
UCLA
UCLA Previously Published Works

Title
An evaluation of stringent filtering to improve species distribution models from citizen 
science data

Permalink
https://escholarship.org/uc/item/8kn2m58d

Journal
Diversity and Distributions, 25(12)

ISSN
1366-9516

Authors
Steen, Valerie A
Elphick, Chris S
Tingley, Morgan W

Publication Date
2019-12-01

DOI
10.1111/ddi.12985
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kn2m58d
https://escholarship.org
http://www.cdlib.org/


Diversity and Distributions. 2019;00:1–13.	 		 	 | 	1wileyonlinelibrary.com/journal/ddi

 

Received:	25	February	2019  |  Revised:	9	July	2019  |  Accepted:	11	August	2019
DOI: 10.1111/ddi.12985  

B I O D I V E R S I T Y  R E S E A R C H

An evaluation of stringent filtering to improve species 
distribution models from citizen science data

Valerie A. Steen  |   Chris S. Elphick |   Morgan W. Tingley

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2019	The	Authors.	Diversity and Distributions	published	by	John	Wiley	&	Sons	Ltd.

Department	of	Ecology	and	Evolutionary	
Biology,	University	of	Connecticut,	Storrs,	
Connecticut

Correspondence
Valerie	A.	Steen,	Department	of	Ecology	
and	Evolutionary	Biology,	University	of	
Connecticut,	Storrs,	CT	06269.
Email:	valerie.steen@gmail.com

Funding information
Connecticut	Department	of	Energy	and	
Environmental	Protection

Editor:	Thomas	(OE)	Albright

Abstract
Aim: Citizen	science	data	are	 increasingly	used	 for	modelling	 species	distributions	
because	they	offer	broad	spatiotemporal	coverage	of	local	observations.	However,	
such	data	are	often	collected	without	experimental	design	or	set	survey	methods,	
raising	the	risk	that	bias	and	noise	will	compromise	modelled	predictions.	We	tested	
the	ability	of	species	distribution	models	(SDMs)	built	from	these	low‐structure	citi‐
zen	science	data	to	match	the	quality	of	SDMs	from	systematically	collected	data	and	
tested	whether	stringent	data	filtering	improved	predictions.
Location: Northeastern	USA.
Methods: We	evaluated	models	 built	 from	 a	 rapidly	 growing	 dataset	 of	 avian	 oc‐
currences	reported	by	birders—eBird—against	models	built	from	four	independent,	
systematically	 collected	 datasets.	We	 developed	 SDMs	 for	 96	 species	 using	 both	
data	sources	and	compared	their	predictive	abilities.	We	also	tested	whether	culling	
eBird	data	by	applying	stringent	data	filters	on	survey	effort	or	observer	expertise	
improved	predictions.
Results: We	found	that	SDMs	built	from	low‐structure	citizen	science	data	matched	
or	exceeded	performance	of	SDMs	from	systematically	collected	datasets	for	12%–
31%	of	species	(x̄	=	22%),	depending	on	the	dataset.	At	least	one	culling	option	pro‐
duced	equivalent	 or	 better	 performance	 for	40%–70%	of	 species	 (x̄	 =	49%).	Data	
culling	by	restricting	survey	effort	improved	predictions	more	than	restricting	by	ob‐
server	expertise.	The	optimal	effort	restriction	differed	by	dataset,	and	for	three	of	
the	datasets	was	further	informed	by	species	traits.
Main conclusions: Species	distribution	models	developed	using	low‐structure	citizen	
science	data	 sometimes	performed	as	well	 as	 those	 from	 systematic	data.	Culling	
generally	 improved	models,	but	 results	were	heterogeneous,	prohibiting	clear	 rec‐
ommendations	for	how	to	cull.	Our	results	 indicate	that	the	growing	availability	of	
citizen	science	data	holds	potential	for	creating	high‐quality	spatial	predictions,	but	
that	time	should	be	invested	in	determining	how	best	to	cull	datasets	and	that	one‐
size‐fits‐all	solutions	beyond	basic	outlier	filtering	may	be	hard	to	find.
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1  | INTRODUC TION

Ecologists	have	growing	options	concerning	where	they	source	spa‐
tial	data	on	species'	occurrence	and	abundance.	Systematically	col‐
lected	data	are	 traditional	ecological	data	products	 that	use	 strict	
survey	designs	to	ensure	sufficient	sample	sizes	and	balanced	spa‐
tial	and	temporal	sampling	(Guisan,	Thuiller,	&	Zimmermann,	2017),	
while	minimizing	variation	in	the	observation	process.	Citizen	science	
data,	by	contrast,	are	a	rapidly	growing	data	source	for	ecological	re‐
search	as	user‐friendly	web‐based	platforms	for	data	collection	pro‐
liferate	(Devictor,	Whittaker,	&	Beltrame,	2010;	Lowman,	D’Avanzo,	
&	Brewer,	2009;	Sullivan	et	al.,	2014).	Although	some	citizen	science	
efforts	 are	 highly	 structured	 with	 strict	 protocols	 (e.g.	 Robbins,	
Bystrak,	&	Geissler,	1986),	much	of	the	recent	growth	involves	plat‐
forms	that	allow	untrained	contributors	to	choose	when,	where	and	
how	they	collect	data	 (e.g.	Hochachka	et	al.,	2012;	 iNaturalist.org,	
2019).	The	 resulting	data,	 therefore,	often	 suffer	 from	 limitations,	
including	spatial	biases,	imprecise	temporal	and	spatial	resolutions,	
and	 under‐	 or	 over‐reporting	 of	 species	 (Dickinson,	 Zuckerberg,	
&	 Bonter,	 2010;	 Fitzpatrick,	 Preisser,	 Ellison,	 &	 Elkinton,	 2009;	
Steger,	Butt,	&	Hooten,	2017;	Szabo,	Vesk,	Baxter,	&	Possingham,	
2010;	Tulloch,	Mustin,	Possingham,	Szabo,	&	Wilson,	2013;	Tulloch	
&	Szabo,	2012;	Tye,	McCleery,	Fletcher,	Greene,	&	Butryn,	2017).	
However,	because	citizen	scientists	provide	such	high	data	volume,	
determining	how	best	to	use	these	data	for	ecological	research	will	
likely	improve	biogeographical	insights,	conservation	decisions	and	
conservation	outcomes	(Dickinson	et	al.,	2010;	La	Sorte	et	al.,	2018).

