and a reverse state transition model

that can be used to adequately explore the state space.
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Puzzle \ Solver \ Len \ % Opt \ Nodes \ Secs \ Nodes/Sec ‘

PDBs|68] - - - - -
Rubik’s Cube | PDBs*[103] 20.67 | 100.0% | 2.05E+06 | 2.20 1.79E+06
DeepCubeA 21.50 |60.3% | 6.62E+06 | 24.22 2.90E+05
PDBs|68] - - - - -
Rubik’s Cube;, | PDBs[103] 26.00 | 100.0% | 2.41E+10 | 13,561.27 | 1.78E+06
DeepCubeA 26.00 | 100.0% | 5.33E+06 | 18.77 2.96E+05
L5 Puggle PDBs|35] 52.02 [ 100.0% [ 3.22E-+04 [ 0.002 1.45E+07
DeepCubeA 52.03 | 99.4% | 3.85E+06 | 10.28 3.93E+05
15-Puzle, PDBs|35] 80.00 [ 100.0% | 1.53E+07 [ 0.997 1.56E+07
DeepCubeA 82.82 | 17.65% | 2.76E407 | 69.36 3.98E+05
o Pl PDBs|35] 89.41 [100.0% | 8.19E+10 [ 4,239.54 [ 1.91E+07
DeepCubeA 89.49 | 96.98% | 6.44E+06 | 19.33 3.34E+05
35-Puzzle PDBs|35] - - - - -
DeepCubeA 124.64 | - 9.26E+06 | 28.45 3.25E+05
48-Puzzle PDBs _ _ _ _ _
DeepCubeA 253.35 | - 1.96E+07 | 74.46 2.63E4-05
| Lights Out | DeepCubeA [ 24.26 | 100.0% | 1.14E+06 | 3.27 | 351E4+05 |
LevinTS[91] 39.80 |- 6.60E+03 | - -
Sokoban LevinTS[91] (¥) | 39.50 | - 5.03E+03 | - -
LAMA[91] 51.60 | - 3.15E+03 | - -
DeepCubeA 32.88 |- 1.05E+03 | 2.35 5.60E401

Table 2.3: Comparison of DeepCubeA with optimal solvers based on pattern databases
(PDBs) along the dimension of solution length, percentage of optimal solutions, number
of nodes generated, time taken to solve the problem (in seconds), and number of nodes
generated per second. The datasets with an “h” subscript represent the dataset containing
the states that are furthest away from the goal state. PDBs™ refers to Rokiki’s pattern
database combined with knowledge of group theory[103, 104]. For Sokoban, we compare
nodes expanded instead of nodes generated to allow for direct comparison to previous work.
DeepCubeA often finds a shortest path to the goal. For the states that are furthest away
from the goal, DeepCubeA either finds a shortest path or a path close in length to a shortest
path.
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Figure 2.11: The performance of DeepCubeA vs pattern databases (PDBs) when solving the
48-puzzle with BWAS. N = 10,000 and A is either 0.0, 0.2, or 0.4. Each dot represents the
result on a single state. DeepCubeA is generally faster than PDBs and generally produces
shorter solutions than PDBs.

To satisfy the theoretical bounds on how much the length of a solution will deviate from
the length of an optimal solution, the heuristic used in weighted A* search must be admis-
sible. That is to say that the heuristic can never overestimate the cost to reach the goal.
While DeepCubeA’s value function is not admissible, we empirically evaluate by how much
DeepCubeA overestimates the cost to reach the goal. To do this, we obtain the length of a
shortest path to the goal for 100,000 Rubik’s cube states scrambled between 1 and 30 times.
We then evaluate those same states with DeepCubeA’s heuristic function Jy. We find that
DeepCubeA’s heuristic function does not overestimate the cost to reach the goal 66.8% of
the time and 97.4% of the time it does not overestimate it by more than 1. The average
overestimation of the cost is 0.24. In future work, we will examine how to obtain admissible

heuristic functions using DNNs.

The generality of the core algorithm suggests that it may have applications beyond com-
binatorial puzzles, as problems with large state spaces and few goal states are not rare in

planning, robotics, and the natural sciences.
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Chapter 3

Deep Learning for Circadian Rhythms

Circadian rhythms date back to the origins of life, are found in virtually every species
and every cell, and play fundamental roles in functions ranging from metabolism to cog-
nition. Modern high-throughput technologies allow the measurement of concentrations of
transcripts, metabolites, and other species along the circadian cycle creating novel compu-
tational challenges and opportunities, including the problems of inferring whether a given
species oscillate in circadian fashion or not, and inferring the time at which a set of mea-

surements was taken.

We first curate several large synthetic and biological time series data sets containing labels for
both periodic and aperiodic signals. We then use deep learning methods to develop and train
BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput
circadian experiments, producing estimates of amplitudes, periods, phases, as well as several
statistical significance measures. Using the curated data, BIO_CYCLE is compared to other
approaches and shown to achieve state-of-the-art performance across multiple metrics. We
then use deep learning methods to develop and train BIO_CLOCK to robustly estimate the

time at which a particular single-time-point transcriptomic experiment was carried. In most

30



cases, BIO_CLOCK can reliably predict time, within approximately one hour, using the
expression levels of only a small number of core clock genes. BIO_CLOCK is shown to work
reasonably well across tissue types, and often with only small degradation across conditions.
BIO_CLOCK is used to annotate most mouse experiments found in the GEO database with

an inferred time stamp.

3.1 Introduction

The importance of circadian rhythms cannot be understated: circadian oscillation have been
observed in animals, plants, fungi, and cyanobacteria and date back to the very origins of
life on Earth. Indeed, some of the most ancient forms of life, such as cyanobacteria, use
photosynthesis as their energy source and thus are highly circadian almost by definition.
These oscillations play a fundamental role in coordinating the homeostasis and behavior
of biological systems, from the metabolic [30, 38, 124, 134] to the cognitive levels [39, 33].
Disruption of circadian rhythms has been directly linked to health problems [124, 62, 73]
ranging from cancer, to insulin resistance, to diabetes, to obesity, and to premature ageing
(60, 2, 37, 64, 110, 126, 111, 65, 38]. At their most fundamental level, these oscillations
are molecular in nature, whereby the concentrations of specific molecular species such as
transcripts, metabolites, and proteins oscillate in the cell with a 24h periodicity. Modern
high-throughput technologies allow large-scale measurements of these concentrations along
the circadian cycle thus creating new data sets and new computational challenges and oppor-
tunities. To mine these new datasets, here we develop and apply machine learning methods
to address two questions: (1) which molecular species are periodic?; and (2) what time or
phase is associated with high-throughput transcriptomic measurements made at a single

timepoint?.
At the molecular level, circadian rhythms are in part driven by a genetically encoded, highly
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Figure 3.1: Core clock genes and proteins and the corresponding transcription/translation
negative feedback loop.

conserved, core clock found in nearly every cell based on negative transcription/translation
feedback loops, whereby transcription factors drive the expression of their own negative
regulators [108, 93], and involving only a dozen genes [131, 93]. In the mammalian core
clock (Figure 3.1), two bHLH transcription factors, CLOCK and BMALI heterodimerize
and bind to conserved E-box sequences in target gene promoters, thus driving the rhyth-
mic expression of mammalian Period (Perl, Per2, and Per3) and Cryptochrome (Cryl
and Cry2) genes [119]. PER and CRY proteins form a complex that inhibits subsequent
CLOCK:BMALI-mediated gene expression [15, 25, 93]. The master core clock located in the
suprachiasmatic nucleus (SCN) [89, 100] of the hypothalamus interacts with the peripheral
core clocks throughout the body [134, 124].

In contrast to the small size of the core clock, high-throughput transcriptomic (DNA mi-
croarrays, RNA-seq) or metabolomic (mass spectrometry) experiments [54, 86, 32, 31, 92,

1, 83, 125], have revealed that a much larger fraction, typically on the order of 10%, of all
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transcripts or metabolites in the cell are oscillating in a circadian manner. Furthermore, the
oscillating transcripts and metabolites differ by cell, tissue type, or condition [92, 118, 131].
Genetic, epigenetic, and environmental perturbations—-such as a change in diet—can lead to
cellular reprogramming and profoundly influence which species are oscillating in a given cell
or tissue [32, 82, 10, 31, 28, 84]. When results are aggregated across tissues and conditions,
a very large fraction, often exceeding 50% and possibly approaching 100%, of all transcripts
is capable of circadian oscillations under at least one set of conditions, as shown in plants

[48, 19], cyanobacteria and algae [128, 87], and mouse [135, 95].

