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ABSTRACT OF THE DISSERTATION

Identification, Development, and Evaluation of Small-Molecule Modulators of 

Nucleotide Metabolism

by

Ethan Wan Rosser

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2020

Professor Caius Gabriel Radu, Co-Chair

Professor Michael E. Jung, Co-Chair

This dissertation describes the identification, development, and evaluation of small-

molecule modulators of nucleotide metabolism. Nucleotides, well-known for their role as the 

“backbone” of DNA, are essential for a variety of cell processes including energy transfer, 

formation of lipid membranes, and DNA and RNA synthesis. Small molecule-mediated 

inhibition of enzymes involved in nucleotide metabolism has shown promise in various 

therapeutic settings, and our group has demonstrated that inhibition of deoxycytidine kinase 

combined with perturbations to other nucleotide-producing enzymes can effectively treat acute 

lymphoblastic leukemia in mouse models. 

Chapter One details the development and evaluation of inhibitors of deoxycytidine 

kinase. Expanding upon a scaffold previously identified by our group, structure-activity-

	 ii



relationship studies were undertaken in pursuit of a clinically-viable inhibitor. With the goal of 

eliminating the presence of a stereocenter within our lead compound while maintaining low-

nanomolar affinity for deoxycytidine kinase, a series of analogs containing a gem-dimethyl 

moiety was produced. In addition, the preclinical pharmacology of the lead compound, DI-87, 

was evaluated with the aid of PET imaging. 

Chapter Two describes the development and application of a cell-based metabolic 

modifier screening platform that leverages the redundancy in pyrimidine metabolism for the 

discovery of selective uridine monophosphate biosynthesis modulators. In evaluating a library of 

protein kinase inhibitors, multiple compounds which possess nucleotide metabolism modifying 

activity were identified. The JNK inhibitor JNK-IN-8 was found to potently inhibit nucleoside 

transport and engage ENT1. Additionally, the PDK1 inhibitor OSU-03012 and the RAF inhibitor 

TAK-632 were shown to inhibit the therapeutically relevant enzyme DHODH, and their affinities 

were unambiguously confirmed through in vitro assays and co-crystallization with human 

DHODH. 

	 iii



The dissertation of Ethan Wan Rosser is approved.

Ellen May Sletten

Neil Kamal Garg

Caius Gabriel Radu, Committee Co-Chair

Michael E. Jung, Committee Co-Chair

University of California, Los Angeles

2020

	 iv



To those who came before me

Who made my life possible

	 v



TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION………………………………………………………….ii

COMMITTEE PAGE……………………………………………………………………………..iv

DEDICATION PAGE……………………………………………………………………………..v

TABLE OF CONTENTS…………………………………………………………………………vi

LIST OF FIGURES………………………………………………………….….….…………….ix

LIST OF SCHEMES………………………………………………………………………..……xi

LIST OF TABLES……………………………………………………….………………………xii

ACKNOWLEDGEMENTS…………………………………………….….……………………xiii

VITA..…….……………………………………………………………………………………xxiii

CHAPTER  ONE:  Development  and  Preclinical  Pharmacological  Evaluation  of  Small 

Molecule Inhibitors of Deoxycytidine Kinase

1.1 Introduction…………………………………………………………………………..……1

1.1.1  Development,  Synthesis,  and  In  Vitro  Activity  of  DI-87  –  a  Potent  Inhibitor  of 

Deoxycytidine Kinase…………………………………………………………………………9

1.1.2 Pharmacokinetics of DI-87……………………………………………………….……11

1.1.3 dCK Inhibition Studies……………………………..…….……………………………13

1.1.4 Grown Inhibition Studies………………………………………………………………15

1.1.5 Discussion………………………………………………………………………….…..17

1.2.1 Basis for Further Structure-Activity Relationship Studies of dCKi Scaffold………….20

1.2.2 Synthesis and Evaluation of Novel dCKi – Modifications to Parts A, B and C……….21

	 vi



1.2.3 gem-Dimethyl dCKi Analogs Adopt Unfavorable Gauche Conformation While Binding 

dCK…………………………………………………………………………………………..29

1.3.1 dCKi Scaffold as a Nucleoside Mimetic……………………………………………….33

1.3.2 Evaluation of Nucleomimetic dCK Inhibitors as Modulators of Pyrimidine Nucleotide 

Metabolism…………………………………………….…………………………………….34

1.4 Discussion………………………………………………….……….……………………38

1.5 Experimental Section…………………………………………………………………….45

1.5.1 Methods and Materials………………………………………….….…….….……..45

1.5.2 General Chemistry Methods…………………………………….….….…….…….54

1.5.3 General Method A – Synthesis of Thioamide Intermediates….….………….…….54

1.5.4 General Method B – Synthesis of 2-substituted 1-(5-methyl-thiazol-4-yl)-ethan-1-

one Intermediates……………………………………………………….…….….………55

1.5.5  General  Method  C  –  Synthesis  of  2-substituted  ethyl-4-carboxylate  Thiazole 

Intermediates…………………………………………………………………….….……56

1.5.6  General  Method  D  –   Synthesis  of  2-substituted  1-(thiazol-4-yl)-ethan-1-ol 

Intermediates………………………………………………….….………………………57

1.5.7  General  Method  E  –   Synthesis  of  2-substituted  2-(thiazol-4-yl)-propan-2-ol 

Intermediates……………………………………………………….….…………………58

1.5.8  General  Method  F  –  Synthesis  of  2-substituted  1-(5-methyl-thiazol-4-yl)-ethyl 

2,2,2-trifluoroacetate Intermediates…………….….……………………….……………58

1.5.9 General Method G – Synthesis of 2-substituted 2-(1-(5-methyl-thiazol-4-yl)-ethyl) 

thiopyrimidine-4,6-diamine Final NMc Compounds (NMc 1–5)…………..….…..…….59

	 vii



1.5.10 General Method H – Synthesis of 2-substituted 4-(2-chloropropan-2-yl) Thiazole 

Intermediates…………………………………………….….……………………………60

1.5.11  General  Method  I  –   Synthesis  of  2-substituted  2-((2-(thiazol-4-yl)propan-2-

yl)thio)pyrimidine-4,6-diamine Final NMc Compounds (NMc 6–16)……….………….61

1.6 Experimental Details……………………………………………………………………..62

1.7 References………………………………………………………………………………110

CHAPTER TWO: Identification of Small Molecule Modulators of Pyrimidine Nucleotide 

Metabolism

2.1 Introduction……………………………………………………………………..………119

2.2  Design  of  a  Differential  Metabolic  Modifier  Screen  for  Identification  of  Novel 

Modulators of Pyrimidine Nucleotide Metabolism……………………………..…….……121

2.3 JNK-IN-8 Inhibits Nucleoside Uptake…………………………………………………126

2.4  OSU-03012 and TAK-632 Target  de novo  UMP Biosynthesis  and Activate  the  DNA 

Replication Stress Response Pathway………………………………….……………..……129

2.5  Co-Crystal  Structures  of  OSU-03012  and  TAK-632  in  Complex  with  Human 

DHODH…………………………………………………………………………….………132

2.6 Discussion……………………..……….……………………………………………….133

2.7 Experimental Section…………………………………..…………….…………………138

2.7.1 Methods and Materials…………………………………………..………..………138

2.8 Supplementary Figures…………………………………………………………………147

2.9 References………………………………………………………………………………155

	 viii



LIST OF FIGURES

CHAPTER ONE

Figure 1.1 Discovery and development of small molecule inhibitors of deoxycytidine kinase….5

Figure 1.2 DI-87 exhibits potent inhibition of deoxycytidine kinase.…………………………..11

Figure 1.3 Plasma and tumor concentrations of DI-87 inform PK model..….………………….12

Figure 1.4 PET imaging reveals in vivo efficacy of DI-87…………………………..….………14

Figure 1.5 DI-87 co-administered with thymidine inhibits tumor growth in vivo, with PK model 

accurately predicting tumor growth outcomes……………………………….…….….…………16

Figure 1.6 Former lead dCK inhibitor compounds DI-39 and DI-82, and current lead compound 

DI-87…….….……………………………………………………………………………………23

Figure 1.7 Structures and IC50 values of dCK inhibitors possessing varied Part A moieties……23

Figure 1.8 dCK inhibitors bearing gem-dimethyl moiety in Part C……………………………..28

Figure  1.9  Molecular  dynamics  (MD)  simulation  of  dCK  inhibitor  conformations  in  dCK 

binding pocket……………………………………………………………………….….………..30

Figure 1.10 Energy scan reveals conformational preferences of dCK inhibitors……………….31

Figure 1.11 Hydrogen bonding interactions of anti and gauche conformations of NMc-10 within 

dCK binding site…………………………………………………………………………………32

Figure 1.12 Design of a phenotypic metabolic modifier screen to evaluate ability dCK inhibitor 

compounds to disrupt pyrimidine nucleotide metabolism……………………………………….35

Figure 1.13 NMc-9 is a putative UCK inhibitor……………………………….………………..38

	 ix



CHAPTER TWO

Figure  2.1  Identification  of  nucleotide  metabolism  modulators  in  a  small  molecule  protein 

kinase inhibitor library…………………………………………………….……..….………….123

Figure 2.2 JNK-IN-8 inhibits nucleoside uptake…………………….….….….………………127

Figure 2.3 OSU-03012 and TAK-632 inhibit DHODH and activate the DNA replication stress 

response pathway…………………………………………………………….…………………131

Figure 2.4 OSU-03012 and TAK-632 bind DHODH…………………………….……………133

Supplementary  Figure  S2.1  Validation  of  UMP as  a  critical,  convergent  metabolic  node  in 

cancer cells………………………………………………………………………….….……….147

Supplementary Figure S2.2 UMP-DNP and -NSP are interchangeable in sustaining proliferation 

across a panel of cancer cell lines……………………………….….….……………………….149

Supplementary  Figure  S2.3  Evaluation  of  UMP-NSP  and  -DNP  inhibitor  potency  and 

selectivity………………………………………………………………………….….….……..150

Supplementary Figure S2.4 Characterization of JNK-IN-8, OSU-03012 and TAK-632.….….152

	 x



LIST OF SCHEMES

Chapter One

Scheme 1.1 Synthesis of DI-87……………………………………………..……….……..……10

Scheme 1.2 General synthetic strategy for synthesis of dCK inhibitors……….….….…………22

Scheme 1.3 Synthesis of dCK inhibitors bearing gem-dimethyl Part C moiety…………………26

	 xi



LIST OF TABLES

CHAPTER TWO

Table S2.1. Crystallographic data collection and refinement statistics…………….…….……..154

	 xii



ACKNOWLEDGEMENTS

There have been so many people, both during and prior to my graduate research career, 

who have played important roles in my life and helped me to get to this point. I will not be able 

to thank them all, but I want to extend a heartfelt thank you to those who have supported me, 

mentored me, pushed me, and helped mold me into the person I am today – I would not be here 

without you.

I first would like to thank my wife and partner, Yvette. It really doesn’t seem like that 

long ago that we hopped off the plane at LAX, fresh from our honeymoon, and embarked upon 

our parallel UCLA journeys of graduate school and a pediatrics residency. She has been in my 

corner for many fights and been there for me through many turbulent times. Graduate school was 

difficult, and I placed a lot of pressure on myself. She helped to ease that pressure, ground me, 

pull me out of bad mindsets and remind me that it was okay to relax and enjoy life outside of the 

lab. She has been my biggest advocate and supporter, celebrating my successes and encouraging 

me through my failures. She continues to expand my world, and I am eternally grateful for her 

love, her support, and her patience. 

I would also like to thank the members of my Dissertation Committee – Prof. Neil Garg, 

Prof. Ellen Sletten, Prof. Michael Jung, and Prof. Caius Radu. I have learned from each of them, 

and they have always been available and very willing to help with a variety of matters. Their 

guidance has been instrumental to my graduate education, and I see each of them as leaders for 

the department as well as for generations of scientists.  I particularly thank my two Principal 

Investigators – Professors Caius Radu and Mike Jung. When I first started graduate school, I was 

a  bit  unsure  of  what  I  wanted to  achieve and where.  An opportunity  arose for  me to  work 

	 xiii



between two labs in two departments, doing organic synthesis as well as cell/molecular/cancer 

biology. Caius and Mike each sat down with me individually, and ultimately they gave me a 

chance to become part of their respective teams. Throughout the course of my graduate career 

they gave me freedom, responsibility,  trust,  and mentorship. Each are brilliant and dedicated 

scientists who are truly incredible to work with and observe. Caius never ceases to impress me 

with his ability to draw connections between seemingly unrelated findings. He is a voracious 

reader of the scientific literature and maintains a level of discipline and commitment to his craft 

that is unparalleled. I always appreciated and will miss the wisdom which he would often dole 

out  during  research  meetings.  One  of  my  favorite  quotes  was  “we  don’t  want  to  just  be 

observers; we want to be explainers, too.” This is such a fundamental tenet of science, yet it can 

be easily lost in the pages of experiments and piles of data. The ability to observe, process, 

understand, and ultimately explain is the ultimate demonstration of scientific and intellectual 

prowess, and this was something Caius pushed us all to achieve. I am grateful for his mentorship, 

and thankful that I was able to work with such a dedicated scientist. These same observations and 

sentiments are just as applicable to Mike (AKA The Boss). Again, I am endlessly amazed at his 

recall  for  details  and  findings,  scientific  or  otherwise.  His  complete  mastery  of  the  field  of 

chemistry is astounding and inspiring, and I truly believe there are exceedingly few academics 

and scientists like him. He is very patient, which is quite amazing given the sheer number of 

projects and commitments he has. Though he has been in the game for a few years, he remains 

an ardent student of the field, and maintains the energy of a junior professor. Beyond his merits 

as a mentor and scholar, he has also changed the lives of countless people and families through 

his work developing two FDA-approved drugs for the treatment of prostate cancer. His academic 

	 xiv



and business successes combine with his charisma to create a truly unique learning and research 

environment. I am thankful to have trained with and learned from him.

While I am truly lucky to have been mentored by Caius and Mike, I would have never 

had the opportunity were it  not for my family. My parents raised me to believe that I could 

accomplish whatever I wanted to, and while they never pushed me towards a certain career, they 

did always push me upwards. Only one time did my father dissuade me from pursuing a career, 

and that was when I declared that I wanted to become a furniture mover when I grew up. My dad 

has always been supportive,  trusting my choices and observing rather than directing. I  think 

that’s what came naturally to him, but maybe he subconsciously realized that I had learned so 

much from him that  I  would be just  fine on my own. He is  a very dedicated individual,  as 

evidenced by his six decades of near-daily piano playing, but he does not boast or brag about it – 

he does it because he loves it. I know that his dedication to reading to myself and my siblings 

every night when we were young led to my passion for reading and, ultimately, my curiosity and 

desire  to  discover.  These  played  fundamental  roles  in  my  desire  to  pursue  a  PhD.  He  is 

compassionate,  eager  to  learn,  and usually  has  a  smile  of  some sort  on his  face;  I  hope to 

continue growing to become like him. My mother, mama, is similarly quick to smile. She has 

always ferociously loved me and wanted me to succeed, though when I was young this could 

lead to arguments and tears.  Her standards were high because she wanted me to have every 

opportunity; she herself had emigrated from Taiwan, making me a first-generation American on 

her side, and she knew the doors that could be unlocked through hard work and dedication. My 

mom is incredibly kind, thoughtful, and generous. She is a helper and a carer. She always thinks 

of others before herself and supports fully –  I will always remember the sound of her voice 

cutting through the rest of the crowd during my basketball games. I had my stumbles but I tried 

	 xv



my best to embody the qualities which she has demonstrated day in and day out. Her love and 

dedication to our family have truly made me a “mama’s boy”. 

I am incredibly lucky to have such supporting, loving, and caring parents. However, it 

wasn’t just me being raised by them – my younger sister Micaela and younger brother Aaron 

have been along for the ride as well. My siblings never cease to amaze me, and they serve as a 

source of constant pride. My sister’s academic achievements are overshadowed only by how 

great of a person she is; generous, cultured, kind, and adventurous. She is a force to be reckoned 

with, and is a strong female voice in a discipline typically dominated by men (surgery). I have 

loved how our relationship has developed as we’ve grown up together.  Aaron, ten years my 

junior, has made me so proud by becoming his own person instead of ascribing to what others 

thought he should be or do based upon his brother/siblings. “Others” includes me – I thought he 

would grow up to be similar to me, and pressured him to do as much. But as he learned what he 

did and didn’t like and made his own decisions, I learned to let him be and provide guidance 

from a couple steps back. We grew together this way, and it has been amazing to watch him 

during this process. His academic prowess seems effortless – this kid is smart – and his sense of 

self, motivation, and direction demonstrates maturity far beyond his years. I am excited to see 

what he puts his mind to next, and can’t wait to continue to grow with him. 

Beyond  my  incredible  nuclear  family,  I  was  blessed  with  great  grandparents.  My 

maternal grandfather grew up in a different kind of world. As an orphan in China, he appears to 

have lied about his age in order to fight as an American Ally in World War II. He would later go 

on  to  fight  against  the  Chinese  Communist  Party  before  relocating  to  Taiwan.  He  and  my 

maternal grandmother sacrificed much to raise five children, and would go on to watch all five 

make it to the United States and become United States citizens. Both would follow suit, moving 

	 xvi



to the US and gaining citizenship when I was young. They were such steady rocks and sources of 

motivation and support for my mom and her siblings, and by extension to me and their other 

grandchildren and great-grandchildren. I love my grandmother’s big smile, the way she always 

tells me to eat more, and her strong will and decisive nature. She has always had a vision for her 

family and has ensured that  it  came to fruition.  I  am thankful  that  she is  able to share this 

moment with me, and hope to honor my grandfather’s legacy with this achievement. I also hope 

to  honor  the  legacies  of  my  paternal  grandparents.  My  dad’s  father  was  a  veteran  and  an 

academic, receiving his PhD in Political Science and holding both teaching and administrative 

positions in a long and successful career. He passed away due to complications from prostate 

cancer  when  I  was  in  high  school,  and  while  I  wish  he  were  here  today,  he  has  remained 

influential upon my life. He was an outdoorsman, a supporter of the arts, and a great father. He 

was  also  a  serious  man,  but  was  quick  to  teach  and  had  a  wry  smile  that  always  seemed 

mischievous to me. His seriousness was balanced by my grandma’s soft and caring nature, which 

belied her incredible intelligence and talent. She was a lifelong artist, with watercolor being her 

medium  of  choice,  and  was  offered  a  Fulbright  Scholarship  to  study  art  in  Europe  after 

graduating from Ohio Wesleyan University.  She declined the offer  in  favor  of  marrying my 

grandfather and starting a family, paving the way for me to be in the position I am in today. She 

was gentle and kind, and supported me in my education both emotionally and financially. I will 

always cherish the letters she wrote me when I was an undergraduate. At the end of her life, 

when it was just the two of us in her room, I thanked her for her support and promised her that I 

would pursue and complete a PhD. She passed away a few moments later. I have thought of her 

often during my graduate career, in good times and in difficult times – her memory has helped 

me keep my promise. 

	 xvii



While I have lost some family members over the years, I have also gained others. My in-

laws, Robert and Melvie Strampe, have welcomed me into their family since the day I met them. 

Their love, support, and encouragement through the years, particularly during graduate school, 

has been so appreciated and comforting. They have joined forces with my parents to form the 

ultimate supportive unit, and I am so thankful to have them in my life. My brother-in-law Miles 

and  his  wife  Kyhra  have  been  similarly  generous  and  accepting.  Their  welcoming  natures, 

willingness to share insight,  and their support means so much to me, as does their daughter 

Murray, whom I cannot wait to watch grow from a closer vantage point. 

Beyond the bonds of blood and paper, I have been lucky to have an incredible group of 

mentors and friends surrounding me for as long as I can remember. 

One  of  the  most  influential  people  in  my life  has  been  Eric  Davis,  my high  school 

basketball coach. He instilled within me the confidence and knowledge that I could do whatever 

it was that I put my mind to. He taught me how to endure and how to persevere. He developed 

my sense  of  dedication  and  drive,  demanded  accountability  both  on  and  off  the  court,  and 

fostered  lifelong  bonds  between  myself,  him,  and  my  teammates.  He  taught  me  about  life 

through the medium of basketball, and I am forever grateful to him.

As an undergraduate, I started out majoring in biology and was in the pre-med track. I 

took the dreaded Introduction to Organic Chemistry course at the beginning of my second year 

and got destroyed by it – I had to drop the class and try again. The following semester’s class 

was taught by Prof. Ming Xian, and the way he taught helped make something click in my head. 

I began to understand the material, and eventually I fell in love with the course. I changed my 

major to chemistry at the end of that semester and Prof. Xian let me join his research group as an 

undergraduate researcher.  In his  group I  was mentored by two great  postdoctoral  scholars  –

	 xviii



 Nelmi O. Devarie and Wei Chen. Nelmi was very patient with me, taught me the ropes and 

demonstrated the importance of spending time both in the lab as well as reading the literature. He 

was the first person to put the idea of pursuing a PhD in my head. After Nelmi left, Wei stepped 

in and took me under his wing. He supported me so much, further refined my lab techniques and 

generously shared his time and projects with me. Prof Xian, Nelmi and Wei each paved the way 

for me to have success in the lab and beyond, helping me earn my place as an author in published 

research articles and encouraging me to apply for awards and grants. I would not have made it to 

UCLA, would not have been awarded an NSF fellowship,  may not have earned a PhD if  it 

weren’t for them. I am very thankful for their support and mentorship. 

My friends and their families have always been a source of stability, laughter, support, 

camaraderie,  and love  in  my life.  I  cannot  remember  a  time when Kevin  Hinckle,  my first 

brother,  was not  in my life.  We grew up playing basketball  together,  and he along with his 

parents Kirk and Wendy are like another family to me. I am fortunate enough to have kept a 

tight-knit group of friends for the vast majority of my life. My pre-school classmates Michael 

Lasik, Gannon Maggard and Jeremy Rossow are still three of my closest friends. Included in that 

circle  are  Kyle  Norton,  Matt  Pfeifer,  Matt  Gray,  Mike  Gray,  Kevin  Thompson,  and  Taylor 

Roberts. Some of my best memories and formative moments have been with these guys – they 

have always had my back and supported me – and I am looking forward to building upon those 

memories for the rest of our lives. While these men have been with me since childhood, I have 

also been lucky to grow my circle. Nadia Weiner has always been such a great confidante and 

caring person; I hope she moves back to the US soon! I am thankful to have grown closer with 

Derek  Campbell,  whose  sincerity  and  intellect  is  great  to  be  around.  I  have  treasured  my 

friendship with Ryan and Tiara Thomas – two incredible people with such good hearts. I am 

	 xix



looking forward to spending more time with them as well  as with their  daughters (my god-

daughters) Emberly and Harper. Jacob Casey has been an incredible source of laughter, support, 

and friendship throughout the years, and as have Jared Meyer and Reyna Swift  – they are each 

incredibly appreciated. 

In  Los  Angeles  I  was  fortunate  to  be  surrounded  by  many  wonderful  friends  and 

labmates. There were so many great times and travels with Taryn Kilmer – I hope those continue 

for years to come. Rob Gross and Lisa Jacobs have been such great and steady friends; I love 

how comfortable we all are together, and I look forward to watching their daughter Reagan grow. 

My brother Dalton Steele has been a great friend, supporting and encouraging me while we both 

have gone through our ups and downs. I am lucky to count him as a lifelong friend and look 

forward to what the future holds for him and for our friendship. Mike Corsello was my guide 

when I came to UCLA for my recruiting visit, and we instantly got along. I miss our in-depth 

talks about life and happiness, and hope to have more of them soon. Gary Duckwiler and Karen 

Hirsch have quickly become great friends – I appreciate so much their open and earnest talks 

about anything and everything. They have befriended, supported, and mentored me, and I look 

forward to returning the favor as much as I can. I have also really enjoyed getting to know Paul 

and Lindsay Graves, and am excited to join them for future Derby Parties. 

My office and lab-space in MSB 3211 has been filled with great friends and labmates. 

Youngsug Kim is missed now that he is back home in South Korea, but I am thankful to have 

had such an encouraging and kind person next to me. Johnny Pham was the first post-doc I 

worked by in Mike’s lab, and I loved our easy conversations on whole hosts of topics. Gaoyuan 

Ma and the husband and wife team of Xiaoguang Liu and Xiaohong Chen have been great 

officemates and friends – they have been incredibly kind and supportive of me, and they have 

	 xx



contributed to making our room a great environment to research in. I have worked with many 

post-docs in the Jung Group and have gotten along well with them all – they are a special group 

with more promising projects and drug candidates than typical groups have in a career. I’m also 

thankful for the friendship and mentorship of Daniel Sun – he always has time to help no matter 

what the problem is, and has helped me through a great deal of synthetic and methodological 

problems in the past four years. My labmate Roy Pan has been a great friend, supportive and 

always there to help and talk. 

On the A-Level I have been fortunate to work with a great group of scientists who were 

generous with their time and scientific prowess. Evan Abt, Soumya Poddar, Woosuk Kim, Joe 

Capri and Thuc Le all helped teach me so much, and were instrumental in all aspects of my 

research – I am thankful to have worked with such great scientists and kind people who helped 

make our research translational and impactful. I am also thankful to have been able to work with  

and learn from Christine Mona, a balancing presence who was always there to talk, provide 

guidance,  and  motivate.  Her  humor,  wit,  thoughtfulness  and  talent  are  very  appreciated. 

Nagichettiar  “Saty” Satyamurthy has been such a helpful  and generous A-level  member and 

mentor as well – his knowledge and recall is vast, and his practical experience has helped me out 

of many synthetic jams over the years. I am very thankful to have had him as part of my research 

and mentorship team. 

My 2015 cohort was, I believe, particularly special. We had a great mix of personalities 

and everyone got along well, making the hellish first year much more bearable. The cohort has 

had a lot of academic and scientific success, and I am looking forward to tracking everyone’s 

careers as they go forward. I am particularly thankful to have gotten to know Priera Panescu, 

with whom I worked closely with while we served as board members of the Organization for 

	 xxi



Cultural Diversity in Science. She is a highly driven, smart, and passionate woman who strives 

and pushes for real change. 

Finally, I would like to thank my educational institutions – Washington State University 

and the University of California, Los Angeles. WSU gave me every opportunity I could have 

asked for, gave me time to grow and come into my own, and set me up for success in both 

graduate school as well as in life. Without my time in Pullman, I would not have found my way 

to LA. Go Cougs! UCLA and the Department of Chemistry and Biochemistry have given me a 

lot of support and tutelage, and have provided many opportunities for growth outside of the lab, 

which  I  really  appreciate.  Having  the  opportunity  to  be  a  member  of  the  Organization  for 

Cultural  Diversity  in  Science  was  a  highlight  of  my  graduate  career,  and  it  has  been  very 

affirming to have the support of the Division of Physical Sciences. Working closely with the 

Dean, Miguel Garcia-Garibay, towards providing more abundant and equitable opportunities for 

historically marginalized communities has been rewarding and motivating. I believe there is real 

opportunity for decisive change in this moment, and am grateful to have had the opportunity to 

play a part. 

Pursuing a PhD in Organic Chemistry is a life-changing endeavor. I am still processing 

this journey that I have been on, but in the end I am thankful to have had the opportunity, the 

chance, to make a difference. I would not have made it without the support of those named in the 

above text, and without the support of so many more who I have not been able to include. Thank 

you all. 

	 xxii



VITA

Education

University of California, Los Angeles, Los Angeles, CA
Master of Science in Chemistry                                                                                         June 2017

Washington State University, Pullman, WA
Bachelor of Science in Chemistry, cum laude                                                                   May 2014

Research and Teaching Experience

Graduate Research Assistant                                                               September 2015 – June 2020                                                                        
University of California, Los Angeles, CA
Advisor: Prof. Caius G. Radu (Department of Molecular and Medical Pharmacology)
Co-Advisor: Prof. Michael E. Jung (Department of Chemistry and Biochemistry)
- Identified and synthesized small molecule modulators of nucleotide metabolism while profiling 

their effects upon cancer cells and elucidating novel anticancer therapeutic strategies

Graduate Teaching Assistant                                                               September 2015 – June 2017
University of California, Los Angeles, CA
- Instructed undergraduate students in both lecture and laboratory settings, teaching fundamental 

principles of general chemistry, organic chemistry, and laboratory techniques

Undergraduate Research Assistant                                                          January 2011 – May 2014                                                        
Washington State University, Pullman, WA
Advisor: Prof. Ming Xian (Department of Chemistry)
- Synthesized and developed small molecule fluorescent probes for the detection of hydrogen 

sulfide and hydrogen polysulfides in biological systems

Leadership and Service

Organization for Cultural Diversity in Science (OCDS) at UCLA
Co-President                                        February 2019 – March 2020
Outreach Coordinator                                                                        October 2016 – January 2019

Fellowships and Awards

NSF Graduate Research Fellowship                                                                              2017 – 2020
NASA Space Grant Scholarship                                                                                      2012, 2014
Undergraduate Award in Organic Chemistry – American Chemical Society                            2014
J. Culbertson Chemistry Scholarship                                                                               2013, 2014
Edwin J. Hart Chemistry Scholarship                                                                                        2013
Art and Helen Brunstad Chemistry Scholarship                                                              2012, 2013
Washington State University Undergraduate Research Mini-Grant                                          2011

	 xxiii



Publications

1. Isoquinoline thiosemicarbazone displays potent anticancer activity with in vivo efficacy 
against aggressive leukemias
Daniel L. Sun*, Soumya Poddar*, Roy D. Pan, Ethan W. Rosser, Evan R. Abt, Juno Van 
Valkenburgh, Thuc M. Le, Vincent Lok, Selena P. Hernandez, Janet Song, Joanna Li, Aneta 
Turlik, Xiaohong Chen, Chi-An Cheng, Wei Chen, Christine E. Mona, Andreea D. Stuparu, 
Laurent Vergnes, Karen Reue, Robert Damoiseaux, Jeffrey I. Zink, Johannes Czernin, 
Timothy R. Donahue, Kendall N. Houk, Michael E. Jung, Caius G. Radu. RSC Medicinal 
Chemistry. 2020, In Press. (*These authors contributed equally).

2. Development and preclinical pharmacology of a novel dCK inhibitor, DI-87
Soumya Poddar, Edmund Capparelli, Ethan W. Rosser, Liu Wei, Thuc Le, Michael E. Jung, 
Caius G. Radu, Mina Nikanjam. Biochem. Pharmacol. 2019, 172, Article No. 113742.

3. Metabolic modifier screen reveals secondary targets of protein kinase inhibitors within 
nucleotide metabolism
Evan R. Abt*,  Ethan W. Rosser*, Matthew A. Durst*, Soumya Poddar, Vincent Lok, Liu 
Wei, Woosuk Kim, Janet Song, Joseph R. Capri, Thuc M. Le, Roger Slavik, Michael E. Jung, 
Robert Damoiseaux, Johannes Czernin, Timothy R. Donahue, Arnon Lavie, Caius G. Radu. 
Cell Chem Biol. 2019, 27(2), 197-205. (*These authors contributed equally).

4. The Development of Fluorescent Probes for Visualizing Intracellular Hydrogen Polysulfides
Chen, W.; Rosser, E. W.; Matsunaga, T.; Pacheco, A.; Akaike, T.; Xian, M. Angew. Chem. Int. 
Ed., 2015, 54, 13961-13965.

5. A Specific Nucelophilic Ring-Opening Reaction of Aziridines as a Unique Platform for the 
Construction of Hydrogen Polysulfides Sensors  
Chen, W.; Rosser, E. W.; Zhang, D.; Shi, W.; Li, Y.; Dong, J.; Ma, H.; Hu, D.; Xian, M. Org. 
Lett., 2015, 17(11), 2776-2779.

6. Fluorescent Probes Based on Nucleophilic Substitution Cyclization for Hydrogen Sulfide 
Detection and Bioimaging
Peng, B.; Chen, W.; Liu, C.; Rosser, E. W.; Pacheco, A.; Zhao, Y.; Aguilar, H. C.; Xian, M. 
Chem. Eur. J., 2013, 20(4), 1010-1016.

Patents

1. Modulators of pyrimidine nucleotide biosynthetic pathways
Evan R. Abt,  Ethan W. Rosser, Matthew A. Durst, Soumya Poddar, Arnon Lavie, Caius G. 
Radu. U.S. Provisional Patent Ser. No. 62848728, 2019. 

	 xxiv



CHAPTER ONE

Preclinical Pharmacological Evaluation and Further Development of Small Molecule 

Inhibitors of Deoxycytidine Kinase

1.1 Introduction

With critical  roles  in  fundamental  biological  processes  ranging from DNA and RNA 

synthesis  to  energy  transfer  to  lipid  synthesis,  the  importance  of  nucleotides  cannot  be 

overstated.1,2  Given their  essential  character,  levels of purine and pyrimidine nucleotides are 

highly regulated within mammalian systems, and their production is achieved through parallel 

and convergent  biosynthetic  pathways.3,4  The de novo  pathway (DNP) produces  nucleotides 

starting from glucose and simple amino acid precursors, while the nucleoside salvage pathway 

(NSP) recovers preformed nucleosides from the extracellular environment and phosphorylates 

them  to  generate  their  monophosphate  nucleotide  forms.4,5  The  action  of  the  key  enzyme 

ribonucleotide reductase (RNR) converts ribonucleotides (rNs), necessary for essential processes 

such as RNA synthesis and energy transfer,  to their deoxyribonucleotide (dN) forms through 

reduction of the ribose 2’-hydroxyl group, thus generating the dN building blocks required for 

DNA synthesis and repair.6 The salvage pathway for dN synthesis relies upon the action of two 

cytosolic kinases, thymidine kinase 1 (TK1) and deoxycytidine kinase (dCK), to phosphorylate 

deoxyribonucleosides  recovered  from the  extracellular  space  to  their  monophosphate  forms, 

which  are  subsequently  phosphorylated  by  other  kinases  to  produce  deoxyribonucleotide 

triphosphates  (dNTPs).7  Each  kinase  possesses  unique  substrate  specificities;  TK1 

phosphorylates thymidine (dT) and deoxyuridine (dU), while dCK phosphorylates deoxycytidine 
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(dC), deoxyadenosine (dA), and deoxyguanosine (dG).8 Though dCK has specificity for three 

out  of  the  four  dN  precursors  of  nucleic  acids,  it  is  able  to  indirectly  produce  the  fourth 

(deoxythymidine triphosphate, dTTP) by the action of dCMP aminase and thymidylate synthase 

upon the dCK product dCMP, thus generating dTMP.

dCK is a homodimer with monomeric units composed of ten α-helices surrounding a 

five-stranded parallel  β-sheet.9  The protein is  able to adopt several  distinct  conformations to 

accommodate varied nucleoside phosphoryl acceptors (dC, dA, dG) as well as both ATP and 

UTP phosphoryl  donors.10,11  dCK  is  constitutively  expressed,  though  expression  levels  are 

dependent upon tissue type – lymphocytic tissues have high expression, whereas proliferating 

cells such as those of the colon mucosa have intermediate expression, and differentiated tissues 

such as muscle have low expression.7 It has been demonstrated that dCK activity is modulated 

by reversible phosphorylation of Ser74, a residue in a flexible linker region between two of the 

ten α-helices of the monomeric unit.9

The  clinical  utility  of  dCK activity  is  well-established,  as  it  is  the  key  activator  of 

multiple nucleoside analog prodrugs used in antiviral and anticancer therapies.12 Prodrugs such 

as  gemcitabine  are  activated  through  dCK-mediated  phosphorylation  to  yield  their 

monophosphate forms, which are subsequently phosphorylated to their triphosphate forms by 

downstream kinases before incorporation into viral or cancer cell DNA. This incorporation leads 

to DNA damage, stalled replication forks, S-phase arrest, and can eventually lead to apoptosis.13 

Cancer,  viral,  and  other  rapidly-proliferating  cells  are  disproportionately  affected  by  this 

therapeutic  modality,  as  their  increased  rates  of  replication  lead  them  to  greater  levels  of 
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nucleotide-analog incorporation.  The role of  dCK in promoting apoptosis  in cancerous cells, 

albeit indirect,  serves as a preview for potential therapeutic applications of dCK inhibition – 

when confronted with high levels of DNA damage and replication stress, cancer cells undergo 

apoptosis.  DNA damage  can  result  from loss  of  genomic  integrity  through incorporation  of 

nucleotide analogs into newly synthesized DNA (i.e., gemcitabine therapy), or can result from an 

imbalance in cellular dNTP pools.13,14 The latter has been explored as a potential anticancer 

therapy through inhibition of the key NSP enzyme RNR, which as been an important target in 

anticancer therapy for decades. However, the use of RNR-inhibiting agents, such as hydroxyurea 

and  triapine  (3-AP),  has  so  far  proven  unsuccessful  in  clinical  trials,  potentially  due  to  the 

existence of the NSP which becomes upregulated upon DNP-inhibition and thus allows cells to 

maintain  control  over  dNTP  levels.13,15–17  An  appealing  response  to  this  compensatory 

mechanism is to destabilize pool levels through simultaneous inhibition of both the NSP and 

DNP, therefore inducing replication stress response and apoptosis. 

dCK is an intriguing target in anticancer therapy as it is a rate limiting enzyme within the 

salvage pathway of dNTP biosynthesis, and multiple cell lines and tumor samples in the Cancer 

Cell  Line Encyclopedia and The Cancer Genome Atlas,  respectively,  express this  enzyme at 

higher levels when compared to normal tissue.18 Among the cancers listed in these resources as 

having high expression levels of dCK, leukemias and lymphomas are most prominently featured. 

