
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Patterns and Stability in the Coefficients of the Colored Jones Polynomial /

Permalink
https://escholarship.org/uc/item/8kg867qv

Author
Walsh, Katherine Patricia

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8kg867qv
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Patterns and Stability in the Coefficients of the Colored Jones Polynomial

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Katherine Walsh

Committee in charge:

Professor Justin Roberts, Chair
Professor Benjamin Grinstein
Professor Kenneth A. Intriligator
Professor David Meyer
Professor Hans Wenzl

2014



Copyright

Katherine Walsh, 2014

All rights reserved.



The dissertation of Katherine Walsh is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2014

iii



DEDICATION

To my family and friends, who have been there for me through it all.

iv



EPIGRAPH

,_-=(!7(7/zs_.

.=' ' .`/,/!(=)Zm.

.._,,._.. ,-`- `,\ ` -` -`\\7//WW.

,v=~/.-,-\- -!|V-s.)iT-|s|\-.' `///mK%.

v!`i!-.e]-g`bT/i(/[=.Z/m)K(YNYi.. /-]i44M.

v`/,`|v]-DvLcfZ/eV/iDLN\D/ZK@%8W[Z.. `/d!Z8m

//,c\(2(X/NYNY8]ZZ/bZd\()/\7WY%WKKW) -'|(][%4.

,\\i\c(e)WX@WKKZKDKWMZ8(b5/ZK8]Z7%ffVM, -.Y!bNMi

/-iit5N)KWG%%8%%%%W8%ZWM(8YZvD)XN(@. [ \]!/GXW[

/ ))G8\NMN%W%%%%%%%%%%8KK@WZKYK*ZG5KMi,- vi[NZGM[

i\!(44Y8K%8%%%**~YZYZ@%%%%%4KWZ/PKN)ZDZ7 c=//WZK%!

,\v\YtMZW8W%%f`,`.t/bNZZK%%W%%ZXb*K(K5DZ -c\\/KM48

-|c5PbM4DDW%f v./c\[tMY8W%PMW%D@KW)Gbf -/(=ZZKM8[

2(N8YXWK85@K -'c|K4/KKK%@ V%@@WD8e~ .//ct)8ZK%8`

=)b%]Nd)@KM[ !'\cG!iWYK%%| !M@KZf -c\))ZDKW%`

YYKWZGNM4/Pb '-VscP4]b@W% 'Mf` -L\///KM(%W!

!KKW4ZK/W7)Z. '/cttbY)DKW% -` .',\v)K(5KW%%f

'W)KWKZZg)Z2/,!/L(-DYYb54% ,,`, -\-/v(((KK5WW%f

\M4NDDKZZ(e!/\7vNTtZd)8\Mi!\-,-/i-v((tKNGN%W%%

'M8M88(Zd))///((|D\tDY\\KK-`/-i(=)KtNNN@W%%%@%[

!8%@KW5KKN4///s(\Pd!ROBY8/=2(/4ZdzKD%K%%%M8@%%

'%%%W%dGNtPK(c\/2\[Z(ttNYZ2NZW8W8K%%%%YKM%M%%.

*%%W%GW5@/%!e]_tZdY()v)ZXMZW%W%%%*5Y]K%ZK%8[

'*%%%%8%8WK\)[/ZmZ/Zi]!/M%%%%@f\ \Y/NNMK%%!

'VM%%%%W%WN5Z/Gt5/b)((cV@f` - |cZbMKW%%|

'V*M%%%WZ/ZG\t5((+)L\'-,,/ -)X(NWW%%

`~`MZ/DZGNZG5(((\, ,t\\Z)KW%@

'M8K%8GN8\5(5///]i!v\K)85W%%f

YWWKKKKWZ8G54X/GGMeK@WM8%@

!M8%8%48WG@KWYbW%WWW%%%@

VM%WKWK%8K%%8WWWW%%%@`

~*%%%%%%W%%%%%%%@~

~*MM%%%%%%@f`

'''''

-Jay Bedsole

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Patterns in the Coefficients of the Colored Jones Polynomial 2
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Knots and Knot Invariants . . . . . . . . . . . . . . . . . . . . . 9
2.1 Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Knot Invariants . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Kauffman Bracket . . . . . . . . . . . . . . . . 11
2.2.2 The Jones Polynomial . . . . . . . . . . . . . . . . 12

Chapter 3 The Colored Jones Polynomial . . . . . . . . . . . . . . . . . . . 15
3.1 Some historical highlights of the Jones and Colored Jones

polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Definitions of the Colored Jones Polynomial . . . . . . . . . 16

3.2.1 The Colored Jones Polynomial using R-matrices . . 16
3.2.2 The Colored Jones Polynomial as a linear combina-

tion of Jones Polynomials of Cablings . . . . . . . . 17
3.2.3 Temperley-Lieb Algebra and the Colored Jones Poly-

nomial . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.4 Connection between these definitions . . . . . . . . 21

3.3 Notes on Normalization . . . . . . . . . . . . . . . . . . . . 23
3.4 Hyperbolic Volume Conjecture . . . . . . . . . . . . . . . . 24

vi



Chapter 4 A Formula for the Colored Jones Polynomial of (1,2p− 1,r− 1)
Pretzel Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1 What is a pretzel knot? . . . . . . . . . . . . . . . . . . . . 26
4.2 The Formula . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 The notation . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.3 Simplification . . . . . . . . . . . . . . . . . . . . . 32

4.3 Which knots can we study? . . . . . . . . . . . . . . . . . . 34

Chapter 5 Stability in the Coefficients of the Colored Jones Polynomial . . . 36
5.1 Stability in the Head and Tail . . . . . . . . . . . . . . . . . 36
5.2 Higher Order Stability . . . . . . . . . . . . . . . . . . . . 40
5.3 Knots which reduce to a triangle graph . . . . . . . . . . . . 43

5.3.1 Finding an expression for the neck . . . . . . . . . . 46
5.3.2 Knots with mi > 2 . . . . . . . . . . . . . . . . . . 48
5.3.3 When at least one of the mi is 1 . . . . . . . . . . . 52

5.4 The Tail and Tailneck of the Figure 8 Knot . . . . . . . . . . 54
5.4.1 The Tail of the Figure 8 Knot . . . . . . . . . . . . . 54
5.4.2 The Tailneck of the Figure 8 Knot . . . . . . . . . . 55

Chapter 6 The Middle Coefficients of the Colored Jones Polynomial . . . . . 59
6.1 Initial Observations for the Figure 8 Knot and Other Knots . 59

6.1.1 The Idealized Polynomial . . . . . . . . . . . . . . 61
6.2 Further Analysis on the Coefficients of the Figure 8 Knot . . 66
6.3 What do the conjectures tell us? . . . . . . . . . . . . . . . 69
6.4 A non-symmetric polynomial of amphichiral knots . . . . . 70
6.5 Extending this polynomial to non-amphichiral knots . . . . . 74

Chapter 7 Conclusion and Future Works . . . . . . . . . . . . . . . . . . . . 76

Appendix A Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . 78
A.1 Chebyshev polynomials of the 1st Kind . . . . . . . . . . . 78
A.2 Chebyshev polynomials of the 2nd Kind . . . . . . . . . . . 79

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



LIST OF FIGURES

Figure 1.1: Coefficients of the 95th Colored Jones Polynomial for the Figure
Eight Knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2: The Knot 61 and its associated graphs. . . . . . . . . . . . . . . . . 5
Figure 1.3: A trefoil knot with its checkerboard graph. . . . . . . . . . . . . . 7

Figure 2.1: There are three different knot types in this figure. The first two knots
are unknots, the third and fourth are trefoils and the fifth knot is a
figure 8 knot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.2: This is a Morsefication of a oriented diagram of the figure 8 knot.
On each level, we associate a copy of V or V ∗ depending on whether
the orientation is up or down. Between levels, we get cups, caps and
R-matrices to move from one level to the next. . . . . . . . . . . . 13

Figure 3.1: Using the linear combination definiton of the colored Jones polyno-
mials, we see the the 3 colored Jones polynomial of 41 is the Jones
polynomial of the 2 cabling of 41 minus 1. . . . . . . . . . . . . . 17

Figure 3.2: To define the Temperley-Lieb algebra, we start with an oriented disk
(D2) with 2n marked points in its boundary. . . . . . . . . . . . . . 18

Figure 3.3: We draw arcs starting and ending at all of the marked points and
cycles inside the surface. We have to mark at each crossing which
strand is the over crossing and which is the under crossing. . . . . . 18

Figure 3.4: This diagram is the same in the Temperley-Lieb algebra as the one
in Figure 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.5: These are the generators of the nth Temperley-Lieb algebras. A
strand with a number above it represents that many parallel strands. 19

Figure 3.6: This figure illustrates what happens when we take the product of
two elements in the Temperley-Lieb algebra . . . . . . . . . . . . . 20

Figure 3.7: This is how we will diagramatically represent the Jones-Wenzl idem-
potent inside the Temperley-Lieb algebra. . . . . . . . . . . . . . . 20

Figure 3.8: Here we show the three properties the Jones-Wenzl idempotents sat-
isfy. This allows us to recursively find each one. . . . . . . . . . . 21

Figure 3.9: This figure shows the expansion of the second Jones-Wenzl idem-
potent in the Temperley-Lieb algebra. . . . . . . . . . . . . . . . . 21

Figure 3.10: This figure shows the expansion of the third Jones-Wenzl idempo-
tent in the Temperley-Lieb algebra. . . . . . . . . . . . . . . . . . 21

Figure 3.11: The second term in the recursive formula for the Jones Wenzl idem-
potent pictured inside an annulus . . . . . . . . . . . . . . . . . . . 23

Figure 3.12: We get the above identity only if the Jones-Wenzl idempotent is on
a knot. This helps us see why the definitions are equivalent. . . . . 23

viii



Figure 4.1: A (c1,c2, . . . ,cn) Pretzel Knot. A box with a ci represents ci half
twists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4.2: We can move the leftmost strand in the left-most image over the
middle strand to view the(1,2p− 1,r− 1) pretzel knot as a double
twist knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 5.1: The Knot 61 and its associated graphs. . . . . . . . . . . . . . . . . 37
Figure 5.2: A trefoil knot with its checkerboard graph. . . . . . . . . . . . . . 43
Figure 5.3: Steps to finding the colored Jones polynomial of the trefoil and sim-

ilar knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 5.4: This diagram has x parallel copies of a one circle, y of another and z

of a third. They are joined by the x+y,y+ z, and x+ z idempotents.
Its evaluation is Γ(x,y,z) . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.5: This diagram shows the expansion of the fusion with ji = N−1 into
the idempotent form. . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5.6: We can get rid of the N idempotents. Then after moving the 1
strands, we can see that ΓN,(N−1,N,N) = Γ(N +1,N−1,N−1)). . . 46

Figure 6.1: The coefficients of the 95 colored Jones polynomial of the figure 8
knot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.2: These are the coefficients of the the colored Jones polynomial of
three different knots for relatively high N. . . . . . . . . . . . . . . 60

Figure 6.3: The Maximum Coefficient of the N Colored Jones Polynomial of
the Figure 8 Knot as a function of N. . . . . . . . . . . . . . . . . 61

Figure 6.4: The plot of 2π log(m(N))
N as a function of N. . . . . . . . . . . . . . . 62

Figure 6.5: The coefficients of the 95 colored semi-(un)normalized Jones poly-
nomial of the figure 8 knot. . . . . . . . . . . . . . . . . . . . . . . 66

Figure 6.6: We zoom in on the middle coefficients of the semi-(un)normalized
colored Jones polynomial of the figure 8 knot. . . . . . . . . . . . 67

Figure 6.7: The coefficients of the 95 colored un-normalized Jones polynomial
of the figure 8 knot. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 6.8: The middle 1000 coefficients of the 95 colored un-normalized Jones
polynomial of the figure 8 knot. . . . . . . . . . . . . . . . . . . . 68

Figure 6.9: The middle 400 coefficients of the 50 colored un-normalized Jones
polynomial of the figure 8 knot. . . . . . . . . . . . . . . . . . . . 69

Figure 6.10: These are plots of ln(|ci|) and
ci

|ci|
ln(|ci|) where the ci are the coef-

ficients of K′N,41
(x) for N = 50 and N = 95 . . . . . . . . . . . . . 72

Figure 6.11: This is a plot of f (n) =
√

log(m(n)) where mi is the maximum
coefficient K′i,41

(x). . . . . . . . . . . . . . . . . . . . . . . . . . . 73

ix



Figure 6.12: This is a plot of the log of the magnitude of the coefficients of the
colored Jones polynomial of 41 and 63. The coefficients of 41 corre-
spond to N = 30 and are plotted using small dots. The coefficients
of 63 correspond to N = 8 and are plotted using larger open circles. 74

Figure 6.13: This is a plot of f (n) =
√

log(m(n)) where mi is the maximum
coefficient K′i,63

(x). . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



LIST OF TABLES

Table 2.1: Jones Polynomials of Different Knots . . . . . . . . . . . . . . . . . 14

Table 4.1: Knots with up to 9 crossing that can be expressed as a (1,2p,r−1)-
pretzel knot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 6.1: Knots Hyperbolic Volumes compared to their maximum coefficient
growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



ACKNOWLEDGEMENTS

I would like to thank Professor Justin Roberts for his support as my advisor. I

have learned a great deal from him in the past six years.