In a typical circadian experiment, high-throughput omic measurements are taken at multiple
timepoints along the circadian cycle under both control and treated conditions. Thus the
first fundamental problem that arises in the analysis of such data is the problem of detecting
periodicity, in particular circadian periodicity, in these time series. The problem of detecting
periodic patterns in time series is of course not new. However, in the cases considered here
the problem is particularly challenging for several reasons, including: (1) the sparsity of the
measurements (the experiments are costly and thus data may be collected for instance only
every 4 hours); (2) the noise in the measurements and the well known biological variability;
(3) the related issue of small sample sizes (e.g. n = 3); (4) the issue of missing data; (5) the
issue of uneven sampling in time; and (6) the large number of measurements (e.g. 20,000

transcripts) and the associated multiple-hypothesis testing problem.

Here we develop and apply deep learning methods for robustly assessing periodicity in high-
throughput circadian experiments, and systematically compare the deep learning approach
to the previous, non-machine learning, approaches [55, 132, 41]. While this is useful for
circadian experiments, the vast majority of all high-throughput expression experiments have
been carried, and continue to be carried, at single timepoints. This can be problematic for
many applications, including applications to precision medicine, precisely because circadian

variations are ignored creating possible confounding factors. This raises the second problem
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of developing methods that can robustly infer the approximate time at which a single-
time high-throughput expression measurement was taken. Such methods could be used to
retrospectively infer a time stamp for any expression data set, in particular to improve
the annotations of all the datasets contained in large gene expression repositories, such as
the Gene Expression Omnibus (GEO)[34], and improve the quality of all the downstream
inferences that can be made from this wealth of data. There may be other applications of
such a method, for instance in forensic sciences, to help infer a time of death. In any case,
to address the second problem we also develop and apply deep learning methods to robustly

infer time or phase for single-time high-throughput gene expression measurements.

3.2 Datasets

3.2.1 Periodicity Inference from Time Series Measurements

To train and evaluate the deep learning methods, we curate BioCycle, the largest dataset in-
cluding both synthetic and real-world biological time series, and both periodic and aperiodic
signals. While the main goal here is to create methods to analyze real-world biological data,
relying only on biological data to determine the effectiveness of a method is not sufficient
because there are not many biological samples which have been definitively labeled as being
periodic or aperiodic. Even when one can be confident that a signal is periodic, it can be
difficult to determine the true period, phase, and amplitude of that signal. Therefore, we
rely also on synthetic data to provide us with signals that we can say are definitely periodic
or aperiodic, and whose attributes—such as period, amplitude, and phase—can be controlled
and are known. Furthermore, previous approaches were developed using synthetic data and

thus the same synthetic data must be used to make fair comparisons.
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Synthetic Data

We first curate a comprehensive synthetic dataset BioCyclegyntn, which includes all previously
defined synthetic signals found in JTK_Cycle [55] and ARSER [132], but also contains new
signals. BioCyclegynn is in turn a collection of two different types of datasets: a dataset in
which signals are constructed using mathematical formulas (BioCycleg,mm ), and a dataset in
which signals are generated from a Gaussian process [101] (BioCyclegauss). In previous work,
synthetic data was generated with carefully constructed formulas to try to mimic periodic
signals found in real-world data (see below). While this gives one a lot of control over the
data, it can create signals that are too contrived and therefore not representative of real-
world biological variations. In addition, the noise added at each timepoint is independent
of the other timepoints, which may not be the case in real-world data. The BioCyclegauss

dataset uses Gaussian processes to generate the data and address these problems.

The datasets used in JTK_Cycle contain the following types of formulas or signals: co-
sine, cosine with outlier timepoints, and white noise. The ARSER dataset contains cosine,
damped cosine with an exponential trend, white noise, and an auto-regressive process of
order 1 (AR(1)). In addition to all the aforementioned signals, BioCyclep,, contains also 9
additional kinds of signals: combined cosines (cosine2), cosine peaked, square wave, triangle
wave, cosine with a linear trend, cosine with an exponential trend, cosine multiplied by an
exponential, flat, and linear signals (many of which can be found in [22]). Figure 3.2 shows
an example of each type of signal found in the BioCycleg,,,, dataset. For clarity, the periodic
signals are shown without noise. Signals in the BioCycleg,,, dataset have an additional
random offset chosen uniformly between -200 and 200, random amplitudes chosen uniformly
between 1 and 100, signal to noise ratios (SNRs) of 1-5, random phases chosen uniformly
between 0 and 27, and periods between 20 and 28. At each timepoint sample, zero mean

Gaussian noise is added with the proper SNR variance.
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The BioCyclegauss dataset is obtained from a Gaussian process. The value of the covariance
matrix corresponding to the timepoints x and 2’ is determined by a kernel function k(z, 2').
Equation 3.1 is the kernel function used to generate the periodic signals, and Equation 3.2

is the kernel function used to generate the aperiodic signals in BioCyclegauss-

—sin?(|m (z —a')|)
212

kp(x,2') = exp( )+ o?0(x, 2) + Bz’ (3.1)

)+ 0%6(x, ) (3.2)

The parameter [ controls how strong the covariance is between two different timepoints, o
controls how noisy the synthetic data is, and  can add a non-stationary, linear, trend to
the signals [27]. The parameter p in equation 3.1 is the period of the signal. To generate the
data in BioCyclegauss, the values of [, o, 3, p, as well as the offset and the scale are varied,
in a way similar to the data in BioCyclep,.,. Examples of signals from the BioCyclegauss

dataset are given in Figure 3.3.

JTK _Cycle analyzes synthetic signals sampled over 48 hours with a sampling frequency of 1
and 4 hours. ARSER analyzes synthetic signals sampled over 44 hours with a sampling fre-
quency of 4 hours. BioCycle analyzes synthetic signals sampled over 24 hours and 48 hours.
Signals sampled over 24 hours have a sampling frequency of 4, 6, and an uneven sampling at
timepoints 0, 5, 9, 14, 19, and 24. Signals sampled over 48 hours have sampling frequencies
of 4, 8, and an uneven sampling at timepoints 0, 4, 8, 13, 20, 24, 30, 36, 43. The sampling
frequencies in these datasets are intentionally sparse to mimic the sparse temporal sampling

of real-world high-throughput data. The number of synthetic signals at each sampling fre-
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Figure 3.2: Samples of synthetic signals in the BioCyclegy, dataset. Signals in green are
periodic; signals in red are aperiodic.

quency is 1024 for JTK_Cycle, 20,000 for ARSER, and 40,000 for BioCyclegyyen. Finally,
each signal in BioCyclegyytn has three replicates, obtained by adding random Gaussian noise

to the signal, to mimic typical biological experiments.

Biological Data

The performance of any circadian rhythm detection method requires extensive validation
on biological datasets. In previous work, due to the aforementioned difficulty of not having
ground truth labels, the biological signals detected as being periodic had to be inspected by
hand, or loosely assessed by comparison to other methods [120]. In addition to the scaling
problems associated with manual inspection, this approach did not allow the computation
of precise classification metrics [6], such as the AUC- the Area Under the Receive Operating
Characteristic (ROC) Curve. The repository of circadian data hosted on CircadiOmics
[94] includes over 30 high-throughput circadian transcriptomic studies, as well as several
circadian high-throughput metabolomic studies, that provide extensive coverage of different
tissues and experimental conditions. From the CircadiOmics data, a high-quality biological

dataset BioCyclege, is created with periodic/aperiodic labels.
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To curate BioCyclegea, we start from 36 circadian microarray or RNA-seq transcriptome
datasets, 32 of which are currently publicly available from the CircadiOmics web portal (28
of these are also available from CircaDB[96]). Five datasets are from ongoing studies and will
be added to CircadiOmics upon completion. All included datasets correspond to experiments
carried out in mice, with the exception of one dataset corresponding to measurements taken
in Arabidopsis Thaliana. BioCyclege, comprises experiments carried over a: 24-hour period
with a 4 hour sampling rate; 48-hour period with a 2 hour sampling rate; and 48-hour period

with a 1 hour sampling rate.

To extract from this set a high-quality subset of periodic time series, we focus on the time
series associated with the core clock genes (Figure 3.1) in the control experiments. These gene
include Clock, Perl, Per2, Per3, Cryl, Cry2, Nr1d1, Nr1d2, Bhlhe40, Bhlhe41, Dbp, Npas2,
and Tel [49] for mouse, and the corresponding orthologs in Arabidopsis [48]. Arabdiposis
orthologs were obtained from Affymetrix NetAffx probesets and annotations [78]. These core
gene time series were further inspected manually to finally yield a set of 739 high-quality

periodic signals.

To extract a high-quality biological aperiodic dataset, we start from the same body of data.
To identify transcripts unlikely to be periodic, we select the transcripts classified as aperiodic
consistently by all three programs JTK_Cycle, ARSER, and Lomb-Scargle with an associated
p-value of 0.95. After further manual inspection, this yields a set of 18,094 aperiodic signals.

Examples of signals taken at random from the BioCyclegea are shown in Figure 3.4.