However, despite its ability to provide all four dNs necessary for DNA synthesis and repair, the 

potential clinical implications of inhibiting dCK activity have only recently become clear.  In 

previous  studies,  dCK  has  been  shown  to  play  important  roles  in  hematopoiesis  through 

regulation of dNTP biosynthesis in lymphoid and erythroid progenitors – hematopoiesis was 
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impaired in dCK-/- mice due to lack of dCTP, which resulted in replication stress, S-phase arrest, 

and DNA damage in these progenitors.8,19 dCK has also been demonstrated to activate the G2/M 

checkpoint  in  cells  responding  to  DNA damage.20  Given  its  roles  in  hematopoiesis  and  in 

regulation of cell division, as well as the potential for disruption in dNTP pool levels following 

its inhibition, our group became interested in developing small molecule inhibitors of dCK for 

use in novel anticancer therapies.

Following a high-throughput screening campaign in our lab, two hit compounds were 

identified as low-µM inhibitors of dCK (Figure 1.1A), and their activity was validated through 

inhibition  of  uptake  of  tritiated  deoxycytidine  (3H-dC).21  Subsequent  structure-activity 

relationship (SAR) studies, aided by crystallographic data of early inhibitors complexed with 

dCK, revealed that alkyl substitution of the thiazole 5-position led to increased dCK affinity. This 

knowledge eventually yielded the initial lead compounds DI-38 and DI-39, which had low-nM 

IC50 values in CEM cells (Figure 1.1B). The translational potential of this class of compounds 

was demonstrated by Nathanson et  al.,  who showed that  inhibition of  the DNP through dT-

mediated allosteric regulation of RNR led to upregulation of the NSP in order to avoid lethal 

replication  stress.17  Inhibiting  the  NSP-mediated  production  of  dNs  using  DI-39  while 

simultaneously blocking the DNP with dT proved to be an efficacious therapy against  acute 

lymphoblastic leukemia (ALL) models in mice, and no host toxicity was detected. The proposed 

mechanism involves the activation of cellular replication stress response upon insufficient levels 

of dCTP/dNs for proper DNA synthesis. This lack of dNs leads to S-phase arrest (stalled DNA-

replication), DNA damage, and apoptosis. 
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Figure  1.1  |  Discovery  and  development  of  small  molecule  inhibitors  of  deoxycytidine 

kinase. (A) Structures for initial hit compounds identified by high throughput screen and IC50 

values determined using a 3H-dC uptake assay in L1210 cells. (B) Former lead compound dCK 

inhibitors and IC50 values determined using 3H-dC uptake assay in CCRF-CEM human cells. (C) 

Distinct regions of dCK inhibitor molecular scaffold. (D) Former lead compound dCK inhibitor 

and IC50 value determined using 3H-dC uptake assay in CCRF-CEM human cells. (E) Schematic 

of dCK role in activation of 18F-CFA PET probe.

Despite  the  in  vivo  efficacy of  DI-39 against  models  of  ALL,  it  remained a  sub-par 

clinical candidate as it suffered from metabolic instability and was highly insoluble. In assessing 

the structure and potential areas suitable for modification, the scaffold can be divided into four 
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distinct sections: a substituted phenyl ring represents Part A, which is connected to the 2-position 

of the Part B thiazole ring, which in turn is bound at the 4-position to a Part C linker region 

which connects the thiazole to a Part D pyrimidine ring (Figure 1.1C).  The 2-mercapto-4,6-

diaminopyrimidine Part D of the initial lead compounds was found to be optimal for interaction 

with dCK by Nomme et al., while the 5-propyl moiety of the Part B thiazole was discovered to 

present a metabolic liability.22 It was previously shown that increasing the alkyl chain length at 

the 5-position of the thiazole led to increased dCK affinity,21 but with metabolic considerations 

in mind, a 5-methyl substituent was adopted as the appropriate substitution, despite its lower 

dCK affinity. To compensate for this loss of activity, modification of the Part C linker region was 

explored,  ultimately  leading  to  the  discovery  that  a  methyl  substituent,  specifically  the  R-

enantiomer, led to increased in vitro activity and metabolic stability. Subsequent exploration of 

substitutions of the Part A phenyl ring led to identification of a new lead compound, DI-82, 

which had low-nM affinity for dCK and promising metabolic stability (Figure 1.1D). 

While potent activity against the desired target is an important characteristic for small 

molecule therapeutics, it can mean nothing if the pharmacokinetic (PK) and pharmacodynamic 

(PD) properties of the lead compound are poor. Positron emission tomography (PET) is a widely-

used  non-invasive  imaging  technique  which  has  applications  within  diagnosis,  staging,  and 

therapeutic monitoring in cancer.23,24 Recently, PET imaging has emerged as a promising tool 

for use in drug discovery and development, specifically for PK/PD evaluation.25 In PET imaging, 

a positron-emitting isotope is incorporated into a molecule, and this so-called PET probe is then 

injected into the test subject. As the isotope within the PET probe decays, the emitted positrons 

collide with electrons,  thus initiating an annihilation event  and releasing two gamma rays.23 
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Using a PET scanner, clinicians and researchers are able to detect the gamma rays and track the 

distribution and concentration of the PET probe throughout the body. The first PET probe was 

[18F]-fluoro-2-deoxy-D-glucose (18F-FDG; FDG), a powerful imaging molecule by virtue of the 

Warburg effect in which cancer cells preferentially utilize aerobic glycolysis to meet their energy 

demands.26 FDG is recognized by the glucose transporters GLUT1 and GLUT3, which transport 

the glucose analog into the cell where it is phosphorylated to FDG-6-phosphate by hexokinase.24 

No  longer  a  substrate  for  glycolysis  and  unable  to  escape  the  cell,  the  FDG  PET  probe 

accumulates in all tissues but especially in cancer cells due to their increased levels of glycolysis, 

allowing for cancer imaging through PET scanning.23 

In the context of drug discovery, PET imaging may be used to evaluate the PK and PD of 

lead compounds through incorporation of a positron-emitting isotope into the lead compound, so 

long as isotope addition does not significantly alter the biological properties of the molecule. 

Following  injection,  PET  imaging  allows  for  visualization  and  quantification  of  target 

engagement, and when viewed as a function of time, provides invaluable information regarding 

clearance, metabolism, and kinetics.23 Early use of PET imaging in evaluating lead compounds 

can inform decision-making, accelerate the advancement of promising candidates, and reduce 

failure rates.25,27 PET tracers have been developed for many biological targets and processes, 

including  for  dCK  activity.28–30  The  recently  reported  dCK  PET  probe  [18F]Clofarabine 

( [18F]CFA; CFA) is a purine analog which is phosphorylated by dCK to form cell-retained CFA 

monophosphate, thereby generating a PET-detectable signal in dCK-expressing tissues (Figure 

1.1E). Such tracers can help determine dose-response relationships by directly interrogating the 
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target pathway being altered by the drug. Because of the importance of dCK to the nucleoside 

salvage pathway of healthy tissues, it is necessary to characterize dose-response relationships for 

dCK  inhibition  to  determine  the  optimal  inhibition  necessary  for  maximal  tumor  growth 

suppression without leading to excess toxicity. 

In  Section  One  of  Chapter  One,  the  development  of  lead  dCK  inhibitor  DI-87  is 

described, along with its subsequent preclinical pharmacological evaluation. These studies utilize 

PET  imaging  to  measure  dCK  inhibition,  and  PK-PD  modeling  to  quantify  dose-response 

relationship  between  drug  levels  and  tumor  growth  inhibition.  In  Section  Two,  the  further 

development of small molecule inhibitors of dCK is detailed, with attempts at producing achiral 

low-nM  dCK  inhibitors  detailed.  In  Section  Three,  the  evaluation  of  dCKi  as  nucleoside-

mimetics, or “nucleomimetics”, is detailed.
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Section One: Development and Preclinical Pharmacological Evaluation DI-87, a Novel 

Inhibitor of Deoxycytidine Kinase

Adapted from: Soumya Poddar, Edmund Capparelli, Ethan W. Rosser, Liu Wei, Thuc Le, 

Michael E. Jung, Caius G. Radu, Mina Nikanjam. Biochem. Pharmacol. 2019, 172, Article No. 

113742.

1.1.1  Development,  Synthesis,  and  In  Vitro  Activity  of  DI-87  –  a  Potent  Inhibitor  of 

Deoxycytidine Kinase

We previously  reported the  development  of  DI-3917  and DI-8222,  which were  potent 

inhibitors of dCK but possessed poor solubility and sub-optimal drug-like properties. In an effort 

to address the shortcomings of these compounds, we analyzed the crystal structures of human 

dCK complexed with our lead compounds which revealed that the sulfonamide moiety of DI-82 

formed  hydrogen  bonds  within  the  substrate  binding  pocket.  In  order  to  maintain  these 

interactions while potentially improving solubility, we sought to replace the sulfonamide moiety 

of DI-82 with a morpholine ring. Morpholines are a privileged scaffold in medicinal chemistry, 

with  documented  benefits  such  as  improved  pharmacokinetic  and  metabolic  profiles  for 

molecules bearing this heterocycle.31 Additionally, previous SAR studies upon the dCK inhibitor 

(dCKi) scaffold indicated that modifications within this region were well tolerated.21,22 DI-87 

was synthesized as follows: an SN2 reaction between 4-methoxy-3-hydroxybenzonitrile and 4-(2-

chloroethyl)morpholine  furnished  3  (Scheme  1.1).  Heating  with  an  aqueous  solution  of 

ammonium sulfide  gave  thioamide  4,  which  was  subjected  to  Hantzsch  thioazole  formation 

conditions to yield thiazole 5. Asymmetric Corey-Bakshi-Shibata (CBS) reduction of the ketone 
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resulted in the S-alcohol 6, which was converted into the trifluoroacetate 7 and directly displaced 

via SN2 reaction by 4,6-diamino-2-mercaptopyrimidine to furnish (R)-DI-87 (DI-87) (8).  The 

trifluoroacetate 7 was not isolated due to instability of this intermediate. 

Scheme 1.1 | Synthesis of DI-87a 

aReagents and conditions: (i) 4-(2-chloroethyl)morpholine hydrochloride, Cs2CO3, Acetone:DMF 

1:1, 70 °C, 12 hr, 91%; (ii) (NH4)2S (20% aqueous solution), pyridine, Et3N, 60 °C, 12 hr, 79%; 

(iii)  4-bromo-2,3-pentanedione,  ethanol,  reflux,  4  hr,  54%;  (iv)  (R)-(+)-2-methyl-CBS-

oxazaborolidine, Borane-THF complex, THF, -78 °C, 6 hr, 40%; (v) Trifluoroacetic anhydride, 

DCM, 0 °C, 0.5 hr; (vi) 4,6-diamino-2-mercaptopyrimidine, Cs2CO3, DMF, 80 °C, 3 hr, 27% (2 

steps).

The IC50 values for each enantiomer of DI-87 were determined using a dC uptake assay 

in CEM cells. (S)-DI-87 exhibited a much higher IC50 value (468 ± 2.1 nM) relative to (R)-DI-87 
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(3.15 ± 1.2 nM), consistent with previous studies which showed that the R-enantiomer was the 

active species (Figure 1.2A). (R)-DI-87 treatment rescued CEM cells from the anti-proliferative 

effects of gemcitabine, a dCK-dependent nucleoside analog prodrug used in anticancer therapy, 

with an EC50 of 10.2 nM (Figure 1.2B). Additionally, we observed that protein binding of (R)-

DI-87 (DI-87) is comparatively lower than its predecessor, (R)-DI-82 (DI-82), as measured by 

IC50 of the respective dCK inhibitor in presence of bovine serum albumin (BSA) (Figure 1.2C). 

Figure  1.2  |  DI-87  exhibits  potent  inhibition  of  deoxycytidine  kinase.  (A)  Ability  of 

enantiomeric dCK inhibitors (dCKi) (S)-DI-87 and (R)-DI-87 to inhibit uptake of [3H]-dC in 

CEM T-ALL cells. (B) Dose response of (R)-DI-87 in CEM T-ALL cells treated with 10 nM 

gemcitabine (Gem). (C) Protein binding of (R)-DI-87 and (R)-DI-82 assessed by comparing IC50 

values of the compounds in presence of 25 and 50 mg/ml bovine serum albumin (BSA). 

 

1.1.2 Pharmacokinetics of DI-87

DI-87 concentrations in plasma and tumor were determined for three dose levels: 10, 25, 

and  50  mg/kg,  and  were  obtained  at  a  single  time  point  from  each  mouse.  Plasma  DI-87 

concentrations peaked between 1 and 3 hr (Figure 1.3A). Tumor concentrations were lower than 

plasma by more than 3.5 fold and had a later, more sustained peak at 3–9 hr (Figure 1.3B). 
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Figure 1.3 | Plasma and tumor concentrations of DI-87 inform PK model. Plasma (A) and 

tumor  (B)  concentrations  of  DI-87.  Each  data  point  represents  the  plasma  and  tumor 

concentrations from a single mouse (n = 5 per  time point).  (C) PK-PD modeling parameter 

estimates.
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Table 1

predicted close to full dCK inhibition following 25 mg/kg DI-87 dosing.
Growth inhibition studies were performed using 25 mg/kg daily of DI-
87 in combination with a fixed dose of i.p. thymidine, since DI-87 alone
exhibits minimal growth inhibition. Oral DI-87 at 10 mg/kg was given
in combination with i.p. thymidine to demonstrate a dose–response
relationship with reduced dCK inhibition. Control mice received either
intraperitoneal saline injections alone, oral DI-87 with i.p saline injec-
tions, or thymidine alone. These results were validated in a repeat study
where we explored the effect of full dCK inhibition throughout the
dosing interval, with 25 mg/kg BID of DI-87 administered in combi-
nation with a fixed dose of thymidine as the highest dose. Tumor size
was measured every 3 days after the initiation of drug administration.
Mice administered thymidine alone or DI-87 alone had tumor growth
curves similar to the control (data not shown). Increasing DI-87 doses
resulted in reduced tumor growth, consistent with the dCK inhibition
seen in the PET scans. The changes in tumor size with time are shown in
Fig. 5A.

The tumor sizes from the two studies were used in a combined PK-
PD model. PK parameters from the final combined plasma-tumor model
were fixed and PD parameters were estimated in NONMEM. A super-
exponential function was found to describe the growth of the control
data the best: = eGrowth(t) k t1 k2. An Emax indirect response PD model 9
was found fit the growth inhibition data the best:

= +dA
dT

k k E k k TIME A(1 ) (56 ( ))in out max k1 2 2 1

Final parameter estimates from the model are shown in Table 1.
Emax was 1.06 and EC50 was 3.63 μg/mL. The final model was used for
simulations of two concentrations (10 mg/kg daily, and 25 mg/kg BID).
Fig. 5B demonstrates that the final model fit the experimental data well.
Thus, maximal dCK inhibition over the 24 hr dosing period results in
greater growth inhibition, consistent with the 25 mg/kg BID dose.

4. Discussion

dCK is an intriguing target in anti-cancer therapy as it is a rate
limiting enzyme within the salvage pathway of dNTP biosynthesis, and
multiple cell lines and tumor samples in the Cancer Cell Line

Encyclopedia and The Cancer Genome Atlas, respectively, express this
enzyme at higher levels when compared to normal tissue [10]. Among
the cancers listed in these resources, leukemias and lymphomas are
most prominently featured. While targeting the salvage pathway of
dNTP biosynthesis through dCK inhibition is a relatively new approach,
the key enzyme of the parallel de novo pathway, ribonucleotide re-
ductase (RNR), has been an important target in anticancer therapy for
decades. The RNR inhibitor hydroxyurea (HU) has been used clinically
for cancer treatment and is in clinical trials for novel applications. 3-AP
is also in clinical trials as an anti-cancer agent [11,12]. Although these
compounds are able to inhibit RNR, they each possess dose-limiting
toxicity and limited efficacy [13,14]. A major resistance mechanism to
RNR inhibition therapy is presence of an active dCK-mediated salvage
pathway, which may explain the failure of RNR inhibitors such as 3-AP
in clinical trials. In an effort to circumvent this resistance mechanism,
we developed inhibitors of dCK to be used in combination with RNR
inhibition. We previously reported the development of DI-39 [3] and
DI-82 [15], which were potent inhibitors of dCK but possessed poor
solubility and sub-optimal drug-like properties. To address these
shortcomings, we developed DI-87, a potent, specific, soluble, and
bioavailable dCK inhibitor which has recently gained FDA Investiga-
tional New Drug (IND) approval and will be evaluated in clinical trials
shortly.

In line with our previous studies, we determined that the R-en-
antiomer of DI-87 had a significantly higher affinity for dCK when
compared with the S-enantiomer. The affinity of DI-87 for dCK was
further confirmed through a rescue assay in which the growth of CEM
cells treated with gemcitabine with and without DI-87 supplementation
was monitored. Gemcitabine requires dCK for its cytotoxic effects, and
administration of DI-87 fully prevented cytotoxicity following gemci-
tabine treatment, thereby demonstrating the dCK inhibition of DI-87.
Previous generations of reversible dCK inhibitors developed by our
group had comparable potency, but did not have optimal biochemical
properties. DI-87 improves upon these properties while maintaining
low-nM affinity for dCK. In particular, DI-82 was an effective dCK in-
hibitor but was heavily protein-bound. By comparison, DI-87 retained
its potency in the presence of albumin.

The preclinical pharmacology of DI-87 was also evaluated. Plasma
concentrations peaked 3 h after oral administration, while tumor con-
centrations maintained a peak between hours 3 and 9. Thus, the tumor-
to-plasma concentration ratio was dependent upon sampling time.
Tumor concentrations were significantly lower than plasma con-
centrations for all doses tested. The PET probe [18F]CFA was used to
quantify dCK activity in tumors, and thus effects of DI-87 upon the
target pathway. Given the differential peaks in plasma and tumor
concentrations, linking DI-87 tumor concentrations to dCK inhibition
provided a more physiologic and mechanistic approach. Our population
PK-PD modeling allowed us to describe limited tumor data and link
these concentrations to dCK inhibition. Full dCK inhibition occurred at
the 10 mg/kg dose and increasing doses led to a longer maintenance of
full inhibition. At the highest dose tested (25 mg/kg), full recovery of
enzyme activity occurred by 36 h, with full inhibition being maintained
at the 12 hr time point. Our PK-PD model suggested a threshold or rapid
switching on-off effect. When evaluated as a single agent, DI-87 was
well tolerated at higher doses, but had essentially no ability to inhibit
growth (data not shown). When DI-87 was administered as repeated
doses in combination with thymidine, full dCK inhibition was main-
tained at 12 h (25 mg/kg twice daily dose) and led to maximal tumor
growth inhibition. Lower doses led to diminished dCK inhibition with
predictable decreases in growth inhibition. Thus, DI-87 appears to have
potential as a cancer therapeutic when used in combination with thy-
midine.

The PET probe used in the current study is a tool to help provide
mechanistically-driven rational dosing of DI-87 and similar compounds
prior to clinical trials. The use of non-invasive PET probes and scans can
greatly aid in drug development. Imaging studies in early phase

Table 1
PK-PD modeling parameter estimates.
Plasma-Tumor PK model parameters

Parameter Estimate Standard Error

CL (L/hr/kg) 0.46 0.03
V (L/kg) 2.78 0.22
KA (hr) 0.66 (FIXED) .
Q (L/hr/kg) 0.0045 0.0013
Scalar 3.69 0.40
Half-life (hr)* 4.2 –
Eta1 (Scalar) 34.6% 0.08
Proportional Error 49.9% 0.04
DCK inhibition PK-PD model
Kout 0.12 0.00011
Emax 1.20 0.00200
EC50 0.31 0.00009
Gamma (Hill coefficient) 58.60 0.18500
Kin 0.76 0.00078
Additive Error 0.88 0.00025
Growth Inhibition PK-PD Model
Kout 0.372 0.0973
Emax 1.06 0.2030
Growth Function Exp 1 0.00498 0.0011
Growth Function Exp 2 1.47 0.0399
EC50 3.63 1.19
Intersubject Variability (Emax) 14.1% 2.65%
Additive Error 0.20 0.02

*Half-life: 0.693/(CL/V).
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Plasma and tumor pharmacokinetics (PK) was also evaluated in male mice following a 10 

mg/kg dose, with essentially identical results to those seen in female mice. A population PK 

model  was  initially  developed for  plasma concentrations,  with  a  one-compartment  structural 

model  fitting  the  data  well.  An  additional  compartment  was  added  to  model  tumor 

concentrations.  The  parameter  estimates  for  the  combined tumor  and plasma population  PK 

model are shown in Figure 1.3C, with actual tumor volumes used in the model. KA was fixed to 

the parameter estimate obtained from the plasma PK model. The typical clearance value was 

0.46 L/hr/kg and the plasma volume of distribution was 2.78 L/kg. Tumor sizes varied between 

experiments and it was thus difficult to determine whether tumor concentrations were linear.

1.1.3 dCK Inhibition Studies

DI-87 was administered to mice at three separate doses (5, 10, and 25 mg/kg) to establish 

a dose response curve. The [18F]CFA PET probe was administered three hr prior to imaging. 

Representative mice at each time point and concentration are shown in Figure 1.4A, and data 

from all mice is represented graphically in Figure 1.4B. The 25 mg/kg dose exhibited full dCK 

inhibition for 27 hr, with protein activity fully recovering by 36 hr. The 10 mg/kg dose resulted 

in full inhibition with recovery initiating at the 12 hr time point. The 5 mg/kg dose resulted in 

minimal dCK inhibition with rapid recovery. 
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Figure 1.4 | PET imaging reveals in vivo efficacy of DI-87. (A) dCK activity in CEM xenograft 

tumors, as visualized via PET imaging using [18F]CFA, from representative mice at DI-87 doses 

of 5 mg/kg, 10 mg/kg, and 25 mg/kg. (B) dCK activity as measured by PET quantified for all 

mice. NT; no treatment.

The  quantitative  data  generated  from  PET signal  intensity  was  used  in  a  combined 

population PK-PD model. PK parameters from the final combined plasma-tumor model were 
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fixed and PD parameters were estimated in NONMEM. A sigmoid Emax indirect response PD 

model32 was found to fit the dCK inhibition data the best: 

Final parameter estimates from the model are shown in Figure 1.3C. Emax was 1.20 and 

EC50 was 0.31 μg/mL. The Hill coefficient of 58.6 was consistent with the full dCK inhibition 

seen at the six hr time point for the 25 and 10 mg/kg doses, demonstrating that dCK inhibition is 

essentially a step function at higher concentrations with the transition from no inhibition to full 

inhibition being achieved over a relatively narrow range of concentrations. 

1.1.4 Growth Inhibition Studies

Based on the results from the dCK inhibition experiments, we predicted close to full dCK 

inhibition following 25 mg/kg DI-87 dosing. Tumor growth inhibition studies were performed in 

CEM xenograft tumors using 25 mg/kg daily of DI-87 in combination with a fixed dose of i.p. 

thymidine, since DI-87 alone exhibits minimal growth inhibition (Figure 1.5A). Oral DI-87 at 10 

mg/kg was given in combination with i.p. thymidine to demonstrate a dose–response relationship 

with reduced dCK inhibition. Control mice received either intraperitoneal saline injections alone, 

oral DI-87 with i.p saline injections, or thymidine alone; mice administered DI-87 or thymidine 

alone had tumor growth curves similar to control (data not shown). Tumor size was measured 

eery  three  days  after  the  initiation  of  drug  treatment.  Increasing  DI-87  doses  resulted  in 

significantly reduced tumor growth over the course of the experiment, consistent with the dCK 

inhibition observed in the PET scans. These results were validated in a repeat study where we 

explored the effect of full dCK inhibition throughout the dosing interval, with 25 mg/kg of DI-87 
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Plasma concentrations were more than 3.5-fold higher than tumor
concentrations.

3.3. dCK inhibition studies

DI-87 was administered to mice at three separate doses (5, 10, and
25 mg/kg) to establish a dose response curve. The [18F]CFA PET probe
was administered 3 h prior to imaging. Representative mice at each
time point and concentration are shown in Fig. 4A, and data from all
mice is represented graphically in Fig. 4B. The 25 mg/kg dose exhibited
full dCK inhibition for 27 hrs, and enzyme activity fully recovered by 36
hrs. The 10 mg/kg dose resulted in full inhibition with recovery in-
itiating at the 12 hr time point. The 5 mg/kg dose resulted in minimal
dCK inhibition with rapid recovery.

The quantitative data generated from PET signal intensity was used
in a combined population PK-PD model. PK parameters from the final
combined plasma-tumor model were fixed and PD parameters were

estimated in NONMEM. A sigmoid Emax indirect response PD model [9]
was found to fit the dCK inhibition data the best:

=dA
dT

k Sigmoid E k A(1 )in max out

Final parameter estimates from the model are shown in Table 1.
Emax was 1.20 and EC50 was 0.31 μg/mL. The Hill coefficient was 58.6
which was consistent with the full dCK inhibition seen at the 6 hr time
point for the 25 and 10 mg/kg doses, and demonstrating that dCK in-
hibition is essentially a step function at higher concentrations with the
transition from no inhibition to full inhibition being achieved over a
relatively narrow range of concentrations. Fig. 4C is a simulation of the
final model to demonstrate PET signal intensity and the dose response
curve for dCK inhibition seen with the 5, 10, and 25 mg/kg doses.

3.4. Growth inhibition studies

Based on the results from the dCK inhibition experiments, we

Fig. 2. Synthesis and in vitro activity of DI-87. (A)
Structure of DI87. (B) Synthetic route of DI-87. (C)
IC50 values determined using 3H-dC uptake assay in
CEM T-ALL cells to measure inhibition of dCK ac-
tivity. (D) Dose response of DI-87 in CEM T-ALL cells
treated with 10 nM Gemcitabine (n = 4;
mean ± SD) for 72 h determined using Cell Titer
Glo. (E) Protein binding of DI-87 and (R)DI-82 as-
sessed by comparing IC50 of the compounds in pre-
sence of 25 and 50 mg/mL BSA (n = 2; mean ± SD).

Fig. 3. Plasma and tumor concentrations. Each data
point represents the plasma and tumor concentra-
tions from a single mouse (n = 5 per time point).
Plasma concentrations are higher than tumor con-
centrations and have an earlier peak Tumor sizes
varied between experiments thus it was difficult to
determine if the tumor concentrations were linear.
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administered twice daily (BID) in combination with a fixed dose of thymidine as the highest dose 

(Figure 1.5B). BID administration of 25 mg/kg DI-87 with thymidine resulted in near complete 

arrest of tumor growth.

Figure 1.5 | DI-87 co-administered with thymidine inhibits tumor growth in vivo, with PK 

model accurately predicting tumor growth outcomes. (A) Growth of CEM xenograft tumors 

during DI-87 and thymidine treatment. DI-87 administered at 10 mg/kg or 25 mg/kg daily in 

combination with thymidine (n = 5 per dose). (B) Tumor growth inhibition following 25 mg/kg 

BID DI-87 with thymidine (n = 5 per dose). (C, D) Growth inhibition simulation of daily (C) or 

BID (D) 25 mg/kg DI-87 administration using final PK-PD model.

The  tumor  sizes  from the  two  studies  were  used  in  a  combined  PK-PD model.  PK 

parameters from the final combined plasma-tumor model were fixed and PD parameters were 

estimated in NONMEM. A super-exponential function was found to describe the growth of the 
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control data the best: Growth(t) = ek1*tk2. An Emax indirect response PD model32 was found fit 

the growth inhibition data the best:

The final model was used for simulations of two concentrations – 10 mg/kg daily, and 25 

mg/kg BID – which demonstrated that the final model fit the experimental data well (Figures 

1.5C and 1.5D). Thus, maximal dCK inhibition over the 24 hr dosing period results in greater 

growth inhibition, consistent with the 25 mg/kg BID dose. 

1.1.5 Discussion

Following its synthesis, inhibition of [3H]-dC uptake confirmed that DI-87 was a potent 

inhibitor of dCK, with an IC50 of 4.3 nM. The affinity of DI-87 for dCK was further confirmed 

through a rescue assay in which the growth of CEM cells treated with gemcitabine with and 

without  DI-87  supplementation  was  monitored.  Gemcitabine  requires  dCK for  its  cytotoxic 

effects,  and  administration  of  DI-87  fully  prevented  cytotoxicity  following  gemcitabine 

treatment, thereby demonstrating the dCK inhibition of DI-87. Previous generations of reversible 

dCK inhibitors  developed  by  our  group  had  comparable  potency,  but  did  not  have  optimal 

biochemical properties. DI-87 improves upon these properties while maintaining low-nM affinity 

for dCK. In particular, DI-82 was an effective dCK inhibitor but was heavily protein-bound. By 

comparison, DI-87 retained its potency in the presence of albumin. 

The  preclinical  pharmacology  of  DI-87  was  also  evaluated.  Plasma  concentrations 

peaked 3 hr after oral administration, while tumor concentrations maintained a peak between 

hours 3 and 9. Thus, the tumor-to-plasma concentration ratio was dependent upon sampling time. 
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 Growth(t) = ek1*tk2. An Emax indirect response PD model 9 was found fit the growth inhibition data the best

predicted close to full dCK inhibition following 25 mg/kg DI-87 dosing.
Growth inhibition studies were performed using 25 mg/kg daily of DI-
87 in combination with a fixed dose of i.p. thymidine, since DI-87 alone
exhibits minimal growth inhibition. Oral DI-87 at 10 mg/kg was given
in combination with i.p. thymidine to demonstrate a dose–response
relationship with reduced dCK inhibition. Control mice received either
intraperitoneal saline injections alone, oral DI-87 with i.p saline injec-
tions, or thymidine alone. These results were validated in a repeat study
where we explored the effect of full dCK inhibition throughout the
dosing interval, with 25 mg/kg BID of DI-87 administered in combi-
nation with a fixed dose of thymidine as the highest dose. Tumor size
was measured every 3 days after the initiation of drug administration.
Mice administered thymidine alone or DI-87 alone had tumor growth
curves similar to the control (data not shown). Increasing DI-87 doses
resulted in reduced tumor growth, consistent with the dCK inhibition
seen in the PET scans. The changes in tumor size with time are shown in
Fig. 5A.

The tumor sizes from the two studies were used in a combined PK-
PD model. PK parameters from the final combined plasma-tumor model
were fixed and PD parameters were estimated in NONMEM. A super-
exponential function was found to describe the growth of the control
data the best: = eGrowth(t) k t1 k2. An Emax indirect response PD model 9
was found fit the growth inhibition data the best:

= +dA
dT

k k E k k TIME A(1 ) (56 ( ))in out max k1 2 2 1

Final parameter estimates from the model are shown in Table 1.
Emax was 1.06 and EC50 was 3.63 μg/mL. The final model was used for
simulations of two concentrations (10 mg/kg daily, and 25 mg/kg BID).
Fig. 5B demonstrates that the final model fit the experimental data well.
Thus, maximal dCK inhibition over the 24 hr dosing period results in
greater growth inhibition, consistent with the 25 mg/kg BID dose.

4. Discussion

dCK is an intriguing target in anti-cancer therapy as it is a rate
limiting enzyme within the salvage pathway of dNTP biosynthesis, and
multiple cell lines and tumor samples in the Cancer Cell Line

Encyclopedia and The Cancer Genome Atlas, respectively, express this
enzyme at higher levels when compared to normal tissue [10]. Among
the cancers listed in these resources, leukemias and lymphomas are
most prominently featured. While targeting the salvage pathway of
dNTP biosynthesis through dCK inhibition is a relatively new approach,
the key enzyme of the parallel de novo pathway, ribonucleotide re-
ductase (RNR), has been an important target in anticancer therapy for
decades. The RNR inhibitor hydroxyurea (HU) has been used clinically
for cancer treatment and is in clinical trials for novel applications. 3-AP
is also in clinical trials as an anti-cancer agent [11,12]. Although these
compounds are able to inhibit RNR, they each possess dose-limiting
toxicity and limited efficacy [13,14]. A major resistance mechanism to
RNR inhibition therapy is presence of an active dCK-mediated salvage
pathway, which may explain the failure of RNR inhibitors such as 3-AP
in clinical trials. In an effort to circumvent this resistance mechanism,
we developed inhibitors of dCK to be used in combination with RNR
inhibition. We previously reported the development of DI-39 [3] and
DI-82 [15], which were potent inhibitors of dCK but possessed poor
solubility and sub-optimal drug-like properties. To address these
shortcomings, we developed DI-87, a potent, specific, soluble, and
bioavailable dCK inhibitor which has recently gained FDA Investiga-
tional New Drug (IND) approval and will be evaluated in clinical trials
shortly.

In line with our previous studies, we determined that the R-en-
antiomer of DI-87 had a significantly higher affinity for dCK when
compared with the S-enantiomer. The affinity of DI-87 for dCK was
further confirmed through a rescue assay in which the growth of CEM
cells treated with gemcitabine with and without DI-87 supplementation
was monitored. Gemcitabine requires dCK for its cytotoxic effects, and
administration of DI-87 fully prevented cytotoxicity following gemci-
tabine treatment, thereby demonstrating the dCK inhibition of DI-87.
Previous generations of reversible dCK inhibitors developed by our
group had comparable potency, but did not have optimal biochemical
properties. DI-87 improves upon these properties while maintaining
low-nM affinity for dCK. In particular, DI-82 was an effective dCK in-
hibitor but was heavily protein-bound. By comparison, DI-87 retained
its potency in the presence of albumin.

The preclinical pharmacology of DI-87 was also evaluated. Plasma
concentrations peaked 3 h after oral administration, while tumor con-
centrations maintained a peak between hours 3 and 9. Thus, the tumor-
to-plasma concentration ratio was dependent upon sampling time.
Tumor concentrations were significantly lower than plasma con-
centrations for all doses tested. The PET probe [18F]CFA was used to
quantify dCK activity in tumors, and thus effects of DI-87 upon the
target pathway. Given the differential peaks in plasma and tumor
concentrations, linking DI-87 tumor concentrations to dCK inhibition
provided a more physiologic and mechanistic approach. Our population
PK-PD modeling allowed us to describe limited tumor data and link
these concentrations to dCK inhibition. Full dCK inhibition occurred at
the 10 mg/kg dose and increasing doses led to a longer maintenance of
full inhibition. At the highest dose tested (25 mg/kg), full recovery of
enzyme activity occurred by 36 h, with full inhibition being maintained
at the 12 hr time point. Our PK-PD model suggested a threshold or rapid
switching on-off effect. When evaluated as a single agent, DI-87 was
well tolerated at higher doses, but had essentially no ability to inhibit
growth (data not shown). When DI-87 was administered as repeated
doses in combination with thymidine, full dCK inhibition was main-
tained at 12 h (25 mg/kg twice daily dose) and led to maximal tumor
growth inhibition. Lower doses led to diminished dCK inhibition with
predictable decreases in growth inhibition. Thus, DI-87 appears to have
potential as a cancer therapeutic when used in combination with thy-
midine.

The PET probe used in the current study is a tool to help provide
mechanistically-driven rational dosing of DI-87 and similar compounds
prior to clinical trials. The use of non-invasive PET probes and scans can
greatly aid in drug development. Imaging studies in early phase

Table 1
PK-PD modeling parameter estimates.
Plasma-Tumor PK model parameters

Parameter Estimate Standard Error

CL (L/hr/kg) 0.46 0.03
V (L/kg) 2.78 0.22
KA (hr) 0.66 (FIXED) .
Q (L/hr/kg) 0.0045 0.0013
Scalar 3.69 0.40
Half-life (hr)* 4.2 –
Eta1 (Scalar) 34.6% 0.08
Proportional Error 49.9% 0.04
DCK inhibition PK-PD model
Kout 0.12 0.00011
Emax 1.20 0.00200
EC50 0.31 0.00009
Gamma (Hill coefficient) 58.60 0.18500
Kin 0.76 0.00078
Additive Error 0.88 0.00025
Growth Inhibition PK-PD Model
Kout 0.372 0.0973
Emax 1.06 0.2030
Growth Function Exp 1 0.00498 0.0011
Growth Function Exp 2 1.47 0.0399
EC50 3.63 1.19
Intersubject Variability (Emax) 14.1% 2.65%
Additive Error 0.20 0.02

*Half-life: 0.693/(CL/V).
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Tumor concentrations were significantly lower than plasma concentrations for all doses tested. 

The PET probe [18F]CFA was used to quantify dCK activity, and thus effects of DI-87 upon the 

target  pathway,  in  tumors.  Given the  differential  peaks  in  plasma and tumor concentrations, 

linking  DI-87  tumor  concentrations  to  dCK  inhibition  provided  a  more  physiologic  and 

mechanistic approach. Our population PK-PD modeling allowed us to describe limited tumor 

data and link these concentrations to dCK inhibition. Full dCK inhibition occurred at the 10 mg/

kg dose and increasing doses led to a longer maintenance of full inhibition. At the highest dose 

tested (25 mg/kg), full recovery of enzyme activity occurred by 36 h, with full inhibition being 

maintained at the 12 hr time point. Our PK-PD model suggested a threshold or rapid switching 

on-off effect. When evaluated as a single agent, DI-87 was well tolerated at higher doses, but had 

essentially no ability to inhibit growth in CEM xenograft tumors (data not shown). When DI-87 

was administered as repeated doses in combination with thymidine,  full  dCK inhibition was 

maintained at 12 hr (25 mg/kg twice daily dose) and led to maximal tumor growth inhibition. 

