
UC Irvine
ICS Technical Reports

Title
The BIF user interface and programming manual

Permalink
https://escholarship.org/uc/item/8kn9s3wr

Author
Hadley, Tedd

Publication Date
1990-07-27

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kn9s3wr
https://escholarship.org
http://www.cdlib.org/

·Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.}

The BIF User Interface and Programming Manual
_.----

Tedd Hadley

Technical Report #90-07
July 27, 1990

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-7063

hadley@ics.uci.edu

i:

Abstract

This report is in two parts. The first part describes XBIF, the graphical/tabular editor for BIF
(Behavioral Intermediate Format). The second part describes a library of routines that make up a
programming interface to the BIF language.

Contents

1 XBIF 1

1.1 The Top Level Window 1

1.2 The Table Window . . . 2

2 The BIF Programming Library 6

2.1. Introduction 6

2.2 Compilation and Linking Details 6

2.3 Text File Input . 6

2.4 Text File Output 7

2.5 The Data Structure 7

2.6 Stateldent . 8

2.7 Tableldent . 11

2.8 Condition . 12

2.9 IfExpression . 13

2.10 Event 14

2.11 Timing. 16

2.12 AssignDelay . 17

2.13 Variable 18

2.14 Assign 21

2.15 Action 22

2.16 NextStateEvent . 24

2.17 Triplet . 26

2.18 Entry 28

2.19 ConcurrentEntry 29

2.20 Table. 30

2.21 File 33

2.22 Expression . 33

3 References 38

List of Figures

1 Top Level Window 1

2 The Top Level Menu 2

3 The Table Window 3

4 Table Syntax Error Example 4

5 The BIF Data Structure (1 of 2) 9

6 The BIF Data Structure (2 of 2) 10

7 The Query Operator Types ... 36

ii

1 XBIF

XBIF is a graphical/tabular interface to the Behavioral Intermediate Format (BIF). (BIF is de­
scribed in detail in [DuHG89] and [DuHG90].) XBIF exploits the tabular nature of BIF by provid­
ing labeled forms to capture the various fields of a BIF table. XBIF performs syntax checking at
runtime and provides visual feedback as to the location of errors.

XBIF operates directly and solely on syntactically correct BIF textual files.

XBIF is written under the Xll Window System using the Athena widget libary and the Xcu
widget set from Cornell University.

1.1 The Top Level Window

XBIF is started initially with the command xbif [BIF file]. Figure 1 shows a screen dump of a
sample XBIF description at the top level. The window lists all of the BIF tables in the design
description in the lower portion of the display. Each entry has a button which can be clicked to
open that tables complete description.

Figure 1: Top Level Window

The Commands button can be selected to display a menu of functions. Figure 2 shows the top
level menu.

Save writes out the BIF description in textual format.

Restore reads in the original file (if it exists) discarding all changes that were made.

Add Table appends a new table entry to the existing description.

BIF-to-VHDL executes the BIF-to-VHDL ([HaCD90]) translator on the current description.

1

Figure 2: The Top Level Menu

1.2 The Table Window

When a button is clicked in an entry in the top level XBIF window the table corresponding to that
entry is displayed in a new window. Figure 3 shows a table window.

The Close button closes the table window. Next to it, the table name is displayed in a user
editable text box. The Commands button can be selected to display a menu of functions local to
this table.

Check Syntax performs a syntax check on the entire table. If an error is detected it will be
highlighted where it occurs. The second state of the table shown in Figure 3, load_creg, has
two actions, GREG= CBUS and DONE= 0. If an extra comma is added to the first line
and syntax check is selected, Figure 4 shows how the error is highlighted.

Delete Table removes this table from the design.

Add State appends a new state template to this table.

All states in the BIF table are displayed in a scrollable viewport below the title. Each state
template is composed of a name field and any number of triplet fields. The Commands button to
the right of the name field displays a menu of functions local to the state..

Check Syntax performs a local syntax check on the entry's name field and triplets. If an error is
detected it will be highlighted at the point it occurs.

Delete State removes this state from the current table.

Add Triplet appends a new triplet to this state.

2

Figure 3: The Table Window

3

Figure 4: Table Syntax Error Example

4

Each triplet is made up of a condition field, an actions field and a next-state event pair. All
fields are text widgets which can be edited with emacs styled commands.

5

2 The BIF Programming Library

2.1 Introduction

This section describes the BIF data structure and the routines that perform creation, modification,
query, input and output of all objects associated with it. The routines have been designed, as
much as possible, to hide the internal workings of the data structure. This has been done so that
applications using these routines will not require major modifications after foreseeable updates to
the BIF language and data structure.

The BIF data structure routines simplify the problem of maintaining the textual syntax. Ap­
plications need only to create the data structure and then call an appropriate routine for textual
output. Since both textual input and output are handled by the BIF data structure routines,
changes to the BIF language affect them only.

2.2 Compilation and Linking Details

Since we are working extensively with both sun3 and sun4 architectures, two directories will exist,
each containing the BIF data structure library compiled for that architecture. The libraries are

/ch/ue/benchmarks/BIF /lib/sun3/libBIF.a
/ch/ue/benchmarks/BIF /lib/sun4/libBIF.a

For an example, an application source file using the BIF data structure routines for the sun3
architecture should be compiled :

cc -I/ch/ue/benchmarks/BIF /include -L/ch/ue/benchmarks/lib/sun3 -lBIF [filename.c]

One file of definitions and type definitions, BIF .h , should be included in each application
source file. The include file is located in /ch/ue/benchmarks/BIF /include.

It is also necessary to to add the declarations:
int error_action;
int debug_value;

to your source program. These variables convey information to debugging routines, dprintf(),
error_msg(), error_msg_severe(), (not currently documented) in the BIF library. Any value of
debug_value higher than zero will cause routines to print out large amounts of useless information.
Setting error_action to one will cause the program to dump core if a severe error occurs in the
library.

Several examples can be found in the directory /ch/ue/benchmarks/BIF /examples. See the
file README for explanations. The Makefile in that directory shows how a sample application
program is compiled.

2.3 Text File Input

The BIF library provides a parsing routine to read in a textual BIF syntax file.

6

File_PTR

FILE
char

BIF _parser (fi,fUename)

*ft;
*filename;

Before calling this routine the application program must first open the BIF syntax file (with
/open() from the standard C library). Then, the file descriptor must be passed to this routine,
along with an optional file name. The returned value is a File object representing the BIF text
file which can then be queried, modified, copied, output, etc. The File object is discussed later on
below.

2.4 Text File Output

The BIF library also provides text output routines for the BIF data structure.

void BIF _outpuLtext (fo,file)

FILE *Jo;
File_pTR file;

Before calling this routine the application program must first open the desired output destination
file (with /open() from the standard C library). Then, the file descriptor must be passed to this
routine, along with a File object.

2.5 The Data Structure

Figures 5 and 6 show the organization of the objects in the BIF data structure. The arrows indicate
that the object is part of a doubly linked list. The asterisk (*)indicates that the object is further
defined later in the diagram. Dotted lines or boxes indicate optional representations. For example,
the Expression object can have an else action. list.

Each object can be further broken down into specific fields. For instance, the object Table has
a field indicating whether or not it is a concurrent table. Specific fields of objects are described
later on.

Objects are general. This means that that all fields or objects contained within a single object
may not make sense in every possible instance. For example, the AssignDelay object may contain
the object Event, which, in turn, contains the object Timing. Since AssignDelay already has the
object Timing, it probably would not make sense to have Event use that object. In this particular
instance, the Expression object of Event would be used. This generality is useful due to the
developmental nature of the BIF language.

Each object labeled in figures 5 and 6 has associated routines that will create, query, and free
it, or add it to another object. The following sections will describe each object, starting from the
innermost (and therefore simplest) level of hierarchy, and proceeding to the outer levels. Each
section is headed with the name of the object, a description of the object, and a list of routines
that manipulate it.

All routines described are passed (and return) pointers to objects, pointers to character strings,
integers, or boolean values. Boolean values are interpreted as: zero = FALSE and non-zero =
TRUE, but in the interest of clarity, they will be typed Bool in these descriptions.