3.2.2 Time Inference from Single Timepoint Measurements

To estimate the time associated with a transcriptomic experiment conducted at a single time-
point, we curate the BioClock dataset starting from the same data in CircadiOmics, focusing

on mouse data only for which we have enough training data. While in principle inference
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of the time can be done using the level of expression of all the genes, exploratory feature
selection and data reduction experiments (not shown) show that in most cases it is sufficient
to focus on the set of core clock genes, or even a subset (see Results). Thus the reduced
BioClock dataset contains microarray and RNA-Seq single time measurements for each gene
transcript in the core clock with the associated timepoint. The BioClock dataset is orga-
nized by tissue and condition. Tissues include liver, kidney, heart, colon, glands (pituitary,
adrenal), skeletal muscle, bone, white fat, and brown fat. Brain specific tissues include SCN
(Suprachiasmatic nucleus), hippocampus, hypothalamus, and cerebellum. There are also
several cell-specific datasets including mouse fibroblasts and macrophages. All the datasets
in BioClock contain both control and treatment conditions. There is great variability among
the treatment conditions (e.g. [31, 84]), varying from gene knock out and knock down (SIRT'1
and SIRTG), to changes in diet (high fat, ketogenic), to diseases (epilepsy). It is important

to be able to assess the ability of a system to predict time across tissues and conditions.

3.3 Methods

We experimented with several machine learning approaches for the the two main problems
considered here. In general, the best results were obtained using neural networks. This
is perhaps not too surprising since it is well known that neural networks have universal
approximation properties and deep learning has led to state-of-the art performance, not only
in several areas of engineering (e.g. computer vision, speech recognition, natural language
processing, robotics) [123, 46, 75], but also in the natural sciences [23, 99, 79, 8]. Thus here
we focus exclusively on deep learning approaches to build two systems, BIO_CYCLE and
BIO_CLOCK, to address the two main problems.
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3.3.1 Periodicity Inference from Time Series Measurements

Classifying Between Periodic and Aperiodic Signals

To classify signals as periodic or aperiodic, we train deep neural networks (DNNs) using
standard gradient descent with momentum [105, 121]. We train separate networks for data
sampled over 24 hours and 48 hours. The input to these networks are the expression time-
series levels of the corresponding gene (or metabolite). The output is computed by a single
logistic unit trained to be 1 when the signal is periodic and 0 otherwise, with relative entropy
error function. We experimented with many hyperparameters and learning schedules. In the
results reported, the learning rate starts at 0.01, and decays exponentially according to
W, where ¢ is the iteration number. The training set consists of 1 million examples,
a size sufficient to avoid overfitting. The DNN uses a mini-batch size of 100 and is trained
for 50,000 iterations. Use of dropout [116, 7], or other forms of regularization, leads to no
tangible improvements. The best performing DNN found (Figure 3.5a) has 3 hidden layers
of size 100. We are able to obtain very good results by training BIO_CYCLE on synthetic

data alone and report test results obtained on BioCyclegym, BioCyclegauss, and BioCyclegear.

Estimating the Period

In a way similar to how we train DNNs to classify between periodic and aperiodic signals,
we can also train DNNs to estimate the period of a signal classified as periodic. During
training, only periodic time series are used as input to train these regression DNNs . The
output of the DNNs are implemented using a linear unit and produce an estimated value for
the period. The error function is the squared error between the output of the network and
the true period of the signal, which is known in advance with synthetic data. Except for the

difference in the output unit, we use the same DNNs architectures and hyperparameters as
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for the previous classification problem.

Estimating the Phase and the Lag

After the period p, we estimate the phase ¢ of a signal s by finding the value ¢ that maximizes

27t

the following expression: }_, .y cos(5* — ¢)sli], where T is the set of all timepoints. Given

¢, the lag (i.e. at what time the periodic pattern starts) is given by %.

Estimating the Amplitude

After the phase ¢, we estimate the amplitude « by first removing any linear trend and then
comparing the variance of the signal to the variance of a cosine signal with parameters ¢,

p, and amplitude 1. The formula is shown in Equation 3.3, where ps = % > er S[t] and

e = th S pep cos(22 — )

ﬁ > ter(S[t] — ps)?

T3 e (cos(Z = ) — )P 83)

We cannot claim this approach is new, however, we have not seen it in previous literature.

An alternative is to measure the amplitude on the smoothed time series.

Calculating p-values and g-values

To calculate p-values, the distribution of the null hypothesis must first be obtained. To do
this, N aperiodic signals are generated from one of the two BioCyclegynn datasets. Then we
calculate the N output values V(i) (¢ = 1,..., N) of the DNN on these aperiodic signals.

The p-value for a new signal s with output value V' is now SV 1(V(i) > V), where 1
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is the indicator function. This equation provides an empirical frequency estimate for the
probability of obtaining an output of size V' or greater, assuming that the signal s comes
from the null distribution (the distribution of aperiodic signals). Therefore, the smaller
the p-value, the more likely it is that s is periodic. The g-values are obtained through the

Benjamini and Hochberg procedure [12].

3.3.2 Time Inference from Single Timepoint Measurements

For this task, different machine learning methods were investigated, including simple linear
regression, k-nearest neighbors, decision trees, shallow learning, and deep learning, including
unsupervised compressive autoencoders [5] with two coupled phase (cosine/sine) units in the
bottleneck layer (see Section 3.4.7). Supervised deep learning methods give the best results
and are used in the final BIO_CLOCK system. The output of the DNNs is implemented using
two coupled output units, representing the cosine and the sine of the phase angle (Figure
3.5b). If the total weighted inputs into these two units are S; and Sy respectively, then the
values of the two outputs units are given by: S;/+/S? + 53 and Sy/+/S? + S3. These are

then automatically converted into a time (ZT).

In order to better assess the effect of having data from different tissues, we experiment with
both training specialized predictors trained on data originating from a single tissue, as well as
predictors trained on data from all tissues. The final general-purpose predictor corresponds
to a DNN trained on all the data. In each one of these experiments, we use 5-fold cross
validation on the corresponding subset of the BioClock dataset, using architectures with 2

to 9 layers, and 100 to 600 units, to select the best network. A learning rate of 0.1 is typically

0.1

Tonar- A visualization of the DNN is provided

used, with an exponential decay according to

in Figure 3.5b.
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(a) BIO_.CYCLE. The output is either
the binary periodic/aperiodic classifica-
tion, or the regression estimate of the
period of the signal.

(b) BIO_.CLOCK. The outputs are the
cosine and sine of the phase angle asso-
ciated with the expression measurement
of the core clock genes.

Figure 3.5: Visualizations of the deep neural networks (DNNs).

3.3.3 Data Normalization

For both the periodicity and time inference problems, training and testing examples are

normalized to have a mean of zero and a standard deviation of one.

3.3.4 Software and Run Time

Downloadable software is currently written in R and Python and is intended to be easy for

biologists to use. While exploring different models both Pylearn2 [43] and Caffe [58] were

used. The DNNs typically take hours for training but, once trained, can process a real-world

dataset (720,000 time series) in about one minute, both run times corresponding to a single

CPU.
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3.4 Results

In all the tables, the best results are shown in bold.

3.4.1 Periodic/Aperiodic Classification

For comparison, the methods ARSER (ARS), Lomb-Scargle (LS), and JTK_Cycle (JTK)
are all evaluated along with the DNNs used by BIO_CYCLE, trained on the BioCyclegym
and BioCyclegauss datasets. In addition, we compare to MetaCycle (MC) [130]. To iden-
tify periodic signals, ARSER uses autoregressive spectral estimation, Lomb-Scargle uses a
periodogram, and JTK_Cycle uses the Jonckheere-Terpstra’s and the Kendall’s tau tests.
MetaCycle combines ARSER, Lomb-Scargle, and JTK_Cycle into one method.

To determine if the BIO_CYCLE results are significantly different from other methods, the
testing set is randomly split into 10 equal-size, non-overlapping, subsets and the results from
each subset are obtained. Then, a Student’s t-test is performed between the results of the
best of the two DNNs and the best of the previously existing methods. Finally, the p-value
from that test is obtained to assess if the result differences are statistically significant. Small
p-values (such as 0.05 and below) indicate that there is a significant difference between the
methods. The p-values from the t-tests are shown in the rightmost column in all the tables.
The results focus on periodic signals with periods around 24 hours, the most common case,
however periods of 12 and 8 hours, corresponding to the second and third harmonics, are

analyzed in Section 3.4.4.

