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Abstract of the Dissertation

Dynamical Methods in Spectral Theory of periodic Schrödinger Operators with Random Noise

by

William Wood

Doctor of Philosophy in Mathematics

University of California, Irvine, 2024

Professor Anton Gorodetski, Chair

We will study the spectrum of a discrete Schrödinger operator called the periodic Anderson-

Bernoulli operator. Because the operator is ergodic, we can use techniques in dynamical systems

and apply Johnson’s Theorem to better understand this operator. These techniques involve study-

ing the hyperbolic locus of SL(2,R) cocycles and the geometry of the hyperbolic locus in SL(2,R)n.

This model has a spectrum that is completely pure-point, and there exist parameters such that the

spectrum can be defined as the union of an infinite number of intervals, which is unexpected for

multiple reasons. A result of Avila, Damanik, and Gorodetski [2] says that if the Anderson model

has a background potential defined by a dynamical system with a continuous phase space, then

such a result is impossible. In this model, the background potential is periodic, making that result

not applicable. This thesis provides details of this work, as well as insight into where this work

may progress.
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Introduction

This thesis will cover my work and results while at the University of California, Irvine. The results

center around studying the spectrum of a discrete, erogodic Schrödinger operator and hyperbolicity

of SL(2,R) cocycles.

Definition 1. A discrete Schrödinger operator is a mapping H : l2(Z)→ l2(Z) defined by

H(ϕ)n = ϕn−1 + ϕn+1 + V (n)ϕn,

where V (n) is a bounded real sequence.

The continuous Schrödinger operator H(ϕ) = ∆ϕ + P · ϕ is more well known, but one can study

the discrete version if the laplacian is discretized and the potential is a bounded sequence. In

n dimensions, the discrete laplacian is (4ϕ)m =
∑
|m−i|=1 ϕi − 2nϕm. Over 1 dimension, it is

(4ϕ)m = ϕm+1 +ϕm−1− 2ϕm. Typically, the 3rd term is expressed as part of the potential and we

would get (4ϕ)m = ϕm+1 + ϕm−1. When studying the behavior of an operator of a Hilbert space,

it is useful to study the spectrum of the operator. For instance, the spectrum of a Schrödinger

operator gives the potential energies in the system.

Definition 2. The spectrum of the operator H is defined as the following set

σ(H) = {E : HE does not have a bounded inverse},

where the bound refers to the operator norm being bounded.

The operator studied in this thesis is called the periodic Anderson-Bernoulli operator, and the

topology of the spectrum of this operator is the center of focus. This model can most easily be

described as the Anderson model with a background periodic potential. The Anderson model is a

Schrödinger operator where the potential is a sequence of iid random variables, and in the case of the
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Anderson-Bernoulli operator, the distribution is Bernoulli. The research for the main result centers

around studying the hyperbolic locus in SL(2,R)16, and finding a path defined by the Schrödinger

cocycle that passes through an infinite number of connected components of the hyperbolic locus.

Additional material on Schrödinger cocycles is in section 2.2.2 and the hyperbolic locus is discussed

in section 3. Details of Schrödinger operators, and relevant information, is provided in section 2.

Theorems 1 and 2 pertain to the periodic Anderson-Bernoulli model. By Theorem 1, the spectrum

of the periodic Anderson-Bernoulli operator can consist of an infinite number of intervals. For this

to be possible, the period has to be greater than two, by Theorem 2. Whether this is possible

for period 3 is still currently unknown. We can furthermore show that the spectrum has a dense

interior. This is in thanks to Professor Jake Fillman. There are two reasons why Theorem 1 is an

interesting result. The first is that the Anderson model has a spectrum that is the union of a finite

number of intervals. Explicitly, given the distribution ν that defines the variables of the potential,

then the spectrum is entirely pure-point, and is the set σ(HA) = [−2, 2] + supp ν. The same is

true for any periodic Schrödinger operator. Explicitly, the potential of the periodic operator, with

period n, is the union of n intervals (possibly overlapping). Using Johnson’s Theorem, one can show

that the spectrum is the set of values such that the trace of a given SL(2,R) matrix is inclusively

between −2 and 2. The trace of the matrix is a polynomial of degree equal to the period length.

The fact that potential of these two operators, when added together, would have an infinite number

of intervals in the spectrum then becomes counterintuitive. The second reason is due to [2], which

found that if the Anderson model has an ergodic background potential, defined by a dynamical

system with a connected phase space, then the spectrum would also have to have a finite number

of intervals. A periodic potential, of period n, is defined by the discrete dynamical system (Zn, T ),

where T (x) = x+ 1, and does not have a connected phase space.

The second topic of focus is the hyperbolic locus and the notion of uniform hyperbolicity of sets of

SL(2,R) matrices. Great sources of information on this topic are [1] and [20].

Definition 3. Given a set of SL(2,R) matrices, M, the set is uniformly hyperbolic if there exists

λ > 1 such that for any M1,M2, · · · ,Mm ∈M

||M1 ·M2 · · ·Mm|| > λm.

This inequality holds for all positive integers m and for any ordering of the product of the matrices.

The matrices in the inequality do not need to be distinct from each other.

2



Definition 4. For any integer n, the hyperbolic locus is a open subset of SL(2,R)n (denoted

Hn ⊂ SL(2,R)n). Given any finite set of SL(2,R) matrices M = {M1,M2, · · · ,Mn}, the n−tuple

(M1,M2, . . .Mn) is an element of the hyperbolic locus Hn if and only if M is uniformly hyperbolic.

In SL(2,R)2, the geometry of H2 is well understood from [1]. The locus H2 is a countable union

of connected components that can be individually defined by their boundaries. For n ≥ 3, Hn has

a more complicated geometry, and there a few open questions posted by [1], some of which are

discussed in section 5. In SL(2,R)3 there exists path P : [a, b] → SL(2,R)3 which passes through

an infinite number of disjoint, connected components of H3 as defined in 3.5 and Proposition 4.18

of [1]. This path can be lifted to SL(2,R)n and Hn for any n > 3 and relates to the work involving

the spectrum of the Schrödinger operators. Such a path does not exist in SL(2,R)2.

3



Chapter 1

Outline

1.1 Statement of Results

Theorem 1. The periodic Anderson-Bernoulli model, with period 4 or greater, can have a spectrum

with infinitely many gaps.

Theorem 2. The periodic Anderson-Bernoulli model, with period 2, has a spectrum equal to the

union of 4 intervals. Explicitly, it is the complement of the union of 4 well-defined intervals, one

of which extends to −∞ and another extends to +∞.

1.2 Organization of Thesis

Chapter 2 discusses information and the background of Schrödinger operators, specifically ones

with a randomness in the potential. This section outlines the general details of ergodic Schrödinger

operators and defines the spectrum of these operators. Schrödinger cocycles and transfer matrices

are then introduced as well as Johnson’s Theorem, which we can utilize to calculate the spectrum

of the operators. Then the concept of Anderson localization is expanded on as well as the RAGE

Theorem and details of spectral theory. In the last section of the chapter the periodic Anderson-

Bernoulli model is defined, which is the main subject of the results.

Chapter 3 involves the hyperbolic locus details, its various properties, and relevant open questions

about the hyperbolic locus. Additionally, the relevant material and calculations for the work

involving the periodic Anderson-Bernoulli operator are provided.

The next Chapter, 4, provides the calculations for the the main results about the periodic Anderson-

Bernoulli model. This utilizes the material from the previous two sections to calculate the work.

4



The final Chapter, 5, provides details about a few open questions, and some of the progress that

can provide insight into ways to approach answering these questions. A single question is posed

about the periodic Anderson-Bernoulli operator, but most of the material centers around material

involving questions posed in [1].
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Chapter 2

Random Schrödinger Operators

2.1 Basic Details

A discrete Schrödinger operator takes the form is a mapping H : l2(Z)→ l2(Z) such that

H(ϕ)n = ϕn−1 + ϕn+1 + V (n)ϕn.

Here {V (n)} is a bounded sequence of real numbers. When studying Schrödinger operators, one

often wants to study spectrum of the operator σ(H).

σ(H) = {E : H − E does not have a bounded inverse}

The spectrum can be decomposed into 3 different types, an absolutely continuous piece, a singular

continuous piece, and a pure point piece. This leads into information about the RAGE Theo-

rem, and for additional details, see [8] and Section 6. When studying the spectrum of a discrete

Schrödinger operator, one can study the decomposition into the 3 types, as well as the topological

structure of the spectrum. Does the spectrum consist of intervals? Are there finitely many or

infinitely many? Are there isolated points? If there are no intervals, then what is the Hausdorff

dimension of the spectrum? This work puts more effort in studying the topological structure of

a certain Schrödinger operator. We will consider what are called ergodic Schrödinger operators.

When studying ergodic Schrödinger operators, there are special tools we can use when studying

the spectrum.
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Definition 5. A family of discrete Schrödinger operators {HV } is ergodic if there exists an ergodic1

topological dynamical system (Ω, T, µ) and f : Ω → R such that for all ω ∈ Ω there is a unique

HV ∈ {HV } where, for all n ≥ 0, the following equation holds

H(ϕ)n = ϕn−1 + ϕn+1 + f(Tn(ω))ϕn,

ie Vω(n) = f(Tn(ω)).

If T is invertible, then n can be any integer. The ergodic family is often denoted {Hω}Ω, indexed

by the elements of the dynamical system. In the following work, the dynamical system will always

be unitary, ie µ(Ω) = 1.

The simplest example of an ergodic family of Schrödinger operators is one where the poten-

tial is a periodic sequence. If the potential has period n, then one can consider the dynami-

cal system (Zn, S, µ), where S(x) = x + 1 mod n and µ({x}) = 1/n. Considering any sequence

(a0, a1, a2, · · · an−1), one can define f : Zn → R by i 7→ ai. With this dynamical system, the ergodic

family of Schrödinger operators {Hx}x∈Zn is the set with that sequence as a potential. The opera-

tors in this family all have the same spectrum. If the dynamical system is minimal2, then all of the

operators in the family have the same spectrum. In the case of a periodic Schrödinger operator,

with period n, the spectrum consists of a finite union of n intervals.

This brings us to the concept of the almost sure spectrum. When considering an ergodic family

{Hω}Ω with the ergodic dynamical system (Ω, T, µ) with unitary µ, there exists Ω′ ⊂ Ω such that

Ω′ = {ω : OrbT (ω) = Ω}. Here, Ω′ is the subset of elements such that their orbit is dense in Ω.

Here µ(Ω′) = 1. All the members of the family {Hω}Ω′ have the same spectrum, and this is called

the almost sure spectrum of {Hω}Ω and is denoted σAS({Hω}).

There are a variety of examples of ergodic Schrödinger operators that are studied. When studying

more complicated, well-known examples of ergodic Schrödinger operators, one should recognize

almost Mathieu operator and the Anderson model. The almost-Mathieu operator, HAM , has a

potential P (n) = λ·cos(nπα) such that λ 6= 0, α /∈ Q, and n ∈ Z. Proven by Avila and Jitomirskaya

in [3], the spectrum σ(HAM ) is a Cantor set that can be defined by the Hofstadter’s butterfly. The

nature of the spectrum was an open problem for several decades, and was dubbed the ten martini

1A topological dynamical system (Ω, T, µ) is ergodic if the measure µ is unitary and for all measurable sets A, we
have T−1(A) = A if and only if µ(A) ∈ {0, 1}.

2A dynamical system (Ω, T ) is minimal if it does not contain any closed, nontrivial, proper subsets that are closed
under T .

7



problem.

Additionally there is what is called the Fibonacci Hamiltonian. This Schrödinger operator has

a potential P (n) = λχ[1−α,1](nα + ω mod 1). Here λ > 0 is the coupling constant, ω ∈ T, and

α = −1+
√

5
2 is the inverse of the golden ratio. We know that for any coupling constant, the spectrum

is a dynamically defined Cantor set3 For a few additional sources on studied ergodic Schroödinger

operators, one can see [10] [19] [21] [16][5][4].

The Anderson model, HA, is a heavily studied Schrödinger operator named after Philip Anderson.

His nobel prize in 1977 came in part from studying what became known as Anderson localization

and led to studying random Schrodinger operators. For additional details on the history, one can

see [18][12]. The discrete Anderson model has a potential defined by a sequence of iid random

variables {xn} defined by a distribution ν. The almost sure spectrum of the Anderson model is the

set

σ(HA) = supp(ν) + [−2, 2],

where the summation is the Minkowski sum4. Because the spectrum is a compact set, it has to

be the union of finitely many disjoint intervals. This work will provide an example of a similar

operator, one with a potential defined by iid random variables {ν(n)} plus a periodic background

potential. The main results are given in Theorem 1, which answers the question asked in [19].

As a ‘family’ of Schrödinger operators, the Anderson model is the family of all possible operators

with a potential being a sequence of values in supp(ν). The corresponding ergodic dynamical

system that defines the Anderson model is (supp(ν)Z, S), where S is the right shift, ie for all

{xn} ∈ supp(ν)Z, we get S({xn})j = xj−1. The potential can be defined by the mapping ω 7→ ω0,

therefore, we get

Vω(0) = ω0, Vω(1) = ω1, · · · , Vω(n) = ωn.

The right shift has a well-defined inverse operator (the left shift here), so n can be extended to any

integer. Any ω ∈ Ω must therefore define a sequence of possible outcomes, and Ω is the set of all

possible outcomes. This dynamical system is not minimal, as one can construct closed subsets that

are closed under the shift operator, the most obvious examples of which are periodic sequences.

Given a Bernoulli distribution, where ν can take on the values of 0 and 1, the almost sure spectrum

is [−2, 3]. If you consider the specific operator H(ϕ)n = ϕn+1 + ϕn−1 + ϕn, the potential would be

3A dynamically defined Cantor set is a Cantor set defined by sets E1, E2, · · ·En ⊂ K where K ⊂ R is an interval
and ϕ :

⋃
Ei → K is an expanding map. The Cantor set can be defined as

⋂
m>0 ϕ

−m(K).
4A Minkowski sum is an operation between sets such that A+B = {a+ b : a ∈ A & b ∈ B}.
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defined by the element ω = (· · · , 1, 1, 1, · · · ) and has a spectrum of [−1, 3].
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2.2 Schrödinger Cocycle

2.2.1 Introduction

We can begin by providing Katok and Hasselblatt’s definition of a cocycle.

Definition 6. [15] Given a system (X,B, µ) with a measure preserving f : X → X, a linear cocycle

is a measurable function A : X → GL(n,R) such that

A(x, i+ j) = A(f j(x), i) ·A(x, j)

Assuming that f is invertible, then i, j ∈ Z, A(x, 0) = Id, and all possible images of the function

are invertible matrices. In the context of this work, we will restrict ourselves to SL(2,R) cocycles

and use a slightly different notation provided in the definition below.