7

All function/procedure descriptions take the following form:

type returned function or procedure name (parameters)

parameter type parameter name;

Object types take the form object-name_PTR. In the include file (mentioned above) all types
are cast from (int *). This is to insure that the fields of the data structure records can not be
accessed by the application program.

2.6 Stateldent

The Stateldent object indicates a state identifier. It is described by name and an optional table
that contains it. There is also a field first that indicates if this state is the first or initial state in a
the table.

Stateldent_PTR BIF _create_Stateldent (name,table,ffrst)

char *name;

char *table;

Bool first;

Returns a pointer to a Stateldent object having name, optional table and first value. The
character strings passed are copied.

void BIF _free-8tateldent (stateident)

Stateldent_pTR stateident;

Frees all memory associated with a Stateldent object.

Stateldent_pTR BIF _copy -8tateldent (stateident)

Stateldent_pTR stateident;

Duplicates a Stateldent object and all memory associated with it.

Stateldent_PTR BIF _modify -5tateldent (change,name,table,first)

Stateldent_pTR change;

char *name;

char *table;

Bool first;

Modifies any record in a Stateldent object. Only non-null fields are considered.

char *BIF _query -8tateidenLname (stateident)

Stateident_pTR stateident;

Returns a pointer to the name character string associated with the Stateldent object.

char *BIF _query -8tateidenLtable (stateident)

Stateident_pTR stateident;

8

File

Table

Tableldent

*

Tableldent

*

Entry

I Stateldej

Action
(Uncond)

*

Concurrent Entry

Triplet

Condition

*

Next StateEvent

Stateldent

r---------,
I I
1 Event
I
1 (Entrance)
I

I * I , _________ _J

Event

*

Stateldent

Figure 5: The BIF Data Structure (1 of 2)

9

Action

Assign

Variable

,---:-----------------,
1 Ass1gnDelay :
I

I * I
I I

I : L----------------------
Expression

*

AssignDelay

Timing Event

*

IfExpression

Condition

*

~ Action*

~
(I/Action)

r--------------1
I I

~ :
Action * V: (ElseAction) : , ______________ .J

Event

Timing Expression

*

I

Condition
Expression I

I

Expression

I Exp:ession

I
I
I
I
I

IVariahfo I
I
I

* I Exp:ession

I
I
I
I
I
I
I
I

j

Figure 6: The BIF Data Structure (2 of 2)

10

Returns a pointer to the table character string associated with the Stateldent object.

Bool BIF _query ..StateidenLFIRST (stateident)

StateldenLPTR stateident;

Returns a boolean value that indicates whether the Stateldent object is the first or initial one
in the table.

2. 7 Tableldent

The Tableldent object describes a table identifier. It is defined by name and optional ofstate and
oftable. These last two provide information about a table at a higher level of hierarchy that contains
this one. The Tableldent object is a list. This provides a complete list of table hierarchies to each
table at any level of hierarchy.

Tableldent_PTR BIF _create_Tableldent (name,ofstate,oftable)

char *name;

char *of state;

char *oftable;

Returns a pointer to a Tableldent object having name, optional ofstate name and oftable name.
The character strings passed are copied.

void BIF _free_Tableldent (tableident)

Tableident_PTR tableident;

Frees all memory associated with a Tableldent object.

Tableldent_PTR BIF _copy _Tableldent (tableident)

Tableldent_PTR tableident;

Duplicates a Tableldent object and all memory associated with it.

Tableldent_PTR BIF _modify _Tableldent (change,name,ofstate,oftable,next,prev)

Tableldent_PTR change;

char *name;

char *of state;

char *oftable;

TableldenLPTR next;

TableldenLPTR prev;

Modifies any record in a Tableldent object. Only non-null fields are considered.

char *BIF _query _TableldenLname (tableident)

TableldenLPTR tableident;

Returns a pointer to the name character string associated with the Tableldent object.

char *BIF _query _Tableldent_ofstate (tableident)

11

Tableldent_PTR tableident;

Returns a pointer to the ofstate character string associated with the Tableldent object.

char *BIF _query _TahleldenLoftable (tableident)

Tableldent_PTR tableident;

Returns a pointer to the oftable character strings associated with the Tableldent object.

TableldenLPTR BIF _query _TableldenLnext (tableident)

Tableldent_PTR tableident;

Returns the next Tableldent node in a possible link list of Tableldent objects. A return value
of 0 (Tableldent_PTR 0) indicates no next node.

TableldenLPTR BIF _query _TableldenLprev (tableident)

Tableldent_PTR tableident;

Returns the previous Tableldent node in a possible link list of Tableldent objects. A return
value of 0 (TableidenLPTR 0) indicates no previous node.

Table_pTR BIF _add_TableldenLto_Table (tableident,table)

Tableldent_PTR tableident;
Table_pTR table;

Adds a Tableldent object to a table. A pointer to the same table is returned. Since the
Tableldent object is a linked list, successive adds append the Tableldent object to the end of the
list. See Table object description for more details.

2.8 Condition

The Condition object describes a conditional expression. It is defined by an Expression object or
by a boolean value indicating that it is an else condition. In the latter case, it is assumed that
other conditions precede it.

Cond_pTR BIF _create_Condition (else,expr)

Bool else;
Expr_pTR expr;

Returns a pointer to a Condition object having the expression expr, or the else meaning, indi­
cated with the parameter else.

void BIF _free_Condition (condition)

Cond_pTR condition;

Frees all memory associated with a Condition object.

Cond_PTR BIF _copy _Condition (condition)

Cond_pTR condition;

Duplicates a Condition object and all memory associated with it.

12

Condition_pTR BIF _modify _Condition (change, velse,expr)

Condition_PTR change;

Bool else;

Expr _pTR expr;

Modifies any record in a Condition object. Only non-null fields are considered.

Bool BIF _query _Condition_ELSE (condition)

Cond_pTR condition;

Returns a boolean value indicating whether or not the Condition object is an else condition.

Expr_pTR BIF _query_Condition_expression (condition)

Cond_pTR condition;

Returns an Expression object that corresponds to the Condition object. If the Condition object
happens to be an else condition the value returned is 0 (Cond_pTR 0).

2. 9 IfExpression

The IfExpression object denotes an if-then-else construct. It is used as part of the Action object.
It is defined with a Condition object, if_cond, and two Action linked list objects, if_actions and
else_actions. The else_actions list can be empty.

IfExpr_PTR BIF _create_IfExpression (if_cond,if_actions,else_actions)

Cond_pTR if_cond;

Action_pTR if_actions;

Action_pTR else_actions;

Returns a pointer to a IJExpression object having if_cond, as the if-then condition, if_actions,
and else_actions. The latter can be 0 (Action_PTR 0).

void BIF _freeJfExpression (if_expr)

IfExpr_pTR if_expr;

Frees all memory associated with a IfExpression object.

IfExpr_pTR BIF _copy JfExpression (ifexpr)

IfExpr_PTR ifexpr;

Duplicates a lfExpression object and all memory associated with it.

IfExpr_PTR BIF _modify JfExpression (change,if_cond,if_actions,else_actions)

IfExpr _pTR change;

Cond_pTR if_cond;

Action_pTR

Action_pTR

if_actions;

else_actions;

Modifies any record in a lfExpression object. Only non-null fields are considered.

13

CondYTR BIF _query .lfExpression_if_cond (if_expr)

IfExprYTR if_expr;

Returns a pointer to a Condition object corresponding to the if-then condition of the I/Expres­
sion object.

int BIF _query .lfExpression_num_if_actions (if_expr)

IfExpr YTR if_expr;

Returns the number of Action objects contained in the if-then actions list of the I/Expression
object.

ActionYTR BIF _query .lfExpression.if..actions (if_expr)

IfExpr YTR if_expr;

Returns an Action object (may be the head of a list) corresponding to the if-then actions of
the I/Expression object.

int BIF _query .lfExpression_num...else_actions (if_expr)

IfExpr_PTR if_expr;

Returns the number of Action objects contained in the else actions list of the I/Expression
object.

ActionYTR BIF _query .lfExpression_else..actions (if_expr)

IfExpr_PTR if_expr;

Returns an Action object (may be the head of a list) corresponding to the else actions of the
I/Expression object.

2.10 Event

The Event object describes either delay durations, signal event expressions, or special-case hierar­
chical calls.

