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ARTICLE
Molecular Diagnostics

Dynamic metrics-based biomarkers to predict responders to
anti-PD-1 immunotherapy
Can Liu1, Hua He1,2, Xiaobing Li1,3, Maureen A. Su4 and Yanguang Cao1,5

BACKGROUND: Anti-PD-1 immunotherapies have shown clinical benefit in multiple cancers, but response was only observed in a
subset of patients. Predicting which patients will respond is an urgent clinical need, but current companion diagnosis based on PD-
L1 IHC staining shows limited predictability.
METHODS: A dynamic, metrics-based biomarker was developed to discriminate responders from non-responders for anti-PD-1
immunotherapy in B16F10 melanoma-bearing mice.
RESULTS: Similar to patients, there was considerable heterogeneity in response to anti-PD-1 immunotherapy in mice. Compared
with the control group, 45% of anti-PD-1 antibody-treated mice displayed improved survival (defined as responders) and the
remainder only gained little, if any, survival benefit from PD-1 blockade (non-responders). Interestingly, the dynamics of IFN-γ
secretion by peripheral lymphocytes was associated with faster secretion onset (shorter lag time), stronger exponential phase,
shorter time to half magnitude, and higher magnitude of secretion in responders at day 10 after tumour inoculation. To sufficiently
predict responders from non-responders, IFN-γ secretion descriptors as well as phenotypic markers were subjected to multivariate
analysis using orthogonal partial least-squares discriminant analysis (OPLS-DA).
CONCLUSIONS: By integrating phenotypic markers, IFN-γ secretion descriptors sufficiently predict response to anti-PD-1
immunotherapy. Such a dynamic, metrics-based biomarker holds high diagnostic potential for anti-PD-1 checkpoint
immunotherapy.

British Journal of Cancer (2019) 120:346–355; https://doi.org/10.1038/s41416-018-0363-8

INTRODUCTION
Immune checkpoint proteins (such as PD-1/PD-L1, CTLA-4/B7-1)
are critical molecules governing tumour immune-surveillance and
antitumour response. Tumour cells can escape immune eradica-
tion by upregulating inhibitory checkpoint molecules (such as PD-
L1), thereby inhibiting cytotoxic T cells, and dampening immune
response.1–3 Accordingly, tumour immunotherapies that block
inhibitory checkpoint pathways have shown prominent clinical
benefits with remarkable remission and durable response.4 Since
the approval of anti-CTLA-4 antibody (ipilimumab) and anti-PD-1
antibodies (pembrolizumab and nivolumab) in the treatment of
advanced melanoma, checkpoint inhibitors have shown efficacy in
non-small-cell lung cancer, renal cell carcinoma, and Hodgkin
lymphoma, and several others.5

Multiple clinical trials showed that prolonged response to
checkpoint immunotherapy was only observed in 20–40% of
patients, and majority of patients were either poor or none
responders.6–8 So far, PD-L1 IHC staining is the only “complemen-
tary diagnostic” approved by US FDA to pre-screen potential
responders. However, PD-L1 IHC staining is extremely variable
with high rates of false positive, which limits its diagnostic utility.9

Variable expression of PD-L1 was observed from different

anatomical sites in individual patients and even for the same
anatomical site there was high variability in multiple tumour
biopsies collected over time.8,9 A meta-analysis including 20 trials
showed that a significant fraction of PD-L1-negative patients still
responded to anti-PD-1 treatments.10 Non-responders are need-
lessly subjected to the high cost and excessive toxicity of
checkpoint inhibitors, and thereby sufficient diagnostic biomar-
kers are urgently needed to guide patient selection.
Considering that tumour PD-L1 expression is heterogeneous,