Definition 7. Given a space Ω and map T : Ω→ Ω and A : Ω→ SL(2,R), an SL(2,R)−cocycle

is the map

B : (Ω,R2)→ (Ω,R2)

(ω,~v) 7→ (T (ω), A(ω)~v).

There are a couple concepts we can define on cocycles. Iterations of a cocycle Bn can be defined

by the following formula, for n > 1.

Bn(ω,~v) = Bn−1(T (ω), A(ω)~v)

= (Tn(ω), A(Tn−1(ω)) ·A(Tn−2(ω)) · · ·A(T (ω)) ·A(ω)~v)

We will use the notation Bn(ω,~v) = (Tnω,An(ω)~v). If T is invertible, then the equation holds for

n being any integer. With this we can introduce the idea of an SL(2,R) cocycle being uniformly

hyperbolic.

Definition 8. A cocycle is uniformly hyperbolic if there exists λ > 1 and C > 0 such that for all

ω ∈ Ω,

||An(ω)|| > Cλ|n|.

Via [20],
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Definition 9. For any cocycle (T,A), there is a unique continuous section

es : X → P1

if and only if the cocycle is uniformly hyperbolic. Here es(x) is invariant and repelling.

If T is a homomorphism, then there also exists a continuous section eu(x) 6= es(x) which is invariant

and contracting. This concept will be expanded on in Chapter 3, and in [20].

2.2.2 Transfer Matrices

As defined in section 2.1, given an ergodic Schrödinger family {Hω}Ω, there exists ergodic (Ω, T, µ)

and f : Ω → R. The function f can be used to define the mapping AE : Ω → SL(2,R) by the

following

ω 7→

E − f(ω) −1

1 0

 .
Given an ergodic Schrödinger operater, Hω(ϕ)n = ϕn−1 +ϕn+1 + f(Tn(ω))ϕn, consider a sequence

{ϕn} such that Hω(ϕ) = Eϕ. This would give the equation

E · ϕn = ϕn+1 + ϕn−1 + f(Tn(ω))ϕn.

This can be turned into the two equations

(E − f(Tn(ω))·ϕn − 1 · ϕn−1 = ϕn+1(2.1)

ϕn + 0 · ϕn−1 = ϕn(2.2)

which gives the matrix shown above, called a transfer matrix

E − f(Tn(ω)) −1

1 0

 ·
 ϕn

ϕn−1

 =

ϕn+1

ϕn

 .
This brings us to the definition of a Schrödinger cocycle.

Definition 10. Given a Schrödinger operator H, defined by a dynamical system (Ω, T, µ) where

the potential is defined by f : Ω→ R, the Schrödinger cocycle BE : (Ω,R2)→ (Ω,R2) is defined as

11



the following mapping.

(ω,~v) 7→
(
Tω,

E − f(ω) −1

1 0

 · ~v).
Note that the transfer matrices depend on both E and ω, and that a product can be expressed as

iterations of the cocycle, ie

An,E(ω) ·

[
ϕ0

ϕ−1

]
=

[
E − f(Tn−1(ω)) −1

1 0

]
·

[
E − f(Tn−2(ω)) −1

1 0

]
· · ·

[
E − f(ω) −1

1 0

]
·

[
ϕ0

ϕ−1

]
=

[
ϕn

ϕn−1

]
.

Why is this cocycle so important? The answer is that it can use Johnson’s Theorem to help define

the spectrum of the relevant model.

Theorem 2.1 (Johnson Theorem (1986)). [13] Consider an ergodic dynamical system (Ω, T, µ),

where Ω is a compact metric space, T is a homeomorphism, µ is a T -invariant measure with

supp(µ) = Ω and f ∈ C(Ω,R). In this case,

Σ = {E ∈ R : (T,BE) is not uniformly hyperbolic}.

For additional details of Johnson’s Theorem, one can see [13] and [21]. Among the simpler appli-

cations of Johnson’s Theorem, there is the Anderson model. First it is necessary to provide the

following proposition. This follows from definitions 3 and 8 and [1] and [20].

Proposition 2.2. Given a finite alphabet Γ = {γ1, γ2, · · · , γn} and the dynamical system (ΓZ, T )

where T (ω)i = ωi+1 is the shift, any corresponding SL(2,R) cocycle (ω,~v) 7→ (T (ω), A(ω0)~v) is

uniformly hyperbolic if and only if the set of matrices {A(αi)}i is uniformly hyperbolic.

Given a distribution ν with the support taking on finitely many values {ν1, ν2, · · · , νn}, the cor-

responding Anderson model would be defined by the ergodic dynamical systems ({νi}Z, T ). The

corresponding Schrödinger cocycle for the Anderson model is uniformly hyperbolic if and only the

following set of matrices is uniformly hyperbolic.

ME =

{E − νi −1

1 0

}
i

This follows from Lemma 2.3.

Using material from Chapter 4, we can easily calculate the values for E such thatME is uniformly

hyperbolic. We first can calculate the eigenvectors of the matrices. Given a transfer matrix,

12



A =

x −1

1 0

 , it is hyperbolic if and only if |x| > 2. If x > 2, then the corresponding eigenvectors

are

uA =

rA
1

 sA =

 1

rA


where rA is the spectral radius, which must be greater than 1. If x < −2, then the corresponding

eigenvectors are

uA =

−rA
1

 sA =

−1

rA

 .
If there exists M ∈ ME such that M is not uniformly hyperbolic (and |tr(M)| ≤ 2), then the set

is not uniformly hyperbolic. If all the matrices are uniformly hyperbolic, then all the eigenvectors

are well-defined over R2. All the unstable eigenvectors are in the set C =

{x
y

 : |x| > |y|
}

, and

none of the stable eigenvectors are in C. Considering the projective space RP1 is defined as

RP1 = (R2 \ {0})/∼,

where ∼ is the relation ~v ∼ ~w ⇔ ~v = α~w for some α 6= 0, the set C is a single, nontrivial open

interval in RP1. By Proposition 8, if the set ME contains hyperbolic matrices, then it forms a

principal cone and is uniformly hyperbolic. Thus ME is uniformly hyperbolic if and only if it

has a principal multicone, and ME is uniformly hyperbolic if and only if the cocycle is uniformly

hyperbolic. By Johnson’s Theorem, we can conclude that σas(HA) = {E : |E−νi| ≤ 2 for some i} =⋃
i[νi − 2, νi + 2].

13



2.3 Periodic Anderson-Bernoulli Model

The periodic Anderson-Bernoulli model is a discrete ergodic Schrödinger operator and is the sub-

ject of the main results in this thesis. Simply put, the periodic Anderson-Bernoulli model is the

Anderson model, with a Bernoulli distribution, plus a background periodic potential. We will define

a Bernoulli distribution ν such that for a random variable X defined by ν, there exists p ∈ (0, 1)

and

P (X = 1) = p

P (X = 0) = 1− p.

The potential of a periodic Anderson-Bernoulli model depends on a finite sequence (a0, a1, · · · , an−1),

a sequence of iid random variables {xi} defined by Bernoulli distribution ν, and a constant v. The

potential P (n) can then be defined as

(2.3) P (j) = v · xj +



a0 j ≡ 0 mod n

a1 j ≡ 1 mod n

...
...

an−1 j ≡ n− 1 mod n

.

It is not immediately obvious that the Schrödinger operator with this potential is ergodic. Given

the Bernoulli distribution ν, we can consider the two dynamical systems

(supp(µ)Z, T, µ1) = (Ω, T, µ1)

(Zn, S, µ2)) = (Σ, S, µ2)
(2.4)

as defined in 2.1. The dynamical system Ω defines the Anderson model (specifically the Anderson-

Bernoulli model) and is mixing5. The dynamical system Σ defines the potential for periodic

Schrödinger operators and is minimal. Here T is the shift operator and S(x) = x + 1. due to

5A dynamical system (Ω, T, µ) with unitary µ is strongly mixing if given any two measurable sets A and B, we
have lim

n→∞
µ(A ∩ T−nB) = µ(A) · µ(B). The dynamical sysem is weakly mixing if given sets A and B, we have the

lim
n→∞

1
n

n−1∑
j=0

|µ(A∩ T−nB)− µ(A)µ(B)| = 0, ie the Cesàro sum of {|µ(A∩ T−nB)− µ(A)µ(B)|} is 0. Strongly mixing

implies weakly mixing.
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to the proposition below, we can consider the ergodic dynamical system

(Ω× Σ, T × S, µ1 × µ2).

Proposition 1. Given a weakly mixing dynamical system (A, f, µ1) and ergodic (B, g, µ2) where

µi are unitary measures, then the dynamical system (A×B, f ×g, µ1×µ2) is ergodic. Here µ1×µ2

is the product measure, and (f × g)(a, b) = (f(a), g(b)).

Using this product of dynamical systems that is itself ergodic, we can define the potential of the

periodic Anderson-Bernoulli operator. Given the functions that define the Anderson model and

periodic Schrödinger operator, f1 : Ω → R by ω 7→ ω0 and f2 : Σ → R by j 7→ aj mod n. We can

define the function f by the following.

f : Ω× Σ→ R

(ω, j) 7→ f1(ω) + f2(j).
(2.5)

And last this brings us to the Schrödinger cocycle

BE : (Ω× Σ,R2)→ (Ω× Σ,R2)

(
(ω, j), ~v

)
7→
(

(T (ω), j + 1),

E − (v · ω0 + aj) −1

1 0

 · ~v).
In [2], it was found that if you take the Anderson model and add an ergodic background potential

with a connected phase space, the potential will consist of a finite number of intervals. Because

the dynamical system defining the periodic sequence is not connected, this result does not apply.

Theorem 2 shows that if the background potential is of period 2, then the spectrum can consist

of at most 4 intervals, which are uniquely defined in [19] and in section 4.1.3. If the period is 4,

however, the potential can consist of an infinite number of intervals by Theorem 1. To show why

this works, we have Proposition 15 which is a Proposition from [1].

These results rely on Johnson’s Theorem, which means we can define the almost sure spectrum as

σas(HPAB) = {E : the cocycle BE is not uniformly hyperbolic}

as described at the end of section 2.2.2. Calculating the hyperbolicity of this cocycle is a little more
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complicated, however. The details of the calculations are in Chapter 4, but they rely on a couple

of propositions and lemmas.

Lemma 2.3. Consider an ergodic family of Schrödinger operators with random potentials defined

by equation 2.3. The SL(2,R)−cocycle ((ω, j), ~v) 7→ ((T (ω), j + 1), AE · ~v) is uniformly hyperbolic

if and only if the set of distinct matrices

{An,E((ω, 0)) : (ω, 0) ∈ Ω× Σ}

is uniformly hyperbolic for any n ∈ Z+. Note that n is the length of the period.

Remark: There are at most 2 distinct elements in the set {AE((ω, 0)) : (ω, 0) ∈ Ω × Σ}. These

elements are expressible as E − vx0 − a0 −1

1 0


for x0 ∈ {0, 1}. Similarly, {A2,E((ω, 0)) : (ω, 0) ∈ Ω×Σ} has at most 4 distinct elements, expressible

as E − vx0 − a0 −1

1 0

 ·
E − vx1 − a1 −1

1 0


for x0, x1 ∈ {0, 1}. The set {Am,E((ω, 0) : (ω, 0) ∈ Ω× Σ} has at most 2m matrices.

Proof.

(←) If the set of matrices is uniformly hyperbolic, then there exists λ > 1 such that for any ordered

set I of the elements in {M = Am,E((ω, 0)) : (ω, 0) ∈ Ω× Σ} where |I| = k, ||
∏
IMi|| > λk. Here

I can have repeated elements. For any (ω, 0) ∈ Ω × Σ and any k, there exists |I| = k, such that∏
IMi = Akm,E , (ω, 0). Therefore

∣∣∣∣Akm,E(ω, 0)
∣∣∣∣ =

∣∣∣∣∏
I

Mi

∣∣∣∣ > λk =
m
√
λ
mk
.

It is necessary, however, to bound
∣∣∣∣Aj,E(ω, 0)

∣∣∣∣ for any j and any (i, ω). Next, a bound for∣∣∣∣Aj,E(ω, 0)
∣∣∣∣ will be provided for 0 < j < m. Given that for fixed E, (ω, 0), and j ∈ (0,m), we have

inf
||~v||=1

∣∣∣∣Aj,E(ω, 0)(~v)
∣∣∣∣ =

∣∣∣∣(Aj,E , (ω, 0))−1
∣∣∣∣−1 ∈ (0, 1)

Keeping E fixed, there are at most
∑

0<j<m 2j matrices expressible as AjE(ω, 0). So, there exists C
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such that

min
0<j<m

(ω,0)∈Ω×Σ

inf
||~v||=1

∣∣∣∣AjE , (ω, 0)(~v)
∣∣∣∣/ m
√
λ
j

= C > 0.

For j ∈ (0,m), this gives the inequality

inf
||~v||=1

∣∣∣∣AjE(ω, 0)(~v)
∣∣∣∣ ≥ C m

√
λ
j
,

and this brings the conclusion that for all ω ∈ Ω:

∣∣∣∣Amk+j
E (ω, 0)

∣∣∣∣ = sup||~v||=1

∣∣∣∣AjE(ω,mk mod m) ·AmkE (ω, 0)~v
∣∣∣∣ ≥

inf ||~v||=1

∣∣∣∣AjE(ω, 0)(~v)
∣∣∣∣ · ∣∣∣∣AmkE (ω, 0)

∣∣∣∣ > C m
√
λ
mk+j

.

This proves that ||Ak, E(ω, 0)|| > Cλk. It is still necessary to prove this statement for any (ω, i) ∈

Ω× Σ. For any i ∈ (0,m− 1) recognize that

Ak,E(ω, i) = Ak−m+i,E(Tm−i(ω), 0) ·Am−i,E(ω, i)

By the same calculation as above, there exists C such that

inf
||~v||=1

∣∣∣∣Am−i,E(ω, i)(~v)
∣∣∣∣ ≥ C m

√
λ
m−i

,

This gives us that the cocycle is uniformly hyperbolic.

(→) Assume the cocycle (T,A) is uniformly hyperbolic, then there exists a λ > 1 and a C > 0 such

that for any ω ∈ Ω ∣∣∣∣AkE,ω∣∣∣∣ > Cλk

For any ordered set I (with |I| = k) consisting of the matrices from the set {Mi}, there exists

(ω, 0) ∈ Ω such that AmkE,(ω,0) =
∏
IMi. Therefore,

Cλmk < ||
∏
IMi|| ⇒ C(λm)k < ||

∏
IMi|| .