EventYTR BIF _create_Event (expression)

Expr YTR expression;

Returns an Event object that describes an event expression.

Event_pTR BIF _create_CALL_Event()

Returns an Event object that denotes a call to a lower level of hierarchy.

Event_pTR BIF _create_DELAY _Event (delay)

Timing_PTR delay;

Returns an Event object that denotes a delay duration constraint on a triplet. This is not to
be confused with BIF _create..AFTER_DELAY _Event which indicates the amount of time to
delay before proceeding to the next state.

14

EventYTR BIF _create.AFTER_DELAY _Event (delay)

TimingYTR delay;

Returns an Event object that indicates the amount of time to delay before proceeding to the
next state. This is not to be confused with BIF _create_DELA Y _Event which denotes a delay
duration constraint on a triplet.

void BIF _free..Event (event)

Event_PTR event;

Frees all memory associated with a Event object.

EventYTR BIF _copy _.Event (event)

Even LP TR event;

Duplicates an Event object and all memory associated with it.

EventYTR BIF _modify _.Event (change,expr)

Event_pTR change;
Expr _pTR expr;

Modifies any record in an Event object. Only non-null fields are considered.

Event_pTR

Event_pTR

BIF _modify _J)ELA Y ..Event (change, delay)

change;
TimingYTR delay;

Modifies the delay in a DELAY Event object. Only non-null fields are considered.

EventYTR BIF _modify _AFTER_DELAY _Event (change, delay)

Event_pTR change;
Timing_PTR delay;

Modifies the delay in an AFTER DELAY Event object. Only non-null fields are considered.
See above for further discussion of DELAY and AFTER DELAY events.

Bool BIF _query _EvenLCALL (event)

Event_pTR event;

Returns a boolean value that indicates whether or not this Event object denotes a call to a
lower level of hierarchy.

Bool BIF _query ..EvenLDELAY (event)

Event_pTR event;

Returns a boolean value that indicates whether or not this Event object denotes a delay duration
constraint on a triplet.

Bool BIF _query ..Event-AFTER_])ELAY (event)

Event_pTR event;

15

Returns a boolean value that indicates whether or not this Event object indicates the amount
of time to delay before proceeding to the next state.

Bool BIF _query _EvenLEXPRESSION (event)

Event_pTR event;

Returns a boolean value that indicates whether or not this Event object denotes an expression
of signal events.

Timing_pTR BIF _query _Event_delay (event)

Event_pTR event;

Returns a Timing object for both types, DELAY and AFTER_DELAY, of the Event object.

Expr_pTR BIF _query _EvenLexpression (event)

Event_pTR event;

Returns an Expression object that contains an expression of signal events for the Event object.

2.11 Timing

The Timing object describes delay duration, the units the delay value is expressed in, nano-seconds
or micro-seconds, and a constraint on the delay, maximum, minimum, or nominal.

Timing_pTR BIF _create_ Timing (nom, min, max, delay, nano...secs, micro...secs)

Bool num;

Bool min;

Bool max;

int delay;

Bool nano_secs;

Bool micro_secs;

Returns a pointer to a Timing object having the values specified. Note that having more than
one of nom, min, max, TRUE at one time does not make sense.

void BIF _free_Timing (timing)

Timing_pTR timing;

Frees all memory associated with a Timing object.

Timing_pTR BIF _copy _Timing (timing)

Timing_pTR timing;

Duplicates a Timing object and all memory associated with it.

Timing_ptR BIF ..modify_Timing (change,nom,min,max,delay,ns,ms)

Timing_pTR change;

Bool nom;

16

Bool min;

Bool max;

int delay;

Boal ns;

Boal ms;

Modifies any record in a Timing object. Boolean fields that are false are ignored. A delay value
of -1 causes the original value to remain unchanged.

Boal BIF _query _Timing_MAX (timing)

Timing_FTR timing;

Returns whether or not the delay constraint is specified maximum.

Bool BIF _query_Timing_MIN (timing)

Timing_FTR timing;

Returns whether or not the delay constraint is specified minimum.

Bool BIF _query _Timing_NOM (timing)

Timing_FTR timing;

Returns whether or not the delay constraint is specified nominal.

int BIF _query _Timing_delay (timing)

Timing_FTR timing;

Returns the value of the delay for the Timing object.

Bool BIF _query _Timing_NS (timing)

Timing_PTR timing;

Returns wheth~r or not the delay is in nano-seconds.

Bool BIF _query _Timing_MS (timing)

Timing_FTR timing;

Returns whether or not the delay is in micro-seconds.

2.12 AssignDelay

The AssignDelay object denotes a delayed assignment to a variable optionally after some event. It
is used in the Assign object.

AssignDelay _FTR BIF _create_AssignDelay (delay, event)

Timing_PTR delay;
Event_FTR event;

Returns a pointer to an AssignDelay object having the delay specified by a Timing object, and
the optional event speCified in an Event object.

17

void BIF _free_AssignDelay (assigndelay)

AssignDelay _pTR assigndelay;

Frees all memory associated with an AssignDelay object.

AssignDelay _pTR BIF _copy _AssignDelay (assigndelay)

AssignDelay _pTR assigndelay;

Duplicates an AssignDelay object and all memory associated with it.

AssignDelay _pTR BIF _modify _AssignDelay (change,delay,event)

AssignDelay _pTR change;

Timing_pTR delay;

Even LP TR event;

Modifies any record in an AssignDelay object. Only non-null fields are considered.

Timing_PTR BIF _query _AssignDelay _delay (assigndelay)

AssignDelay _PTR assigndelay;

Returns a Timing object which corresponds to the delay specified in the AssignDelay object.

Event_pTR BIF _query _AssignDelay _event (assigndelay)

AssignDelay _PTR assigndelay;

Returns an Event object which corresponds to the event after which the delay is to occur. If
there is no event in the AssignDelay object then a NULL ((AssignDelay_pTR) 0) value is returned.

2.13 Variable

The Variable object represents a variable. It can be a selection, in which case, values for the start
and end of the selection are specified, an array reference, or a plain variable or constant. See the
section on the Expression object for further routines that create and return variables.

Variable_PTR BIF _create..EVENT _Variable (name,array_ref,rising,falling)

char *name;

int q,rray_ref,

Bool rising;

Boal falling;

Returns a Variable object describing an event having character string name, and specification
rising or falling. array_ref makes it possible to reference arrays of signal events. IMPORTANT: For
single events this value should be -1. Note also that only one of rising and falling should be TRUE
at a time.

Variable_PTR BIF _create_CQNSTANT_Variable (value)

int value;

18

Returns a Variable object having the value of a constant. Currently, only 32bit integer decimal
values are supported.

Variable_PTR BIF _create_ Variable (name,start,stop,array_ref)

char *name;

int start;

int stop;

int array_ ref,

Returns a Variable object describing a non-event variable having character string name. start
and stop allow specification of selection within a vectored variable. start indicates the numerical
starting value and stop the ending value. For variables that do not have selection specification,
both of these values should be -1. array_ref specifies the value of an array reference. For variables
that do not require array referencing, this value should be -1.

void BIF _free_ Variable (variable)

Variable_PTR variable;

Frees all memory associated with a Variable object.

Variable_PTR BIF _copy_Variable (variable)

Variable_PTR variable;

Duplicates a Variable object and all memory associated with it.

Variable_PTR BIF _modify_Variahle (change,name,start,stop,arrayref)

Variable_PTR change;

char *name;

int start;

int stop;

int arrayref,

Modifies any record in a Variable object. Integer values that are not to be changed should have
the value -1.

Variable_PTR BIF _modify _EVENT_ Variable (change, name, arrayref, rising,falling)

Variable_PTR change;

char *name;

int arrayref,

Bool rising;

Bool falling;

Modifies any record in a Variable object. Integer values that are not to be changed should have
the value -1. Bool values that are to remain unchanged should be false.

Variable_PTR BIF _modify_CQNSTANT_Variable (change, value)

Variable_PTR change;

19

int value;

Modifies a CONSTANT Variable object. Despite the contradiction in terms, a CONSTANT
variable has a constant integer value.

char *BIF _query_Variable_name (variable)

Variable_PTR variable;

Returns a character string corresponding to the name of Variable object.