I would not have enjoyed my time here at UCSD nearly as much if it weren’t for

my friends here. I am grateful for all the support you have all given me.

I would also like to thank the San Diego ARCS foundation for their financial

support through a fellowship I received during part of my time in graduate school.

xii



VITA

2008 B. A. in Mathematics summa cum laude, George Washington
University

2008-20014 Graduate Teaching Assistant, University of California, San Diego

2014 Ph. D. in Mathematics, University of California, San Diego

PUBLICATIONS

P. Cull, K. Walsh and J. Wherry “Stability and Instability in One Dimensional Popula-
tion Models,” Scientiae Mathematicae Japanicae Online e-2008. 29–48.

A. Hicks, H. Parks, and K. Walsh, “Learning through Outreach: Activities of the UCSD
Association for Women in Mathematics Student Chapter,” Education in Action: Expe-
riential Learning in Higher Education. Conference Proceedings, 2012.

xiii



ABSTRACT OF THE DISSERTATION

Patterns and Stability in the Coefficients of the Colored Jones Polynomial

by

Katherine Walsh

Doctor of Philosophy in Mathematics

University of California, San Diego, 2014

Professor Justin Roberts, Chair

The colored Jones polynomial assigns to each knot a sequence of Laurent poly-

nomials. This dissertation will focus on the patterns in the coefficients of these poly-

nomials. We will discuss a new formula for calculating the colored Jones polynomial

of certain pretzel knots and the stabilization and higher-order stabilization of the coef-
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Chapter 1

Introduction

This dissertation focuses mainly on the patterns in the coefficients of the colored

Jones polynomial. The colored Jones polynomial is a knot invariant that assigns to each

knot a sequence of Laurent polynomials indexed by N ≥ 2, the number of colors. For

a knot K, denote the Nth term in this sequence JN,K(q), where N corresponds with the

N dimensional representation, i.e. we use the convention that when N = 2, we get the

Jones polynomial.

We usually think of the N colored Jones polynomial as either the Jones poly-

nomial of a linear combination of i-cablings of the knot for 0 ≤ i ≤ N − 1 or as the

evaluation in the Temperley-Lieb algebra of the knot diagram decorated with the N−1st

Jones-Wenzl idempotent. In what follows, the colored Jones polynomial is normalized

so that its value on the unknot is 1.

One of the main open questions in the subject area is how to relate the colored

Jones polynomial to the geometry of the knot. One such relation is the following “hy-

perbolic volume conjecture."

Conjecture 1.0.1 ([Mur10], Kashaev-Murakami-Murakami). For any hyperbolic knot

K,

2π lim
N→∞

log |JK,N(e2πi/N)|
N

= vol(S3\K)

where JK,N(e2πi/N) is the normalized Colored Jones Polynomial of a knot K evaluated

at an Nth root of unity and vol(S3\K) is the volume of the unique complete hyperbolic

Riemannian metric on the knot complement.

1
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The hyperbolic volume conjecture has been proved for torus knots, the figure-

eight knot, Whitehead doubles of torus knots, positive iterated torus knots, Borromean

rings, (twisted) Whitehead links, Borromean double of the figure-eight knot, Whitehead

chains, and fully augmented links (see [Mur10]). It is still open for other knots and

links.

In [DL07], Dasbach and Lin related the first and last two coefficients of the

original Jones polynomial to the the volume of the knot in the following way:

Theorem 1.0.2 (Dasbach, Lin). Volume-ish Theorem: For an alternating, prime, non-

torus knot K let

JK,2(q) = anqn + · · ·+amqm

be the Jones polynomial of K. Then

2v8(max(|am−1|, |an+1|)−1)≤ Vol(S3−K)≤ 10v3(|an+1|+ |am−1|−1).

Here, v3 ≈ 1.0149416 is the volume of an ideal regular hyperbolic tetrahedron and

v8 ≈ 3.66386 is the volume of an ideal regular hyperbolic octahedron.

They also proved that the first two and last two coefficients of the Jones Polyno-

mial were also the first and last two coefficients of the N colored Jones polynomial for

all N and noticed that the first and last N coefficents of the N colored Jones polynomial

seemed to be the same, up to sign, as the first N coefficients of the k colored Jones poly-

nomial for all k > N. These types of theorems encourage us to look more deeply in to

what the coefficients of the colored Jones polynomial can tell us about the knot.

1.1 Patterns in the Coefficients of the Colored Jones Poly-

nomial

When studying the coefficients of the colored Jones polynomial, I first looked at

patterns in the entire set of coefficients. To be able to visualize these patterns, I used a

formula initially proved by Habiro and reproved by Masbaum in [Mas03] to calculate

the colored Jones polynomial of the figure 8 knot and twist knots and then plotted the

coefficients of these polynomials. The plot of the coefficients for the 95th colored Jones
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polynomial of the figure 8 knot is below. (The plot has the degree of the term on the

x−axis and the coefficient on the y−axis. Degrees were shifted by multiplying by qM

for some M so that all the degrees were positive.)

Figure 1.1: Coefficients of the 95th Colored Jones Polynomial for the Figure Eight Knot

This led me to the following conjectures about the basic shape of the plot of the

coefficients of the Nth colored Jones polynomial.

1. In the middle, the coefficients of JK,N are approximately periodic with period N.

2. There is a sine wave like oscillation with an increasing amplitude on the first and

last quarter of the coefficients.

3. We can see that the oscillation persists throughout the entire polynomial. The

amplitude starts small, grow steadily and then levels off in the middle and then

goes back down in a similar manner.

I also looked at the growth rate of the maximum coefficients of each colored

Jones polynomial of a knot. The maximum coefficients of the polynomials seemed to

grow exponentially at a rate related to the hyperbolic volume of the knot.

Much of my research has been centered on trying to gain insight on where these

patterns come from. This first led me to use the techniques from [Mas03] to find a

formula for the colored Jones polynomial of pretzel knots of the form (1,r−1,2p−1)

in order to have a larger class of knots for which I could easily calculate the colored

Jones polynomial for large values of N.
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Theorem 1.1.1. A pretzel knot of the form Kp,r = P(1,2p− 1,r− 1) has the colored

Jones polynomial

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]
µ
∗
n

n

∑
k=0

δ (2k;n,n)r 〈2k〉
〈n,n,2k〉

([k]!)2

[2k]!
{2n+1}!
{n}!{1}

=
N−1

∑
n=0

(−1)n
[

N +n
N−n−1

]
c′n,p
{2n+1}!{n}!
{1}(a−a−1)2n

n

∑
k=0

(−1)k(r+1) [2k+1]
[n+ k+1]![n− k]!

µ
r/2
2k .

Here

c′n,p =
1

(a−a−1)n

n

∑
k=0

(−1)k
µ

p
2k[2k+1]

[n]!
[n+ k+1]![n− k]!

,

where µi = (−1)iAi2+2i and,

{n}= an−a−n, [n] =
an−a−n

a−a−1[
n
k

]
:=

[n]!
[k]![n− k]!

.

Corollary 1.1.2. When r is even this reduces to

Jn(Kp,r,a2) =
N−1

∑
n=0

(−1)n
[

N +n
N−n−1

]
c′n,p
{2n+1}!
{1} c′n,r/2.

Corollary 1.1.3. When r is odd this reduces to

Jn(Kp,r,a2) =
N−1

∑
n=0

(−1)n
µ

4p
n c′n,p

[
N +n

N−1−n

] {2n+1}!{n}!
(a−a−1)2n{1}

n

∑
k=0

µ2k
r
2

[2k+1]
[n+ k+1]![n− k]!

The formula for the case where r is even was independently proven by Garo-

ufalidis and Koutschan in [GK12]. Using this formula, we are able to more quickly

calculate the colored Jones polynomial for many knots with up to 9 crossings. This

formula is discussed in Chapter 4.

I also was led to look at the current work studying the first and last coefficients

of the colored Jones polynomial, known as the head and tail of the polynomial and look
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at the higher order stability of the coefficients. An overview of this research and how I

have related it to my main questions is presented in Chapter 5.

Given a sequence of Laurent polynomials, we say the head of this polynomial

exists if the first N coefficients (of the highest order terms) of the Nth polynomial in the

sequence are the same as the first N coefficients of the kth polynomial for all k ≥ N.

The tail of the sequence of polynomials, if it exists, is the stabilized sequences of the

coefficients of the lowest terms.

(a) A diagram of 61

(b) 61 with a
checkerboard
coloring

(c) The A-
checkerboard
graph

(d) The B-
checkerboard
graph

Figure 1.2: The Knot 61 and its associated graphs.

In [DL06, AD11, Arm13], Dasbach and Armond proved that the head and tail

of the colored Jones exist for alternating and adequate knots and depend on the reduced

checkerboard graphs of the knot diagrams.

In [GL11], Garoufalidis and Le independently proved that the head and tail of

the colored Jones polynomial exist for alternating knots while proving (for alternating

knots) a stronger version of this stability.

I hope to be able to use this stabilization to extend the work done on the first and

last coefficients to the patterns in the middle that I originally observed. In particular, if I

can find what the stabilized sequences are, I could extract which parts of these sequences

contributed to the maximum coefficient, or to other coefficients I wanted to study.
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For example, for the figure 8 knot, we know the that first coefficients stabilize to

the pentagonal number sequence. By this, I mean that for the figure 8 knot,

Φ0 =
∞

∏
n=1

(1−qn) =
∞

∑
k=−∞

(−1)kq
k
2 (3k−1).

In the table below, I have listed out the first 16 coefficients of the N-colored Jones

polynomial for the figure 8 knot for N = 3,4 and 5. We see that the first N+1 coefficients

of the N-colored Jones polynomial are the same as the first N +1 coefficients of Φ0.

Φ0 1 -1 -1 0 0 1 0 1 0 0 0 0 -1 0 0 -1 · · ·
N = 3 1 -1 -1 0 2 0 -2 0 3 0 -3 0 3 0 -3 0 · · ·
N = 4 1 -1 -1 0 0 3 -1 -1 -1 -1 5 -1 -2 -2 -1 6 · · ·
N = 5 1 -1 -1 0 0 1 2 0 -2 -1 -1 1 3 1 -2 -3 · · ·

Now, since we know all of Φ0, we can subtract it from the shifted colored Jones

polynomials. Now are coefficients are:

Φ0 1 -1 -1 0 0 1 0 1 0 0 0 0 -1 0 0 -1 · · ·
N = 3 0 0 0 0 2 -1 -2 -1 3 0 -3 0 4 0 -3 1 · · ·
N = 4 0 0 0 0 0 2 -1 -2 -1 -1 5 -1 -3 -2 -1 7 · · ·
N = 5 0 0 0 0 0 0 2 -1 -2 -1 -1 1 4 1 -2 -2 · · ·

Shifting these sequences back so that they start with a non-zero term, we can see

that they again stabilize. The sequence they stabilize to is Φ1.

Φ1 2 -1 -2 -1 -1 1 · · ·
N = 3 2 -1 -2 -1 3 0 -3 0 4 0 -3 1 · · ·
N = 4 2 -1 -2 -1 -1 5 -1 -3 -2 -1 7 · · ·
N = 5 2 -1 -2 -1 -1 1 4 1 -2 -2 · · ·

I call the sequence Φ1 the “neck of the tail" or the “tailneck" of the colored Jones

polynomial of the figure 8 knot.

I calculated the tailneck of all three strand pretzel knots with negative twists in

each region. For knots in this family, the B-checkerboard graph is a three cycle. These
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m1

m2
m3

Figure 1.3: A trefoil knot with its checkerboard graph.

knots can be drawn like the trefoil in Figure 5.2, except we will have more crossings

below the pictured crossings (and thus more parallel edges before we reduce the graph).

The mi represent the number of crossings in each section. As it is drawn, each mi = 1.

(If m1 = 2 and the others are 1, we get the figure 8 knot.)

Theorem 1.1.4. The tailneck of knots with reduce to the three cycle is:

• ∏
∞
n=1(1−qn), i.e. the pentagonal numbers sequence, if all mi = 1 (The only knot

satisfying this is the trefoil).

• ∏
∞
n=1(1− qn)+ ∏

∞
n=1(1−qn)

1−q , i.e. the pentagonal numbers plus the partial sum of

the pentagonal numbers, if two mi = 1 and one is 2 or more.