For a set of matrices to be uniformly hyperbolic, we technically need to express such an inequality

without a constant C. To address this, we note that for any
∏
iMi, there exists (ω, 0) ∈ Ω such
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that for any n ∈ Z+, (AnmkE,(ω,0)) = (
∏
IMi)

n, and we have

Cλnmk <
∣∣∣∣AnmkE,(ω,0)

∣∣∣∣ =
∣∣∣∣(∏

i

Mi

)n∣∣∣∣ ≤ ∣∣∣∣∏
i

Mi

∣∣∣∣n.
Taking the nth root,

C1/n(λm)k <
∣∣∣∣∏

i

Mi

∣∣∣∣,
and allowing n to be arbitrarily, we get large,

(λm)k ≤
∣∣∣∣∏

i

Mi

∣∣∣∣⇒ (λm/2)k <
∣∣∣∣∏

i

Mi

∣∣∣∣.
Therefore, the cocycle being uniformly hyperbolic from definition 8 implies the set of matrices is

uniformly hyperbolic from definition 3.
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Chapter 3

Hyperbolic Locus

3.1 Concepts

Before we can discuss the results, we will discuss the hyperbolic locus in SL(2,R)n, which allows

us to do the necessary calculations. As previously mentioned in the Introduction, much of the

material for this dissertation relies on the notion of uniform hyperbolicity with sets of SL(2,R)

matrices. Matrices in SL(2,R)2 can be classified as hyperbolic, parabolic, or elliptic.

• Matrix A ∈ SL(2,R)2 is hyperbolic if |tr(A)| > 2.

• Matrix A ∈ SL(2,R)2 is elliptic, if |tra(A)| < 2.

• Matrix A ∈ SL(2,R)2 parabolic, if tr(A) = 21.

Throughout this chapter, a set of matrices M will be assumed to be SL(2,R) matrices. If you

consider a set M to be uniformly hyperbolic, then the set of matrices are SL(2,R) and products

of the matrices will have a lower bound on the norm as in definition 3. Specifically, set of matrices

M is uniformly hyperbolic if there exists λ > 1 such that for any n and M1,M2, · · · ,Mn ∈ Mn,

we have ||M1 ·M2 · · ·Mn|| > λn. If {M1,M2, · · ·Mn} is uniformly hyperbolic, then all matrices Mi

are hyperbolic and all products of the matrices in the set are hyperbolic. The converse of this

statement is not necessarily true.

Proposition 2. Given a finite set of matrices M with n = |M|, alphabet A = {α1, α2, · · · , αn}

with unitary topology µ, and any bijection f : A → M, then one can define ergodic dynamical

system (AZ, T, µZ) and mapping g : AZ → SL(2,R) by g(ω) = f(ω0). Here the dynamical system is

1The identity matrix is sometimes, but not always, considered to be parabolic.
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all possible bi-infinite sequences of elements of the alphabet, T is the shift, and the topology is the

product topology. The SL(2,R) cocycle (ω,~v)→ (T (ω), g(ω) ·~v) is uniformly hyperbolic if and only

the M is a uniformly set of matrices.

Proof. If the set M is uniformly hyperbolic, then the cocycle being uniformly hyperbolic follows

from the definitions.

If the cocycle is uniformly hyperbolic, then there is λ > 1 and C > 0 such that for all m, ω ∈ ZZ,

||A(Tm−1(ω))·A(Tm−2(ω)) · · ·A(ω)|| > Cλm. We also have that for all k ∈ Z+, i ∈ {0, 1, · · · ,m−1}

and j ∈ {0, 1, · · · , k − 1}, there exists ζ ∈ AZ such that ζi+jm = ωi. Therefore, we get

∣∣∣∣∣∣[A(Tm−1(ω)) ·A(Tm−2(ω)) · · ·A(ω)]k
∣∣∣∣∣∣ =

∣∣∣∣∣∣A(T km−1(ζ)) ·A(T km−2(ζ)) · · ·A(ζ)
∣∣∣∣∣∣ > Cλkm.

By the inequality of products of norms of matrices, we get

∣∣∣∣∣∣A(Tm−1(ω)) ·A(Tm−2(ω)) · · ·A(ω)
∣∣∣∣∣∣k ≥ ∣∣∣∣∣∣[A(Tm−1(ω)) ·A(Tm−2(ω)) · · ·A(ω)]k

∣∣∣∣∣∣ > Cλkm

∣∣∣∣∣∣A(Tm−1(ω)) ·A(Tm−2(ω)) · · ·A(ω)
∣∣∣∣∣∣ > C1/kλm.

Because this holds for all positive k, we can let C = 1, and the result follows from definition.

When studying uniformly hyperbolic sets of matrices, we can examine what is the hyperbolic locus,

first defined in the Introduction in definition 4. The hyperbolic locus is an open set, and details on

the nature of the hyperbolic locus, see [1], [20]. For any n, the set Hn consists of infinitely many

disjoint, connected components. In [1], the geometry of H2 is defined.

Theorem 3. Theorem 3.2 of Avila-Bochi-Yoccoz

Any compact subset of SL(2,R)2 can contain only finitely many components of H2. None of the

connected components of H2 share boundaries, and if (A,B) ∈ ∂H2 then at least one of the condi-

tions holds:

• There is a sequence of matrices A and B such that the product is parabolic.

• uA = sB or vice versa.

If extended to SL(2,R)n for n ≥ 3, the boundary of Hn is more complicated. The details for why

it does not hold for higher dimension and what still holds is covered in section 3.5.

Define En ⊂ SL(2,R)n to be the set of pairs (A,B) such that there exists some sequence of A and

B where the product is elliptic. This set is also open.
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Theorem 4. Theorem 3.3 of Avila-Bochi-Yoccoz

In SL(2,R)2, we have ∂H2 = ∂E2.

In [7], this is shown to not be true in SL(2,R)n for n ≥ 3 via an example in SL(2,R)3. In

Example 5.1 of this paper, an example is provided of 3 hyperbolic transformations. These three

transformations would correspond to the set of SL(2,R) matrices

{
1√
2

2 1

0 1

 , 1√
3

1 0

0 3

 , 1√
5

5 −4

0 1

}.
The set of matrices is not uniformly hyperbolic, as there is no lower bound to the norm of the

products. Every product of these matrices is hyperbolic, however, so it not an element of H3 or E3.

If perturbed, the set may correspond to an element of E3, but it is not on the boundary of H3.
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3.2 Multicone

It is important to introduce the cone condition first, which gives an equivalent definition of uniformly

hyperbolic sets of SL(2,R) matrices in terms actions on the projective space RP1. Formally, the

projective space is defined as

RP1 = (R2 \ {0})/∼, where ~v ∼ ~w ⇔ ~v = α~w for some α 6= 0.

When studying RP1, there is an understood metric applied to the space.

Definition 11 (Cone Condition). Given a uniformly hyperbolic set M, there exists a proper open

subset C ⊂ RP1 such that C is a finite union of open intervals, and for all M ∈M, M(C) ⊂ Co.

This condition states that a setM is uniformly hyperbolic if and only if there is a nontrivial closed

subset of RP1 (finite number of intervals) over which all M ∈M are contracting over its interior.

Because the multicone is a subset of RP1, all of the relevant computations involve elements of

RP1. Given a hyperbolic matrix M , the stable eigenvector (denoted sM ) and unstable eigenvector

(denoted uM ) will be defined as elements of RP1. Given a finite setM⊂ SL(2,R), define SG(M) =

{M : M is a product of elements of M} to be the semigroup2. If a setM is uniformly hyperbolic,

then all of the elements of SG(M) are hyperbolic. The converse of this is not true.

Proposition 3. Given a multicone C of uniformly hyperbolicM, for all M ∈ SG(M), then uM ∈ C

and sM /∈ C.

Proof. For all M ∈ SG(M) and disjoint open intervals A 3 sM and B 3 uM , there exists nonneg-

ative integer n such that Mn(A) ⊃ RP1\B. Therefore for all x ∈ RP1\{uM}, there exists positive

integer n such that x ∈Mn(A) and so A cannot be a subset of the multicone.

For all M ∈ SG(M) and open sets C and B 3 uM , there exists positive integer n such that

Mn(C) ⊂ B. Therefore uM ∈ C.

By its definition, the multicone of a uniformly hyperbolic set M does not have to be unique. In

fact it is never unique. This brings us to the concept of a skeleton, which is unique.

Definition 12. Given a uniformly hyperbolic set M, define the skeleton as

SM = {uA : A ∈ SG(M)}
2a semigroup is a set that is closed under a binary, associative operation. In this case it is a set matrices that

contains any product of its elements
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Given a set M, define M−1 = {M : M−1 ∈ M}. Given a uniformly hyperbolic set M, denote

SM−1 as the skeleton of M−1.

Proposition 4. Assume M is uniformly hyperbolic. For all M ∈M, M(SM) ⊂ SM.

Proof. For all A ∈ SG(M) and M ∈ M, we have uA, u(MAn) ∈ SM for all positive n. Because M

is uniformly hyperbolic, any multicone C ⊃ {u(MAn)}n>0 which is contracting under A, therefore

for any open set B 3 uA there exists n > 0 such that An(C) ⊂ B. Under the metric topology of

RP1, we get the limits

An · u(MAn) −−−→
n→∞

uA

u(MAn) = MAn · u(MAn) −−−→
n→∞

M · uA.

Therefore, M · uA ∈ {uA : A ∈ SG(M)} = S

Proposition 5. Assume M is uniformly hyperbolic, then

SM = {M · uN : N ∈M, M ∈ SG(M)}

Proof. Let C be a cone forM. For all M ∈ SG(M) and N ∈M, uN ∈ C, sM 6∈ C, and so assuming

M 6= N we get

Mn · uN
n→∞−−−→ uM .

Therefore uM ∈ {M · uN : N ∈M, M ∈ SG(M)}, and so SM ⊂ {M · uN : N ∈M, M ∈ SG(M)}.

By Proposition 4, we have SM = {M · uN : N ∈M, M ∈ SG(M)}.

A simple a depiction of a skeleton is for the set M = {M1,M2} when it has a principal cone.
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A

B

Figure 3.1: Assuming the spectral radius of the matrices A and B are sufficiently large, the skeleton
of {A,B} is a Cantor set.

In this paper, RP1 will be depicted as circles, and the matrices will be depicted as arrows pointing

from stable eigenvectors to unstable eigenvectors. The top green line in figure 3.1 is simply an

interval bounded by uB, uA ∈ RP1. The green lines below are the interval when acted on by

products of A and B. Define the single interval as C0, and iteratively define Ci = B(Ci−1)∪A(Ci−1).

Assuming B(C0) ∩ A(C0) = ∅, we get
⋃
Ci = S and is a Cantor set. This is the skeleton and is

constructed similarly to how middle-α Cantor sets are constructed. if B(C0)∩A(C0) 6= ∅, then the

skeleton is the entire interval.

Proposition 6. Assuming M is uniformly hyperbolic and consists of more than one element. The

skeleton does not have any isolated points.

Proof. It is sufficient to show that for all C ∈ SG(M) we get that uC is not an isolated points. The

result then follows from the definition. For all C ∈ SG(M) there exists A ∈ M such that A 6= C.

Given uC ∈ S, we get uCnA 6= uC , and for some n > 0 we get

uCnA −−−→
n→∞

uC .

This result is similar to Proposition 3.3 from [11] and Proposition 4.5.
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Proposition 7. Given uniformly hyperbolic set M, define the family of sets {Ci} as all possible

multicones of M over RP1. The skeleton equals the set

SM =
⋂
Ci.

Proof. ⊆ This holds by definition 12 and Proposition 3.

⊇ Assume x /∈ SM, therefore there exists open interval B 3 x such that B ∩ S = ∅. Because M

is uniformly hyperbolic, so is M−1, so there exists a cone containing the stable eigenvectors and

none of the unstable eigenvectors, which we will define C−1. There are finitely many elements of

Mi ∈ SG(M) such that M−1
i (B) 6⊆ C−1. Therefore

⋃
iM

−1
i (B) ∪ C−1 is a cone is M−1. This gives

us that the complement of
[
(
⋃
M−1
i (B)) ∪ C−1

]
is a cone ofM, and x is not an element of this set,

making x /∈
⋂
Ci.

A skeleton is not a cone, however, as it is a closed set, and does not contain any intervals. This

brings us to the next couple concepts about minimal number. For any set M, there is a minimal

number n such that any multicone ofM consists of at least n open intervals. If the minimal number

is one, then a principal cone can be defined.

Definition 13. A principal cone of uniformly hyperbolic set M is a multicone which consists of a

single open interval.

Proposition 8. Given a uniformly hyperbolic set M, a principal cone can be defined if and only

if there exists a single open interval C ⊂ RP1 such that for all M ∈M, uM ∈ C and sM /∈ C.

Proof. To prove one direction, let C be a single open interval such that for all M ∈ M, uM ∈ C

and sM /∈ C. Therefore M(C) ( Co for all M . By the cone condition definition 11, C is a multicone.

Proving the other direction comes from Proposition 3.

The next concept is the minimal cone. As previously mentioned, a uniformly hyperbolic set M

does not have a unique multicone. Defining sets that can be uniquely defined allow some of the

calculations to be more straightforward.

Definition 14. Given uniformly hyperbolic set M with minimal number n and the set

{Ci : Ci is a multicone of M consisting of n intervals}. Define the minimal cone as C′M =
⋂
Ci.
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For any uniformly hyperbolic M, the minimal cone C′M is a closed set, and bounded by elements

of the skeleton SM. Additionally, the intersection of C′M and C′M−1 (the minimal cone of M−1) is

empty.

Proposition 9. Define F to be the set of closed sets in RP1, and Ψ : Hn → F the mapping of

uniformly hyperbolic sets to its minimal cone. Given any continuous P : [0, 1] → Hn, there exists

homeomorphism Σt : RP1 → RP1 continuous under t such that

Σ0 = id

Σt ◦Ψ ◦ P (0) = Ψ ◦ P (t)

Proof. This follows from the bounds of the minimal cone being elements of the skeleton, which

are defined by continuous mappings SL(2,R)n → RP1. For any given t, there are finite num-

ber of boundary points of the minimal cone which are defined by eigenvectors of elements of the

semigroup3. We can deduce that on any path P , the boundaries of the minimal cone change con-

tinuously. These continuous changes on the boundaries can be used to define the homeomorphisms

(not uniquely) on RP1, which have to be continuous under t.

Corollary 1. For any 2 elements X,Y ∈ Hn, if X,Y are elements of the same connected compo-

nent, then there is a homeomorphism on RP1 which maps the minimal cone of X to the minimal

cone of Y . Furthermore, there is a continuous path of homeomorphisms from the identity to the

mapping.