Bool BIF _query_Variable_EVENT (variable)

Variable_PTR variable;

Returns a boolean value indicating whether or not the variable is an event.

Bool BIF _query_Variable_SELECTION (variable)

Variable_PTR variable;

Returns a boolean value indicating whether or not the variable has selection values, i.e, start
and stop values.

Bool BIF _query_Variable_CONSTANT (variable)

Variable_PTR variable;

Returns a boolean value indicating whether or not the variable is a constant.

Bool BIF _query_Variable_ARRAYREF (variable)

Variable_PTR variable;

Returns a boolean value indicating whether or not the variable has an array reference value.

int BIF _query_ Variable_select__start (variable)

Variable_PTR variable;

Returns the starting selection value for the Variable object. If the Variable object is not of a
selection type the value -1 is returned.

int BIF _query_Variable_select_stop (variable)

Variable_PTR variable;

Returns the ending selection value for the Variable object. If the Variable object is not of a
selection type the value -1 is returned.

int BIF _query_Variable_array_ref (variable)

Variable_PTR variable;

Returns the array reference value for the Variable object. if the Variable object does not have
an array reference value the value -1 is returned.

Bool BIF _query_Variable_EVENT_RISING (variable)

Variable_PTR variable;

20

Returns a boolean value indicating whether or not the event corresponding to the Variable
object is rising. If the Variable object is not of type "event", False is returned automatically.

Boal BIF _query_Variable_EVENT_FALLING (variable)

Variable_PTR variable;

Returns a boolean value indicating whether or not the event corresponding to the Variable
object is falling. If the Variable object is not of type event False is returned automatically.

2.14 Assign

The Assign object denotes an assignment. The assignment has a left-hand side Variable object, an
optional AssignDelay object, and a right-hand side Expression object.

AssignYTR BIF _create_Assign (lhs,assigndelay,rhs)

Variable_PTR lhs;

AssignDelay YTR assigndelay;

Expr _pTR rhs;

Returns a pointer to a Assign object having lhs as the left-hand side, assigndelay as an option
assignment delay, and rhs as the right-hand side.

void BIF _free_Assign (assign)

Assign_PTR assign;

Frees all memory associated with an Assign object.

AssignYTR BIF _copy _Assign (Assign)

Assign_PTR assign;

Duplicates a Assign object and all memory associated with it.

AssignYTR BIF _modify _Assign (change,lhs,delay,rhs)

Assign_pTR change;

Variable_PTR lhs;

AssignDelay YTR delay;

Expr _pTR rhs;

Modifies any record in an Assign object. Only non-null fields are considered.

Variable_PTR BIF _query_Assign-1hs (assign)

Assign_PTR assign;

Returns a Variable object corresponding to the left-hand side of the assignment in the Assign
object.

AssignDelay _pTR BIF _query _Assign..assign_delay (assign)

Assign_pTR assign;

21

Returns an AssignDelay object, if it exists, for the Assign object. 0 (AssignDelay_PTR 0),
otherwise.

Expr_FTR BIF _query _Assign_rhs (assign)

Assign_FTR assign;

Returns an Expression object corresponding to the right-hand side of the Assign object.

2.15 Action

The Action object denotes an action in a table and/or triplet. It can be either an assignment,
in which case it has an Assign object, or an· if-then-else expression, in which case it contains an
I/Expression object. Note that I/Expression objects also have actions. This provides arbitrary levels
of nested if-then-else-statements. The Action object is a list. This provides multiple assignments
to be described in a single action entry.

Action_FTR BIF _createJF _Action (ifexpr)

IfExpr_PTR ifexpr;

Returns an Action object containing the I/Expression object passed to it.

Action_FTR BIF _create_ASSIGN.Action (assign)

Assign_PTR assign;

Returns an Action object containing the Assign object passed to it.

void BIF _free.Action (action)

Action_PTR action;

Frees all memory associated with an Action object.

Action_PTR BIF _copy _Action (action)

Action_FTR action;

Duplicates a Action object and all memory associated with it.

Action_FTR BIF _modify _Action (change,assign,next,prev)

Action_PTR change;

Assign_pTR assign;

Action_pTR next;

Action_FTR prev;

Modifies a record in an Action object.

Action_FTR BIF _modifyJF _Action (change,ifexpr,next,prev)

Action_pTR change;

IfExpr _PTR ifexpr;

Action_pTR next;

22

Action_PTR prev;

Modifies a record in an Action object if that object contains an if-statement in the form of an
If Expression object.

Boal BIF _query_Action_IF (action)

Action_pTR action;

Returns whether or not this Action object contains an I/Expression object.

Boal BIF _query _Action_ASSIGN (action)

Action_pTR action;

Returns whether or not this Action object contains an Assign object. Note that combining this
routine with BIF _query _Action_IF is redundant since an action can only be one of two things.
However, later additions to BIF may allow Action objects to contain unit declarations, making this
routine required.

IfExpr_pTR BIF _query _Action_if_expression (action)

Action_pTR action;

Returns an I/Expression object for the given Action object. 0 (IfExpr_pTR 0) is returned if it
does not exist.

Assign_PTR BIF _query _Action_assign (action)

Action_pTR action;

Returns an Assign object for the given Action object. 0 (Assign_PTR 0) is returned if it does
not exist.

Action_pTR BIF _query _Action_next (action)

Action_PTR action;

Returns the next Action object in a possible linked list of Action objects. A return value of 0
(Action_pTR 0) indicates no next object.

Action_PTR BIF _query _Action_prev (action)

Action_pTR action;

Returns the previous Action object in possible linked list of Action objects. A return value of
0 (Action_pTR 0) indicates no previous object.

IfExpr_pTR

Action_PTR
IfExpr_PTR

BIF _addJF _Action_toJfExpression (action,ifexpr)

action;
ifexpr;

Adds an Action object to the if-then actions in a IJExpression object. A pointer to the same
!!Expression object is returned. Since the Action object is a linked list, successive adds append the
Action object to the end of the list. See I/Expression object description for more details.

IfExpr_pTR BIF _add_ELSE_Action_to..IfExpression (action,ifexpr)

23

Action_PTR
IfExpr_pTR

action;
ifexpr;

Adds an Action object to the else actions in a I/Expression object. A pointer to the same
I/Expression object is returned. Since the Action object may be part of a linked list, successive
adds append the Action object to the end of the list. See I/Expression object description for more
details. ·

Triplet_PTR BIF _add_Action_to_Triplet (action, triplet)

Action_pTR
Triplet_PTR

action;
triplet;

Adds an Action object to the action field of a Triplet object. A pointer to the same Triplet
object is returned. Since the Action object may be part of a linked list, successive adds append the
Action object to the end of the list. See Triplet object description for more details.

Entry_pTR BIF _add_UNCONJ?.Action_to_Entry (action,entry)

Action_pTR
Entry_pTR

action;
entry;

Adds an Action object to the unconditional actions field of an Entry object. A pointer to the
same Entry object is returned. Since the Action object may be part of a linked list, successive adds
append the Action object to the end of the list. See Entry object description for more details.

2.16 NextStateEvent

The NextStateEvent object describes the next state to proceed to in a given entry, and the event
that causes the transition. The next state is described by a State/dent object, and the event
is described by an Event object. In a special case of triplets, the triplet is be executed serially
(sequentially) with respect to its neighboring triplets. In this case the NextStateEvent object has
a serial indicator, the next state value is undefined, and the event may be a duration constraint
on the triplet. The NextStateEvent object is a list. This allows multiple next state events to be
specified in a single triplet.

N extStateEvent_pTR BIF _create_SERIAL_N extStateEvent (event)

Event_pTR event;

Returns a NextStateEvent object having the serial meaning described above. Note that, in this
case, the Event object should specify a delay constraint. At this time, no checking is done to enforce
this.

NextStateEvenLPTR BIF _create_NextStateEvent (next_state,event)

Stateident_pTR nexLstate;
EvenLPTR event;

Returns a NextStateEvent object having the given State/dent object next-state, and the Event
object passed. Not~ that, for consistency, this routine might have been called BJF_create_PARALLEL_NextState
but since parallel execution is the default, therefore unspecified, this name was not used.

void BIF _free_N extStateEvent (next)

24

NextStateEvent_PTR next;

Frees all memory associated with the Nex_tStateEvent object.