In the tables, the datasets BioCyclegor,, BioCyclegauss, and BioCyclegea are referred to as

BCr, BCgq, and BCg, respectively.
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Synthetic Data (BioCyclegyntn)

Results for the area under the receiver operating characteristic curve (AUC) for the task
of classifying signals as periodic or aperiodic are shown in Table 3.1, and the ROC curves
computed on BioCyclepy, are shown in Figure 3.6. The DNNpg label corresponds to the
DNN that has been trained on the BioCycleg,., data, and the DNNg label corresponds to
the DNN that has been trained on the BioCyclegauss data. The ROC curves computed on
BioCyclegauss are similar (not shown). The results from Table 3.1 show that the DNN method
has better AUC than all the other published methods on the BioCyclegy, and BioCyclegauss
datasets. Though the DNN does better when tested on data from the same distribution as it
was trained on, it still outperforms all the other previous methods, regardless of which data
it is trained on. A plot showing how the signal to noise ratio (SNR) affects performance is
shown in Figure 3.7. This plot cannot be done for the BioCycleg,uss dataset, since in this

case the exact SNR is not known. The DNN outperforms all the other published methods

at all SNRs.
Table 3.1: AUC performance on synthetic data.
ARS | LS | JTK | MC | DNNg | DNNg | t-test
BCr (244) | 0.85 | 0.86 | 0.87 | 0.87 | 0.92 0.91 | OE+00

BCr (484) | 0.94 | 0.95 | 0.95 | 0.95 | 0.97 0.96 3E-06
BCr (48-8) | 0.83 | 0.86 | 0.78 | 0.86 | 0.89 0.89 | 1E-06
BCr (24.U) | 0.80 | 0.84 | 0.85 | 0.84 | 0.89 0.88 | OE+00
BCr (48_U) | 0.89 | 0.92 | 0.83 | 0.92 | 0.94 0.93 | OE+00

(

BCr(246) [ 0.72 ] 0.81 [ 0.76 | 0.81 | 0.85 | 0.84 | OE+00
(
(

BCqg (244) | 0.85 | 0.89 | 0.89 | 0.89 | 0.92 0.94 | OE+00
BCq (24.6) | 0.73 | 0.85 | 0.78 | 0.85 | 0.88 0.89 | 1E-06
BCq (484) | 0.96 | 0.95 | 0.95 | 0.96 | 0.97 | 0.97 | 5E-04
BCq (488) | 0.90 | 0.91 | 0.80 | 0.92 | 0.93 0.93 | 2E-06

BCq (24-U) | 0.84 | 0.89 | 0.88 | 0.89 | 0.91 0.92 | 0E+00
BCq (48_U) | 0.93 | 0.94 | 0.85 | 0.94 | 0.95 0.96 | 2E-06

ARS (44.4) | 0.99 | 0.98 | 0.97 | 0.99 | 0.99 0.99 | 0E+00
JTK (48_1) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 1.00 | 2E-01
JTK (48.4) | 0.96 | 0.97 | 0.98 | 0.98 | 0.98 0.97 | 1E+00
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Figure 3.6: ROC Curves of different methods on the BioCycleg,,, dataset.
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Figure 3.7: AUC at various signal-to-noise ratios (SNRs) on the BioCyclegyy, dataset. The

lower the SNR the noisier the signal is.
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Biological Data (BioCyclegreal)

The performance on the biological dataset is shown in Table 3.2. Although the ARSER,
LS, and JTK_Cycle methods achieve good performance on the aperiodic data, as can be
expected since they were used to label the aperiodic data, the DNN method remains very

competitive, often outperforming at least one of the other published methods.

Table 3.2: AUC performance on the biological dataset.

ARS | LS JTK | MC | DNNg | DNNg | t-test
BCr (24.4) | 0.97 | 0.97 | 0.89 | 0.97 | 0.97 | 0.97 7E-01
BCg (48.1) | 0.96 | 0.94 | 0.91 | 0.98 | 0.98 | 0.97 5E-01
BCr (48-2) | 0.98 | 0.97 | 0.95 | 0.96 | 0.94 0.95 3E-01

Evaluation of p-value Cutoffs

To investigate if the p-values obtained by BIO_CYCLE are reasonable, the accuracy of the
periodic/aperiodic classification at different p-value cutoffs is evaluated. In addition to a
p-value, BIO_CYCLE produces a binary classification. If the output of the DNN is greater
than 0.5 the signals is labeled as periodic, otherwise, it is labeled as aperiodic. The accuracy
using this binary classification is also evaluated. Results are shown in Figure 3.8. The
vertical dashed line corresponds to a common p-value cutoff of 0.05. However, a proper
p-value does not guarantee that the best accuracy will be at the cutoff of 0.05. Results show
that BIO_CYCLE has the highest potential accuracy. It also has the best accuracy at 0.05
for 2 out of the 4 plots. In addition, the binary classification of BIO_CYCLE is almost always
better than the accuracy of all the other methods at any p-value cutoff. The distribution of

the p-values is shown in Figure 3.9.
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Figure 3.8: Accuracy of periodic/aperiodic classification at different p-value cutoffs on

BioCyclepy,, dataset.
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3.4.2 Period, Lag, and Amplitude Estimation

The metric to determine how well each method estimates the period, lag, and amplitude
is given by the coefficient of determination R?>. The line y = x corresponds to perfect
prediction. In this case, y is the estimated value given by the method and x is the true
value. R? measures how well the line y = z fits the points that correspond to the true
value vs the estimated value. Perfect prediction corresponds to y = x and corresponds to
R? = 1. The results for estimating the period, lag, and amplitude are shown in Tables 3.3,
3.4, and 3.5, respectively. For the BioCyclegauss dataset we cannot control or know the exact
lag or amplitude, so there are no results for BioCyclegauss in Tables 3.4 and 3.5. These
tables tell a similar story as Table 3.1. The DNN outperforms the other methods in most of
the categories. Even when the DNN is tested on data associated with a distribution that is
different from the distribution of its training set, in the majority of the cases it gives superior

performance compared to ARSER, LS, and JTK_Cycle.

3.4.3 Missing Replicates and Missing Data

In gene expression experiments, replicate measurements can be missing. To investigate how
missing replicates affect performance, the BioCycleg,, dataset which has 3 replicates for
each timepoint was used to assess performance with 0 replicates removed at each timepoint,
1 replicate removed at each timepoint, and 2 replicates removed at each timepoint. The
results are shown in Figure 3.10 and show that JTK_Cycle is significantly affected in a
negative way by missing replicates, while the performance of all the other methods degrades
gracefully with the number of missing replicates, and minimally compared to JTK_Cycle.
Missing data (timepoints at which there are no replicates) is also handled gracefully by

BIO_CYCLE, while it is not handled at all by some of the other methods (not shown).
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Figure 3.10: AUC at different levels of missing data.

3.4.4 Detecting Periods of 8 and 12 Hours

BioCyclepy,m and BioCyclega.ss datasets can be generated for different period ranges. In
the main text, this range is 20-28, focusing on detecting signals with periods of 24 hours.
Since there have also been genes discovered with periods of 12 and 8 hours, we generate
BioCyclepym and BioCyclegauss datasets with period ranges from 10-14 and from 7-9 to
focus on the 12 and 8 hour periods, respectively, corresponding to the second and third
harmonics. The results for detecting periods of 12 hours are shown in Ttables 3.6, 3.7, 3.8,
and 3.9. The results for detecting periods of 8 hours are shown in tables 3.10, 3.11, 3.12,

and 3.13.

The JTK and ARSER methods did not run on these datasets, so we only compare to LS
and MetaCycle. We also note that the meta predictor MetaCycle, which uses JTK, ARSER,
and LS, only chose to use LS for these datasets. The results show that BIO_CYCLE is the

best choice in almost all cases.

51



Table 3.3: Coefficients of determinations (R?) for the periods.

ARS | LS [JTK | MC | DNNy | DNNg | t-test
BCp (24.4) | 0.02 | 022 | 017 | 019 | 0.31 | 027 | OE+00
BCr(24.6) | 0.04 | 0.16 | 0.02 | 0.16 | 0.22 | 0.19 | 3E-04
BCp (484) | 0.59 | 0.64 | 0.51 | 0.65 | 0.74 | 0.73 | 5E-05
BCr (4828) | 0.36 | 0.48 | 0.00 | 0.42 | 0.57 | 0.55 | 0E+00
BCr (24.U) | 0.05 | 0.20 | 0.06 | 0.20 | 0.28 | 0.24 | OE+00
BCr (48.U) | 0.33 | 052 | 0.02 | 0.52 | 0.62 | 0.60 | OE+00
BCq (24.4) | 0.02 | 0.27 [ 0.20 [ 0.24 [ 0.35 | 0.40 | 0BE+00
BCg (24.6) | 0.07 | 0.26 | 0.01 | 0.26 | 0.32 | 0.36 | 0E+00
BCg (484) | 0.70 | 0.68 | 053 | 0.72 | 0.80 | 0.81 | 0E+00
BCg (488) | 0.56 | 0.54 | 0.00 | 0.53 | 0.67 | 0.69 | 0E+00
BCg (24.U) | 0.06 | 0.25 | 0.03 | 0.25 | 0.32 | 0.37 | 0E+00
BCq (48-U) | 042 | 0.63 | 0.02 | 0.63 | 0.73 | 0.75 | 0E+00
ARS (444) [ 0.74 | 0.85 [ 0.66 | 0.83 [ 0.89 | 0.89 | 0E+00
JTK (4871) | 0.66 | 0.94 | 0.91 | 0.90 | 0.93 | 093 | 3E-03
JTK (484) | 067 | 0.84 | 0.62 | 0.80 | 0.85 | 083 | 3E-02

3.4.5 BIO_CYCLE Web Server

The BIO_CYCLE portal within CircadiOmics at http://circadiomics.ics.uci.edu/biocycle al-
lows users to upload an unpublished dataset for processing with BIO_.CYCLE. For each
experiment and each molecular species, individual P-value, g-value, period, amplitude, and
phase can be obtained. Additionally, summary figures are generated for the distribution of
each statistic in the user provided dataset. Trends for individual trajectories in user-provided
data are available for search and visualization through the supplied set of molecular IDs. An
example dataset is provided to give the user a sample of portal features and provide a tem-

plate for desired data format. The BIO_.CYCLE R package is also available for download

through the main portal.
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Table 3.4: Coefficients of determination (R?) for the lags. The blank sqaures in LS and MC
is due to the programs crashing on this dataset.