inducible, and evolving,3,8,9 it is almost impossible to accurately
predict the dynamic immune reactivity by “time-frozen snapshots”
of biomarkers, like PD-L1 IHC staining. So far, almost all putative
biomarkers, such as mutational landscape and intra-tumour
lymphoid infiltrates, are static and none of them has been
advanced for diagnostic use yet.11 Beyond traditional static
biomarkers, dynamic biomarkers, which integrate multifactorial
variables and temporal signatures, show high diagnostic potential.
A classic dynamic diagnostic that is well-accepted for type II
diabetes, for instance, is the oral glucose tolerance test (OGTT).
Compared with static fasting glucose, the temporal profiles of
plasma glucose in OGTT and the parameters extracted by
modelling glucose profiles robustly predict the degree of insulin
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resistance, and importantly this method is less compromised by
sampling time and schedule. Dynamic biomarkers have also been
broadly evaluated to monitor disease stages or drug responses in
Alzheimer’s disease, infection diseases, and cancers.12–15 Recent
studies also provided a strong rationale to develop dynamic and
network biomarkers to reflect evolving immune functions.11,16 For
instance, model-based dynamic biomarkers were developed to
predict cytotoxic T cell age17 and IL-2 production.18 Network
analysis of gene expression profiling from responders has also
been applied to optimise therapeutic combinations with CTLA-4
blockade.19

Here we develop a new type of dynamic biomarker for anti-PD-
1 immunotherapy, which is based on the interferon gamma (IFN-γ)
cytokine secretion kinetics of circulating lymphocytes in the
peripheral blood, to reflect evolving immune functions and further
predict individual responsiveness to checkpoint immunothera-
pies.20,21 Specifically, the secretory kinetics of IFN-γ, rather than
concentration measurements at a single time point, are evaluated
in peripheral CD4+ and CD8+ T cells from melanoma-bearing
mice during the treatment of anti-PD-1 immunotherapy. This
strategy shows potential to capture small, latent but intrinsically
evolving nature of T cells in response to immune perturbations.22

Secretion descriptors (such as magnitude, slope, lag time, and
time to half magnitude), after integrating phenotypic markers,
were further analysed using orthogonal partial least-squares
discriminant analysis (OPLS-DA) to adequately discriminate
responders from non-responders to anti-PD-1 immunotherapy.

MATERIALS AND METHODS
Mice
Wild-type C57BL/6 mice (7- to 9-week-old-female) were purchased
from Jackson Laboratories (Bar Harbor, ME). Animal care was
conducted in accordance with institutional guidelines at School of
Pharmacy, UNC-Chapel Hill. Experimental procedures were
approved by Institutional Animal Care and Use Committee of
UNC-Chapel Hill.

Antibodies
Control rat IgG (2A3) and anti-PD-1 (RMP1-14) used in vivo were
obtained from BioXcell. Dosing per injection was 250 μg of 2A3
and 250 μg of RMP1-14.
Staining antibody included FITC anti-CD45.2 (104), PE-Cy7 anti-

CD4 (RM4-5), PerCP-Cy5.5 anti-CD8a (53-6.7), BV421 anti-PD-1
(J43) from BD Biosciences; APC anti-CD25 (PC61.5), PE anti-Foxp3
(FJK-16s), and PE-Cy5 anti-CD11b (M1/70) from eBiosciences, and
APC-Cy7 anti-Gr-1 (RB6-8C5) from Thermo Scientific.

Tumour model and treatment regimens
B16F10 mouse melanoma cell line of C57BL/6 origin was
purchased from ATCC. As shown in Fig. 1a, mice underwent
B16F10 injection (5 × 104 cells, s.c.) in the flank at day 0. Visible
tumours were confirmed at day 3 in mice prior to randomisation
into different groups. Mice were treated at days 3, 6, and 9,
respectively, with indicated therapeutic antibody i.p.23 Peripheral
blood (110 μl) was collected at days 3 (prior to treatment) and 10
(one day after final treatment). Tumours were daily measured by a
calliper. For cell phenotyping within tumours in an independent
experiment, mice were sacrificed, and tumour samples were
harvested at day 17.