• ∏
∞
n=1(1− qn) + 2∏

∞
n=1(1−qn)

1−q , i.e. the pentagonal numbers plus the 2 times the

partial sum of the pentagonal numbers, if one mi = 1 and two are 2 or more.

• ∏
∞
n=1(1− qn) + 3∏

∞
n=1(1−qn)

1−q , i.e. the pentagonal numbers plus the 3 times the

partial sum of the pentagonal numbers, if all mi ≥ 2.

The proof of this theorem in is chapter 5.

1.2 Organization

This dissertation is organized as follows: In Chapter 2, we define knots and intro-

duce the Jones polynomial. In Chapter 3 we introduce the the colored Jones polynomial

and discuss its various definitions, some history and the hyperbolic volume conjecture.
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In Chapter 4, we introduce pretzel knots and prove Theorem 1.1.1 and its corollaries. .

In Chapter 5, we discuss the head and tail stability and prove Theorem 1.1.4. Finally,

in Chapter 6, we discuss in more detail the patterns in the middle coefficients of the

colored Jones polynomial.

There are two appendices. The first gives an overview of both kinds of Cheby-

chev polynomials we use throughout this dissertation. The second discusses a way to

use matrices to compute the Jones and Colored Jones polynomials.

There are a few different standard normalizations used in works related to the

colored Jones polynomial, I have listed those I am using in section 3.3.



Chapter 2

Knots and Knot Invariants

2.1 Knots

Most everyone has a picture that comes to mind when you say knot. We begin

with the mathematical definition of a knot so that our pictures are all basically the same.

Definition 2.1.1. A knot is an embedding f : S1→ S
3.

A knot is usually represented through projection into R2 such that at most two

segments come together at any one point and, whenever two segments meet, we desig-

nate which arc is the over crossing and which is the under crossing.

If we have an embedding of multiple copies of S1 into S
3 we call this a link

instead of a knot. The image of each S
1, i.e. each connected segment, is called a

component of the link. Thus a link with a single component is a knot. When we talk

about a knot, we are referring to either the map itself or the image under this map. We

call a specific projection of the knot into R2 the knot diagram.

Intuitively, we want to say that two knots are equivalent if, when made out of

string, we can move the strings around to make one knot look like the other. The strands

cannot pass through each other (it’s string!) and you cannot cut the string and then retie

it. Mathematically, we can define this as follows:

Definition 2.1.2 ([Lic97]). Two knots are equivalent if there is an orientation preserving

piecewise linear homeomorphism h : S3→ S3 that maps one knot to the other.

9
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We will refer to the map as the ambient isotopy. This definition allows us to rule

out pathological examples. Below are 5 knots diagrams. The first two are both diagrams

of the unknot. The second two are both diagams of the trefoil knot 31 and the last is a

diagram of the figure 8 knot 41.

Figure 2.1: There are three different knot types in this figure. The first two knots are
unknots, the third and fourth are trefoils and the fifth knot is a figure 8 knot.

2.2 Knot Invariants

We can use knot invariants to help us tell whether or not two knot diagrams

represent equivalent knots.

Definition 2.2.1. A knot or link invariant is a property of a knot or link that does not

change under ambient isotopy.

If two knots have different values for any knot invariant, then it is impossible to

transform one into the other, thus they are not equivalent. To prove a given property of a

knot is a knot invariant, we need to show that it is invariant under any ambient isotopy.

Luckily, we have a theorem from Reidemeister that tells us that any ambient isotopy

can be achieved via a finite sequence of three basic moves and planar isotopy. Thus, to

check a property is an knot invariant, we just need to check it is invariant under these

three moves and planar isotopy.

Theorem 2.2.2 (Reidemeister 1928). Any two equivalent knots are related by planar

isotopy and a sequence of the three Reidemeister moves.

The three Reidemeister moves are pictured below. In each diagram, the knot

diagrams are equivalent outside of the dotted circle and the change only occurs in the

region pictured.
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Reidemeister 1: ←→

Reidemeister 2: ←→

Reidemeister 3: ←→

2.2.1 Kauffman Bracket

The first semi-invariant we will discuss is only invariant under planar isotopy and

the second and third Reidemeister moves. We say a property invariant under these moves

is an invariant of framed knots and links. This semi-invariant is called the Kauffman

bracket is defined via a local skein relation, see [Kau87]

Definition 2.2.3. The Kauffman bracket of a diagram of a knot or link D, denoted 〈D〉,
is an invariant of framed knots which assigns to each link a Laurent polynomial in A. Ist

is characterized by the skein relation below.

〈 〉
= 1

〈
D t

〉
= (−A2−A−2)

〈
D
〉

〈 〉
= A

〈 〉
+A−1

〈 〉

To find the Kauffman bracket polynomial of a link, we use the third relation to

smooth out crossings and the second to remove disjoint unknots. Once all crossing and

disjoint unknots are gone, we will only be left with a single unknot whose Kauffman

bracket polynomial is 1.
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2.2.2 The Jones Polynomial

We can adapt the Kauffman bracket to be a knot invariant by accounting for the

change in polynomial due to the first Reidemeister move. The writhe of the diagram is

only affected by the first move so by adding a factor depending on the writhe we can

make the Kauffman bracket a knot invariant.

Definition 2.2.4. The writhe of a diagram in the number of positive crossings in the

diagram minus the number of negative crossings, i.e

w(D) = # −#

Once we adjust the Kauffman bracket using the writhe factor, we get a new poly-

nomial which is an invariant. This polynomial, under a change of variable, if equivalent

the the Jones polynomial and gives us one of the many ways of defining the Jones poly-

nomial.

Definition 2.2.5. The Jones Polynomial of a knot is a knot invariant of a knot K with

diagram D defined by

V (K) =

(
(−A)3w(D) 〈D〉

)
q1/2=A−2

.

This definition extends to consistent definition of the Jones polynomial of ori-

ented links. The orientation of the links is important since changing the orientation of

a single component changes the Jones polynomial. There are many other ways of cal-

culating the Jones polynomial of a knot, including another skein relation of oriented

diagrams originally given by Jones, see [Jon85]. Below, we discuss a more formal way

of defining the Jones polynomial which will be the definition we can easily extend to

get the colored Jones polynomial.

We can view every knot as the closure of a braid. From the braid diagram, we

can get a representation of the nth braid group inside the nth Temperly Lieb algebra.
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1

(V ⊗ V ∗)

(V ⊗ V ∗)⊗ V ⊗ V ∗

V ⊗ V ⊗ V ∗ ⊗ V ∗

V ⊗ V ∗ ⊗ V ⊗ V ∗

V ∗ ⊗ V ⊗ V ⊗ V ∗

V ⊗ (V ∗ ⊗ V )⊗ V ∗

(V ⊗ V ∗)

1

∩
∩ ⊗ Id

Id⊗R⊗ Id

Id⊗R⊗ Id

R−1 ⊗ Id⊗ Id

R−1 ⊗ Id⊗ Id

Id⊗ ∪⊗ Id

∪

This produces a map from 1 to itself and thus is just multiplication by an
element in Q(q).

2

.

Figure 2.2: This is a Morsefication of a oriented diagram of the figure 8 knot. On each
level, we associate a copy of V or V ∗ depending on whether the orientation is up or
down. Between levels, we get cups, caps and R-matrices to move from one level to the
next.

The trace of this representation gives the Jones Polynomial in the way it was originally

defined by Vaughan Jones. Consider the Lie algebra sl2 of traceless two-by-two complex

matrices. It has universal enveloping algebra U(sl2), which has quantum deformation

Uq(sl2). Uq(sl2) is an algebra over the ring Q(q) of rational functions in the variable q.

Given a knot diagram, we can ‘color’ the diagram with a 2 dimensional representation

of Uq(sl2)V . Each strand oriented upward gets labeled with a V and those oriented

downwards get labeled with a V ∗, the dual representation. There are maps between

these representations for cups, caps and the R−matrix map for crossings. Since the

overall maps if from the identity to itself, it is just a multiplication by an element in

Q(q). This element is the Jones polynomial of the knot.

Table 2.1 shows the Jones Polynomials of various knots. When we take the

mirror image of a knot, the Jones polynomial changes by interchanging q and q−1. We

see that the Jones polynomial of the trefoil is not symmetric in q and q−1 and thus the
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trefoil is not amphichiral, i.e. equivalent to its mirror image. The Jones polynomial

of the figure 8 knot is symmetric in q and q−1. This is a necessary but not sufficient

condition for the figure 8 knot to be amphichiral. In fact, it is amphichiral. A diagram of

figure 8 knot can be transformed into a diagram of its mirror image though a sequence

of Reidemeister moves. Also notice that the mirror image of 51 and 10125 have the

same Jones polynomials. Thus the Jones polynomial does not distinguish all knots. An

important open question is whether or not there exists nontrivial knots with the same

Jones polynomial as the unknot.

Table 2.1: Jones Polynomials of Different Knots

Knot Knot Diagram Jones Polynomial

Trefoil (31) q+q3−q4

Mirror Image(31) q−1 +q−3−q−4

Figure Eight (41) q−2−q−1 +1−q+q2

Mirror Image (41) q2−q1 +1−q−1 +q−2

51 q2 +q4−q5 +q6−q7

51 q−2 +q−4−q−5 +q−6−q−7

10132 q−2 +q−4−q−5 +q−6−q−7



Chapter 3

The Colored Jones Polynomial

3.1 Some historical highlights of the Jones and Colored

Jones polynomial

In January 1985, Vaughan Jones published a paper, [Jon85], introducing the

Jones Polynomial (although he did not call it that). While analyzing finite dimensional

von Neumann algebras with specific properties, it was pointed out to him that these

properties were similar to those of the n-string braid group, Bn. This leads to a repre-

sentation, rt of Bn. Jones noticed that the number

(−t +1)/
√

(t)n−1tr(rt(b))

for some b in Bn depends only on the isotopy class of the closed braid and thus when

viewed as a function of t this gives us an invariant. He calls this the trace invariant, but

everyone else began calling it the Jones polynomial. (He used the variable t in the same

way we used the variable q or above.)

In this paper, Jones states some of the basic properties of the Jones polyno-

mial, including that it is a Laurent polynomial in t when the link has an odd number of

components and
√

t times a Laurent polynomial when the link has an even number of

components. He also shows how it changes over mirror image and connect sum and the

relationship between the Jones polynomial of knots where a single crossing is replaced

by the other crossing and its smoothing. This skein relation gives a recursive way to find

15
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the Jones polynomial of the any knot.

Based on this work of Jones, Freyd and Yetter, Hoste, Lickorish and Millett and

Ocneanu (HOMFLY) developed a two variable polynomial invariant of knots and links

which generalizes both the Jones polynomial and the Alexander polynomial. In fact,

although working independently, these groups all submitted very similar papers to the

Bulletin of the American Mathematical Society in a period of a few days. This led to

a single paper[FYH+85] on the idea being published with each as coauthors. This is

unrelated to the colored Jones polynomial, but included here to give some historical

perspective of the large amount of activity in this area at the time.

In 1986, in [Kau87], Kauffman showed a state sum model for calculating the

Jones polynomial using a different skein relation, where each crossing can be smoothed

in two different ways. In this paper, he defines the bracket polynomial, now called

the Kauffman bracket which, under a simple scaling involving the writhe to make it

invariant under the first Reidemeister move, is equivalent to the Jones polynomial. This

gives us a state sum model for the Jones polynomial which leads to the proof of many

more interesting properties of this polynomial. This is the definition we used to define

the Jones polynomial is Chapter 1.

And now, this brings us to the introduction of the colored Jones polynomial. In

1988, in [Res88a] and [Res88b], (an unpublished pre-print in two parts which was only

circulated by mail to interested parties but is now available on Reshetikhin’s website),

Reshetikhin shows that for any simple Lie algebra g, we can associate to the quantum

deformation of the universal enveloping algebra of g (i.e. Uq(g)) a countable set of

invariants of a link. When we take g = sl2, we get the family of colored Jones polyno-

mials of the link. He does this by constructing representations on the braid group which

correspond to the R-matrices studied throughout the paper.

3.2 Definitions of the Colored Jones Polynomial

3.2.1 The Colored Jones Polynomial using R-matrices

Just as with the Jones polynomial defined above, we can get a representation of

the nth braid group inside the nth Temperly Lieb algebra (defined in more detail below).
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If we ‘color’ the diagram with an N-dimensional representation of Uq(sl2)V , instead

of a 2 dimensonal representation and do all the same steps we get the N colored Jones

polynomial.

3.2.2 The Colored Jones Polynomial as a linear combination of Jones

Polynomials of Cablings

We can think of the N-dimensional colored Jones polynomials as a linear com-

bination of the original Jones polynomial on cablings of the knots, in the same way that

the N-dimensional representation can be expressed as a linear combination of V⊗k
2 ,k ≤

N−1.