The intervals of C′M and C′M
−1 alternate over RP1. When referring to the minimal cone, there will

often be an implied ordering of the intervals made apparent. This means that we will define the

minimal cone as a union of disjoint intervals C′M =
⋃
i C′M,i. This ordering would create equivalence

classes among the minimal cones with the same minimal number. A simple example is in SL(2,R)2,

where the minimal number is two, but there are two different orderings, as shown in figures 3.3 and

3.4. These graphs

To expand on the concept of ordering, we need to impose a relation on RP1, the space over which

the cones are defined. Due to the nature of RP1, it is not completely straightforward to impose a

binary relation. One can consider the mapping Φ : RP1 → R ∪ ∞ by

x
1

 7→ x, and

1

0

 7→ ∞.
3There are actually a minimal number of eigenvectors on the boundary of the minimal cone, but the proof of this

requires more detail than what has currently been introduced.
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A straight inequality relation would not be useful, as −∞ < 0 < ∞ = −∞, making a < b for

all a, b ∈ RP1 by transitivity. We will depict the projective space RP1 as a circle in graphs, and

matrices will be represented by arrows pointing from the stable direction to the unstable direction

in RP1. Given m ≥ 3 and p1, . . . , pm ∈ RP1, we say that the ordered m-tuple (p1, p2, . . . , pm) is a

chain if pj lies in the arc going counterclockwise from pj−1 to pj+1 for all 1 ≤ j ≤ m (with addition

and subtraction of indices done modulo m to deal with the boundary points).

A

B

Figure 3.2: Projective space RP1 with matrices A and B depicted. In this diagram, (sA, uA, sB, uB)
is a chain.

In terms of the calculations, given any chain (p1, p2, · · · , pn), if

1

0

 /∈ {pi} then there exists m

such that Φpm ≤ Φpm+1 ≤ · · ·Φpn ≤ Φp1 ≤ Φp2 ≤ · · ·Φpm−1, and there are at least three distinct

points. If there exists pm =

1

0

 , then Φpm+1 ≤ · · ·Φpn ≤ Φp1 ≤ Φp2 ≤ · · ·Φpm−1. To avoid

trivial examples, let at least three of the points in any chain be distinct. We can further define

open and closed sets as ]pi, pj [= {p : the chain (pi, p, pj) holds & p 6= pi, pj} and [pi, pj ] = {p :

the chain (pi, p, pj) holds}.

Proposition 10. For any uniformly hyperbolicM, let n be the minimal number, C′M be the minimal

cone, and C′M
−1 be the minimal cone of M−1. There exists sets of unique, disjoint intervals {Mi}

and {Ni} such that C′M =
⋃
iMi and C′M

−1 =
⋃
Ni and for any ui ∈Mi ∩ S and si ∈ Ni ∩ S, we

get the chain of distinct points (u1, s1, u2, s2, · · · , un−1, sn−1, un, sn).

If a set M = {M1,M2, · · ·Mn} is uniformly hyperbolic with a principal cone, then there exists

p1, p2 ∈ RP1 such that for all i, uMi ∈ [p1, p2] and sMi ∈]p2, p1[.
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Definition 15. The orderings of the minimal cone are the different equivalence classes of elements

of Hn with the same minimal number. Given elements (X1, X2, · · ·Xn), (Y1, Y2, · · ·Yn) ∈ Hn with

minimal number m, define the minimal cone of X as
⋃
Mi,X and inverse cone as

⋃
Ni,X , and

similarly define the minimal cone of Y as
⋃
Mi,Y and inverse cone as

⋃
Ni,Y as defined in Propo-

sition 10. The equivalence X ∼ Y holds if and only if for any finite sequence (j1, j2, · · · jk) where

ji ∈ {1, 2, · · · , n} there exist the mappings

α((j1, j2, · · · , jk)) ∈ {1, 2, · · · ,m}

β((j1, j2, · · · , jk)) ∈ {1, 2, · · · ,m}

such that the following conditions hold.

• The unstable eigenvector of Xj1Xj2 · · ·Xjk is in Mα((j1,j2,··· ,jk)),X .

• The unstable eigenvector of Yj1Yj2 · · ·Yjk is in Mα((j1,j2,··· ,jk)),Y .

• The stable eigenvector of Xj1Xj2 · · ·Xjk is in Nβ((j1,j2,··· ,jk)),X .

• The stable eigenvector of Yj1Yj2 · · ·Yjk is in Nβ((j1,j2,··· ,jk)),Y .

Proposition 11. Given any connected component of Hn, if X,Y are elements of the connected

component, then their minimal cones have the same ordering.

The proof of this proposition closely resembles the proof of Corollary 1.
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3.3 Hyperbolic Locus Introduction

As stated in section 3.1, the hyperbolic locus Hn is the open set of n-tuples of SL(2,R) matrices

such that the corresponding set of matrices is uniformly hyperbolic. The first basic detail to note is

that for any n, Hn is an open set. This follows from 3.2, and is shown below. Given any uniformly

hyperbolic set of matrices, it remains uniformly hyperbolic under small perturbations. The set Hn

is a infinite number of connected components, and from Proposition 11, we have that the ordering

of the minimal cone is fixed in any connected component.

The geometry of Hn is largely unknown for n > 2, but for n = 2, the geometry is detailed

in [1]. In their paper, they pose several questions about the geometry of Hn, mostly centering

around the boundaries of Hn. Some of the questions are expanded on in Chapter 5. We do know

that Hn is comprised of infinitely many connected components, and the geometry of individual

components are fairly well understood. The first most basic detail to address, is that for any

n, there are principal components. A component is principal if its elements have a principal

cone. In SL(2,R)n there are 2n principal components. Over SL(2,R)n, there is the closed set

A = {(M1,M2, · · · ,Mn) : |tr(Mi)| ≤ 2 for some i}, and A ∩ Hn = ∅. The open set SL(2,R)n\A is

equal to 2n open disjoint sets, and in each of these disjoint sets, there is a single principal connected

component. One can use Propositions 11 and 9 to show this.

The first, and arguably most important detail to mention regarding the geometry of the connected

components, is that the connected components of Hn are semialgebraic sets.

Theorem 3.1 (Theorem 4.1 of [1]). Define X = (M1,M2, · · ·Mn) ∈ SL(2,R)n andM = {M1,M2, · · ·Mn}.

For all X ∈ ∂Hn, one of the following conditions holds.

(a) There exists ±id ∈ SG(M).

(b) There exists parabolic M ∈ SG(M).

(c) What is called a heteroclinic connection occurs, where M · uN = sP for some N,P ∈ SG(M)

and M ∈ SG(M) ∪ {Id}.

As a note, if condition (b) occurs for some M ∈ SG(M), then uM = sM . Condition (b) implies

condition (c), where M = Id. Condition (c) does not imply condition (b) however, even if M = Id4.

These conditions will be referred to as the boundary conditions a, b, or c in the calculations in the

next sections.
4Consider M = Id, spectral radius of N is 5, and spectral radius of P is 6.
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Theorem 3.2 (Corollary 4.5 of [1]). Every connected component of Hn is semialgebraic.

This shows us that every connected component of Hn is an open set for any n. We can then easily

deduce that Hn is an open set.

Thre are is a caveat to Theorem 3.1, which is mentioned below.

Proposition 12. Condition (a) from Theorem 3.1 can only occur on the boundary of a principal

component.

Proof. For all M = (M1,M2, · · · ,Mn) ∈ Hn, define M ∈ SG(M) to be a specific product of the

elements of {M1,M2, · · ·Mn}. Given a path P : [0, 1] → SL(2,R)n in the closure of a connected

non-principal component such that P ([0, 1)) is in the component and P (1) is on the boundary such

that at ±Id = M ∈ SG(M). Given interval C in the minimal cone C′P (t) such that uM ∈ C, there

exists n such that Mn(C′P (0)) ⊂ C. Because of continuity, Mn(C′P (t)) ⊂ C for all t < 1. Because this

is a nonprincipal chain, there exist matrices N,O ∈ SG(M) such that the chain (uM , sN , uO) holds

and (uM ,M
n · sN ,Mn · uO, sN , uO) holds. Because Mn → ±Id, as t↗ 1, M preserves orientation

and chains, and there exists t such that Mn · uO = sN and the path must cross over into the

boundary. Therefore the connected component cannot be a nonprincipal component.

Assume M = (M1,M2, · · · ,Mn) ∈ Hn is in a principal component, there exists an interval in RP1

which contains all of the unstable eigenvectors and non of the stable eigenvectors. Take any Mi,

and define a path in SL(2,R)n which only changes the trace (continuously) of Mi and ends at 2 (or

−2). So long as the trace is greater than 2 or less than −2, thenM is in the principal component.

When the matrix has a trace of ±2, then the element is no longer in the component and on the

boundary. Because the eigenvectors of MI are fixed on this path, then Mi = Id at the end of the

path.

Proposition 13. Assume a non-principal connected component C ⊂ Hn, a path P : [0, 1] →

SL(2,R)n such that P (t)|0≤t<1 ∈ C and P (1) ∈ ∂C, F mapping to the minimal cone C′ as defined

in Proposition 9, and F ′ mapping to the inverse minimal cone C′−1. The following limit is true

dis(F(P (t)),F ′(P (t)) −−→
t→1

0.

The distance between C′ and C′−1 goes to 0.

Proof. This follows as a Corollary from Theorem 3.1 and Proposition 9. Because condition (a) can

occur only on the boundary of principal components by Proposition 12, only conditions (b) and (c)
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need to be considered. Either condition (b) and (c) occur if and only if there exists elements x ∈ F

and y ∈ F ′ such that x = y. Because F and F ′ are subject to the continuous homomorphisms

defined in Proposition 9, we get dist(x, y)→ 0.

31



3.4 Hyperbolic Locus H2

In this section, we will describe the geometry of H2, pulling from [1]. This is the set of all 2-ples

(A,B) such that A,B ∈ SL(2,R) and {A,B} is uniformly hyperbolic.

First, we will consider the case where {A,B} is uniformly hyperbolic with a principal cone. Note

that if the set has a principal cone, then there is p1, p2 ∈ RP1 such that we have the chains

(p1, uA, p2, sA) and (p1, uB, p2, sB). Note that the sets {(A,B) ∈ SL(2,R) : tr(A) > 2} and

{(A,B) ∈ SL(2,R) : tr(A) < 2} are disjoint, which means there are 4 disjoint sets to consider.

(1) {(A,B) ∈ SL(2,R) : tr(A), tr(B) > 2}

(2) {(A,B) ∈ SL(2,R) : tr(A),−tr(B) > 2}

(3) {(A,B) ∈ SL(2,R) : −tr(A), tr(B) > 2}

(4) {(A,B) ∈ SL(2,R) : −tr(A),−tr(B) > 2}

Proposition 3.3. In H2 there are exactly 4 disjoint connected components with a principal cone.

Proof. We can define the 4 connected components of H2 as the following.

(1) Hp,1 = {(A,B) ∈ SL(2,R) : tr(A) > 2, tr(B) > 2 : {A,B} is uniformly hyperbolic}

(2) Hp,2 = {(A,B) ∈ SL(2,R) : tr(A) > 2, tr(B) < 2 : {A,B} is uniformly hyperbolic}

(3) Hp,3 = {(A,B) ∈ SL(2,R) : tr(A) < 2, tr(B) > 2 : {A,B} is uniformly hyperbolic}

(4) Hp,4 = {(A,B) ∈ SL(2,R) : tr(A) < 2, tr(B) < 2 : {A,B} is uniformly hyperbolic}

To show that the 4 sets are connected, given any 2 elements X,Y ∈ Hp,i one can define a path

P [0, 1] → SL(2,R)2 such that P (0) = X, P (1) = Y, and for all t, P (t) = (P1(t), P2(t)) consists

of hyperbolic matrices which have a principal cone. The matrices A,B can be uniquely defined

by the eigenvectors and trace so long as they are hyperbolic, making the path simpler to define.

Because the trace of matrices are the same sign, then P1(t) and P2(t) can remain hyperbolic over

0 ≤ t ≤ 1. So long as any of the unstable eigenvectors of P1(t) and P2(t) do not overlap with the

stable eigenvectors of P1(t) and P2(t), then P (t) ∈ Hp,i.

The minimal cone is either the interval [uA, uB] or [uB, uA], and the boundary is defined in [1]. The

connected components are semialgebraic, and on the boundaries A = Id, B = Id, A is parabolic,

B is parabolic, uA = sB, or uB = sA.
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The more interesting cases are when the there is not a principal cone. We will begin with what [1]

define as Hid.

Hid = {(A,B) : |tr(A)|, |tr(B)|, |tr(AB)| > 2, & tr(A)tr(B)tr(AB) < 0}

This consists of the following 8 connected components.

• {(A,B) ∈ SL(2,R) : tr(A), tr(B),−tr(AB) > 2 & there is the chain (uA, sB, uB, sA)}

• {(A,B) ∈ SL(2,R) : tr(A), tr(B),−tr(AB) > 2 & there is the chain (sA, uB, sB, uA)}

• {(A,B) ∈ SL(2,R) : tr(A),−tr(B), tr(AB) > 2 & there is the chain (uA, sB, uB, sA)}

• {(A,B) ∈ SL(2,R) : tr(A),−tr(B), tr(AB) > 2 & there is the chain (sA, uB, sB, uA)}

• {(A,B) ∈ SL(2,R) : −tr(A), tr(B), tr(AB) > 2 & there is the chain (uA, sB, uB, sA)}

• {(A,B) ∈ SL(2,R) : −tr(A), tr(B), tr(AB) > 2 & there is the chain (sA, uB, sB, uA)}

• {(A,B) ∈ SL(2,R) : −tr(A),−tr(B),−tr(AB) > 2 & there is the chain (uA, sB, uB, sA)}

• {(A,B) ∈ SL(2,R) : −tr(A),−tr(B),−tr(AB) > 2 & there is the chain (sA, uB, sB, uA)}

For all (A,B) ∈ Hid, the minimal cone consists of two intervals. The depictions of these sets can

be one of two following figures.

B

A

AB

BA

Figure 3.3: Hid with chain (uA, sB, uB, sA). The minimal cone is the set [uA, uAB]∪ [uB, uBA], and
the inverse minimal cone is [sBA, sA] ∪ [sAB, sB].
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B

A

AB

BA

Figure 3.4: Hid with chain (uA, sA, uB, sB). The minimal cone is the set [uAB, uB] ∪ [uBA, uA].

Note that B ·uAB = BAB ·uAB = BA ·(BuAB). Therefore B ·uAB is an eigenvector of BA. Defining

~uAB ∈ R2 with unit norm, |(BA)nB · ~uAB| = |B(AB)n · ~uAB| > |B · ~uAB|, and so we get that B ·uAB

is the unstable eigenvector of BA. Through similar calculations we get

B · sAB = sBA,

B · uAB = uBA,

A · sBA = sAB,

A · sBA = sAB.

The following Proposition is a corollary of a Lemma from [1], but is rephrased to fit the wording

of this thesis.

Proposition 14. Assume (A,B) ∈ ∂Hid, then

• The matrix AB is parabolic and AB 6= ±Id.