Species	distribution	models	(SDMs)	are	a	popular	tool	for	using	
georeferenced	 species	 occurrences	 in	 relation	 to	 environmental	
conditions	 to	 predict	 occurrence	 across	 regions	 (Franklin,	 2010).	
Accurate	predictions	of	species	distributions	are	affected	by	attri‐
butes	of	the	underlying	occurrence	data	used	to	build	SDMs.	Ideally,	
SDMs	are	built	from	systematically	collected	observational	datasets,	
but	 as	 these	 data	 are	 often	 not	 available	 for	most	 species	 and/or	
study	 regions,	 SDMs	 are	 commonly	 built	with	 presence‐only	 data	
derived	from	biological	specimen	records	(Peterson	et	al.,	2011).

Citizen	 science	data	have	great	potential	 as	a	 cost‐efficient	al‐
ternative	to	systematic	data	that	can	provide	access	to	more	species	
and	broader	 spatial	 coverage	 (Pimm	et	 al.,	 2014).	However,	 biases	
and	noise	potentially	limit	ability	of	citizen	science	data	to	be	used	
reliably	 for	 mapped	 output	 and	 at	 scales	 relevant	 to	 conserva‐
tion	 (Kremen	et	al.,	2008;	Rondinini,	Wilson,	Boitani,	Grantham,	&	
Possingham,	2006).	A	key	advance	in	the	use	of	citizen	science	data	
would	be	the	ability	to	reliably	map	species	distributions	that	meet	
or	exceed	what	can	be	accomplished	from	systematic	surveys.

Reducing	 bias	 and	 noise	 in	 citizen	 science	 datasets	 can	 be	
achieved	by	either	filter‐based	or	statistical	techniques	(Bird	et	al.,	

2014;	Isaac,	Strien,	August,	Zeeuw,	&	Roy,	2014).	Filtering	removes	
problematic	 observations,	 such	 as	 outliers,	 or	 those	 contribut‐
ing	to	sampling	or	spatial	bias	 (Fink	et	al.,	2010;	Bonter	&	Cooper,	
2012;	Butt,	Slade,	Thompson,	Malhi,	&	Riutta,	2013;	Boria,	Olson,	
Goodman,	&	Anderson,	2014;	Robinson	et	al.,	2018;	Tye	et	al.,	2017).	
Statistical	techniques	fit	models	that	address	sampling	bias	and	ob‐
servation	 heterogeneity.	 For	 example,	 occupancy	 modelling	 has	
been	successfully	used	to	improve	SDMs	by	correcting	for	imperfect	
detection	(Higa	et	al.,	2015;	Kéry,	Gardner,	&	Monnerat,	2010;	van	
Strien,	van	Swaay,	&	Termaat,	2013).

Data	culling,	whereby	stringent	data	filters	are	applied	to	retain	
only	the	highest	quality	data,	is	one	option	for	improving	models	de‐
rived	from	citizen	science	data,	but	the	trade‐offs	between	reduced	
bias	 and	 loss	 of	 precision	 are	 poorly	 known.	 In	 one	 study,	 Kamp,	
Oppel,	Heldbjerg,	Nyegaard,	 and	Donald	 (2016)	 found	 that	 culling	
to	use	only	 the	highest	quality	data	 to	estimate	population	 trends	
did	not	overcome	the	effects	of	data	loss.	In	comparison,	Robinson,	
Ruiz‐Gutierrez,	and	Fink	(2018)	successfully	used	spatial	data	culling	
to	improve	SDMs	for	a	rare	species.

Because	 species	 vary	 widely	 in	 their	 prevalence,	 aggregation	
patterns	 and	 the	 ease	 with	 which	 they	 can	 be	 identified,	 citizen	
science	data	quality	may	vary	considerably	(Dickinson	et	al.,	2010;	
Fitzpatrick	et	al.,	2009;	Kamp	et	al.,	2016),	such	that	using	and	cull‐
ing	citizen	science	data	may	be	more	appropriate	for	some	species	
than	others.	Taxa	with	smaller	body	sizes	or	lower	densities	often	
result	 in	 fewer	detections	 in	 citizen	 science	databases	 relative	 to	
benchmark	 surveys	 (Fitzpatrick	 et	 al.,	 2009;	 Kamp	 et	 al.,	 2016;	
Steger	et	al.,	2017;	Ward,	2014).	Uncommon	species	may	be	under‐
reported	or,	conversely,	over‐reported	when	rarity	increases	inter‐
est	 (Farmer,	 Leonard,	 &	 Horn,	 2012;	 Swanson,	 Kosmala,	 Lintott,	
&	 Packer,	 2016).	Other	 species	may	 be	 under‐reported	 in	 citizen	
science	 datasets	 simply	 because	 they	 are	 challenging	 to	 identify,	
whether	 requiring	 knowledge	 of	 vocalizations	 or	 lacking	 distin‐
guishing	features	(Crall	et	al.,	2011;	Dickinson	et	al.,	2010;	Ratnieks	
et	al.,	2016;	Shea,	Peterson,	Wisniewski,	&	Johnson,	2011;	Swanson	
et	 al.,	 2016).	 Such	 species‐specific	 traits	which	 result	 in	differen‐
tial	 representation	 in	 citizen	 science	 databases	may	 be	 indicative	
of	whether	species	are	best	studied	using	systematic	data	 (where	
such	issues	are	supposedly	minimized),	or	whether	citizen	science	
datasets	can	substitute.

One	of	 the	 largest	and	 fastest	growing	ecological	citizen	sci‐
ence	 datasets	 is	 eBird	 (Hochachka	 et	 al.,	 2012;	 Sullivan	 et	 al.,	
2014).	 eBird	 provides	 an	 online	 portal	 for	 reporting	 bird	 obser‐
vations,	with	over	100	million	 sightings	 logged	annually	by	hun‐
dreds	of	thousands	of	users.	While	the	platform	is	flexible	in	how	
participants	collect	data,	ancillary	survey	information	is	collected	
describing	 time,	 location,	 travelling	 distance,	 and	 whether	 all	

K E Y W O R D S

citizen	science,	culling,	data	filtering,	eBird,	model	evaluation,	observer	expertise,	occurrence	
data,	species	distribution	models,	survey	effort
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avian	species	were	reported.	This	survey	information	and	the	high	
density	of	observations	in	many	areas	make	the	dataset	ideal	for	
exploring	 whether	 SDMs	 derived	 from	 citizen	 science	 data	 can	
match	 those	 from	 systematic	 surveys,	 and	whether	 data	 culling	
improves	models.