We can express this linear combination recursively as:

g1 = 1

g2 = z

g3 = zgi−1−gi−2.

For example, g3 = z2− 1 so the 3-dimensional colored Jones polynomial is the Jones

Polynomial of the two cabled figure 8 minus 1.

J3,41 = V ( )−1

Figure 3.1: Using the linear combination definiton of the colored Jones polynomials,
we see the the 3 colored Jones polynomial of 41 is the Jones polynomial of the 2 cabling
of 41 minus 1.

This linear combination gives us the Chebyshev polynomials of the 2nd kind.

They are normalized differently in some contexts. See A.2 for more details.
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3.2.3 Temperley-Lieb Algebra and the Colored Jones Polynomial

We can also give a definition of the colored Jones polynomial using the Temperley-

Lieb algebra, T Ln and the Jones-Wenzl idempotent f (n) ∈ T Ln.

Given an oriented disk D2 with 2n marked points on it boundary, see Figure 3.2,

we can draw arcs connecting the marked points. We can also can cycles inside of the

diagram, see Figure 3.3.

Figure 3.2: To define the Temperley-Lieb algebra, we start with an oriented disk (D2)
with 2n marked points in its boundary.

Figure 3.3: We draw arcs starting and ending at all of the marked points and cycles
inside the surface. We have to mark at each crossing which strand is the over crossing
and which is the under crossing.

We will say that two diagrams are the same is there is a homeomorphism of D2

that is isotopic to the identity and keeps the boundary points fixed that maps ones to the

other. These types of diagrams are the starting point for defining our linear skein. We

also include rules reminiscent of the Kauffman bracket relations. We take the following

definition:

Definition 3.2.1. The linear skein S(D2,2n) of (D2,2n) is a vector space of formal linear

sums over C of link diagrams in (D2,2n) quotiented by the relations below.
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Figure 3.4: This diagram is the same in the Temperley-Lieb algebra as the one in Figure
3.3

D t = (−A2−A−2)D

= A +A−1

The second relation allows us to undo all crossings and reduce our diagram to

a series of crossing-less matches between the marked points and disjoint cycles inside

the diagram. The first relation allows to to remove the disjoint cycles. This means that

every diagram is equivalent to a linear combination of crossing-less matches between

the marked points. The constants in this linear combination are Laurent polynomials in

A, but we generally take A to be a fixed complex number.

The product of diagrams is by juxtaposition. An example is given in Figure 3.6.

n
1 =

n -i -1

i -1ei =

Figure 3.5: These are the generators of the nth Temperley-Lieb algebras. A strand with
a number above it represents that many parallel strands.

This product extends to a well-defined bilinear map that turns S(D2,2n) into an

algebra. We call this algebra the nth Temperley-Lieb algebra T Ln.

The algebra is generated by the elements 1,e1,e2, . . . ,en−1 shown in Figure 3.5.

In particular, the ith generator is has a backtrack between the ith and i+1st strand. Here,

a strand with an n above it represents n parallel strands in the diagram.
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∗

Figure 3.6: This figure illustrates what happens when we take the product of two ele-
ments in the Temperley-Lieb algebra

There is a special element in this algebra called the Jones-Wenzl idempotent.

The Jones-Wenzl idempotent in the T Ln is denoted f (n). Diagrammatically, we usually

draw it as a box labeled with n, as in Figure 3.7.

f (n) = n

Figure 3.7: This is how we will diagramatically represent the Jones-Wenzl idempotent
inside the Temperley-Lieb algebra.

The Jones-Wenzl idempotent f (n) ∈ T Ln is the unique element such that:

(i) f (n)ei = 0 = ei f (n) for 1≤ i≤ n−1 (kills backtracks)

(ii)( f (n)−1) belongs to algebra generated by {e1 . . .en−1}
(iii) f (n) f (n) = f (n)

(iv)∆n =
(−1)n(A2(n+1)−A−2(n+1))

(A2−A−2)
where

∆n = n ∈ S(R2)

In [Wen87] Wenzl proved the recurrence relationship satisfied by the idempo-

tents the we present in Figure 3.8. To give an idea of what these idempotents look like,

we use the recursive definition to find f (2) and f (n). These are in Figures 3.9 and 3.10.

Using this Jones-Wenzl idempotent, we can define the colored Jones polynomial
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f (0) = the empty diagram

f (1) = 1

n+1 = n

1
- ∆n−1

∆n
n n

n-1

1 1

Figure 3.8: Here we show the three properties the Jones-Wenzl idempotents satisfy.
This allows us to recursively find each one.

2 = 1

1 - ∆0
∆1

1 1
0

1 1

= 1

1 - A2−A−2

A4−A−4
1 1

Figure 3.9: This figure shows the expansion of the second Jones-Wenzl idempotent in
the Temperley-Lieb algebra.

3 = 3 - ∆0
∆1

- ∆1
∆2

+ ∆0
∆2

+ ∆0
∆2

- ∆2
0

∆2∆1

Figure 3.10: This figure shows the expansion of the third Jones-Wenzl idempotent in
the Temperley-Lieb algebra.

of a knot in another way. In particular, the n+1 colored Jones polynomial of a knot K is

the Jones polynomial of K decorated with the f (n), the Jones-Wenzl idempotent in T Ln.

3.2.4 Connection between these definitions

The definition of colored Jones polynomial in terms of Jones polynomials of

cablings of the knot and the definition in terms of the Jones-Wenzl idempotents are two

ways of looking at the same construction. To see this, note that when we expand the

idempotent to its linear combination of diagrams, the diagrams we get are exactly those
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that we get from the recursive definition.

Recall that we can express this linear combination of cablings recursively as:

g1 = 1

g2 = z

gi +1 = zgi−gi−1

and that the Jones-Wenzl idempotent is defined by .

f (0) = the empty diagram

f (1) = 1

n+1 = n

1
- ∆n−1

∆n
n n

n-1

1 1

First, note that both recursions start with the same terms. Then in the recursive

definition of the Jones-Wenzl idempotent, it is easy to see that the first term has an

additional strand cabling the previous term, corresponding with the zgi−1 term in the

cabling definition. Now, for the second part, since we are applying the projector to a

knot, we can picture have the diagram inside an annulus. See Figure 3.11.

We can move the strands around to picture this in a different view. We cut along

the dotted line to get a different perspective. See Figure 3.12. Now, using the rules of

the projectors, we can see that for a knot decorated with a Jones Wenzl idempotent, we

use one f (n) to cancel the other and then remove the loop by multiplying by
∆n

∆n−1
. We

are left with−1 times a strand with the projector in n−2 strands, giving the−gi−2 term

in the cabling recursion. This, as described below, only works if we have the idempotent

on a connected component.

Because of the extra properties, we know about the Jones-Wenzl idempotents

(kills backtracks, absorb lower idempotents, etc.), it is sometimes convenient to use

them in our calculations, even though they are the same as the cabling formula.
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n nn-1

1 1

Figure 3.11: The second term in the recursive formula for the Jones Wenzl idempotent
pictured inside an annulus

∆n−1
∆n

n n
n-1

1 1

= ∆n−1
∆n

n
n-1

1

n
n-1

1

= ∆n−1
∆n

n-1n-1

1

= ∆n−1
∆n

∆n
∆n−1

n-1n-1

=
n-1n-1

Figure 3.12: We get the above identity only if the Jones-Wenzl idempotent is on a knot.
This helps us see why the definitions are equivalent.

3.3 Notes on Normalization

In an attempt to keep things clear, I will use the following conventions through

this dissertation.

We will (almost exclusively) consider the normalized colored Jones polynomial

J′N,K(q), which is normalized such that J′N,unknot(q) = 1. We write JN,K(q) for the un-

normalized colored Jones polynomial. The un-normalized colored Jones polynomial

satisfies JN,unknot(q) = ∆N−1 = (−1)N−1[N].

J′N,K(q) =
JN,K(q)
∆N−1
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We use the convention that N = 2 gives the standard Jones polynomial.

The variable q = a2. This q = 1/t in the standard Jones polynomial. The follow-

ing definitions are standard and are used through this dissertation:

a = A2

{n}= an−a−n

[n] =
an−a−n

a−a−1

{n}! = {n}{n−1} . . .{1}

[n]! = [n][n−1] . . . [1][
n
k

]
:=

[n]!
[k]![n− k]!

.

3.4 Hyperbolic Volume Conjecture

One of the major open questions relating to the colored Jones polynomial is the

Hyperbolic Volume Conjecture.

Conjecture 3.4.1 ([Thu], Kashaev-Murakami-Murakami). For any hyperbolic knot K,

2π ∗ lim
n→∞

log |Jn,K(e2πi/n)|
n

= vol(S3\K)

where Jn,K(e2πi/n) is the normalized Colored Jones Polynomial of a knot K evaluated

at a nth root of unity and vol(S3\K) is the volume of the unique complete hyperbolic

Riemannian metric on the knot complement.

This conjecture gives a connection between the quantum invariants of a knot K

and its classical geometry. The conjecture is known to be true for torus knots (where

both sides are 0) and for the figure eight knot. It has also been proven for certain other

knots and classes of knots, see [vdV].

In [DL06], Dasbach and Lin prove the the first and last three coefficients for the

colored Jones polynomial stabilize for alternating knots and give a formula for these

coefficients.

From this, they up with a volume-ish theorem for the Jones Polynomial, [DL07].



25

Theorem 3.4.2 ([DL06], Volume-ish Theorem). For an alternating prime, non-torus

knot K let

VK(t) = antn + · · ·+amtm

be the Jones polynomial of K. Then

2v0max(|am−1|, |an+1|−1)≤ Vol(S3−K)≤ 10v0(|an+1|+ |am−1|−1).

Here, v0 ≈ 1.0149416 is the volume of an ideal regular hyperbolic tetrahedron.

This is done using bounds on the volume based on twist number and showing

that the coefficients of the Jones polynomial can be expressed in terms of the twist

number. In doing this work, Dasbach and Lin also noticed that the other coefficients

of the colored Jones polynomial stabilize as n increases. We focus more of this in the

Stability in the Coefficients of the Colored Jones Polynomial chapter.



Chapter 4

A Formula for the Colored Jones

Polynomial of (1,2p−1,r−1) Pretzel

Knots

In this chapter, we give a formula for the colored Jones polynomial of (1,2p−
1,r− 1) pretzel knots. In the case where r is even, Garoufalidis and Koutschan give a

formula in [GK12]. The work presented here was done independently and works for all

r. We begin with the definition of a pretzel knot.

4.1 What is a pretzel knot?

c1 c2 c3 cn

Figure 4.1: A (c1,c2, . . . ,cn) Pretzel Knot. A box with a ci represents ci half twists.
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A pretzel knot or link is usually described by P(c1,c2, . . .cn) where each ci is an

integer corresponding the number of half twists within that section of the knot. These

twisted parts are drawn vertically. Positive ci correspond with positive half twists, while

negative ci correspond with negative half twists. See Figure 4.1. In order for this to form

a knot (have only one component), we need either exactly one ci to be even, or both n

and each ci to be odd. If n is even and each ci is odd, we get a two component link. If at

least one ci is even, then the number of components is equal to the number of even ci.

We consider pretzel knots of the form P(1,2p−1,r−1).

4.2 The Formula

Theorem 4.2.1. A pretzel knot of the form Kp,r = P(1,2p− 1,r− 1) has the colored

Jones polynomial

J′N,Kp,r
(a2) =

N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]
µ
∗
n

n

∑
k=0

δ (2k;n,n)r 〈2k〉
〈n,n,2k〉

([k]!)2

[2k]!
{2n+1}!
{n}!{1}

Corollary 4.2.2. When r is even this reduces to

JN,Kp,r(a
2) =

N−1

∑
n=0

(−1)n
[

N +n
N−n−1

]
c′n,p
{2n+1}!
{1} c′n,r/2.

Corollary 4.2.3. When r is odd this reduces to

JN,Kp,r(a
2) =

N−1

∑
n=0

(−1)n
µ

4p
n c′n,p

[
N +n

N−1−n

] {2n+1}!{n}!
(a−a−1)2n{1}

n

∑
k=0

µ2k
r
2

[2k+1]
[n+ k+1]![n− k]!

Corollary 4.2.4. One reduced way to write the formula the works for all r is

N−1

∑
n=0

(−1)n
[

N +n
N−n−1

]
c′n,p
{2n+1}!{n}!
{1}(a−a−1)2n

n

∑
k=0

(−1)k(r+1) [2k+1]
[n+ k+1]![n− k]!

µ
r/2
2k .
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4.2.1 The notation

We think of the N colored Jones Polynomial of a knot K as the Kauffman bracket

of K cabled by eN−1, where eN−1 is the Jones-Wenzl idempotent. We normalize so

that the unknot has colored Jones Polynomial 1. For now, we turn our attention to the

Kauffman bracket.