Lower doses led to diminished dCK inhibition with predictable decreases in growth inhibition. 

Thus, DI-87 appears to have potential as a cancer therapeutic when used in combination with 

thymidine. 

The PET probe used in the current study is a tool to help provide mechanistically-driven 

rational dosing of DI-87 and similar compounds prior to clinical trials. The use of non-invasive 

PET probes  and scans  can greatly  aid  in  drug development.  Imaging studies  in  early  phase 

development can confirm that molecules reach the target tissue and do not accumulate in target 

sites, can determine dose-target occupancy, and can be used to help critically evaluate similar 

drug  candidates  based  on  responses.33  Our  group  developed  [18F]FAC  (1-(2ʹ-deoxy-  2ʹ-
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[18F]fluoro-β-D-arabinofuranosyl)cytosine)  as  the  first  dCK-specific  PET  probe,  and  the 

compound has subsequently been used in the preclinical drug development of small molecule 

dCK inhibitors.21,30 A more specific probe, [18F]CFA, was later developed by our group and was 

used in the current study to evaluate dCK activity in tumors when treated with a small molecule 

dCK inhibitor. This probe was also scheduled for study in a clinical trial at UCLA to evaluate 

changes in dCK activity following cancer immunotherapy, though the trial was terminated due to 

slow  accrual.34  PET  probes  in  preclinical  and  clinical  studies  can  additionally  aid  in 

understanding  how drug  distribution  in  target  tissues  and  response  of  the  target  pathway is 

modified in the presence of multiple drugs, as compared to single agent therapy. They can also 

help evaluate the degree of synergy, appropriate timing of therapies, and dosing amount. 

Our growth inhibition studies utilized a fixed dose of thymidine with varying doses of 

DI-87,  and  dual  inhibition  of  salvage  and  de  novo  pathways  led  to  effective  tumor  growth 

inhibition when full dCK inhibition was achieved throughout the dosing interval. PET imaging 

provided valuable information, namely the quantification of dCK inhibition, which enabled a 

more efficient methodology for dose optimization as it allowed us to determine optimal dosing 

and  schedules  without  testing  a  multitude  of  doses  in  growth  inhibition  studies.  The  DI-87 

plasma half-life of 4 hr suggests the need for more frequent dosing to maintain dCK and growth 

inhibition, however our mechanistic approach which included evaluation of tumor PK and PET 

imaging allowed us to determine that the 25 mg/kg dose twice daily would be appropriate to 

maintain dCK inhibition.  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Section Two: 

Further Development of Novel Deoxycytidine Inhibitors

1.2.1 Basis for Further Structure-Activity Relationship Studies of dCKi Scaffold

Despite the promising in vitro and in vivo data of DI-87, it remained apparent that this 

clinical candidate had further room for improvement. Though the addition of the morpholine ring 

in  Part  A of  the  scaffold  had  improved  its  solubility  when  compared  with  previous  lead 

compound  DI-82,  DI-87  remained  relatively  insoluble.  Furthermore,  previous  dCKi  analogs 

produced by our group had never strayed from a substituted phenyl ring in Part A of the scaffold. 

Additionally, the methyl stereocenter within the Part C linker posed a synthetic challenge – while 

the stereoselective Corey-Bakshi-Shibata reduction of the ketone intermediate led to the desired 

S-enantiomer of the alcohol intermediate in >99% ee, the subsequent SN2 reaction to install the 

pyrimidine ring resulted in degradation of enantiopurity, most likely due to a competing SN1 

reaction pathway. This necessitated the use of chiral HPLC chromatography for purification to 

obtain a suitably enantiopure product. Attempts at achieving an asymmetric synthesis that did not 

require  the  use  of  chiral  purification  methods  were  unsuccessful,  and  previous  work  had 

established that the Part C methyl substituent was necessary for maintaining low-nM activity 

against dCK.22,35 However, based upon co-crystal structures of previous lead compound DI-82 

complexed with dCK, it was known that the chiral methyl substituent occupied a hydrophobic 

pocket within the substrate binding site of dCK. Taken together, these considerations revealed 

further opportunities for structure-activity relationship studies, specifically within Part A and Part 

C of the dCKi scaffold.
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1.2.2 Synthesis and Evaluation of Novel dCKi – Modifications to Parts A, B and C

Based  upon the  hit  compounds  that  emerged  from the  initial  high-throughput  screen 

conducted against dCK, as well as the subsequent SAR guided by both in vitro activity as well as 

co-crystallization studies, all dCKi synthesized by our group bore a substituted phenyl moiety in 

Part A. Upon examining the previous SAR, it was clear that Part A of the scaffold was able to 

accommodate a variety of modifications, in contrast to Parts B, C and D, which had much less 

flexibility  in  terms  of  retaining  dCK  affinity  upon  introducing  diverse  chemical  moieties. 

Previous decisions regarding the nature of phenyl ring substitutions revolved around promoting 

additional favorable non-covalent interactions within the dCK binding site, as well as adding 

moieties which may have improved the overall solubility of the molecule, or incorporation of 

fluorine to enable the synthesis of dCK-specific PET probes.21,36 However, co-crystal structures 

provided evidence that the pocket within which our dCKi were binding was able to tolerate 

groups other than substituted phenyl rings. As such, we set out to determine whether we could 

improve the activity and/or solubility of our dCKi, while also improving Lipinski’s “rule of five” 

metrics,37,38 through diversifying Part A of the scaffold. Our general synthetic scheme began 

with  an  appropriate  nitrile-bearing  thioamide  precursor  (A)  or  starting  directly  from  the 

thioamide (B), followed by a Hantzsch thiazole synthesis reaction with an appropriate α-bromo 

ketone  (commonly  4-bromo-2,3-pentanedione)  which  yielded  the  ketone-substituted  thiazole 

intermediate (C) (Scheme 1.2). The ketone was was then reduced to the secondary alcohol (D) 

via  DIBAL-H-mediated  reduction.  Activation  of  the  alcohol  via  reaction  with  trifluoroacetic 

anhydride yielded a trifluoroactate intermediate (E),  which was displaced by 2-mercapto-4,6-

diaminopyrimidine under thermal conditions in the presence of base to produce the desired dCKi 
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compound (F).  All  compounds were synthesized in  their  racemic form for  initial  evaluation 

purposes. 

Scheme 1.2 | General synthetic strategy for synthesis of dCK inhibitorsa

aReagents  and  conditions:  (i)  (NH4)2S  (20%  aqueous),  Et3N,  Pyridine,  60  °C,  12  hr;  (ii) 

Appropriate  α-bromo  ketone,  ethanol,  reflux,  3  hr;  (iii)  DIBAL-H,  THF,  0  °C,  1  hr;  (iv) 

Trifluoroacetic anhydride, THF, 0° C, 0.5 hr; 4,6-diamino-2-mercaptopyrimidine, Cs2CO3, DMF, 

70°.

Former  lead  compounds  DI-39,  DI-82,  and  DI-87  each  had  substituted  phenyl  rings 

meant to improve drug-like properties such as solubility, and crystallographic studies showed 

that the sulfonamide extending from the meta position of DI-82 made key hydrogen-bonding 

interactions within the dCK protein binding site (Figure 1.6).21,22,39 Thus, the first compound 

synthesized in this study, NMc-1, stood in stark contrast to our group’s previously synthesized 

dCKi as it possessed an unsubstituted phenyl ring (Figure 1.7). Compounds NMc 2–5, bearing 

alkyl  and  heterocyclic  moieties  in  Part  A,  continued  the  trend  of  straying  from  previously 

synthesized  analogs.  dCK  inhibitory  activity  of  all  compounds  was  assessed  in  vitro  as 

previously reported.21,22
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Figure 1.6 |  Former lead dCK inhibitor compounds DI-39 and DI-82, and current lead 

compound DI-87. IC50 values measured through inhibition of [3H]-dC uptake in CEM T-ALL 

cells.

Figure 1.7 | Structures and IC50 values of dCK inhibitors possessing varied Part A moieties. 

IC50 values measured through inhibition of [3H]-dC uptake in CEM T-ALL cells.
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Encouragingly, compound NMc-1 showed high affinity for dCK, with an IC50 of 36.5 

nM. The low-nM activity buttressed the hypothesis that Part A of the dCKi scaffold was able to 

accommodate a variety of functional groups, and that groups adorning the phenyl ring may play 

only modest roles in promoting affinity for dCK. Further modifications to Part A had varied 

results in terms of dCK binding ability. The pyridine-containing NMc-2 had an IC50 of 113 nM, 

indicating that aromatic heterocycles may not be as well-tolerated as phenyl rings. Non-aromatic 

compounds  NMc 3–5  had  surprising  activities  –   the  adamantyl-containing  NMc-3  had  very 

strong affinity for dCK, with an IC50 of 11.1 nM, which was essentially identical to the racemic 

sample of previously identified lead compound DI-87. The propyl-substituted NMc-4 saw a ten-

fold decrease in activity, relative to NMc-3, while the morpholino NMc-5 was more than 180-

fold less active. The surprising affinity of NMc-3  was hypothesized to stem from its overall 

decrease in polarity, which would allow for greater cell permeability and greater opportunity for 

inhibition of dCK. The decrease in dCK affinity displayed by NMc-4 may stem from a non-polar 

character which was insufficient to enable the same level of cell permeation, and therefore dCK 

inhibition, as NMc-3. While NMc-3 was more straightforward in its synthesis when compared 

with  DI-87  and  just  as  active,  it  was  less  soluble.  The  morpholino  NMc-5,  which  was 

synthesized with the hope that the morpholine ring would improve solubility while maintaining 

low-nM activity, accomplished neither – the compound displayed the lowest IC50 of any of the 

five compounds synthesized, and did not possess noticeably improved solubility when compared 

with DI-87.

While Part A of our dCKi scaffold had proven itself amenable to modification, Parts B 

and C had shown a lower degree of flexibility in our previous studies. The 5-position of the 
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thiazole ring could accommodate short alkyl chains and maintain strong affinity for dCK, with 

propyl chains leading to the highest affinity. However, this affinity came at the cost of metabolic 

stability  –  propyl  and  ethyl  substitutions  correlated  with  rapid  metabolism,  while  a  smaller 

methyl substituent at the 5-position was more stable, albeit less active. The low-nM affinity for 

dCK was not recovered until a methyl group was incorporated into Part C of the scaffold, with 

the R-enantiomer being the more active species. Crystallography studies revealed that the methyl 

group  occupied  a  hydrophobic  pocket  of  the  dCK  substrate  binding  site.  However, 

enantioselective synthesis of dCKi compounds proved to be elusive,35  and enrichment of the 

desired enantiomer could only be realized through chiral chromatography. In an effort to address 

this issue, we sought to incorporate an achiral alkyl moiety within Part C of the dCKi scaffold, 

specifically a gem-dimethyl. We envisioned that the gem-dimethyl would be able to optimally fill 

the hydrophobic pocket while simultaneously eliminating the chirality of our dCKi. Extensive 

efforts were undertaken in order to identify methodology which would enable construction of the 

desired  gem-dimethyl-mercaptopyrimidine  connection.  However,  installation  of  this  moiety 

proved  to  be  non-trivial,  as  attempts  commonly  afforded  the  alkene  elimination  product. 

Eventually, a procedure was adapted in which the ketone-substituted thiazole intermediate 9 was 

converted to the tertiary alcohol 10 by reaction with methyl Grignard reagent (Scheme 1.3A). 

Subsequent  stirring  of  10  in  diethyl  ether  in  the  presence  of  thionyl  chloride  and  sodium 

carbonate at 0 °C yielded the tertiary chloride 11,40 which after filtration and concentration using 

low  temperature  roto-evaporation  was  not  isolated  due  to  instability  and  instead  directly 

displaced  by  4,6-diaminopyrimidine  thiolate.  This  yielded  12,  which  bore  the  desired  gem-

dimethyl-mercaptopyrimidine connection.41 
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Scheme 1.3 | Synthesis of dCK inhibitors bearing gem-dimethyl Part C moietya

aReagents  and  conditions:  A;  (i)  methyl  magnesium bromide,  THF,  0  °C,  1  hr;  (ii)  SOCl2, 

Na2CO3, ether, 0 °C, 0.25 hr; (iii) sodium 4,6-diaminopyrimidine-2-thiolate, Cs2CO3, DMF, 65 

°C, 4 hr. B; (i) ethyl bromopyruvate, ethanol, reflux, 3 hr; (ii) methyl magnesium bromide, THF, 

0 °C,  1  hr;  (iii)  SOCl2,  Na2CO3,  ether,  0  °C,  0.25 h;  (iv)  sodium 4,6-diaminopyrimidine-2-

thiolate, Cs2CO3, DMF, 65 °C, 4 hr.

With a dCK IC50 of 924.5 nM, the initial gem-dimethyl dCKi analog synthesized using 

this methodology, NMc-6,  proved to be significantly less potent against dCK than its mono-

methylated analog NMc-1 (Figure 1.8A). It was hypothesized that this loss of activity was the 

result  of  steric  interactions  between  the  gem-dimethyl  moiety  and  the  5-methyl  substituted 

thiazole which prevented the dCKi from adopting an optimal conformation for binding to dCK 

within the substrate binding site. To nullify this interaction, ethyl bromopyruvate was utilized in 

the Hantzsch thiazole synthesis reaction step of our synthetic scheme instead of 4-bromo-2,3-
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pentanedione,  which  resulted  in  a  5-hydrido  thiazole  (14)  rather  than  the  5-methyl  analog 

(Scheme  1.3B).  By  utilizing  this  substrate  for  construction  of  the  thiazole,  NMc-7  was 

generated, which demonstrated three-fold higher dCK affinity than the 5-methylthiazole NMc-6. 

Based upon this  improvement  in  dCK affinity,  compounds bearing the gem-dimethyl  and 5-

hydrido thiazole moieties but retaining Part A groups from previous analogs were synthesized 

(Figure 1.8A). Unfortunately, these compounds were not able to recapitulate the low-nM activity 

of our lead compound DI-87. The gem-dimethyl and adamantyl-containing NMc-8 was roughly 

15-fold  less  active  than  its  potent  mono-methyl  analog  and  constitutional  isomer  NMc-3. 

Likewise, the gem-dimethyl analog and constitutional isomer of DI-87, NMc-9, demonstrated a 

similar decrease in activity. 

Using the previously outlined methodology,  dCKi analogs were synthesized in which 

Parts A, B and C were simultaneously altered in order to differ from the structure of DI-87 

(Figure 1.8B).  Gem-dimethyl compounds explored included those bearing fluorinated phenyl 

rings (NMc-12, NMc-13), compounds bearing alkyl groups at the 2-position of the thiazole ring 

(NMc-14, NMc-15), and a compound possessing an oxadiazole ring extending from the thiazole 

2-position (NMc-16). The most potent compound, NMc-10, had an IC50 of 37.2 nM, and may 

have benefited from favorable hydrogen bonding interactions within the substrate binding site of 

of dCK due to the phenolic alcohol moiety. However, no other analogs generated in this portion 

of our synthetic campaign showed sub-100 nM activity against dCK. 
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Figure 1.8 |  dCK inhibitors bearing gem-dimethyl moiety in Part C. (A) dCK inhibiting 

compounds bearing gem-dimethyl moieties in Part C while maintaining Part A substituents of 

previously-synthesized  compounds.  (B)  dCK  inhibiting  compounds  bearing  gem-dimethyl 

moieties in Part C and previously unexplored Part A moieties. IC50 values determined through 

inhibition of [3H]-dC uptake in CEM T-ALL cells.
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1.2.3  gem-Dimethyl  dCKi  Analogs  Adopt  Unfavorable  Gauche  Conformation  While 

Binding dCK

While the decreased dCK affinity of our gem-dimethyl analogs was disappointing, it was 

not entirely unpredictable.  The chiral  methyl substituting in Part  C of lead compound DI-87 

occupied  a  small  hydrophobic  pocket  within  the  substrate  binding  site  of  dCK,  and  it  was 

hypothesized  that  the  gem-dimethyl  group  was  too  large  to  similarly  occupy  this  space. 

Additionally,  the  difference  in  affinity  between  NMc-1,  NMc-6,  and  NMc-7  indicated  that 

conformational differences engendered by the gem-dimethyl moiety were affecting the affinity of 

our newly synthesized analogs. In order to better understand the origins of the decreased affinity 

our gem-dimethyl analogs had for dCK, we utilized molecular dynamics (MD) simulations to 

examine the binding modes of selected dCK inhibitors within the substrate binding pocket of the 

protein.  Lead  compound  DI-87  served  as  the  positive  control,  while  the  gem-dimethyl 

compounds NMc-7,  NMc-9,  and NMc-10  were evaluated (Figure 1.9A).  The initial  binding 

conformations chosen for the MD simulations emulated those which were reported for previous 

lead compound DI-82.36 In our simulations,  the achiral  gem-dimethyl compounds underwent 

large conformational changes. In the initial binding conformation, the dihedral [C-S-C-C] angle 

between the pyrimidine and thiazole rings is near 150°, with the pyrimidine ring oriented far 

away from the thiazole (Figure 1.9B). As the simulation progressed, the binding conformations 

of the gem-dimethyl compounds change from an anti to a gauche conformation, with a dihedral 

angle  of  50°  (Figure  1.9C).  Conversely,  DI-87  maintains  the  anti  conformation,  with  the 

dihedral angle remaining near 150° throughout the duration of the MD simulation.
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Figure 1.9 | Molecular dynamics (MD) simulation of dCK inhibitor conformations in dCK 

binding pocket. (A) Structures of examined dCK inhibitors. (B) Representation of investigated 

dihedral C-S-C-C bond angle. (C) MD simulation of dCK inhibitor conformation within dCK 

binding  pocket,  with  representational  anti  and  gauche  conformer  structure  snapshots  for 

NMc-10. 

We further computed the energies of the dCKi conformations and scanned the energy 

surface along the dihedral angle using the density functional theory (DFT) method. For lead 

compound DI-87,  the most  stable  conformer is  the anti  with a  dihedral  angle  of  150°–210° 

(Figure 1.10A).  The energy increases monotonically as the dihedral  angle decreases beyond 

150°. For NMc-7, the energy surface has two minima at 180° and 60°, which correspond to the 

anti and gauche conformations, respectively, which were observed in the MD simulations. The 
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conformations change from this anti conformation to a gauche conformation, with a dihedral angle of 50˚ 

(figure 2). (R)-DI-87 keeps an anti conformation with the dihedral angle near 150˚ in the MD simulation.  

 

Figure 2. The dihedral angle [C-S-C-C] of different inhibitor compounds in MD simulations; gauche conformer and anti 

conformer from MD snapshots are shown in the right. 

 We further computed the energies of the conformations of the inhibitor compounds and scanned 

the energy surface along the dihedral [C-S-C-C] angle with density function theory (DFT) method. For (R)-

DI-87, the most stable conformer is the anti conformer at dihedral angle of 150-210˚. The energy increases 

monotonically as the dihedral angle decrease after 150˚. For DI-99, the energy surface has two minima at 

180˚ and 60˚ respectively, which corresponds to the anti conformation and the gauche conformations we 

observed in MD. 

Molecular Angles

500	ns	MD	simulation	 shows	that	DI95-DI100	adapt	a	bended	molecular	conformation.
DI87	adapts	mostly	a	linear	molecular	 conformation.

Next	step:	compute	the	energy	of	two	different	molecular	conformations	using	QM	
calculation.	
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gauche conformation of DI-87 is 1.6 kcal/mol higher in energy than the anti, which is a result of 

the steric effects between an amine group of the pyrimidine ring and the 5-position methyl of the 

thiazole (Figure 1.10B). In NMc-7, which lacks a methyl group at the 5-position, the gauche 

conformation is 0.7 kcal/mol lower in energy than the anti (Figure 1.10C). Due to the absence of 

the thiazole methyl, this conformation lacks the steric effects observed in DI-87, leading to the 

lower energy of the gauche versus anti conformation. 

Figure 1.10 | Energy scan reveals conformational preferences of dCK inhibitors. (A) The 

conformation energies of DI-87 and NMc-7 were computed and the energy surface along the 

dihedral  [C-S-C-C]  angle  scanned  with  density  functional  theory  (DFT)  method.  (B,  C) 

Conformational energies of  DI-87 (B) and NMc-7 (C). 
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Figure 4. Energy scan along the bending angle; anti and gauche conformations of DI-87 and DI-99. 

 We compared the anti and gauche conformations of (R)-DI-87 and DI-99. The gauche 

conformation of (R)-DI-87 is 1.6 kcal/mol higher in energy, which is caused by the steric effect between 

the amine group and the methyl group. In DI-99, the gauche conformation is 0.7 kcal/mol lower in energy. 

In the gauche conformation, the steric effect is eliminated because there is no methyl group in the thiazole 

ring.  
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The gauche  and  anti  conformations  of  the  gem-dimethyl  compounds  bind  differently 

within  the  substrate  binding  site  of  dCK.  In  the  anti  conformation  of  NMc-10,  three  key 

hydrogen bonds are formed between the amino groups of the pyrimidine ring and Q97, D133, 

and E53 of the dCK substrate binding pocket. However, only one hydrogen bond with Q97 is 

maintained  in  the  gauche  conformation  (Figure  1.11).  These  hydrogen  bonding  interactions 

between the pyrimidine and amino acid residues within the binding site were demonstrated to be 

key to our scaffold’s ability to inhibit dCK in our previous SAR studies.22 Removal of one or 

both amino groups from the pyrimidine ring led to substantial or near-complete loss of activity, 

respectively. Because the MD simulations demonstrated that NMc-10 and other gem-dimethyl 

compounds evaluated transition between the two conformations,  we concluded that the gem-

dimethyl dCKi compounds displayed lower affinity for dCK due to fewer key hydrogen bonding 

interactions  within  the  binding  site,  which  was  the  result  of  a  more  energetically  favorable 

gauche conformation enabled by the absence of a 5-methyl substituted thiazole ring. 

Figure 1.11 | Hydrogen bonding interactions of anti and gauche conformations of NMc-10 

within dCK binding site. 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Figure 5. Hydrogen bonding of anti and gauche conformations with dCK. 

 The gauche and anti conformations bind differently in dCK. In the anti conformation, the 

compound forms three hydrogen bonds with Q97, D133 and E53 of dCK. In the gauche conformation, only 

the hydrogen bond with Q97 is maintained. As the achiral compounds switch from the anti conformation 

to the gauche conformation back and forth, the hydrogen bonding with dCK is weaker compared to (R)-

DI-87.  

 Combined MD simulations and DFT study reveals the relationship between the conformations and 

the binding affinity to dCK. Small changes in structure alter the conformational preference, leading to 

different binding affinities.  

Computational Methods: 

Docking and Molecular dynamics: 

The inhibitor compounds are docked into the binding pocket of dCK crystal structure manually. Classical 

molecular dynamics (MD) were performed using the GPU code (pmemd) of the Amber 12 package on the 

substrate conformations and the transition states for 500 ns in enzyme. The FF99SBildn force field was 

used for the protein residues. Parameters for the substrate conformations and transition states were 

generated within the antechamber module using the general Amber force field (gaff), with the partial 

charges set to fit the electrostatic potential calculated at the HF/6-31G(d) level by the RESP model. The 

Anti Gauche



Section Three: 

Evaluation of dCK Inhibitors as Nucleoside Mimetics

1.3.1 dCKi Scaffold as a Nucleoside Mimetic

The first  kinase inhibitor,  reported in 1984,  engaged its  target  through binding at  the 

phosphoryl donor (ATP) binding site of Cyclic Nucleotide Dependent Protein Kinase and Protein 

Kinase C.42 Since this discovery, the majority of kinase inhibitors utilized across all indications 

have adopted this same targeting strategy, namely binding to the ATP binding site of a kinase by 

mimicking the hydrogen bonding interactions between the kinase and the adenosine ring of ATP.

43,44  This  common targeting modality is  enabled by a highly conserved ATP binding region 

located in a cleft formed between two lobes of the kinase secondary structure.45,46 Due to the 

conserved nature  of  this  ATP binding region,  small  molecule  ATP-competitive inhibitors  are 

commonly discovered through high throughput screening and synthetic campaigns. The obvious 

obstacle posed by the conserved nature of this binding region is the similarity between kinases, 

which  can  lead  to  significant  off-target  effects  for  a  given  kinase  inhibitor.  It  is  therefore 

advantageous to develop inhibitors which bind at sites other than the ATP-binding site, thereby 

imbuing a potential for greater kinase-specificity upon the molecule. For this reason, our group 

was encouraged by the serendipitous discovery of inhibitors of dCK which bound not at the 

phosphoryl donor site, but at the substrate binding site.21,36 dCK phosphorylates dC, dA, and dG 

nucleosides into their monophosphate nucleotide forms, and the dCKi scaffold identified through 

our  high-throughput  screen  prevents  these  nucleosides  from  binding  through  competitive 

inhibition. For this reason, our dCKi can be classified not simply as kinase inhibitors, but as 
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nucleoside mimetics (nucleomimetics). Through this frameshift, we came to envision our dCKi 

as having the potential for broader effects within nucleotide metabolism. 

1.3.2 Evaluation of Nucleomimetic dCK Inhibitors as Modulators of Pyrimidine Nucleotide 

Metabolism

In order to assess the potential of our nucleomimetic dCK inhibitors as having broader 

effects, we designed a phenotypic screening platform for the identification of novel modulators 

of  pyrimidine  nucleotide  metabolism.47  The  design  and  technical  details  of  this  screening 

platform  are  expounded  upon  in  Chapter  Two  of  this  dissertation,  though  an  overview  is 

provided  here.  While  dCK is  able  to  phosphorylate  multiple  nucleosides,  it  has  the  highest 

affinity  for  the  pyrimidine  nucleoside  dC.  All  pyrimidine  nucleotides  arise  from a  common 

precursor;  uridine  monophosphate  (UMP).  UMP  is  produced  by  separate  but  convergent 

biosynthetic pathways – the de novo pathway (DNP), which assembles UMP from amino acids 

and glucose in a six-step process, and the nucleoside salvage pathway (NSP), which salvages 

preformed uridine from the extracellular space and phosphorylates it to UMP. The general design 

of  our  screen  involved  forcing  cells  to  rely  upon  only  one  of  these  pathways  for  UMP 

production, and then incubating the cells with our dCKi and identifying which compound(s) 

caused  a  decrease  in  UMP production  in  the  studied  pathway  (Figure  1.12A).  In  order  to 

promote conditions in which UMP could only be produced via the DNP – a condition termed 

DNP-only – cells were incubated in media without uridine (rU) supplementation. With no rU 

present, the NSP lacks its substrate and cells must rely upon the DNP for UMP production. To 

force  cells  to  rely  upon  the  NSP –   termed  NSP-only  –   they  were  incubated  with  rU  and 

NITD-982, a potent and specific inhibitor of dihydroorotate dehydrogenase (DHODH), a key 
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enzyme of the DNP pathway. Baseline conditions were those in which both the DNP and NSP 

were active – achieved by incubating cells in the presence of rU and absence of NITD-982. 

Figure 1.12 |  Design of a phenotypic metabolic modifier screen to evaluate ability dCK 

inhibitor compounds to disrupt pyrimidine nucleotide metabolism. (A) Schematic of screen 

design. (B) Schematic of media conditions which lead to pyrimidine starvation. (C) Proliferation 

rates while incubated in pyrimidine starvation conditions for a panel  of cancer cell  lines.  % 

proliferation values were calculated using Cell Titer Glo (CTG) following 72 hr treatment (7-

point dose response; n=2). (D) Proliferation of JURKAT cells in baseline (DNP + NSP), DNP-

only, NSP-only, and pyrimidine starvation media conditions, normalized to baseline. (E) LC-MS/
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Figure 12

Fig. 9ㅣDifferential responses to pyrimidine starvation (defined as a condition in which both the DNP and USP are inactivated) 
in a panel of cell lines. (a) Proliferation rate normalized to number of cell division in the panel of cell lines treated with 1 µM NITD-982 
for 72 h (mean ± SD, n = 4). All cell lines were directly purchased from ATCC or authenticated by Laragen using tests that complies with 
ANSI/ATCC ASN-0002-2011 guidelines; ALL acute lymphoblastic leukemia; PDAC pancreatic ductal adenocarcinoma; SCLC small cell 
lung cancer
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MS analysis of [13C9; 15N2] rU (10 µM) utilization for DNA-C replication shows NMc-9 inhibits 

the incorporation of [13C10, 15N2]rU-labeled CTP into newly-synthesized DNA. (F) Schematic of 

potential cellular targets of NMc-9. NT; no treatment.

A panel of cancer cell lines was screened in order to identify those which displayed a 

decrease in proliferation when unable to produce pyrimidine nucleotides through either the DNP 

or NSP, conditions termed “pyrimidine starvation” (Figure 1.12B, 1.12C). Identifying such cell 

lines  enabled  our  screen  to  have  a  phenotypic  readout  –  namely  a  quantifiable  decrease  in 

proliferation upon concurrent inhibition of the DNP and NSP. Cell  Titer Glo was utilized to 

evaluate  proliferation  impairment.  Following  this  initial  survey  of  cancer  cell  lines,  the  T 

lymphocyte  cell  line  JURKAT was  chosen  for  the  screening  platform as  it  showed  a  large 

decrease in proliferation under pyrimidine starvation conditions,  but  was able to recapitulate 

baseline (DNP and NSP both active) proliferation levels when reliant upon either the DNP or 

NSP alone (Figure 1.12D).

To carry out the screen, JURKAT cells were incubated in three conditions – DNP-only, 

NSP-only, and baseline. dCKi which inhibited growth in DNP-only conditions were categorized 

as DNP inhibitors, while dCKi which inhibited growth in NSP-only conditions were categorized 

as NSP inhibitors and those which inhibited growth in baseline conditions were categorized as 

non-specific inhibitors. 65 nucleomimetic dCK inhibitor compounds synthesized by our group 

were screened for activity and subsequently ranked by pathway-specific index scores, calculated 

as the ratio of compound IC50 values against baseline conditions versus pathway-specific. Higher 

index  scores  correlated  with  higher  pathway  specificity.  Following  the  screen,  the  two  top 

scoring compounds against the DNP were resynthesized and tested again, only to reveal that the 
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initial  hits  were  a  false-positives.  The  top-scoring  compound  against  the  NSP,  NMc-9, 

demonstrated an IC50 of 11.4 µM which correlated with an index score of 8.77. LC-MS/MS 

analysis of incorporation of radiolabeled nucleotides into newly synthesized DNA showed that 

NMc-9  significantly  limited  the  amount  of  rU-derived  CTP compared  to  baseline  (Figure 

1.12E). 

It was reasoned that in order to exert its NSP-inhibitory action, NMc-9 was acting at one 

of two levels  of  the NSP –  either the nucleoside transport  level  or  the kinase level  (Figure 

1.12F). In the NSP of UMP biosynthesis, uridine nucleosides are salvaged from the extracellular 

space and transported into the cell via specialized nucleoside transporters (JURKAT cells express 

the equilibrative nucleoside transporter 1 (ENT1) gene SLC29A1).48 Once inside the cell, they 

are  phosphorylated  to  UMP by  uridine-cytidine  kinase  (UCK),  a  pyrimidine  ribonucleoside 

kinase which exists in two primary isoforms –  UCK1 and UCK2. UCK2 has been shown to 

possess a significantly higher catalytic efficiency when compared with UCK1.49 In addition to 

catalyzing the first  step of the pyrimidine NSP, UCK also phosphorylates several  nucleoside 

analog prodrugs which have found investigational interest as chemotherapeutic agents.12,49,50 

To determine at which level NMc-9 was acting, we first profiled its ability to prevent the 

uptake  of  [3H]Uridine  in  intact  cells.  The  FDA-approved  nucleoside  transport  inhibitor 

dipyridamole was included as a positive control, and NMc-1, which had no effect upon the NSP 

in our screen, was included as a negative control. Both NMc-9 and dipyridamole treatment led to 

a significant decrease in [3H]Uridine uptake, while NMc-1 did not impact uptake at all. Next, we 

assayed the ability of NMc-9  to inhibit the phosphorylation of [3H]Uridine to UMP in lysed 
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cells. Cytidine triphosphate (CTP), a negative allosteric regulator of UCK, was included as a 

positive  control  for  UCK  inhibition.  Treatment  with  NMc-9  or  CTP showed  a  significant 

decrease in [3H]Uridine phosphorylation,  relative to no treatment  or  treatment  with negative 

control. Together, these results indicate that NMc-9 is disrupting the NSP through inhibition of 

UCK. 

Figure 1.13 |  NMc-9 is a putative UCK inhibitor.  (A) Inhibition of [3H]Uridine uptake in 

JURKAT cells following 2 hr incubation ± 1 µM NMc-9, NMc-1, or dipyridamole (DPA). (B) 

Inhibition of [3H]Uridine phosphorylation to [3H]Uridine-monophosphate by NMc-9, NMc-1, 

and cytidine triphosphate (CTP). NT; no treatment. Mean±SD; n=3; one-way ANOVA corrected 

for multiple comparisons by Bonferroni adjustment; ** P<0.01; *** P<0.001.

1.4 Discussion

The importance of dCK in anticancer therapy has been recognized for decades, as this 

enzyme is the key activator of chemotherapeutic nucleoside analog drugs such as gemcitabine. 

However, despite our group having demonstrated the efficacy of inhibiting dCK function for the 

treatment of leukemia in mouse models, as well as defining its roles in hematopoiesis and cell 
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division,  the  potential  clinical  utility  of  dCK inhibition  remains  incompletely  defined.  As  a 

constitutively expressed protein and key enzyme of the nucleoside salvage pathway, dCK and 

inhibition of its function have the potential to be leveraged in a number of therapeutic settings. 

For instance, our proposed mechanism of action against leukemic cells in which inhibition of 

both the de novo and salvage nucleotide biosynthetic pathways leads to unsustainable levels of 

replication stress in cancerous cells may be extended to other cancers such as pancreatic ductal 

adenocarcinoma  (PDAC).  Patients  suffering  from  PDAC  are  in  desperate  need  of  new 

therapeutic options, as five year survival rates are <9%.51 In part due to a dense and fibrous 

stroma,  the  PDAC  tumor  microenvironment  is  particularly  unforgiving,  and  PDAC  tumors 

undergo  extensive  metabolic  reprogramming.52  Part  of  this  reprogramming  involves  the 

upregulation of cellular processes such as autophagy, which recycles and provides tumor cells 

with  the  nutrients  and biomolecules  necessary for  proliferation.53  Given the  role  of  dCK in 

salvaging extracellular  nucleosides,  and the role  of  autophagy in providing tumor cells  with 

deoxynucleosides  for  DNA replication,  there  may be opportunities  for  dCK inhibition to  be 

utilized in therapy against PDAC.54 This application is under active study within our research 

group. 

dCK also plays a vital role in the nucleotide metabolism of macrophages and monocytes, 

which play roles in immune response and activation of pro-inflammatory signaling. These white 

blood cells can contribute to exuberant immune responses at late stages of infectious disease and 

lead  to  cytokine  storms,  a  potentially  deadly  condition  marked  by  excessive  production  of 

inflammatory cytokines which can lead to multi-organ failure and death. Cytokine storms are 

associated with increased mortality in patients suffering from viral illnesses such as influenza, 

	 39



and  has  been  documented  as  a  contributing  factor  to  mortality  in  the  ongoing  COVID-19 

pandemic caused by SARS-CoV-2. Interestingly, macrophages and monocytes lack the capacity 

to synthesize nucleotides de novo, meaning they rely upon dCK and the salvage pathway for 

biosynthesis of the nucleotides necessary for DNA replication and repair.55 This reliance upon 

dCK is heightened upon monocyte and monocyte-derived macrophage activation, as this process 

leads to production of reactive oxygen species (ROS) which necessitate the function of dCK to 

repair ROS-mediated DNA damage. Accordingly, dCK inhibition is associated with defects in 

monocyte/macrophage  effector  functions,  strongly  suggesting  that  dCK  inhibitors  could  be 

exploited therapeutically to attenuate excessive inflammation causing/caused by cytokine storm.

With demonstrated efficacy against leukemia and potential applications in PDAC therapy 

and  in  reducing  the  impact  of  cytokine  storms,  the  development,  pharmacological 

characterization, and evaluation of dCK inhibitors is an important area of research. Our lead 

compound  DI-87  possesses  low-nM affinity  for  dCK and  is  well-tolerated  in  mice  with  no 

observed adverse effects. Thus, preclinical evaluation studies were warranted. Due to technical 

and  kinetic  considerations,  there  were  multiple  limitations  within  our  preclinical 

pharmacological profiling studies of DI-87. Because the half-life of the [18F]CFA PET probe did 

not allow for multiple images within the same animal across a time course experiment, each time 

point represented a reading from a separate mouse. Additionally, the PET probe required time for 

optimal diffusion within the tumor; thus we were unable to quantify dCK inhibition at very early 

time points. PK in the tumor was evaluated in separate mice rather than using a probe to follow 

drug levels  over time.  However,  this  likely does not  represent  a major limitation,  as similar 

results were obtained between replicate experiments and results between mice were similar at 

each time point. Given small sample sizes in the PK studies and differing tumor studies between 
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experiments, it was difficult to determine whether the PK was linear; however, the plasma and 

tumor PK models fit the data well without evidence of non-linear PK. While a fixed dose of i.p. 

thymidine was used for growth inhibition in the current study, either an IV or oral RNR inhibitor 

will be necessary for combination therapy in further clinical development.

