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Abstract

Groesser, T., Chun, E. and Rydberg, B. Relative Biological Effectiveness of HZE Fe Ions

for Induction of Micro-Nuclei at Low Doses. Radiat. Res.

Dose-response curves for induction of micro-nuclei (MN) was measured in

Chinese hamster V79 and xrs6 (Ku80-) cells and in human mammary epithelial MCF10A

cells in the dose range of 0.05 – 1 Gy. The Chinese Hamster cells were exposed to 1

GeV/u Fe ions, 600 MeV/u Fe ions, and 300 MeV/u Fe ions (LETs of 151, 176 and 235

keV/µm respectively) as well as with 320 kVp X-rays as reference. Second-order

polynomials were fitted to the induction curves and the initial slopes (the alpha values)

were used to calculate RBE. For the repair proficient V79 cells the RBE at these low

doses increased with LET. The values obtained were 3.1 (LET=151 keV/µm), 4.3 (LET =

176 keV/µm) and 5.7 (LET = 235 keV/µm), while the RBE was close to 1 for the repair

deficient xrs6 cells regardless of LET. For the MCF10A cells the RBE was determined

for 1 GeV/u Fe ions and found to be 5.4, slightly higher than for V79 cells. To test the

effect of shielding, the 1 GeV/u Fe ion beam was intercepted by various thickness of

high-density polyethylene plastic absorbers, which resulted in energy loss and

fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers

decreased in proportion to the decrease in dose both before and after the Fe ion Bragg

peak (excluding the area around the Fe-ion Bragg peak itself), indicating that RBE did

not change significantly due to shielding. At the Bragg peak the effectiveness for MN

formation per unit dose was decreased, indicating an “overkill” effect by low-energy very

high-LET Fe ions.
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INTRODUCTION

Estimation of risk from Highly charged (Z) high Energy (HZE) ions in the space

environment depends critically on measured values of the Relative Biological

Effectiveness (RBE) for cancer induction and other endpoints (1, 2). Of particular

concern is the deep penetration of such high LET particles to all organs of the body, a

situation not experienced in the earth environment. Published values of RBE as a function

of Linear Energy Transfer (LET) are highly variable, particularly for low doses, see (2)

for summary. Ionizing radiation is predominantly a clastogenic agent, and cytogenetic

endpoints are therefore highly relevant as they are implicated as being involved in

carcinogenesis. Since RBE for most endpoints has been found to depend on dose, of

particular interest for risk estimation is the RBE at the lowest doses possible, generally

the maximum RBE (RBEmax or the Q-value).

Micronuclei (MN) formation has been used previously to assess cytogenetic

damage induced by HZE ions. Brooks et al. (3, 4) studied MN induction in vivo in the

trachea and deep lung of the rat, and obtained RBE values of 0.9 to 3.3 for 1 GeV/u Fe

ions, with 60Co gamma rays as reference radiation. A similar RBE of 3.2 was measured

for chromosome aberrations in bone marrow cells. These are much lower RBE values

than previously observed for alpha particles with similar LET from radon daughters. This

suggests that track structure parameters other than LET are of importance. The authors

suggest that cells traversed by Fe ions are often killed or blocked in the cell cycle and not

contributing to the cells that divide and give rise to MN, thus giving a bias to cells that

were traversed only by secondary low LET δ-rays. To what extent this is the case will

depend on the cell system under study, in particular it will depend on the radiation

sensitivity for cell killing. For the study of chromosome aberrations from HZE ions (5,

6), most studies have been done with human lymphocytes, a radiation sensitive cell type

with regard to apoptosis. Probably, results with lymphocytes may not be representative

for more radioresistant cell types, particularly not for high LET radiations where a single

hit will produce a significant, potentially cell killing dose to the cell. In this paper we
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study RBE for Fe ion radiation in more radioresistant cell types in the dose range of 0.05

to 1 Gy.

MATERIALS AND METHODS

Cells and cell culture

Chinese hamster lung fibroblast V79 and DNA double-strand break repair-

deficient Chinese hamster ovary cell line xrs6 (deficient in Ku80) were cultured in α-

MEM medium (Gibco) with 10% FBS (Gibco), 2 mM L-glutamine (Gibco), 100 Units/ml

penicillin: streptomycin solution plus 0.25 µg/ml Amphotericin B as Fungizone (Gibco),

and 10 mM Hepes buffer (Sigma). The human mammary epithelial cells MCF10A (7)

were cultured in serum free MEBM medium (with bicarbonate and phenol red; Cambrex)

with 70 µg/ml BPE, 5ng/ml hEGF, 0.5 µg/ml Hydrocortisone, 5 µg/ml Insulin

(SingleQuotKit; Cambrex), and 100 ng/ml Cholera toxin (Sigma).