Cell phenotyping
Cell frequencies including CD4+ lymphocytes, CD8+ lympho-
cytes, CD25+Foxp3+ regulatory T cells (Treg), PD-1+ lymphocytes
in peripheral and tumour-infiltrating lymphocytes (TILs) were
determined by flow cytometry. Gr-1+CD11b+ myeloid-derived
suppressor cells (MDSC) were also determined peripherally. Whole
blood (10 μl) was directly processed for staining following the lysis

of erythrocytes (ACK lysis buffer; Gibco). In the case of tumour,24

fresh excised tumours were digested by Collagenase/Dispase and
DNase (Roche). After removal of erythrocytes, TILs were enriched
by a ficoll gradient (Histopaque-1077; Sigma). For surface staining,
cell suspensions were stained with indicated staining antibodies in
the presence of anti-CD16/32 (BD Biosciences). For intracellular
staining, cells were fixed, permeabilised using Foxp3/transcription
factor staining buffer set (eBiosciences) prior to staining. LIVE/
DEAD fixable yellow dead cell stain kit (Thermofisher scientific)
was used to exclude dead cells. Stained cells were acquired on an
LSRII cytometer (BD Biosciences).

IFN-γ secretion dynamics by peripheral lymphocytes
Peripheral blood mononuclear cells (PBMCs) were isolated from
100 μl peripheral blood using ficoll gradient. CD4+ and CD8+
lymphocytes were simultaneously sorted from PBMC by FACS.
Purified lymphocytes were stimulated by PMA and ionomycin
(eBioscience) in a 200 μl of RPMI 1640 in a 96-well plate. Cells were
then incubated and serial supernatant (100 μl) were collected at 1,
2, 3, 4, 6, 8, 12, 24, and 40 h following stimulation. An equal
volume of RPMI 1640 containing stimulus was complemented
after each sampling. Serial IFN-γ secretions from peripheral CD4+
and CD8+ lymphocytes were quantified by Mouse IFN-γ ELISA Kit
II (BD Biosciences).

Data processing
Dynamic IFN-γ secretion profiles would be described with a
Sigmoid Emaxmodel (Hill equation):

Y tð Þ ¼ Cmax � th
Tc50h þ th

; (1)

where Y(t) means the predicted concentration at time t, Cmax is the
maximum IFN-γ concentration, Tc50 represents the time to reach
50% Cmax, and h is a slope factor (Hill coefficient). In addition, tau is
the lag time of IFN-γ secretion: only if t > tau, Y(t) fits Eq. (1),
otherwise Y(t)= 0.

Secretion descriptors such as Cmax, Tc50, h, and tau were
estimated by ADAPT 5 with the STS method (http://bmsr.usc.edu/
Software/ADAPT/). The IFN-γ data were fitted simultaneously using
maximum likelihood estimation with following variance model:

Var tð Þ ¼ σ1 þ σ2 ´ Y tð Þð Þ2; (2)

where Var(t) is the variance of the concentration at a specific time
point, and σ1 and σ2 are the additive and proportional variance
parameters.

Multivariate analysis
Orthogonal partial least-squares discriminant analysis (OPLS-DA)
was applied to project multi-variables to distinguish responders
and non-responders. OPLS-DA is a supervised multivariate
regression method to return a dimension reduction to relate a
categorical response matrix Y (in our case, responder and non-
responder) to a predictor matrix X (e.g. Cmax, Tc50, h, tau, and
other variables). OPLS-DA is an extension to the PLS-DA regression
method featuring an integrated orthogonal signal correction filter.
As a result, systematic variation in X is separated into predictive
(correlated to Y) and orthogonal (uncorrelated to Y) information.
This leads to an equal predictive capacity compared to PLS-DA but
dramatically facilitates the model interpretation.25,26

The predictor matrix X includes IFN-γ secretion descriptors
derived from CD4+ (CD4Cmax, CD4Tc50, CD4h, CD4tau) and CD8
+ (CD8Cmax, CD8Tc50, CD8h, CD8tau) T cells or/and phenotypic
markers (CD4+, CD8+, PD1+CD4+, PD1+CD8+, Treg, CD8
+/Treg, MDSC) from peripheral lymphocytes phenotyping. Data
standardisation (mean-centred and unit-variance scaled) was
performed to all variables and subjected to model building. The
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unsupervised segregation was checked by principal components
analysis (PCA) prior to OPLS-DA.27