ARS| LS [JTK [ MC | DNNp | DNNg | t-test
BCr (24.4) | 0.36 | 0.37 | 0.27 | 0.42 | 0.49 | 0.49 | 8E-03
BCr(24.6) | 0.30 0.07 0.45 | 0.43 | OE-+00
BCr (4814) | 0.50 | 0.14 | 0.31 | 050 | 0.52 | 0.51 | 5E-01
BCr (488) | 0.37 | 0.12 | 0.02 | 0.35 | 0.42 | 0.41 | 6E-03

BCfr (24.U) | 0.34 | 0.31 | 0.10 | 0.32 | 0.47 0.47 | OE+00
BCr (48-U) | 0.36 | 0.07 | 0.21 | 0.38 | 0.49 0.48 3E-04
ARS (44.4) | 0.67 | 0.12 | 0.41 | 0.69 | 0.65 0.65 1E-01
JTK (48_1) | 0.60 | 0.16 | 0.80 | 0.70 | 0.72 0.79 9E-01
JTK (48.4) | 0.47 | 0.12 | 0.30 | 0.55 | 0.49 0.50 5E-01

Table 3.5: Coefficients of determination (R?) for the amplitudes. The blank sqaures in LS
and MC is due to the programs crashing on this dataset.

ARS| LS [JTK | MC | DNNy | DNNg | t-test
BCp (244) | 081 | 0.63 | 0.86 | 0.87 | 0.81 | 0.81 | 2E-04
BCr(24.6) | 0.81 0.76 080 | 0.80 | OE+00
BCr (4844) | 082 | 0.55 | 0.87 | 0.84 | 0.75 | 0.75 | OE-+00
BCr (488) | 0.80 | 057 | 048 | 0.79 | 0.75 | 0.75 | 2E-02

BCrp (24.U) | 068 | 0.62 | 0.84 | 0.85 | 0.80 | 0.80 | 2E-05
BCp (48.U) | 0.78 | 0.56 | 0.79 | 0.83 | 0.77 | 0.77 | 1E-03
ARS (44.4) [ 0.97 [0.82] 0.93 [0.99 [ 0.98 | 0.98 | 0E+00
JTK (48.1) | 0.86 | 0.64 | 0.90 | 0.93 | 0.91 | 0.92 | OE+00
JTK (48.4) | 0.72 | 0.43 | 0.71 | 0.74 | 0.71 | 0.72 | 9E-01

3.4.6 Time Inference from Single Timepoint Measurements

Overall Performance

BIO_CLOCK is trained using 16 core clock genes: Arntl, Perl, Per2, Per3, Cyrl, Cry2,
Nrldl, Nr1d2, Bhlhe40, Bhlhe41, Dbp, Npas2, Tef, Fmo2, Lonrf3, and Tsc22d3. When
trained and tested on all the data, using 70% of the data for training and the remaining
30% for testing, it accurately predicts the time of the experiment with a mean absolute
error of 1.22 hours (less than 75 minutes) (Table 3.14). We experimented also with training

BIO_CLOCK with an even smaller number of genes. For example, using only Arntl, Perl,
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Table 3.6: AUC performance on synthetic data. Periodic data has periods between 10 and
14.

LS | MC [ DNNy | DNNg
BCp (244) (089089 | 0.87 | 0.90
BCr(24.6) | 0.83 | 0.83 | 0.86 | 0.86

BCp (484) [0.94 094 | 0.96 | 0095
BCp (488) [0.81 | 0.81 | 0.85 | 0.83
BCp (24.U) [ 0.86 | 0.86 | 0.87 | 0.87
BCr (48_U) [0.90 | 0.90 | 0.92 | 091
BCq (244) [ 0.93 093] 092 | 0.94
BCg (246) | 0.88 | 0.83 | 0.91 | 0.91
BCq (484) [ 0.95 [ 0.95| 0.96 | 0.97
BCg (488) | 0.88 [ 0.8% | 0.89 | 0.90

(24.U0) [ 0.91 | 0.01 | 0.92 | 0.92
BCq (48_U) | 0.93 [ 0.93 | 0.94 | 0.94

Per2, Per3, Cryl, and Cry2, produces a mean absolute error of 3.72 hours. Adding Nrldl

and Nrld2 to this set reduces the mean absolute error to 1.65 hours.

Training and Testing on Different Organs/Tissues

Table 3.14 shows the mean absolute errors obtained when training BIO_CLOCK on data
from certain organs/tissues and testing it on data from a different set of organs/tissues. All
the data is from mice and under WT condition. The only datasets for which we have enough
data for training correspond to liver and brain (when aggregating all the corresponding data
sets). We form two additional sets (Set 1 and Set 2) by combining data from other organs.
The first corresponds to combined data from the adrenal gland, fat, gut, kidney, lung, and
muscle (Set 1). The second corresponds to combined data from the aorta, colon, fibroblast,
heart, macrophages, and pituitary gland (Set 2). Finally, all of the aforementioned data
is combined to form a bigger dataset (All). In all the experiments reported in Table 3.14,
the data are split using a 70/30 training/test ratio, and tests sets never overlap with any

of the corresponding training sets. The DNNs perform best when trained and tested on the
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Table 3.7: Coefficients of determinations (R?) for the periods. Periodic data has periods
between 10 and 14.

LS | MC [ DNNy | DNNg
BCp (244) [0.50 | 0.50 | 0.57 | 0.57
BCp(24.6) | 0.00 | 0.00 | 0.01 | 0.01

BCr (484) | 0.79 | 0.79 | 0.85 | 0.84
BCr (4828) | 0.60 | 0.60 | 0.70 | 0.69
BCr (24.U) [ 029 | 029 | 0.47 | 0.45
BCr (48.U) | 052 0.52 | 0.66 | 0.64
BCq (24.4) | 0.57 | 0.57 | 0.66 | 0.68
BCq¢ (24.6) | 0.00 | 0.00 | 0.01 | 0.01
BCq (484) [0.79 | 0.79 | 0.86 | 0.87
BCq (488) [ 0.66 | 0.66 | 0.77 | 0.78

(24.U) [ 0.43 [ 0.43 | 057 | 0.60
BCq (48_U) | 0.60 | 0.60 | 0.72 | 0.74

Table 3.8: Coefficients of determinations (R?) for the lags. Periodic data has periods between
10 and 14.

LS | MC | DNNy | DNNg
BCp (244) [ 0.13]0.24 | 0.39 | 0.39
BCr(24.6) 0.00 | 0.00
BCr (48.4) | 0.00 | 0.00 | 0.47 | 0.44
BCr (488) | 0.03 ] 0.06 | 0.33 | 0.30
BCp (24.U) | 0.13 [ 0.30 | 0.34 | 0.32
BCp (48_U) | 0.00 | 0.00 | 0.34 | 0.33

same organ/tissue or sets of organ/tissues or when trained on all the organs/tissues. The
DNNs perform significantly worse when trained and tested on data with diverging origins.
However, in all cases, the DNN trained on the combined dataset does almost as well as, or

better than, the corresponding specialized DNN.

Training and Testing on Different Conditions

The collected data also includes data from mice under experimental conditions. The ex-
perimental conditions include high-fat and ketogenic diets, epilepsy, and SIRT1 and SIRT6

knockouts. This dataset is too small to build a training and testing set. However, one can
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Table 3.9: Coefficients of determinations (R?) for the amplitudes. Periodic data has periods
between 10 and 14.