Here,	we	challenge	SDMs	created	from	eBird	data	to	predict	occur‐
rences	 independently	assessed	 from	 four	different	 ‘benchmark’	 sys‐
tematically	collected	datasets	of	species	occurrence.	Additionally,	we	
investigate	whether	data	culling	of	eBird	based	on	survey	effort	or	ob‐
server	expertise—two	major	sources	of	potential	bias	in	citizen	science	
datasets	(Kelling,	Fink,	et	al.,	2015)—improve	predictions.	Specifically,	
we	ask:	(a)	Can	low‐structure	citizen	science	data	produce	model	pre‐
dictions	that	match	the	quality	of	those	from	systematically	collected	
data?	(b)	Does	selective	data	culling	improve	model	predictions?	and	(c)	
Do	species	traits	explain	variation	in	the	accuracy	of	predictive	models	
in	ways	that	could	guide	which	culling	decisions	to	make?

2  | METHODS

2.1 | Study area

We	 developed	models	 for	 a	 43,000	 km2	 region	 in	 the	 northeast‐
ern	United	States	 (Figure	1).	Because	most	of	our	systematic	data	
came	from	studies	in	the	state	of	Connecticut,	we	used	eBird	data	
from	Connecticut	and	surrounding	states	similar	in	climate,	topogra‐
phy	and	habitat	classes.	This	included	Massachusetts	to	the	north,	
Rhode	Island	to	the	east	and	the	adjacent	portion	of	New	York	west	
to	the	Hudson	River.	The	study	area	is	dominated	by	deciduous	for‐
est	and	developed	land	cover	and	contains	some	mixed	conifer	for‐
est	as	well	as	spruce–fir	forest.	 It	also	includes	extensive	coastline	

and	small	amounts	of	shrublands,	grasslands,	croplands	and	fresh‐
water	wetlands.

2.2 | eBird data

eBird	records	are	submitted	 in	checklist	 format	 listing	the	counts	
of	 each	 species	 encountered.	 Checklists	 include	 information	 on	
observation	duration,	distance	travelled	and	other	method‐related	
metadata.	 We	 obtained	 these	 data	 by	 directly	 downloading	 the	
eBird	 Basic	 Dataset	 (https	://ebird.org/scien	ce/downl	oad‐ebird‐
data‐products)	 on	 6/27/2017.	We	 restricted	 the	 data	 to	 only	 in‐
clude	 (a)	 ‘complete’	 checklists	 in	 which	 all	 birds	 observed	 were	
recorded	and	thus	we	inferred	species	absence	when	not	reported	
on	 a	 checklist	 (Sullivan	 et	 al.,	 2014);	 (b)	 observations	 from	 2010	
to	2016—a	period	 that	overlapped	 the	years	of	 three	of	 the	 four	
benchmark	datasets;	 (c)	data	 from	4:15	a.m.	 to	12:00	p.m.,	when	
many	 bird	 species	 are	 considered	 most	 detectable;	 (d)	 seasonal	
dates	corresponding	to	the	respective	benchmark	datasets	(Table	
S1);	(e)	surveys	that	covered	less	than	8.1	km	(Fink	et	al.,	2010)	and	
(f)	surveys	that	lasted	up	to	300	min	to	increase	detection	data	for	
more	uncommon	species.

We	created	three	types	of	eBird	training	datasets:	‘full’	datasets	
included	 all	 eBird	 data	 that	matched	 the	 criteria	 described	 above,	
while	 ‘culled’	 and	 ‘random’	datasets	were	 reduced	 subsets.	To	ad‐
dress	 spatial	 sampling	 bias,	 all	 datasets	were	 spatially	 thinned,	 so	
that	no	observation	was	within	1	km	of	another,	using	the	R	pack‐
age	 spThin	v.0.1.0	 (Aiello‐Lammens,	Boria,	Radosavljevic,	Vilela,	&	
Anderson,	2015).	We	used	R	versions	3.3.3	and	3.5.2	for	our	various	
analyses.	Based	on	results	of	exploratory	analyses,	we	chose	a	more	
conservative	1‐km	thin	over	a	500‐m	thin	and	retained	data	from	the	

F I G U R E  1  Study	area	in	the	
northeastern	USA	showing	the	extent	
of	eBird	citizen	science	training	data	by	
the	black	outline	in	map	and	inset.	Points	
show	the	locations	of	observations	from	
the	four	benchmark	datasets

https://ebird.org/science/download-ebird-data-products
https://ebird.org/science/download-ebird-data-products
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full	extent	of	the	study	area	versus	masking	data	to	match	the	extent	
of	benchmark	datasets	(see	Spatial Thinning and Masking	in	Appendix	
S1	in	Supporting	Information	for	more	details).	These	scales	created	
spacing	similar	to	that	of	the	point‐counts	in	our	benchmark	datasets.

To	create	the	culled	datasets,	we	first	defined	levels	of	observer	ex‐
pertise	and	survey	effort	for	each	eBird	checklist.	Expertise	was	mod‐
elled	 using	 the	 Poisson	 generalized	 additive	mixed	model	 described	
by	Kelling,	Johnston,	et	al.	(2015)	and	Johnston,	Fink,	Hochachka,	and	
Kelling	 (2018).	This	model	quantifies	expertise	 from	eBird	 checklists	
by	estimating	the	false	absence	reporting	rate	of	each	observer	in	the	
study	region	(Kelling,	Johnston,	et	al.,	2015).	The	model	relates	varia‐
tion	in	the	total	number	of	species	reported	in	each	checklist	to	time	of	
day,	day	of	year,	distance	travelled,	time	spent	observing,	habitat,	hab‐
itat	diversity	and	protocol	type.	We	extracted	habitat	classes	and	hab‐
itat	diversity	 (using	the	Gini–Simpson	diversity	 index)	 from	the	2011	
National	Land	Cover	Database	(Homer	et	al.,	2015).	Because	observers	
are	expected	to	vary	in	their	ability	to	detect	and	identify	different	spe‐
cies,	the	model	includes	a	random	intercept	for	each	observer	as	well	
as	a	random	slope	for	each	observer's	effect	on	time	spent	observing.	
Predictions	 from	 this	model	 for	 a	 standardized	 survey	 then	 provide	
standardized	estimates	of	relative	observer	expertise	along	a	contin‐
uous	scale.	Using	these	expertise	scores,	we	either	used	all	checklists	
(‘any	expertise’),	 those	 from	 the	 top	 two‐thirds	of	observers	 (‘okay’),	
those	from	the	top	third	(‘better’),	or	those	from	only	the	top	15%	(‘top’).