R2X and R2Y are equivalent to the fraction of x and y-variation
modelled in the component, respectively, which are related to the
model’s goodness of fit. To assess the model predictive
performance, seven-fold cross-validation was conducted and Q2Y
represented overall cross-validated R2Y for the component. Model
performance was further validated by randomly permuting the
samples 200 times and recalculating derived R2 and Q2.28 Models
were considered acceptable if R2 and Q2 significantly degraded
with sample permutation. The dataset used for external validation
was from an independent preliminary experiment performed prior
to the current study. The dataset contained 20 melanoma-bearing

mice with anti-PD-1 treatment, where MDSC% was not considered
as a phenotypic parameter. A similar cut-off scanning method as
Fig. 1b was used to stratify responders and non-responders
contingent on the tumour growth.
Variable influence on projections (VIP), a parameter that reveals

the importance of the X variables for both the Y matrix and model
components, is used for variable selection. Preliminary OPLS-DA
models were carried out first with all variables and VIP was
assessed for each variable. We then performed variable selection
prior to final analysis by removing variables with VIP < 0.4. The
number of predictive and orthogonal components were both set
to 1 according to Q2Y assessment. Statistical analysis and plotting
were done by R (version 3.3.2) with ropls package.
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Fig. 1 a Schematic diagram of immunotherapy regimen and sampling strategy on mice challenged with 5 × 104 B16F10 cells. b Scanning cut-
off for stratification of responders and non-responders to anti-PD-1 treatment. Histogram indicates individual survival time following anti-PD-1
treatment. Survival differences between non-responder and untreated groups were analysed by Log-rank test. P-value at each step was
showed as line chart. Red dot indicates the best cut-off. c Kaplan–Meier survival curves of mice according to different treatment (cIg vs
treatment). Responder and non-responder are sub-groups of PD-1 treatment. Log-rank test was used to compare survival curves. d Tumour
growth following B16F10 inoculation. Tumour sizes are individually represented over time
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RESULTS
Checkpoint blockade improved survival with considerable
heterogeneity
B16F10 induced melanoma is partial immunogenic to immu-
notherapies. A relatively low number of cells (5 × 104 cells) was
inoculated into C57BL/6 mice to induce melanoma. Tumour
inoculation and antibody treatment schema are summarised in
Fig. 1a. Lack of survival was defined as death or tumour size
reaching 500 mm3. Observation ended at day 30 when almost all
mice reached the endpoint. All control mice (cIg group) died
before day 19 following inoculation (Fig. 1c). While there was a
modest increase in survival, there was also considerable hetero-
geneity in response to anti-PD-1 antibody treatment.
We stratified mouse populations into responders and non-

responders based on their survival status. Mice from the PD-1-
treated group were pooled and sorted by survival duration
(Fig. 1b). To scan for the best separation cut-off, we initially put
mice with the shortest survival into the non-responder group and
others into the responder group. We then added mice into the
non-responder group one by one to calculate P-values between
the non-responder and the control group at each step by log-rank
test. The lowest P-value above 0.05 indicating no better survival
than the control group was then defined as the best cut-off, which
was marked as red dot (Fig. 1b). As indicated, 24 out of 44 mice
are non-responders with no longer than 21 days’ survival. Figure 1c
shows overall survival of responders and non-responders. After
stratification, the PD-1 treatment group was divided into two sub-
groups: non-responders showed similar survivals with the control
group while responders gained significant therapeutic benefit. In
the context of individual profiles (Fig. 1d), apparent tumour
progression could be observed in non-responders since day 12.
Before that, responders and non-responders exhibited indistin-
guishable tumour growth curves.