Cells were cultured in 25 cm2 or 75 cm2 tissue culture flasks (Gibco) and incubated at

37°C under 5% CO2 and 95% humidity. For passage, V79 and xrs6 cells were trypsinized

at 37°C for 3-5 min and trypsinization was stopped by adding medium. MCF10A cells

were washed twice with trypsin and trypsinization was stopped using soybean trypsin

inhibitor (1mg/ml; Sigma). After the cells detached from the flask they were washed once

in PBS before reseeded in appropriate numbers.

Irradiations

Cells in exponential growth were exposed to Fe ions at the NSRL radiation

facility at Brookhaven National Laboratory. Precise dosimetry was carried out as

described (8). For the experiments with shielding, high density polyethylene plastic of

various thickness was inserted in the beam. A CCD camera that viewed a fluorescent

screen behind the cell culture flasks (a regular part of the beam-line setup) was used to
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image the cell culture flasks during radiation. Using this system it was possible to fine-

tune the absorber thickness to position the Bragg peak exactly at the cell layer.

X-irradiation was performed with 320 kVp X-rays with 0.5 mm copper filtration.

A calibrated ion chamber with temperature and pressure correction (RadCal corporation)

was used for dosimetry. Each experiment was carried out with a minimum of triplicate

samples.

Micronucleus assay

The cytokinesis-block micronucleus assay (9) was used. Cytochalasin-B at a

concentration of 6 µg/ml was added directly after exposure, followed by 24 hr incubation

at 37°C (Chinese Hamster cells) or 48 hr incubation at 37°C (human MCF10A cells).

The cells were then trypsinized, centrifuged, and resuspended in 7 ml 0.075 M potassium

chloride for 10 min at 37°C. Fixation was performed by adding 3 ml of 100% methanol

to each centrifuge tube and incubating the cells for at least 1h at room temperature,

followed by fixation twice in acetic acid/methanol (1:3). Fixed cells were either cyto-

spun onto glass slides or dropped onto wet slides. The Chinese Hamster cells were

stained with Diff Quick (Dade Behring) following the manufacture’s protocol. Because

of a more prominent cytoplasm, the human MCF10A cells were better stained with

10µg/ml Acridine Orange (AO) in PBS. The slides were coded and scored blindly. For

each sample, micronuclei induction in 1000 binucleated cells was scored following the

scoring criteria described in detail in Fenech et al. (9). Examples of micro-nuclei are

given in Fig. 1.
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RESULTS

Doses and Fluences

The experiments were performed using Fe ion irradiation at doses of 0.05 Gy –1.0

Gy. To determine the number of hits per cell nucleus at these doses, nuclear areas of live

cells were measured by labeling with Hoechst 33342 and using image analysis software.

Table 1 shows the results including average number of hits per cell for the different doses

and Fe ion energies. As seen, for doses below 0.1 Gy cells typically experienced a single

traversal. This is the most relevant situation for risk estimation in space environments.

Induction of micronuclei in DSB repair competent cells

Micronuclei formation was measured in Chinese hamster V79 cells exposed to

three different energies of Fe ions and to X-rays, with emphasis given to low doses below

0.5 Gy.  Results are shown in Figure 2, left panels. At least triplicate determinations were

carried out, and the data were fitted with second order polynomials. The initial slope at

low doses were determined by the linear coefficient (alpha value) and RBE was

calculated by comparing the alpha values for X-rays and for the respective Fe ions. As

shown in Table 2 and Figure 3, the RBE increased with increasing LET from 3.1 to 5.7.

For 1 GeV/u Fe ions, micronuclei induction was also measured in the human

MCF10A mammary epithelial cell line (Figure 4). A value of RBE = 5.4 was obtained,

slightly above the value for V79 cells for the same Fe ion energy. The higher value

reflected mainly a lower MN induction value for X-rays rather than a higher value for Fe

ions, as seen in Table 2.
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Induction of micronuclei in DSB repair deficient cells

MN induction was also measured in the DSB repair deficient Chinese hamster

xrs6 cell line (Figure 1, right panels). These cells had a high MN induction rate for X-

rays, reflecting its inability to repair DSBs. However the induction rate for Fe-ions was

generally slightly lower than for X-rays, with the initial induction rate (alpha value)

similar to X-rays, resulting in RBE values close to unity (Table 1 and Figure 3).