To	 cull	 by	effort,	we	 focused	on	 the	distance	 travelled	 for	 a	
checklist.	We	defined	four	subsets	using	quartiles	of	the	distribu‐
tion	of	distances:	‘short’	(all	checklists	≤0.805	km	in	distance	trav‐
elled),	‘medium’	(>0.805,	≤1.609	km),	‘lengthy’	(>1.609,	≤3.219	km)	
and	‘very	lengthy’	(>3.219,	<8.0	km).	Unlike	the	expertise	classes,	
which	sequentially	reduce	the	size	of	the	dataset,	effort	subsets	
divided	the	data	into	subsets	that	were	equal	in	size.	By	combining	
the	two	culling	criteria,	we	created	a	total	of	16	‘culled’	datasets.

Finally,	to	test	whether	any	culling	effects	could	simply	be	an	ar‐
tefact	of	dataset	reduction,	we	randomly	subsetted	the	eBird	data	to	
create	16	‘random’	datasets	that	matched	the	size	of	the	16	‘culled’	
datasets.	We	repeated	each	of	these	16	randomizations	ten	times.

2.3 | Benchmark data

eBird	models	were	evaluated	separately	against	each	of	four	bench‐
mark	 datasets	 collected	 in	 different	 habitats	 in	 our	 region.	While	
these	 datasets	 differed	 in	 the	 specifics	 of	 their	 study	 designs,	 all	
involved	 systematic	 surveys	 using	 point‐count	methods	 typical	 of	
many	 avian	 studies	 and	 used	 observers	 skilled	 in	 bird	 identifica‐
tion	 (Figure	 1,	 Table	 S1).	 The	 ‘Askins’	 dataset	 covered	 shrubland	
and	forest	edge	habitats	(Askins,	Folsom‐O'Keefe,	&	Hardy,	2012).	
‘BBS’	 covered	primarily	 forest	and	developed	habitats	along	 road‐
sides	as	part	of	the	North	American	Breeding	Bird	Survey	(Pardieck,	
Ziolkowski,	Lutmerding,	Campbell,	&	Hudson,	2016),	another	citizen	
science	effort,	but	one	with	a	systematic	survey	protocol	that	skilled	
observers	conduct	year	after	year.	‘Klingbeil’	surveys	covered	forest	
interior	 sites	 (Klingbeil	&	Willig,	 2015).	 ‘SHARP’	 consisted	 of	 tidal	
marsh	habitat	surveys	(Wiest	et	al.,	2016).

2.4 | Environmental and observation covariates

Species	distributions	were	modelled	as	functions	of	environmental	
and	observation	covariates	(Table	S2).	We	chose	environmental	co‐
variate	 sets	 separately	 for	 each	 benchmark	 dataset	 given	 the	 pri‐
mary	 habitat(s)	 sampled.	 Environmental	 covariates	 included	 class	
variables	 describing	 land	 cover,	 forest	 fragmentation	 and/or	 wet‐
lands,	and	numerical	variables	describing	topography,	housing	den‐
sity	and/or	income.	The	same	covariate	sets	were	used	across	eBird	
and	benchmark	dataset	models	for	a	given	comparison.	Thus,	spe‐
cies	that	appeared	in	multiple	benchmark	datasets	(e.g.	Red‐winged	
Blackbird	Agelaius phoeniceus;	Table	S3)	had	different	covariates	for	
each	comparison.

All	 environmental	 covariates	were	modelled	 as	 the	 proportion	
(for	class	variables)	or	mean	(for	numerical	variables)	of	that	covari‐
ate	 in	 a	 200‐m	 radius	 surrounding	 the	 point‐count	 location	 (sys‐
tematically	collected	data),	or	the	reported	mid‐point	for	the	eBird	
checklist	(citizen	science	data).	A	200‐m	radius	was	chosen	because	
it	matched	a	typical	detection	radius	 for	our	species	at	a	point	 lo‐
cation.	 Most	 eBird	 surveys	 are	 travelling	 surveys,	 and	 observers	
sometimes	report	the	beginning	or	end	location	rather	than,	as	sug‐
gested,	the	mid‐point	location	(Munson	et	al.,	2010).	eBird	surveys	
also,	 frequently,	 cover	 a	 larger	 area	 than	 the	 200‐m	 radius	would	
encompass.	 However,	 because	 we	 were	 challenging	 noisy	 citizen	
science	data	to	make	predictions	to	the	relatively	fine‐scale	obser‐
vations	in	the	systematic	data,	we	settled	on	a	radius	optimized	for	
the	systematic	data,	especially	after	finding	in	preliminary	analyses	
that	eBird	surveys	trained	with	covariates	calculated	at	an	800‐m	or	
1,500‐m	radius	did	not	 improve	models	relative	to	a	200‐m	radius	
(see	Appendix	S1	for	more	details,	Covariate Scale	and	Table	S4).	To	
capture	additional	variation	in	the	observation	process	for	eBird	re‐
cords,	models	also	 included	 time	of	day,	 survey	duration,	distance	
covered	and	expertise	score	for	the	observer.

2.5 | Prediction and evaluation

We	 identified	 species	with	 a	minimum	prevalence	 in	 each	 bench‐
mark	dataset	of	0.05	 for	 inclusion	 in	our	analyses	 resulting	 in	173	
species	 by	 comparison	 combinations	 (Table	 S3).	 For	 each	 species	
within	each	benchmark	dataset,	we	 ran	177	models	using	 training	
data	from	eBird	(1	full	model,	16	culled	models,	160	random	mod‐
els).	 In	 all	 cases,	we	modelled	 species	 occurrence	 using	 classifica‐
tion	 random	 forests	 implemented	 in	 the	R	 package	 randomForest	
v.4.6‐14	(Breiman,	2001;	Liaw	&	Wiener,	2002).	We	specified	that	a	
relatively	large	number	of	trees	(n	=	3,000)	be	used	for	each	model.	
We	otherwise	used	default	settings	where	the	number	of	variables	
tried	at	each	split	was	the	square	root	of	the	total	number,	sampling	
of	data	was	done	with	replacement,	and	unstratified	class	sampling	
was	used	(see	Class Imbalance	in	Appendix	S1	for	justification	for	not	
stratifying).	For	predictions,	we	used	a	consistent	time	of	7:00	a.m.	
Because	distance	and	expertise	vary	by	culled	subset,	and	duration	
covaries	with	distance,	we	used	the	mean	values	from	each	subset	as	
the	standardized	values	for	predictions	to	benchmark	data.
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To	evaluate	the	eBird‐derived	models,	we	used	the	area	under	
the	receiver	operating	characteristic	curve	metric	(AUC;	Fielding	&	
Bell,	 1997)	 to	 assess	whether	 their	 continuous	 probability	 predic‐
tions	 could	 discriminate	 between	 occurrence	 and	 non‐occurrence	
(assumed	from	non‐detection)	in	the	benchmark	data.	We	compared	
AUC	results	between	models	built	with	the	complete	eBird	dataset	
and	those	from	the	culled	and	random	subsets,	averaging	AUC	val‐
ues	over	the	10	repetitions	of	each	random	scenario.