N extStateEvenLPTR BIF _copy _N extStateEvent (next)

N extStateEvent_pTR next;

Duplicates a NextStateEvent object and all memory associated with it.

N extStateEvent_pTR BIF _modify _N extStateEvent (change, nextstate, event, next,prev)

N extStateEvent_pTR change;

Stateident_pTR nextstate;

Event_pTR event;

N extStateEvent_pTR next;

NextStateEvent_pTR prev;

Modifies any record in a NextStateEvent object. Only non-null fields are considered.

N extStateEvent_pTR BIF _modify -8ERIAL_N extStateEvent (change, nextstate, next,prev)

NextStateEvent_pTR change;

Stateident_pTR nextstate;

N extStateEvent_pTR next;

N extStateEvent_pTR prev;

Modifies any record in a SERIAL NextStateEvent object. Only non-null fields are considered.
See above for further discussion of SERIAL.

Bool BIF _query..NextStateEvenLSERIAL (next)

N extStateEvent_pTR next;

Returns a boolean value indicating whether or not this NextStateEvent object has the serial
meaning described above. Logically, there should also exist a routine BJF_query_N extStateEvenLPARALLEL,
but does not, for reasons discussed above (sheer laziness).

StateidenLPTR BIF _query _N extStateEvenLnexLstate (next)

N extStateEvent_pTR next;

Returns a Stateldent object containing the next state specification for the given NextStateEvent
object.

Event_pTR BIF _query _N extStateEvent_event (next)

N extStateEvent_pTR next;

Returns an Event object containing the event specification for the given NextStateEvent object.

NextStateEvent_pTR BIF _query..NextStateEvenLnext (next)

NextStateEvent_pTR next;

Returns the next NextStateEvent object in a possible linked list of NextStateEvent objects. A
return value of 0 (NextStateEvent_pTR 0) indicates no next node.

25

NextStateEventYTR BIF _query_NextStateEvenLprev (next)

N extStateEvent_pTR next;

Returns the previous NextStateEvent object in a possible linked list of NextStateEvent objects.
A return value of 0 (N extStateEvent_pTR 0) indicates no next node.

TripleLPTR BIF _add_N extStateEvent_to_ Triplet (nexLstate, triplet)

N extStateEvent_pTR next_state;
TripleLPTR triplet;

Adds a NextStateEvent object to a triplet. A pointer to the same triplet is returned. Since the
NextStateEvent object is a linked list, successive adds append the NextStateEvent object to the end
of the list. See Triplet object description for more details.

2.17 Triplet

The Triplet object contains a Condition object, Action object, and NextStateEvent object. Recall
that both Action and NextStateEvent objects are linked lists. This means that triplets contain
multiple actions and next-state-event pairs. In addition, to provide some compatibility with dif­
ferent state machine modeling, the Triplet object has an Event object which allows specification of
entrance events. The Triplet object is also a list.

Triplet_PTR

Event_pTR

Cond_pTR

BIF _create_ Triplet (entrance_events, condition, actions, next...Btate_events)

entrance_events;

condition;

Action_pTR actions;

N extStateEventYTR nexLstate_events;

Returns a Triplet object containing Condition object, an Action object list, and a NextSta­
teEvent object list. As was mentioned above, there is can also be an Event object specified to
contain entrance events. This field can be NULL.

void BIF _free_ Triplet (triplet)

Triplet_PTR triplet;

Frees all memory associated with a Triplet object.

Triplet_PTR BIF _copy _Triplet (triplet)

TripleLPTR triplet;

Duplicates a Triplet object and all memory associated with it.

Triplet_PTR BIF _modify _Triplet (change, entrance_events, condition, actions, next...Btates, next,prev

Triplet_PTR change;

Event_pTR

Cond_pTR

entrance_events;

condition;

Action_pTR actions;

NextStateEvent_pTR next.stat.es;

26

Triplet_PTR next;

Triplet_PTR prev;

Modifies any record in a Triplet object. Only non-null fields are considered.

EvenLPTR BIF _query _TripleLentrance_events (triplet)

TripleLPTR triplet;

Returns an Event object referring to the entrance events of the Triplet object. If there are no
entrance events (usually, BIF uses exit events in the form of the NextStateEvent object), the return
value is 0 (Event_pTR 0).

Cond_PTR BIF _query _TripleLcondition (triplet)

Triplet_PTR triplet;

Returns a Condition object referring to the condition on which the actions in this triplet will
be performed.

int BIF _query _TripleLnum....a.ctions (triplet)

Triplet_PTR triplet;

Returns the number of Action objects in the triplet.

Action_pTR BIF _query _TripleLactions (triplet)

Triplet_PTR triplet;

Returns an Action object denoting the actions in this triplet. Remember that the Action object
is a linked list, so that this list can be traversed to obtain all of the actions.

int BIF _query _TripleLnum_nexLstate_events (triplet)

Triplet_PTR triplet;

Returns the number of NextStateEvent objects in this triplet.

N extStateEvent_pTR BIF _query _TripleLnext_states (triplet)

Triplet_PTR triplet;

Returns a NextStateEvent object denoting the next-state-event pairs in this triplet. Remember
that the NextStateEvent object is a linked list, so that this list can be traversed to obtain all of the
actions. ·

TripleLPTR BIF _query _TripleLnext (triplet)

TripleLPTR triplet;

Returns the next Triplet object in a possible link list of Triplet objects. A return value of 0
(Triplet_pTR 0) indicates no next object.

Triplet_PTR BIF _query _TripleLprev (triplet)

Triplet_PTR triplet;

Returns the previous Triplet object in a possible link list of Triplet objects. A return value of
0 (Triplet_pTR 0) indicates no previous object.

27

Entry _pTR BIF _add_TripleLto_Entry (triplet, entry)

Triplet_PTR triplet;
Entry _pTR entry;

Adds a Triplet object to an entry. A pointer to the same Entry is returned. Since the Triplet
object may be a linked list, successive adds append the Triplet object to the end of the list. See
Entry object description for more details.

2.18 Entry

The Entry object indicates an entry in a BIF state table. It contains a State/dent object indicating
the present state, an optional Action object giving the unconditional actions for this entry, and a
Triplet object giving the triplets for this particular entry. The Entry object is a list.

Entry _pTR BIF _create_Entry (stateident, uncond_actions, triplets)

Stateldent_pTR · stateident;

Action_PTR

Triplet_PTR

uncond_actions;

triplets;

Returns an Entry object having present state stateident, optional unconditional actions un­
cond_actions, and triplets - Triplet objects.

void BIF _free_Entry (entry)

Entry_pTR entry;

Frees all memory associated with an Entry object.

Entry_pTR BIF _copy_Entry (entry)

Entry _pTR entry;

Duplicates a Entry object and all memory associated with it.

Entry _pTR BIF _modify _Entry (change, ident, uncond_actions, triplets, next,prev)

Entry _pTR change;

Stateldent_pTR ident;

Action_pTR

Triplet_PTR

Entry_pTR

Entry_pTR

uncond_actions;

triplets;

next;

prev;

Modifies any record in an Entry object. Only non-null fields are considered.

Stateident_PTR BIF _query _Entrystate (entry)

Entry _pTR entry;

Returns a State/dent object representing the present state of the Entry object.

int BIF _query _Entry _num_uncond_actions (entry)

28

Entry_FTR entry;

Returns the number of unconditional actions in the Entry object.

Action_FTR BIF _query ..Entry _uncond_actions (entry)

Entry _FTR entry;

Returns an Action object having the unconditional actions for this Entry object.

int BIF _query..Entry_num_triplets (entry)

Entry _FTR entry;

Returns the number of triplets in the Entry object.

Triplet_PTR BIF _query ..Entry _triplets (entry)

Entry _FTR entry;

Returns a Triplet object· containing the triplets for this Entry object.

Entry _FTR BIF _query _Entry _next (entry)

Entry _FTR entry;

Returns the next Entry object in a possible linked list of Entry objects. A return value of 0
(Entry_FTR 0) indicates no next object.

Entry_FTR BIF _query..Entry_prev (entry)

Entry _FTR entry;

Returns the previous Entry object in a possible linked list of Entry objects. A return value of
0 (Entry_pTR 0) indicates no previous object.