The Kauffman bracket gives an isomorphism from the skein module K(M) of an

oriented 3-manifold M to Z[A±]. It is normalized so that the bracket of the empty link

is 1. The element ω ∈ K(M) as defined in [Mas03] has the property that the bracket of

a link with ω linked around an even number of strands has the same Kauffman bracket

as the same link with a positive full twist in place of the ω .

〈 ...

...

ω

〉
=

〈
...

...
...

...

...

...

... } full
positive 
twist

〉

We can extend this to ω p which has the property of inducing p full right hand

twists. (If p is negative, we get left handed twists.) In [Mas03], the formula for ω

is proved. We will simply restate it here and then define the necessary pieces of the

formula.

ω
p =

∞

∑
n=0

c′n,pR′n.

Here, R′n is a basis for the skein module of the solid torus which is isomorphic to Z[A±][z]
Specifically, R′n = (n!)−1

∏
n−1
i=0 (z−λ2i) where λi =−ai+1−a−i−1. The coefficients are

c′n,p =
1

(a−a−1)n

n

∑
k=0

(−1)k
µ

p
2k[2k+1]

[n]!
[n+ k+1]![n− k]!

,

where µi = (−1)iAi2+2i and as usual

a = A2,{n}= an−a−n, [n] =
an−a−n

a−a−1

Also, as can be expected

{n}! = {n}{n−1} . . .{1}

[n]! = [n][n−1] . . . [1]
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[
n
k

]
:=

[n]!
[k]![n− k]!

.

The other terms that appear in the formula come from the evaluation of standard

pieces done in [Mas03]. There are three basic pieces. In each of the following the first

equalities define the term while the last gives the equivalent term in [AD11] that we’ll

need in Chapter 5

The first is δ , the half twist coefficient.

a

b
c = δ (c;a,b)

a

b
c

We know that

δ (c;a,b) = (−1)
a+b−c

2 A−a−b+c+−a2−b2+c2
2

(
= γ(a,b,c)−1)

and

δ (c;a,b)2 =
µc

µaµb
.

The term

〈n〉=
〈

n

〉
= (−1)n[n+1] (= ∆n) .

Assume (a,b,c) is an admissible triple, then let i, j,k be the internal colors, in particular

i = (b+ c−a)/2 j = (a+ c−b)/2 k = (a+b− c)/2.

The term 〈a,b,c〉 is the trihedron coefficient. In particular,

〈a,b,c〉=
〈 a

b
c

〉
= (−1)i+ j+k [i+ j+ k+1]![i]![ j]![k]!

[i+ j]![ j+ k]![i+ k]!
(= θ(a,b,c)) .

Using these we can get the fusion equation,

a

b
= ∑

c

〈c〉
〈a,b,c〉

a ac

b b

By combining the fusion and twist coefficients, we can also get

n

...

r
=

n

∑
k=0

δ (2k;n,n)2p 〈2k〉
〈n,n,2k〉

n

2n

2k
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2p-1 r-1

2p-1 r-1
2p r 2

p r

Figure 4.2: We can move the leftmost strand in the left-most image over the middle
strand to view the(1,2p−1,r−1) pretzel knot as a double twist knot

4.2.2 Proof

The first step is to redraw the (1,2p− 1,r− 1) pretzel knot as a double twist

knot. To do this, we pull the over-strand of the single crossing over the middle crossing

section and then rotate this twist region a quarter turn in the clockwise direction. See

Figure 4.2. Now we are ready to compute the colored Jones polynomial of this diagram.

We will use the definition used in [Mas03], namely, JN(Kp,r,a2) = (−1)N−1〈K(eN−1)〉.
We will also use the fact that

ω
p = ∑c′k,pR′k

and

eN−1 =
N−1

∑
n=0

(−1)N−1−n
[

N +n
N−1−n

]
Rn

Thus we have

JN(Kp,r,a2) = (−1)N−1〈K(eN−1)〉

= (−1)N−1

〈
r

eN-1

 1 twist

2p

〉

Since we are taking the Kauffman bracket, and this is not invariant under R1, we need

to be careful to not remove kinks. We also want the knot to be zero-framed. The

framing depends on whether r is even or odd. At this point, if r is even, the framing
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is −2p−2+1. When r is odd, the framing is 2p− r+1. We now will add 2p+ r−1

twists. This gives us a 0-framing in the case where r is even. For the case where r is

odd we should add −2p+ r− 1 twists. This will give us −2p+ r twists. The images

below are for the r even case. We just need to relabel the number of twists to get the r

odd case. Thus we have:

JN(Kp,r,a2) = (−1)N−1

〈 2
p r

eN-1

2p+r
twists

〉

Now, we place ω p around the part where there is 2p twists. This undoes the 2p full twists

but also changes the framing (i.e. it undoes 2p of the extra twists.) In the undrawn case

where r is odd we now have 4p+ r twists. We get

JN(Kp,r,a2) = (−1)N−1

〈
r

eN-1

r twists

 ωp

〉

Now, we use the expansions of eN−1 and ω p from above to get

JN(Kp,r,a2) = (−1)N−1
∑
k

c′k,p
N−1

∑
n=0

(−1)N−1−n
[

N +n
N−1−n

]〈
r

Rn

r twists

 R'k

〉

Now, following [Mas03] Sec 5, when each component is a zero-framed unknot with a

spanning disk pierced twice by the other component, the only terms that are nonzero are

those where k = n. Thus we have

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p(−1)n
[

N +n
N−1−n

]〈
r

Rn

r twists

 R'n

〉

Since Rn−en has degree less than n we can replace Rn with en and then do fusion along

the two strands inside the leftmost Rn.

At this point, we will remove the extra twists. Each twist changes the colored

Jones polynomial by µn. Thus, the change depends on if r is even. Define:

µ
∗
n (r) =

{
µr

n : r even

µ
4p+r
n : r odd
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JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p(−1)n
[

N +n
N−1−n

]
µ
∗
n

〈
r

n
 R'n

2n

〉

We will now draw out the r twist and rotate the diagram.

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p(−1)n
[

N +n
N−1−n

]
µ
∗
n

〈 n
 R'n

2n

... r

〉

=
N−1

∑
n=0

c′n,p(−1)n
[

N +n
N−1−n

]
µ
∗
n

〈

n

 R'n

2n

...

r

〉

JN(Kp,r,a2)=
N−1

∑
n=0

c′n,p(−1)n
[

N +n
N−1−n

]
µ
∗
n

n

∑
k=0

δ (2k;n,n)r 〈2k〉
〈n,n,2k〉

([k]!)2

[2k]!

〈
 R'n2n

〉
Finally, 〈

 R'n2n
〉

=
(−1)n{2n+1}!
{n}!{1}

so we get

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]
µ
∗
n

n

∑
k=0

δ (2k;n,n)r 〈2k〉
〈n,n,2k〉

([k]!)2

[2k]!
{2n+1}!
{n}!{1}

4.2.3 Simplification

First we reorder the terms.

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]{2n+1}!
{n}!{1}

n

∑
k=0

µ
∗
n δ (2k;n,n)r 〈2k〉

〈n,n,2k〉
([k]!)2

[2k]!

Now we will simplify some of the pieces. Notice that:
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〈2k〉
〈n,n,2k〉

([k]!)2

[2k]!
=

(−1)2k[2k+1][n]![n]![2k]![k]!2

(−1)n+k[n+ k+1]![k]![k]![n− k]![2k]!
(4.1)

=
(−1)n+k[n]!2[2k+1]
[n+ k+1]![n− k]!

(4.2)

Now, we’ll consider the cases when r is even and r is odd separately. First, consider the

case where r is even. From [Mas03], we know δ (c;a,b)2 = µc
µaµb

. So

δ (2k;n,n)r =

(
µ2k

µnµn

)r/2

=
µ2k

r/2

µnr (4.3)

When r is even µ∗n (r) = µr
n. Thus our equation reduces to

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]{2n+1}!
{n}!{1}

n

∑
k=0

µ2k
r/2 (−1)n+k[n]!2[2k+1]

[n+ k+1]![n− k]!

=
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]{2n+1}!
{n}!{1} (−1)n {n}!2

(a−a−1)2n

n

∑
k=0

(−1)kµ2k
r/2[2k+1]

[n+ k+1]![n− k]!

Now, again from [Mas03], we have

c′n,ρ =
{n}!

(a−a−1)2n

n

∑
k=0

(−1)kµ
ρ

2k[2k+1]
[n+ k+1]![n− k]!

(4.4)

Thus

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]{2n+1}!
{1} (−1)nc′n,r/2

as claimed in Corollary 4.2.2.

Now when r is odd, we can again use (4.2) but we need to simplify δ (2k,n,n)

differently. From [MV94]

δ (2k;n,n) = (−1)n−kak2+ka−
(

n2
2 +n

)
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so

δ (2k;n,n)r = δ (2k;n,n)r−1
δ (2k;n,n)

=
µ2k

r−1
2

µnr−1 (−1)n−kak2+ka−
(

n2
2 +n

)

=
µ2k

r−1
2

µnr−1
(−1)kak2+k

(−1)na
(

n2
2 +n

)

=
µ2k

r−1
2

µnr−1
(−1)ka(2k2+2k)(1/2)

(−1)na
(

n2
2 +n

)

=
µ2k

r−1
2

µnr−1
(−1)kµ

1/2
2k

µn

=
(−1)kµ2k

r
2

µnr

Note this only differs from (4.3) by a factor of (−1)k. This observation combined with

the further simplification below will lead us to Corollary 4.2.4. Let’s continue with the

r odd case.

JN(Kp,r,a2) =
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]{2n+1}!
{n}!{1}

n

∑
k=0

µ
∗
n δ (2k;n,n)r 〈2k〉

〈n,n,2k〉
([k]!)2

[2k]!

=
N−1

∑
n=0

c′n,p

[
N +n

N−1−n

]{2n+1}!
{n}!{1}

n

∑
k=0

µ
4p+r
n

(−1)kµ2k
r
2

µnr
(−1)n+k[n]!2[2k+1]
[n+ k+1]![n− k]!

=
N−1

∑
n=0

(−1)nc′n,p

[
N +n

N−1−n

]{2n+1}![n]!2

{n}!{1}
n

∑
k=0

µ
4p
n µ2k

r
2

[2k+1]
[n+ k+1]![n− k]!

=
N−1

∑
n=0

(−1)n
µ

4p
n c′n,p

[
N +n

N−1−n

] {2n+1}!{n}!
(a−a−1)2n{1}

n

∑
k=0

µ2k
r
2

[2k+1]
[n+ k+1]![n− k]!

4.3 Which knots can we study?

Table 4.1 list out the knots up to 9 crossings that have diagrams of the form of a

(1,2p,r−1)-pretzel knot.

These formulas were coded in to Mathematica to allow us to calculate out the

colored Jones polynomials for these knots. The code is available at:

http://www.math.ucsd.edu/ k3walsh/research.php.
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Table 4.1: Knots with up to 9 crossing that can be expressed as a (1,2p,r− 1)-pretzel
knot

Knot Twists Pretzel Notation (p,r)
31 1 (1,3,0) or (1,1,1) (2,1) or (1,2)
41 (1,1,2) (1,3)
51 (1,5,0) (3,1)
52 2 (1,3,1) or (1,1,3) (2,2) or (1,4)
61 (1,1,4) (1,5)
62 (1,3,2) (2,3)
71 (1,7,0) (4,1)
72 3 (1,1,5) or (1,5,1) (1,6) or (3,2)
74 (1,3,3) (2,4)
81 (1,1,6) (1,7)
82 (1,5,2) (3,3)
84 (1,3,4) (2,5)
91 (1,9,0) (5,1)
92 4 (1,1,7) or (1,7,1) (1,8) or (4,2)
95 (1,3,5) or (1,5,3) (2,6) or (3,4)



Chapter 5

Stability in the Coefficients of the

Colored Jones Polynomial

5.1 Stability in the Head and Tail

For a sequence of polynomials, we say the head of this sequence, if it exists, is

the polynomial whose highest n terms agree with the highest n terms of the kth polyno-

mial in the sequence, for all k ≥ n. The tail of this sequence, if it exists, is the polyno-

mial whose lowest n terms agree with the lowest n terms of the kth polynomial in the

sequence, for all k ≥ n.

Dasbach and Lin conjectured that the head and tail existed in [DL07]. Armond

showed in [Arm13] that this conjecture was true for adequate links. In [GL11], Garo-

ufalidis and Le independently proved this conjecture using a different technique.