We	established	benchmark	model	performance	using	the	bench‐
mark	 datasets,	 applying	 10‐fold	 cross‐validation,	 assessing	 SDM	
performance	using	AUC	to	10%	of	the	data	for	each	of	10	folds,	and	
averaging	 across	 the	 10	 results.	 To	mitigate	 predictive	 advantage	
owing	to	spatial	autocorrelation	among	data	points,	we	used	spatial	
sets	to	group	nearby	observations	when	assigning	them	to	testing	
versus	training	datasets	within	the	10‐fold	procedure	(Roberts	et	al.,	
2017).	We	calculated	the	performance	difference	(ΔAUC)	relative	to	
the	equivalent	eBird	model.

2.6 | Species traits

We	summarized	four	species'	characteristics	we	expected	might	in‐
fluence	citizen	science	data	quality:	prevalence,	ubiquity,	abundance	
and	identifiability.	Prevalence	and	ubiquity	are	measures	of	how	com‐
mon	and	widespread	a	species	is,	respectively.	Prevalence	was	calcu‐
lated	as	the	frequency	with	which	the	species	was	reported	across	
eBird	 checklists	 and	 ubiquity	 as	 the	 proportion	 of	 5	 ×	 5	 km	 cells	
within	the	study	area	with	records	of	the	species	(Figures	S1	and	S2).	
We	used	the	median	abundance	from	checklists	 in	which	a	species	
was	detected	as	a	measure	of	local	densities	(Figure	S3).	To	describe	
prevalence,	ubiquity	and	abundance,	we	used	only	eBird	checklists	
that	met	our	criteria	for	use	in	model	building,	but	further	restricted	
the	dates	to	1	June–15	July	to	target	peak	breeding	and	further	ex‐
clude	migrating	 birds.	 Finally,	we	 assigned	 each	 species	 a	measure	
of	how	easy	 it	 is	to	 identify,	using	the	expected	rate	of	reporting	a	
species	dependent	on	an	observer's	expertise,	after	Johnston	et	al.	
(2018).	We	relativized	reporting	rates	across	species	by	dividing	that	
of	the	observer	at	the	97.5th	expertise	quantile	by	the	observer	at	
the	25th	expertise	quantile.	Thus,	species	with	identifiability	values	
around	 1	 are	 expected	 to	 be	 reported	 by	 observers	 with	 modest	
skill	at	equal	rates	to	those	with	high	skill,	whereas	those	with	val‐
ues	around	0.5	would	be	reported	half	as	frequently	(Figure	S4).	To	
examine	relationships	between	each	of	the	species	traits	and	eBird	
model	performance	relative	to	the	benchmark	performance,	we	plot‐
ted	ΔAUC	and	fit	a	generalized	additive	model	(GAM)	to	ΔAUC	using	

a	smoothing	function	with	3	knots	(R	package	mgcv	v.1.8‐24	via	the	R	
package	ggplot2	v.2_2.2.1,	Wickham,	2016;	Wood,	2017).

2.7 | Effort and expertise effects

We	 used	 general	 linear	 models	 (GLMs)	 and	 linear	 mixed	 models	
(LMMs)	with	normal	error	distributions	to	assess	the	effects	of	cull‐
ing	by	effort	and	expertise	on	ΔAUC.	For	each	species	(i)	by	1‐4	( j)	
benchmark	datasets	and	1‐16	(k)	culled	data	subsets,	the	response	
variable,	ΔAUC,	was	first	rescaled	and	logit‐transformed:

logit	(ΔAUC)i,j,k	=	logit	(AUC	(benchmark	model)i,j	–	AUC	(citizen	sci‐
ence	model)i,j,k	+	0.50).

We	rescaled	by	adding	0.5	to	ΔAUC,	as	logit‐transformations	only	take	
values	between	0	and	1.	The	maximum	absolute	value	of	the	differ‐
ence	prior	to	rescaling	was	less	than	0.5.

To	 summarize	 the	 ability	 of	 culling	 by	 effort	 or	 expertise	 to	
improve	ΔAUC,	we	ran	a	set	of	GLMs	for	each	species	by	compari‐
son.	We	calculated	the	reduction	in	deviance	explained	by	remov‐
ing	 a	 given	 covariate	 from	 the	 global	model	 (effort	 +	 expertise)	
and	dividing	that	value	by	the	deviance	of	the	null	(intercept‐only)	
model.

We	used	LMMs	with	a	random	species	effect	in	the	R	package	lme4	
v.1.1‐17	(Bates	et	al.,	2014)	to	assess	the	effects	of	different	expertise	
and	effort	culling	levels	on	ΔAUC.	We	specified	non‐ordinal	four‐level	
factors	to	model	the	effects	of	culling	by	the	four	distance	(effort)	lev‐
els	and	four	expertise	levels.	We	hypothesized	that	species'	traits	may	
influence	the	effects	expertise	and	effort	culling	have	on	ΔAUC	and	in‐
cluded	models	with	interactions	between	traits	and	culling	covariates.	
We	developed	a	set	of	a	priori	models	(Table	S5)	and	ran	them	for	each	
of	the	four	benchmark	datasets.	We	used	Akaike's	information	criterion	
(AIC)	to	compare	models	(Burnham	&	Anderson,	2002).

3  | RESULTS

Using	the	full	dataset,	models	using	eBird	citizen	science	data	per‐
formed	 well	 (AUC	 ≥0.7)	 for	 15%–33%	 of	 species,	 depending	 on	
benchmark	 dataset	 (Table	 1).	 Selecting	 the	 best	model	 after	 data	
culling	 increased	 the	 proportion	 of	 species	 with	 good	 models	 to	
28%–58%,	with	culled	datasets	generally	producing	better	models.	
In	contrast,	random	data	reductions	performed	similarly	to	models	
using	the	full	dataset.