Phenotypic parameters are not satisfactory biomarkers
In the tumour microenvironment, modulation of T cell infiltration
by checkpoint blockade was evaluated in an independent

experiment (Fig. S1). Responders were associated with higher
CD8+ cells but lower CD4+ cells infiltration, lower Foxp3+ Treg
density and higher CD8+ to Treg ratio (Fig. S1, responder vs non-
responder), indicating strongly enhanced T effector function
within the tumours.
However, these phenotypic features are characterised at late

stage (day 17) and are therefore of a minimal predictive value. To
identify earlier prognostic biomarkers, circulating lymphocyte
phenotyping was carried out at day 3 and day 10 (Fig. 2).
Representative dot plots are shown in Supplementary Fig. S2.
Compared with non-responders, responders show a trend to
employ lower peripheral CD4+, CD8+, CD25+Foxp3+Treg and
Gr-1+CD11b+MDSC cell density, higher CD8+ to Treg ratio, and
similar PD-1+ fraction at day 10 (Fig. 2), which is consistent with
the trend within tumour tissue except CD8+ cells (Fig. S1).
However, responders were characterised as higher CD8+, Treg,
and MDSC cells, similar CD8+ to Treg ratio, but lower PD1+ subset
in CD4+ cells than non-responders at day 3 (Fig. 2b, c, e–g).
Univariate analysis was assessed on each phenotypic marker.

Apart from CD4+% at day 3, CD4+% and CD8+% at day 10, no
individual marker was able to differentiate responders and non-
responders with statistical significance (p < 0.05). Collectively,
though peripheral phenotyping may provide some insights into
immune response, they are not sufficient to be independently
used as predictive biomarkers.

Diagnostic potential of IFN-γ secretion by peripheral lymphocytes
Degrees of cytokine production by lymphocytes are closely
associated with disease stage and immune response to infection,
cancer, or other immune disorders.22,29,30 The cytokine secretion
kinetics (rate and duration) also largely reflects the functionality
and adaptability of the immune system. We therefore measured
IFN-γ secretion kinetics by peripheral T cells over time and
extracted multiple descriptors from the secretion profiles. As
shown in Fig. 3, magnitude (Cmax), time to reach 50% magnitude
(Tc50), slope (hill exponent, h), and lag time (tau) were extracted
from secretion curves to describe not only the amplitude of IFN-γ
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production but also when and how rapidly T cells respond to
stimulus.
More specifically, IFN-γ secretion dynamics was determined from

activated peripheral CD4+ and CD8+ lymphocytes at multiple
time points at day 3 and day 10. As shown in Fig. 4a–d, secretory
profiles were adequately captured using the sigmoid Emax model
with acceptable goodness of fittings (Fig. S3). As expected, CD8+
lymphocytes were more capable of IFN-γ secretion than CD4+
lymphocytes. In addition, IFN-γ secretion rose notably following
anti-PD-1 therapy at day 10 compared to those prior to treatment
at day 3.
IFN-γ secretion curves for responders and non-responders were

overlapping and interweaved. The secretion profiles were then
analysed to extract multiple descriptors. The secretion descriptors
revealed that on average responders were associated with faster
secretion onset (shorter lag time, CD4tau), stronger exponential
phase (CD4h), shorter time to half magnitude (CD4Tc50), and
higher magnitude (CD4Cmax) of IFN-γ secretion at day 10
(Fig. 4e–h). However, responders merely showed higher magni-
tude and slightly higher slope at Day 3. Descriptors derived from
CD8+ lymphocytes did not show significant difference (Fig. 4i–l).
In accordance with phenotypic markers, an individual IFN-γ
secretion descriptor cannot be used as a robust biomarker to
precisely point out responders from whole population.

Development of OPLS-DA models to predict responders
None of individual variable is sufficient enough for diagnosis, even
though some variables predicted significant difference between
responders and non-responders. Multivariate models were there-
fore developed by OPLS-DA. Unlike unsupervised PCA, supervised
OPLS-DA is able to maximise covariance between the predictor
matrix and the response matrix. We constructed OPLS-DA models
based on predictor matrix consisting of phenotypic markers only
(Fig. 5a, d), secretion descriptors only (Fig. 5b, e), and all variables
(Fig. 5c, f) from day 3 (Fig. 5a–c) and day 10 (Fig. 5d–f).
At day 3, OPLS-DA model generated from phenotypic markers