Our PET-aided pharmacological profiling of the novel DI-87 provides further evidence of 

the value of PET probes in assisting with preclinical drug development. By using a probe specific 

for dCK activity, we were able to accurately and efficiently predict appropriate dosing for growth 

inhibition  studies  by  determining  a  DI-87  dose  that  resulted  in  maximal  dCK  inhibition 

throughout the dosing interval. This also aided in the development of PK-PD models for both 

dCK inhibition and growth inhibition which can be used to optimize dosing schedules for further 

preclinical  studies.  The  optimal  dosing  schedule  of  25  mg/kg  BID,  predicted  to  completely 

inhibit dCK, led to near total arrest of tumor growth. Taken together, DI-87 is a potent dCK 

inhibitor with in vivo efficacy that demonstrates promise as a new compound for combination 

therapy against tumors expressing dCK, with additional potential applications as a single-agent 

therapy.  This  promise  is  further  evidenced  by  its  recent  Investigational  New  Drug  (IND) 

approval by the Federal Drug Administration. 

While the potency and favorable PK/PD profile of DI-87 remains encouraging, we still 

sought to make improvements through rational structure-activity relationship studies. Two areas 

of the molecular scaffold emerged as targets for modification – the substituted phenyl ring of Part 

A and the  methyl  stereocenter  of  Part  C.  Part  A,  composed of  a  substituted  phenyl  ring  in 

previous dCKi analogs, was identified as being able to accommodate a wide range of substituents 

while maintaining steady dCK inhibitory ability. By removing substitutions at phenyl positions 

2–6 in NMc-1, we generated a novel dCK analog which maintained nanomolar affinity for dCK, 
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providing credence to our hypothesis that this portion of the inhibitor scaffold was amenable to 

modification. We were encouraged by the potency of racemic and adamantyl-containing NMc-3, 

as  its  IC50  was  equal  to  that  of  racemic  DI-87  against  dCK.  Previous  dCKi  analogs  had 

incorporated various phenyl ring substitutions in order to encourage and take advantage of non-

covalent interactions within the dCK substrate binding site,  to incorporate fluorine atoms for 

potential  PET probe development,  and to  improve solubility.  While  the  adamantyl  group of 

NMc-3 does not address concerns regarding solubility or enable PET probe development, it does 

demonstrate that hydrophobicity and its potential impacts upon cell penetration can promote high 

dCK affinity and make up for  lost  non-covalent  hydrogen bonding interactions.  The 10-fold 

decrease in activity demonstrated by NMc-4 when compared with NMc-3 provided evidence that 

substantial hydrophobicity may be required to sustain any benefit over loss of hydrogen bonding 

interactions promoted by substituted phenyl rings. The severe loss of activity seen in NMc-5 

versus other analogs remains puzzling, as the Part A morpholine was incorporated by virtue of 

the privileged status of morpholine rings within medicinal chemistry and our data indicating that 

such a substituent may maintain dCK affinity.

With  progress  towards  improved  dCK  inhibitors  through  modifications  to  Part  A 

appearing incremental at best, we sought to explore the incorporation of a gem-dimethyl moiety 

within Part C of the molecular scaffold. We hypothesized that this moiety would optimally fill 

the  small  hydrophobic  pocket  within  the  dCK  substrate  binding  site  which  was  previously 

occupied by the chiral methyl group of DI-87. While the initial construction of the key mercapto-

tertiary carbon bond proved difficult,  conditions were identified in which the tertiary alcohol 

intermediate 10 (Scheme 1.3) could be converted to the desired gem-dimethyl containing final 

product in a telescoped reaction procedure. However, the gem-dimethyl NMc-6 was nearly 30-
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fold less potent than its mono-methyl containing analog NMc-1, leading us to hypothesize that 

steric interactions between the gem-dimethyl and 5-methyl substituted thiazole were preventing 

the compound from properly orienting within the substrate binding site of dCK. Compounds 

NMc-7–16,  which lacked the 5-position methyl were synthesized,  though none were able to 

recapitulate single-digit nanomolar affinity for dCK. We assessed the origins of this decrease in 

potency through MD simulations and discovered that the gem-dimethyl compounds lacking a 

methyl  in  the  5-position  of  the  thiazole  preferentially  adopted  a  “gauche”  orientation.  This 

orientation resulted in two fewer hydrogen bonding interactions, when compared with the “anti” 

orientation of DI-87. This loss of key hydrogen bonding contacts between the diaminopyrimidine 

and amino acids within the dCK substrate binding pocket was determined to be the predominate 

contributing factor to loss of activity observed in NMc-7–16. 

While the synthetic campaign failed to substantially improve upon lead compound DI-87,  

evaluation of our compounds against nucleotide metabolism proteins other than dCK led to the 

development of a phenotypic screening platform for the identification of novel modulators of 

pyrimidine nucleotide metabolism. Screening of a small library of dCK-inhibiting compounds 

developed  by  our  group  led  to  the  discovery  of  NMc-9  as  a  putative  UCK inhibitor.  Such 

inhibitors  have  been  studied  for  decades,  as  UCK  plays  a  critical  role  in  the  salvage  of 

extracellular  ribonucleosides  and  its  upregulation  in  certain  cancers  is  associated  with  poor 

prognosis and increased disease aggressiveness.56 As the key kinase of the salvage pathway, 

which  functions  alongside  the  de  novo  pathway,  the  development  of  UCK  inhibitors  has 

implications  for  the  function  of  other  small  molecule  drugs  and  drug  candidates  such  as 

inhibitors of the key de novo pathway enzyme  dihydroorotate dehydrogenase (DHODH).57,58 

Such  compounds  have  found  varied  applications  in  multiple  sclerosis,  rheumatoid  arthritis, 
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anticancer,  antiviral,  and  antibacterial  indications,  but  their  efficacy  can  be  limited  by  a 

functioning salvage pathway mediated by UCK.59–61 Despite its clinical relevancy, development 

of viable UCK inhibitors has remained elusive and there are no such compounds used clinically. 

Taken together,  the  ability  of  NMc-9  to  diminish  uridine  uptake  in  intact  cells  and prevent 

uridine phosphorylation in lysed cell provides evidence that it is directly inhibiting UCK, rather 

than preventing the transport of uridine into cells. 

In  summary,  we  have  developed  a  potent  dCK  inhibitor  with  favorable  pre-clinical 

pharmacology data, and have developed models which will inform proper dosing regimens in 

future clinical studies. We expanded upon this molecular scaffold to address shortcomings in 

solubility, as well as to generate achiral inhibitors while maintaining low-nanomolar affinity for 

dCK. While the last two goals were not met, it led to the development of a phenotypic metabolic 

modifier screening platform which was utilized to identify a novel putative UCK inhibitor, and 

whose utility is further expounded upon in Chapter 2 of this dissertation.
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1.5.1 Methods and Materials

dCK Uptake Assay Performed in Cell Culture 

The human cell line CCRF-CEM (C) was purchased from American Type Culture Collection 

(ATCC) with passage number 2–20 used for all experiments. Cells were seeded at a density of 

50,000 cells/ well in Millipore MultiScreen GV 96 well plates. 0.25 μCi of 3H-dC (Moravek 

Biochemicals) were added to the cells simultaneously with varying concentrations of the dCK 

inhibitor at a final volume of 100 μL/ well. After 1 hr at 37 °C, cells were washed four times with 

ice cold phosphate-buffered saline (PBS) using the Millipore Vacuum Manifold. The amount of 

incorporated probe was measured by scintillation counting with the PerkinElmer Microbeta.

Drugs

Drug stocks were prepared in DMSO or H2O and diluted fresh in cell culture media for 

treatments so as to ensure no in situ drug degradation occurred between treatments and/or assays. 

Cell Proliferation Assay 

CEM cells were plated at 1 × 10 cells/well in at 50 μL/well in white opaque 384-well plates and 

treated  as  described.  Following  incubation  with  increasing  concentrations  (2  nm-10  μM) of 

gemcitabine ± 1 μM DI-87 for 72 hr, 50 μL of CellTiter-Glo reagent (Diluted 1:5 in deionized 

H2O) was added to each well, plates incubated at room temperature for 5 min and luminescence 

was measured using a BioTek microplate luminescence reader. 

Animals

Animal studies were conducted under the approval of the UCLA Animal Research Committee 

and were performed in accordance with the guidelines from the Division of Laboratory Animal 
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Medicine  at  UCLA.  All  NOD  scid  gamma  (NSG)  mice  were  purchased  from  the  UCLA 

Radiation Oncology breeding colony. 

Mouse Xenograft Tumor Models and Treatments

Mice had three separate evaluation protocols which included pharmacokinetics, dCK activity, 

and growth inhibition studies. CEM cells were maintained in 10% FBS in RPMI-1640 and were 

grown at 37 °C, 20% O2, and 5% CO2. CEM tumor xenografts were developed in 8–12 week-old 

male or female NSG mice by implanting 2 ×  106  CEM cells in 100 μL of a 50/50 (vol/vol) 

mixture of PBS and matrigel (BD Biosciences) for subcutaneous injections in left shoulders (for 

imaging,  PK,  and  growth  inhibition  studies).  DI-87  (dCKi,  in-house  production  and  Sundia 

Pharmaceuticals) was administered by oral gavage to recipient animals. For oral administration 

of DI-87, the drug was solubilized in the formulation containing PEG-200: Transcutol: Labrasol: 

Tween-80 mixed in 5:3:1:1 ratio. For imaging studies, the mice were treated with indicated doses 

of  DI-87 after  the tumor size reached 250 mm3.  For growth inhibition and pharmacokinetic 

studies, treatments were started after the tumors reached 50 mm3. 

Phenotypic screen of dCK inhibitors against pyrimidine nucleotide metabolism

A library of 65 dCK inhibitors developed by our group was arrayed in polypropylene 384-well 

plates  at  200x  concentrations  covering  a  7-point  concentration  range  (corresponding  to  1x 

concentrations: 5 µM, 1.65 µM, 550 nM, 185 nM, 61.5 nM, 20.6 nM, 6.85 nM). 25 µl per well 

of condition-specific growth media (DNP + NSP (baseline): media +10 µM rU; DNP: media 

alone; NSP: media +10 µM rU + 1 µM NITD-982) was plated in opaque-white 384-well plates 

using a BioTek multidrop liquid handler. dCK inhibitors were added by 250 nL pin-tool transfer 
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(BioMek  FX,  Beckman-Coulter)  and  inhibitor/media  mixtures  were  incubated  at  room 

temperature for 30 m. 25 µL of a 40,000 cells/mL JURKAT suspension (for 1000 cells / well) 

was subsequently added to each well. After 72 h, 50 µL of Cell Titer Glo reagent diluted 1:4 in 

deionized H2O was added to each well and luminescence was measured using a Wallac plate 

reader (Perkin Elmer). Each condition was assayed in duplicate (n=2) and % proliferation values 

were  calculated  by  normalizing  experimental  wells  to  plate  negative  controls  and  averaging 

replicate values.  Composite pathway selectivity synergy scores for each test  compound were 

defined  as  the  sum  of  the  excess  over  additivity  (%  proliferation  inhibition  observed  -  % 

proliferation  inhibition  expected)  between  individual  protein  kinase  inhibitor  concentrations 

across the 7-point concentration range. Z factor scores for individual assay plates were calculated 

using eight positive and eight negative control wells on each plate. All plates gave a Z factor > 

0.5.

Cell Titer Glo viability analysis

Cells were plated at 1x103 cells / well at 50 µl / well in white opaque 384-well plates and treated 

as described. Following incubation 50 µl of Cell Titer. Glo reagent (Diluted 1:5 in deionized 

H2O) was added to each well, plates incubated at room temperature for 5 min and luminescence 

was  measured using a  BioTek microplate  luminescence  reader.  Proliferation  rate  normalized 

growth inhibition was calculated using the GR metric.

Mass spectrometry

For  analysis  of  stable  isotope-labeled  metabolite  incorporation  into  newly  replicated  DNA, 

JURKAT cells were cultured in glucose-free RPMI media supplemented with 10% dialyzed FBS, 

4 mM glutamine, 1 g/L [13C6]glucose, 10 µM [13C9; 15N2]rU and treated as indicated.
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Genomic DNA was extracted using the Quick-gDNA MiniPrep kit and hydrolyzed to nucleosides 

using the DNA Degradase Plus kit,  following manufacturer-supplied instructions. In the final 

step of DNA extraction, 50 μL of water was used to elute the DNA into 1.5 mL microcentrifuge 

tubes. A nuclease solution (5 μL; 10X buffer/DNA Degradase PlusTM/water, 2.5/1/1.5, v/v/v) 

was added to 20 μL of the eluted genomic DNA in an HPLC injector vial. The samples were 

incubated overnight at 37 ºC.

Hydrolyzed DNA was diluted 1/1 with solvent A (water/acetonitrile/formic acid, 95/5/0.1, v/v) 

and analyzed using a modified version of a previously reported method2,45 in which aliquots of 

the solution (15 µL) were injected onto a porous graphitic carbon column (Thermo Hypercarb, 

100 x 2.1 mm, 5 micron particle size) equilibrated in solvent A and eluted (300 µL/min) with an 

increasing  concentration  of  solvent  B  (acetonitrile/water/formic  acid,  90/10/0.1).  The  HPLC 

timetable, in terms of min/%B, is the following: 0/0, 5/0, 12/20, 15/30, 17/50, 19/50, 20/0, 24/0. 

The effluent from the column was directed to Agilent Jet Stream connected Agilent 6460 QQQ 

operating in the positive ion MRM mode. After verification of retention times using authentic 

standards, the peak areas of the protonated nucleoside/protonated base fragment ion transitions 

for each of the nucleosides were recorded with instrument manufacturer-supplied software.

Pharmacokinetic Studies of DI-87 in Mice

DI-87 plasma and tumor concentrations were assessed at 1, 3, 6, 9 and 24 hr following oral 

administration of 10, 25, or 50 mg/kg of DI-87 to female NSG mice with CEM tumors (N = 5 

mice per time point). At each time point, a cohort of mice was sacrificed by cervical dislocation; 

thus, a single plasma and tumor concentration were obtained from each mouse. Blood samples 

were collected in heparin-EDTA tubes by the retro-orbital technique and spun at 6000×g for 15 
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min prior to collecting the plasma supernatants. All plasma samples were frozen at −20 °C before 

sample processing. The stock solutions of DI-87 and DI- 82 (internal standard) were prepared by 

dissolving  the  appropriate  amount  of  each  drug  in  a  known  volume  of  dimethyl  sulfoxide 

(DMSO) to  a  10  mM concentration  and  were  stored  at  –20  °C before  use.  DI-82  (internal 

standard)  was diluted to  200 nM in methanol  to  make the internal  solution.  The calibration 

standards were prepared by spiking working stock solutions of DI-87 in plasma from untreated 

mice to give 0.01–10 pmol/μL range. Each 20 μL calibration standard sample was mixed with 60 

μL of  internal  solution  (methanol  with  200  nM  internal  standard)  and  vortexed  for  30  s. 

Following centrifugation at 15,000 × g for 10 min, approximately 60 μL of sample was carefully 

transferred  into  HPLC  injector  vials  for  LC-MS/MS-MRM  analysis.  Plasma  samples  were 

processed the same way as the calibration standard samples. 20 μL samples were injected onto a 

reverse  phase  column,  (Thermo Scientific  Hypersil  GOLD column 3.0  μm; 2.1  ×  100 mm) 

equilibrated  in  0.1%  water/formic  acid,  and  eluted  (200  μL/min)  with  an  increasing 

concentration of solvent B (acetonitrile/formic acid, 100/0.1, v/v: min/% acetonitrile; 0/0, 5/0, 

15/60, 16/100, 19/100, 20/0, and 25/0). The effluent from the column was directed to the Agilent 

Jet  Stream ion  source  connected  to  the  triple  quadrupole  mass  spectrometer  (Agilent  6460) 

operating in the multiple reaction monitoring (MRM) mode using previously optimized settings. 

The  following  drug  precursor  →  fragment  ion  transitions  were  used:  DI-82  (511  →  369), 

DI-87(503 →  361).  The peak areas for  each drug (precursor  →  fragment ion transitions)  at 

predetermined  retention  times  were  recorded  using  the  software  supplied  by  the  instrument 

manufacturer  (Agilent  MassHunter).62  The  intraday  precision  based  on  the  coefficient  of 

variation of replicates of the lower limit of quantification (LLOQ) and for quality control (QC) 

samples are within 15% and the accuracy of LLOQ and QC samples are within 10%. 
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Tumors were harvested after dissection of mice, weighed, and snap-frozen in liquid nitrogen. 

PBS containing internal standard (200 μL for 50 mg tumor) was added to the excised tumor and 

homogenized  using  a  bead  beater  (BioSpec).  The  samples  were  spun  down  to  collect 

supernatants. The supernatant was further diluted 5 times in PBS (with internal standard), and 

four parts of methanol (with internal standard) was added and incubated −80 °C overnight to 

precipitate  proteins.  The  samples  were  spun  at  maximum  speed  (16000  g)  at  4  °C,  and 

supernatant  collected.  Twenty  μL  samples  were  injected  onto  a  reverse  phase  column 

equilibrated in water 0.1% formic acid for LC-MS/ MS-MRM analysis in positive ion mode as 

above and compared to calibration standards. 

dCK Activity with MicroPET/CT

dCK activity was evaluated following oral administration of 5, 10, or 25 mg/kg of DI-87 to male 

NSG mice implanted with CEM tumors (N = 4 mice per  time point).  The NSG mice were 

anesthetized 3 hr prior to imaging and intravenously administered 740 kBq of [18F]CFA PET 

probe.28  Thus,  each  mouse  was  representative  of  a  single  time  point  and  concentration. 

MicroPET/CT experiments were conducted using G8 microPET/CT system.30,63 The mice were 

then positioned in an imaging chamber and data was acquired with the G8 microPET/CT system 

(Sofie Biosciences). MicroPET data was acquired for 10 min and reconstructed with a statistical 

maximum a posteriori probability algorithm (MAP) into multiple frames. The spatial resolution 

of  PET is  ~1.5 mm with 0.4 mm voxel  size.  CT images are a  low-dose 400 μm resolution 

acquisition with  200 μm voxel  size.  MicroPET and CT images  were  co-registered and then 

quantified by manually drawing three-dimensional regions of interest using Osirix software. The 
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color scale was proportional to tissue concentration, with red being the highest and yellow, green 

and blue corresponding to the lower values. 

Growth Inhibition Studies

Male NSG mice implanted with CEM tumors as above were used for growth inhibition studies. 

Combination therapy of DI-87 with thymidine was used. Treatments of DI-87 and/or thymidine 

were started after  tumor volume reached 50 mm3.  DI-87 was administered at  varying doses 

orally once a day (QD) or twice a day (BID) for 16–18 days while thymidine (2 g/kg) solubilized 

in  saline  was administered intraperitoneally  BID after  start  of  treatment.17  Three cohorts  of 

control mice were administered either: (i) intraperitoneal (i.p.) thymidine alone, (ii) Oral DI-87 

with  i.p  saline  injections,  or  (iii)  vehicle  for  oral  DI-87  and  saline  i.p.  Tumor  growth,  as 

measured by CT,  was compared amongst  different  treatment  groups (n = 5 mice,  5  tumors/

group). Tumor growth was monitored daily by caliper measurements ([(length × width2)/2]) and 

bi-weekly by CT measurements. 

Pharmacokinetic and Pharmacodynamic Modeling

Using the computer program NONMEM (version 7.3) with a GNU Fortran G77 Compiler, DI-87 

concentration-time data were modeled using first-order conditional estimation (FOCE) method 

with interaction. Plasma concentrations were assessed with standard PK models which included 

a  depot  compartment  representing  the  gut.  Tumor  concentrations  were  evaluated  with  the 

addition of a separate tumor compartment once plasma concentrations had been characterized 

(ADVAN6, TRANS1 subroutine). An exponential-normal distribution error model was used for 

inter-subject variability. 
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A combined pharmacokinetic-pharmacodynamic (PK-PD) model was developed using the final 

DI-87 plasma-tumor PK parameter estimates. The effect compartment (dCK inhibition or growth 

inhibition) was linked to the tumor concentrations. Linear (slope), Emax, and sigmoid Emax 

models were tested to determine which were the best fits to the data (see equations below).64 The 

final model was used to simulate dCK inhibition and growth inhibition from a representative 

mouse for each of the tested DI-87 concentrations. 

PD models: 

Docking and Molecular Dynamics: 

The inhibitor compounds are docked into the binding pocket of dCK crystal structure manually. 

Classical molecular dynamics (MD) were performed using the GPU code (pmemd) of the Amber 

12 package on the substrate conformations and the transition states for 500 ns in enzyme. The 

FF99SBildn  force  field  was  used  for  the  protein  residues.  Parameters  for  the  substrate 

conformations and transition states were generated within the antechamber module using the 

general  Amber force field (gaff),  with the partial  charges set  to fit  the electrostatic  potential 

calculated at the HF/6-31G(d) level by the RESP model. The charges were computed according 

to the Merz-Singh-Kollman scheme using the Gaussian 09 package. Each enzyme complex was 

immersed  in  a  pre-equilibrated  truncated  cuboid  box  with  a  10  Å  buffer  of  TIP3P water 

molecules using the tleap module. The systems were neutralized by addition of explicit counter 

ions (Na+ or Cl-). The systems were optimized for total 10000 steps, followed by gentle heating 
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to imaging and intravenously administered 740 kBq of [18F]CFA PET
probe [4]. Thus, each mouse was representative of a single time point
and concentration. MicroPET/CT experiments were conducted using G8
microPET/CT system [6,7]. The mice were then positioned in an ima-
ging chamber and data was acquired with the G8 microPET/CT system
(Sofie Biosciences). MicroPET data was acquired for 10 min and re-
constructed with a statistical maximum a posteriori probability algo-
rithm (MAP) into multiple frames. The spatial resolution of PET is
~1.5 mm with 0.4 mm voxel size. CT images are a low-dose 400 μm
resolution acquisition with 200 μm voxel size. MicroPET and CT images
were co-registered and then quantified by manually drawing three-di-
mensional regions of interest using Osirix software. The color scale was
proportional to tissue concentration, with red being the highest and
yellow, green and blue corresponding to the lower values.

2.14. Growth inhibition studies

Male NSG mice implanted with CEM tumors as above were used for
growth inhibition studies. Combination therapy of DI-87 with thymi-
dine was used. Treatments of DI-87 and/or thymidine were started after
tumor volume reached 50 mm3. DI-87 was administered at varying
doses orally once a day (QD) or twice a day (BID) for 16–18 days while
thymidine (2 g/kg) solubilized in saline was administered in-
traperitoneally BID after start of treatment 3. Three cohorts of control
mice were administered either: (i) intraperitoneal (i.p.) thymidine
alone, (ii) Oral DI-87 with i.p saline injections, or (iii) vehicle for oral
DI-87 and saline i.p. Tumor growth, as measured by CT, was compared
amongst different treatment groups (n = 5 mice, 5 tumors/group).
Tumor growth was monitored daily by caliper measurements
([(length × width2)/2]) and bi-weekly by CT measurements.

2.15. Pharmacokinetic and pharmacodynamic modeling

Using the computer program NONMEM (version 7.3) with a GNU
Fortran G77 Compiler, DI-87 concentration-time data were modeled
using first-order conditional estimation (FOCE) method with interac-
tion. Plasma concentrations were assessed with standard PK models
which included a depot compartment representing the gut. Tumor
concentrations were evaluated with the addition of a separate tumor
compartment once plasma concentrations had been characterized
(ADVAN6, TRANS1 subroutine). An exponential-normal distribution
error model was used for inter-subject variability.

A combined pharmacokinetic-pharmacodynamic (PK-PD) model
was developed using the final DI-87 plasma-tumor PK parameter esti-
mates (Fig. 1). The effect compartment (dCK inhibition or growth in-
hibition) was linked to the tumor concentrations. Linear (slope), Emax,
and sigmoid Emax models were tested to determine which were the best
fits to the data (see equations below) [8]. The final model was used to
simulate dCK inhibition and growth inhibition from a representative
mouse for each of the tested DI-87 concentrations.

PD models:
A Linear slope Slope Conc. ( ): .

+B E E Conc
EC Conc

. : .
max max

50

+C Sigmoid E E Conc
EC Conc

. :max max
Exp

Exp Exp
50

3. Results

3.1. Development of a highly potent, orally bioavailable dCK inhibitor, DI-
87

While our group had previously developed the dCK inhibitors DI-39

and DI-82, each had drawbacks, including poor solubility and sub-op-
timal PK. In an effort to improve upon previous generation inhibitors,
DI-87 (Fig. 2A) was synthesized, with the morpholine moiety specifi-
cally incorporated to increase solubility. DI-87 was synthesized as fol-
lows: an SN2 reaction between 4-methoxy-3-hydroxybenzonitrile and 4-
(2-chloroethyl) morpholine furnished 1 (Fig. 2B). Heating with an
aqueous solution of ammonium sulfide gave thioamide 2, which was
subjected to Hantzsch thioazole formation conditions to yield thiazole
3. Asymmetric Corey-Bakshi-Shibata (CBS) reduction of the ketone re-
sulted in the S-alcohol 4, which was converted into the trifluoroacetate
5 and displaced via SN2 reaction by 4,6-diamino-2-mercaptopyrimidine
to furnish (R)-DI-87 (6). The IC50 values for each enantiomer of DI-87
were determined using a dC uptake assay in CEM cells. (S)-DI-87 ex-
hibited a much higher IC50 value (468 ± 2.1 nM) relative to (R)-DI-87
(3.15 ± 1.2 nM) (Fig. 2C). (R)-DI-87 treatment rescued CEM cells from
the anti-proliferative effects of gemcitabine, a dCK-dependent nucleo-
side analog prodrug, with an EC50 of 10.2 nM (Fig. 2D). Additionally,
we observed that protein binding of (R)-DI-87 (DI-87) is comparatively
lower than its predecessor, (R)-DI-82 (DI-82), as measured by IC50 of
the respective dCK inhibitor in presence of bovine serum albumin (BSA)
(Fig. 2E).

3.2. Pharmacokinetics of DI-87

DI-87 concentrations in plasma and tumor were determined for 3
dose levels: 10, 25, and 50 mg/kg (Fig. 3). Plasma and tumor con-
centrations were obtained at a single time point from each mouse.
Plasma DI-87 concentrations peaked between 1 and 3 h (Fig. 3A).
Tumor concentrations were lower than plasma and had a later, more
sustained peak at 3–9 h (Fig. 3B). Plasma and tumor PK was also
evaluated in male mice following a 10 mg/kg dose, with essentially
identical results to those seen in female mice (data not shown).

A population PK model was initially developed for plasma con-
centrations, with a one-compartment structural model fitting the data
well. An additional compartment was added to model tumor con-
centrations. The parameter estimates for the combined tumor and
plasma population PK model are shown in Table 1. KA was fixed to the
parameter estimate obtained from the plasma PK model. The typical
clearance value was 0.46 L/hr/kg and the plasma volume of distribu-
tion was 2.78 L/kg. Actual tumor volumes were used in the model.

Fig. 1. Schematic of population PK-PD model. DI-87 is an oral drug which is
absorbed from the gut with an absorption constant (KA). It distributes between
the plasma volume (Vp) and tumor volume (Vt) with an intercompartmental
clearance Q and is eventually cleared from the plasma compartment (CL).
Tumor DI-87 concentrations lead to drug effect (dCK inhibition or growth in-
hibition). DCK inhibition with modeled with a sigmoid Emax indirect response
model while growth inhibition was modeled with an Emax indirect response
model.
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from 0 K to 300 K under constant-volume and periodic-boundary conditions. Each system was 

then  equilibrated  for  2  ns  with  a  2  fs  time  step.  Production  trajectories  were  then  run  for 

additional 500 ns under the same simulation conditions. 

DFT Calculation:

Density  functional  theory  computations  were  performed  using  Gaussian09.  Geometry 

optimizations were performed at the B3LYP/6-31G(d) level of theory, which has been shown to 

yield accurate conformational energetics. The energy is scanned along the dihedral angle with 

Opt=ModRedundant option.  Reported energies are Gibbs free energies.  The 3D rendering of 

stationary  points  were  generated  using  CYLview.  GaussView  and  Avogadro  were  used  to 

construct the structures used in our computations. 

Statistical analyses

Data are presented as mean ± SD with number of biological replicates indicated. Comparisons of 

two groups were calculated using indicated unpaired two-tailed Student’s t-test and P values less 

than 0.05 were considered significant. Comparisons of more than two groups were calculated 

using one-way ANOVA followed by Bonferroni’s multiple comparison tests, and P values less 

than 0.05/m, where m is the total number of possible comparisons, were considered significant.

1.5.2 General Chemistry Methods

All chemicals,  reagents and solvents were obtained from commercial  sources and were used 

without further purification. Unless otherwise noted, reactions were carried out in oven-dried 

glassware  under  an  atmosphere  of  argon  using  commercially  available  anhydrous  solvents. 

Tetrahydrofuran (THF) was distilled from sodium under an argon atmosphere. Dichloromethane 

was distilled from calcium hydride. Solvents used for extractions and chromatography were not 
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anhydrous. Analytical TLC was carried out on precoated silica gel (Merck silica gel 60, F254) 

and visualized with UV light. Column chromatography was performed with silica (Fisher, 230–

400 mesh). 1H NMR, 13C NMR, and 19F NMR spectra were measured in CDCl3 or DMSO-d6 

on Bruker AV spectrometers at 400 or 500 MHz. Chemical shifts were reported in parts per 

million (δ) relative to residual solvent signals. The signals observed were described as follows: s 

(singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), dt (doublet of triplets), ddd 

(doublet of doublet of doublets), tt  (triplet of triplets), tdd (triplet of doublet of doublets), m 

(multiplet), br s (broad singlet), br m (broad multiplet). Mass spectra were obtained on a Waters 

LCT Premier with ACQUITY UPLC mass spectrometer under electrospray ionization (ESI) or 

Thermo Fisher Scientific Exactive Plus with direct analysis in real time (DART) ionization. All 

microwave-assisted  reactions  were  carried  out  in  a  CEM  Discover  908005  Microwave 

synthesizer system.

1.5.3 General Method A – Synthesis of Thioamide Intermediates 

With  appropriate  carbonitrile  starting  materials,  all  thioamide  intermediate  compounds  were 

synthesized  using  the  following  General  Method  A  for  synthesis  of  4-methoxy-3-(2-

morphlinoethoxy)benzothioamide:

To  a  homogenous  solution  of  4-methoxy-3-(2-morpholinoethoxy)benzonitrile  (1.52  g,  5.79 

mmol) in pyridine (12 mL) was added Et3N (1 mL, 7.17 mmol) and ammonium sulfide solution 

(20 wt% in water, 5.93 mL, 17.4 mmol). The reaction solution was heated to 60 °C and stirred 

for 12 hr. The reaction solution was then cooled to room temperature and concentrated in vacuo. 

The resulting residue was taken up in ethyl acetate and washed with deionized water and brine. 

The organic layer was dried over anhydrous MgSO4, concentrated in vacuo, and purified by flash 
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chromatography  over  silica  gel  (1:2  to  2:1  ethyl  acetate/hexanes)  to  yield  the  desired  4-

methoxy-3-(2-morpholinoethoxy)benzothioamide  (1.35  g,  79%  yield).  1H  NMR  (300  MHz, 

CDCl3) δ 7.75 (br s, 1H), 7.65 (d, J = 2.2 Hz, 1H), 7.41 (dd, J = 8.5, 2.2 Hz, 1H), 7.36 (br s, 1H), 

6.81 (d, J = 8.5 Hz, 1H), 4.21 (t, J = 5.9 Hz, 2H), 3.88 (s, 3H), 3.72 (t, J = 4.7 Hz, 4H), 2.85 (t, J 

= 5.9 Hz, 2H), 2.59 (t, J = 4.6 Hz, 4H). DART-MS: m/z calcd. for C14H21N2O3S [M + H]+, 

297.12729; found 297.12241.

1.5.4 General Method B – Synthesis of 2-substituted 1-(5-methyl-thiazol-4-yl)-ethan-1-one 

Intermediates

With appropriately substituted thioamide precursors, all 2-substituted 1-(5-methyl-thiazol-4-yl)-

ethan-1-one intermediate compounds were synthesized using the following General Method B 

for synthesis of 1-(2-(4-methoxy-3-(2-morpholinoethoxy)phenyl)-5-methylthiazol-4-yl)ethan-1-

one:

To a  solution of  4-methoxy-3-(2-morphlinoethoxy)benzothioamide (276 mg,  0.931 mmol)  in 

ethanol (3 mL) at room temperature was added 4-bromopentane-2,3-dione (200 mg, 1.12 mmol) 

and  the  reaction  solution  was  heated  to  reflux  for  3  hr.  The  reaction  solution  was  then 

concentrated in vacuo, and the resulting residue was directly purified by trituration with ethyl 

acetate and hexanes to yield the desired thiazole  (190 mg, 54% yield). 
1
H NMR (500 MHz, 

CDCl3) δ 7.50 (d, J = 2.0 Hz, 1H), 7.47 (dd, J = 8.4, 2.1 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 4.66 

(t, J = 4.4 Hz, 2H), 4.30 (br m, 2H), 4.02 (br m, 2H), 3.88 (s, 3H), 3.72 (br m, 2H), 3.55 (t, J = 

4.3 Hz, 2H), 3.22 (br m, 2H), 2.74 (s, 3H), 2.68 (s, 3H). DART-MS: m/z calcd. for 377.15350 [M 

+ H]+; found 377.15920.
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1.5.5  General  Method  C  –  Synthesis  of  2-substituted  ethyl-4-carboxylate  Thiazole 

Intermediates

With  appropriately  substituted  thioamide  precursors,  all  2-substituted  ethyl-4-carboxylate 

thiazole intermediates were synthesized using the following General Method C for synthesis of 

ethyl 2-methylthiazole-4-carboxylate:

To a solution of ethanethioamide (230 mg, 3.06 mmol) in ethanol (12 mL) was added ethyl 

bromopyruvate (0.46 mL, 3.67 mmol). The reaction solution was heated to reflux and stirred for 

2 hr. The reaction solution was then diluted with deionized water and extracted three times with 

ethyl  acetate.  The  combined  organic  layers  were  washed  with  brine,  dried  over  anhydrous 

MgSO4,  and  concentrated  in  vacuo.  The  residue  was  then  purified  by  flash  column 

chromatography with 35% ethyl acetate in hexanes as the eluent. The product was obtained as a 

crystalline solid (380 mg, 73% yield). 1H NMR (400 MHz, CDCl3) δ 8.03 (s, 1H), 4.41 (q, J = 

7.1 Hz, 2H), 2.76 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 166.9, 161.6, 

147.0,  127.4,  61.6,  19.5,  14.5;  HRMS-ESI  (m/z)  [M+H]+  calcd  for  C7H10NO2S  [M+H]+ 

171.03540, found 171.03738.

1.5.6  General  Method  D  –   Synthesis  of  2-substituted  1-(thiazol-4-yl)-ethan-1-ol 

Intermediates

With appropriate 2-substituted 1-(5-methyl-thiazol-4-yl)-ethan-1-one precursors, all 2-substituted 

1-(thiazol-4-yl)-ethan-1-ol thiazole intermediates were synthesized using the following General 

Method D for synthesis of 1-(5-methyl-propylthiazol-4-yl)-ethan-1-ol:

To a homogenous solution of 1-(5-methyl-propylthiazol-4-yl)-ethan-1-one (407 mg, 2.22 mmol) 

in THF at 0 °C was added DIBAL-H (1.0 M solution in THF, 3.11 mL, 3.11 mmol) dropwise. 
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The reaction solution was stirred at 0 °C for 15 min and then at room temperature for 75 min. 

Upon reaction completion,  the solution was then cooled to 0 °C and carefully quenched by 

addition of Rochelle’s Salt. This mixture was stirred for 30 min, diluted with deionized water, 

and extracted three times with ethyl acetate. The organic layers were then combined and dried 

over  anhydrous  MgSO4  and  concentrated  in  vacuo.  The  resulting  oil  was  purified  by  flash 

column chromatography over silica gel with 10% ethyl acetate in hexanes as the eluent. The 

desired alcohol was obtained as an oil (468 mg, 98% yield). 1H NMR (400 MHz, CDCl3) δ 4.88 

(m, 1H), 2.87 (d, J = 15.3 Hz, 1H), 2.85 (d, J = 15.3 Hz, 1H), 2.77 (br s, 1H), 2.35 (s, 3H), 1.75 

(m, 2H), 1.48 (d, J = 6.5 Hz, 3H), 0.99 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 

168.1,  153.8,  125.5,  64.6,  35.4,  24.2,  23.5,  13.8,  10.9;  HRMS-ESI  (m/z)  [M+H]+  calcd  for 

C9H16NOS 186.09526, found 186.09952.