• The matrix A is parabolic and A 6= ±Id.

• The matrix B is parabolic and B 6= ±Id.

This follows from Proposition 4.15 from [1].
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Next we should consider the monoid5, < F > generated by the diffeomorphisms RP1 → RP1

F+ : (A,B) 7→ (A,AB)

and

F− : (A,B) 7→ (BA,B).

The elements of this monoid can actually generate all of the nonprinicipal components. The way

[1] defined the geometry of H2 is by the following Theorem.

Theorem 3.4 (3.1 from Avila-Bochi-Yoccoz). Given any connected component C ⊂ H2, which is

not a principal component, then there exists F ∈< F > such that F(C) ⊂ Hid.

More explicitly, for every nonprincipal connected component, there exists F ∈< F > such that F−1

is a continuous bijection from calHid to the connected component. Using this, we can explicitly

define the boundaries as F−1 acting on the boundaries ofHid. This detail will give us that connected

components cannot share boundary points, and that any compact subset of SL(2,R)2 can intersect

only finitely many connected components. This leads to the question posed in Chapter 5.

Among the simplest examples is the set F−1
− Hid. Technically this is 8 different connected compo-

nents, but the diagrams are the same modified versions of figure 3.4 and fig 3.3 The minimal cone

of this set is 3 intervals rather than 2.

5a monoid is a semigroup that contains an identity element.
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B

BA

BAB

B2A

A

Figure 3.5: Diffeomorphism F−1
− on Hid with chain (uA, sB, uB, sA). The minimal cone is the set

[uBA, uBAB] ∪ [uAB, uAB2 ] ∪ [uB, uB2A].

Notice that the above figure 3.5 is almost exactly the same as figure 3.3, except A is replaced with

BA and a new curve is drawn to depict A. To more accurately depict the cone, the figure 3.6 is

provided below.

A
AB

BAB

AB2

B

Figure 3.6: Zoomed in detail of minimal cone in RP1 of F−1
− on Hid with chain (uA, sB, uB, sA).
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3.5 Hyperbolic Locus Geometry

The previous section 3.4 outlined the geometry of H2, in which there are countably many connected

components of H2, and all of the components have unique boundaries. These details are not known

to be true or not in Hn for n ≥ 3, and answering these questions can shed some light on information

related to such topics as Schrödinger cocycles. Several open questions about the geometry will be

addressed in the chapter 5.

In H2, the boundaries of all of the connected components take on the form are explicitly detailed

in the previous section. Notice that from 3.1, condition (a) only occurs on the boundary of the

principal connected component in Hn via Proposition 12, and heteronclinic connection (condition

(c)) does not occur in H2 at all.

The next topic to cover is what a heteroclinic connection is and under what conditions can it

occur. Simply put, it occurs on the boundary of non-principal components in Hn for n ≥ 3. We

will consider a connected component C ∈ H3 containing (A,B,C) with the following minimal cone

C′ and reverse minimal cone C′−1.

C′ = U1 ∪ U2

C′−1 = V1 ∪ V2

uA, uC ∈ U1 uB ∈ U2

sA ∈ V1 sB, sC ∈ V2

We can use the example that is depicted in the diagram below an the chain (U1, V2, U2, V1) holds.

The boundaries of the intervals can be calculated. If U1 = [p, q] for points p and q, thenB·[p, q] ⊂ U2.

Due to the location of the eigenvectors of B, we get the chain (uB, Bp,Bq) This allows us to solve

for U2 = [uB, Bq]. Similarly, if V2 = [r, t], then A−1[r, t] ⊂ V1 with the chain (A−1r,A−1t, sA). We

can deduce that V1 = [A−1r, sA].

Note that we do not specifically know the ordering of uC and uA in the interval U1, as well as the

ordering of sC and sB in V2, so this means there can be different possibilities for all of the bounds.

We can get the two chains of elements that are in the interval U1.

(p, CuB, CBq, uC , q)
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A

B

C

Figure 3.7: Projective space RP1 of the set {A,B,C}. The cone of {A,B,C} and {A−1, B−1, C−1}
are depicted.

(p, uA, AuB, ABq, q)

The possible definitions for U1 are listed below.

U1 =



[C · uB, uAB] or

[uA, uC ]

[C · uB, uC ]

[uA, uAB]

If the point q = uAB, then the bound of U2 is uBA. If the point q = uC , then the bound of U2

is B · uC . Via similar calculations, we can deduced the bounds of V2, with which the bounds of V1

can be calculated.

V2 =



[sC , sB] or

[sC , C
−1 · sA]

[sAB, sB]

[sAB, C
−1 · sA]

This data can be summarized in the diagram below.
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A

B

C

uBuBA

B · uC

sA

A−1 · sC
sBA

sC
sAB

C−1 · sA
sB

C · uB
uA

uAB
uC

Figure 3.8: Projective space RP1 of the set {A,B,C}. The cone of {A,B,C} and {A−1, B−1, C−1}
are depicted.

Using Theorem 3.1, we can recognize the possible boundaries. Because condition (a) cannot be

a possible boundary, and via Proposition 9 and Proposition 13, we can see that the boundary

conditions are lsited below.

(a) sA = C · uB

(b) sA = uA ie A becomes parabolic

(c) uAB = sC

(d) uAB = sAB ie AB and BA become parabolic

(e) uC = sC ie C becomes parabolic

(f) uC = sAB

(g) sB = uB ie B becomes parabolic

If we construct a path, fixing A and B, then the path can only meet conditions (a), (c), (e), or (f)

are possible. Part of what makes a heteroclinic connection interesting is what the geometry of Hn

in a neighborhood of a heteroclinic connection.
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Proposition 15 (Proposition 4.18 from ABY). There exists path in SL(2,R)3 such that the fol-

lowing points hold.

• For t < 0, we get (A,B,C(t)) ∈ H

• At t = 0, we get (A,B,C(0)) ∈ ∂H and C(0) · uB = sA.

• There exists sequence ti ↘ 0 such that (A,B,C(ti)) /∈ H.

• There exists sequence si ↘ 0 such that (A,B,C(ti)) ∈ H.

Note that in the above example, C · uB ∈ S and is not an isolated point in S. The elements of the

set {uCBn} are also in the skeleton, and we get the limit

uCBn −−−→
n→∞

C · uB.

We have from Proposition 6 that C · uB is not an isolated point, And as C is perturbed, such that

scenario (a) occurs from the list above, then on can create a shuffling (of sorts) of the skeleton and

the inverse skeleton (specifically intervals V1 and U1) such that there can be an infinite different

number of orderings and minimal numbers. This can occur at the sequence of values in {ti}

mentioned in Proposition 15.

40



Chapter 4

Results

4.1 Anderson-Bernoulli Model with a Period of 2

The results will be broken into different section involving the different results. The first result

will center around the periodic Anderson-Bernoulli model with period 2. This is Theorem 2,

stating that there is an explicit bound on the number of intervals in the spectrum of the periodic

Anderson-Bernoulli model if the period is 2, which is proved in [19]. The second section addresses

the periodic Anderson-Bernoulli model with period 4. This provides the information for Theorem

1, stating that there is not a bound on the number of intervals in the spectrum of the model is

unbounded in general [11].

4.1.1 Notation and Basic Details

In this section, the periodic Anderson-Bernoulli model with a background potential of period 2 will

be address. The potential will be denoted as

P (j) = v · xj +


a j ≡ 0 mod n

b j ≡ 1 mod n

where {xj} is a sequence of 0′s and 1′s and v > 0. Via Lemma 2.3, we have that the Schrödinger

operator is uniformly hyperbolic if and only if the following set is.

{E − v − a −1

1 0

 ·
E − v − b −1

1 0

 ,
E − v − a −1

1 0

 ·
E − b −1

1 0

 ,
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E − a −1

1 0

 ·
E − v − b −1

1 0

 ,
E − a −1

1 0

 ·
E − b −1

1 0

}
E

Without loss of generality, we can assume a < b and shift the variable E by a. This gives us

{E − v −1

1 0

 ·
E − v − c −1

1 0

 ,
E − v −1

1 0

 ·
E − c −1

1 0

 ,
E −1

1 0

 ·
E − v − c −1

1 0

 ,
E −1

1 0

 ·
E − c −1

1 0

}
E

.

where c = b− a > 0. Multiplying these matrices together, we get the following set.

{
A1 =

(E − v)(E − v − c)− 1 v − E

E − v − c −1

 , A2 =

(E − v)(E − c)− 1 v − E

E − c −1

 ,

A3 =

E(E − v − c)− 1 −E

E − v − c −1

 , A4 =

E(E − c)− 1 −E

E − c −1

}
E

.1

Because these are SL(2,R) matrices, their eigenvectors and eigenvalues can be pretty easily eval-

uated. Here, the eigenvectors are in RP1, defined in Section 2.2.2. We can define the mapping

RP1 → R ∪∞ where

x
y

 7→ x
y and

1

0

 7→ ∞.
Proposition 16. Given an SL(2,R) matrix A =

A11 A12

A21 A22

, then the spectral radius ρA =

|tr(a)|+
√
tr(A)2−4

2 . If tr(A) > 2 and A22 6= 0, then

uA =
−A22 + ρA

A21
and sA =

−A22 + ρ−1
A

A21
.

If tr(A) < −2 and A22 6= 0, then

uA =
−A22 − ρA

A21
and

−A22 − ρ−1
A

A21
.

Using Proposition 16, we can graph out the eigenvectors in RP1 pretty easily.

1For the rest of this section, these matrices will be referred to as {Ai} with the appropriate index.
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Figure 4.1: Eigenvectors of the first matrix in the set. Here c = 2 and v = 0. For the first matrix
in the set, changing v shifts the graph horizontally.

Note that if v = 0, then all four matrices would be equal to each other, and these would be the

eigenvalues for all four matrices.

Figure 4.2: Eigenvectors of all four matrices. Here c = 2 and v = 1.

One can see that as v increase, the curves will change continuously, and this is true for 0 ≤ v < c.

It just so happens that for every possible period c and v, if all four matrices are hyperbolic, then

their can be a principal cone that can be defined.

4.1.2 Main Propositions

This section will provide the main Lemmas necessary for the proving Theorem 2.

Lemma 4.1. Given distinct transfer matrices A,B,C, if the matrices AB and AC are hyperbolic,

then they cannot share an eigenvector. Similarly, BA and CA cannot share an eigenvector if they

are hyperbolic.

Proof.
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• To prove the first statement, given matrices AB and AC, assume they share an eigenvector

~v. Then

AB~v = ξ1AC~v = ξ2~v

for constants ξ1 and ξ2. Therefore

B~v = ξ1C~v ⇒ (B − ξ1C)~v = 0.

Because B and C are transfer matrices we can directly compute the determinant of linear

combinations as det(B−ξ1C) = (1−ξ1)2. For this to be zero, ξ1 = 1. This makes (B−C)~v =B11 − C11 0

0 0

 · ~v = 0 in which case ~v ∝

0

1

. For this to be an eigenvalue of AB, we get

the equation

AB ·

0

1

 = A ·

−1

0

 = ξ2

0

1

 ,

which gives the equations A =

0 −1

1 0

 and ξ2 = −1. This makes AB not hyperbolic.

• To prove the second statement, assume matrices BA and CA which share an eigenvector ~v.

BA~v = ξ1CA~v = ξ2~v

Therefore,

B(A~v) = ξ1C(A~v)⇒ (B − ξ1C)(A~v) = 0.

This gives the equation A~v ∝

0

1

, which implies the equation ξ2~v = B (A~v) ∝ B

0

1

 ∝−1

0

. Given the statement A~v ∝

0

1

 , then the equations A =

0 −1

1 0

 , and ξ2 = ξ1 = 1

are true, making the product parabolic and proves the lemma.

Corollary 2. Assuming all the matrices in {Ai} are hyperbolic, if two elements share an eigenvec-

tor, then the pair is A1 and A4 or the pair A2 and A3.

44



Lemma 4.2. The set of matrices

{
AC,AD,BC,BD :

A,B,C,D are transfer matrices and

A11 ≥ B11 and C11 ≥ D11

}

is uniformly hyperbolic if and only if the matrices AC,AD,BC, & BD are individually hyperbolic.

If the set is uniformly hyperbolic, all the matrices are hyperbolic. In the regions where all the

matrices are all hyperbolic, they turn out to form a principal cone. The previous lemma and

corollary were used to prove this lemma in [19].

Lemma 4.3. Over E, there are at most 5 intervals over which every matrix of the set {Ai} is

hyperbolic.

The paper [19] actually addresses a slightly more complicated model. Rather than looking at the

Anderson model with a background potential of period 2, the paper addresses a model with a

potential defined by periodic Bernoulli distributions, ie the variables in {P (n)} are not iid, but

{P (2n)} are iid and {P (2n+1)} are iid. The material in this thesis, however, addresses the slightly

simpler model, such that the variables are iid, but there is a periodic shift.

The set {E : Ai is hyperbolic for all i} is the intersection of open intervals defined by

(4.1)
4⋂
i=1

{E : |tr(Ai)| > 2},

and this lemma can be proven by explicitly calculating the intervals over E where the statement

|tr(Ai)| > 2 is true for all i. These intervals depend on the 3 possible orderings of v and c. These

orderings are listed below, and within the list are sublists, defining the intervals that make up the

set {E : Ai is hyperbolic for all i}. Here, we are assuming c, v ≥ 0, as mentioned in section 4.1.1.

1. If we assume v ≤ c, then the list of intervals making up {E : Ai is hyperbolic for all i} are

below.

a) E < 0 and E(E − c) > 4

b) 0 < E < v and (E − v)(E − c) > 4

c) v < E < c

d) c < E < c+ v and (E − v)(E − c) > 4
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e) E > c+ v and (E − v)(E − v − c) > 4

2. If c < v, then {E : Ai is hyperbolic for all i} is the union of intervals listed below.

a) E < 0 and E(E − c) > 4

b) 0 < E < c and (E − v)(E − c) > 4

c) c < E < v and E(E − c) > 4 and (E − v)(E − v − c) > 4

d) v < E < c+ v and (E − v)(E − c) > 4

e) E > c+ v and (E − v)(E − v − c) > 4

This leads us to the conclusion of Theorem 2.

4.1.3 The Explicit Gaps in the Spectrum

We can conclude that for all of the intervals listed as scenarios a to e, the 4 matrices A1, A2, A3,&A4

are hyperbolic and the set is uniformly hyperbolic. The spectrum therefore consists of at most 4

intervals, which are the complement of the intervals in E over which the set of matrices is uniformly

hyperbolic. Below the intervals are explicitly calculated.

Proposition 17. The complement of the spectrum of HV from theorem 1 can be explicitly calcu-

lated, depending on the ordering of v, and c, where v, c ≥ 0.