failed to spatially discriminate responders from non-responders
(Fig. 5a). Despite the modest separation obtained in the score plot,
the Q2 estimation of predictive performance is extremely low
(negative). Interestingly, secretion descriptors-based model
showed slightly separation between immune responses with
improved but still negative Q2 (Fig. 5b). With the integration of
secretion descriptors and phenotypic markers (Fig. 5c), OPLS-DA
model yielded acceptable separation.
At day 10, model derived from phenotypic markers did not

achieve good classification (Fig. 5d), but positive Q2 value
indicated a degree of predictability. When IFN-γ secretion
descriptors applied (Fig. 5e), the majority of the responders and

non-responders clustered in their respective regions with more
than 80% accuracy and insignificant overlap. Once phenotypic
markers were further included in the model, responders and non-
responders were well-clustered with high goodness of fit (R2) and
predictive ability (Q2) (Fig. 5f). It is demonstrated that multivariate
analysis could effectively uncover the underlying predictive
potential of the dynamic IFN-γ secretion descriptors by peripheral
lymphocytes.
To gain more insights on the immune response to checkpoint

inhibitors, the variable changes from day 3 to day 10 were defined
as new predictors. Strikingly, these derivative variables also
displayed high predictability to individual responses (Fig. 5g).
Once all variables at day 3 and day 10 were integrated, we
concluded an almost complete distinction with significantly
improved data interpretation (R2Y= 0.697) and model predict-
ability (Q2Y= 0.539) (Fig. 5h). VIP plots (Fig. S4B and E) and loading
plots (Fig. S4C and F) for both models revealed the significantly
contributing variables.
To exclude significant separation that was due to data over-

fitting, we randomly permuted the response values in the
developed models shown in Fig. 5g, h. This reshuffling resulted
in coherent decreases in both R2Y and Q2Y (p= 0.005; Fig. S4A and
D), indicating that the developed models were statistically sound.
Similar permutations were applied to validate the models shown
in Fig. 5c, f (data not shown). In addition to Q2Y value generated
by cross-validation and response permutation, the predictive
performance of all-variable model on day 10 (Fig. 5f) was further
validated by internal and external dataset. Samples on day 10
were randomly and equally separated into training and test
subsets. As shown in Fig 6a, b, the model based on the training
subset sufficiently predicted the test subset. The predictive
accuracy was similar as the model developed with full day-10
dataset (Fig. 6d). External validation of the model was performed
with the data from an independent experiment. As shown in
Fig. 6c, even in the absence of MDSC values in the external
dataset, the model maintained acceptable predictability.
We also explored a comparison of the univariate and multi-

variate classification on predictive performance. Based on the
developed models on day 10, all-variable model (Fig. 6d) yielded
the most accurate prediction (91% for non-responders, 85% for
responders). Though not as good as all-variable model, model
based on IFN-γ secretion descriptors (Fig. 6e) performed much
better than model based on phenotypic markers (Fig. 6f).
Predictions by each individual variable at day 10 and representa-
tive plots were shown in Fig. 6g–n. Only a few variables with high
VIP scores (CD4Cmax, CD4tau, CD8+, MDSC) showed slight
predictability while most single variables yielded extremely biased
prediction. Compared to multivariate classification (Fig. 6d, e), no
individual variable can yield comparable predictability.

DISCUSSION
A limitation to the utility of checkpoint immunotherapy is the lack
of predictive biomarkers to guide patient selection. Most studies
in the development of diagnostic biomarkers focused on tumour
microenvironment.8,9,31,32 Many mechanism-based biomarkers like
PD-L1 expression and intratumoural lymphoid infiltration have
been evaluated in tumour biopsy samples.31 Although certain
predictability has been obtained, the significant variance in IHC
antibody, staining conditions, and anatomical sites have drama-
tically compromised the reliability and practical applications.
Furthermore, both PD-L1 expression and antitumour immune
reactivity are dynamic and constantly evolving in respond to
immune perturbation.9 Our data observed a significant increase of
PD-L1 density induced by checkpoint blockades, even in non-
responders compared to control (data not shown). Increased PD-
L1 expression in serial tumour biopsy was also reported during the
atezolizumab therapy.32 Therefore, the dynamic nature of the
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immune system extremely challenges robust predictions by
univariate and static biomarkers in the microenvironment. Instead,
we addressed this problem by introducing a proof-of-concept
biomarker based on the dynamic metrics obtained from the
secretion kinetics of IFN-γ by peripheral T cells.
Tumour rejection and extended survival in B16F10 melanoma-