1.5.7  General  Method  E  –   Synthesis  of  2-substituted  2-(thiazol-4-yl)-propan-2-ol 

Intermediates

With  appropriate  2-substituted  ethyl-4-carboxylate  substituted  thiazole  precursors,  all  2-

substituted  2-(thiazol-4-yl)-propan-2-ol  intermediates  were  synthesized  using  the  following 

General Method E for synthesis of 2-(2-phenylthiazol-4-yl)propan-2-ol:

To a solution of ethyl 2-phenylthiazole-4-carboxylate (740 mg, 3.17 mmol) in THF (20 mL) at 0 

°C was added methyl magnesium bromide (3.0 M in THF, 4.2 mL, 12.7 mmol). The reaction 

solution was stirred for 30 min before warming to room temperature. Once the starting material 

was consumed, the reaction solution was quenched by carefully pouring into a saturated NH4Cl 

solution. The aqueous solution was extracted three times with ethyl acetate and the combined 
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organic layers were dried over MgSO4, concentrated in vacuo, and resulting residue was purified 

by flash column chromatography over silica gel  using 15 % ethyl  acetate in hexanes as the 

eluent. Desired alcohol obtained as an off-white solid (536 mg, 77% yield). 1H NMR (400 MHz, 

CDCl3) δ 7.95 (m, 2H), 7.42 (m, 3H), 7.08 (s, 1H), 3.04 (br s, 1H), 1.65 (s, 6H); 13C NMR (100 

MHz, CDCl3) δ 168.0, 165.0, 133.7, 130.1, 129.0, 126.7, 111.3, 71.3, 30.2; HRMS-ESI (m/z) 

[M+H]+ calcd for C12H14NOS 220.07961, found 220.08266.

1.5.8 General Method F – Synthesis of 2-substituted 1-(5-methyl-thiazol-4-yl)-ethyl 2,2,2-

trifluoroacetate Intermediates

With  appropriate  2-substituted  1-(thiazol-4-yl)-ethan-1-ol  precursors,  all  2-substituted  1-(5-

methyl-thiazol-4-yl)-ethyl  2,2,2-trifluoroacetate  intermediates  were  synthesized  using  the 

following  General  Method  F  for  the  synthesis  of  (S)-1-(2-(4-methoxy-3-(2-

morpholinoethoxy)phenyl)-5- methylthiazol-4-yl)ethyl 2,2,2-trifluoroacetate:

To a solution of (S)-1-(2-(4-methoxy-3-(2-morpholinoethoxy)phenyl)-5- methylthiazol-4-

yl)ethan-1-ol (47 mg, 0.124 mmol) in DCM (5 mL) at 0 °C was added trifluoroacetic anhydride 

(TFAA, 0.07 mL, 0.5 mmol) dropwise. After stirring for 30 min at 0 °C the reaction solution was 

warmed to room temperature prior to quenching with a saturated aqueous solution of sodium 

bicarbonate. The resulting aqueous solution was extracted with DCM three times, the combined 

organic layers washed with brine, concentrated in vacuo and used directly in next step due to the 

instability of the trifluoroacetate product. HRMS-ESI (m/z) calcd for C21H26F3N2O5S [M+H]+ 

475.15145, found 475.15481.
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1.5.9  General  Method  G  –  Synthesis  of  2-substituted  2-(1-(5-methyl-thiazol-4-yl)-ethyl) 

thiopyrimidine-4,6-diamine Final NMc Compounds (NMc 1–4)

With appropriate 2-substituted 1-(5-methyl-thiazol-4-yl)-ethyl 2,2,2-trifluoroacetate precursors, 

final NMc compounds 1–4 were synthesized using the following General Method E for synthesis 

of  (R)-2-((1-(2-(4-methoxy-3-(2-morpholinoethoxy)-phenyl)-5-methylthiazol-4-

yl)ethyl)thio)pyrimidine-4,6-diamine (DI-87): 

To a solution of crude (S)-1-(2-(4-methoxy-3-(2-morpholinoethoxy)phenyl)-5-methylthiazol-4-

yl)ethyl 2,2,2-trifluoroacetate (71 mg, 0.15 mmol) and Cs2CO3 (195 mg, 0.60 mmol) from the 

previous step in DMF (3 mL) was added 4,6-diamino-2-mercaptopyrimidine (43 mg, 0.30 mmol) 

and the reaction solution was stirred at 80 °C. After 3 hr, the reaction solution was filtered 

through a pad of Celite, concentrated in vacuo, and purified by flash chromatography over silica 

gel (1:20 to 1:10 methanol/DCM). Final product obtained as a pale brown solid (20 mg, 27% 

yield (two steps)). 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 2.0 Hz, 1H), 7.37 (dd, J = 8.4, 2.0 

Hz, 1H), 6.86 (d, J = 8.4, 1H), 5.24 (s, 1H), 5.22 (q, J = 7.0 Hz, 1H), 4.60 (s, 4H), 4.24 (t, J = 5.9 

Hz, 2H), 3.88 (s, 3H), 3.76 (t, J = 4.7 Hz, 4H), 2.87 (t, J = 5.9 Hz, 2H), 2.61, (t, J = 4.5 Hz, 4H), 

2.50 (s, 3H), 1.80 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 170.5, 163.8, 163.3, 

153.5, 150.8, 148.4, 127.4, 126.9, 119.9, 111.6, 111.3, 80.7, 67.0, 66.7, 57.6, 56.1, 54.2, 37.7, 

22.1, 11.7; HRMS-ESI (m/z) calcd for C23H31N6O3S2 [M+H]+ 503.18991, found 503.18727.
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1.5.10 General Method H – Synthesis of 2-substituted 4-(2-chloropropan-2-yl) Thiazole 

Intermediates

With appropriate 2-substituted 2-(thiazol-4-yl)-propan-2-ol precursors, all 2-substituted 4-(2-

chloropropan-2-yl) intermediates were synthesized using the following General Method H for 

synthesis of 4-(2-chloropropan-2-yl)-2-phenylthiazole:

To a heterogenous solution of 2-(2-phenylthiazol-4-yl)propan-2-ol (214 mg, 0.976 mmol) and 

sodium bicarbonate (517 mg, 4.88 mmol) in diethyl ether (5 mL) was added thionyl chloride 

(0.078 mL, 1.07 mmol). The reaction solution was stirred for 15 min, filtered through a pad of 

Celite and concentrated in vacuo at low temperature. The crude product was used directly in the 

following step due to instability of the tertiary chloride. HRMS-ESI (m/z) calcd for C12H13ClNS 

[M+H]+ 238.04572, found 238.04814.

1.5.11 General Method I – Synthesis of 2-substituted 2-((2-(thiazol-4-yl)propan-2-

yl)thio)pyrimidine-4,6-diamine Final NMc Compounds (NMc 5–16)

With appropriate 2-substituted 4-(2-chloropropan-2-yl) precursors, all final gem-dimethyl NMc 

compounds 5–16 were synthesized using the following General Method I for synthesis of 2-((2-

(2-phenylthiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine (NMc-7):

To a solution of crude 4-(2-chloropropan-2-yl)-2-phenylthiazole (0.638 mmol) in DMF was 

added sodium 4,6-diaminopyrimidine-2-thiolate (105 mg, 0.638 mmol) and the resulting solution 

was stirred at room temperature for 3 hr. The reaction solution was then filtered through Celite, 

concentrated in vacuo and purified by flash column chromatography using an eluent gradient of 

3–5% methanol in DCM. Product obtained as an off-white solid (22 mg, 10% yield).  1H NMR 

(400 MHz, CDCl3) δ 7.94 (m, 2H), 7.40 (m, 3H), 7.22 (s, 1H), 5.16 (s, 1H), 4.58 (br s, 4H), 2.02 
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(s, 6H); 13C NMR (100 MHz, CDCl3) δ 170.1, 166.4, 162.8, 152.9, 134.2, 129.8, 128.9, 126.7, 

114.2, 80.9, 50.4, 29.2; 

	 61



1.6 Experimental Details

4-Methoxy-3-(2-morpholinoethoxy)benzonitrile (I1)

To a heterogeneous solution of 4-methoxy-3-hydroxybenzonitrile (2.44 g, 16.4 mmol) and 

Cs2CO3 (10.68 g, 32.8 mmol) in N,N-dimethylformamide (DMF) and acetone (1:1, 60 mL) was 

added 4-(2-chloroethyl)morpholine hydrochloride (2.45 g, 16.4 mmol). The reaction solution 

was stirred under argon at 70 °C for 12 hr. The reaction solution was then filtered and the filtrate 

diluted with deionized water before extracting three times with ethyl acetate. The combined 

organic layers were dried over anhydrous MgSO4 and concentrated in vacuo before purification 

by flash chromatography over silica gel (2:3 ethyl acetate/ hexanes) to yield the desired product 

I1 (3.91 g, 91% yield). 

1H NMR (500 MHz, CDCl3) δ:

7.29 (dd, J = 8.4, 1.9 Hz, 1H)

7.13 (d, J = 1.9 Hz, 1H)

6.91 (d, J = 8.4 Hz, 1H)

4.16 (t, J = 5.9 Hz, 2H)

3.91 (s, 3H)

3.73 (t, J = 4.7 Hz, 4H)

2.85 (t, J = 5.9 Hz, 2H)

2.59 (t, J = 4.6 Hz, 4H). 

HRMS-ESI (m/z) calcd for C14H19N2O3 [M+H]+ 263.13957, found 263.14203.
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4-Methoxy-3-(2-morpholinoethoxy)benzothioamide (I2)

I2 was synthesized according to General Method A starting from precursor I1. 1.35 g, 79% yield. 

1H NMR (300 MHz, CDCl3) δ: 

7.75 (br s, 1H)

7.65 (d, J = 2.2 Hz, 1H)

7.41 (dd, J = 8.5, 2.2 Hz, 1H) 

7.36 (br s, 1H)

6.81 (d, J = 8.5 Hz, 1H) 

4.21 (t, J = 5.9 Hz, 2H) 

3.88 (s, 3H)

3.72 (t, J = 4.7 Hz, 4H)

2.85 (t, J = 5.9 Hz, 2H) 

2.59 (t, J = 4.6 Hz, 4H).

DART-MS: m/z calcd. for C14H21N2O3S [M + H]+ 297.12729; found 297.12241.

1-(2-(4-Methoxy-3-(2-morpholinoethoxy)phenyl)-5- methylthiazol-4-yl)ethan-1-one (I3)

I3 was synthesized according to General Method B starting from precursor I2. (90 mg, 54% 

yield. 

1H NMR (500 MHz, CDCl3) δ: 

7.50 (d, J = 2.0 Hz, 1H) 

7.47 (dd, J = 8.4, 2.1 Hz, 1H) 

6.90 (d, J = 8.4 Hz, 1H)

4.66 (t, J = 4.4 Hz, 2H) 

	 63

OMe
O

N
O

I2

S NH2



4.30 (br m, 2H)

4.02 (br m, 2H) 

3.88 (s, 3H) 

3.72 (br m, 2H) 

3.55 (t, J = 4.3 Hz, 2H) 

3.22 (br m, 2H)

2.74 (s, 3H) 

2.68 (s, 3H). 

DART-MS: m/z calcd. for C19H25N2O4S [M + H]+ 377.15350; found 377.15920.

(S)-1-(2-(4-Methoxy-3-(2-morpholinoethoxy)phenyl)-5-methylthiazol-4-yl)ethan-1-ol (I4)

To a solution of (R)-(+)-2-methyl-CBS-oxazaborolidine (3.0 mL of a 1.0 M solution in toluene, 

3.0 mmol) in THF (13 mL) at −78 °C was added borane–THF complex (4.4 mL of a 1.0 M 

solution in THF, 4.4 mmol) followed by a solution of 3 (125 mg, 0.332 mmol) in THF (7 mL) by 

syringe pump over 6 hr while stirring at −78 °C. Upon completion of addition by syringe pump, 

the reaction solution was stirred for another 20 min before addition of DI water (10 mL) and 

methanol (5 mL) and warming to room temperature. The aqueous solution was extracted with 

ethyl acetate, and the resulting organic layer was dried over anhydrous MgSO4 and concentrated 

in vacuo. The resulting residue was purified by flash chromatography over silica gel (1:20 to 1:10 

methanol/DCM) to yield the desired alcohol 14 (50 mg, 40% yield). 

1H NMR (500 MHz, CDCl3) δ: 

7.49 (d, J = 2.1 Hz, 1H)

7.39 (dd, J = 8.4, 2.1 Hz, 1H)
	 64

OMe
O

N
O

I3

NS

O



6.86 (d, J = 8.4 Hz, 1H)

4.93 (q, J = 6.4 Hz, 1H)

4.22 (t, J = 6.1 Hz, 2H)

3.88 (s, 3H)

3.74(t, J = 4.7 Hz, 4H)

2.86(t, J = 6.1 Hz, 2H)

2.60(t, J = 4.5 Hz, 4H)

2.40 (s, 3H)

1.53 (d, J = 6.5 Hz, 3H). 

DART-MS: m/z calcd. for C19H27N2O4S [M + H]+ 379.16915, found 379.17384.

(S)-1-(2-(4-Methoxy-3-(2-morpholinoethoxy)phenyl)-5- methylthiazol-4-yl)ethyl 2,2,2-

trifluoroacetate (I5)

I5 was synthesized according to General Method F starting from precursor I4.

1H NMR (500 MHz, CDCl3) δ:

7.50 (d, J = 1.9 Hz, 1H)

7.48 (dd, J = 8.4, 1.8 Hz, 1H)

6.91 (d, J = 8.4 Hz, 1H)

6.16 (q, J = 6.6 Hz, 1H)

4.48 (t, J = 4.4 Hz, 2H)

4.01 (t, J = 4.7 Hz, 4H)

3.88 (s, 3H)

3.51 (t, J = 4.2 Hz, 2H)
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3.41 (br m, 4H)

2.52 (s, 3H)

1.81 (d, J = 6.6 Hz, 3H).

HRMS-ESI (m/z) calcd for C21H26F3N2O5S [M+H]+ 475.15145, found 475.15481.

(R)-2-((1-(2-(4-Methoxy-3-(2-morpholinoethoxy) phenyl)-5-methylthiazol-4-

yl)ethyl)thio)pyrimidine-4,6-diamine (DI-87)

DI-87 was synthesized according to General Method G starting from precursor I5. 20 mg, 27% 

yield (two steps). 

1H NMR (400 MHz, CDCl3) δ: 

7.54 (d, J = 2.0 Hz, 1H)

7.37 (dd, J = 8.4, 2.0 Hz, 1H)

6.86 (d, J = 8.4, 1H)

5.24 (s, 1H)

5.22 (q, J = 7.0 Hz, 1H)

4.60 (s, 4H)

4.24 (t, J = 5.9 Hz, 2H)

3.88 (s, 3H)

3.76 (t, J = 4.7 Hz, 4H)

2.87 (t, J = 5.9 Hz, 2H)

2.61, (t, J = 4.5 Hz, 4H)

2.50 (s, 3H)

1.80 (d, J = 7.0 Hz, 3H). 
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13C NMR (100 MHz, CDCl3) δ 170.5, 163.8, 163.3, 153.5, 150.8, 148.4, 127.4, 126.9, 119.9, 

111.6, 111.3, 80.7, 67.0, 66.7, 57.6, 56.1, 54.2, 37.7, 22.1, 11.7.

HRMS-ESI (m/z) calcd for C23H31N6O3S2 [M+H]+ 503.18991, found 503.18727.

1-(5-Methyl-2-phenylthiazol-4-yl)ethan-1-one (I6)

I6 was synthesized according to General Method B starting from benzothioamide (2.804 g, 53% 

yield).

1H NMR (400 MHz, CDCl3) δ: 

7.91 (m, 2H)

7.44 (m, 3H)

2.80 (s, 3H)

2.72 (s, 3H).

13C NMR (100 MHz, CDCl3) δ 196.0, 162.6, 149.2, 143.7, 133.3, 130.3, 129.1, 126.5, 29.5, 

13.6.

HRMS-ESI (m/z) calcd for C12H12NOS [M+H]+ 218.06396, found 218.06825.

1-(5-Methyl-2-phenylthiazol-4-yl)ethan-1-ol (I7)

I7 was synthesized according to General Method D starting from precursor I6. 350 mg, 99% 

yield.

1H NMR (400 MHz, CDCl3) δ: 

7.90 (m, 2H)

7.41 (m, 3H)

4.96 (q, J = 6.5 Hz, 1H)
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3.03 (br s, 1H)

2.44 (s, 3H)

1.56 (d, J = 6.5 Hz, 3H).

HRMS-ESI (m/z) calcd for C12H12NOS [M+H]+ 220.07961, found 

220.08247.

1-(5-Methyl-2-phenylthiazol-4-yl)ethyl 2,2,2-trifluoroacetate (I8)

I8 was synthesized according to General Method F starting from precursor I7 and taken directly 

to the next step due to the instability of the trifluoroacetate.

HRMS-ESI (m/z) calcd for C14H13F3NO2S [M+H]+ 316.06191, 

found 316.06092.

2-((1-(5-Methyl-2-phenylthiazol-4-yl)ethyl)thio)pyrimidine-4,6-diamine (NMc-1)

NMc-1 was synthesized according to General Method G starting from precursor I8. 22 mg, 67% 

yield.

1H NMR (400 MHz, DMSO-d6) δ:

7.85 (m, 2H)

7.47 (m, 3H)

6.11 (br s, 4H)
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5.24 (q, J = 7.0 Hz, 1H)

5.16 (s, 1H)

2.50 (s, 3H)

1.70 (d, J = 7.0 Hz, 3H).

13C NMR (100 MHz, DMSO-d6) δ 168.0, 163.5, 162.9, 

154.1, 133.1, 129.8, 129.2, 127.6, 125.7, 79.1, 36.1, 22.2, 

11.2.

HRMS-ESI (m/z) calcd for C16H18N5S2 [M+H]+ 344.10036, 

found 344.10087.

Pyridine-2-carbothioamide (I9)

To a homogenous solution of 2-pyridinecarbonitrile (500 mg, 4.8 mmol) in methanol (48 mL) 

was added ammonium sulfide (20% aqueous solution, 1.72 mL, 5.04 mmol) and the resulting 

reaction solution was stirred at room temperature for 18 hr. Reaction solution was then 

concentrated in vacuo to a yellow solid which was taken up in a mixture of ethyl acetate and 

deionized water. This solution was extracted three times with ethyl acetate. The combined 

organic layers were washed with brine, dried over anhydrous Na2SO4, and concentrated in vacuo 

to give a I9 as a fine yellow powder (545 mg, 82% yield). 

1H NMR (400 MHz, CDCl3) δ:

9.52 (br s, 1H)

8.70 (dt, J = 8.0, 1.0 Hz, 1H)

8.52 (ddd, J = 4.7, 1.7, 0.9 Hz, 1H)

7.84 (ddd, J = 7.8, 7.8, 1.7 Hz, 1H)
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7.79 (br s, 1H)

7.45 (ddd,  J = 7.6, 4.7, 1.2 Hz)

13C NMR (100 MHz, CDCl3) δ 195.9, 150.5, 147.2, 137.2, 126.4, 125.1.

HRMS-ESI (m/z) calcd for C6H7N2S [M+H]+ 139.03299, found 139.03345.

1-(5-Methyl-2-(pyridin-2-yl)thiazol-4-yl)ethan-1-one (I10)

I10 was synthesized according to General Method B starting from precursor I9. 225 mg, 49% 

yield.

1H NMR (400 MHz, CDCl3) δ:

8.59 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H)

8.19 (dt, J = 7.9, 1.1 Hz, 1H)

7.80 (ddd, J = 7.7, 7.7, 1.7 Hz, 1H)

7.33 (ddd, J = 7.5, 4.9, 1.2 Hz, 1H)

2.82 (s, 3H)

2.72 (s, 3H).

13C NMR (100 MHz, CDCl3) δ 195.9, 163.5, 151.2, 149.59, 149.55, 146.2, 137.2, 124.7, 119.6, 

29.3, 13.9.

HRMS-ESI (m/z) calcd for C11H11N2OS [M+H]+ 219.05921, found 219.06183.
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1-(5-Methyl-2-(pyridin-2-yl)thiazol-4-yl)ethan-1-ol (I11)

I11 was synthesized according to General Method D starting from 

precursor I10. The crude product taken directly to the  next step 

following confirmation by mass spectrometry. 

HRMS-ESI (m/z) calcd for C11H13N2OS [M+H]+ 221.07486, found 

221.06937.

1-(5-Methyl-2-(pyridin-2-yl)thiazol-4-yl)ethyl 2,2,2-trifluoroacetate (I12)

I12 was synthesized according to General Method F using precursor I11.

1H NMR (400 MHz, CDCl3) δ:

8.58 (ddd, J = 4.9, 1.7, 0.9 Hz, 1H)

8.18 (dt, J = 7.9, 1.0 Hz, 1H)

7.78 (ddd, J = 7.6, 7.6, 1.7 Hz, 1H)

7.29 (ddd, J = 7.5, 4.9, 1.2 Hz, 1H)

6.19 (q, J = 6.6 Hz, 1H)

2.56 (s, 3H)

1.82 (d, J = 6.6 Hz, 3H).

HRMS-ESI (m/z) calcd for C13H12F3N2O2S [M+H]+ 317.05716, found 317.05442.
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2-((1-(5-Methyl-2-(pyridin-2-yl)thiazol-4-yl)ethyl)thio)pyrimidine-4,6-diamine (NMc-2)

NMc-2 was synthesized according to General Method G using precursor I12. 157 mg, 48% 

yield.

1H NMR (400 MHz, DMSO-d6) δ:

8.59 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H)

8.08 (dt, J = 7.9, 1.0 Hz, 1H)

7.93 (ddd, J = 7.6, 7.6, 1.7 Hz, 1H)

7.45 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H)

6.11 (br s, 4H)

5.25 (q, J = 7.0 Hz, 1H)

5.16 (s, 1H)

2.51 (s, 3H)

1.71 (d, J = 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 168.0, 164.1, 163.5, 154.6, 150.6, 149.6, 137.6, 130.1, 124.7, 

118.7, 79.1, 36.1, 22.1, 11.4.

HRMS-ESI (m/z) calcd for C15H17N6S2 [M+H]+ 345.09561, found 345.09283.

Adamantane-1-carbothioamide (I13) 

I13 was synthesized according to General Method A from 

1-adamantanecarbonitrile. 2.3 g, 89% yield.

1H NMR (400 MHz, CDCl3) δ:

7.63 (br s, 1H)

7.02 (br s, 1H)
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2.09 (m, 3H)

1.97 (m, 6H)

1.73 (m, 6H).

HRMS-ESI (m/z) calcd for C11H18NS [M+H]+ 196.11600, found 196.11483.

1-(2-(Adamantan-1-yl)-5-methylthiazol-4-yl)ethan-1-one (I14)

I14 was synthesized according to General Method B from 

precursor I13. 1.25g, 72% yield.

1H NMR (400 MHz, CDCl3) δ:

2.72 (s, 3H)

2.63 (s, 3H)

2.10 (m, 3H)

2.02 (m, 6H)

1.78 (m, 6H).

HRMS-ESI (m/z) calcd for C16H22NOS [M+H]+ 276.14221, found 276.13983.

1-(2-(Adamantan-1-yl)-5-methylthiazol-4-yl)ethan-1-ol (I15)

I15 was synthesized according to General Method D using 

precursor I14, though after aqueous workup crude product was 

taken on to next step without further purification. 878 mg, 70% 

crude yield.

HRMS-ESI (m/z) calcd for C16H24NOS [M+H]+ 278.15786, found 

278.15835.
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1-(2-(Adamantan-1-yl)-5-methylthiazol-4-yl)ethyl 2,2,2-trifluoroacetate (I16)

I16 was synthesized according to General Method F from crude I15. 1.066g, 92% crude yield.

1H NMR (400 MHz, CDCl3) δ:

6.11 (q, J = 6.6 Hz, 1H)

2.44 (s, 3H)

2.08 (m, 3H)

2.00 (m, 6H)

1.77 (m, 6H)

1.74 (d, J = 6.6 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 178.2, 157.4, 146.8, 130.2, 113.3, 71.7, 43.2, 39.5, 36.7, 28.7, 

19.7, 11.1.

2-((1-(2-Adamantan-1-yl)-5-methylthiazol-4-yl)ethyl)thio)pyrimidine-4,6-diamine (NMc-3)

NMc-3 was synthesized according to General Method G. 580 mg, 52% yield.

1H NMR (400 MHz, CDCl3) δ:

5.23 (s, 1H)

5.18 (q, J = 6.9 Hz, 1H)

4.56 (br s, 4H)

2.44 (s, 3H)

2.06 (m, 3H)

2.00 (m, 6H)

1.75 (m, 6H)
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1.74 (d, J = 7.0 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 177.0, 171.1, 163.3, 151.5, 125.1, 80.7, 43.2, 39.4, 38.1, 36.8, 

28.8, 22.2, 11.6.

HRMS-ESI (m/z) calcd for C20H28N5S2 [M+H]+ 402.17861, found 402.17482.

Butanethioamide (I17)

I17 was synthesized according to General Method A. 844 mg, 36% yield.

1H NMR (400 MHz, CDCl3) δ:

7.55 (br s, 1H)

6.84 (br s, 1H)

2.63 (t, J = 7.5 Hz, 2H)

1.81 (tq, J = 7.5, 7.4 Hz, 2H)

0.99 (t, J = 7.4 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 211.2, 47.5, 22.7, 13.5.

HRMS-ESI (m/z) calcd for C4H10NS [M+H]+ 104.05340, found 104.05300.

1-(5-Methyl-2-propylthiazol-4-yl)ethan-1-one (I18)

I18 was synthesized according to General Method B with precursor 

I17. 1.075g, 66% yield.

1H NMR (400 MHz, CDCl3) δ:

2.87 (t, J = 7.7 Hz, 2H)

2.69 (s, 3H)

2.61 (s, 3H)
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1.77 (tq, J = 7.5, 7.5 Hz, 2H)

1.00 (t, J = 7.4 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 195.8, 166.0, 148.0, 143.1, 35.3, 29.5, 23.3, 13.7, 13.4.

1-(5-Methyl-2-propylthiazol-4-yl)ethan-1-ol (I19)

I19 was synthesized according to General Procedure D with precursor I18. 491 mg, 68% yield.

1H NMR (400 MHz, CDCl3) δ:

4.88 (m, 1H)

2.86 (t, J = 7.6 Hz, 2H)

2.77 (br s, 1H)

2.35 (s, 3H)

1.75 (tq, J = 7.5, 7.5 Hz, 2H)

1.48 (d, J = 6.5 Hz, 3H)

0.99 (t, J = 7.4 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 168.1, 153.8, 125.5, 64.6, 35.4, 24.2, 23.5, 13.8, 10.9.

1-(5-Methyl-2-propylthiazol-4-yl)ethyl 2,2,2-trifluoroacetate (I20)

I20 was synthesized according to General Method F starting from 

precursor I19. 703 mg, 94% crude yield. The product was taken 

directly to next step due to the instability of the trifluoroacetate. 

HRMS-ESI (m/z) calcd for C11H15F3NO2S [M+H]+ 282.07756, found 

282.07472.
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2-((1-(5-Methyl-2-propylthiazol-4-yl)ethyl)thio)pyrimidine-4,6-diamine (NMc-4)

NMc-4 was synthesized according to General Method G from precursor I20. 204 mg, 25% yield. 

1H NMR (400 MHz, DMSO-d6) δ:

6.09 (br s, 4H)

5.14 (q, J = 7.0 Hz, 1H)

5.14 (s, 1H)

2.82 (t, J = 7.5 Hz, 2H)

2.39 (s, 3H)

1.67 (sext, J = 7.4 Hz, 2H)

1.60 (d, J = 7.0 Hz, 3H)

0.94 (t, J = 7.3 Hz, 3H).

13C NMR (100 MHz, DMSO-d6) δ 168.1, 166.5, 163.4, 151.9, 125.5, 79.0, 36.0, 34.5, 22.8, 22.3, 

13.4, 11.0.

HRMS-ESI (m/z) calcd for C13H20N5S2 [M+H]+ 310.11601, found 310.11396.

Morpholine-4-carbothioamide (I21)

I21 was synthesized according to General Method A from morpholine-4-carbonitrile. 1.316 g, 

91% yield.

1H NMR (400 MHz, DMSO-d6) δ:

7.49 (br s, 2H)

3.71 (t, J = 4.4 Hz, 4H)

3.56 (t, J = 4.9 Hz, 4H).

HRMS-ESI (m/z) calcd for C5H11N2OS [M+H]+ 147.05921, found 147.06193.
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1-(5-Methyl-2-morpholinothiazol-4-yl)ethan-1-one (I22)

I22 was synthesized according to General Method B from precursor 

I21. 42 mg, 19% yield.

1H NMR (400 MHz, CDCl3) δ:

3.81 (t, J = 4.9 Hz, 4H)

3.41 (t, J = 4.9 Hz, 4H)

2.61 (s, 3H)

2.52 (s, 3H).

13C NMR (100 MHz, CDCl3) δ 196.1, 166.0, 145.1, 133.3, 66.3, 48.6, 29.5, 13.1.

1-(5-Methyl-2-morpholinothiazol-4-yl)ethan-1-ol (I23)

I23 was synthesized according to General Method D starting

 from precursor I22. 24 mg, 57% yield.

HRMS-ESI (m/z) calcd for C10H17N2O2S [M+H]+ 229.10107, 

found 229.10375.
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1-(5-Methyl-2-morpholinothiazol-4-yl)ethyl 2,2,2-trifluoroacetate (I24)

I24 was synthesized according to General Method F from precursor 

I23. The crude product taken directly to the next step following workup 

due to the instability of the  trifluoroacetate. 

HRMS-ESI (m/z) calcd for C12H16F3N2O3S [M+H]+ 325.08337, 

found 325.08372.

2-((1-(5-Methyl-2-morpholinothiazol-4-yl)ethyl)thio)pyrimidine-4,6-diamine (NMc-5)

NMc-5 was synthesized according to General Method G. 22 mg, 59% yield. 

1H NMR (400 MHz, DMSO-d6) δ:

6.07 (br s, 4H)

5.13 (br s, 1H)

5.04 (q, J = 6.9 Hz, 1H)

3.68 (t, J = 4.8 Hz, 4H)

3.28 (t, J = 4.8 Hz, 4H)

2.27 (s, 3H)

1.55 (d, J = 7.0 Hz).

13C NMR (100 MHz, DMSO-d6) δ 168.3, 167.6, 163.5, 148.6, 

114.6, 79.0, 65.4, 48.0, 36.2, 22.2, 10.8.

HRMS-ESI (m/z) calcd for C14H21N6S2 [M+H]+ 353.12183, found 353.12249.
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2-(5-Methyl-2-phenylthiazol-4-yl)propan-2-ol (I25)

I25 was synthesized according to General Method E from precursor I6. 1.70 g, 75% yield.

1H NMR (400 MHz, CDCl3) δ:

7.87 (m, 2H)

7.40 (m, 3H)

3.97 (br s, 1H)

2.55 (s, 3H)

1.64 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 162.0, 158.0, 133.4, 129.7, 128.9, 126.1, 125.8, 71.8, 30.1, 12.6.

HRMS-ESI (m/z) calcd for C13H16NOS [M+H]+ 234.09526, found 234.09582.

4-(2-Chloropropan-2-yl)-5-methyl-2-phenylthiazole (I26)

I26 was synthesized according to General Method H from 

precursor I25. It was taken directly to the next step due to the 

instability of the tertiary chloride. 

HRMS-ESI (m/z) calcd for C13H15ClNS [M+H]+ 252.06137, 

found 252.05949.

2-((2-(5-Methyl-2-phenylthiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine (NMc-6)

NMc-6 was synthesized according to General Method I from crude precursor I26. 61 mg, 19% 

yield.

1H NMR (400 MHz, DMSO-d6) δ:
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7.83 (m, 2H)

7.46 (m, 3H)

5.92 (br s, 4H)

5.12 (s, 1H)

2.67 (s, 3H)

2.07 (s, 6H).

13C NMR (100 MHz, DMSO-d6) δ 169.2, 163.2, 159.7, 

155.2, 133.3, 129.6, 129.5, 129.1, 125.6, 79.3, 50.2, 

29.1, 13.4.

Ethyl 2-phenylthiazole-4-carboxylate (I27)

I27 was synthesized according to General Method C from precursor thiobenzamide. 1.40 g, 78% 

yield.

1H NMR (400 MHz, CDCl3) δ: 

8.13 (s, 1H)

7.98 (m, 2H)

7.42 (m, 3H)

4.42 (q, J = 7.1 Hz, 2H)

1.40 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 168.9, 161.5, 148.1, 132.8, 130.7, 129.0, 127.1, 127.0, 61.5, 

14.4.
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2-(2-Phenylthiazol-4-yl)propan-2-ol (I28)

I28 was synthesized according to General Method E from precursor I27. 322 mg, 70% yield. 

1H NMR (400 MHz, CDCl3) δ: 

7.95 (m, 2H)

7.42 (m, 3H)

7.08 (s, 1H)

3.04 (br s, 1H) 

1.65 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 168.0, 165.0, 133.7, 130.1, 129.0, 126.7, 111.3, 71.3, 30.2.

HRMS-ESI (m/z) [M+H]+ calcd for C12H14NOS 220.07961, found 220.08266.

4-(2-Chloropropan-2-yl)-2-phenylthiazole (I29)

I29 was synthesized according to General Method H from 

precursor I28. The crude product was taken directly to the next step due 

to the instability of the tertiary chloride. 

HRMS-ESI (m/z) calcd for C12H13ClNS [M+H]+ 238.04572, 

found 238.04814.

2-((2-(2-Phenylthiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine (NMc-7)

NMc-7 was synthesized according to General Method I from precursor I29. 22 mg, 10% yield 

(two steps).

1H NMR (400 MHz, CDCl3) δ:
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7.94 (m, 2H)

7.40 (m, 3H)

7.22 (s, 1H)

5.16 (s, 1H)

4.58 (br s, 4H) 

2.02 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 170.1, 166.4, 162.8, 152.9, 

134.2, 129.8, 128.9, 126.7, 114.2, 80.9, 50.4, 29.2.

HRMS-ESI (m/z) calcd for C16H18N5S2 [M+H]+ 344.10036, 

found 344.10073.

Ethyl 2-(adamantan-1-yl)thiazole-4-carboxylate (I30)

I30 was synthesized according to General Method C from 

precursor I13. 530 mg, 68% yield.

1H NMR (400 MHz, CDCl3) δ:

8.02 (s, 1H)

4.39 (q, J = 7.1 Hz, 2H)

2.09 (br m, 9H)

1.77 (br m, 6H)

1.38 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 182.4, 161.8, 146.7, 126.0, 61.3, 43.1, 40.0, 36.5, 28.6, 14.5.
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2-((2-Adamantan-1-yl)thiazol-4-yl)propan-2-ol (I31)

I31 was synthesized according to General Method E from precursor 

I30. 435 mg, 96% yield. 

1H NMR (400 MHz, CDCl3) δ:

6.87 (s, 1H)

3.19 (br s, 1H)

2.04 (br m, 9H)

1.78 (br m, 6H)

1.57 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 181.34, 163.1, 109.0, 70.9, 43.3, 36.7, 35.9, 30.1, 28.7.

HRMS-ESI (m/z) calcd for C16H24NOS [M+H]+ 278.15786, found 178.15738.

2-(Adamantan-1-yl)-4-(2-chloropropan-2-yl)thiazole (I32)

I32 was synthesized using General Method H from precursor I31. 

The crude product was taken directly to the next step due to the 

instability of the tertiary chloride.

	 84

NS

OH

I31

NS

Cl

I32



2-((2-(2-Adamantan-1-yl)thiazol-4-yl)propan-2-yl)thiopyrimidine-4,6-diamine (NMc-8)

NMc-8 was synthesized according to General Method I from crude precursor I32. 95 mg, 16% 

yield (two steps).

1H NMR (400 MHz, DMSO-d6) δ:

7.50 (s, 1H)

6.05 (br s, 4H)

5.10 (s, 1H)

2.04 (br m, 3H)

1.95 (br m, 6H)

1.94 (s, 6H)

1.73 (br m, 6H).

13C NMR (100 MHz, DMSO-d6) δ 178.2, 169.0, 162.9, 159.4, 113.6, 79.0, 49.1, 42.7, 38.8, 36.0, 

28.3, 28.0.

HRMS-ESI (m/z) calcd for C20H28N5S2 [M+H]+ 402.17861, found 402.17839.

Ethyl 2-(3-hydroxy-4-methoxyphenyl)thiazole-4-carboxylate (I33)

I33 was synthesized according to General Method A from 3-

hydroxy-4-methoxybenzothioamide. 1.0 g, 97% yield.

1H NMR (400 MHz, DMSO-d6) δ:

8.44 (s, 1H)

7.44 (d, J = 2.2 Hz, 1H)

7.37 (dd, J = 8.4, 2.2 Hz, 1H)

7.0 (d, J = 8.4 Hz, 1H)
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4.32 (q, J = 7.1 Hz, 2H)

3.82 (s, 3H)

1.32 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, DMSO-d6) δ 167.9, 160.8, 150.2, 147.0, 146.7, 128.2, 125.3, 118.2, 113.0, 

112.4, 60.8, 55.7, 14.2.

Ethyl 2-(4-methoxy-3-((triisopropylsilyl)oxy)phenyl)thiazole-4-carboxylate (I34)

To a solution of I33 (1.0g, 3.58 mmol) in THF (14 mL) and DMF (0.5 mL) was added imidazole 

(730 mg, 10.7 mmol) and then TIPSCl (1.07 mL, 5.01 mL). The reaction was stirred for 18 hr 

and then concentrated in vacuo. The resulting residue was dissolved in ethyl acetate and washed 

with deionized water and brine before drying over Na2SO4. The organic layer was then 

concentrated in vacuo and the crude residue was purified by flash column chromatography on 

silica gel (20% ethyl acetate in hexanes. 1.192 g, 76% yield. 