F I G U R E  2   (a)	Area	under	the	receiver	operating	characteristic	curve	(AUC)	results	quantify	the	ability	of	eBird	citizen	science	species	
distribution	models	to	predict	species	occurrence	data	for	four	benchmark	datasets	associated	with	different	land	cover	types:	Askins	
(shrubland),	BBS	(mostly	forest	and	developed	land),	Klingbeil	(interior	forest)	and	SHARP	(salt	marsh).	Triangles	show	benchmark	AUC	
values	and	are	based	on	cross‐validated	predictions	wherein	withheld	data	were	used	to	evaluate	models	trained	with	the	benchmark	
datasets.	Black	dots	show	AUC	values	from	models	that	used	all	citizen	science	data	that	met	our	basic	requirements.	Box‐whisker	plots	
show	the	distribution	of	AUC	values	across	16	models	that	used	culled	subsets	of	the	citizen	science	data	and	display	the	median,	upper	and	
lower	quartiles,	and	extend	to	maximum	and	minimum	values.	(b)	Barplots	show	the	proportion	of	species	for	which	eBird	models	matched	
or	exceeded	the	benchmark	AUC	based	on	using	all	data,	random	subsets	(not	shown	in	‘a’)	or	culled	subsets.	Random	and	culled	subset	
results	are	based	on	the	best	model	for	each	species



     |  7STEEN ET al.

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������
����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������
����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������
����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

����������������

Askins BBS Klingbeil SHARP

0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
House Sparrow

American Goldfinch
House Finch

Baltimore Oriole
Brown−headed Cowbird

Common Grackle
Red−winged Blackbird

Bobolink
Indigo Bunting

Rose−breasted Grosbeak
Northern Cardinal

Scarlet Tanager
Eastern Towhee

Song Sparrow
Savannah Sparrow

Field Sparrow
Chipping Sparrow
Seaside Sparrow

Saltmarsh Sparrow
Black−throated Green Warbler

Prairie Warbler
Pine Warbler

Black−throated Blue Warbler
Chestnut−sided Warbler

Yellow Warbler
American Redstart

Common Yellowthroat
Black−and−white Warbler

Blue−winged Warbler
Louisiana Waterthrush

Ovenbird
Cedar Waxwing

European Starling
Northern Mockingbird

Gray Catbird
American Robin

Wood Thrush
Hermit Thrush

Veery
Eastern Bluebird

Blue−gray Gnatcatcher
Carolina Wren

Marsh Wren
House Wren

White−breasted Nuthatch
Red−breasted Nuthatch

Tufted Titmouse
Black−capped Chickadee

Barn Swallow
Bank Swallow
Tree Swallow

Fish Crow
American Crow

Blue Jay
Red−eyed Vireo

Warbling Vireo
Yellow−throated Vireo

White−eyed Vireo
Eastern Kingbird

Great Crested Flycatcher
Eastern Phoebe

Willow Flycatcher
Eastern Wood−Pewee
Pileated Woodpecker

Northern Flicker
Hairy Woodpecker

Downy Woodpecker
Yellow−bellied Sapsucker
Red−bellied Woodpecker

Ruby−throated Hummingbird
Chimney Swift

Mourning Dove
Common Tern

Least Tern
Great Black−backed Gull

Herring Gull
Laughing Gull

Greater Yellowlegs
Willet

Least Sandpiper
Killdeer

Black−bellied Plover
American Oystercatcher

Red−tailed Hawk
Red−shouldered Hawk

Osprey
Glossy Ibis

Snowy Egret
Great Egret

Great Blue Heron
Double−crested Cormorant

Wild Turkey
Mallard

American Black Duck
Mute Swan

Canada Goose

AUC

S
pe

ci
es

(a)

All

Ran
do

m
Cull

ed All

Ran
do

m
Cull

ed All

Ran
do

m
Cull

ed All

Ran
do

m
Cull

ed
0.00

0.25

0.50

0.75

1.00

 P
ro

po
rti

on
 o

f
 s

pe
ci

es

(b)



8  |     STEEN ET al.

Models	using	the	full	eBird	dataset	were	capable	of	matching	or	
exceeding	the	benchmark	performance	produced	directly	from	the	
benchmark	datasets,	but	this	happened	for	only	12%–31%	of	species,	
depending	on	the	dataset	(Figure	2,	Table	1).	Culled	subsets	reduced	
the	number	of	records	used	by	between	52%	and	90%	relative	to	the	
full	dataset	(Table	S6).	However,	when	the	best	culled	subsets	were	
used,	the	proportion	meeting	benchmark	performance	increased	to	
40%–70%	of	species.	Models	based	on	random	subsets	showed	no	
improvement	compared	to	the	full	dataset	(16%–25%	of	species).

Culling	eBird	citizen	science	data	by	survey	effort	class	explained	
more	variability	 in	performance	difference	 than	culling	by	expertise	
class	across	all	four	benchmark	datasets	(Figure	3).	Consistent	with	this	
result,	the	LMMs	with	greatest	model	support	all	included	effort	as	a	

variable	but	not	expertise	(Table	2).	Although	some	form	of	culling	by	
effort	consistently	improved	models,	there	was	no	consistent	pattern	
as	to	which	survey	lengths	produced	the	best	results.	The	best	citizen	
science	model	most	frequently	was	from	‘short’	distance	surveys	(29%	
of	cases),	but	we	also	found	many	cases	where	the	best	models	were	
from	‘medium’	(27%),	‘lengthy’	(22%)	or	‘very	lengthy’	(22%)	surveys.

None	of	the	four	species	traits	contributed	as	main	effects	to	model	
performance	 differences	 between	 the	 eBird	 citizen	 science	models	 and	
the	benchmark	models	(Table	S5;	Figure	4).	Species	prevalence	(BBS	and	
Klingbeil	datasets)	and	ubiquity	(SHARP	dataset),	however,	both	appeared	in	
interaction	with	effort	(distance	class)	in	the	top	LMM	models	for	the	respec‐
tive	datasets	(Table	2;	Figure	5b‐d).	For	the	Askins	dataset,	no	differences	
between	distance	classes	were	found	(Figure	5a).	For	the	BBS	dataset,	there	

F I G U R E  3  Proportion	of	the	difference	in	model	performance	explained	when	culling	eBird	citizen	science	data	by	survey	effort	versus	
observer	expertise.	Performance	was	measured	by	predicting	occurrence	in	four	independent	benchmark	datasets	(‘Askins’,	n	=	40	species;	
‘BBS’,	n	=	61;	‘Klingbeil’,	n	=	25	species;	‘SHARP’,	n	=	47	species),	estimating	the	area	under	the	receiver	operating	characteristic	curve	(AUC)	
and	calculating	the	difference	(ΔAUC)	compared	to	predictions	from	models	derived	from	the	benchmark	data.	Plots	display	mirrored	kernel	
density	estimates	and	extend	from	minimum	to	maximum	values.	White	dots	show	median	values
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TA B L E  2  Multi‐model	comparison	showing	the	ability	of	species	traits	and	culling	(filtering)	procedure	to	explain	differences	in	the	
performance	of	culled	eBird	citizen	science	species	distribution	models	and	benchmark	species	distribution	models