In [AD11], Armond and Dasbach show that the head and tail of the colored Jones

polynomial of alternating links only depends on the reduced checkerboard graphs of the

knot diagrams. Given an alternating diagram of a knot, we can assign a (gray/white)

checkerboard coloring the faces in the diagram. We then place a vertex in each of the

gray colored regions. We draw an edge between vertices for every crossing between the

corresponding regions. Alternatively, we can start by placing a vertex in every white

region to get the dual graph. If, when moving along an edge, the overcrossing starts on

the right of the edge and ends on the left, this graph is the A-checkerboard graph. If the

36
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overcrossing goes from the left to the right, the graph is the B-checkerboard graph. See

Figure 5.1. To get the reduced checkerboard, we can replace parallel edges in the graph,

i.e. multiple edges between the same vertices, with a single edge.

(a) A diagram of 61

(b) 61 with a checker-
board coloring

(c) The A-checkerboard
graph

(d) The B-checkerboard
graph

Figure 5.1: The Knot 61 and its associated graphs.

Theorem 5.1.1 ([AD11]). Let K1 and K2 be the two alternating links with alternating di-

agrams D1 and D2 such that the reduced A-checkerboard (respectively B checkerboard)

graphs of D1 and D2 coincide. Then the tails (respectively heads) of the colored Jones

polynomial of K1 and K2 are identical.

One only needs to prove this theorem for either the head or the tail since under

taking a mirror image of a knot, the tail and head switch. The proof only focuses on the

tail of the polynomial, i.e. the lowest powers of A in our polynomial. Since q = A−4

proving that the tail of the polynomial with coefficients A stabilizes is equivalent to

proving the head of the polynomial in coefficient q stabilizes. The main idea of the

proof of this theorem is to show that the tail only depends on the highest term in the

summand that gives the colored Jones polynomial, using a state sum formula based on

fusion. Armond and Dasbach do this by proving three lemmas. Because these lemmas

will be useful in the new theorems that follow, I will restate them here. But first, we will

give an expression for the colored Jones polynomial of a knot K from its diagram D.
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We identify all of the negative twist regions of the D. A negative twist region is

a section of the knot with one or more consecutive negative twists. (Here, we think of

negative twists without considering orientation so assume each strand is oriented in the

same direction.) Let k be the number of twist regions.

Now, we will do a fusion along each of the k negative twist region and then use

the twist coefficients to remove all crossings. See Chapter 4 for details on the fusion

and twist coefficients. Here, to keep with the convention of the paper we are referring

to we set 〈n〉 = ∆n, 〈a,b,c〉 = θ(a,b,c) and we let γ(a,b,c) be our negative half twist

coefficients so δ (c;a,b) = γ(a,b,c)−1.

Each of the k regions corresponding to the negative twists will be labeled with

2 ji for 1 ≤ i ≤ k. The other edges will be labeled n. Thus we have a multi-sum of

trivalent graphs, Γn,( j1,..., jk) where each ji runs from 1 to n. The evaluation of this graph

gives us the n+1 colored Jones polynomial of the knot K. i.e.,

Jn+1,K =
n

∑
j1,... jk=0

k

∏
i=1

γ(n,n,2 ji)mi
∆2 ji

θ(n,n,2 ji)
Γn,( j1,..., jk)

Armond and Dasbach show that when we decrease a single ji from n to n− 1,

we increase the lowest degree by n+1 and we continue to increase it as we decrease j1

further, so the only graphs that contribute to the first n+ 1 terms of the colored Jones

polynomial, the tail, are the ones where all ji = n.

We will use the notation f (q) ·n= g(q) if the first n terms of f (q) agree with those

of g(q), i.e once we multiply by some power of q to get f ∗ and g∗ so that f ∗(q) and

g∗(q) both have lowest degree equal to zero, then f ∗(q)−g∗(q) has lowest degree qn.

Thus we have

Jn+1,K
·n+1
=

k

∏
i=1

γ(n,n,2n)mi
∆2n

θ(n,n,2n)
Γn,(n,...,n)

For a rational function R, let d(R) be the minimum degree of R considered as

a power series when you expand Z(q) ↪→ Z[q−1,q]]. We choose to expand the power

series allowing for infinite terms in the positive direction so that we get a minimum

degree.

Lemma 5.1.2. When we decrease ji from n to n−1, when increase the minimum degree
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of γ(n,n, ji) by 4n, i.e.,

d(γ(n,n,2(n−1))) = d(γ(n,n,2n))+4n.

As we continue to decrease each ji the minimum degree continues to increase, i.e.,

d(γ(n,n,2( j−1)))≥ d(γ(n,n,2 j)).

Lemma 5.1.3. Each time we decrease the ji, we increase the minimum degree of ∆2 j
θ(n,n,2 j)

by 2, i.e.,

d
(

∆2( j−1)

θ(n,n,2( j−1))

)
= d

(
∆2 j

θ(n,n,2 j)

)
+2.

Lemma 5.1.4. When we decrease ji from n to n−1, when increase the minimum degree

of Γn,( j1,..., ji−1, ji, ji+1,..., jk) by at least 2, i,e.,

d(Γn,(n,...,n−1,...,n))≥ d(Γn,(n,...,n,...,n))+2.

We can only guarantee this change of two at the first step. As we continue to decrease

ji, the best we get is:

d(Γn,( j1,..., ji−1, ji−1, ji+1,..., jk))≥ d(Γn,( j1,..., ji−1, ji, ji+1,..., jk))±2.

Thus when we decrease a single ji from n to n−1, we increase the lowest degree

in A by at least (4n)mi+2+2≥ 4n+4 which means we change the q degree by n+1 for

the (n+1) Colored Jones Polynomial. We also continue to increase the lowest degree in

A as we continue to change the ji so the only term that contributes to the lowest 4n+4

terms of the polynomial in A are the ones where each ji = n.

Let c be the number of crossings of the knot. Then c = ∑
k
i=1 mi. Now since

γ(n,n,2n) does not depend on j, we can pull each one out of the product. To get:

Jn+1,K
·n+1
=

k

∏
i=1

γ(n,n,2n)mi
∆2n

θ(n,n,2n)
Γn,(n,...,n)

·n+1
= γ(n,n,2n)∑

k
i=1 mi

k

∏
i=1

∆2n

θ(n,n,2n)
Γn,(n,...,n)

·n+1
= γ(n,n,2n)c

k

∏
i=1

∆2n

θ(n,n,2n)
Γn,(n,...,n)

·n+1
= γ(n,n,2n)c

(
∆2n

θ(n,n,2n)

)k

Γn,(n,...,n)
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In fact, γ(n,n,2 j) = ±A2n−2 j+n2−2 j. Thus γ only contributes an overall shift to the

polynomial and doesn’t affect the sequence of leading coefficients. Thus:

Jn+1,K
·n+1
=

(
∆2n

θ(n,n,2n)

)k

Γn,(n,...,n)

This only depends on the overall graph structure, forgetting about the twists. This is

the same information we forget when going to the reduced graph. This proves Theorem

5.1.1. It does not, however, tells us anything about the existence of the head and tail

of alternating or adequate knots. It just tells us that if the head and tail exist, they only

depend on the overall graph structure.

To show the head and tail exist, we must show that the evaluation of the n-

trivalent graph is the same as the evaluation of the n+ 1-trivalent graph. Armond does

this in [Arm13] by demonstrating a way to reduce the n+ 1-colored graph to the n-

colored graph by peeling off one of the strands without changing the first n coefficients.

In [GL11], Garoufalidis and Le show a higher order stability described in the

next section. We can use similar techniques to those used by Armond and Dasbach to

find which knots will have the same higher order stabilizing sequences.

Corollary 5.1.5. Let m be the minimum of the mi. When we change a single ji from n to

n−1, we increase the lowest degree in A by at least (4n)m+2+2 = 4nm+4 and thus

change the q degree by n(m)+1 for the (n+1) Colored Jones Polynomial. In addition

to the first n+1 terms only depending on the overall graph structure, the next (m−1)n

terms also depend only on the graph structure.

Remark 5.1.6. This only tells us they depend on a certain structure not that they stabi-

lize. In [GL11], the stabilization is proved, but in chunks of n+1 not a single n+1 and

then n.

5.2 Higher Order Stability

In [GL11], Garoufalidis and Le define the property of k-stability for a sequence

of polynomials as follows:
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Definition 5.2.1. Suppose fn(q), f (q) ∈ Z((q)), i.e. fn(q) and f (q) are formal Laurent

series, i.e

fn(q) = ∑
m≥Mn

an,mxm an,m ∈ Z

and

f (q) = ∑
m≥M

bmxm bm ∈ Z

We write that

lim
n→∞

fn(q) = f (q)

if

• there exists C such that Mn ≥C for all n, and

• for each j, there exist N j such that for all n > N j.

fn(q)− f (q) ∈ q jZ[[q]]

In particular, an, j = b j.

Definition 5.2.2. A sequence ( fn(q)) ∈ Z((q)) is k-stable is there exist Φ j(q) ∈ Z((q))
for j = 0, . . . ,k such that

lim
n→∞

q−k(n+1)

(
fn(q)−

k

∑
j=0

Φ j(q)q j(n+1)

)
= 0.

We call Φk(q) the k-limit of ( fn(q)). We say that ( fn(q)) is stable if it is k-stable for all

k.

For example, a sequence ( fn(q)) is 3-stable if

lim
n→∞

q−3(n+1)
(

fn(q)−
(

Φ0(q)+q(n+1)
Φ1(q)+q2(n+1)

Φ2(q)+q3(n+1)
Φ3(q)

))
= 0.

Consider the sequence of colored Jones polynomials of a knot K. We can shift

these polynomials by multiplying by the appropriate power of q so that the minimum

degree is 0. We call this sequence (Ĵn,K(q)) .

Theorem 5.2.3. For every alternating link K, the sequence (Ĵn,K(q)) is stable and its

associated k-limit Φk,K(q) can be effectively computed from any reduced alternating

diagram D of K.
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Remark 5.2.4. Data from the figure 8 knot suggests that it would not be 4-stable and

data from the knot 85 suggests it would not be 2-stable using this definition since it

requires the stabilization in pieces of size n+ 1 instead of n for the n Colored Jones

Polynomial.

For example, for the figure 8 knot, we know the that first coefficients stabilize to

the pentagonal number sequence. By this, I mean that for the figure 8 knot,

Φ0 =
∞

∏
n=1

(1−qn) =
∞

∑
k=−∞

(−1)kq
k
2 (3k−1).

In the table below, I have listed out the first 16 coefficients of the N-colored Jones

polynomial for the figure 8 knot for N = 3,4 and 5. We see that the first N+1 coefficients

of the N-colored Jones polynomial are the same as the first N +1 coefficients of Φ0.

Φ0 1 -1 -1 0 0 1 0 1 0 0 0 0 -1 0 0 -1 · · ·
N = 3 1 -1 -1 0 2 0 -2 0 3 0 -3 0 3 0 -3 0 · · ·
N = 4 1 -1 -1 0 0 3 -1 -1 -1 -1 5 -1 -2 -2 -1 6 · · ·
N = 5 1 -1 -1 0 0 1 2 0 -2 -1 -1 1 3 1 -2 -3 · · ·

Now, since we know all of Φ0, we can subtract it from the shifted colored Jones

polynomials. Now are coefficients are:

Φ0 1 -1 -1 0 0 1 0 1 0 0 0 0 -1 0 0 -1 · · ·
N = 3 0 0 0 0 2 -1 -2 -1 3 0 -3 0 4 0 -3 1 · · ·
N = 4 0 0 0 0 0 2 -1 -2 -1 -1 5 -1 -3 -2 -1 7 · · ·
N = 5 0 0 0 0 0 0 2 -1 -2 -1 -1 1 4 1 -2 -2 · · ·

Shifting these sequences back so that they start with a non-zero term, we can see

that they again stabilize. The sequence they stabilize to is Φ1.
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Φ1 2 -1 -2 -1 -1 1 · · ·
N = 3 2 -1 -2 -1 3 0 -3 0 4 0 -3 1 · · ·
N = 4 2 -1 -2 -1 -1 5 -1 -3 -2 -1 7 · · ·
N = 5 2 -1 -2 -1 -1 1 4 1 -2 -2 · · ·

I call the sequence Φ1 the “neck of the tail" or the “tailneck" of the colored

Jones polynomial of the figure 8 knot. In the next section, we will determine what this

polynomial is for a certain class of knots.

5.3 Knots which reduce to a triangle graph

m1

m2
m3

Figure 5.2: A trefoil knot with its checkerboard graph.

In this section, we will find the neck of the colored Jones polynomial of knots

whose reduced checkerboard graph is a triangle graph. We define the neck to be the

polynomial which when added in the right way to the head will have the property that its

first 2N+1 terms agree with the first 2N+1 terms of the N+1 colored Jones polynomial.

The knots we will focus on can be drawn like the trefoil in Figure 5.2, except we will

have more crossings below the pictured crossings (and thus more parallel edges before

we reduce the graph). The mi represent the number of crossings in each section. As it is

drawn, each mi = 1. (If m1 = 2 and the others are 1, we get the figure 8 knot.)