Table_FTR BIF _add_Entry _to_Table (entry,table)

Entry _FTR entry;
Table_FTR table;

Adds an Entry object to a table. A pointer to the same table is returned. Since the Entry
object is a linked list, successive adds append the Entry object to the end of the list. See Table
object description for more details.

2.19 ConcurrentEntry

The ConcurrentEntry object represents concurrent entries in a concurrent table. The assumption is
that all states or tables named in a concurrent table run in parallel. The ConcurrentEntry object is
defined only by a State/dent object. It is thought that more objects will be added to the concurrent
table entry in the future. Like the Entry object, the ConcurrentEntry object is a linked list.

Concurrent En try _pTR BIF _create_ConcurrentEntry (stateident)

Stateident_pTR stateident;

Returns a ConcurrentEntry object having the state and/or table name defined in the State/dent
object.

. 29

void BIF _free_ConcurrentEntry (entry)

Concurrent En try _pTR entry;

Frees all memory associated with the ConcurrentEntry object.

ConcurrentEntry_pTR BIF _copy_ConcurrentEntry (entry)

ConcufJ'entEntry _pTR entry;

Duplicates a ConcurrentEntry object and all memory associated with it.

ConcurrentEntry _pTR BIF _modify _ConcurrentEntry (change, ident, next,prev)

ConcurrentEntry _pTR change;

Stateldent_pTR ident;

Concurrent Entry _pTR next;

Concurrent En try _pTR prev;

Modifies any record in a ConcurrentEntry object. Only non-null fields are considered.

Stateldent_PTR BIF _query _ConcurrentEntry jdent (entry)

Concurrent Entry _pTR entry;

Returns a State/dent object having the state and/or table name of this entry.
\

Concurrent Entry _pTR BIF _query _ConcurrentEntry _next (entry)

ConcurrentEntry _pTR entry;

Returns the next ConcurrentEntry object in a possible linked list of ConcurrentEntry objects.
A return value of 0 (ConcurrentEntry_pTR 0) indicates no next object.

ConcurrentEntry _pTR BIF _query _ConcurrentEntry _prev (entry)

ConcurrentEntry _pTR entry;

Returns the previous ConcurrentEntry object in a possible linked list of ConcurrentEntry ob­
jects. A return value of 0 (ConcurrentEntry_pTR 0) indicates no previous object.

Table_pTR BIF ..add_ConcurrentEntry_to_Table (entry,table)

ConcurrentEntry _pTR entry;
Table_PTR table;

Adds a ConcurrentEntry object to a table. A pointer to the same table is returned. Since the
ConcurrentEntry object is a linked list, successive adds append the ConcurrentEntry object to the
end of the list. It is an error to add a ConcurrentEntry object to a non-concurrent table. See Table
object description for more details.

2.20 Table

The Table object represents a state table. It is defined by a list of table identifiers, in the form of
the Table/dent object, and entries, in the form of either Entry objects or ConcurrentEntry objects.
The Table is a linked list, allowing multiple tables in a single BIF description.

30

Table_PTR BIF _create_ Table (tableident,entries)

TableldenLPTR tableident;
Entry _pTR entries;

Returns a Table object having identity tableident and entries represented by entries.

Table_pTR BIF _create_CONCURRENT _Table (tableident,concurrenLentries)

TableldenLPTR tableident;
Concurrent En try _pTR concurrent_entries;

Returns a Table object having identity tableident and concurrent entries represented by entries.

void BIF _free_Table (table)

Table_pTR table;

Frees all memory associated with a Table object.

Table_pTR BIF _copy _Table (table)

Table_pTR table;

Duplicates a Table object and all memory associated with it.

Table_PTR BIF _modify_Table (change,idents,entries,next,prev)

Table_pTR change;

Tableldent_PTR idents;

Entry _pTR entries;

Table_PTR next;

Table_PTR prev;

Modifies any record in a Table object. Only non-null fields are considered.

Table_pTR BIF _modify _CON CURRENT_ Table (change, idents, entries, next,prev)

Table_PTR change;

TableldenLPTR idents;

Concurrent Entry _pTR entries;

Table_pTR next;

Table_pTR prev;

Modifies any record in a Table object containing Concurrent object entries. Only non-null fields
are considered.

int BIF _query _Table_num..table_idents (table)

Table_PTR table;

Returns the number of table identifiers in this table. Recall that a Tableldent object is a linked
list, allowing complete definition of tables within hierarchies.

TableldenLPTR BIF _query _Table_table_ident (table)

31

Table_pTR table;

Returns a Tableldent object representing the table name. The Tableldent object is a linked list
and can be travers.ed from beginning to end to get a complete definition of this table's location in
the hierarchy.

Bool BIF _query_Table_OPSBASED (table)

Table_pTR table;

Returns a boolean value indicating whether or not the table is a operations-based table. Cur­
rently, if the table is not concurrent than it is operations-based. Eventually, the data structure will
be extended to allow unit-based tables.

Bool BIF _query_Table_CONCURRENT (table)

Table_pTR table;

Returns a boolean value indicating whether or not the table is a concurrent table.

int BIF _query _Table_num_entries (table)

Table_PTR table;

Returns the number of entries in the table. The table can be either concurrent or operations­
based.

Entry _pTR BIF _query _Table_entries (table)

Table_FTR table;

Returns an Entry object containing the entries in the table.

ConcurrentEntry _pTR BIF _query _Table_concurrenLentries (table)

Table_pTR table;

Returns a ConcurrentEntry object containing the concurrent entries in the table.

Table_PTR BIF _query_Table_next (table)

Table_PTR table;

Returns the next Table object in a possible linked list of Table objects. The value 0 (Table_PTR
0) is returned if the end of the list has been reached.

Table_pTR BIF _query _Table_prev (table)

Table_pTR table;

Returns the previous Table object in a possible linked list of Table objects. The value 0 (Ta­
ble_PTR 0) is returned if the beginning of the list has been reached.

File_PTR BIF _add_Table_to-File (table,JUe)

Table_pTR table;
File_pTR file;

Adds a Table object to a file. A pointer to the same file is returned. Since the Table object
is a linked list, successive adds append the Table object to the end of the list. See File object
description for more details.

32

2.21 File

A File object contains an entire BIF description of a design. It is called "File" because a complete
BIF description is contained in one physical text file. Eventually, the BIF data structure routines
may handle multiple file descriptions.

File_PTR BIF _create_File (name, tables)

char *name;
Table_pTR tables;

Returns a File object having the name name, and containing state tables tables. name is copied
and allocated.

void BIF _free_File (file)

File_pTR file;

Frees all memory associated with File object.

File_PTR BIF _copy _File (file)

File_PTR file;

Duplicates a File object and all memory associated with it.

File_PTR BIF _modify _File (change, name, tables)

File_pTR change;

char *name;

Table_pTR tables;

Modifies any record in a File object. Only non-null fields are considered.

char *BIF _query_File_name (file)

File_pTR file;

Returns the character string name of the file.

int BIF _query _File_num_tables (file)

File_pTR file;

Returns the number of tables in the file.

Table_PTR BIF _query _File_ tables (file)

File_PTR file;

Returns a Table object which contains the tables belonging to the File object.

2.22 Expression

The Expression object, and associated routines, provide a flexible way of creating and manipulating
expressions. A wide variety of operators are supported, and precedence ordering is built-in. Ex­
pression objects, in combination with Variable objects, can represent expressions of arrays, events,
and constants.

33

The Expression object is represented by a binary tree. The nodes in the tree are operators and
leaves represent variables. Unary operators, as a special case, require only one operand. In this
case the left child is ignored and the the right contains the operand.

Expr_pTR BIF _create_Expression (op,expri, expr2, expr3, ... , 0)

int op;
Expr_pTR

This routine creates an Expression object. The first parameter must be a valid operator.
Operators are discussed below. Following the operator can be any number of Expression objects·.
The resulting expression tree represents the equivalent of: expr1 op expr2 op expr3 op The list
must be terminated with a 0 or NULL entry .. For the case of unary operators, a single Expression
object should follow the operator. Examples using this routine can be found in the appendix.