1H NMR (400 MHz, CDCl3) δ:

8.07 (s, 1H)

7.61 (dd, J = 8.4, 2.2 Hz, 1H)

7.47 (d, J = 2.2 Hz, 1H)

6.88 (d, J = 8.5 Hz, 1H)

4.43 (q, J = 7.1 Hz, 2H)

3.85 (s, 3H)

1.42 (t, J = 7.1 Hz, 3H)

1.28 (m, 3H)

1.11 (d, J = 7.3 Hz, 18H).
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13C NMR (100 MHz, CDCl3) δ 169.0, 161.7, 153.3, 148.0, 145.8, 126.4, 126.0, 120.7, 119.2, 

111.9, 61.5, 55.6, 18.0, 14.5, 13.1.

2-(2-(4-Methoxy-3-((triisopropylsilyl)oxy)phenyl)thiazol-4-yl)propan-2-ol (I35)

I35 was synthesized according to General Procedure E from precursor I34. 860 mg, 98% yield.

1H NMR (400 MHz, CDCl3) δ:

7.52 (dd, J = 8.4, 2.1 Hz, 1H)

7.47 (d, J = 2.2 Hz, 1H)

6.98 (s, 1H)

6.87 (d, J = 8.4 Hz, 1H)

3.85 (s, 3H)

3.05 (br s, 1H)

1.63 (s, 6H)

1.28 (m, 3H)

1.12 (d, J = 7.2 Hz, 18H).

13C NMR (100 MHz, CDCl3) δ 167.9, 164.5, 152.7, 145.7, 126.5, 120.0, 118.6, 111.9, 110.1, 

71.1, 55.5, 30.1, 17.9, 12.9.

HRMS-ESI (m/z) calcd for C22H36NO3SSi [M+H]+ 421.21069, found 421.21028.
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4-(2-Chloropropan-2-yl)-2-(4-methoxy-3-((triisopropylsilyl)oxy)phenyl)thiazole (I36)

I36 was synthesized according to General Method H from precursor 

I35. The crude product was taken directly to the next step due to the 

instability of the tertiary chloride. 

2-((2-(2-(4-Methoxy-3-((triisopropylsilyl)oxy)phenyl)thiazol-4-

yl)propan-2-yl)thio)pyrimidine-4,6-diamine (I37)

I37 was synthesized according to General Method I with precursor I36. 

1H NMR (400 MHz, CDCl3) δ:

7.52 (dd, J = 8.3, 2.2 Hz, 1H)

7.46 (d, J = 2.1 Hz, 1H)

7.14 (s, 1H)

6.84 (d, J = 8.5 Hz, 1H)

5.18 (s, 1H)

4.68 (br s, 4H)

3.83 (s, 3H)

2.00 (s, 6H)

1.26 (m, 3H)

1.11 (d, J = 7.2 Hz, 18H).

HRMS-ESI (m/z) calcd for C22H40N5O2S2Si [M+H]+ 535.23144, found 535.23185.
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5-(4-(2-((4,6-Diaminopyrimidin-2-yl)thio)propan-2-yl)thiazol-2-yl)-2-methoxyphenol 

(NMc-10)

To a solution of I37 (58 mg, 0.1063 mmol) in THF (1.2 mL) at 0 °C was added TBAF (1.0 M in 

THF, 0.13 mL, 0.13 mmol) and the mixture was stirred for 2 hr before a second addition of 

TBAF (1.0 M in THF, 0.08 mL, 0.08 mmol). The reaction solution was stirred for an additional 

hour and then quenched with deionized water. The aqueous solution was then extracted four 

times with ethyl acetate. The combined organic layers were washed with saturated sodium 

bicarbonate solution, brine, dried over anhydrous Na2SO4 and concentrated in vacuo. The 

residue was purified by flash column chromatography over silica gel using 50–75% ethyl acetate 

in hexanes. 30 mg, 72% yield.

H NMR (400 MHz, DMSO-d6) δ:

9.36 (s, 1H)

7.59 (s, 1H)

7.39 (d, J = 2.0 Hz, 1H)

7.29 (dd, J = 8.4, 2.0 Hz, 1H)

7.00 (d, J = 8.4 Hz, 1H)

6.00 (m, 4H)

5.08 (s, 1H)

3.81 (s, 3H)

1.97 (s, 6H).

13C NMR (100 MHz, DMSO-d6) δ 169.0, 165.1, 163.1, 161.0, 149.4, 146.8, 126.3, 117.5, 114.9, 

112.7, 112.3, 79.0, 55.6, 48.8, 28.4.

HRMS-ESI (m/z) calcd for C17H20N5O2S2 [M+H]+ 390.1058, found 390.1043.
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2-((2-(2-(4-Methoxy-3-(2-morpholinoethoxy)phenyl)thiazol-4-yl)propan-2-

yl)thio)pyrimidine-4,6-diamine (NMc-9)

To a heterogenous solution of NMc-10 ( 22 mg, 0.0565 mmol) and K2CO3 (23.4 mg, 0.169 

mmol) in DMF was added 4-(2-chloroethyl)morpholine hydrochloride (11 mg, 0.0565 mmol) 

and the reaction was stirred at 70 °C for 12 hr. The reaction was then concentrated in vacuo and 

the residue purified by flash column chromatography over silica gel using 5% methanol in DCM 

as eluent. 21 mg, 75% yield. 

1H NMR (400 MHz, CDCl3) δ:

7.56 (d, J = 1.8 Hz, 1H)

7.47 (dd, J = 8.4, 1.9 Hz, 1H)

7.14 (s, 1H)

6.86 (d, J = 8.4 Hz, 1H)

5.15 (s, 1H)

4.56 (br s, 4H)

4.24 (t, J = 6.0 Hz, 2H)

3.88 (s, 3H)

3.74 (t, J = 9.2 Hz, 4H)

2.87 (t, J = 6.0 Hz, 2H)

2.62 (t, J = 8.6 Hz, 4H)

2.01 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 170.4, 166.2, 162.9, 162.4, 151.1, 148.4, 127.4, 120.2, 113.4, 

111.8, 111.7, 80.9, 67.0, 66.9, 57.6, 56.1, 54.2, 50.3, 29.1.

HRMS-ESI (m/z) calcd for C23H31N6O3S2 [M+H]+ 503.18991, found 503.18724.
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Ethyl 2-(3,4-dimethoxyphenyl)thiazole-4-carboxylate (I38)

To a solution of I33 (560 mg, 2.00 mmol) and K2CO3 in DMF was added methyl triflate (0.33 

mL, 3.00 mmol) dropwise. The reaction was stirred for 12 hr and then concentrated in vacuo, the 

residue taken up in ethyl acetate and the organic layer consecutively washed with saturated 

sodium bicarbonate solution, water, and brine. The organic layer dried over anhydrous Na2SO4, 

concentrated in vacuo, and resulting crude product purified by flash chromatography over silica 

gel using 1% MeOH in DCM as the eluent. 421 mg, 72% yield.

1H NMR (400 MHz, CDCl3) δ:

8.09 (s, 1H)

7.60 (d, J = 2.1 Hz, 1H)

7.50 (dd, J = 8.3, 2.1 Hz, 1H)

6.90 (d, J = 8.4 Hz, 1H)

4.44 (q, J = 7.1 Hz, 2H)

3.99 (s, 3H)

3.93 (s, 3H)

1.42 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 169.0, 161.6, 151.4, 149.4, 147.9, 126.6, 126.1, 120.4, 111.1, 

109.7, 61.6, 56.3, 56.1, 14.5.
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2-(2-(3,4-Dimethoxyphenyl)thiazol-4-yl)propan-2-ol (I39)

I39 was synthesized according to General Method E from precursor I38. 300 mg, 82% yield.

1H NMR (400 MHz, CDCl3) δ:

7.51 (d, J = 2.0 Hz, 1H)

7.47 (dd, J = 8.3, 2.1 Hz, 1H)

7.00 (s, 1H)

6.89 (d, J = 8.4 Hz, 1H)

3.97 (s, 3H)

3.92 (s, 3H)

3.04 (br s, 1H)

1.64 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 167.9, 164.6, 150.8, 149.2, 126.8, 119.7, 111.1, 110.4, 109.3, 

71.1, 56.1, 56.0, 30.1.

4-(2-Chloropropan-2-yl)-2-(3,4-dimethoxyphenyl)thiazole (I40)

I40 was synthesized according to General Method H. The crude 

product was taken directly to the next step due to the instability of 

the tertiary chloride. 
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2-((2-(2-(3,4-Dimethoxyphenyl)thiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine 

(NMc-11)

NMc-11 was synthesized according to General Method I from crude precursor I40. 39 mg, 7% 

yield.

1H NMR (400 MHz, CDCl3) δ:

7.53 (d, J = 2.0 Hz, 1H)

7.47 (dd, J = 8.3, 2.0 Hz, 1H)

7.16 (s, 1H)

6.87 (d, J = 8.4 Hz, 1H)

5.17 (s, 1H)

4.53 (br s, 4H)

3.97 (s, 3H)

3.92 (s, 3H)

2.03 (s, 6H).

13C NMR (100 MHz, CDCl3) δ 166.5, 162.7, 162.4, 162.1, 150.6, 149.3, 127.4, 119.7, 113.5, 

111.2, 109.5, 80.7, 56.2, 56.1, 50.69, 29.1.

HRMS-ESI (m/z) calcd for C18H22N5O2S2 [M+H]+ 404.12149, found 404.12186.

Ethyl 2-(4-fluorophenyl)thiazole-4-carboxylate (I41)

I41 was synthesized according to General Method C starting from 4-fluorothiobenzoamide. 478 

mg, 68% yield.

1H NMR (400 MHz, CDCl3) δ:

8.13 (s, 1H)
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7.99 (m, 2H)

7.13 (m, 2H)

4.44 (q, J = 7.1 Hz, 2H)

1.42 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ 166.68 (JC–F = 213.8 Hz), 163.12, 

161.5, 148.3, 129.3 (d, JC–F = 3.3 Hz), 129.1 (d, JC–F = 8.6 Hz), 

127.1, 116.2 (d, JC–F = 22.2 Hz), 61.7, 14.5.

2-(2-(4-Fluorophenyl)thiazol-4-yl)propan-2-ol (I42)

I42 was synthesized according to General Method E from 

precursor I41. 101 mg, 92% yield.

1H NMR (400 MHz, CDCl3) δ:

7.94 (m, 2H)

7.12 (m, 2H)

7.08 (s, 1H)

2.86 (br s, 1H)

1.65 (s, 6H).

HRMS-ESI (m/z) calcd for C12H13FNOS [M+H]+ 238.07019, found 238.07284.
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4-(2-Chloropropan-2-yl)-2-(4-fluorophenyl)thiazole (I43)

I43 was synthesized according to General Method H from 

precursor I42. The crude product was taken directly to the next step due 

to the instability of the tertiary chloride.

2-((2-(2-(4-Fluorophenyl)thiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine (NMc-12)

NMc-12 was synthesized according to General Method I 

from crude precursor I43. 

1H NMR (400 MHz, DMSO-d6) δ:

7.95 (m, 2H)

7.75 (s, 1H)

7.32 (m, 2H)

6.28 (br s, 4H)

5.12 (s, 1H)

1.98 (s, 6H).

HRMS-ESI (m/z) calcd for C16H17FN5S2 [M+H]+ 362.0909, found 362.08878.
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2,4-Difluorobenzothioamide (I44)

I44 was synthesized according to General Method A from 2,4-difluorobenzonitrile. 487 mg, 58% 

yield.

1H NMR (400 MHz, CDCl3) δ:

8.42 (td, J = 13.9, 6.6 Hz, 1H)

8.08 (br s, 1H)

7.73 (br s, 1H)

6.97 (m, 1H)

6.84 (ddd, J = 12.5, 8.3, 2.5 Hz, 1H).

13C NMR (100 MHz, CDCl3) δ 195.8, 165.3 (JC–F = 257.3, 13.0), 159.0 (JC–F = 252.9, 12.4 

Hz), 137.2 (dd, JC–F = 10.1, 2.3 Hz), 121.7 (dd, JC–F = 9.8, 4.0 Hz), 112.5 (dd, JC–F = 21.1, 

3.4 Hz), 104.2 (dd, JC–F = 28.5, 25.9 Hz).

Ethyl 2-(2,4-difluorophenyl)thiazole-4-carboxylate (I45)

I45 was synthesized according to General Method C from precursor I44. 478 mg, 68% yield. 

1H NMR (400 MHz, CDCl3) δ:

8.40 (td, J = 13.0, 6.5 Hz, 1H)

8.24 (s, 1H)

7.01 (m, 1H)

6.95 (ddd, J = 11.1, 8.6, 2.5 Hz, 1H)

4.44 (q, J = 7.1 Hz, 2H)

1.42 (t, J = 7.1 Hz, 3H).

	 96

F

F

S NH2

I44

F

F

I45

NS

O
OEt



13C NMR (100 MHz, CDCl3) δ 164.1 (dd, JC–F = 254.2, 12.2 Hz), 161.5, 160.5 (dd, JC–F = 

254.5, 12.1 Hz), 160.5 (d, JC–F = 5.1 Hz), 147.1, 130.9 (dd, JC–F = 9.9, 4.0 Hz), 128.0 (d, JC–F 

= 8.9 Hz), 117.4 (dd, JC–F = 11.6, 3.9 Hz), 112.5 (dd, JC–F = 21.7, 3.4 Hz), 104.5 (t, JC–F = 

25.8 Hz), 61.7, 14.5.

2-(2-(2,4-Difluorophenyl)thiazol-4-yl)propan-2-ol (I46)

I46 was synthesized according to General Method E from precursor I45. 354 mg, 84% yield.

1H NMR (400 MHz, CDCl3) δ:

8.30 (td, J = 13.0, 6.5 Hz, 1H)

7.21 (s, 1H)

7.00 (m, 1H)

6.94 (ddd, J = 11.1, 8.6, 2.5 Hz, 1H)

2.88 (br s, 1H)

1.65 (s, 6H).

HRMS-ESI (m/z) calcd for C12H12F2NOS [M+H]+ 256.06077, found 256.06389.

4-(2-Chloropropan-2-yl)-2-(2,4-difluorophenyl)thiazole (I47)

I47 was synthesized according to General Method H from 

precursor I46. The crude product was taken directly to the next 

step due to the instability of the tertiary chloride. 
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2-((2-(2-(2,4-Difluorophenyl)thiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine 

(NMc-13)

NMc-13 was synthesized according to General Method I. 

41 mg, 16% yield. The 4 amine protons of the 4,6-

diaminopyrimidine ring exchanged in the NMR solvent 

(CD3OD).

1H NMR (400 MHz, CD3OD) δ:

8.30 (m, 1H)

7.60 (s, 1H)

7.09 (m, 2H)

5.23 (s, 1H)

2.03 (s, 6H).

HRMS-ESI (m/z) calcd for C16H16F2N5S2 [M+H]+ 379.07369, found 379.07728.

Cyclopropanecarbothioamide (I48)

I48 was synthesized according to General Method A from cyclopropanecarbonitrile. 545 mg, 

40% yield.

1H NMR (400 MHz, CDCl3) δ:

7.57 (br s, 1H)

7.11 (br s, 1H)

1.89 (m, 1H)

1.27 (m, 2H)

1.01 (m, 2H).
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13C NMR (100 MHz, CDCl3) δ: 212.5, 23.6, 13.5.

Ethyl 2-cyclopropylthiazole-4-carboxylate (I49)

I49 was synthesized according to General Method C from precursor I48. 273 mg, 15% yield.

1H NMR (400 MHz, CDCl3) δ:

7.93 (d, J = 0.5 Hz, 1H)

4.40 (q, J = 7.1 Hz, 2H)

2.40 (m, 1H)

1.39 (t, J = 7.1 Hz, 3H)

1.17 (m, 2H)

1.07 (m, 2H).

HRMS-ESI (m/z) calcd for C9H12NO2S [M+H]+ 198.05887, found 198.06382.

2-(2-Cyclopropylthiazol-4-yl)propan-2-ol (I50)

I50 was synthesized according to General Method E from precursor I49. 180 mg, 73% yield.

1H NMR (400 MHz, CDCl3) δ: 

6.80 (s, 1H)

2.85 (br s, 1H)

2.30 (m, 1H)

1.57 (s, 6H)

1.11 (m, 2H)

1.04 (m, 2H).

HRMS-ESI (m/z) calcd for C9H14NOS [M+H]+ 184.07961, found 184.08291.
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4-(2-Chloropropan-2-yl)-2-cyclopropylthiazole (I51)

I51 was synthesized according to General Method H from 

precursor I50. The crude product was taken directly to the next step 

due to the instability of the tertiary chloride. 

2-((2-(2-Cyclopropylthiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine (NMc-14)

NMc-14 was synthesized according to General Method I from crude precursor I51. 31 mg, 11% 

yield. The 4 amine protons of the 4,6-diaminopyrimidine ring exchanged in the NMR solvent 

(CD3OD). 

1H NMR (400 MHz, CD3OD) δ:

7.19 (s, 1H)

5.25 (s, 1H)

2.33 (m, 1H)

1.95 (s, 6H)

1.12 (m, 2H)

0.91 (m, 2H).

13C NMR (100 MHz, CD3OD) δ: 174.7, 169.7, 164.3, 161.3, 113.6, 80.5, 51.1, 29.1, 15.2, 11.4.

HRMS-ESI (m/z) calcd for C13H15N5S2 [M+H]+ 309.10036, found 309.0993.
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Ethyl 2-methylthiazole-4-carboxylate (I52)

I52 was synthesized according to General Method C from thioacetamide. 380 mg, 73% yield.

1H NMR (400 MHz, CDCl3) δ: 

8.03 (s, 1H)

4.42 (q, J = 7.1 Hz, 2H)

2.76 (s, 3H)

1.40 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ: 166.9, 161.6, 147.0, 127.4, 61.6, 19.5, 

14.5.

2-(2-Methylthiazol-4-yl)propan-2-ol (I53)

I53 was synthesized according to General Method E from 

precursor I52. 

HRMS-ESI (m/z) calcd for C7H12NOS [M+H]+ 158.06396, 

found 158.06924.

4-(2-Chloropropan-2-yl)-2-methylthiazole (I54)

I54 was synthesized according to General Method H using precursor 

I53. The crude product was taken directly to the next step due to the 

instability of the tertiary chloride. 
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2-((2-(2-Methylthiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-diamine (NMc-15)

NMc-15 was synthesized according to General Method I from crude precursor I54. 

1H NMR (400 MHz, DMSO-d6) δ:

7.44 (s, 1H)

5.99 (br s, 4H)

5.07 (s, 1H)

2.60 (s, 3H)

1.91 (s, 6H).

13C NMR (100 MHz, DMSO-d6) δ: 169.0, 163.2, 163.1, 159.8, 115.0, 79.1, 48.8, 28.4, 18.9.

2-Hydroxyethanethioamide (I55)

To a solution of ethyl thiooxamate (965 mg, 7.25 mmol) in THF (15 mL) and ethanol (15 mL) at 

0 °C was added NaBH4 (685 mg, 18.1 mmol) portion wise over five min. The reaction was 

stirred at 0 °C for 3 hr, at which point the reaction was quenched by careful addition of saturated 

ammonium chloride solution. The aqueous solution was extracted three times with ethyl acetate, 

and three times with DCM. The combined organic layers were dried over anhydrous Na2SO4 and 

then concentrated in vacuo. The product was taken on to next step without further purification. 

485 mg, 73% yield. 

1H NMR (400 MHz, DMSO-d6) δ:

9.84 (br s, 1H)

9.05 (br s, 1H)

5.77 (t, J = 5.9 Hz, 1H)

4.07 (d, J = 5.8 Hz, 2H).
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Ethyl 2-(hydroxymethyl)thiazole-4-carboxylate (I56)

I56 was synthesized according to General Method C from precursor I56. 675 mg, 70% yield. 

1H NMR (400 MHz, CDCl3) δ:

8.15 (s, 1H)

5.00 (s, 2H)

4.41 (q, J = 7.1 Hz, 2H)

2.62 (br s, 1H)

1.40 (t, J = 7.1 Hz, 3H).

13C NMR (100 MHz, CDCl3) δ: 172.7, 161.5, 147.2, 127.7, 62.4, 61.7, 14.5.

2-(2-(Hydroxymethyl)thiazol-4-yl)propan-2-ol (I57)

I57 was synthesized according to General Method E from precursor I56. 331 mg, 67% yield.

1H NMR (400 MHz, CDCl3) δ:

7.08 (s, 1H)

4.91 (s, 2H)

2.61 (br s, 1H)

1.60 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 170.9, 163.9, 111.9, 71.2, 62.2, 30.1.

HRMS-ESI (m/z) calcd for C7H12NO2S [M+H]+ 174.05887, found 174.05274.
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4-(2-Hydroxypropan-2-yl)thiazole-2-carbaldehyde (I58)

To a solution of I57 (173 mg, 1.0 mmol) in acetonitrile (2 mL) was added a solution of 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (18.6 mg, 0.05 mmol) in acetonitrile (1 mL). 

A solution of bipyridine (7.8 mg, 0.05 mmol) in acetonitrile (1 mL) was then added, followed by 

TEMPO (7.8 mg, 0.05 mmol) in acetonitrile (1 mL) and N-methylimidazole (0.008 mL, 0.1 

mmol) in acetonitrile (1 mL). The reaction solution was then stirred vigorously while open to air 

for three hr before concentrating in vacuo. The resulting residue was purified by flash column 

chromatography over silica gel using 40% ethyl acetate in hexanes as the eluent. 156 mg, 91% 

yield. 

1H NMR (400 MHz, CDCl3) δ:

9.97 (d, J = 1.2 Hz, 1H)

7.61 (d, J = 1.3 Hz, 1H)

2.53 (br s, 1H)

1.66 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 183.9, 167.5, 165.7, 119.6, 71.7, 30.5.

(E)-4-(2-Hydroxypropan-2-yl)thiazole-2-carbaldehyde oxime (I59)

To a solution of I58 (141 mg, 0.824 mmol) and sodium acetate (108 mg, 1.32 mmol) in methanol 

(3 mL) was added hydroxylamine hydrochloride (86 mg, 1.24 mmol). The reaction solution was 

stirred for 40 min and then concentrated in vacuo. The resulting solid was partitioned between 

ethyl acetate and deionized water, the aqueous layer was extracted three times with ethyl acetate, 

and the combined organic layers dried over anhydrous sodium sulfate. The organic layer was 
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then concentrated in vacuo to yield the desired product as a 1:1 mixture of the E and Z isomers. 

1H NMR taken in DMSO-d6, 13C NMR taken in CDCl3.

1H NMR (400 MHz, DMSO-d6) δ:

12.70 (s, 1H)

11.89 (s, 1H)

8.28 (d, J = 0.8 Hz, 1H)

7.95 (d, J = 1.0 Hz, 1H)

7.62 (d, J = 1.0 Hz, 1H)

7.36 (d, J = 0.9 Hz, 1H)

1.46 (s, 6H)

1.44 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 164.7, 163.9, 161.9, 154.7, 145.1, 141.0, 116.9, 113.2, 71.33, 

71.28, 30.3, 30.1.

HRMS-ESI (m/z) calcd for C7H11N2O2S [M+H]+ 187.05412, found 187.05468.

4-(2-Hydroxypropan-2-yl)thiazole-2-carbonitrile (I60)

To a solution of I59 (135 mg, 0.832 mmol) in acetonitrile (3 ml) was added copper(II) acetate 

(15.1 mg, 0.0832 mmol) and the reaction heated to reflux for 15 min. The reaction solution was 

then concentrated in vacuo and the residue purified by flash column 

chromatography over silica gel using 40–66% ethyl acetate in hexanes 

as the eluent. 40 mg, 29% yield. 

1H NMR (400 MHz, CDCl3) δ:

7.56 (s, 1H)
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2.43 (br s, 1H)

1.63 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 167.3, 136.2, 118.4, 112.9, 72.0, 30.5.

HRMS-ESI (m/z) calcd for C7H9N2OS [M+H]+ 169.0436, found 169.04254.

N’-Hydroxy-4-(2-hydroxypropan-2-yl)thiazole-2-carboximidamide (I61)

To a solution of I60 (170 mg, 1.01 mmol) in ethanol (3 ml) was added hydroxylamine (50% 

aqueous solution, 0.11 mL, 2.02 mmol) and the reaction solution was heated to 98 °C for two hr. 

The reaction solution was then concentrated in vacuo, yielding a crystalline solid. The solid was 

dissolved in ethanol and concentrated once more. The product was obtained as a white crystalline 

solid. 200 mg, 99% yield. 

1H NMR (400 MHz, DMSO-d6) δ:

10.04 (s, 1H)

7.31 (s, 1H)

5.81 (s, 2H)

5.14 (s, 1H)

1.46 (s, 6H).

13C NMR (100 MHz, DMSO-d6) δ: 164.7, 160.3, 146.9, 113.0, 70.3, 30.4.

HRMS-ESI (m/z) calcd for C7H12N3O2S [M+H]+ 202.0650, found 202.06370.

N’-Acetoxy-4-(2-hydroxypropan-2-yl)thiazole-2-carboximidamide (I62)

To a solution of I61 (143 mg, 0.711 mmol) and triethylamine (0.18 ml, 1.28 mmol) in THF (4.3 

ml) was added acetyl chloride (1.0 M solution in THF, 0.782 ml, 0.782 mmol) dropwise. The 
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reaction solution was stirred for 70 min and then concentrated in vacuo. The resulting solution 

was partitioned between ethyl acetate and saturated ammonium chloride solution. The aqueous 

solution was extracted three times with ethyl acetate and the combined organic layers were dried 

over anhydrous sodium sulfate before being concentrated in vacuo to give an oil which 

crystallized upon standing. 164 mg, 95% yield.

1H NMR (400 MHz, CDCl3) δ:

7.25 (s, 1H)

5.65 (br s, 2H)

2.50 (br s, 1H)

2.26 (s, 3H)

1.62 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 168.5, 164.3, 158.1, 150.4, 115.1, 71.4, 30.3, 19.9.

2-(2-(5-Methyl-1,2,4-oxadiazol-3-yl)thiazol-4-yl)propan-2-ol (I63)

To a solution of I62 (205 mg, 0.843 mmol) in THF (25 ml) at 0 °C was added 

tetrabutylammonium fluoride (TBAF, 1.0 M solution in THF, 0.17 ml, 0.17 mmol). The reaction 

vessel was removed from ice bath and stirred at room temperature following addition of TBAF. 

After two hr the reaction was quenched by addition of deionized water. Brine was added to the 

aqueous solution, which was then extracted with ethyl acetate four times. The combined organic 

layers were dried over anhydrous sodium sulfate, concentrated in vacuo to give a yellow oil, 

which was purified by flash column chromatography over silica using 1:1 ethyl acetate:hexanes 

as the eluent. 188 mg, 99% yield. 
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1H NMR (400 MHz, CDCl3) δ:

7.39 (s, 1H)

2.77 (br s, 1H)

2.70 (s, 3H)

1.67 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 177.8, 166.7, 164.1, 153.8, 115.4, 

71.6, 30.3, 12.6.

HRMS-ESI (m/z) calcd for C9H12N3O2S [M+H]+ 226.0650, found 226.0674.

3-(4-(2-Chloropropan-2-yl)thiazol-2-yl)-5-methyl-1,2,4-oxadiazole (I64)

I64 was synthesized according to General Method H using precursor I63. 

The crude product was taken directly to the next step due to the instability 

of the tertiary chloride.

HRMS-ESI (m/z) calcd for C9H11ClN3OS [M+H]+ 244.03114,

found 244.03247.

2-((2-(2-(5-Methyl-1,2,4-oxadiazol-3-yl)thiazol-4-yl)propan-2-yl)thio)pyrimidine-4,6-

diamine (NMc-16)

NMc-16 was synthesized according to General Method I from precursor I64. 

1H NMR (400 MHz, CDCl3) δ:

7.55 (s, 1H)

5.17 (s, 1H)

4.46 (br s, 4H)
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2.68 (s, 3H)

2.01 (s, 6H).

13C NMR (100 MHz, CDCl3) δ: 177.6, 170.1, 165.1, 164.3, 

162.9, 151.8, 118.1, 80.9, 49.8, 29.6, 12.6.

HRMS-ESI (m/z) calcd for C13H16N7OS2 [M+H]+ 350.0858, 

found 350.0828.
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CHAPTER TWO

Identification of Small Molecule Modulators of Pyrimidine Nucleotide Metabolism

Adapted from: Evan R. Abt*,  Ethan W. Rosser*, Matthew A. Durst*, Soumya Poddar, Vincent 

Lok, Liu Wei, Woosuk Kim, Janet Song, Joseph R. Capri, Thuc M. Le, Roger Slavik, Michael E. 

Jung, Robert Damoiseaux, Johannes Czernin, Timothy R. Donahue, Arnon Lavie, Caius G. Radu. 

Cell Chem Biol. 2019, 27(2), 197-205. (*These authors contributed equally).

2.1 Introduction

The redundant and plastic nature of metabolic networks represents a significant obstacle 

in the pharmacological targeting of cancer metabolism. This redundancy manifests in two ways,  

the first being the expression of multiple enzymes that perform ostensibly identical biochemical 

reactions, such as the hexokinase isozymes which each phosphorylate glucose.1 The second is 

the existence of convergent metabolic pathways that produce a common metabolite from unique 

precursors. Generally, these parallel networks consist of de novo and scavenging pathways that 

synthesize  or  recycle  (either  from  the  extracellular  environment  or  by  breakdown  of 

macromolecules) their common metabolite, respectively. Such convergent metabolic nodes have 

been noted in nucleotide,2 lipid (cholesterol),3 and amino acid (aspartate)4 metabolism.

Despite these difficulties, the development of metabolism modifiers remains a robust area 

of research. One such therapeutically relevant target is pyrimidine nucleotide biosynthesis, which 

consists of nucleoside salvage (NSP) and de novo (DNP) pathways that converge to generate 

uridine monophosphate (UMP), the common precursor for all pyrimidine nucleotides.5 The NSP 
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allows for the scavenging of uridine from the extracellular environment, shuttling it into the cell 

via  nucleoside transporters where it  is  phosphorylated by uridine-cytidine kinases (UCKs) to 

produce UMP. UCK2 is thought to be the primary NSP kinase, given its 20-fold higher catalytic 

efficiency compared to UCK1.6 The DNP is a six-step process that utilizes glutamine, aspartate, 

bicarbonate,  and glucose to produce UMP through the action of three enzymes: trifunctional 

CAD, electron transport chain-linked dihydroorotate dehydrogenase (DHODH), and bifunctional 

UMP synthase (UMPS).  Among the DNP enzymes,  DHODH in particular has emerged as a 

therapeutic target in multiple cancers including pancreatic ductal adenocarcinoma (PDAC).7–9 

Additionally, over 90 patent applications involving DHODH inhibition have been filed in the last 

decade.10 

In this study, we show that the pyrimidine NSP and DNP are interchangeable in their 

ability to sustain cancer cell proliferation and that a synthetic lethal phenotype can be achieved 

through their  simultaneous  inhibition.  We leverage this  observation to  construct  a  metabolic 

modifier  screen  that  allows  for  the  identification  of  selective  modulators  of  NSP and  DNP 

pathways. In screening a library of protein kinase inhibitors, we identified multiple compounds 

with previously uncharacterized nucleotide metabolism-modifying activity. We show that the c-

Jun N-terminal kinase (JNK) inhibitor JNK-IN-8 is a potent inhibitor of uridine transport which 

is vital for NSP function, and that the 3-phosphoinositide-dependent protein kinase 1 (PDK1) 

inhibitor OSU-03012 (also known as AR-12) and the pan-RAF inhibitor TAK-632 both bind and 

inhibit the pyrimidine DNP enzyme DHODH.
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2.2  Design  of  a  Differential  Metabolic  Modifier  Screen  for  Identification  of  Novel 

Modulators of Pyrimidine Nucleotide Metabolism

While  the  UMP-DNP and  -NSP are  interchangeable  in  their  ability  to  sustain  cell 

proliferation, their relative activity at baseline (when both pathways are functional) is poorly 

defined. De novo pyrimidine biosynthesis is allosterically inactivated by its end product, UTP, 

which is also produced by the uridine (rU) NSP.12 This allosteric control functions at the level of 

the CPSase activity of the trifunctional protein CAD, which performs the first committed step in 

de  novo  pyrimidine  biosynthesis  (Figure  S2.1A).  To  quantitatively  evaluate  the  discrete 

activities of the pyrimidine de novo and salvage pathways, we modified and applied a LC-MS/

MS  assay  previously  used  by  our  group  to  track  the  contribution  of  stable  isotope-labeled 

glucose and deoxycytidine to newly replicated DNA.2 In this assay, cells are cultured in the 

presence of  [13C6]glucose (to track DNP activity)  and 10 µM [13C9;  15N2]rU (to track NSP 

activity).  Their  DNA is  then extracted and hydrolyzed and the abundance of  stable  isotope-

labeled nucleosides is evaluated using LC-MS/MS in the multiple reaction monitoring (MRM) 

mode (Figure S2.1B).  We applied this  assay to a  panel  of  cancer  cell  lines and observed a 

heterogenous  degree  of  total  labeling ([13C6]glucose  + [13C9;  15N2]rU)  in  the  deoxycytidine 

compartment of DNA (DNA-C) after 24 hr (Figure S2.1C). Consistent with the aforementioned 

model in which UTP produced by uridine savage allosterically impairs de novo biosynthesis, we 

found that the fractional contribution of [13C9; 15N2]rU exceeded that of [13C6]glucose in all 

models tested (Figure S2.1D). Interestingly, we found heterogeneity in the relative contribution 

of [13C6]glucose and [13C9; 15N2]rU to DNA-C across the cell line panel, which likely reflects 
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differential  expression  or  regulation  of  the  various  transporters,  kinases,  nucleotidases,  and 

phosphorylases  involved  in  rU  salvage.  Importantly,  we  confirmed  that  the  contribution  of 

[13C6]glucose to DNA-C could be blocked by NITD-982, an established DHODH inhibitor, and 

likewise the contribution of [13C9; 15N2]rU could be prevented by the FDA-approved nucleoside 

transport inhibitor dipyridamole (DPA) (Figure S2.1E). Collectively, these results indicate that, 

under the conditions tested, both the UMP-DNP and -NSP pathways are simultaneously, but not 

equally, active.

Although redundant routes for UMP biosynthesis can complicate targeting, impaired 

cellular proliferation resulting from simultaneous restriction of both de novo (DNP) and salvage 

(NSP)  pathways  can  be  leveraged  for  the  identification  of  selective  DNP or  NSP activity 

modifiers (Figure S2.1F). A metabolic modifier screen was developed for the discovery of small 

molecule modulators of UMP production by leveraging this biosynthetic redundancy. This cell-

based platform concurrently tests the effects of small molecule compounds on the proliferation of 

cells  cultured  in  baseline  (both  NSP and  DNP active),  NSP-only,  and  DNP-only  conditions 

(Figure 2.1A). Baseline conditions were those in which cells were incubated in standard media 

supplemented with physiological levels of uridine. To promote DNP-only conditions, cells were 

grown in standard media without uridine,  effectively abrogating the activity of the NSP and 

forcing cells to rely upon the DNP for UMP production. To achieve NSP-only conditions, cells 

were  incubated  in  standard  media  with  physiological  levels  of  uridine  in  the  presence  of 

NITD-982, a potent and selective small molecule inhibitor of DHODH which prevents the DNP-

synthesis  of  pyrimidine  nucleotides.11  Compounds  which  inhibit  proliferation  in  baseline 

conditions are classified as non-specific inhibitors, those which inhibit proliferation in NSP-only 
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conditions are NSP inhibitors, while those that inhibit growth in DNP-only conditions are DNP 

inhibitors. The screen design was validated using NITD-982 and the FDA-approved nucleoside 

transport  inhibitor  dipyridamole  (DPA),  with  Cell  Titer  Glo  (CTG)  utilized  to  evaluate 

proliferation impairment (Figure S2.1G).11

Figure 2.1 | Identification of nucleotide metabolism modulators in a small molecule protein 

kinase inhibitor library. (A) Phenotypic screening strategy. The impact of 430 protein kinase 

inhibitors on cell proliferation was evaluated in MIAPACA2 cells plated in 3 distinct culture 

conditions; 1) NSP + DNP (media +10 µM uridine (rU)); 2) NSP only (media +10 µM rU +1 µM 

NITD-982); or 3) DNP only (media alone). % proliferation values were calculated using Cell 

Titer  Glo (CTG) following 72 hr  treatment  (7-point  dose response;  n=2).  (B)  Waterfall  plot 

ranking library compounds based on NSP pathway selectivity score. (C) Summary of NSP and 
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trypan blue exclusion cell scoring in a second cancer cell line,
JURKAT, to confirm hit selectivity (Figures S3I and S3J).
In addition to its non-redundant role in de novo pyrimidine

nucleotide biosynthesis, DHODH functions as an electron donor
in the mitochondrial electron transport chain (Fang et al., 2013).
To exclude the possibility that the selective activity of JNK-IN-8
reflects an interaction with NITD-982 at the level of electron
transport chain modulation, we synthesized and evaluated
N-phosphonacetyl-L-aspartate (PALA), an inhibitor of CAD,
which functions upstream of DHODH (Collins and Stark, 1971;
Peters, 2018). We determined that JNK-IN-8 inhibits JURKAT
cell proliferation when both PALA and rU are present in the cul-
ture media, supporting that its selective activity results from the
inhibition of uridine salvage (Figure S4A).
We next applied our LC-MS/MS stable isotope tracking

approach to evaluate the impact of JNK-IN-8, OSU-03012, and
TAK-632 on the incorporation of [13C6]glucose and [13C9;

15N2]

rU into newly replicated DNA (Figure 1I). In MIAPACA2 cells,
we found that JNK-IN-8 blocked the NSP contribution while
triggering a compensatory upregulation of the DNP. Conversely,
OSU-03012 and TAK-632 selectively impaired DNP contribution
(Figure 1J). Similar selectivity was observed in JURKAT cells,
where both OSU-03012 and TAK-632 blocked DNP contribu-
tion while inducing compensatory upregulation of the NSP
(Figure 1K).