Following, [AD11], we can find the colored Jones polynomial by doing fusion

perpendicular to the edges of the graph. We then can undo the twists above the fusion

using the twist coefficients. See below for the overall picture and the next page for

specifics.
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2j1

2j2
2j3

m1

m2
m3

(a) Do fusion per-
pendicular to the
edges of the graph

2j1

2j2
2j3

(b) Remove the
twists using the
twist coefficients

2
j 1

2j2

2
j3

(c) Reorient the di-
agram

Figure 5.3: Steps to finding the colored Jones polynomial of the trefoil and similar knots

JN+1,K(q) =

〈m1

m2
m3 〉

=
N

∑
ji=0

3

∏
i=1

∆2 ji
θ(N,N,2 ji)

〈
2j1

2j2
2j3

m1

m2
m3

〉

=
N

∑
ji=0

3

∏
i=1

γ(N,N,2 ji)mi
∆2 ji

θ(N,N,2 ji)

〈
2j1

2j2
2j3

〉

=
N

∑
ji=0

3

∏
i=1

γ(N,N,2 ji)mi
∆2 ji

θ(N,N,2 ji)
ΓN,( j1, j2, j3)

where

ΓN,( j1, j2, j3) =

〈
2j1

2j2
2j3

〉
=

〈

2
j 1

2j2

2
j3

〉

Now we want to compare this diagram to the diagram in Figure 5.4. Following [Lic97],

we denote the evaluation of the graph in Figure 5.4 Γ(x,y,z).
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x

x

z

y z

y

Figure 5.4: This diagram has x parallel copies of a one circle, y of another and z of a
third. They are joined by the x+y,y+z, and x+z idempotents. Its evaluation is Γ(x,y,z)

In what follows, we are interested in finding the first 2N +1 coefficients (in the

variable q) of the N + 1 colored Jones polynomial. We will see that we only need to

consider the cases where either all ji = N or where exactly one ji = N− 1. Thus, we

will look at ΓN,( j1, j2, j3) in these two cases.

In the case where each ji is N, it is easy to see that

ΓN,(N,N,N) = Γ(N,N,N).

In the case where one is N − 1, we can expand the fusion into the idempotents, see

Figure 5.5. The N idempotents can be absorbed in to the 2N idempotents. See Figure

2
N

2
N

N N

N

1

N N

N

N-1N-1
1

Figure 5.5: This diagram shows the expansion of the fusion with ji = N− 1 into the
idempotent form.

5.6. We can then pull the outer and inner 1 strand down. Doing this we can see that

ΓN,(N−1,N,N) = Γ(N +1,N−1,N−1)).
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2
N

2
N

N-1
N-1

N

1N-1

N

N-1N-1
1

1

1

N-1

Figure 5.6: We can get rid of the N idempotents. Then after moving the 1 strands, we
can see that ΓN,(N−1,N,N) = Γ(N +1,N−1,N−1)).

5.3.1 Finding an expression for the neck

If two polynomials, f (q) and g(q) have the same coefficents for the n lowest

order terms, we will write

f (q) ·n= g(q).

Lemma 5.3.1. If f (q) = g(q)
h(q) then fn(q)

·n
= gn(q)

hn(q)
.

Proof of 5.3.1. For notational convenience in this proof, if f (q) is a Laurent polynomial

(or has a power series representation as a Laurent polynomial whose q−1 terms are

bounded), let fn(q) represent a polynomial whose first n terms agree with f (q).

If f (q) = g(q)
h(q) then f (q)h(q) = g(q). Since the first n terms of f (q) and g(q)

determine the first n terms of h(q), fn(q)hn(q) = gn(q) so fn(q) =
gn(q)
hn(q)

.

Lemma 5.3.2.

{2N}! ·2N+1
= q−

(
3N2+N

4

)
{N}!

(
1− qN+1

1−q

)

Now using this lemma, we can get an expression for the first 2N + 1 terms of

{2N}!2.

Corollary 5.3.3.

({2N}!)2 ·2N+1
= q−

(
3N2+N

2

)
{N}!2

(
1− 2qN+1

1−q

)
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Proof of 5.3.2. We’ll expand the higher terms in the factorial. In the(
q−(N+i)/2−q(N+i)/2

)
terms changing from the q−(N+i)/2 term to term −q(N+i)/2 in-

creases the degree by N + i. Thus, we can either not do this at all or only do this once.

{2N}! = {2N}{2N−1}· · ·{N +1}{N}!
= (q−(N+N)/2−q(N+N)/2) · · ·(q−(N+1)/2−q(N+1)/2){N}!

·2N+1
= q−∑

N
i=1(N+i)/2

 {N}!︸︷︷︸
no q+ terms

−
N

∑
i=1

qN+i{N}!︸ ︷︷ ︸
one q+ term


= q

−(3N2+N)
4

(
{N}!−qN{N}!

N

∑
i=1

qi

)

= q
−(3N2+N)

4

(
{N}!−qN{N}!q−qN+1

1−q

)

= q
−(3N2+N)

4

{N}!−qN+1{N}! 1
1−q

+ q2N+1{N}! 1
1−q︸ ︷︷ ︸

does not affect first 2N +1 terms


·2N+1
= q

−(3N2+N)
4

(
{N}!−qN+1{N}! 1

1−q

)
= q−

(
3N2+N

4

)
{N}!

(
1− qN+1

1−q

)
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Proof of 5.3.3.

({2N}!)2 ·2N+1
=

(
q−
(

3N2+N
4

)
{N}!

(
1− qN+1

1−q

))2

= q−
(

3N2+N
2

)
{N}!2

(
1− qN+1

1−q

)(
1− qN+1

1−q

)
= q−

(
3N2+N

2

)
{N}!2

(
1− 2qN+1

1−q
+

q2N+2

(1−q)2

)
= q−

(
3N2+N

2

)
{N}!2

(
1− 2qN+1

1−q
+

q2N+2

1− (2q−q2)

)

= q−
(

3N2+N
2

)
{N}!2

1− 2qN+1

1−q
+q2N+2(1+(2q−q2)+ · · ·)︸ ︷︷ ︸

does not affect first 2N +1 terms


·2N+1
= q−

(
3N2+N

2

)
{N}!2

(
1− 2qN+1

1−q

)

5.3.2 Knots with mi > 2

In the case where each mi is greater than 2, the degree increases by more than

2N when we decrease ji from N to N−1 thus we only need to deal with the case where

each ji = N. Thus we get

JN+1,K(q) =
N

∑
ji=0

3

∏
i=1

γ(N,N,2 ji)mi
∆2 ji

θ(N,N,2 ji)
ΓN,( j1, j2, j3)

·2N+1
=

3

∏
i=1

γ(N,N,2N)mi
∆2N

θ(N,N,2N)
ΓN,(N,N,N)

= γ(N,N,2N)m1+m2+m3

(
∆2N

θ(N,N,2N)

)3 (
ΓN,(N,N,N)

)
Recall that γ(a,b,c) = (−1)

a+b−c
2 Aa+b+c+ a2+b2−c2

2 . This just has the effect of shifting

polynomial but does not affect the sequence of coefficients. Also

∆n =
(−1)n(an+1−a−(n+1))

a−a−1 =
(−1)n{n+1}

{1} .
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∆n! = ∆n∆n−1 · · ·∆1 = (−1)
n(n+1)

2
{n+1}!
{1}n+1

Following Lickorish [Lic97], we define Γ(x,y,z) to be the diagram consisting of x par-

allel copies of a circle, y parallel copies of a circle and z parallel copies of a circle

joined by the f (x+y), f (y+z),and f (z+x) idempotents. This is what our knot reduces to,

i.e. ΓN,(N,N,N) = Γ(N,N,N).

Lemma 5.3.4. [Lic97]

Γ(x,y,z) =
∆x+y+z!∆x−1!∆y−1!∆z−1!
∆y+z−1!∆z+x−1!∆x+y−1!

Also

θ(N,N,2N) = Γ(N,N,0) =
∆2N!∆N−1!∆N−1!

∆N−1!∆N−1!∆2N−1!
= ∆2N

So
(

∆2N
θ(N,N,2N)

)
= 1 And we have:

JN+1,K(q)
·2N+1
= γ(N,N,2N)m1+m2+m3

(
∆2N

θ(N,N,2N)

)3 (
ΓN,(N,N,N)

)
·2N+1
= Γ(N,N,N)

=
∆3N!∆N−1!∆N−1!∆N−1!
∆2N−1!∆2N−1!∆2N−1!

=
∆3N!∆N−1!3

∆2N−1!3

=
(−1)N{3N +1}!{N}!3

{2N}!3{1}
Again since we only want the first 2N+1 terms, we can reduce the {3N+1}! term. We

know we have to choose the q−(2N+i) term for each 1≤ i≤ N +1. This gives us a shift

in degree that we can ignore. We have

JN+1,K(q)
·2N+1
=

(−1)N{3N +1}!{N}!3

{2N}!3{1}
·2N+1
=

(−1)N{2N}!{N}!3

{2N}!3{1}

=
(−1)N{N}!3

{2N}!2{1}
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By Lemma 5.3.1 we can reduce the {2N}!2 term to its lowest 2N + 1 terms, which we

found in Corollary 5.3.3, again forgetting about the shifting. Thus we have:

JN+1,K(q)
·2N+1
=

(−1)N{N}!3

{2N}!2{1}
·2N+1
=

(−1)N{N}!3

{N}!2
(

1− 2qN+1

1−q

)
{1}

=
(−1)N{N}!(

1− 2qN+1

1−q

)
{1}

We ultimately want the tailneck of the normalized Colored Jones polynomial, so we will

divide by ∆N = (−1)N{N+1}
{1} at this point.

J′N+1,K(q)
·2N+1
=

(−1)N{N}!(
1− 2qN+1

1−q

)
{1}

{1}
(−1)N{N +1}

=
{N}!(

1− 2qN+1

1−q

)
{N +1}

=
{N}!

q−(N+1)/2
(

1− 2qN+1

1−q

)
(1−qN+1)

·∞
=

{N}!

1− 2qN+1

1−q −qN+1 +
2q2N+2

1−q︸ ︷︷ ︸
does not contribute

Now we do a power series expansion of the denominator. Since we only want the lowest

2N +1 terms, we can ignore most of the terms in the expansion.
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J′N+1,K(q)
·2N+1
=

{N}!
1−
(

2qN+1

1−q +qN+1
)

= {N}!

1+
(

2qN+1

1−q
+qN+1

)
+

(
2qN+1

1−q
+qN+1

)2

+ · · ·︸ ︷︷ ︸
do not contribute to first 2N +1 terms


·2N+1
= {N}!

(
1+

2qN+1

1−q
+qN+1

)

Note: The (minimum) degree of this term is −∑
N
i=1

i
2 =−N2+N

4 and its coefficient is 1.

Now we need to subtract off the stabilized tail. We still get the triangle graph as

our reduced graph so any knot here will still have the same tail as this figure 8 knot. We

again need the stabilized tail so we take the tail of the 2N+1-dimensional colored Jones

Polynomial of 41 which is {2N}!. By Lemma 5.3.2 we get

stabilized tail ·2N+1
= {2N}!
·2N+1
= {N}!

(
1− qN+1

1−q

)
Note: The (minimum) degree of this term is −∑

N
i=1

i
2 = −N2+N

4 and its coefficient is

1. Thus the minimum degree and sign of the first 2N + 1 coefficients we found above

match so we are set to subtract.

J′N+1,K(q)− stabilized head ·2N+1
= {N}!

(
1+

2qN+1

1−q
+qN+1

)
−{N}!

(
1− qN+1

1−q

)
= {N}!

(
1+

2qN+1

1−q
+qN+1−

(
1− qN+1

1−q

))
= {N}!

(
qN+1 +

3qN+1

1−q

)
= qN+1

(
{N}!+ 3{N}!

1−q

)
This tells us that the tailneck is the pentagonal numbers plus 3 times the partial sum of

the pentagonal number.
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5.3.3 When at least one of the mi is 1

When we have an mi which is 1, we need to consider the ji = N−1 term as well

as the ji = N term. We can only allow this for the i with mi = 1 and only one can be

N−1 at a time. Thus we need to determine what this term contributes to the first 2N+1

terms and then add it once for each of the mi = 1. For notation ease, we will refer to the

ji that we will consider the N and N− 1 term of as j1 and thus we label the edges so

m1 = 1

Because the degree increases by N + 1 when j1 decreases from N to N− 1 we

only need to consider the first N terms of the j1 =N−1. Call the j1 =N−1, j2 = j3 =N

summand SN−1,N,N .