LS | MC | DNNg | DNNg
BCr (24.4) | 0.61 | 0.88 | 0.86 | 0.86
BCr(24.6) 0.59 | 0.58
BCr (484) [ 042 0.58 | 0.83 | 0.84
BCyr (488) | 0.57 | 0.56 | 0.77 | 0.77
BCr (24.U) [ 0.60 | 0.75 | 0.82 | 0.82
BCr (48_U) | 0.44 | 0.63 | 0.81 | 0.81

Table 3.10: AUC performance on synthetic data. Periodic data has periods between 7 and
9.

LS | MC | DNNy | DNNg
BCr (24.4) | 0.90 | 0.90 | 0.92 | 0.92
BCr(246) | 0.61 | 0.61 | 0.80 | 0.79
BCr (484) [ 095|095 | 0.95 | 0.96
BCr (488) | 0.59 | 0.59 | 0.85 | 0.81

BCr (24.U) | 0.85 | 0.85 | 0.88 | 0.87
BCr (48_U) | 0.90 | 0.90 | 0.92 | 0.92
BCq (24.4) | 0.93]0.93 | 0.94 | 0.94
BCq (24.6) | 0.69 | 0.60 | 0.81 | 0.85
BCq (484) | 0.95 | 0.95 | 094 | 0.97
BCq (4828) [ 0.66 | 0.66 | 0.66 | 0.73

BCc (24.U) [ 0.90 | 0.90 | 0.91 | 0.92
BCq (48_U) | 0.92 [ 0.92| 093 | 0.94

test the BIO_CLOCK DNN trained on the combined mice organs under normal conditions

on this dataset. This experiment yields a mean absolute error of 2.57 hours.

3.4.7 Autoencoders and Manifold Learning

We also investigated an alternative unsupervised manifold learning approach for automat-
ically extracting the time associated with a high-throughput transcriptomic measurement
taken at a single timepoint. The basic idea is to use a compressive autoencoder with a
bottleneck consisting of two special units (Figure 3.11). The autoencoder can be applied

to the full sets of measurements, or to a subset (e.g. the core clock genes). In trying to
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Table 3.11: Coefficients of determinations (R?) for the periods. Periodic data has periods

between 7 and 9.

LS | MC | DNNy | DNNg
BCr (24.4) | 0.01 | 0.01 | 0.03 | 0.01
BCr(24.6) | 0.36 | 0.36 | 0.44 | 0.42
BCr (48.4) | 0.02 ] 0.02] 0.14 | 0.10
BCr (4828) | 0.00 | 0.00 | 0.02 | 0.01
BCr (24_U) | 0.40 | 0.40 | 0.50 | 0.48
BCr (48_U) | 0.50 | 0.50 | 0.65 | 0.63
BCq (24-4) [ 0.00 [ 0.00 | 0.01 | 0.02
BCq (24.6) | 0.46 | 0.46 | 054 | 0.56
BCc (48.4) | 0.04 | 0.04 | 0.14 | 0.16
BCq (488) | 0.01 | 0.01 | 0.02 | 0.04
BCq (24_U) | 0.48 [ 0.48 | 059 | 0.62
BCq (48_U) | 0.59 | 0.59 | 0.74 | 0.76

Table 3.12: Coefficients of determinations (R?)

between 7 and 9.

for the lags. Periodic data has periods

LS [ MC | DNNg | DNNg
BCr (24.4) [ 0.00 | 0.00 | 0.00 | 0.01
BCr(24.6) 0.45 | 0.44
BCr (484) [ 0.00 | 0.00 | 0.00 | 0.00
BCp (488) [ 0.00 | 0.00 | 0.00 | 0.00
BCr (24.U) | 0.07 | 0.12 | 0.26 | 0.25
BCr (48.U) [ 0.01 | 0.02| 0.17 | 0.17

reconstruct the input data in the final output layer, the autoencoder must compress the

data through these two units optimally in a way that hopefully correspond to the cosine and

sine of the phase angle, up to a circular shift. If the activations of these two units are S; and

S, then their two outputs are given by: S1/4/S7 + 53 and S3/+/S7 + S3. The autoencoder

can be trained using large amounts of unlabeled data, for instance taken in GEO. While this

approach generates interesting results, the supervised approach used to train BIO_CLOCK

so far yields better results.
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Figure 3.11: A visualization of an autoencoder with a cosine and sine unit as the bottleneck.
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Table 3.13: Coefficients of determinations (R?) for the amplitudes. Periodic data has periods
between 7 and 9.

LS | MC | DNNy | DNNg
BCr (244) | 052 | 049 | 0.69 | 0.66
BCr(24.6) 0.80 | 0.80
BCp (484) | 042 | 0.10 | 0.57 | 0.59
BCr (488) | 0.47 | 0.01 | 0.03 | 0.02
BCr (24.U) | 059 | 0.61 | 0.74 | 0.74
BCr (48.U) | 0.46 | 0.62 | 0.77 | 0.77

Table 3.14: Cross organ mean absolute error (MAE) comparison of BIO_CLOCK.

Testing
Liver | Brain Setl | Set2 | All
Liver | 1.21 | 5.18 3.78 | 4.77 | 3.78
Training | Brain | 3.94 | 1.50 3.28 | 5.39 | 3.84
Setl | 4.06 | 4.25 2.03 | 4.69 | 3.58
Set2 | 2.31 | 4.10 2.14 | 0.75 | 2.00
All 1.28 | 1.66 1.49 | 0.70 | 1.22

3.5 Conclusion

Deep learning methods can be applied to high-throughput circadian data to address im-
portant challenges in circadian biology. In particular, we have developed BIO_CYCLE to
detect molecular species that oscillate in high-throughput circadian experiments and extract
the characteristics of these oscillations. Remarkably, BIO_CYCLE can be trained with large
quantities of synthetic data preventing any kind of overfitting. We have also developed
BIO_CLOCK to infer the time at which a transcriptomic sample was collected from the
level of expression of a small number of core clock genes. Both methods will be improved
as more data becomes available and, more generally, deep learning methods are likely to
be useful to address several other related circadian problems, such as analyzing periodicity
in high-throughput circadian proteomic data, or inferring sample time in different species.
In particular, developing methods for annotating the time of all the human gene expression
experiments, contained in GEO, and other similar repositories, would be valuable. Such

annotations could be important for improving the interpretation of both old and new data
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and discovering circadian driven effects that may be important in precision medicine and
other applications, for instance to help determine the optimal time for administering certain

drugs.
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Chapter 4

Learning Activation Functions to

Improve Deep Neural Networks

Artificial neural networks typically have a fixed, non-linear activation function at each neu-
ron. We have designed a novel form of piecewise linear activation function that is learned
independently for each neuron using gradient descent. With this adaptive activation func-
tion, we are able to improve upon deep neural network architectures composed of static
rectified linear units, achieving classification performance of 7.51% on CIFAR-10, 30.83% on
CIFAR-100, and improving on a benchmark from high-energy physics involving Higgs boson

decay modes.

4.1 Introduction

Deep learning with artificial neural networks has enabled rapid progress on applications in
engineering [72, 47] and basic science [24, 80, 8]. Usually, the parameters in the linear com-

ponents are learned to fit the data, while the nonlinearities are pre-specified to be a logistic,
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tanh, rectified linear, or max-pooling function. A sufficiently large neural network using any
of these common nonlinear functions can approximate arbitrarily complex functions [53, 18],
but in finite networks the choice of nonlinearity affects both the learning dynamics (especially

in deep networks) and the network’s expressive power.

Designing activation functions that enable fast training of accurate deep neural networks
is an active area of research. The rectified linear activation function [57, 40], which does
not saturate like sigmoidal functions, has made it easier to quickly train deep neural net-
works by alleviating the difficulties of weight-initialization and vanishing gradients. Another
recent innovation is the “maxout” activation function, which has achieved state-of-the-art
performance on multiple machine learning benchmarks [44]. The maxout activation function
computes the maximum of a set of linear functions, and has the property that it can approx-
imate any convex function of the input. [115] replaced the max function with a probabilistic
max function and [45] explored an activation function that replaces the max function with
an Lp norm. However, while the type of activation function can have a significant impact

on learning, the space of possible functions has hardly been explored.

One way to explore this space is to learn the activation function during training. Previous
efforts to do this have largely focused on genetic and evolutionary algorithms [133], which
attempt to select an activation function for each neuron from a pre-defined set. Recently,

[127] combined this strategy with a single scaling parameter that is learned during training,.

In this paper, we propose a more powerful adaptive activation function. This parametrized,
piecewise linear activation function is learned independently for each neuron using gradient
descent, and can represent both convex and non-convex functions of the input. Experiments
demonstrate that, like other piecewise linear activation functions, this works well for training

deep neural networks.
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4.2 Adaptive Piecewise Linear Units

Here we define the adaptive piecewise linear (APL) activation unit. Our method formulates

the activation function h;(z) of an APL unit ¢ as a sum of hinge-shaped functions,

s
hi(x) = max(0,z) + Z a; max(0, —x + b;) (4.1)

s=1

The result is a piecewise linear activation function. The number of hinges, S, is a hyperpa-
rameter set in advance, while the variables a;, b; for ¢ € 1, ..., S are learned using standard
gradient descent during training. The a] variables control the slopes of the linear segments,

while the b variables determine the locations of the hinges.