Benchmark dataset Model K logL AIC ΔAIC w

Askins Effort 6 −112.931 237.99 0 0.54

Effort	*	Ubiquity 10 −109.704 239.76 1.762 0.22

Effort	*	Identifiability 10 −110.175 240.6991 2.704 0.14

BBS Effort	*	Prevalence 10 640.6628 −1,261.1 0 1

Effort	*	Ubiquity 10 633.4751 −1,246.72 14.375 0

Klingbeil Effort	*	Prevalence 10 −71.0684 162.7025 0 0.39

Effort 6 −75.3815 162.9768 0.2743 0.34

Effort	*	Ubiquity 10 −72.5682 165.7019 2.9994 0.09

Null 3 −80.6735 167.4076 4.7051 0.04

Effort	+	Expertise 9 −74.7524 167.9663 5.2638 0.03

Effort	*	Abundance 10 −73.8252 168.216 5.5135 0.02

Effort	*	Identifiability 10 −73.8685 168.3025 5.6000 0.02

SHARP Effort	*	Ubiquity 10 145.5602 −270.824 0 1

Effort	*	Prevalence 10 139.1015 −257.906 12.917 0

Note: Candidate	covariates	included	survey	effort,	observer	expertise	and	species	traits	(abundance,	identifiability,	prevalence,	and	ubiquity).	
Columns	show	number	of	parameters	(K),	the	log	likelihood	(logL),	Akaike	information	criterion	(AIC),	the	difference	in	AIC	compared	to	the	top	
model	(ΔAIC)	for	a	given	dataset,	and	model	weight	(w).	All	models	included	a	random	intercept	term	for	species.	Models	with	ΔAIC	<6	are	shown	
unless	one	model	had	all	the	weight	(w	=	1)	in	which	case,	the	next	model	is	also	included.	Full	model	sets	are	shown	in	Table	S5.



     |  9STEEN ET al.

was	little	difference	among	distance	classes	for	species	of	low	prevalence,	
but	models	using	shorter	distance	checklists	improved	models	more	than	
those	using	very	lengthy	ones	for	the	most	prevalent	species	(Figure	5b).	In	
contrast,	the	Klingbeil	dataset	indicated	slightly	improved	performance	for	

less	prevalent	species	using	very	lengthy	surveys	but	no	difference	for	more	
prevalent	species	(Figure	5c).	Finally,	less	ubiquitous	species	in	the	SHARP	
dataset	were	modelled	better	when	using	short	surveys	versus	very	lengthy	
ones,	but	this	difference	disappeared	for	ubiquitous	species.

F I G U R E  4  Effect	of	species	traits	on	
the	performance	of	species	distribution	
models	built	with	culled	eBird	citizen	
science	data	relative	to	benchmark	
models.	Performance	difference	was	
measured	by	predicting	occurrence	
in	four	benchmark	datasets	(‘Askins’,	
n	=	40	species;	‘BBS’,	n	=	61;	‘Klingbeil’,	
n	=	25	species;	‘SHARP’,	n	=	47	species),	
estimating	the	area	under	the	receiver	
operating	characteristic	curve	(AUC)	
and	calculating	the	difference	(ΔAUC)	
compared	to	predictions	from	models	
derived	from	the	benchmark	data.	Plots	
show	data	points,	GAM	fitted	lines	for	
traits	as	main	effects	and	95%	confidence	
intervals	for	the	four	benchmark	datasets
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F I G U R E  5  Effects	of	survey	effort	(distance	travelled)	on	the	performance	of	species	distribution	models	built	with	culled	eBird	citizen	
science	data	relative	to	benchmark	models.	Performance	difference	was	measured	by	predicting	occurrence	in	four	benchmark	datasets	
(‘Askins’,	n	=	40	species;	‘BBS’,	n	=	61;	‘Klingbeil’,	n	=	25	species;	‘SHARP’,	n	=	47	species),	estimating	the	area	under	the	receiver	operating	
characteristic	curve	(AUC)	and	calculating	the	difference	(ΔAUC)	compared	to	predictions	from	models	derived	from	the	benchmark	data.	
Plots	show	results	of	best	linear	mixed	models	developed	to	explain	ΔAUC	for	each	comparison.	For	three	datasets	(b–d),	the	best	model	
included	an	interaction	between	distance	travelled	and	one	of	the	species	traits	while	in	one	dataset	(a),	the	best	model	did	not	include	an	
interaction	with	any	species	traits.	Figures	illustrate	the	line	of	best	fit,	by	distance	class	and	95%	confidence	intervals	(jittered	horizontally	
in	b–d)
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4  | DISCUSSION

Accurate	maps	 of	 species	 distributions	 underlie	 the	 reliability	 of	
species	 conservation	 assessments	 and	 spatial	 conservation	 plans	
(Boitani	et	al.,	2011;	Kremen	et	al.,	2008).	This	necessity	is	yet	un‐
realized	 for	 the	vast	majority	of	 species,	while	 the	need	 for	 such	
knowledge	 grows	 ever	 more	 critical	 to	 curtail	 biodiversity	 loss	
(Dirzo	 et	 al.,	 2014;	 Jetz,	McPherson,	 &	Guralnick,	 2012).	 Citizen	
science	datasets	that	provide	a	large	volume	of	local	observations	
over	broad	areas	offer	the	possibility	of	using	predictive	models	to	
develop	 distribution	maps	 (Devictor	 et	 al.,	 2010).	 Such	 datasets,	
however,	often	lack	rigorous	data	collection	protocols	and	require	
little	or	no	formal	training	of	volunteers,	suggesting	a	need	to	en‐
sure	that	inherent	biases	and	noise	are	addressed	(Bird	et	al.,	2014).	
We	 tested	whether	 low‐structure	citizen	 science	data	could	pro‐
duce	SDMs	of	similar	quality	to	those	derived	from	systematically	
collected	data.	We	also	tested	methods	for	stringent	data	filtering	
to	evaluate	if	careful	data	selection	could	improve	citizen	science‐
based	SDMs.