JNK-IN-8 Inhibits Nucleoside Uptake
Although three protein kinase inhibitors were identified as selec-
tive inhibitors of the pyrimidine NSP, JNK-IN-8 was exceptionally
potent, with NSP-condition IC50 values in the low nanomolar
range. We reasoned that the activity of JNK-IN-8 could arise
from either the inhibition of nucleoside shuttling across the
plasma membrane, which is achieved by nucleoside trans-
porters, or through the inhibition of nucleoside phosphorylation

A B C D

E F G H

I J K

Figure 1. Identification of Nucleotide Metabolism Modulators in a Small Molecule Protein Kinase Inhibitor Library
(A) Phenotypic screening strategy. The impact of 430 protein kinase inhibitors on cell proliferation was evaluated in MIAPACA2 cells cultured in 3 distinct

conditions; (i) NSP + DNP (medium + 10 mM rU); (ii) NSP only (medium +10 mM rU + 1 mMNITD-982); or (iii) DNP only (medium alone). Proliferation vinhibition was

evaluated using Cell Titer Glo (CTG) following 72 h treatment (library compounds were tested at 7-point dose response; n = 2).

(B) Waterfall plot ranking library compounds by NSP pathway selectivity score.

(C) Summary of NSP and DNP selectivity scores across library compounds annotated as JNK inhibitors.

(D) Structure of JNK-IN-8.

(E) Waterfall plot ranking library compounds by DNP pathway selectivity score.

(F and G) Summary of NSP and DNP selectivity scores across library compounds annotated as PDK1 (F) or RAF (G) inhibitors .

(H) Structures of OSU-03012 and TAK-632.

(I) Experimental design to track contribution of UMP-DNP and -NSP pathways to newly replicated DNA using stable isotope-labeled metabolite tracers.

(J and K) LC-MS/MS analysis of [13C6]glucose (5.5 mM) and [13C9;
15N2] rU (10 mM) utilization for DNA-C replication in MIAPACA2 (J) or JURKAT (K) cells treated +

1 mM JNK-IN-8 + 5 mM OSU-03012 or + 5 mM TAK-632 for 24 h (NT, not-treated; mean ± SD; n = 3; unpaired t test; **p < 0.01, ****p < 0.0001).
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DNP selectivity scores across library compounds annotated as JNK inhibitors. (D) Structure of 

JNK-IN-8.  (E)  Waterfall  plot  ranking library  compounds  based  on  DNP pathway selectivity 

score. (F,G) Summary of NSP and DNP selectivity scores across library compounds annotated as 

PDK1 (F) or RAF inhibitors (G). (H) Structures OSU-03012 and TAK-632. (I) Experimental 

design  to  track  contribution  of  UMP-DNP and -NSP to  newly  replicated  DNA using  stable 

isotope-labeled metabolite tracers.  (J,K) LC-MS/MS analysis of [13C6]glucose (5.5 mM) and 

[13C9; 15N2] rU (10 µM) utilization for DNA-C replication in MIAPACA2 (J) or JURKAT (K) 

cells treated +1 µM JNK-IN-8 +5 µM OSU-03012 or +5 µM TAK-632 for 24 hr (NT: not-

treated; mean±SD; n=3; unpaired T-test; ** P < 0.01, **** P < 0.0001).

Cancer cell  lines exhibited varying degrees of sensitivity to DHODH inhibition (as 

determined by doubling-time-normalized proliferation inhibition) and were all  rescued by rU 

supplementation (Figure S2.2).13 MIAPACA2 PDAC cells were utilized for the screen due to 

their ability to maintain baseline proliferation levels in NSP-only or DNP-only conditions, while 

also exhibiting a significant decrease in proliferation upon simultaneous NSP and DNP inhibition 

(Figure  S2.3A).  A library  of  430  protein  kinase  inhibitors  was  chosen  for  evaluation,  the 

rationale being twofold. First, it was hypothesized that our synthetic lethality screen may identify 

compounds that indirectly target pyrimidine metabolism through regulatory signal transduction 

pathway inhibition. Second, because a substantial fraction of kinase inhibitors are ATP-mimetics 

and  therefore  resemble  nucleotides,  we  predicted  that  protein  kinase  inhibitors  may possess 

secondary,  non-canonical  targets  within  nucleotide  metabolism.  Consistently,  several  protein 

kinase  inhibitors,  specifically  those  exhibiting  similarities  with  imatinib's  phenylamino 

pyrimidine  (PAP)  scaffold,  and  a  subset  of  p38  MAPK  inhibitors,  exhibit  activity  against 
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nucleoside transporters.14,15 This kinase inhibitor library was screened at 7-point dose response 

in  duplicate.  Composite  NSP and  DNP pathway  selectivity  scores  were  calculated  for  each 

compound  as  the  sum  of  condition-specific  anti-proliferative  effects  across  the  dose  range 

(Figure S2.3B).  Phenotypic  screen quality  was monitored using the Z-factor  metric  (Figure 

S2.3C)16.

The JNK inhibitor JNK-IN-8, the BTK inhibitor CNX-774, and the VEGFR inhibitor 

AMG-706 were active  in  the  NSP-only condition,  exhibiting positive  NSP-selectivity  scores 

(Figure 2.1B). The selectivity of these hits for the NSP was unique among inhibitors of JNK 

(Figures 2.1C, 2.1D), BTK, and VEGFR (Figures S2.3D–F), indicating this phenotype likely 

did not result from on-target effects. The PDK1 inhibitor OSU-03012 (also known as AR-12) and 

the pan-RAF inhibitor TAK-632 elicited potent and selective inhibition of proliferation in the 

DNP-only condition (Figure 2.1E).17,18 Among the four PDK1 inhibitors and 14 RAF inhibitors 

tested, OSU-03012 and TAK-632 were unique in their ability to selectively inhibit  the DNP, 

again suggesting that this effect was not the consequence of on-target activity (Figures 2.1F–H).

Microplate immunofluorescence microscopy nuclei scoring analysis of MIAPACA2 cells 

stained with Hoechst 33342 was performed as an orthogonal approach. These studies confirmed 

the culture-condition selectivity of our hits and validated the results of the CTG-based screen 

(Figures S2.3G, S2.3H). Additionally, we performed CTG analysis and trypan-blue exclusion 

cell  scoring in  a  second cancer  cell  line,  JURKAT, to  confirm hit  selectivity  (Figure S2.3I, 

S2.3J). 

In  addition  to  its  non-redundant  role  in  de  novo  pyrimidine  nucleotide  biosynthesis, 

DHODH functions  as  an  electron  donor  in  the  mitochondrial  electron  transport  chain.19  To 

	 125



exclude  the  possibility  that  the  selective  activity  of  JNK-IN-8  reflects  an  interaction  with 

NITD-982 at the level of electron transport chain modulation, we synthesized and evaluated N-

phosphonacetyl-L-aspartate (PALA), an inhibitor of CAD which functions upstream of DHODH.

20,21 We determined that JNK-IN-8 inhibits JURKAT cell proliferation when both PALA and rU 

are present in the culture media, supporting that its selective activity results from the inhibition 

of uridine salvage (Figure S2.4A).

We next applied our LC-MS/MS stable isotope tracking approach to evaluate the impact 

of  JNK-IN-8,  OSU-03012,  and  TAK-632  on  the  incorporation  of  [13C6]glucose  and  [13C9; 

15N2]rU into newly replicated DNA (Figure 2.1I). In MIAPACA2 cells, we found that JNK-IN-8 

blocked  the  NSP  contribution  while  triggering  a  compensatory  upregulation  of  the  DNP. 

Conversely,  OSU-03012 and TAK-632 selectively impaired DNP contribution (Figure 2.1J). 

Similar  selectivity  was  observed  in  JURKAT  cells,  where  both  OSU-03012  and  TAK-632 

blocked  DNP contribution  while  inducing  compensatory  up-regulation  of  the  NSP (Figure 

2.1K).

2.3 JNK-IN-8 Inhibits Nucleoside Uptake

While  three  protein  kinase  inhibitors  were  identified  as  selective  inhibitors  of  the 

pyrimidine NSP, the JNK inhibitor JNK-IN-8 was exceptionally potent, with IC50 values in the 

low nanomolar range. We reasoned that the activity of JNK-IN-8 could arise from either the 

inhibition of nucleoside shuttling across the plasma membrane, which is achieved by nucleoside 

transporters, or through the inhibition of nucleoside phosphorylation by nucleoside kinases. To 

determine the level at which JNK-IN-8 is active, we determined the effects of JNK-IN-8 upon 
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the uptake of a panel of 3H-labeled purine (dA, dG) and pyrimidine nucleosides (rU, dC) in 

MIAPACA2 cells. These nucleosides rely upon the same nucleoside transporters to enter the cell 

but  require  unique  kinases  for  conversion  into  their  respective  monophosphate  forms  and 

intracellular accumulation. UCKs are required for the phosphorylation of rU while deoxycytidine 

kinase  (dCK)  is  required  for  the  phosphorylation  of  both  purine  and  pyrimidine 

deoxyribonucleosides including dC, dA, and dG (Figure 2.2A).2 

Figure 2.2 | JNK-IN-8 inhibits nucleoside uptake. (A) Uridine salvage pathway activity can be 

prevented  by  inhibition  of  either  nucleoside  transporters  or  kinases.  (B)  Uptake  of  [3H]rU, 

[3H]dC, [3H]dA (+10 µM dCF) and [3H]dG (+1 µM BCX-1777) in MIAPACA2 cells following 

2 hr incubation ± 1 µM JNK-IN-8 or 1 µM dipyridamole (DPA; 18.5 kBq; mean±SD; n=3; one-

way ANOVA corrected for  multiple  comparisons  by Bonferroni  adjustment;  ** P<0.01;  *** 

P<0.001; **** P<0.0001).

We found that JNK-IN-8 prevented the uptake of all nucleosides tested, but exhibited 

greater potency toward rU and dC. Importantly, JNK-IN-8 exhibits a selectivity pattern similar to 

the established ENT1 inhibitor DPA (Figure 2.2B). We confirmed JNK-IN-8 inhibited the uptake 

of both rU and dC with similar potency (33 nM and 31 nM, respectively), further suggesting that 

the compound inhibits nucleoside transport (Figure S2.4C). Additionally, JNK-IN-8 treatment 

prevented  the  anti-proliferative  effects  of  gemcitabine  (dFdC),  a  dCK-dependent  nucleoside 
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by nucleoside kinases. To determine the level at which JNK-IN-8
is active, we determined the effects of JNK-IN-8 on the uptake of
a panel of [3H]-labeled purine (dA, dG) and pyrimidine nucleo-
sides (rU, dC) in MIAPACA2 cells. These nucleosides rely upon
the same nucleoside transporters to enter the cell but require
unique kinases for conversion into their respective monophos-
phate forms and intracellular accumulation. UCKs are required
for the phosphorylation of rU while deoxycytidine kinase (dCK)
is required for the phosphorylation of both purine and pyrimidine
deoxyribonucleosides including dC, dA, and dG (Figure 2A) (Le
et al., 2017). We found that JNK-IN-8 prevented the uptake of
all nucleosides tested, but exhibited greater potency toward rU
and dC. Importantly, JNK-IN-8 exhibits a selectivity pattern
similar to the established ENT1 inhibitor DPA (Figure 2B). We
confirmed JNK-IN-8 inhibited the uptake of both rU and dC
with similar potency (33 and 31 nM, respectively), further sug-
gesting that the compound inhibits nucleoside transport (Fig-
ure S4C). In addition, JNK-IN-8 treatment prevented the anti-
proliferative effects of gemcitabine (dFdC), a dCK-dependent
nucleoside analog prodrug which relies upon nucleoside trans-
porters for its activation, in a dose-dependent manner (Fig-
ure S4D) (Mackey et al., 1998). A similar pattern of dA, dG, rU,
and dC uptake inhibition by JNK-IN-8 and DPA was observed
in a second cell line, the murine pancreatic cancer model
KP4662 (Figures S4E and S4F) (Byrne et al., 2016).

Seven nucleoside transporters have been described and cate-
gorized into two families. Concentrative nucleoside transporters
(CNT1-3; SLC28A1-3) are unidirectional inward transporters that
co-transport Na+. Equilibrative nucleoside transporters (ENT1-4;
SLC29A1-4) are bidirectional, energy-independent, and accept
a broad range of purine and pyrimidine nucleosides (Young
et al., 2013). We evaluated the expression of these transporters
in MIAPACA2 and JURKAT cells and found that ENT1 (SLC29A1)
is the predominantly expressed transporter in both models (Fig-
ure S4G) (Fernandez-Banet et al., 2016). ENT1 is an established
transporter of a variety of nucleosides including natural purine
and pyrimidine nucleosides as well as therapeutic analogs
such as dFdC (Young et al., 2013). We next utilized the cellular
thermal shift assay (CETSA), an approach that leverages the
altered thermostability of proteins following ligand binding, to
confirm ENT1 engagement by JNK-IN-8 (Figure S4H) (Martinez
Molina and Nordlund, 2016). Collectively, these results suggest

that JNK-IN-8 inhibits UMP-NSP activity by interfering with the
transport of rU.

OSU-03012 and TAK-632 Target De Novo UMP
Biosynthesis and Activate the DNA Replication Stress
Response Pathway
Two protein kinase inhibitors, TAK-632 and OSU-03012, were
identified as potent and selective inhibitors of MIAPACA2 prolif-
eration in the DNP-only culture condition (Figure 1E). We
reasoned that these compounds could restrict pyrimidine
biosynthesis by targeting CAD, DHODH, or UMPS–the three
enzymes essential for de novo UMP biosynthesis (Figure 3A).
In MIAPACA2 cells cultured in the DNP-only condition both
OSU-03012 and TAK-632 induced S-phase arrest, a phenotype
associated with dNTP biosynthesis levels insufficient to sustain
DNA replication and is the result of activation of intra-S-phase
cell-cycle signaling checkpoints (Figure 3B). This effect was
rescued by orotate (the product of DHODH) supplementation
and completely reversed by rU supplementation (Figures 3B
and 3C). These data implicated DHODH as a likely target of
both OSU-03012 and TAK-632. DHODH catalyzes one of three
committed steps within the DNP and is an established druggable
protein (Madak et al., 2019). In addition, both OSU-03012 and
TAK-632 possess fluorine substituents, which have been shown
to stabilize bioactive conformations of DHODH inhibitors (Bo-
nomo et al., 2013; Baumgartner et al., 2006). In an in vitro color-
imetric recombinant humanDHODH activity assay, TAK-632 and
OSU-03012 both inhibited DHODH activity in a dose-dependent
manner (Figure 3D) (Baumgartner et al., 2006). Importantly, the
response to TAK-632 or OSU-03012 correlated with the
response to a knownDHODH inhibitor in a panel of 25 pancreatic
cancer cell lines (Figure 3E).
OSU-03012 was recently reported to synergize with replica-

tion stress response kinase inhibitors in RSK-subtype mutant
KRAS cancer models (Yuan et al., 2018). However, after confirm-
ing that OSU-03012 binds DHODH, we hypothesized that the
observed synergy resulted from DHODH inhibition rather than
PDK1 inhibition. Immunoblot analysis of S6K and S6 phosphor-
ylation, PDK1 downstream targets, confirmed that GSK-
2334470, a known PDK1 inhibitor, potently blocked PDK1 while
OSU-03012 triggered S345 CHEK1 phosphorylation, a replica-
tion stress biomarker, only in the absence of rU (Figure 3F).
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Figure 2. JNK-IN-8 Inhibits Nucleoside Uptake
(A) Uridine salvage pathway activity can be prevented by inhibition of either nucleoside transporters or kinases.

(B) Uptake of [3H]rU, [3H]dC, [3H]dA (+ 10 mM dCF), and [3H]dG (+ 1 mM BCX-1777) in MIAPACA2 cells following 2 h incubation ± 1 mM JNK-IN-8 or 1 mM di-

pyridamole (DPA) (18.5 kBq; mean ± SD; n = 3; one-way ANOVA corrected for multiple comparisons by Bonferroni adjustment; **p < 0.01, ***p < 0.001,

****p < 0.0001).
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analog prodrug which relies upon nucleoside transporters for its activation, in a dose-dependent 

manner (Figure S2.4D).22 A similar pattern of dA, dG, rU and dC uptake inhibition by JNK-

IN-8 and DPA was observed in a second cell line, the murine pancreatic cancer model KP4662 

(Figures S2.4E, S2.4F).23

Seven nucleoside transporters have been described and categorized into two families. 

Concentrative  nucleoside  transporters  (CNT1-3;  SLC28A1-3)  are  unidirectional  inward 

transporters  which  co-transport  Na+.  Equilibrative  nucleoside  transporters  (ENT1-4; 

SLC29A1-4)  are  bidirectional,  energy-independent,  and  accept  a  broad  range  of  purine  and 

pyrimidine  nucleosides  and  nucleoside  analogs.24  We  evaluated  the  expression  of  these 

transporters  in  MIAPACA2  and  JURKAT  cells  and  found  that  ENT1  (SLC29A1)  is  the 

predominantly expressed transporter in both models (Figure S2.4G).25 ENT1 is an established 

transporter  of  a  variety  of  nucleosides  including natural  purines  and pyrimidines  as  well  as 

therapeutic  analogs  such  as  gemcitabine.24  We  next  utilized  a  cellular  thermal  shift  assay 

(CETSA), an approach that leverages the altered thermostability of proteins following ligand 

binding, to confirm ENT1 engagement by JNK-IN-8 (Figure S2.4H).26 The assay showed that 

upon  incubation  with  JNK-IN-8,  ENT1  demonstrated  increased  thermostability,  relative  to 

incubation with vehicle only. Collectively, these results indicate that JNK-IN-8 inhibits UMP-

NSP activity by blocking ENT1 and interfering with the transport of rU.
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2.4  OSU-03012 and TAK-632 Target  de novo  UMP Biosynthesis  and Activate  the  DNA 

Replication Response Pathway

Two protein kinase inhibitors, TAK-632 and OSU-03012, were identified as potent and 

selective  inhibitors  of  MIAPACA2  proliferation  in  the  DNP-only  culture  condition  (Figure 

2.1E).  We reasoned that  these  compounds could inhibit  de novo  pyrimidine biosynthesis  by 

targeting either CAD, DHODH, or UMPS – the three enzymes essential for the six-step de novo 

biosynthesis of UMP (Figure 2.3A). Both OSU-03012 and TAK-632 induced S-phase arrest in 

MIAPACA2  cells  cultured  in  the  DNP-only  condition  (Figure  2.3B).  S-phase  arrest  is  a 

phenotype associated with dNTP biosynthesis levels insufficient to sustain DNA replication, and 

is  the  result  of  activation  of  intra-S-phase  cell  cycle  signaling  checkpoints.  This  effect  was 

rescued by orotate (the product of DHODH) supplementation and could be completely reversed 

by rU supplementation (Figures 2.3B, 2.3C). These data implicated DHODH as a likely target of 

both OSU-03012 and TAK-632.  DHODH catalyzes one of  three committed steps within the 

UMP-DNP and is an established druggable protein.7 In addition, both OSU-03012 and TAK-632 

possess fluorine substituents,  which have been shown to stabilize bioactive conformations of 

DHODH inhibitors  within  the  ubiquinone transport  tunnel  of  the  protein.27,28  In  an in  vitro 

colorimetric  recombinant  human  DHODH  activity  assay,  TAK-632  and  OSU-03012  both 

inhibited  DHODH  activity  in  a  dose-dependent  manner  (Figure  2.3D).28  Additionally,  the 

response to TAK-632 or OSU-03012 correlated with the response to a known DHODH inhibitor 

in a panel of 25 pancreatic cancer cell lines (Figure 2.3E).

OSU-03012 was recently reported to synergize with replication stress response kinase 

inhibitors  in  RSK-subtype  mutant  KRAS  cancer  models.29  However,  after  confirming  that 
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OSU-03012 binds DHODH, we hypothesized that the observed synergy resulted from DHODH 

inhibition rather than from inhibition of PDK1, the canonical target of OSU-03012. Immunoblot 

analysis of S6K and S6 phosphorylation, PDK1 downstream targets, confirmed that the known 

PDK1  inhibitor  GSK-2334470  potently  blocked  PDK1  while  OSU-03012  triggered  S345 

CHEK1 phosphorylation, a replication stress biomarker, only in the absence of rU (Figure 2.3F). 

Similarly, TAK-632 only triggered CHEK1 phosphorylation in the absence of rU whereas an 

established pan-RAF inhibitor which does not exhibit paradoxical RAF activation, LY3009120, 

down-regulated ERK1/2 phosphorylation but had no impact on CHEK1 phosphorylation (Figure 

2.3G).30  Consistently,  we found that  neither  GSK-2334470 nor  LY3009120 induced S-phase 

arrest at doses where we observed down-regulation of their target substrates, whereas a known 

DHODH inhibitor induced potent  S-phase accumulation that  was completely reversed by rU 

supplementation (Figures S2.4I, S2.4J). 

To complement our evaluation of replication stress response biomarker induction,  we 

performed an  assessment  of  DNA damage induced by  OSU-03012,  TAK-632,  and  the  ATR 

inhibitor  VE-822 as  a  positive control  using γ-H2A.X flow cytometry.  We found that  while 

OSU-03012  and  TAK-632  trigger  activation  of  the  replication  stress  response,  they  do  not 

significantly induce γ-H2A.X. We hypothesize that activation of the replication stress response 

pathway  by  OSU-03012  or  TAK-632  limits  DNA double-strand  breaks  by  preventing  the 

collapse of stalled replication forks (Figure S2.4K).31
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Figure 2.3 | OSU-03012 and TAK-632 inhibit DHODH and activate the DNA replication 

stress  response pathway.  (A)  Schematic  of  UMP biosynthesis  via  the de novo  and salvage 

pathways. (B) Propidium iodide cell cycle analysis of MIAPACA2 PDAC cells treated ± 5 µM 

TAK-632 or ± 5 µM OSU-03012 and supplemented with 50 µM orotate (OA) or 10 µM rU 

(N.S.: no supplement). Insert indicates % S-phase cells. (C) Summary of fold changes in S-phase 

cells  from  B  (mean±SD;  n=2;  one-way  ANOVA  corrected  for  multiple  comparisons  by 

Bonferroni adjustment, ns: not significant; * P<0.05; ** P<0.01). (D) in vitro DHODH enzyme 

assay performed in the presence of OSU-03012 or TAK-632. (E) Correlation between DHODH 

inhibitor (1 µM NITD-982) and OSU-03012 (3.17 µM) or TAK-632 (3.17 µM) response across a 

panel  of  25  PDAC  cell  lines  determined  using  CTG  following  72  hr  treatment.  Response 
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Similarly, TAK-632 only triggered CHEK1 phosphorylation in the
absence of rU, whereas an established pan-RAF inhibitor,
LY3009120, which does not trigger paradoxical RAF activation,
downregulated ERK1/2 phosphorylation but had no impact on
CHEK1 phosphorylation (Figure 3G) (Peng et al., 2015). Consis-
tently, we found that neither GSK-2334470 nor LY3009120
induced S-phase arrest at doses where we observed downregu-
lation of their target substrates, whereas a known DHODH inhib-
itor induced potent S-phase accumulation that was completely

reversed by rU supplementation (Figures S4I and S4J). To com-
plement our evaluation of replication stress response biomarker
induction we performed an assessment of DNA damage induced
byOSU-03012, TAK-632, and the ATR inhibitor VE-822 as a pos-
itive control using g-H2A.X flow cytometry. We found that while
OSU-03012 and TAK-632 trigger activation of the replication
stress response, they do not significantly induce g-H2A.X. We
hypothesize that activation of the replication stress response
pathway by OSU-03012 or TAK-632 limits DNA double-strand
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Figure 3. OSU-03012 and TAK-632 Inhibit DHODH and Activate the DNA Replication Stress Response Pathway
(A) Schematic of UMP biosynthesis via de novo and salvage pathways.

(B) Propidium iodide cell-cycle analysis of MIAPACA2 PDAC cells treated ± 5 mM TAK-632 or ± 5 mM OSU-03012 and supplemented with 50 mM orotate (OA) or

10 mM rU (N.S., no supplement). Insert indicates percent of S-phase cells.

(C) Summary of fold changes in S-phase cells from (B) (mean ± SD; n = 2; one-way ANOVA corrected for multiple comparisons by Bonferroni adjustment, ns, not

significant; *p < 0.05, **p < 0.01).

(D) In vitro DHODH enzyme assay performed in the presence of OSU-03012 or TAK-632.

(E) Correlation between DHODH inhibitor (1 mM NITD-982) and OSU-03012 (3.17 mM) or TAK-632 (3.17 mM) response across a panel of 25 PDAC cell lines

determined using CTG following 72 h treatment. Response calculated as doubling time normalized proliferation inhibition. Pearson correlation coefficient is

indicated.

(F) Immunoblot analysis of MIAPACA2 cells treated ± 1 mM PDK1 inhibitor GSK-2334470 (GSK) ±1 mM OSU-03012 (OSU) ± 10 mM rU for 24 h.

(G) Immunoblot analysis of MIAPACA2 cells treated ± 10 mM RAF inhibitor LY3009120 (LY) ± 10 mM TAK-632 (TAK) ± 10 mM rU for 24 h.

(H) Annexin V/PI flow cytometry analysis of MIAPACA2 PDAC cells treated ± 1 mM OSU-03012 (OSU) or 1 mM GSK-2334470 (GSK) ± 500 nM VE-822 (ATRi) ±

25 mM rU for 72 h (mean ± SD; n = 2; one-way ANOVA corrected for multiple comparisons by Bonferroni adjustment; ns, not significant; **p < 0.01, ***p < 0.001).
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calculated as doubling time normalized proliferation inhibition. Pearson correlation coefficient is 

indicated.  (F)  Immunoblot  analysis  of  MIAPACA2  cells  treated  ±  1  µM  PDK1  inhibitor 

GSK-2334470 (GSK)  ±  1  µM OSU-03012 (OSU)  ±  10  µM rU for  24  h.  (G)  Immunoblot 

analysis  of  MIAPACA2  cells  treated  ±  10  µM  RAF  inhibitor  LY3009120  (LY)  ±  10  µM 

TAK-632  (TAK)  ±  10  µM  rU  for  24  h.  (H)  Annexin  V/PI  flow  cytometry  analysis  of 

MIAPACA2 PDAC cells treated ± 1 µM OSU-03012 or 1 µM GSK-2334470 (GSK) ± 500 nM 

VE-822 (ATRi) ± 25 µM rU for 72 hr (mean ± SD; n=2; one-way ANOVA corrected for multiple 

comparisons by Bonferroni adjustment; ns: not significant; ** P<0.01; *** P<0.001).

To  investigate  the  interaction  between  OSU-03012  and  replication  stress  response 

inhibitors, we treated MIAPACA2 cells with VE-822, an inhibitor of the proximal replication 

stress response kinase ATR, and either OSU-03012 or GSK-2334470 for 72 hr. A synergistic 

increase in cell death was observed when OSU-03012 and the ATR inhibitor were combined, 

whereas the combination of  potent  PDK1 inhibitor  GSK-2334470 and VE-822 demonstrated 

only a nominal increase in cell death as determined by AnnexinV/PI flow cytometry (Figure 

2.3H). Taken together, these data indicate that replication stress triggered by OSU-03012 is the 

consequence of DHODH inhibition rather than inhibition of its canonical target PDK1.

2.5 Co-Crystal Structures of OSU-03012 and TAK-632 in Complex with Human DHODH

 To determine the molecular interactions between the protein and its putative inhibitors, 

complete DHODH co-crystallization data sets were obtained and processed to 1.4 Å and 2.7 Å 

for  OSU-03012  and  TAK-632,  respectively  (Table  S2.1).28  Both  compounds  bind  in  a 

hydrophobic channel composed by two N-domain α-helices through which ubiquinone travels, a 

mechanism consistent  with  previously  identified  DHODH inhibitors.  A long-range  hydrogen 
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bond between Arg 69 and OSU-03012 helps  orient  the molecule  to  the hydrophobic  pocket 

where the phenanthrene moiety inserts, while the remainder of the molecule lies on the outer 

surface of DHODH, blocking the hydrophobic channel (Figures 2.4A, S2.4A). Three hydrogen 

bonds stabilize TAK-632 in the same hydrophobic pocket: two with Tyr 37 and Leu 66 help 

stabilize the inhibitor at the opening of the channel, while a third with Gln 46 helps pull the 

inhibitor deep into the pocket (Figures 42.B, S2.4B).

Figure 2.4 | OSU-03012 and TAK-632 bind DHODH. (A, B) Crystal Structure of DHODH 

with compounds OSU-03012 (A) or TAK-632 (B). 2mFo-DFc electron density for OSU-03012 

(carbons  in  yellow)  or  TAK-632  (carbons  in  green)  contoured  at  1  σ.  Dashed  black  lines 

represent hydrogen bonds between DHODH and its ligands. Interacting residues as predicted by 

LigPlot+ are shown and labeled. 

2.6 Discussion

Our screening strategy expands upon previously described “nutrient-sensitized” genetic 

and  small  molecule  cell-based  screening  approaches  that  leveraged  the  production  of  a 

proliferation-enabling  metabolite  by  parallel  and  redundant  metabolic  networks  to  identify 

selective metabolism modifiers.32,33 UMP biosynthesis (i.e. pyrimidine metabolism) proved to be 
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breaks by preventing the collapse of stalled replication forks
(Figure S4K) (Zeman and Cimprich, 2014).

To investigate the interactions between DHODH, PDK1 and
replication stress response inhibitors, we treated MIAPACA2
cells with VE-822 (Le et al., 2017), an inhibitor of the replication
stress response kinase ataxia telangiectasia and Rad3-
related (ATR), and either OSU-03012 or GSK-2334470 for 72 h.
A synergistic increase in apoptotic cells was observed when
OSU-03012 and an ATR inhibitor were combined, whereas the
combination of GSK-2334470 and VE-822 demonstrated only
a nominal increase as determined by annexin V/propidium iodide
(PI) flow cytometry (Figure 3H). Taken together, these data sug-
gest that replication stress triggered byOSU-03012 is the conse-
quence of DHODH inhibition rather than inhibition of its canonical
target.

Co-crystal Structures of OSU-03012 and TAK-632 in
Complex with Human DHODH
To determine the molecular interactions between DHODH and
its putative inhibitors, complete co-crystallization datasets
were obtained and processed to 1.4 and 2.7 Å for OSU-03012
and TAK-632, respectively (Table S1). Both compounds bind in
a hydrophobic channel composed by two N-domain a helices
through which ubiquinone travels, a mechanism consistent
with previously identified DHODH inhibitors (Baumgartner
et al., 2006). A long-range hydrogen bond between Arg 69 and
OSU-03012 helps orient themolecule to the hydrophobic pocket
where the phenanthrene moiety inserts, while the remainder of
the molecule lies on the outer surface of DHODH, blocking the
hydrophobic channel (Figure 4A) (PDB: 6OC0). Three hydrogen
bonds stabilize TAK-632 in the same hydrophobic pocket: two
with Tyr 37 and Leu 66 help stabilize the inhibitor at the opening
of the channel, while a third with Gln 46 helps pull the inhibitor
deep into the pocket (Figure 4B) (PDB: 6OC1).

DISCUSSION

Our screening strategy expands upon previously described
‘‘nutrient-sensitized’’ genetic and small-molecule cell-based

screening approaches which leveraged the production of a pro-
liferation-enabling metabolite by parallel and redundant meta-
bolic networks to identify selective metabolismmodifiers (Arroyo
et al., 2016; Gohil et al., 2010). UMP biosynthesis (i.e., pyrimidine
metabolism) proved to be compatible with this screening frame-
work as UMP is produced by convergent (de novo and salvage)
pathways, and UMP depletion triggers a quantifiable change in
cellular proliferation.
JNK-IN-8, developed as an irreversible inhibitor of c-Jun

N-terminal kinases 1, 2, and 3 with low-nanomolar affinity, was
the most potent of three uridine salvage inhibitors identified
(Zhang et al., 2012). Our data demonstrate that JNK-IN-8 also
functions as a potent inhibitor of uridine and deoxycytidine trans-
port and engages the nucleoside transporter ENT1 (SLC29A1).
We conclude that JNK-IN-8 should not be used in conjunction
with compounds which rely upon nucleoside transport, such
as the anticancer agent gemcitabine, in research or therapy
settings.
In addition to their role in pyrimidine salvage, equilibrative

nucleoside transporters are well studied for their ability to regu-
late levels of the immuno-modulatory metabolite adenosine.
ENT1 inhibitors increase extracellular adenosine levels that
signal through the P1 purinergic receptor and are used clinically
for the treatment of hypertension, among other disorders (Young
et al., 2013). Thus, the development of potent and selective in-
hibitors of ENT1 is an active area of investigation.
The recently reported co-crystal structure of ENT1 in complex

with two small-molecule inhibitors (NBMPR and dilazep) pro-
vided new insight into the molecular mechanism of nucleoside
transport and suggested that structurally diverse ENT1 inhibitors
possess unique modes of inhibition (Wright and Lee, 2019).
ENT1 contains ten cysteine residues and ENT1-mediated uridine
transport can be inhibited by covalent modification of Cys416 by
N-ethylmaleimide (Yao et al., 2018). Intriguingly, the two highest-
scoring NSP inhibitors in our screen, JNK-IN-8 and the BTK in-
hibitor CNX-774, each contain a reactive acrylamide group and
are cysteine-targeting drugs. Future work will explore the mech-
anism of ENT1 inhibition by JNK-IN-8 with a specific focus on the
contribution of covalent interactions.

Figure 4. OSU-03012 and TAK-632 bind DHODH
Crystal Structure of DHODHwith compoundsOSU-03012 (A) or TAK-632 (B). 2mFo-DFc electron density for OSU-03012 (carbons in yellow) or TAK-632 (carbons

in green) contoured at 1s. Dashed black lines represent hydrogen bonds between DHODH and its ligands. Interacting residues as predicted by LigPlot+ are

shown and labeled.
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compatible with this screening framework, as UMP is produced by convergent (de novo  and 

salvage) pathways, and UMP depletion triggers a quantifiable change in cellular proliferation.

JNK-IN-8, developed as an irreversible inhibitor of c-Jun N-terminal kinases 1, 2, and 3 

with low-nanomolar affinity, was the most potent of three uridine salvage inhibitors identified in 

our study.34 Our data confirm that JNK-IN-8 also functions as a potent inhibitor of uridine and 

deoxycytidine transport and engages the nucleoside transporter SLC29A1 (ENT1). We conclude 

that JNK-IN-8 should not be used in conjunction with compounds which rely upon nucleoside 

transport, such as the anticancer agent gemcitabine, in research or therapy settings. JNK-IN-8 

was synthesized by the Gray group at  the Dana Farber  Cancer  Institute  as  part  of  series  of 

molecules for targeting JNK. We have started a collaboration with their group and are currently 

identifying additional compounds within their chemical library which possess ENT1-inhibiting 

ability. 

In addition to their role in pyrimidine salvage, equilibrative nucleoside transporters are 

well studied for their ability to regulate levels of the immuno-modulatory metabolite adenosine. 

ENT1 inhibitors increase extracellular adenosine levels which signal through the P1 purinergic 

receptor  and  are  used  clinically  for  the  treatment  of  hypertension,  among other  disorders.35 

ENT1 inhibitors have been shown to increase vasodilation and can exert cardioprotective effects 

upon ischemic cardiovascular tissue.34 Additionally, due to the immunosuppressive effects of 

increased  extracellular  adenosine  levels,  ENT1  inhibitors  could  find  utility  in  mitigating 

excessive  late-stage  immune  responses  which  contribute  to  dangerous  pathology  related  to 

cytokine  storms  and  acute  respiratory  distress  syndrome.  Given  the  prevalence  of  these 

conditions in influence and the current COVID-19 pandemics, these therapeutic considerations 

	 134



are particularly intriguing.34  Thus, the development of potent and selective inhibitors of ENT1 is 

an active area of investigation with opportunity for clinical application.

The  recently  reported  co-crystal  structure  of  ENT1  in  complex  with  two  small 

molecule inhibitors (NBMPR and dilazep) provided new insight into the molecular mechanism 

of nucleoside transport and suggested that structurally diverse ENT1 inhibitors possess unique 

modes of inhibition.36 ENT1 contains ten cysteine residues and ENT1-mediated uridine transport 

can be inhibited by covalent modification of Cys416 by N-ethylmaleimide.37 Intriguingly, the 

two highest scoring NSP inhibitors in our screen, JNK-IN-8 and the BTK inhibitor CNX-774, 

both contain a  reactive acrylamide group and are  cysteine-targeting drugs.  Future work will 

explore  the  mechanism  of  ENT1  inhibition  by  JNK-IN-8  with  a  specific  focus  on  the 

contribution  of  covalent  interactions,  with  additional  efforts  focused  upon  decoupling  JNK 

affinity from ENT1 inhibition. 