Effect of shielding

To test the effect of shielding, various amounts (0–30 cm) of high-density (tissue-

equivalent) polyethylene absorbers were inserted between the 1 GeV/u Fe ion beam and

the targets in the form of V79 or xrs6 sample cell culture flasks. The same absorbers were

also used to obtain the dose as a function of absorber thickness (Bragg curve). For each

exposure the dose was set at 0.5 Gy at the entrance of the absorbers, and the dose to the

samples were determined by the Bragg curve. As seen in Figure 5, the MN induction

frequency as a function of absorber thickness was proportional to dose with the exception

of the Fe ion Bragg peak.

DISCUSSION

Micronuclei formation is believed to reflect the presence of acentric fragments or

to a lesser extent reflect other types of mitotic failure. In both cases, genomic material left

behind in anaphase may not be included in one of the daughter nuclei but form separate

micronuclei. Acentric fragments often occur in conjunction with formation of dicentric

chromosomes, and dicentrics are believed to occur with the same yield as translocations.

From this point of view, MN formation can be seen as a diagnistic tool for cytogenetic

damage in general, both those that often are regarded mainly as being lethal (dicentrics)

as well as those that are regarded mainly as easily propagated to the progeny

(translocations). Since acentric fragments way also be incorporated in one or the other
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daughter nuclei, both deletions and duplications may result, both typical of radiation-

induced cancer cells as recently indicated by CGH analysis (10). We therefore consider

MN formation to be a relevant endpoint to measure the clastogenic potential of different

radiations with relevance to carcinogenesis.

From a practical point of view, MN formation is a more sensitive assay than the

evaluation of chromosome aberrations in metaphase spreads. This is due to the ease and

quickness of scoring, allowing for a better statistical accuracy. In the present work, the

induction curves were each the result of scoring 24,000 binucleated cells (blindly) at a

speed of about 2000 cells per hour by an experienced scorer. This allowed us to get a

good estimation of RBE at doses below 0.3 Gy, when typically cells are traversed by

single tracks from the high LET radiations tested. This situation is much more relevant to

the situation in space travel than the use of higher doses when cells typically are traversed

by multiple tracks.

The main body of work previously assessing the RBE for cytogenetic damage

from HZE particle radiation has been carried out mainly using human lymphocytes as the

cell system of study (5, 6). It can be pointed out that such cells are radiosensitive,

particularly with respect to apoptosis. As a result, the “overkill” effect that is believed to

be responsible for the lowering of observable biological effect at very high LETs, will

come into effect at lower LETs than for more radioresistant cells. This probably explains

why the maximum cytogenetic damage in the lymphocytes was observed for 1 GeV/u Fe

ions (LET=150 keV/µm), with declining RBE for increasing LETs, while for the V79

cells in this study we observed a continuous increase of RBE at least up to LET=250

keV/µm (for 300 MeV/u Fe ions). It is clear that RBE/LET relationships will depend on

cell type for this reason, and a single universal relationship of a “quality-factor” as a

function of LET is an oversimplification.

Durante et al.  (5) studied extensively the effect of shielding on the induction of

chromosome aberrations in human lymphocytes. They point out that despite the fact that

the primary 1 GeV/u Fe ions fragment extensively into lighter ions as they pass through
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the shielding material, the dose-average LET does not change dramatically with shielding

thickness. Surprisingly, they observed nevertheless a dramatic reduction of aberration

frequency per unit dose as a function of shielding thickness for 1 GeV Fe ions that was

not observed with 500 MeV/u Fe ions. They suggest that factors related to track structure

other than LET must be taken into account. However, in the present work with V79 cells

we could not reproduce this result. In our hands with our cell system, we find the

effectiveness per unit dose for MN induction to be nearly independent of shielding

thickness, as would be expected if dose-average LET does not change to a large extent.

The reduction in MN induction we observe could be explained exclusively by the

reduction in dose with the exception of the Bragg peak, where the effectiveness was

lower. It is estimated that that 89% of the primary Fe ions fragment into lighter ions

during passage through the absorbers and that the remaining 11% will stop at the Bragg

peak with LET values of several thousand keV/µm. A similar reduction of the

effectiveness at the Bragg peak was recently reported by Wu et al. (11) for MN induction

in primary human lymphocytes.

For the DSB repair deficient xrs6 cells, we obtain RBE values close to 1. This

was mainly caused by an increase of MN formation for X-rays compared to repair

proficient cells, without a similar increase for the high LET Fe ions. This result is very

similar to what has been observed previously for  cell survival (12). Apparently, when the

cells cannot repair DSBs, the breaks are equally effective for high and low LET. On the

other hand, repair proficient cells can handle the breaks from low LET radiation much

better than breaks from high LET radiation, presumably due to differences in DSB

complexity.