1. If we assume v ≤ c, then

R\σ(HV ) = {E : tr(Ai) > 2 & E < 0} ∪ {E : tr(A4) < −2 & tr(A2) > 2}∪

{E : tr(A2), tr(A4) < −2} ∪ {E : tr(A4), tr(A3) > 2} ∪ {E : tr(Ai) > 2 & E > 0}

=
(
−∞, 1

2

(
c−

√
c2 + 16

))
∪
(

0,
1

2

(
v + c−

√
(v + c)2 − 4(c · v − 4)

))
∪ (v, c)∪

(1

2

(
v + c+

√
(v + c)2 − 4(cv − 4)

)
, c+ v

)
∪

(1

2

(
v + v + c+

√
(v + v + c)2 − 4(v(v + c)− 4)),∞

)
2. If we assume c < v, then then gaps in the spectrum consist of the intervals

R\σ(HV ) =
(
−∞, 1

2

(
c−

√
c2 + 16

))
∪
(

0,
1

2

(
v + c−

√
(v + c)2 − 4(cv − 4)

))
∪
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(1

2

(
c+

√
c2 + 16

)
,
1

2

(
2v + c−

√
(2v + c)2 − 4v(v + c) + 16

))
∪

(1

2

(
v + c+

√
(v + c)2 − 4(cv − 4)

)
, c+ v

)
∪

(1

2

(
2v + c+

√
(2v + c)2 − 4(v(v + c)− 4)),∞

)
Note that some of these intervals can overlap, so the actual spectrum can be less than 4 intervals.

It is possible to be only 1 interval.

We can conclude that Hν −E has a bounded inverse if and only if E is not in one of these, and the

spectrum consists of the complement of these 5 intervals. This follows from lemma 2.3 and 2.1 by

direct computation.
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4.2 Anderson-Bernoulli Model with a Period of 4

In this section, we will address the periodic Anderson-Bernoulli model with a background potential

of period 4, specifically this is Theorem 1. As described in Lemma 2.3, there is a corresponding set

of matrices that is uniformly hyperbolic if and only if the the corresponding Schrödinger cocycle is

uniformly hyperbolic. We can define R→ SL(2,R)n as the corresponding set of matrices dependent

on the energy E. Based on Lemma 4.1.2, we can see that if the period is 2, then the corresponding

path M(E) only passes through principal components of the hyperbolic locus. As pointed out in

section 4.1 the E 7→ M(E) ∈ SL(2,R)4. We can further bound the number of times it will be pass

through the boundary.

This property is not true if the period is 4, and one can define the parameters of the potential

such that the corresponding path R→ SL(2,R)n has the same property as the path in Proposition

15. Because it is period 4, the corresponding set has 24 = 16 elements, ie E 7→ M ∈ SL(2,R)16.

To prove this is possible for such a specific set of matrices, a more explicit Theorem about the

geometry of H16 and paths in SL(2,R)16 has to be defined. This will be the next section in this

chapter.

4.2.1 Geometric Theorem

Theorem 4.4. Assume I = (E0−δ, E0) is an open interval and A,B,C : I → SL(2,R) are analytic

functions of E ∈ I with continuous extension to I such that AE, BE, and CE are hyperbolic for

every E ∈ I and the following conditions hold:

(i) {AE , BE} is uniformly hyperbolic for every E ∈ I and the following sequence is a chain in

RP1:

(C2
EuBE

, sAE
, uAE

, uCE
, sCE

, sBE
, uBE

).

48



A

B

C

C2 · uB

Figure 4.3: RP1 with {A,B,C} and C2 · uB depicted for E ∈ I.

(ii) At E = E0, we have C2
EuBE

= sAE
.

(iii) For all E ∈ I, one has d
dE (C2

EuBE
)− d

dE (sAE
) > 0.

(iv) There exist r, p ∈ RP1 such that for E = E0

(uBE
, BEr,BEAECEp, r, p, CEuBE

, uCE
, AECEp, sCE

, sBE
)

is a chain, CEr, CEp /∈ {uA, sA}, and the cross-ratios

(4.2) α = [uAE
, CEr, CEp, sAE

] β = [uBE
, r, BEAECEp, sBE

],

satisfy the inequality (α− 1)(β − 1) > 1 at E = E0.
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A

B

C

C2 · uB

p
r

BAC · p Br

C · uB

C · p

AC · p

Figure 4.4: RP1 with points depicted for E ∈ (E0 − δ, E0).

(v) At E0, we have

(4.3)
log sprAE0

log sprBE0

/∈ Q

where spr denotes the spectral radius.

Then we have the following:

(a) There exists a sequence of positive numbers sn → 0 such that for every n, {AE0−sn , BE0−sn , CE0−sn}

is not uniformly hyperbolic.

(b) There exists a sequence of positive numbers tn → 0 such that for every n, {AE0−tn , BE0−tn , CE0−tn}

is uniformly hyperbolic.

4.2.2 Propositions

This subsection provides a few propositions useful for the proof of Theorem 4.4.

Proposition 4.5. Suppose A and B are hyperbolic and that (uA, uB, sA) and (uA, uB, sB) are

chains. Then, for all n ∈ N,

(uA, uAn+1B, uAnB, · · · , uAB, uBA, · · · , uBnA, uBn+1A, uB)
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is a chain. Moreover,

lim
n→∞

uBnA = uB

Proof. The assumptions imply that the set {A,B} is uniformly hyperbolic, since there is a principal

multicone, and thus every C ∈ SG({A,B}) is hyperbolic. Moreover, we see that [uA, uB] contains

uC and (uB, uA) contains sC for every C ∈ SG({A,B}).

Begin by noticing that

BuAB = BABuAB = BA(BuAB),

which implies that BuAB is one of the eigendirections of BA. However, it cannot be the stable

direction due to uniform hyperbolicity of {A,B}; indeed BuAB = sBA would be a heteroclinic

connection, so we deduce BuAB = uBA. Thus,

(uA, uAB, uBA, uB)

is a chain. Inductively, we see that

(uA, uAn+1B, uAnB, uAB, uBA, uBnA, uBn+1A, uB)

is a chain for every n ∈ N, which proves the first half of the proposition. The second half follows

by noting that (BnAuA, uBnA, B
nAuB, uB) is a chain and that BnuA → uB as n→∞.

Next, we need the following proposition, which clarifies how a cross ratio in which two of the

directions are the invariant directions of a hyperbolic matrix, computes suitable asymptotic lengths

of intervals. To formulate this, let us denote by dist the standard metric on RP1, that is

(4.4) dist(v, w) = min{|ṽ − w̃| : pRP1(ṽ) = v, pRP1(w̃) = w}.

Equivalently, dist(v, w) = ∠(v, w), the smallest nonnegative angle between v, w ∈ RP1. As usual,

if B We denote by Leb the standard Lebesgue measure on RP1, which can be obtained by pushing

forward Lebesgue measure on [0, π) with the map pRP1 .

Proposition 4.6. Assume A ∈ SL(2,R) is hyperbolic, u = uA, s = sA, x, and y are distinct points
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of RP1 such that (u, x, y, s) is a chain. Then

(4.5) |[u, x, y, s]− 1| = lim
n→∞

Leb(A−nI)

dist(s,A−nI)
,

where I = [x, y].

Proof. By assumption, we have s, u /∈ I. Since the cross-ratio is invariant under the Möbius action

of A, we get [u, x, y, s] = [u,A−nx,A−ny, s] for all n, which in turn yields

(4.6) [u, x, y, s]− 1 =
(Φu− Φs)(ΦA−ny − ΦA−nx)

(ΦA−nx− Φu)(ΦA−ny − Φs)

for every n. Consider first the case Φs 6= ∞. Since x 6= u, we have A−nx → s as n → ∞, and

therefore one has

lim
n→∞

∣∣∣∣ Φu− Φs

ΦA−nx− Φu

∣∣∣∣ = 1,

so we focus on the second factors in the numerator and denominator. For large enough n, one has

|ΦA−ny − ΦA−nx| = |Φ′(t1)||A−nI|,

|ΦA−ny − Φs| = |Φ′(t2)|dist(s,A−nI)

for some t1 ∈ (A−nx,A−ny) and t2 ∈ (A−ny, s) by the mean value theorem. Thus, sending n→∞,

we see that tj → s and therefore the conclusion follows in this case.

If Φs =∞, we can replace A by A1 = JAJ∗ where J is rotation by π/2 and use

[u, x, y, s] = [Ju, Jx, Jy, Js] = [uA1 , Jx, Jy, sA1 ]

together with the observation

Leb(A−n1 [Jx, Jy]) = Leb(JA−n[x, y]) = Leb(A−nI)

to conclude.

Using this, we can deal with the cross ratios from Theorem 4.4.

Proposition 4.7. Assume I is an open interval, A : I → SL(2,R), is smooth and A(t) is hyperbolic
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for every t ∈ I. If p : I → RP1 is smooth and p(t) 6= sA(t) for all t, then

(4.7)
d

dt
A(t)np(t) −−−→

n→∞

d

dt
uA(t),

uniformly on compact subsets of I.

Proof. Let u(t) = uA(t) and s(t) = sA(t) denote the unstable and stable directions of A(t), which

are associated with eigenvalues λ(t) and 1/λ(t) respectively. Let ~u, ~s, and ~p be smooth choices of

unit vectors in u, s, and p respectively, write

~p(t) = c+(t)~u(t) + c−(t)~s(t)

for C1 coefficients c+, c− and note that the assumptions imply c+ 6= 0. Using

An~p = c+λ
n~u+ c−λ

−1~s,

and c+ 6= 0, the desired convergence follows.

Corollary 3. Assume I is an open interval, A : I → SL(2,R), is smooth and A(t) is hyperbolic

for every t ∈ I. If p : I → RP1 is smooth and p(t) 6= uA(t) for all t, then

(4.8)
d

dt
A(t)−np(t) −−−→

n→∞

d

dt
sA(t),

uniformly on compact subsets of I.

Proof. This follows by applying Proposition 4.7 to the inverse.

Corollary 4. Assume I is an open interval, A,B : I → SL(2,R) are smooth and A(t) is hyperbolic

for every t ∈ I. If p : I → RP1 is smooth and p(t) 6= sA(t) for all t, then

(4.9)
d

dt
B(t)A(t)np(t) −−−→

n→∞

d

dt
B(t)uA(t),

uniformly on compact subsets of I.

Proof. This follows from Proposition 4.5 and Corollary 3.
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4.2.3 Proof of Theorem 4.4

This subsection will provide the proof for Theorem 4.4.

Proof Theorem 4.4. (a). By assumption (i), {A,B} does not enjoy a principal multicone. Conse-

quently, there exists matrix D ∈ SG({A,B}) such that the eigenvectors satisfy the following chain

or its reverse.

(sB, uB, uD, sD, sA, uA).

This comes from the proof of [1, Theorem 3.1]. As defined in the proof, Hid is the union of the

free components of the hyperbolic locus in SL(2,R)2 such that for any (A0, B0) ∈ Hid, {A0, B0} is

uniformly hyperbolic and either the following chain or its reverse holds

(uA0 , uA0B0 , sA0B0 , sB0 , uB0 , uB0A0 , sB0A0 , sA0).

For all connected components H, besides the principal components, there exists some F in the

monoid generated by F+, F− as defined in [1] such that F (H) is a free component, that is,

F ({A,B}) = {A0, B0} ∈ Hid and A0, B0, A0B0 ∈ SG({A,B}). For any A,B and D ∈ SG({A,B})

if we define F−1
± ({A,B}) = {F−1

± A,F−1
± B}, if the following chain or its reverse is satisfied

(sB, uB, uD, sD, sA, uA),

then there exists D′ ∈ SG({F−1
± A,F−1

± B}) such that the following chain or its reverse holds

(sF−1
± B, uF−1

± B, uD′ , sD′ , sF−1
± A, uF−1

± A).

The matrix D is chosen independently of E.

By Proposition 4.5,

lim
n→∞

sDAn = sA

and

(sD, sDA, sDA2 , · · · , sDAn , sA).

forms a chain for any n. By assumption (i), (uBE
, C2

EuBE
, sAE

) is a chain for each E ∈ (E0−δ, E0).
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From assumptions (ii) and (iii), we get

lim
E→E−0

C2
EuB ↗ sA,

and so for sufficiently large n there exists sn such that

C2
E0−sn · uBE0−sn

= sDE0−snA
n
E0−sn

.

Therefore, for E = E0 − sn, a heteroclinic connection occurs, so {AE , BE , CE} is not uniformly

hyperbolic, proving part (a) of Theorem 4.4.

Proof Theorem 4.4. (b). We will prove this part by showing that for any ε > 0 there exists some

E ∈ (E0 − ε, E0) for which {AE , BE , CE} admits an invariant multicone (and hence is uniformly

hyperbolic).

Fix ε > 0 small and n,m ∈ N large, and define intervals by

Ik = [Bk · r,BkAC · p], Jl = [A−lCr,A−lCp], 0 < k < n, and 0 < l ≤ m.

The points r, p ∈ RP1 are defined in (iv). It will also be convenient to denote

I∗n = [uB, B
nAC · p].

Note that Ik = Bk · [r,AC · p] and Jl = A−l[Cr,Cp].
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A

B

C

I1

In−1 = [Bn−1AC · p,Bn−1 · r]

I∗n

J1 = [A−1Cr,A−1Cp]
Jm

Cr
Cp

p
r

BAC · p Br

Figure 4.5: RP1 with intervals in the sets {Ik} and {Jl} depicted for E ∈ (E0 − δ, E0).

The constants n and m need to be defined such that for all Ik and Jl will be part of of the multicone

for {AE , BE , CE} for some E ∈ (E0 − ε, E0). Define n to be the maximal value such that for all

k ≤ n, (sA, C
2Bk · r, uA). Define m such that and |C2I∗n| < |Jm|. By assumptions (ii) and (iii),

(uB, C
2uB, sA), so we can deduce (uA, C

2BnAC · p, sB) and the arrangement of the intervals Ik as

depicted in 4.5.

A C

C2 · I∗n

C2 · In−1

C2 · In−2

C2 · I1

Figure 4.6: Depicting the ordering of the intervals C2 · Ik and C2 · I∗n

Also define the sets

X = [r, p], X∗ = [Cr,Cp],

Y = (
⋃
k

C · Ik), Y ∗ = C · I∗n,

& V = [min{C2Bn−1 · r, uA}, AC · p].
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A

B

C

I1

In−1 = [Bn−1AC · p,Bn−1 · r]

I∗n

Y ∪ Y ∗

X∗ = [Cr,Cp]

J1 = [A−1Cr,A−1Cp]

V

Jm

X = [r, p]

Figure 4.7: RP1 with intervals X, X∗, Y, Y ∗, and V .

We can now define some of the mappings of the intervals defined above.