Expr_pTR BIF _Variable_to_Expression (variable)

Variable_PTR variable;

In order to use a variable in BIF _create-Expression the variable must first be converted to
an Expression object, using this routine.

void BIF _free-Expression (expression)

Expr _p.TR expression;

Frees all memory associated with an Expresson object. If the object represents an expression
tree the tree is recursively freed.

Expr_pTR BIF _copy_Expression (expression)

Expr _pTR expression;

Copies an entire expression tree.

Expr_pTR BIF ..modify_LEAF _Expression (change, variable)

Expr_pTR change;
Variable_PTR variable;

Modifies an Expression object that happens to be a leaf on the tree.

Expr_pTR BIF _modify _NODE_Expression (change,operator,left,right)

Expr _pTR change;

int operator;

Expr _pTR left;

Expr _pTR right;

Modifies an Expression object that happens to be a node on the tree. Operations are retrieved
from the operator query routines described later on.

Bool BIF _query_Expression_LEAF (expression)

Expr _pTR expression;

Returns a boolean value indicating whether or not this expression is a leaf on the expression tree.
If so, then the Variable object can be queried from it by using BIF _query_Expression_variable.

34

Boal BIF _query _Expression.NODE (expression)

Expr _pTR expression;

Returns a boolean value indicating whether or not this expression is a node in the expression
tree. If so, the the operator can be queried from it by using BIF _query _Expression_operator.

Variable_PTR BIF _query_Expression_variable (expression)

Expr _p,TR expression;

Returns the Variable object contained in the Expression object. If the expression is not a leaf
then the value 0 (Variable_pTR 0) is returned.

int BIF _query _Expression_operator (expression)

Expr _pTR expression;

Returns the operator in the Expression object. If the expression is not a node then the value 0
(NOOP) is returned.

Expr_pTR BIF _query _Expressi.on_right (expression)

Expr_pTR expression;

Returns the right child of the current Expression object. If the object is a leaf, and, therefore,
has no children, the value 0 (Expr_pTR 0) is returned.

Expr_pTR BIF _query _Expression-1eft (expression)

Expr _pTR expression;

Returns the left child of the current Expression object. If the object is a leaf, and, therefore,
has no children, t~e value 0 (Expr_pTR 0) is returned.

Bool BIF_query_UNARY (op)

int op;

Returns a boolean value indicating whether or not this operator is unary.

int BIF _precedence (op1,op2)

int opl;
int op2;

This function returns O, if opl and op2 haye equal precedence, 1, if opl has greater precedence,
and -1, if op2 has greater precedence.

The following table shows all operator query functions. Each function returns an integer value
that corresponds to the operator requested. This operator can than be used in BIF _create..Expression,
or, compared with the operator returned from
BIF _query _Expression_operator to take some course of action.

char *BIF ..sprint_Expression (expression)

Expr _pTR expression;

35

O_p_erator Query Functions
Function Name Operator Description

BIF _query_OP .ADD Addition
BIF _query _OP _SUB Subtraction
BIF _query_OP _USUB Unary minus
BIF _query _OP _MUL Multiplication
BIF _query_OP _DIV Division
BIF _query_OP _MOD Modula
BIF _query _OP ..LTTI_ Less than
BIF _query _OP ..LTE Less than or equal
BIF _query_OP _GT_(Greater than
BIF _query_OP _GTE Greater than or equal
BIF _ _9.uery_OP _EQTI Is equal
BIF _query _OP _NEQ Is not equal
BIF _query_OP _SHLO Shift left. _(zero in}
BIF _query_OP _SHLl 1 Shift left. __{_one inl
BIF _query_OP _SHRO) Shift right. Izero inl
BIF _query_OP _SHRl J Shift left. __{_one in}
BIF _query _OP _ROTL Rotate left
BIF _query _0 P -ROTR Rotate ri_g_ht
BIF _query _OP .ANDI Bitwise AND

. BIF _query_OP _ORD_ Bitwise OR
BIF _query _OP .XOR(Bitwise XOR
BIF _query_OP _NOT_{_ Unary Bitwise Invert
BIF _quer_y_OP _NAND Bitwise N AND
BIF _query _OP _NOR_(Bitwise NOR
BIF _query_OP .XNOR Bitwise XNOR
BIF _query _0 P _LAND Lo_g!.cal AND
BIF _query _o P _LO RTI Lo_g_ical 0 R

. BIF ...guery _0 P ..LN 0 R Lo_g_ical N 0 R
BIF _query _OP ..LXOR Lo_g!.cal XOR
BIF _query _OP ..LXNORTI: Lo_g!.cal XNOR
BIF _query_OP _CONCATil Concatenation
BIF ~uery_OP _NOOP l No o_Qerator.

Figure 7: The Query Op~rator Types

36

This function returns an ascii string corresponding to the expression tree in the Expression
object. The string has been allocated so it is suggested that the user free it after it is no longer
useful.

char *BIF _Variable_to_String (variable)

Variable_PTR variable;

This function returns a string corresponding to the Variable object passed to it. NOTE: This
function returns static internal storage. Do not alter or free the string returned.

37

3 References

References

[DuHG89] Dutt, N., Hadley, T., and Gajski, D., "BIF: A Behavioral Intermediate Format For High
Level Synthesis," Tech. Rpt. # 89-03, UC Irvine, September, 1989.

[DuHG90] Dutt, N., Hadley, T., and Gajski, D., "An Intermediate Representation for Behavioral
Synthesis," 27th Design Automation Conference, June, 1990.

[HaCD90] Hadley, T., Cho, J. H., and Dutt, D., "Translating BIF into VHDL: Algorithms and
Examples," Tech. Rpt. # 90-06, UC Irvine, June, 1990.

38

Index

Action
adding, 23

BIF _add_Action_to_Triplet, 24
BIF ...add_ELSE_Action_to_lfExpression,

24
BIF _add_IF _Action_to_lfExpression,

23
BIF ...add_UNCOND_Action_to-Entry,

24
copying, 22

BIF _copy _Action, 22
creation, 22

BIF _create_ASSIGN_Action, 22
BIF _create_IF _Action, 22

definition, 22
freeing, 22

BIF _free_Action, 22
modifying, 22

BIF _modify _Action, 22
BIF _modify JF _Action, 23

querying, 23
BIF _query_Action_ASSIGN, 23
BIF _query ~ction__assign, 23
BIF _query_Action_IF, 23
BIF _query -.Action_if_expression, 23
BIF _query _Action_next, 23
BIF _query_Action_prev, 23

Assign
copying, 21

BIF _copy _Assign, 21
creation, 21

BIF _create_Assign, 21
definition, 21
freeing, 21

BIF _free_Assign, 21
modifying, 21

BIF _modify-Assign, 21
querying, 21

BIF _query _Assign...assign_delay, 21
BIF _query _Assign-1hs, 21
B IF _query _Assign_r hs, 22

AssignDelay
copying, 18

BIF _copy _AssignDelay, 18
creation, 17

39

BIF _create_AssignDelay, 17
definition, 17
freeing, 17

BIF _free_AssignDelay, 18
modifying, 18

BIF _modify _AssignDelay, 18
querying, 18

BIF _query_AssignDelay_delay, 18
BIF _query _AssignDelay _event, 18

BIF data structure, 7
BIF _output_text(), 7
BIF _parser(), 7
bool, 7

compilation, 6
cc, 6

ConcurrentEntry
adding, 30

BIF __add_ConcurrentEntry _to_Table,
30

copying, 30
BIF _copy _ConcurrentEntry, 30

creation, 29
BIF _create_ConcurrentEntry, 29

definition, 29
freeing, 29

BIF _free_ConcurrentEntry, 30
modifying, 30

BIF _modify _ConcurrentEntry, 30
querying, 30

BIF _copy _ConcurrentEntry _ident, 30
BIF _copy _ConcurrentEntry _next, 30
BIF _copy _ConcurrentEntry _prev, 30

Condition
copying, 12

BIF _copy _Condition, 12
creation, 12

BIF _create_Condition, 12
definition, 12
freeing, 12

BIF _free_Condition, 12
modifying, 12

BIF _modify _Condition, 13
querying, 13

BIF _query _Condition_ELSE, 13

BIF _query _Condition_expression, 13

Entry
adding, 29

BIFadd_Entry _to_Table, 29
copying, 28

BIF _copy_Entry, 28
creation, 28

BIF _create_Entry, 28
definition, 28
freeing, 28

BIF _free-Entry, 28
modifying, 28

BIF _modify _Entry, 28
querying, 28

BIF_query_Entry, 28
BIF_query_Entry_next, 29
BIF _query _Entry _num_triplets, 29
BIF _query _Entry _num_uncond_actions,