Positron  emission  tomography  (PET)  imaging  is  a  powerful  approach  to  monitor 

cellular metabolism in vivo, and several nucleoside analog PET probes have been developed 

including  both  pyrimidine  ([18F]FAC,  [18F]FLT)  and  purine  analogs  ([18F]CFA).38–40 

Interestingly,  ENT1-knockout  mice  exhibit  significantly  higher  plasma  thymidine  but  also 

paradoxically higher levels of thymidine analog [18F]FLT uptake in the spleen and bone marrow 

compared to wild type controls.41 Discrepancies between in vitro and in vivo  findings could 

result from shifts in nucleoside gradients or differential expression of nucleoside transporters 

mediated  by factors  absent  from traditional  cell  culture  systems.  Future  work will  focus  on 
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exploring  the  utility  of  nucleoside  analog  PET as  a  pharmacodynamic  biomarker  for  ENT 

inhibitor activity in vivo.

The structurally and functionally unrelated OSU-03012 and TAK-632 were identified 

as inhibitors of the pyrimidine DNP. A recent report described the ability of OSU-03012 and 

analogs  to  inhibit  virus  propagation  via  pyrimidine  nucleotide  biosynthesis  inhibition, 

specifically implicating modulation of DHODH activity.42 Our work substantiates these findings 

and confirms engagement of  DHODH by OSU-03012 and TAK-632 through crystallography 

studies. Notably, our studies show that OSU-03012 and TAK-632 bind in the same hydrophobic 

tunnel of DHODH as known inhibitors brequinar and teriflunomide (the active metabolite of 

leflunomide). This suggests that these two protein kinase inhibitors compete with ubiquinone, a 

redox partner  of  DHODH which traverses  this  hydrophobic tunnel  to  regenerate  FMN from 

FMNH2.  By  competitively  inhibiting  the  binding  of  ubiquinone,  these  compounds  prevent 

DHODH from completing its redox cycle and effectively abrogate its activity. 

OSU-03012  has  orphan  drug  designation  in  the  European  Union  for  treatment  of 

tularaemia and cryptococcosis. We hypothesize that its effectiveness in these indications stems 

from its ability to inhibit DHODH, rather than from ‘on-target’ effects against PDK1. Indeed, 

DHODH  inhibitors  have  demonstrated  efficacy  against  viruses  such  as  dengue  virus  and 

respiratory syncytial virus.11,42,43 Our results should encourage the further study and application 

of  OSU-03012,  and  DHODH  inhibitors  in  general,  in  antimicrobial  therapy.  In  anticancer 

settings, OSU-03012 was recently demonstrated to synergize with CHK1 inhibitors in KRAS-

mutant cancers,29 which was initially attributed to its ability to inhibit PDK1. However, our data 

show  that  GSK-2334470,  a  PDK1  inhibitor  more  potent  than  OSU-03012,  displayed  little 
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synergy with ATR inhibition. In light of this and our crystallographic data, we conclude that the 

synergy observed between OSU-03012 and ATR inhibition is likely a result of the DHODH-

inhibitory ability of the former. Taken together, our data suggest that DHODH inhibitors may 

have utility in oncology, particularly if used in conjunction with ATR inhibitors or other DNA-

damage response/replication stress response pathway inhibitors.2

While a small  library of 430 protein kinase inhibitors was assessed in this study, the 

design of our screen allows for much larger high-throughput screening campaigns which could 

be utilized for identification of hit compounds with the ability to modulate pyrimidine nucleotide 

metabolism. This may be beneficial for research groups or pharmaceutical companies who wish 

to  screen  small-molecule  libraries  to  identify  new  hit  compounds,  or  could  be  used  to 

characterize  the  “off-target”  effects  of  existing  drugs.  The  utility  of  characterizing  a  drug’s 

effects  upon  pyrimidine  nucleotide  metabolism  is  high,  as  off-target  effects  within  these 

pathways  can  lead  to  misattribution  of  beneficial  activities.  This  is  demonstrated  by  the 

attribution of OSU-03012-mediated PDK1 inhibition as synergizing with CHK1 inhibition – this 

conclusion was made without the knowledge of the DHODH-inhibiting ability of OSU-03012, 

and could have led researchers to spend precious resources studying this supposed link. 

In  summary,  we  designed  and  applied  a  metabolic  modifier  screen  which  identified 

multiple protein kinase inhibitors as having non-canonical targets within pyrimidine metabolism. 

Similarly constructed phenotypic screens designed against other metabolic networks containing 

convergent nodes may find use in drug discovery campaigns or in repurposing screens using 

existing compounds.
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2.7 Experimental Section

2.7.1 Methods and Materials

Cell culture

All cell cultures were between passages 3 and 20 and maintained in antibiotic free DMEM or 

RPMI  +10%  dialyzed  FBS,  at  37ºC  in  5%  CO2.  We  routinely  monitored  for  mycoplasma 

contamination  using  the  PCR-based  Venor  Mycoplasma kit.  PDAC cell  lines  were  acquired 

either  from a  commercial  vendor  (ATCC,  DSMZ)  or  from collaborators  (KP4662  from Dr. 

Vonderheide, UPenn). Cell line identity was independently authenticated by PCR.

Drugs

Drug  stocks  were  prepared  in  DMSO  or  H2O  and  diluted  fresh  in  cell  culture  media  for 

treatments.  NITD-98243  and  N-phosphonacetyl-L-aspartate  (PALA)44  were  synthesized  as 

previously described.

In vivo mouse studies

All animal studies were approved by the UCLA Animal Research Committee (ARC). 4-6 week-

old  male  NCG  mice  obtained  from  Charles  River  Laboratories  (CRL 572),  were  injected 

subcutaneously  in  the  flank  with  2x106  CCRF-CEM  cells  suspended  in  100  µL  1:1  in 

PBS:matrigel.  4-6 week-old male C57BL/6 mice,  obtained from UCLA Radiation Oncology, 

were injected subcutaneously on bilateral flanks with 0.3x106 KP4662 cells suspended in 100 µL 

PBS. 14 days following inoculation treatment was initiated. JNK-IN-8 was suspended in 2% 

ethanol and 5% Tween-80 in PBS and administered by intraperitoneal (i.p.) injection at 50 mg/

kg.
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Method Details

Protein kinase inhibitor phenotypic screen

A library of 430 protein kinase inhibitors was arrayed in polypropylene 384-well plates at 200x 

concentrations covering a 7-point concentration range (corresponding to 1x concentrations: 5 

µM, 1.65 µM, 550 nM, 185 nM, 61.5 nM, 20.6 nM, 6.85 nM). 25 µl per well of condition-

specific growth media (DNP + NSP: media + 10 µM rU; DNP: media alone; NSP: media +10 

µM rU + 1 µM NITD-982) was plated in opaque-white 384-well plates using a BioTek multidrop 

liquid handler. Protein kinase inhibitors were added by 250 nL pin-tool transfer (BioMek FX, 

Beckman-Coulter) and inhibitor/media mixtures were incubated at room temperature for 30 m. 

25 µL of a 40,000 cells/mL MIAPACA2 suspension (for 1000 cells / well) was subsequently 

added to each well. After 72 h, 50 µL of Cell Titer Glo reagent diluted 1:4 in deionized H2O was 

added to each well and luminescence was measured using a Wallac plate reader (Perkin Elmer). 

Each condition was assayed in duplicate (n=2) and % proliferation values were calculated by 

normalizing  experimental  wells  to  plate  negative  controls  and  averaging  replicate  values. 

Composite pathway selectivity synergy scores for each test compound were defined as the sum 

of the excess over additivity (% proliferation inhibition observed - % proliferation inhibition 

expected)  between  individual  protein  kinase  inhibitor  concentrations  across  the  7-point 

concentration  range.  Z  factor  scores  for  individual  assay  plates  were  calculated  using  eight 

positive and eight negative control wells on each plate as previously described.16 All plates gave 

a Z factor > 0.5 (Figure S2.3C).
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Cell Titer Glo viability analysis

Cells were plated at 1x103 cells / well at 50 µl / well in white opaque 384-well plates and treated 

as described. Following incubation 50 µl of Cell Titer. Glo reagent (Diluted 1:5 in deionized 

H2O) was added to each well, plates incubated at room temperature for 5 min and luminescence 

was  measured using a  BioTek microplate  luminescence  reader.  Proliferation  rate  normalized 

growth inhibition was calculated using the previously described GR metric.13

Trypan blue exclusion cell viability

Trypan blue exclusion cell viability analysis was performed using a ViCell analyzer following 72 

hr of treatment. Trypan blue-negative population counts are reported.

Microplate immunofluorescence microscopy cell scoring

MIAPACA2 cells were plated at 1000 cells/well in black-walled clear-bottom 384 well plates in 

50 µL of media and treated as indicated with n=4 replicate wells per condition. After 72 hr of 

drug exposure 50 µL of 10 µg/mL Hoechst 33342 dye diluted in culture media was added to 

microplate  wells.  Following  a  30  min  incubation  at  37C  images  were  acquired  using  a 

ImageXpress Micro Confocal High-Content Imaging System at 10x magnification and 1 image/

well.  Analysis was performed using the Cell  Scoring Application Module  in the MetaXpress 

analysis software. Nuclei counts for treatment groups were normalized to control wells.

Mass spectrometry

For analysis of stable isotope-labeled metabolite incorporation into newly replicated DNA, cells 

were  cultured  in  glucose-free  DMEM (for  MIAPACA2 cells)  or  RPMI (for  JURKAT cells) 
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media supplemented with 10% dialyzed FBS, 4 mM glutamine, 1 g/L [13C6]glucose, 10 µM 

[13C9; 15N2]rU and treated as indicated.

Genomic DNA was extracted using the Quick-gDNA MiniPrep kit and hydrolyzed to nucleosides 

using the DNA Degradase Plus kit,  following manufacturer-supplied instructions. In the final 

step of DNA extraction, 50 μL of water was used to elute the DNA into 1.5 mL microcentrifuge 

tubes. A nuclease solution (5 μL; 10X buffer/DNA Degradase PlusTM/water, 2.5/1/1.5, v/v/v) 

was added to 20 μL of the eluted genomic DNA in an HPLC injector vial. The samples were 

incubated overnight at 37 ºC.

Hydrolyzed DNA was diluted 1/1 with solvent A (water/acetonitrile/formic acid, 95/5/0.1, v/v) 

and analyzed using a modified version of a previously reported method2,45 in which aliquots of 

the solution (15 µL) were injected onto a porous graphitic carbon column (Thermo Hypercarb, 

100 x 2.1 mm, 5 micron particle size) equilibrated in solvent A and eluted (300 µL/min) with an 

increasing  concentration  of  solvent  B  (acetonitrile/water/formic  acid,  90/10/0.1).  The  HPLC 

timetable, in terms of min/%B, is the following: 0/0, 5/0, 12/20, 15/30, 17/50, 19/50, 20/0, 24/0. 

The effluent from the column was directed to Agilent Jet Stream connected Agilent 6460 QQQ 

operating in the positive ion MRM mode. After verification of retention times using authentic 

standards, the peak areas of the protonated nucleoside/protonated base fragment ion transitions 

for each of the nucleosides were recorded with instrument manufacturer-supplied software.

3H-labeled metabolite uptake assays

Radioactive probe uptake assays were conducted as previously described.46 Briefly, cells were 

pretreated with JNK-IN-8 or DPA for 2 hr before incubation with 18.5 kBq of 3H-labeled probe 
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for 2 h. For purine uptake assays, cells were cultured in the presence of 10 µM dCF (for 3H-dA) 

or 1 µM BCX-1777 (for 3H-dG) to prevent nucleoside catabolism. Following incubation, cells 

were washed with PBS and lysed. Cell lysate radioactivity was measured using a beta-counter 

(Perkin-Elmer).

Flow cytometry

All  flow cytometry data  were acquired on five-laser  BD LSRII,  and analyzed using FlowJo 

software.

AnnexinV/PI: Treated PDAC cells were washed with PBS and incubated with AnnexinV and 

propidium iodide diluted in 1x Annexin binding buffer. 20,000 events were collected per sample.

Propidium  iodide  cell  cycle  analysis:  Treated  PDAC  cells  were  washed  with  PBS  and 

suspended in propidium iodide cell cycle staining solution (100 µg/ml propidium iodide; 20 µg/

ml Ribonuclease A). 10,000 events were collected per sample.

pH2A.XS139  flow cytometry:  Treated  cells  were  collected  by trypsinization,  incubated  with 

Cytofix/Cytoperm  reagent  for  15  min  at  4C,  washed  with  PBS  and  incubated  in  100  µL 

PermWash  buffer  for  15  min  at  4C.  Cells  were  washed  with  1  mL  Perm/Wash  buffer, 

resuspended  in  50  µL of  staining  solution  (1:800  dilution  of  FITC-conjugated  pH2AXS139 

antibody diluted in Perm/Wash buffer) and incubated for 20 min at 25C protected from light. 

Stained cells were washed and incubated in 500 µL of DAPI staining solution (1 µg/mL DAPI in 

PBS) before acquisition.
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Gene cloning, protein expression, and purification of DHODH in E.coli cells

P r i m e r s  w e r e  o r d e r e d  t o  a d d  N d e I 

(AGAGAACAGATTGGTGGTCATATGATGGCCACGGGAGATGAG) upstream of residue 29 

(after  the  mitochondrial  membrane  associated  loop)  and  BamHI 

(TCGGGCTTTGTTAGCAGCCGGATCCTTACCTCCGATGATCTGCTCC)  after  the  stop 

codon  to  insert  into  N-terminal  His-Sumo  pET 14b  vector.  This  clone,  His-Sumo-DHODH 

29-395 (subsequently referred to as DHODH) was successfully inserted into the vector in XL1-

blue cells for vector propagation.

The vector was transformed into C41(DE3) cells for productions. Cells were grown at 37 °C in 

2xYT medium supplemented with 100 μg/mL ampicillin (Amp), treated with 0.1 mM isopropyl 

β-D-1-thiogalactopyranoside  (IPTG)  at  an  OD600  nm  of  0.6-0.8,  and  then  cultured  for  an 

additional 18 hr at 18 °C.  Cells were harvested by centrifugation, washed with 200 mM NaCl 

and 25 mM Tris pH 7.5, and pelleted at 5000 rpm for 20 min before storage at -20°C. 6.7g/L of 

cell pellet was obtained.

DHODH  was  purified  according  to  known  purification  conditions.28  The  cell  pellet  was 

resuspended  in  lysis  buffer  (50  mM Tris  pH  7.5;  600  mM NaCl;  0.33% w/v  Thesit;  10% 

Glycerol; 1 mM PMSF) and lysed by sonication on ice. Lysed cells were centrifuged at 58,500 

RCF for 45 min at 4°C, and the supernatant was filtered through a 0.45 µM filter and loaded onto 

a 5-mL His-Trap column pre-equilibrated with buffer A (50 mM Tris pH 7.4; 600 mM NaCl; 

0.05% w/v Thesit; 10% Glycerol). The column was washed with buffer A for 70 mL, buffer A 

with 25 mM imidazole for 50 mL, and buffer A with 50 mM imidazole for 50 mL. The protein 

was eluted with buffer  A with 250 mM imidazole.  The eluted fraction was diluted 1:1 with 

Buffer A. Sumo protease was added and the protein was dialyzed overnight at 4°C against 1L of 
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Buffer A. The dialyzed protein was loaded back onto the His-Trap column equilibrated with 

buffer A. The cut-DHODH was eluted with buffer A with 50 mM imidazole. The purified protein 

was  concentrated  to  5  mL and  injected  onto  S-200  gel  filtration  column  (GE  Healthcare) 

equilibrated with: 50 mM HEPES pH 7.7, 400 mM NaCl, 10% Glycerol, 1mM EDTA, 0.05 % w/

v  Thesit.  Eluted  fractions  consistent  with  monomer  size  were  collected,  concentrated,  flash 

frozen, and stored at -80°C.

Recombinant DHODH enzyme assay

Evaluation of DHODH inhibition was performed as previously described.28 The standard assay 

mixture  contained  50  μM  decyclo-ubiquinone,  100  μM  dihydroorotate,  and  60  μM  2,6-

dichloroindophenol  (DCIP).  The amount  of  DHODH was 337.4 ng/mL. Measurements  were 

conducted in 50 mM TrisHCl, 150 mM KCl, 0.1% Triton X-100, pH 8.0, at 30 °C in a final 

volume  of  1  mL.  The  components  were  mixed,  and  the  reaction  was  started  by  adding 

dihydroorotate. The reaction was followed spectrophotometrically by measuring the decrease in 

absorption at  600 nm for  2.5 min at  30 second intervals.  The assay was linear  in  time and 

enzyme concentration.  Inhibitory studies were conducted in a standard assay with additional 

variable amounts of inhibitor.

Crystallization of DHODH with OSU-03012 and TAK-632 compounds

For  co-crystallizaion  of  DHODH  and  OSU-03012,  crystals  were  obtained  using  the  same 

conditions  reported  in  previously  published DHODH structures28,47–60,  namely  1.6  –  2.6  M 

ammonium sulfate and 5-30% glycerol in the well in pH 4.5, with 20 mg/mL DHODH with 2 

mM dihydroorotate (DHO),  20.8 mM dodecyldimethyl-N-amineoxide (DDAO), and 400 µM 

inhibitor.  Protein  was  mixed  1:1  with  mother  liquor  and  hanging  drops  were  used  at  room 
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temperature. Crystals appeared after 48 hr and reached maximal size within one week. Molecular 

replacement  used  4OQV  as  the  starting  model.61  Interestingly,  DHODH-TAK-632  crystals 

grown in similar conditions to those used for the DHODH-OSU-03012 complex did not show 

TAK-632 density. As a result,  novel DHODH crystallization conditions were identified using 

commercial screens. For co-crystallization of DHODH with TAK-632, crystals were obtained in 

conditions of 1.4-1.6 M sodium phosphate, pH 8.2. Protein solution (20 mg/mL DHODH with 2 

mM DHO, 20.8 mM DDAO, and 400 µM inhibitor) was mixed 1:1 with mother liquor and 

hanging  drops  were  used  at  room  temperature.  Crystals  appeared  after  48  hr  and  reached 

maximal  size  within  one  week.  The  lack  of  density  of  the  TAK-632 structure  in  the  initial 

crystallography condition is most likely due to the difference in pH between the conditions, pH 

4.5 and pH 8.2 for the OSU-03012 and the TAK-632 structure, respectively. There are multiple 

hydrogen bonds and potentially labile hydrogens on the TAK-632 structure that at low pH could 

be protonated and charged, potentially preventing their insertion into the hydrophobic tunnel. 

Ligplot+ was used to determine hydrophilic and hydrophobic interactions between inhibitors and 

DHODH molecules.62,63

Immunoblot analysis

PBS-washed cell pellets were resuspended in cold RIPA buffer supplemented with protease and 

phosphatase inhibitors. Protein lysates were normalized using BCA assay, diluted using RIPA 

and  4x  laemmli  loading  dye,  resolved  on  4-12%  Bis-Tris  gels  and  electro-transferred  to 

nitrocellulose membranes. After blocking with 5% nonfat milk in TBS + 0.1% Tween-20 (TBS-

T),  membranes  were  incubated  overnight  in  primary  antibodies  diluted  (per  manufacturers 

instructions) in 5% BSA in TBS-T. Membranes were washed with TBST-T and incubated with 
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HRP-linked secondary antibodies prepared at a 1:2500 dilution in 5% nonfat dry milk / TBS-T. 

HRP  was  activated  by  incubating  membranes  with  a  mixture  of  SuperSignal  Pico  and 

SuperSignal Femto ECL reagents (100:1 ratio). Exposure of autoradiography film was used for 

detection.

CETSA

MIAPACA2 cells  were  cultured  in  10  cm plates,  washed  with  PBS,  and  harvested  by  cell 

scraping following addition of 4 mL of lysis buffer (100 mM ammonium sulfate, 400 mM NaCl, 

10% glycerol, 0.5% DDM and 1x protease inhibitor cocktail). The cell lysate was collected in a 

15 mL conical tube, incubated on ice for 20 m, centrifuged at 5,000xg for 20 min at 4C and 

protein content of the supernatant was measured. 30 µL of protein lysate was aliquoted into 1.5 

mL Eppendorf tubes and treated with either DMSO, JNK-IN-8 or dipyridamole for 30 min on 

ice.  Lysates  were  subsequently  heated  at  the  indicated  temperatures  using  an  Eppendorf 

Thermomixer for 6 m, cooled to room temperature for 3 min and transferred to ice.  Heated 

lysates  were  centrifuged  at  12,000xg  for  40  min  to  pellet  the  insoluble  protein  fraction. 

Supernatants were processed for immunoblot analysis.

Statistical analyses

Data are presented as mean ± SD with number of biological replicates indicated. Comparisons of 

two groups were calculated using indicated unpaired two-tailed Student’s t-test and P values less 

than 0.05 were considered significant. Comparisons of more than two groups were calculated 

using one-way ANOVA followed by Bonferroni’s multiple comparison tests, and P values less 

than 0.05/m, where m is the total number of possible comparisons, were considered significant.  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2.8 Supplementary Figures

Figure S2.1 | Validation of UMP as a critical, convergent metabolic node in cancer cells. 

Related to Figure 2.1. (A) Schematic of CAD regulation by NSP produced UTP. (B) Schematic 

of the LC-MS/MS methodology used to determine the fractional contribution of UMP-DNP or -

NSP specific stable isotope-labeled metabolite tracers to deoxycytidine (dC) in DNA (DNA-C). 

(C) Total % DNA-C labeling ([13C6]glucose + [13C9; 15N2]uridine (rU) contribution) across a 

panel of cancer cell lines cultured for 24 hr determined by LC-MS/MS. (D) Relative contribution 

	 147

Figure S1 | Validation of UMP as a critical, convergent metabolic node in cancer cells. Related to Figure 1. (A) Schematic of 
CAD regulation by NSP produced UTP. (B) Schematic of the LC-MS/MS methodology used to determine the fractional contribution of 
UMP-DNP or -NSP specific stable isotope-labeled metabolite tracers to deoxycytidine (dC) in DNA (DNA-C). (C) Total % DNA-C 
labeling ([13C6]glucose + [13C9; 15N2]uridine (rU) contribution) across a panel of cancer cell lines cultured for 24 h determined by LC-MS/
MS. (D) Relative contribution of DNP and NSP pathways to DNA biosynthesis as determined by LC-MS/MS following 24 h treatment 
(n=3). % contribution values are normalized to total % labeling in E. (E) LC-MS/MS analysis DNP([13C6]glucose) and NSP([13C9; 
15N2]rU) contribution to DNA-C in JURKAT cells cultured for 24 h in media containing 5.5 mM [13C6]glucose and 10 µM [13C9; 15N2]rU 
treated ±1 µM NITD-982 or ±1 µM dipyridamole (DPA; mean±SD; n=3). (F) UMP can be produced by a de novo pathway (DNP) from 
glucose, glutamine, bicarbonate and aspartate or from extracellular rU by a nucleoside transporter and kinase-dependent salvage 
pathway (NSP). (G) Dose response curves of DHODH inhibitor NITD-982 and nucleoside transport inhibitor (NTi) dipyridamole (DPA) 
in JURKAT cells cultured in NSP+DNP (media +10 µM rU), NSP only (media +10 µM rU +1 µM NITD-982), or DNP only (media alone) 
for 72 h as determined by Cell Titer Glo (mean±SD; n=4). 
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of DNP and NSP pathways to DNA biosynthesis as determined by LC-MS/MS following 24 hr 

treatment (n=3). % contribution values are normalized to total % labeling in E. (E) LC-MS/MS 

analysis DNP([13C6]glucose) and NSP([13C9; 15N2]rU) contribution to DNA-C in JURKAT cells 

cultured for 24 hr in media containing 5.5 mM [13C6]glucose and 10 µM [13C9; 15N2]rU treated 

±1 µM NITD-982 or ±1 µM dipyridamole (DPA; mean±SD; n=3). (F) UMP can be produced by 

a  de  novo  pathway  (DNP)  from  glucose,  glutamine,  bicarbonate  and  aspartate  or  from 

extracellular rU by a nucleoside transporter and kinase-dependent salvage pathway (NSP). (G) 

Dose response curves of DHODH inhibitor NITD-982 and nucleoside transport inhibitor (NTi) 

dipyridamole (DPA) in JURKAT cells cultured in NSP+DNP  (media +10 µM rU), NSP  only 

(media +10 µM rU +1 µM NITD-982), or DNP only (media alone) for 72 hr as determined by 

Cell Titer Glo (mean±SD; n=4). 
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Figure S2.2 | UMP-DNP and NSP are interchangeable in sustaining proliferation across a 

panel of cancer cell lines. Related to Figure 2.1. Uridine titration in cancer cell lines cultured 

±1  µM  NITD-982  (mean±SD;  n=4).  Relative  proliferation  rate  (GR)  was  calculated  by 

normalizing % proliferation values at 72 hr to cell line proliferation rate. Proliferation rates were 

calculated utilizing CTG measurements at the time of treatment and vehicle-treated controls at 

72 hr.
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Figure S2 | UMP-DNP and NSP are interchangeable in sustaining proliferation across a panel of cancer cell lines. Related to 
Figure 1. Uridine titration in cancer cell lines cultured ±1 µM NITD-982 (mean±SD; n=4). Relative proliferation rate (GR) was calculated 
by normalizing % proliferation values at 72 h to cell line proliferation rate. Proliferation rates were calculated utilizing CTG 
measurements at the time of treatment and vehicle-treated controls at 72 h.

rU titration alone 
NITD-982 + rU titration 



Figure S2.3 | Evaluation of UMP-NSP and -DNP inhibitor potency and selectivity. Related 

to Figure 2.1. (A) Cell Titer Glo analysis of MIAPACA2 cells cultured in NSP+DNP (media 

+10 µM rU), DNP (media alone),  NSP (media +10 µM rU +1 µM NITD-982) or starvation 

conditions (media + 1 µM NITD-982) for 72 hr (mean±SD; n=4; one-way ANOVA corrected for 

multiple comparisons by Bonferroni adjustment, ** P < 0.01; *** P < 0.001). (B) Methodology 

applied to determine UMP-DNP and -NSP selectivity scores (screen performed at n=2). (C) Z’-

scores  calculated  for  individual  assay plates  from experiment  in  Figure 2.1.  (D)  Selectivity 

scores for BTK inhibitors included in the screen. (E) Selectivity scores for VEGFR inhibitors 

included in the screen. (F) Structures of hit compounds. (G) Immuno-fluorescence microscopy 
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Figure S3 | Evaluation of UMP-NSP and -DNP inhibitor potency and selectivity. Related to Figure 1. (A) Cell Titer Glo analysis of 
MIAPACA2 cells cultured in NSP+DNP (media +10 µM rU), DNP (media alone), NSP (media +10 µM rU +1 µM NITD-982) or starvation 
conditions (media + 1 µM NITD-982) for 72 h (mean±SD; n=4; one-way ANOVA corrected for multiple comparisons by Bonferroni 
adjustment, ** P < 0.01; *** P < 0.001). (B) Methodology applied to determine UMP-DNP and -NSP selectivity scores (screen 
performed at n=2). (C) Z’-scores calculated for individual assay plates from experiment in Figure 1. (D) Selectivity scores for BTK 
inhibitors included in the screen. (E) Selectivity scores for VEGFR inhibitors included in the screen. (F) Structures of hit compounds. 
(G) Immuno-fluorescence microscopy nuclei counts of MIAPACA2 cells stained with Hoechst 33342 cultured in NSP+DNP (media +10 
µM rU), DNP only (media alone) or NSP only (media +10 µM rU +1 µM NITD-982) conditions for 72 h (mean±SD; n=4). (H) Calculation 
of IC50 values from experiment in G. (I) Calculation of JNK-IN-8, OSU-03012 and TAK-632 IC50 in JURKAT cells treated for 72 h 
determined using Cell Titer Glo. (J) JURKAT cell counts using trypan-blue exclusion following treatment ±100 nM JNK-IN-8 ±1 µM 
OSU-03012 ±1 µM TAK-632 for 72 h (mean±SD; n=4; one-way ANOVA corrected for multiple comparisons by Bonferroni 
adjustment,**** P < 0.0001).
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nuclei counts of MIAPACA2 cells stained with Hoechst 33342 cultured in NSP+DNP (media 

+10 µM rU),  DNP only (media alone) or NSP only (media +10 µM rU +1 µM NITD-982) 

conditions for 72 hr (mean±SD; n=4). (H) Calculation of IC50 values from experiment in G. (I) 

Calculation of JNK-IN-8, OSU-03012 and TAK-632 IC50 in JURKAT cells treated for 72 hr 

determined using Cell Titer Glo. (J) JURKAT cell counts using trypan-blue exclusion following 

treatment ±100 nM JNK-IN-8 ±1 µM OSU-03012 ±1 µM TAK-632 for 72 hr (mean±SD; n=4; 

one-way  ANOVA corrected  for  multiple  comparisons  by  Bonferroni  adjustment,****  P  < 

0.0001).
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Figure S2.4 | Characterization of JNK-IN-8, OSU-03012 and TAK-632. Related to Figures 

2.2 and 2.3. (A) JURKAT cell counts using trypan-blue exclusion following treatment ±200 µM 

PALA ±10 µM rU ±100 nM JNK-IN-8 for 72 hr (mean±SD; n=3; one-way ANOVA corrected for 

multiple comparisons by Bonferroni  adjustment,  **** P<0.0001).  (B)  Uptake of  [3H]labeled 

nucleosides in vehicle control condition from experiment in Figure 2.2B. Values represent % 

injected dose (%ID; n=3;  18.5 kBq).  (C)  Uptake of  [3H]rU or  [3H]dC in CCRF-CEM cells 

following 2 hr incubation ± JNK-IN-8 (mean±SD; n=2; 18.5 kBq). IC50 values are indicated. (D) 

Cell Titer Glo analysis of JURKAT cells treated ±10 nM dFdC ± JNK-IN-8 for 72 hr (mean±SD; 

n=4). Insert indicates JNK-IN-8 EC50 value. (E) Uptake of [3H]rU, [3H]dC, [3H]dA (+10 µM 

	 152

Figure S4

Figure S4 | Characterization of JNK-IN-8, OSU-03012 and TAK-632. Related to Figures 2 and 3. (A) JURKAT cell counts using 
trypan-blue exclusion following treatment ±200 µM PALA ±10 µM rU ±100 nM JNK-IN-8 for 72 h (mean±SD; n=3; one-way ANOVA 
corrected for multiple comparisons by Bonferroni adjustment, **** P<0.0001). (B) Uptake of [3H]labeled nucleosides in vehicle control 
condition from experiment in Figure 2B. Values represent % injected dose (%ID; n=3; 18.5 kBq). (C) Uptake of [3H]rU or [3H]dC in 
CCRF-CEM cells following 2 h incubation ± JNK-IN-8 (mean±SD; n=2; 18.5 kBq). IC50 values are indicated. (D) Cell Titer Glo analysis 
of JURKAT cells treated ±10 nM dFdC ± JNK-IN-8 for 72 h (mean±SD; n=4). Insert indicates JNK-IN-8 EC50 value. (E) Uptake of 
[3H]rU, [3H]dC, [3H]dA (+10 µM dCF), [3H]dG (+1 µM BCX-1777) in KP4662 cells following 2 h incubation ±1 µM JNK-IN-8 or 1 µM 
dipyridamole (DPA; 18.5 kBq; mean±SD; n=3; one-way ANOVA corrected for multiple comparisons by Bonferroni adjustment; ns: not 
significant; ** P<0.01; *** P<0.001; **** P<0.0001). (F) Uptake of [3H]-labeled nucleosides in vehicle control condition from experiment 
in E. Values are expressed as % injected dose (%ID; n=3; 18.5 kBq). (G) Summary of nucleoside transporter expression (RNA-seq; 
data obtained from oasis-genomics.org). (H) CETSA for ENT1 (SLC29A1) engagement in MIAPACA2 protein lysates. Lysates were 
incubated +10 µM JNK-IN-8 or +10 µM DPA for 2 h, subsequently heat treated at the indicated temperatures and analyzed by 
immunoblot analysis. (I) Propidium iodide cell cycle analysis of MIAPACA2 PDAC cells treated ±1 µM NITD-982 (NITD) ±5 µM 
GSK-2334470 (GSK) or ±10 µM LY3009120 (LY) supplemented ±10 µM rU (N.S.: no supplement). Insert indicates % S-phase cells. (J) 
Summary of fold change in S-phase cells from I (mean±SD; n=2; one-way ANOVA corrected for multiple comparisons by Bonferroni 
adjustment, ns: not significant; **** P<0.0001). (K) pH2A.XS139 flow cytometry analysis of MIAPACA2 cells treated ±5 µM OSU-03012 
±5 µM TAK-632 ±500 nM VE-822 (ATRi) for 48 h (mean±SD; n=2; one-way ANOVA corrected for multiple comparisons by Bonferroni 
adjustment, ns: not significant; **** P<0.0001).
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dCF), [3H]dG (+1 µM BCX-1777) in KP4662 cells following 2 hr incubation ±1 µM JNK-IN-8 

or 1 µM dipyridamole (DPA; 18.5 kBq; mean±SD; n=3; one-way ANOVA corrected for multiple 

comparisons  by  Bonferroni  adjustment;  ns:  not  significant;  **  P<0.01;  ***  P<0.001;  **** 

P<0.0001). (F) Uptake of [3H]-labeled nucleosides in vehicle control condition from experiment 

in E. Values are expressed as % injected dose (%ID; n=3; 18.5 kBq). (G) Summary of nucleoside 

transporter  expression  (RNA-seq;  data  obtained  from  oasis-genomics.org).  (H)  CETSA for 

ENT1 (SLC29A1) engagement in MIAPACA2 protein lysates. Lysates were incubated +10 µM 

JNK-IN-8 or +10 µM DPA for 2 h, subsequently heat treated at the indicated temperatures and 

analyzed by immunoblot analysis. (I) Propidium iodide cell cycle analysis of MIAPACA2 PDAC 

cells treated ±1 µM NITD-982 (NITD) ±5 µM GSK-2334470 (GSK) or ±10 µM LY3009120 

(LY) supplemented ±10 µM rU (N.S.:  no supplement).  Insert  indicates  % S-phase cells.  (J) 

Summary of fold change in S-phase cells from I (mean±SD; n=2; one-way ANOVA corrected for 

multiple  comparisons  by  Bonferroni  adjustment,  ns:  not  significant;  ****  P<0.0001).  (K) 

pH2A.XS139 flow cytometry analysis of MIAPACA2 cells treated ±5 µM OSU-03012 ±5 µM 

TAK-632 ±500 nM VE-822 (ATRi) for 48 hr (mean±SD; n=2; one-way ANOVA corrected for 

multiple comparisons by Bonferroni adjustment, ns: not significant; **** P<0.0001).
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Table S2.1 | Crystallographic data collection and refinement statistics. Related to Figure 

2.4.
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Structure DHODH + OSU-03012 DHODH + TAK-632

PDB codes 6OC0 6OC1

Data collection statistics

X-ray source and detector
LS-CAT 21-ID-D LS-CAT 21-ID-G

Dectris Eiger x 9M MARCCD 300

Wavelength (Å) 0.99987 0.97872

Temperature (K) 100 100

Resolutiona (Å) 1.40 (1.48-1.40) 2.7 (2.85-2.7)

Number of Reflections

Observed 1,090,019 (113,565) 306,440 (48,502)

Unique 114,363 (17,418) 13,751 (2,169)

Completeness (%) 99.0 (94.2) 99.9 (99.8)

Rmeas (%) 7.0 (54.5) 17.0 (183.3)

CC1/2 (%) 99.9 (87.8) 99.9 (71.1)

Average I/σ(I) 19.2 (2.8) 21.6 (2.1)

Space group P 32 2 1 P 21 3

Unit cell: a, b, c (Å) 90.01, 90.01, 123.07 113.67, 113.67, 113.67

Unit cell: α, β, γ (°) 90, 90, 120 90, 90, 90

Wilson B-factors (Å2) 13.9 66.4

Refinement statistics
Refinement program REFMAC5 REFMAC5

     Rwork (%) 15.7 23.4

     Rfree (%) 19.1 29.1

Resolution range (Å) 48.55-1.40 46.45-2.70

Protein molecules per a.u. 1 1

Number of atoms:

     Protein 2845 2769

     Water molecules 232 36

     ORO + FMN 42 42

     Inhibitor 34 39

R.m.s. deviation from ideal:

     Bond length (Å) 0.009 0.0021

     Bond angles (°) 1.7114 1.264

Average B-factors (Å2)

     Protein 23.9 73.0

     Water molecules 32.6 44.7

     ORO + FMN 12.2 56.6

     Inhibitor 29.3 73.0

Ramachandran plot statistics (%)

     Most favored regions 97 86

     Additionally allowed regions 3 14

     Outlier regions 0 1
aHigh resolution shell in parenthesis; r.m.s., root-mean-square; a.u., asymmetric unit.

Table S1 | Crystallographic data collection and refinement statistics. Related to Figure 4.
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