The number of additional parameters that must be learned when using these APL units is
25M, where M is the total number of hidden units in the network. This number is small

compared to the total number of weights in typical networks.

Figure 4.1 shows example APL functions for

vor—e)as02b=0 _,  (b)a=-02b=05
S = 1. Note that unlike maxout, the class 5oo °
ug_, 06 0.6
of functions that can be learned by a sin- 8. ot
g 0.2
gle unit includes non-convex functions. In < 00
0.91.0 -0.5 0.0 0.5 1.070;21.0 -0.5 0.0 0.5 1.0
fact, for large enough S, h;(z) can approx- o (Qa=0.2.b=-0.5 _,,  (d)a=0.2,b=0.5
. . . . _E 0.8 0.8
imate arbitrarily complex continuous func- 2
u:_! 0.6 0.6
=
tions, subject to two conditions: g 04
-E 0.2 0.2
Theorem 4‘1' Any COntZ’nUOUS piecewis@— O'Elhj 0.0 0.5 10 *%0 o5 o0 0.5 1.0
Input Input

linear function g(x) can be expressed by
Figure 4.1: Sample activation functions ob-

tained from changing the parameters. Notice
that figure b shows that the activation func-
tion can also be non-convex. Asymptotically,
the activation functions tend to g(z) = = as

1. There is a scalar u such that g(xr) =x * — oo and g(r) = axr — ¢ as ¥ < —oo for
some « and c¢. S =1 for all plots.
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1,...,S, assuming that:



for all x > u.

2. There are two scalars v and « such

that V,g(x) = a for all x < v.

This theorem implies that we can reconstruct any piecewise-linear function g(x) over any
subset of the real line, and the two conditions on g(x) constrain the behavior of g(x) to be
linear as x gets very large or small. The first condition is less restrictive than it may seem. In
neural networks, g(z) is generally only of interest as an input to a linear function wg(z) + z;
this linear function effectively restores the two degrees of freedom that are eliminated by

constraining the rightmost segment of g(z) to have unit slope and bias 0.

Proof. Let g(x) be piecewise linear with K + 2 linear regions separated by ordered boundary
points b, b, ....b% and let a* be the slope of the k-th region. Assume also that g(z) = x for
all z > b, We show that g(x) can be expressed by the following special case of Equation

4.1:

h(z) = —a’ max(0, —z + b°)
+ 38 aF(max(0, —z + bF1) — max(0, —z + b¥)) (4.2)

— max(0, —z) + max(0, z) + max(0, —z + b¥),

The first term has slope a” in the range (—o0,b%) and 0 elsewhere. Each element in the
summation term of Equation 4.2 has slope a* over the range (b*~!, b*) and 0 elsewhere. The
last three terms together have slope 1 when z € (b%,00) and 0 elsewhere. Now, g(z) and
h(z) are continuous, their slopes match almost everywhere, and it is easily verified that

h(z) = g(z) = x for x > b, Thus, we conclude that h(z) = g(z) for all z. [J O
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4.2.1 Comparison with Other Activation Functions

In this section we compare the proposed approach to learning activation functions with two

other nonlinear activation functions: maxout [44], and network-in-network [77].

We observe that both maxout units and network-in-network can learn any nonlinear ac-
tivation function that APL units can, but require many more parameters to do so. This
difference allows APL units to be applied in very different ways from maxout and network-
in-network nonlinearities: the small number of parameters needed to tune an APL unit
makes it practical to train convolutional networks that apply different nonlinearities at each
point in each feature map, which would be completely impractical in either maxout networks

or network-in-network approaches.

Maxout. Maxout units differ from traditional neural network nonlinearities in that they

take as input the output of multiple linear functions, and return the largest:

_ k k
hmaxout (-T) = ke?ll,a{(K} w" - x + b, (43)

Incorporating multiple linear functions increases the expressive power of maxout units, al-
lowing them to approximate arbitrary convex functions, and allowing the difference of a pair

of maxout units to approximate arbitrary functions.

Networks of maxout units with a particular weight-tying scheme can reproduce the output
of an APL unit. The sum of terms in Equation 4.1 with positive coefficients (including the
initial max (0, x) term) is a convex function, and the sum of terms with negative coefficients

is a concave function. One could approximate the convex part with one maxout unit, and
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the concave part with another maxout unit:

hCOl’lVeX(x) — mkalx CzOHVeXw . + diOnVeX; hconcave<l,) — mgx czoncavew . _|_ dzoncave’ (44)

where ¢ and d are chosen so that

heoMveX (x) — heore(x) = max(0, w -  + u) + >, a®* max(0,w - x + u). (4.5)

In a standard maxout network, however, the w vectors are not tied. So implementing APL
units (Equation 4.1) using a maxout network would require learning O(SK) times as many
parameters, where K is the size of the maxout layer’s input vector. Whenever the expressive
power of an APL unit is sufficient, using the more complex maxout units is therefore a waste

of computational and modeling power.

Network-in-Network. [77] proposed replacing the simple rectified linear activation in
convolutional networks with a fully connected network whose parameters are learned from
data. This “MLPConv” layer couples the outputs of all filters applied to a patch, and permits
arbitrarily complex transformations of the inputs. A depth-M MLPConv layer produces an

output vector fi@/’ from an input patch x;; via the series of transformations

fign = max(0, wy - @i +by), - . J%c = max (0, wp! - fA71 4000, (4.6)

As with maxout networks, there is a weight-tying scheme that allows an MLPConv layer to

reproduce the behavior of an APL unit:

lbk = max(0, ckwn(r) - Tij + bl%:)? 7?7]{,‘ = sz(g):k akfz’ljéa (4.7)

where the function (k) maps from hinge output indices k to filter indices x, and the coeffi-
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cient ¢, € {—1,1}.

This is a very aggressive weight-tying scheme that dramatically reduces the number of pa-
rameters used by the MLPConv layer. Again we see that it is a waste of computational and

modeling power to use network-in-network wherever an APL unit would suffice.

However, network-in-network can do things that APL units cannot—in particular, it effi-
ciently couples and summarizes the outputs of multiple filters. One can get the benefits of
both architectures by replacing the rectified linear units in the MLPconv layer with APL

units.

4.3 Experiments

Experiments were performed using the software package CAFFE [58]. The hyperparameter,
S, that controls the complexity of the activation function was determined using a valida-
tion set for each dataset. The a; and b parameters were regularized with an L2 penalty,
scaled by 0.001. Without this penalty, the optimizer is free to choose very large values of
a; balanced by very small weights, which would lead to numerical instability. We found
that adding this penalty improved results. The model files and solver files are available at

https://github.com/ForestAgostinelli/Learned-Activation-Functions-Source/tree /master.

4.3.1 CIFAR

The CIFAR-10 and CIFAR-100 datasets [71] are 32x32 color images that have 10 and 100
classes, respectively. They both have 50,000 training images and 10,000 test images. The
images were preprocessed by subtracting the mean values of each pixel of the training set

from each image. Our network for CIFAR-10 was loosely based on the network used in [116].
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It had 3 convolutional layers with 96, 128, and 256 filters, respectively. Each kernel size
was bxb and was padded by 2 pixels on each side. The convolutional layers were followed
by a max-pooling, average-pooling, and average-pooling layer, respectively; all with a kernel
size of 3 and a stride of 2. The two fully connected layers had 2048 units each. We applied
dropout [52] to the network as well. We found that applying dropout both before and after
a pooling layer increased classification accuracy. The probability of a unit being dropped
before a pooling layer was 0.25 for all pooling layers. The probability for them being dropped
after each pooling layers was 0.25, 0.25, and 0.5, respectively. The probability of a unit
being dropped for the fully connected layers was 0.5 for both layers. The final layer was a
softmax classification layer. For CIFAR-100, the only difference was the second pooling layer
was max-pooling instead of average-pooling. The baseline used rectified linear activation

functions.

When using the APL units, for CIFAR-10, we set S = 5. For CIFAR-100 we set S = 2.
Table 4.1 shows that adding the APL units improved the baseline by over 1% in the case of
CIFAR-10 and by almost 3% in the case of CIFAR-100. In terms of relative difference, this
isa 9.4% and a 7.5% decrease in error rate, respectively. We also try the network-in-network
architecture for CIFAR-10 [77]. We have S = 2 for CIFAR-10 and S = 1 for CIFAR-100.

We see that it improves performance for both datasets.