bearing mice were observed in a subset of mice undergoing PD-1

blockade (Fig. 1). At the same time, our data suggested large inter-
animal variations in tumour growth and intratumoural cell
populations (Fig. 1d and S1). Consequently, mice receiving
checkpoint blockade were pooled and divided into responder
and non-responders according to durations of survival (Fig. 1b).
To allow diagnostic prediction at early stage, predictive

variables from circulating lymphocytes in peripheral blood should
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be more attractive, which provide a non-invasive and real-time
strategy. Actually, peripheral lymphocytes have been evidenced to
provide valuable insights into patient-specific antitumour
response. Alice et al.’s study33 found that peripheral PD-1+
CD8+ T cells indicate tumour-specific CD8+ T cells and are
associated with immune responses induced by therapies blocking
the PD-1 pathway in lung cancer patients. Alena et al. also
identified neoantigen-specific lymphocytes in the peripheral

blood of melanoma patients.34 Clinically, increases of absolute
lymphocyte counts and percentages of CD4+ and CD8+ T cells
were associated with positive outcome of melanoma patients
treated with ipilimumab.35 Indeed, our data from peripheral
phenotypic markers also indicated that lymphocytes in responders
at day 10 may experience similar transitions as TILs except CD8+%
(Fig. 2 and S1). Although some significant differences were shown,
no phenotypic marker can be used to precisely predict individual
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response due to considerable overlap between responders and
non-responders (Fig. 2).
We further explored the predictability of peripheral IFN-γ

secretion characteristics. Previous studies highlighted the impor-
tance of IFN-γ as a critical regulator in immune response. IFN-γ can
directly induce tumour death by means of apoptosis and
facilitates CD8+T cell priming, NK cells, and macrophage
recruitment and activation.36 Adaptive up-regulation of PD-L1 by
tumour cells is also induced by enhanced IFN-γ exposure.3 On the
other hand, the deficiency of IFN-γ signalling impaired tumour
rejection in melanoma-bearing mice as well as non-responder
patients.37 Taken together, we assume that the profile of IFN-γ
secretion from lymphocytes may provide a window to evaluate
not only their cytotoxic effectiveness but also functional adapt-
ability of immune systems in response to checkpoint
immunotherapy.
Conventionally, IFN-γ secretion level has been applied to

directly correlate to clinical outcomes.38 We alternatively exam-
ined multiple descriptors of secretion kinetics to characterise
underlying features of IFN-γ secretion from lymphocytes following
stimulation (Figs. 3 and 4). Unlike static biomarkers, secretion
descriptors comprehensively evaluate secretory capacity (magni-
tude), speed (time to reach half magnitude, slope), and onset (lag
time). A similar strategy was applied to the dynamics of JNK
network and successfully predicted survival of neuroblastoma
patients.14 Dynamics of key factors in apoptotic signalling
pathways also showed a high predictive value on fractional cell
killing in response to chemotherapies or antibodies.39,40 Here we
assumed that secretion descriptors of IFN-γ are related to the
functionality and adaptability of host immune system. Interest-
ingly, responders showed a tendency to trigger CD4+ cell to
release IFN-γ earlier (lower CD4tau), faster (higher CD4h), and

greater (higher CD4Cmax) versus non-responders at day 10
(Fig. 4e–h). These features indicate the activated immune status
and strong cytotoxic effectiveness. Besides, the strong and prompt
IFN-γ release may help to prevent adaptive resistance of tumour
cells induced by IFN-γ secreted by T cells.
Even though IFN-γ secretion descriptors conceive valuable