29
BIF_query_Entry_prev,29
BIF _query_Entry_triplets, 29
BIF _query_Entry_uncond_actions, 29

Event
copying, 15

BIF_copy_Event,15
creation, 14

BIF _create-.AFTERDELAY _Event,
15

BIF _create_CALL_Event, 14
BIF _create_DELAY _Event, 14
BIF _create_Event, 14

definition, 14
freeing, 15

BIF_free_Event, 15
modifying, 15

BIF _modify _AFTER_DELA Y _Event,
15

BIF _modify-DELAY _Event, 15
BIF _modify _Event, 15

querying, 15
BIF _query _Event-.AFTER_DELA Y,

15
BIF _query _EvenLCALL, 15
BIF _qnery_EvenLDELAY, 15
BIF >:i.ery_EvenLdelay, 16
Bll:l uery_EvenLEXPRESSION, 16
BIJi'_query_EvenLexpression, 16

40

Expression
copying, 34

BIF _copy _Expression, 34
creation, 34

BIF _create_Expression, 34
definition, 33
freeing, 34

BIF _free_Expression, 34
modifying, 34

BIF _modify .LEAF _Expression, 34
BIF _modify ..NODE_Expression, 34

operators, 35
querying, 34

BIF_precedence, 35
BIF _query_Expression_LEAF, 34
BIF _query _Expression_left, 35
BIF _query_Expression_NODE, 35
BIF _query _Expression_operator, 35
BIF _query _Expression_right, 35
BIF _query_Expression_variable, 35
BIF_query_UNARY, 35

string conversion, 35
BIF ..sprint_Expression, 35
BIF _ Variable_to_String, 37

figures
The BIF Data Structure (1), 8
The BIF Data Structure {2), 8
xbif

File

Top Level Window, 1
Top Level Menu, 1
The Table Window, 2
Table Syntax Error Example, 2

copying, 33
BIF _copy_File, 33

creation, 33
BIF _create_File, 33

definition, 33
freeing, 33

BIF _free-File, 33
modifying, 33

BIF _modify_File, 33
querying, 33

BIF _query _File_name, 33
BIF _query _File_num-.tables, 33
BIF _query _File_tables, 33

/open(), 7

I/Expression
copying, 13

BIF _copy JfExpression, 13
creation, 13

BIF _createJfExpression, 13
definition, 13
freeing, 13

BIF _freeJf.Expression, 13
modifying, 13
querying, 13

BIF _query JfExpression_else....actions,
14

BIF _query JfExpression...if....action ,
14

BIF _query _NextStateEvent_event, 25
BIF _query_NextStateEvent_next, 25
BIF _query _N extStateEvent_next_state,

25
BIF _query_NextStateEvent_prev, 26
BIF _query _NextStateEvent_SERIAL,

25

objects
Action, 22
Assign, 21
AssignDelay, 17
ConcurrentEntry, 29
Condition, 12

BIF _query_lfExpression...if_cond, 14 Entry, 28
BIF _query JfExpression_num_e lse_actions, Event, 14

14 Expression, 33

BIF _query JfExpression_numjf_action,
14 .

include
BIF.h, 6
directory, 6

input, 6
input routines

BIF _parser(), 7

libraries
libBIF.a, 6

linking, 6

N extStateEvent
adding, 26
definition, 24
modifying, 25

BIF _modify_NextStateEvent, 25
N extStateEvent

adding
BIFadd_NextStateEvent_to_Triplet,

26
copying, 25

BIF _copy_NextStateEvent, 25
creation, 24

BIF _create_NextStateEvent, 24
BIF _create_SERIAL_NextStateEvent,

24
freeing, 24

BIF Jree_NextStateEvent, 25
querying, 25 .

41

File, 33
I/Expression, 13
N extStateEvent, 24
Stateident, 8
Table, 30
Tableident, 11
Timing, 16
Triplet, 26
Variable, 18

output, 7
output routines

BIF _output_text(), 7

I/Expression
modifying

BIF _modify JfExpression, 13
Stateident

copying, 8
BIF_copy.Btateldent, 8

creation, 8
BIF _create_Stateldent, 8

definition, 8
freeing, 8

BIF _free.Btateldent, 8
modifying, 8

BIF _modify.Btateldent, 8
querying, 8

Table

BIF _query-8tateldenLFIRST, 11
BIF _query -8tateldent_name, 8
BIF _query -8tateldenLtable, 8

adding, 32
BIF ...add_ Tahle_to_File, 32

copying, 31
BIF _copy_Table, 31

creation, 30
BIF _create_CONCURRENT_Table,

31
BIF _create_ Table, 31

definition, 30 ·
freeing, 31

BIF _free_Table, 31
modifying, 31

BIF _modify_CONCURRENT_Table,
31

BIF _modify _Table, 31
querying, 31

BIF _query _Table, 31
BIF _query _Table_CONCURRENT,

32
BIF _query _Table_concurrenLentries,

32
BIF _query _Table_entries, 32
BIF _query_Table_next, 32
BIF _query _Table_num_entries, 32
BIF _query _Table_OPSBASED, 32
BIF _query_Table_prev, 32
BIF _query_Table_table_ident, 32

Table/dent
adding, 12

BIF ...add_TableldenLto_Table, 12
copying, 11

BIF _copy_Tahleldent, 11
creation

BIF _create_Tableldent, 11
definition, 11
freeing, 11

BIF _free_Tableldent, 11
modifying, 11

BIF _modify _Tableldent, .11
querying, 11

BIF _query _Tableldent_name, 11
BIF _query_TahleidenLnext, 12
BIF _query _TahleldenLofstate, 12
BIF _query _TableidenLoftable, 12
BIF _query_TableidenLprev, 12

Table/dent
creation, 11

template function description, 8

42

Timing
copying, 16

BIF _copy _Timing, 16
creation, 16

BIF _create_Timing, 16
definition, 16
freeing, 16

BIF _free_Timing, 16
modifying, 16

BIF _modify _Timing, 17
querying, 17

BIF _query _Timing_delay, 17
BIF _query _Timing..MAX, 17
BIF _query_Timing..MIN, 17
BIF _query_Timing..MS, 17
BIF _query _Timing_NOM, 17
BIF _query _Timing_NS, 17

Triplet
adding, 27

BIF ...add_TripleLto-Entry, 28
copying, 26

BIF _copy_Triplet, 26
creation, 26

BIF _create_Triplet, 26
definition, 26
freeing, 26

BIF _free_Triplet, 26
modifying, 26

BIF _modify _Triplet, 27
querying, 27

BIF _query _TripleLactions, 27
BIF _query_TripleLcondition, 27
BIF _query _TripleLentrance_events

'27
BIF _query _Triplet_next, 27
BIF _query _TripleLnexLstate_events,

27
BIF _query _Triplet_num...actions, 27
BIF _query _TripleLnum_nexLstate_events,

27
BIF _query_Triplet_prev, 27

type casting, 8

Variable
copying, 19

BIF _copy_ Variable, 19
creation, 18

BIF _create_CONSTANT _Variable,
18

BIF _create_EVENT _Variable, 18
BIF _create_ Variable, 19

definition, 18
freeing, 19

BIF _free_ Variable, 19
modifying, 19

BIF _modify _CONSTANT_ Variable,
20

BIF _modify_EVENT_Variable, 19
BIF _modify_Variable, 19

querying, 20
BIF _query_Variable_ARRAYREF, 20
BIF _query:...Variable_array_ref, 20
BIF _query_Variable_CONSTANT, 20
BIF _query_Variable_EVENT, 20
BIF _query _Variable_EVENT_FALLING,

21
BIF _query_Variable_EVENT_RISING,

20
BIF _query_ Variable_name, 20
BIF _query_Variable_SELECTION,

20
BIF _query_Variable..selecLstart, 20
BIF _query_Variable..selecLstop, 20

XBIF, 1

43

11~11111111111111111
3 1970 00882 3814