A ·
[
V ∪X ∪X∗ ∪ Y ∪ Y ∗ ∪

( n−1⋃
k=1

Ik

)
∪ [r, p] ∪ I∗n

]
⊆ V & A · Jl = Jl−1 for l > 1

A(J1) = X∗

The matrix A maps all the set
⋃
Jl into

⋃
Jl ∪X∗ and all the other intervals into V .

B ·
[
V ∪X ∪ Y ∪ Y ∗ ∪

(⋃
l

Jl

)
∪X∗

]
⊆ I1 & B · Ik = Ik+1 for 1 ≤ k < n− 1

B · In−1 ∪ I∗n ⊆ I∗n

The matrix B maps the set
⋃
Ik ∪ I∗n into itself, and all the other intervals into I1.

C ·
[
V ∪

(⋃
l

Jl

)
∪ Y

]
⊆ V & C ·

(⋃
k

Ik

)
= Y

C ·X = X∗ C · I∗n = Y ∗

This shows that the union of the intervals is closed under the actions of A and B. To prove it

is closed under C, we need to show that for the given n,m, we have C2 · I∗n = C · Y ∗ ⊆ Jm and
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C ·X∗ ⊆ V. If this is true, then the multicone can be defined by the intervals above and the set is

uniformly hyperbolic.

AJ1
Jm

C2 · I∗n

C2 · In−1

V

Figure 4.8: Mappings that will allow the intervals to be closed under C

To show C2 · I∗n ⊆ Jm and C ·X∗ ⊆ V for some E ∈ (E0− ε, E0), we will prove the inequalities and

relation for E.

(4.10) |C2 · I∗n| < |Jm|

(4.11) dist(C2 · I∗n, C2 · In−1) > dist(sa, Jm)

(4.12) The chain (sA, C
2Bn−1AC · p, uC) holds.

The first inequality 4.10 is true by the definition of m in terms on n. To prove the second inequality

4.11, we first use Proposition 4.6 and (iv), which gives

dist(C2 · I∗n, C2 · In−1)/|C2 · I∗n| = |[Bn+1AC · p,Bn−1 · r]|/|C2 · I∗n| −−−→n→∞
β − 1

and |Jm|/|[A−mC · p, sA]| = |Jm|/dist(Jm, sA)→ α− 1.

By assumption (iv), for sufficiently large n,

dist(C2 · I∗n, C2 · In−1) ≈ dist(Jm, sA)
|C2 · I∗n| · (α− 1)(β − 1)

|Jm|

>
|C2 · I∗n| · dist(Jm, sA)

|Jm|
.

(4.13)

The approximation is due to (α− 1)(β− 1) being a limit as n,m→∞ and the inequality is due to
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(α−1)(β−1) being continuous under E and (α−1)(β−1) > 1 at E0, so for some E ∈ (E0−ε, E0),

(α− 1)(β − 1) > 1 by Assumption (iv).

Last, we need to prove 4.12. Assuming ε is sufficiently small, for E ∈ (E0−ε, E0), due to assumption

(iii) and Corollary 4, as well as assumption (v), the set of distinct values in

{ |C2
E · (I∗n)E |
|(Jm)E |

}
m,n,E

is infinitely large and the values are bounded.

For some 0 < δ, there exists m,n,E such that

(4.14) 1 >
|C2
E · (I∗n)E |
|(Jm)E |

>
1 + δ

(α− 1)(β − 1)

∣∣∣
E=E0

.

Because of continuity, we can define δ such that the inequality holds for all E ∈ (E0 − ε, E0). This

leads us to the conclusion that there exists m,n,E such that

(4.15) dist(C2 · I∗n, C2 · In−1) > dist(Jm, sA)

by (4.13) and (4.14) and the definition of m. The inequality |C2 · I∗n| < |Jm| and (4.15) Gives us

that C2 · I∗n = C · Y ∗ ⊆ Jm and (sA, C
2Bn−1AC · p, uC).

So for sufficiently large n, there exists m such that the set

V
⋃

(∪ml=1Jl)
⋃

(∪n−1
k=1Ik)

⋃
I∗n
⋃
X
⋃
X∗
⋃
Y
⋃
Y ∗

is closed under the actions A,B, and C. Because the intervals defined are closed intervals, and

a multicone consists of open intervals, the multicone can be defined as a union of open intervals

by expanding I∗n and Y ∗ and shrinking the other intervals by small enough δi > 0 such that the

mappings are still closed but now act on an open set that maps to its interior.

4.2.4 Main Result

The main result is that if the Anderson model is given a background periodic potential, then the

spectrum can consist of infinitely many intervals. Specifically this is Theorem 1. Given a Bernoulli

distribution (with any nontrivial probability p) that defines the sequence of iid variables {xj}Z such
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that P (xj = 1) = p and P (xj = 0) = 1− p, then define the potential {P (j)} such that

(4.16) P (j) = 9.99 · xj +



0 j ≡ 0 mod 4

0.9 j ≡ 1 mod 4

−9.7 j ≡ 2 mod 4

2 j ≡ n− 1 mod 4

.

Using lemma 2.3, the cocycle is uniformly hyperbolic if and only if the set

{E − 2− ξ3 −1

1 0

 ·
E + 9.7− ξ2 −1

1 0

 ·
E − 0.9− ξ1 −1

1 0

 ·
E − ξ0 −1

1 0

}
ξi∈{0,9.99}

is uniformly hyperbolic. Given the following three matrices,

{
A =

E − 2.0 −1

1 0

 ·
E − 0.29 −1

1 0

 ·
E − 10.89 −1

1 0

 ·
E −1

1 0

 ,
B =

E − 2.0 −1

1 0

 ·
E − 0.29 −1

1 0

 ·
E − 0.9 −1

1 0

 ·
E − 9.99 −1

1 0


C =

E − 2.0 −1

1 0

 ·
E − 0.29 −1

1 0

 ·
E − 0.9 −1

1 0

 ·
E −1

1 0

}

which is a subset of the set fo matrices and E0 defined by the equation C2
E0
· uAE0

= sBE0
, which

can be approximated at E0 ≈ −0.6005, theorem 4.4 can be applied. Generally, a set is uniformly

hyperbolic implies that any subset is uniformly hyperbolic. The converse is not necessarily true.

For this specific set, one can show that there is an open ball around E0, such that if E is in the

ball, then the set of matrices is uniformly hyperbolic if and only if the set of matrices {AE , BE , CE}

is uniformly hyperbolic. The proof for this detail is in [11], but essentially points out what the

cone can be. What this means is that the they hyperbolic locus H16 has infinitely many connected

components which can converge to a point. The set of matrices (paramaterized by E) correspond

to a path in SL(2,R)16 which pass through the components.
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4.3 Dense Interior

This last section provides the conceptual explanation for the why the spectrum has a dense interior.2

This is equivalent to the following Theorem.

Theorem 4.8. If H is an Anderson model with a background potential of period n. The spectrum

can be defined as

(4.17) σas(H) =
⋃

V is periodic

σ(HV ),

where the union ranges over all periodic realizations of period divisible by n.

Conceptually, for any periodic realization (of period divisible by n), the period will occur sequen-

tially m times (for any m), with probability 1. Given a period V of length n · k which occurs

sequentially m times, there occurs elements in ϕ ∈ l2(Z) such that H(ϕ) can be approximated by

HV (ϕ). This points to the spectrum σ(HV ) being a subset of σ(H). A similar argument can be

made going in the reverse direction such that for all E ∈ σ(H), there exists V such that E ∈ σ(HV ).

Potential alternate proofs involving this rely on addressing unanswered questions of the geometry

of Hn and relies on question (3) in Section 5.

2Special acknowledgement goes to Jake Fillman for providing the proof.
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Chapter 5

Conjectures & Open Problems

5.1 Preliminaries

The main conjectures posed and researched have been posed by Avila, Bochi, and Yoccoz in [1] or

directly relate to the periodic Anderson-Bernoulli operator. The first three questions are posed in

that paper.

(1) Are the boundaries of the connected components of Hn disjoint?

(2) Is the union of the boundaries of the components equal to the boundary of Hn?

(3) If γ : [a, b]→ SL(2,R)n is an analytic curve, does the set γ−1(∂Hn) necessarily have countably

many components?

The paper [1] shows these to be true in SL(2,R)2, but it is unknown for higher dimension. Details

and insight will be provided in the section. I conjecture that this is true for all n. The solution to

question 3 depends on question 2. These three questions can provide insight into the topology of

the spectrum of a variety of Schrödinger operators. An alternate proof for the spectrum having a

dense interior relies on answering questions 2 and 3. Additionally, we pose the following question

in regards to the periodic Anderson-Bernoulli model.

(4) Can the periodic Anderson-Bernoulli model have an infinite number of gaps in the spectrum

with a background potential of period 3?

Details, progress, and relevant information are provided throughout this section.
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5.2 Periodic Anderson-Bernoulli Model

As we have shown in section 4, we have explicitly calculated the almost sure spectrum of the

periodic Anderson-Bernoulli model if the period is 2 explicitly. On the other hand, if the period is

4 then there may be an infinite number of intervals in the almost sure spectrum. Results for period

3 are suspiciously absent.

Given the case for period 2 with period (α, β), the set

ME =

{E − λξ10− α −1

1 0

 ·
E − λξ2 − β −1

1 0

 : α, β, λ are fixed

}
ξi∈{0,1}

is uniformly hyperbolic if and only E is not in the almost sure spectrum. If we examine the

corresponding path P (E) ∈ SL(2,R)4, then E ∈ σAS if and only if P (E) /∈ H4. The calculations in

section 4 show that for any α and β, P (E) intersects only the principal component, and because

the path is algebraic, it intersects the component in finitely many intervals. Explicitly, condition

(b) from Theorem 3.1 occurs.

Given the case for period 4 with period (α, β, γ, δ), there exists values α0, β0, γ0, and δ0 such that

the corresponding path P (E) ∈ SL(2,R)16 can intersect the boundary ∂H16 at a point where a

heteroclinic connection occurs. Assuming the answer to question (2) is true, then this condition is

necessary for there to be an infinite number of gaps in the spectrum.

Considering the case where the period is 3, this condition still seems to be possible, but whether or

not the respective path can pass through an infinite number of components can occur is still not

certain.

Consider the following continuous mappings

Ψ : SL(2,R)n → SL(2,R)3

where (A,B,C, · · · , N) 7→ (Q,R, S)

and

Ψ′ : SL(2,R)n → SL(2,R)2

where (A,B,C, · · · , N) 7→ (R,S).

where Q,R, S ∈ SG({A,B,C, · · · , N}). Note that for any path P (E) ∈ SL(2,R)n, if P (E0) is on
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the boundary of a connected component, then there exists P,Q,R ∈ SG such that Ψ(P (E0)) is on

the boundary of H3. If conditions (a) or (b) hold (or condition (c) where some stable eigenvector

equals some unstable eigenvector) then there exists R,S ∈ SG such that Ψ′(P (E0)) is on the

boundary of H2. Because we have a better understanding of the geometry of H2, this can help us

better understand the geometry of Hn along any path.

It is worth noting that in SL(2,R)2, all of the components of H2 are closed, disjoint, and disjoint

from the closure of the union of all the other components. As pointed out in subsection 3.5, this is

not true in H3. This give us the following Proposition.

Proposition 5.1. For any path P (E) ∈ SL(2,R)n, if conditions (a) or (b) from Theorem 3.1 hold

or there exists matrices M,N ∈ SG such that uM = sN at E = E0, then there exists small enough

δ such that one of the conditions holds true.

• P (E)|E∈(E0,E0+δ) /∈ Hn and P (E)|E∈(E0−δ,E0) ∈ Hn

• P (E)|E∈(E0−δ,E0) /∈ Hn and P (E)|E∈(E0,E0+δ) ∈ Hn

• P (E)|(E0−δ,E0+δ)\E0
is in a single connected component of Hn.

• P (E)|(E0−δ,E0+δ)\E0
/∈ Hn.

Proof. For any path P (E) ∈ SL(2,R)n, if P (E) ∈ Hn, then Ψ′(P (E)) ∈ H2 for all possible Ψ′. If

any of those conditions hold, then there is Ψ′ and E0 such that Ψ′(P (E0)) ∈ ∂H2.

It is worth noting that the example in subsection 3.5 of a path of finite length passing through

an infinite number of components occurs in SL(2,R)3. This is the lowest dimension where it is

possible, and is the lowest dimension such that a heteroclinic connection occurs on a non-principal

component. Working under the assumption that the answer to question (2) is true, then for a path

of finite length to pass through an infinite number of components, then it must pass through a

point where a heteroclinic connection occurs.
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5.3 Geometry of Hyperbolic locus

Questions (1), (2), and (3) all center around the geometry of the hyperbolic locus. As made evident

previously, the geometry of the hyperbolic locus can shed some light on the spectrum of various

Schrödinger operators via Johnson’s Theorem. One can construct Schrödinger operators which

have a spectrum dependent on Hn for some specific n (such as the periodic Anderson-Bernoulli

model). Further research into the geometry may shed light on a wider array of operators, however.

An easy example is the Thue-Morse operator. With details of this operator in [5] and [16], on

can see that the spectrum is actually a Cantor set. The Thue-Morse sequence is the set {Vn}n≥0

such that Vn is the sum of the digits of n in binary modulo 2, ie the first couple of terms are

0, 1, 1, 0, 1, 0, 0, 1, ... Given a coupling constant λ the Thue-Morse Hamiltonian is the operator H

such that

H(ϕ)n = ϕn+1 + ϕn−1 + λ · Vnϕn

The paper [16] provides a lower bound on the Hausdorff dimension of the spectrum. For a great deal

of insight on Hausdorff dimension and fractional dimensions, one can see [17]. The spectrum can

be defined, not by a path intersecting Hn, but a sequence of paths in SL(2,R)2 and the intersection

of the values in the path that do not intersect H2.

Remember that any hyperbolic set M has a minimal cone C′M =
⋃
Ci where {Ci} is a family of

closed intervals. Every minimal cone has a combination that identifies a chain of the the elements

of the cone. Conceptually, one can see that for any n, if 2 elements X,Y ∈ Hn belong to the same

connected component, then there is a path that connects X,Y and is restricted to the connected

component. From Proposition 9 and 10 one can see that there is a minimal cone with a single

combination for all the elements along the path. If two elements have minimal cones that are not

homeomorphisms of each other (or the combinations are different) then they must be in different

connected components. Via [1], we will provide some propositions and Theorems to shed light on

this.

To begin, it goes by definition that if the set of M is uniformly hyperbolic, then for any set

N ⊂ SG(M), we have N is uniformly hyperbolic.

Proposition 5.2. Given any M which is a set of SL(2,R) matrices, there exists nonunique,

nontrivial1 sets N ⊂ SG(M) such that N is uniformly hyperbolic if and only if M is uniformly

hyperbolic.