Among previously measured RBE values of relevance for the space environment

(2), the values for MN induction obtained here (for repair proficient cells) fall on the

lower end of the spectrum. For induction of cancer in rodents, in particular for tumors in

the harderian gland as studied by Alpen et al. (13, 14), much higher RBE values up to

RBE = 40 have been recorded. However, the generality of such high RBE values for

human cancers is not known.
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Tables.

Traversals per Nucleus

Dose (Gy)Cell type Nuclear

area

Fe ion

energy

(GeV/u)

LET

(keV/µm) 0.05 0.075 0.1 0.2 0.3 0.5 1

1.0 151 0.31 0.46 0.62 1.2 1.9 3.1 6.2

0.6 176 0.27 0.39 0.53 1.0 1.6 2.7 5.3

V79 150 µm2

0.3 235 0.20 0.30 0.40 0.77 1.2 2.0 4.0

1.0 151 0.23 0.34 0.45 0.90 1.4 2.3 4.6

0.6 176 0.20 0.29 0.39 0.77 1.2 2.0 3.9

xrs6 110 µm2

0.3 235 0.15 0.22 0.29 0.58 0.9 1.5 3.0

MCF10A 179 µm2 1 0.37 0.56 0.74 1.5 2.2 3.7 7.4

Table 1. Average number of traversals/nucleus for the various cells and doses used

(calculated as = 6.24 * Dose(Gy) *area (µm2) / LET(keV/µm)). The nuclear areas were

measured using Hoechst 33342 staining on live cells.

LET V79 cells xrs6 cells MCF-10A cells

Irradiation (keV/µm) linear coeff RBE linear coeff RBE linear coeff RBE

X-rays N/A 7.26 1 43.3 1 4.19 1

1 GeV/n Fe 151 22.6 3.11 42.7 0.98 22.7 5.42

600 MeV/n Fe 176 31.5 4.34 33.4 0.77 - -

300 MeV/n Fe 235 41.4 5.71 39.4 0.91 - -

Table 2. The initial slope (alpha value) for number of MN per 100 cells per Gy (linear

coefficient of fitted polynomial) and RBEmax for the different cell lines and LETs.
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Figure legends.

Fig 1.  Microphotographs of binucleated (Cytochalasin-B treated) Chinese Hamster V79

cells stained with Diff Quick (top left without micronucleus, top right with micronucleus)

and human MCF10A cells stained with Acridine Orange (bottom left and right, both with

one micronucleus).

Fig. 2.  Micronuclei formation as a function of dose for V79 cells (left panels) and xrs6

cells (right panels). The Fe ion energy (1GeV/u, 600 MeV/u or 300 MeV/u) are as

indicated in each panel. Results for X-rays are shown by the dotted line in each graph.

Error bars are standard error of the mean from at least 3 independent cell culture flasks.

The lines are second order polynomials fitted to the data. The initial slopes of these

polynomials (α-values) are used to calculate RBE.

Fig. 3. RBE as a function of LET for micronuclei formation in V79 cells (normal DSB

repair) and xrs6 cells (deficient in NHEJ). Results are for Fe ion irradiation compared to

300 kVp X-rays.

Fig. 4.  Micronucleus formation in human MCF10A cells as a function of dose for 1

GeV/u Fe ions (solid line) and for X-rays (dotted line). Error bars are standard error of

the mean from 3 independent cell culture flasks. The lines are second order polynomials

fitted to the data. The initial slopes of these polynomials (α-values) are used to calculate

RBE.

Fig. 5.  Micronucleus formation as a function of shielding thickness. Various amounts of

high-density polyethylene plastic were inserted between the Fe ion beam (1 GeV/u) and
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the cell culture flask. The dose at the entrance of the shielding was 0.5 Gy and the dose at

the sample was dependent of the shielding thickness as indicated by the dotted line

(Bragg curve, right axis). The micronuclei induction (left axis) shows the average value

for three cell culture flasks with standard error of the mean.  The values for non-irradiated

controls have been subtracted. The unfragmented Fe ions stopped at the Bragg peak at

24.8 cm, while fragments penetrated further (to the right of the Bragg peak). Top graph:

V79 cells, bottom graph: xrs6 cells.
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Figure 1
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Figure 2.
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Figure 3.

RBE for MN induction
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Figure 4.
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Figure 5.

V79

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Distance (cm)

M
N

 p
e
r 

1
0

0
 c

e
ll

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
o

se
 (

G
y
)

xrs6

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Distance (cm)

M
N

 p
e
r 

1
0

0
 c

e
ll

s

0

0.1

0.2

0.3

0.4

0.5

0.6

D
o

se
 (

G
y
)