diagnostic information, neither individual IFN-γ secretion descrip-
tor nor individual phenotypic marker alone can precisely predict
responders (Fig. 6g–n). As critical immune transitions are highly
sensitive to initial conditions,11 the difference obtained at pre- and
early-treatment stage, although small, was still of great predictive
value. Therefore, multiple dynamic variables were applied to
describe the IFN-γ secretion in a high dimensional manner,
multivariate analysis was then used to reduce the dimension-
ality25,26 into a single biomarker by unravelling the latent
predictive information. Initially we sought to quantitatively link
individual tumour sizes or survival duration with the dynamics of
biomarkers using the OPLS regression model. Despite moderate
correlation between the variable component (t1) and individual
responses (y1; Fig. S5A and B), samples were not well clustered
(Fig. S5D and E), indicating that an accurate prediction of tumour
sizes or survival duration was challenging by using the dynamics
of biomarkers. It is noteworthy that high and low responses were
generally separated by variable components, especially the
response denoted as the survival duration (Fig. S5E). Thus, we
simplified the OPLS regression model to predict categorical
responses (responders and non-responders), which conferred
improved model predictability and robustness (Fig. S5C and F).
Indeed, our further studies showed that the categorical OPLS-

DA model is capable of extracting combinations of markers and
shown to be the most informative method to discriminate
responders from non-responders (Fig. 5). Three critical
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Prediction performance derived from representative univariate analysis (g–n) were also shown to compare with multivariate analysis. g–n
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observations were obtained throughout our analysis. Firstly, the
regression models based on the dynamic descriptors of IFN-γ
secretion performed much better than those on static phenotypic
markers (Figs. 5d, e and 6e, f). As shown in Fig. S4E and F, secretion
descriptors dominantly accounted for the discrimination, like
CD4Cmax, CD8Tc50, and CD4tau. Of note, variable changes from
day 3 to day 10, another type of derived “dynamic variables”, also
showed high predictability (Fig. 5g). Secondly, the predictive
power of the developed model is time dependent. In general, the
models built on the data right after treatment (day 10) displayed
higher predictive power than that on pre-treatment data (day 3),
suggesting that the evolving immune system after checkpoint
blockades conveyed high predictive information (Fig. 5b and e, 5c
and f). Lastly, multivariate classification far exceeded univariate
classification. There was no prediction acceptable based on
univariate classification (Fig. 6). Similarly, the models jointly
employed IFN-γ secretion descriptors and phenotypic markers
achieved better separations (Figs. 5a–f and 6d–f). As expected, the
OPLS-DA model after integration of all variables at day 3 and day
10 yielded the most accurate prediction (91% for non-responders,
90% for responders; Fig. 5h). In considering of model complexity
and translational challenge, however, model based all variable at
day 10 is fully qualified for response discrimination (Figs. 5f and
6d).
Ideal biomarkers for companion diagnosis would be accurate,

real-time, and non-invasive. Static biomarkers, even upon serial
biopsies, would not meet these criteria. By contrast, our analysis
was focused on peripheral blood, which allows real-time
monitoring. Moreover, dynamic metrics-based biomarkers are
expected to be relatively robust and adaptive to reflect the
dynamic nature of evolving immune system. However, there are
still some limitations in our current study. Our dynamic biomarker
requires simultaneous qualification of multi-variables, which is
more labour-consuming than single static biomarker. In the
external validation, the compromised predictive performance
may largely result from the absence of MDSC% in phenotypic
markers. Besides, the diversity of cytokine release was also found
as important indicators for immune response.22 If the secretory
profiles of other T cell-related cytokines, like IL-2 and TNF-α could
be characterised simultaneously, our OPLS-DA model is expected
to be further optimised.
In conclusion, evaluation of IFN-γ secretion kinetics by

peripheral lymphocytes possesses high diagnostic predictabilities
of responders to anti-PD1 immunotherapy. Such dynamic metrics-
based biomarkers hold promise to improve current companion
diagnosis for checkpoint immunotherapies.
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