We also try our method with the augmented version of CIFAR-10 and CIFAR-100. We pad
the image all around with a four pixel border of zeros. For training, we take random 32 x
32 crops of the image and randomly do horizontal flips. For testing we just take the center
32 x 32 image. To the best of our knowledge, the results we report for data augmentation

using the network-in-network architecture are the best results reported for CIFAR-10 and

CIFAR-100 for any method.

In section 4.3.4, one can observe that the learned activations can look similar to leaky rectified

linear units (Leaky ReLU) [81]. This activation function is slightly different than the ReLU
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because it has a small slope k£ when the input = < 0.

x, ifx>0
h(z) =

kx, otherwise

In [81], k is equal to 0.01. To compare Leaky ReLUs to our method, we try different values for
k and pick the best value one. The possible values are positive and negative 0.01, 0.05, 0.1,
and 0.2. For the standard convolutional neural network architecture k¥ = 0.05 for CIFAR-
10 and k£ = —0.05 for CIFAR-100. For the network-in-network architecture k& = 0.05 for
CIFAR-10 and k£ = 0.2 for CIFAR-100. APL units consistently outperform leaky ReL.U

units, showing the value of tuning the nonlinearity (see also section 4.3.3).

4.3.2 Higgs Boson Decay

The Higgs-to-71 7~ decay dataset comes from the field of high-energy physics and the analysis
of data generated by the Large Hadron Collider [9]. The dataset contains 80 million collision
events, characterized by 25 real-valued features describing the 3D momenta and energies of
the collision products. The supervised learning task is to distinguish between two types of
physical processes: one in which a Higgs boson decays into 777~ leptons and a background
process that produces a similar measurement distribution. Performance is measured in terms
of the area under the receiver operating characteristic curve (AUC) on a test set of 10 million
examples, and in terms of discovery significance [20] in units of Gaussian o, using 100 signal

events and 5000 background events with a 5% relative uncertainty.

Our baseline for this experiment is the 8 layer neural network architecture from [9] whose ar-
chitecture and training hyperparameters were optimized using the Spearmint algorithm [114].

We used the same architecture and training parameters except that dropout was used in the
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top two hidden layers to reduce overfitting. For the APL units we used S = 2. Table 4.2
shows that has higher performance than the dropout-trained baseline and the ensemble of 5

neural networks from [9].

4.3.3 Effects of APL unit Hyperparameters

Table 4.3 shows the effect of varying S on the CIFAR-10 benchmark. We also tested whether
learning the activation function was important (as opposed to having complicated, fized ac-
tivation functions). For S = 1, we tried freezing the activation functions at their random
initialized positions, and not allowing them to learn. The results show that learning activa-

tions, as opposed to keeping them fixed, results in better performance.

4.3.4 Visualization and Analysis of Adaptive Piecewise Linear Func-

tions

The diversity of adaptive piecewise linear functions was visualized by plotting h;(z) for
sample neurons. Figures 4.2 and 4.3 show adaptive piecewise linear functions for the CIFAR-

100 and Higgs— 777~ experiments, along with the random initialization of that function.

In figure 4.4, for each layer, 1000 activation functions (or the maximum number of activation
functions for that layer, whichever is smaller) are plotted. One can see that there is greater
variance in the learned activations for CIFAR-100 than there is for CIFAR-10. There is
greater variance in the learned activations for Higgs— 777~ than there is for CIFAR-100.
For the case of Higgs— 7777, a trend that can be seen is that the variance decreases in the

higher layers.
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Sample of Learned Activations for Cifar100
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Figure 4.2: CIFAR-100 Sample Activation Functions. Initialization (dashed line) and the
final learned function (solid line).

4.4 Conclusion

We have introduced a novel neural network activation function in which each neuron com-
putes an independent, piecewise linear function. The parameters of each neuron-specific
activation function are learned via gradient descent along with the network’s weight param-
eters. Our experiments demonstrate that learning the activation functions in this way can
lead to significant performance improvements in deep neural networks without significantly
increasing the number of parameters. Furthermore, the networks learn a diverse set of acti-
vation functions, suggesting that the standard one-activation-function-fits-all approach may

be suboptimal.
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Sample of Learned Activations for the Higgs Boson
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Figure 4.3: Higgs— 77~ Sample Activation Functions. Initialization (dashed line) and the
final learned function (solid line).

72



Table 4.1: Error rates on CIFAR-10 and CIFAR-100 with and without data augmentation.
This includes standard convolutional neural networks (CNNs) and the network-in-network
(NIN) architecture [77]. The networks were trained 5 times using different random initial-
izations — we report the mean followed by the standard deviation in parenthesis. The best

results are in bold.

Method CIFAR-10 CIFAR-
100
Without Data Augmentation
CNN + ReLU [116] 12.61% 37.20%
CNN + Channel-Out [129] 13.2% 36.59%
CNN + Maxout [44] 11.68% 38.57%
CNN + Probout [115] 11.35% 38.14%
CNN (Ours) + ReLU 12.56 37.34
(0.26)% (0.28)%
CNN (Ours) + Leaky ReLU 11.86 35.82
(0.04)% (0.34)%
CNN (Ours) + APL units 11.38 34.54
(0.09)% (0.19)%
NIN + ReLU [77] 10.41% 35.68%
NIN + ReLU + Deep Supervision [74] 9.78% 34.57%
NIN (Ours) + ReLU 9.67 35.96
(0.11)% (0.13)%
NIN (Ours) + Leaky ReLU 9.75 36.00
(0.22)% (0.36)%
NIN (Ours) + APL units 9.59 34.40
(0.24)% (0.16)%
With Data Augmentation
CNN + Maxout [44] 9.38% -
CNN + Probout [115] 9.39% -
CNN + Maxout [117] 9.61% 34.54%
CNN + Maxout + Selective Attention [117] 9.22% 33.78%
CNN (Ours) + ReLU 9.99 34.50
(0.09)% (0.12)%
CNN (Ours) + APL units 9.89 33.88
(0.19)% (0.45)%
NIN + ReLU [77] 8.81% -
NIN + ReLU + Deep Supervision [74] 8.22% -
NIN (Ours) + ReLU 7.73 32.75
(0.13)% (0.13)%
NIN (Ours) + APL units 7.51 30.83
(0.14)% (0.24)%
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Table 4.2: Performance on the Higgs boson decay dataset in terms of both AUC and ex-
pected discovery significance. The networks were trained 4 times using different random
initializations — we report the mean followed by the standard deviation in parenthesis. The
best results are in bold.

Method AUC Discovery Significance
DNN + ReLU [9] 0.802 3.370
DNN + ReLU + Ensemble[9] 0.803 3.390
DNN (Ours) + ReLU 0.803 (0.0001) 3.38 (0.008) o

DNN (Ours) + APL units ~ 0.804 (0.0002) 3.41 (0.006) o

Table 4.3: Classification accuracy on CIFAR-10 for varying values of S. Shown are the mean
and standard deviation over 5 trials.

Values of S Error Rate
baseline 12.56 (0.26)%
S =1 (activation not learned) 12.55 (0.11)%
S=1 11.59 (0.16)%
S=2 11.73 (0.23)%
S=5 11.38 (0.09)%
S=10 11.60 (0.16)%
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Figure 4.4: Visualization of the range of the values for the learned activation functions for
the deep neural network for the CIFAR datasets and Higgs— 717~ dataset.
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Chapter 5

Conclusion

We have investigated how to solve puzzles that have large state spaces with only one solved
state using a deep reinforcement learning method called DeepCubeA. We showed that not
only can DeepCubeA solve these problems, it can often solve them in the most efficient
way possible. Next, we investigated how deep learning can be applied to problems in circa-
dian rhythms. Our deep learning algorithm BIO_CYCLE could detect oscillating circadian
species better than current software and that our deep learning software BIO_CLOCK could
determine the time measurements were taken. Finally, we introduced the adaptive piecewise
linear units (APLs). These activation functions were learned using gradient descent and lead

to significant increases in performance.

APLSs have been shown to work for classification tasks and could possibly be used for other
tasks that can be solved with deep neural networks, such as dimensionality reduction and re-
gression. Deep reinforcement learning algorithms, such as DeepCubeA, could also potentially
benefit, however, the loss function is often non-stationary for deep reinforcement learning

tasks. Therefore, APLs may need modification for deep reinforcement learning applications.

DeepCubeA could be applied problems in the sciences that have many possibilities, where
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only a small fraction of those possibilities are considered solutions. For example, protein
structure prediction can be viewed as a local search problem in a large state space. While
solving the Rubik’s cube is a path finding problem and not a local search problem, the
concepts used to solve this puzzle could be extended to other search problems found in the
sciences. Furthermore, finding solutions to problems with large state spaces should also be
efficient in order to conserve time and resources. While DeepCubeA was able to solve the
majority of test configurations in the most efficient way possible, or close to the most efficient
way possible, there were no guarantees that this would be the case. It is possible that this

algorithm can be extended to guarantee efficiency with high probability.
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