We	 found	 that	 SDMs	 built	 with	 low‐structure	 citizen	 science	
data	can	match	the	performance	of	those	derived	from	systematic	
‘benchmark’	surveys,	but	that	 this	was	only	accomplished	 in	a	mi‐
nority	of	cases.	Our	analysis	is	based	on	just	eBird	data,	but	this	is	
one	of	the	world's	largest	and	fastest	growing	citizen	science	data‐
sets	focused	on	species	occurrence	data	 (Hochachka	et	al.,	2012),	
and	 is	 representative	 of	 many	 such	 efforts.	 Although	 unable	 to	
match	 the	benchmark	data	 in	a	majority	of	cases,	performance	of	
the	eBird	models	was	still	acceptable	for	many	species	and,	when	
other	 data	 are	 unavailable,	 use	of	 SDMs	derived	 from	 citizen	 sci‐
ence	data	is	likely	to	be	worthwhile.	Furthermore,	any	dataset	would	
have	an	inherent	disadvantage	when	predicting	to	an	independent	
dataset	 versus	 internal	 cross‐validation	 of	 the	 independent	 data.	
Therefore,	our	assessment	of	the	performance	of	eBird	models	can	
be	viewed	as	conservative.

While	larger	sample	sizes	have	been	shown	to	reduce	bias	and	
increase	 the	 precision	 and	 information	 content	 of	 citizen	 science	
datasets	(Kamp	et	al.,	2016;	Munson	et	al.,	2010),	our	results	indi‐
cate	substantial	 improvement	by	selective	data	 reduction.	Culling	
from	a	large	volume	of	citizen	science	data	allowed	us	to	more	than	
double	the	number	of	cases	that	met	the	benchmark	performance	
(86	vs.	42	out	of	173)	and	culled	datasets	almost	always	produced	
the	best	models	(156	of	173).	We	primarily	attribute	these	results	to	
culling	by	survey	effort	(i.e.	distance	travelled)	rather	than	observer	
expertise.

Because	travel	distance	relates	to	the	spatial	scale	of	the	un‐
derlying	bird	detections	and	 the	benchmark	data	were	based	on	
point	 surveys,	 we	 expected	 short	 distance	 subsets	 to	 provide	
the	best	scale	match.	However,	the	effects	of	distance	varied	by	
benchmark	dataset	and	species	traits	indicating	that	spatial‐scale	
matching	for	noisy	citizen	science	data	is	complex.	Habitat	homo‐
geneity,	for	example,	can	mitigate	locational	error	in	SDMs	(Naimi,	
Skidmore,	Groen,	&	Hamm,	2011).	 In	more	extensive	and	contig‐
uous	 landcover	 types—for	example	 forest	and	developed	classes	

in	 our	 study	 area—the	 higher	 resolution	 obtained	 with	 shorter	
survey	distances	may	not	 achieve	 the	 same	benefits	 as	 it	would	
for	patchier	habitats.	For	example,	the	improvements	for	shorter	
distance	surveys	in	the	SHARP	data	(Figure	5)	might	arise	because	
shorter	surveys	are	more	likely	to	be	precisely	located	in	or	close	
to	 saltmarsh	 habitat,	 which	 occurs	 only	 in	 small	 patches	 in	 our	
study	region.	Home	range	sizes—a	species	trait	we	could	not	test	
because	we	 lacked	 estimates	 for	many	 species—can	 also	 impact	
scale	matching	(Guisan	&	Thuiller,	2005).

While	 variation	 in	 observer	 expertise	was	 related	 to	 large	 dif‐
ferences	in	reporting	rate	of	individual	species,	this	factor	was	not	
related	 to	 model	 improvement	 in	 culled	 data	 subsets	 (Figure	 3;	
Table	2;	Figure	S4).	This	result	might	be	surprising	as	mitigating	false	
absences	is	central	to	site‐level	monitoring	or	estimating	population	
sizes.	 If,	however,	 false	absences	are	not	biased	by	 land	cover	and	
there	are	sufficient	true	positives,	occurrence	predictions	need	not	
be	compromised.	Our	expertise	measure	did	not	address	false	posi‐
tive	identifications	which	contribute	to	bird	identification	errors	re‐
gardless	of	skill	 level	 (Farmer	et	al.,	2012;	Kelling,	Johnston,	et	al.,	
2015).	Thus,	additional	components	of	observer	expertise	still	war‐
rant	investigation.

Our	 analysis	 used	 one	 performance	metric—AUC,	which	mea‐
sures	the	ability	of	a	probabilistic	model	output	to	discriminate	be‐
tween	 presences	 and	 absences	 in	 evaluation	 data.	We	 chose	 this	
measure	because	assessing	presence–absence	is	central	to	mapping	
species	distributions	and	AUC	is	a	standard	tool	widely	used	for	as‐
sessing	SDM	quality.	Other	metrics	could	further	inform	users	about	
desired	qualities	of	SDM	performance,	including	metrics	that	assess	
agreement	of	mapped	probabilities,	prevalence‐based	metrics	and	
calibration	metrics	(Fletcher	&	Fortin,	2018;	Rödder	&	Engler,	2011).	
Many	standard	metrics	require	thresholding	the	SDM's	probabilistic	
surface	into	a	binary	surface,	which	can	be	done	in	many	ways	and	
in	 a	 species‐specific	 approach.	 To	 avoid	 over‐complicating	 results	
and	 interpretation,	we	chose	AUC	as	a	single,	standard	metric	 for	
performance,	but	acknowledge	that	different	metrics	may	have	led	
to	different	conclusions.

Low‐structure	 citizen	 science	 datasets	 have	 the	 potential	 to	
fill	 an	 important	 role	 in	 conservation	 planning	 by	 providing	 local	
observations	at	broad	scales	enabling	improved	knowledge	of	spe‐
cies'	 distributions.	 Although	 these	 data	 can	 produce	 high‐quality	
predictions	to	systematically	collected	occurrence	data,	our	analy‐
ses	suggest	that	 low‐structure	citizen	science	are	not	sufficient	to	
replace	systematic	data	collections	 in	many	cases.	When	 logistical	
constraints	make	use	of	more	rigorous	methods	impossible,	or	when	
formal	cost‐benefit	analysis	suggests	that	the	benefits	of	increased	
rigour	 are	 outweighed	 by	 the	 lower	 costs	 of	 citizen	 science	 data,	
data	culling	provides	a	potential	mechanism	for	improving	SDM	pre‐
dictions	from	citizen	science	sources.	Although	our	results	show	that	
culling	can	substantially	improve	predictions,	the	lack	of	consistent	
patterns	across	datasets	or	species	in	how	best	to	cull	data	suggests	
that	additional	work	 is	needed	to	explore	different	options	and	to	
understand	how	species	traits	and	data	collection	methods	interact	
to	affect	model	performance.
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