1In this case M⊂ SG(M) would be considered the trivial example.
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Proof. Denote M = {Mi}. For any positive integer n > 1, denote Mn = {Mi1 ·Mi2 · · ·Min : Mi ∈

M}. If a set N is not uniformly hyperbolic, then for all λ > 1 there exists positive integer m and

M ∈ Nm such that ||M || < λm.

Given set M, assume Mn is not uniformly hyperbolic. Given any λ > 1, then λn > 1, and

there exists m > 1 and M ∈ (Mn)m such that ||M || > (λn)m. We have matrix M ∈ Mnm and

||M || > λnm, so M is not uniformly hyperbolic.

Assume M is not uniformly hyperbolic, then for all λ > 1 there exists positive integer m and

M ∈Mm such that ||M || < λm. Therefore ||Mn|| ≤ ||M ||n < λmn.

This proposition allows us to define mappings SL(2,R)n → SL(2,R)m such that any element M

maps to an element of SG(M) where Hn maps to Hm and Hcn maps to Hcm.

Before introduction the next proposition, it would be useful to define a condition.

Definition 16. We call a uniformly hyperbolic set M prime if for all M ∈ M, there exists a

unique Ci such that M(C′) ⊂ Ci.

That is all of the matrices map the entire minimal cone to a single interval. We arrive at the

corollary of Propositions 9 and 10.

Corollary 5.3. Given a connected component of Hn, all of the elements are prime or none of the

elements are prime.

We also have the following useful properties of prime hyperbolic sets.

Proposition 18. Assume M is a prime, uniformly hyperbolic set. Then for all M ∈ M, if the

spectral radius of M is increased by any number, the set is still uniformly hyperbolic.

Proof. If the spectral radius of any M ∈M is increased, then the corresponding interval in the min-

imal cone may decrease in length, but all of the elements ofM will still map to their corresponding

intervals. Therefore a cone can still be defined.

As a note, Let P (t) is a path in SL(2,R)n such that P (0) is a prime, uniformly hyperbolic ele-

ment, and as t increases, all the eigenvectors are fixed but the spectral radius of elements are not

decreasing. We get C′P (t) ⊂ C
′
P (0).

Proposition 19. Given a connected component C ⊂ Hn with prime elements and any X ∈ C. All

of the prime elements with matching combinatorics for the minimal cone of X are also elements of

C.

66



Proof. Define two prime, uniformly hyperbolic sets M and N , such that the combinatorics of the

minimal cones are the same. Further define them as the sets

M = {M1,M2, · · ·Mn}

N = {N1, N2, · · · , Nn}.

For all i, increase the spectral radius of the elements such that Ni and Mi are conjugates of each

other. From there, one can define a series of conjugations of the elements of M (keeping the set

uniformly hyperbolic) such that the minimal cones will overlap, and for all i, the eigenvectors of

Ni and Mi will be equal.

The next proposition uses this concept. Given any connected component of Hn, there is a unique

minimal cone (up to homeomorphism) with a respective combination. For each calM in the con-

nected component and interval Ci in the minimal cone C′M, there exists a subset Ni ⊂ SG(M) such

that for all N ∈ Ni, we have N(C′M) ⊂ Ci. There is also a finite subset N ′i ⊂ Ni such that for all

N ∈ Ni, there exists N ′ ∈ N ′i and M ∈ SG(M) such that N ′M = N.

Proposition 20. Any connected component with prime elements do not share boundaries with any

other connected components.

The proof of this proposition is pretty straightforward. From [1], one can see that if two connected

components share a boundary, then the minimal cones of the connected components share the same

combinatorics. If two elements are prime and share the same combinatorics, then a path can be

constructed, restricted to the hyperbolic locus, which will connect the two elements.

Proposition 21. Given any connected component U ⊂ Hn with element M ∈ U and minimal

cone C′M =
⋃
Ci, there exists the set N ′ ⊂ SG(M) (where |N ′| = k). The continuous mapping

SL(2,R)n → SL(2,R)k with M 7→ N ′ (mapping an element to an element of its semigroup) will

map U to a connected component of Hk. The boundary ∂U maps to the boundary of the connected

component of Hk, and the connected component it maps to will consist of prime elements.

To prove this, it is enough to show that there is a N ′ ⊂ SG(M) such that N satisfies Proposition

5.2 and is prime. The simplest example is if M ∈ SL(2,R)n then let N ′ be all possible products

of k matrices in M where k is sufficiently large.
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An approach to question (1) from [1] is to take this mapping and look to define a series of mappings

which could shed a light on whether the boundary of any connected component can be shared with

another connected component. If two connected components shared a boundary, then this mapping

would map both of those connected components in Hn to the same connected component in Hnk .

This approach can shed some light on answering the questions posed in [1] and the geometry of the

hyperbolic locus.

68



Chapter 6

Addendum: Spectral Theory

In this section, we will discuss a couple concepts involving spectral theory. When studying the

spectrum of an operator, we care about two details.

(1) The topology of the spectrum

(2) The decomposition of the spectrum

Point 1 is the subject of interest in this work. Additional information on this material can be found

in [9]. When looking at an operator, does the spectrum consist of a finite number of intervals?

Does it have a fractional Hausdorff dimension? Does it have a dense interior? As previously

mentioned, the Anderson model has a finite number of intervals in the spectrum, as does the

periodic Schrödinger operator. This detail is what makes this outcome unique and unexpected.

Given the work in [2], if the Anderson model is given a background ergodic potential defined by a

dynamical system with a continuous phase space, then the spectrum would still consist of a finite

number of intervals. If the spectrum has Cantor set properties, such as the Thue-Morse operator [5]

and the Almost Mathieu operator [3], then there are gap labeling Theorems researched extensively

by Bellisard [6] [14] [4] can be examined.

Point 2 can be best most simply described by the RAGE Theorem. The spectrum can be de-

composed into different types, each of which have their own properties. For instance, the periodic

Anderson-Bernoulli model has an almost sure pure-point spectrum, as proven in [12]. This in-

formation pulls from [8]. As mentioned previously, we have the spectrum of operator H as the

set

σ(H) = {E : H − E does not have a bounded inverse},
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but we also have the resolvent set

ρ(H) = {E : H − E has a bounded inverse}.

Note that an operator has a norm

||H|| = lim sup
||phi||=1

||Hϕ||
||ϕ||

and H is said to be bounded if the norm is bounded. If H is a finite dimensional operator, then the

spectrum is simply the set of eigenvalues. If the operator is infinite dimensional, then the spectrum

can be more complicated. As an example, let L be the shift operator on l2(Z), ie (Lϕ)n = ϕn−1.

There are no eigenvectors, but 1 is in the spectrum. We have a couple concepts and tools that will

help us understand and study the spectrum of operators.

6.1 Spectral Measures

Let A be a hermitian operator l2(Z)→ l2(Z) such that (ϕ,Aϕ) = (Aϕ,ϕ) and σA be the spectrum

of A. Because A is hermitian, then the spectrum is a subset of R. Furthermore, let B(C) be the

borel set of measurable sets of C. Consider that a measure can be seen as a function µ : B(C)→ C)

where for any function f : C→ C which can be used to define an integral

∫
C
fdµ ∈ C.

A spectral measure can be seen as a mapping ν : B(C)→ l2∗(Z) such that

∫
C
dν ∈ l2∗(Z).

Theorem 5 (Spectral Theorem). There exists a spectral measure νA supported on σA such that

A =

∫
C
dνA.

With this being said, we can apply polynomials g on A to get

g(A) =

∫
C
g dνA.

70



There are two additional ways that the integral for the Spectral Theorem can be written. Sometimes

this is written such that νA maps purely to projections and the integral is written as A =
∫
C t dνA(t),

to better illustrate how the mapping ν is defined. The other way the integral can be written puts

focus on the individual ϕ ∈ l2(Z). For all ϕ ∈ l2(Z) there exists measure νϕ such that

(ϕ,Aϕ) = (ϕ,

∫
C
dνA · ϕ) =

∫
C
dνϕ.

6.2 Spectral Decomposition

When studying the spectrum, one can decompose the spectrum into different sets.

• the pure point piece

• the absolutely continuous piece

• the singular continuous piece

For given A and any ϕ we have νϕ = νϕ,pp + νϕ,ac + νϕ,sc. The pure point piece (νϕ,pp) is supported

on a countable set. The absolutely continuous piece (νϕ,ac) has a weight of zero on sets of measure

zero. The singular continuous piece (νϕ,ac) is supported on a set of measure zero but has a weight

of zero on individual points. This decomposition can be extended to decomposing l2(Z) into a

direct sum of sets with elements that have only a pure point piece or absolutely continuous piece

or singular continuous piece. Using the notation from [8], we have

l2(Z)pp = {ϕ ∈ l2(Z) : νϕ = νϕ,pp}

l2(Z)ac = {ϕ ∈ l2(Z) : νϕ = νϕ,ac}

l2(Z)sc = {ϕ ∈ l2(Z) : νϕ = νϕ,sc}.

And we get l2 as the direct sum of these sets,

l2(Z) = l2(Z)pp ⊕ l2(Z)ac ⊕ l2(Z)sc.

We can also get a decomposition of the spectrum. If Ppp is the projection on l2(Z)pp, then A · Ppp

has a spectrum denoted σpp. Similarly, there are projections Pac and Psc and sets σac and σsc.
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6.3 RAGE Theorem

We can see [8] for more details on the RAGE Theorem. The Theorem as stated below pulls directly

from Dr Damanik’s work.

Theorem 6.1. (a) ϕ ∈ l2(Z)pp ⇔ for every ε > 0, there exists N > 0 such that

∑
|n|≥N

|(δn, e−itAϕ)|2 < ε for all t ∈ R

(b) ϕ ∈ l2(Z)ab ∪ l2(Z)sc ⇔ for every N > 0

lim
T→∞

1

2T

∫ T

−T

∑
|n|≤N

|(δn, e−itAϕ)|2dt = 0

(c) ϕ ∈ l2(Z)ac ⇒ for every N > 0

lim
|t|→∞

∑
|n|≤N

|(δn, e−itAϕ)|2 = 0

72



Bibliography



Bibliography

[1] Artur Avila, Jairo Bochi, and Jean-Christophe Yoccoz, Uniformly hyperbolic finite-valued

SL(2,R)-cocycles, Comment. Math. Helv. 85 (2010), no. 4, 813–884. MR 2718140

[2] Artur Avila, David Damanik, and Anton Gorodetski, The spectrum of Schrödinger operators

with randomly perturbed ergodic potentials, Geom. Funct. Anal. 33 (2023), no. 2, 364–375. MR

4578461

[3] Artur Avila and Svetlana Jitomirskaya, The Ten Martini Problem, Ann. of Math. (2) 170

(2009), no. 1, 303–342. MR 2521117

[4] Jean Bellissard, Schrödinger operators with almost periodic potemntial: An overview, Math-

ematical Problems in Theoretical Physics (Berlin, Heidelberg) (R. Schrader, R. Seiler, and

D. A. Uhlenbrock, eds.), Springer Berlin Heidelberg, 1982, pp. 356–363.

[5] , Spectral properties of schrödinger’s operator with a thue-morse potential, Number

Theory and Physics (Berlin, Heidelberg) (Jean-Marc Luck, Pierre Moussa, and Michel Wald-

schmidt, eds.), Springer Berlin Heidelberg, 1990, pp. 140–150.

[6] , Gap labelling theorems for schrödinger operators, From Number Theory to Physics

(1992).

[7] Argyrios Christodoulou, Parameter Spaces of Locally Constant Cocycles, International Math-

ematics Research Notices 2022 (2021), no. 17, 13590–13628.

[8] David Damanik, Schrödinger operators with dynamically defined potentials, Ergodic Theory

Dynam. Systems 37 (2017), no. 6, 1681–1764. MR 3681983

[9] David Damanik and Anton Gorodetski, Must the spectrum of a random schrödinger operator

contain an interval?, Communications in Mathematical Physics 393 (2022), 1583–1613.

74



[10] David Damanik, Anton Gorodetski, and William Yessen, The Fibonacci Hamiltonian, Invent.

Math. 206 (2016), no. 3, 629–692. MR 3573970

[11] Jake Fillman and William Wood, Periodic anderson-bernoulli model with infinitely many spec-

tral gaps, preprint (2024).

[12] Anton Gorodetski and Victor Kleptsyn, Non-stationary anderson localization, preprint (2024).

[13] Russell A. Johnson, Exponential dichotomy, rotation number, and linear differential operators

with bounded coefficients, J. Differential Equations 61 (1986), no. 1, 54–78. MR 818861

[14] Jerry Kaminker and Ian Putnam, A proof of the gap labeling conjecture, Michigan Mathemat-

ical Journal 51 (2002).

[15] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems,

Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1995.

[16] Qing-Hui Liu and Yan-Hui Qu, On the hausdorff dimension of the spectrum of the thue–morse

hamiltonian, Communications in Mathematical Physics 338 (2014).

[17] Benoit B. Mandelbrot, The fractal geometry of nature, Times Books, 1982.

[18] C. Rojas-Molina, Random schrödinger operators and anderson localization in aperiodic media,

Reviews in Mathematical Physics 33 (2020), no. 01, 2060010.

[19] William Wood, On the spectrum of the periodic Anderson-Bernoulli model, J. Math. Phys. 63

(2022), no. 10, Paper No. 102705, 16. MR 4497771

[20] Jean-Christophe Yoccoz, Some questions and remarks about SL(2,R) cocycles, Modern dy-

namical systems and applications, Cambridge Univ. Press, Cambridge, 2004, pp. 447–458. MR

2093316

[21] Zhenghe Zhang, Uniform hyperbolicity and its relation with spectral analysis of 1D discrete

Schrödinger operators, J. Spectr. Theory 10 (2020), no. 4, 1471–1517. MR 4192758

75


	List of Figures
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Outline
	Statement of Results
	Organization of Thesis

	Random Schrödinger Operators
	Basic Details
	Schrödinger Cocycle
	Introduction
	Transfer Matrices

	Periodic Anderson-Bernoulli Model

	Hyperbolic Locus
	Concepts
	Multicone
	Hyperbolic Locus Introduction
	Hyperbolic Locus H2
	Hyperbolic Locus Geometry

	Results
	Anderson-Bernoulli Model with a Period of 2
	Notation and Basic Details
	Main Propositions
	The Explicit Gaps in the Spectrum

	Anderson-Bernoulli Model with a Period of 4
	Geometric Theorem
	Propositions
	Proof of Theorem 4.4
	Main Result

	Dense Interior

	Conjectures & Open Problems
	Preliminaries
	Periodic Anderson-Bernoulli Model
	Geometry of Hyperbolic locus

	Addendum: Spectral Theory
	Spectral Measures
	Spectral Decomposition
	RAGE Theorem

	Bibliography 0.5