SN−1,N,N =
3

∏
i=1

γ(N,N,2 ji)
∆2 ji

θ(N,N,2 ji)
Γ(N +1,N−1,N−1)

= γ(N,N,2N)2
γ(N,N,2N−2)︸ ︷︷ ︸

shift, does not affect coefficients

(
∆2N

θ(N,N,2N)

)2

︸ ︷︷ ︸
=1

· ∆2N−2

θ(N,N,2N−2)
Γ(N +1,N−1,N−1)

·∞
=

∆2N−2

θ(N,N,2N−2)
Γ(N +1,N−1,N−1)

We know that

θ(N,N,2N−2) =
∆2N−1!∆N−2!∆N−2!
∆N−1!∆N−1!∆2N−3!

=
∆2N−1∆2N−2

∆2
N−1

So

∆2N−2

θ(N,N,2N−2)
=

∆2
N−1

∆2N−1

=
−{N}2

{1}{2N}
Also by Lemma 5.3.4 and simplifying the ∆i in terms of { j} we get:

Γ(N +1,N−1,N−1) =
(−1)N−1{3N}!{N +1}!{N−1}!2

{1}{2N−2}!{2N}!2
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Thus we have:

SN−1,N,N
·∞
=

∆2N−2

θ(N,N,2N−2)
Γ(N +1,N−1,N−1)

=
−{N}2

{1}{2N}
(−1)N−1{3N}!{N +1}!{N−1}!2

{1}{2N−2}!{2N}!2

=
(−1)N{N}2{3N}!{N +1}!{N−1}!2

{1}2{2N−2}!{2N}!2{2N}

Let’s normalize by dividing by (−1)N{N+1}
{1} . Then we only want the first N terms so we

can reduce {N + i} to q−N−i. We will forget about the overall shift that this reduction

does.

SN−1,N,N
·∞
=

{3N}!{N}!3

{1}{2N−2}!{2N}!2{2N}
·N
=

{N}!{N}!3

{1}{N}!{N}!2(qN)

·∞
=

{N}!4

{1}{N}!3

=
{N}!
{1}

This gives us a copy of the pentagonal partial sums for each of the of the mi = 1. Since

the sign here is positive and for the other piece was negative these will cancel with the

pentagonal partial sums we got from the other piece in conclusion:

Theorem 5.3.5. The tailneck of knots whose reduces checkboard graph is the triangle

graph is:

• ∏
∞
n=1(1−qn), i.e. the pentagonal numbers sequence, if all mi = 1 (The only knot

satisfying this is the trefoil).

• ∏
∞
n=1(1− qn)+ ∏

∞
n=1(1−qn)

1−q , i.e. the pentagonal numbers plus the partial sum of

the pentagonal numbers, if two mi = 1 and one is 2 or more.

• ∏
∞
n=1(1− qn) + 2∏

∞
n=1(1−qn)

1−q , i.e. the pentagonal numbers plus the 2 times the

partial sum of the pentagonal numbers, if one mi = 1 and two are 2 or more.
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• ∏
∞
n=1(1− qn) + 3∏

∞
n=1(1−qn)

1−q , i.e. the pentagonal numbers plus the 3 times the

partial sum of the pentagonal numbers, if all mi ≥ 2.

5.4 The Tail and Tailneck of the Figure 8 Knot

Remark 5.4.1. This section does not prove anything new. It just shows that we get the

same thing for the second stabilized sequence for the figure 8 knot if we analyze its

colored Jones polynomial directly from its equation.

We will use the formula for the normalized colored Jones polynomial of the

Figure 8 knot to first determine the tail of this polynomial and then determine the next

stabilized sequence, which for lack of a better term I will call the tailneck.

J′N,41
(q) =

N−1

∑
n=0

n

∏
k=1
{N− k}{N + k}

5.4.1 The Tail of the Figure 8 Knot

We again define the q-degree of a polynomial to be the minimum degree of the

polynomial with variable q. It is easy to check that the q-degree of each summand is

Nn so decreasing the n by 1 increases the minimum degree by N thus only n = N− 1

contributes to the tail.

J′N,41
(q) =

N−1

∑
n=0

n

∏
k=1
{N− k}{N + k}

·N
=

N−1

∏
k=1
{N− k}{N + k}

= {1} . . .{N−1} ˆ{N}{N +1} . . .{2N−1}
=

1
{N}{2N−1}!

We only want to lowest N terms (in q degree). Recall that {N + i} = (q−(N+i)/2−
q(N+i)/2). Choosing the −q(N+i)/2 term instead of the q−(N+i)/2 term increases the de-

gree by N + i. Thus for 1 ≤ i ≤ N−1, we know we have to pick the q−(N+i)/2 term to

get the first N terms. So {2N−1}! ·N= {N}!.
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J′N,41
(q) ·N

=
1
{N}{2N−1}!

·N
=

1
{N}{N}!

= {N−1}!

=
N−1

∏
i=1

q−i/2−qi/2

= q−(
1
2+

2
2+···+N−1

2 )
N−1

∏
i=1

1−qi

·N
=

N−1

∏
i=1

1−qi

Theorem 5.4.2 (Euler’s Pentagonal Number Theorem).

∞

∏
n=1

(1− xn) =
∞

∑
k=−∞

(−1)kxk(3k−1)/2

= 1− x− x2 + x5 + x7− x12− x15 + · · ·

Corollary 5.4.3. The tail of the colored Jones polynomial of the figure 8 knot is the

pentagonal number sequence.

5.4.2 The Tailneck of the Figure 8 Knot

We will now focus on the next N terms. We know from [GL11] that once we

subtract off what the head will stabilize to, the next N coefficients stabilize. Again in

the summation in the formula for the colored Jones polynomial of the figure 8 knot,

the minimum degree increases by N each time n decreases by 1. Thus we only need

to consider the first two summands. In addition, while we need to consider the first

2N terms of the n = N−1 summand, we only need to consider the first N terms in the
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n = N−2 summand.

J′N,41
(q) =

N−1

∑
n=0

n

∏
k=1
{N− k}{N + k}

·2N
=

N−1

∏
k=1
{N− k}{N + k}+

N−2

∏
k=1
{N− k}{N + k}

=
1
{N}{2N−1}!︸ ︷︷ ︸

need first 2N terms of this

+
1

{1}{N}{2N−2}!︸ ︷︷ ︸
need first N terms of this

Let’s consider the 1
{N}{2N− 1}! piece first. We’ll expand the higher terms in the fac-

torial. In the
(

q−(N+i)/2−q(N+i)/2
)

terms changing from the q−(N+i)/2 term to term

−q(N+i)/2 increases the degree by N + i. Thus, we can either not do this at all or do this

once.

1
{N}{2N−1}! = {2N−1}{2N−2}· · ·{N +1}{N−1}!

= (q
−(N+(N−1))

2 −q
(N+(N−1))

2 ) · · ·(q−(N+1)/2−q(N+1)/2){N−1}!

·2N
= q−∑

N−1
i=1 (N+i)/2

{N−1}!︸ ︷︷ ︸
no q+ terms

−
N−1

∑
i=1

qN+i{N−1}!︸ ︷︷ ︸
one q+ term


= q

−3N2+3N
4

(
{N−1}!−qN{N−1}!

N−1

∑
i=1

qi

)

= q
−3N2+3N

4

(
{N−1}!−qN{N−1}!q−qN

1−q

)

= q
−3N2+3N

4

{N−1}!−qN+1{N−1}!
1−q

+ q2N{N−1}! 1
1−q︸ ︷︷ ︸

does not affect first 2N terms


·2N
= q

−3N2+3N
4

(
{N−1}!−qN+1{N−1}! 1

1−q

)
Now, let’s consider the 1

{1}{N}{2N−2}! piece. Here we only need to consider the first N

terms, so we need to pick the q−(N+i)/2 term in each of the N+ i factors, (1≤ i≤N−2).
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1
{1}{N}{2N−2}! = {2N−2}· · ·{N +1}{N−1}!

{1}
·N
= q−∑

N−2
i=1 (N+i)/2{N−1}!

{1}

= q
−3N2+7N−2

4
{N−1}!

q−1/2−q1/2

= q
−3N2+7N−2

4
1

q−1/2
{N−1}!

1−q

= q
−3N2+7N

4
{N−1}!

1−q

Combining these we get:

J′N,41
(q) ·2N

=
1
{N}{2N−1}!+ 1

{1}{N}{2N−2}!

·2N
= q

−3N2+3N
4

(
{N−1}!−qN+1{N−1}! 1

1−q

)
+q

−3N2+7N
4
{N−1}!

1−q

= q
−3N2+3N

4 {N−1}!
(

1− qN+1

1−q
+

qN

1−q

)
We now need to subtract of the stabilized tail. The tail of the N-dimensional

colored Jones Polynomial is:

J′N,41
(q) ·N

=
N−1

∏
i=1

1−qi

·N
= {N−1}!

We need the stabilized tail so we will need to take the tail of the 2N-dimensional colored

Jones polynomial. This will agree with the first 2N terms of the stabilized sequence.

Since we know the first 2N terms of 1
{N}{2N−1}!, we can just multiply both sides by

{N}.
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(−1)2N−1{2N−1}! ·2N
= q

−3N2+3N
4

(
{N−1}!−qN+1{N−1}! 1

1−q

)
{N}

= q
−3N2+3N

4 {N−1}!
(

1− qN+1

1−q

)(
q−N/2

)(
1−qN)

= q
−3N2+N

4 {N−1}!
(

1− qN+1

1−q

)(
1−qN)

= q
−3N2+N

4 {N−1}!

1− qN+1

1−q
−qN +

q2N+1

1−q︸ ︷︷ ︸
can ignore for first 2N


·2N
= q

−3N2+N
4 {N−1}!

(
1− qN+1

1−q
−qN

)

Our terms do not have the same minimum degree at this point so we need to shift

them so they do in order for them to cancel correctly. To do this, we can simply drop

the power of q in the front of each. Thus:

J′N,41
(q) ·2N

= {N−1}!
(

1− qN+1

1−q
+

qN

1−q

)
stabilized head ·2N

= {N−1}!
(

1− qN+1

1−q
−qN

)

J′N,41
(q)− stabilized head ·2N

= {N−1}!
(
(1− qN+1

1−q
+

qN

1−q
)−
(

1− qN+1

1−q
−qN

))
= {N−1}!

(
qN +

qN

1−q

)
·2N
= {N +1}!︸ ︷︷ ︸

gives pentagonal number sequence

+
{N +1}!

1−q︸ ︷︷ ︸
gives partial sums of pentagonal number sequence



Chapter 6

The Middle Coefficients of the Colored

Jones Polynomial

6.1 Initial Observations for the Figure 8 Knot and Other

Knots

We began by plotting the coefficients of the colored Jones polynomial of the

figure 8 knot, 41. See Figure 6.1. This is a plot of the coefficients of J′95,41
(q). We notice

that the coefficients appear to be periodic in the middle third. The period is N, where

N is the number of colors. This picture is representative of the pattern present in the

coefficients independent of color.

Figure 6.1: The coefficients of the 95 colored Jones polynomial of the figure 8 knot.

59
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We also plotted the coefficients of the colored Jones polynomial of other knots.

See Figure 6.2. In particular, we show the coefficients for the 25 colored Jones polyno-

mial of the knot 52 (a 2 twist knot), 15 colored Jones polynomial of the knot 92 (a 4 twist

knot), and the 20 colored Jones polynomial of the knot 95 (a (1,3,5) pretzel knot). For

knots that we are able to calculate the colored Jones polynomial for large N, we begin

to see a few patterns continuing to arise.

In particular, we notice that the overall magnitude of the coefficients seems to

rise towards the middle of the polynomial and that there is a sine wave like oscillation

in the coefficients of period N.

(a) Coefficients of the 25 Colored
Jones Polynomial of the Knot 52

(b) Coefficients of the 15th Colored
Jones Polynomial of the Knot 92

(c) Coefficients of the 20th Colored
Jones Polynomial of the Knot 95

Figure 6.2: These are the coefficients of the the colored Jones polynomial of three
different knots for relatively high N.

We also looked at the growth rate of the maximum coefficient of the N colored

Jones polynomial as we increase N. We found that for the knots we checked, the max-

imum coefficient grows at an exponential rate. In particular, for the figure 8 knot, the

maximum coefficients are plotted in Figure 6.3. We also observed that for the figure 8

knot, the maximum coefficient is the constant coefficient.
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Figure 6.3: The Maximum Coefficient of the N Colored Jones Polynomial of the Figure
8 Knot as a function of N.

Now, since we notice that these coefficients are growing exponentially, presum-

ably as ebN , we’ll take the log and divide by N to find b. We hope that this a relatively

constant. We found that it is relatively constant and that it seems to be close to vol(41)
2π

.

Let m(N) be the maximum coefficient of the N colored Jones polynomial of the figure 8

knot. The plot of 2π log(m(N))
N is in Figure 6.4. We notice that the b value we are looking

at is tending towards 2.02 which is the volume of the figure 8 knot.

6.1.1 The Idealized Polynomial

We wanted to know that if we had a idealized polynomial that satisfied these

properties, what could we say about it evaluation at the Nth root of unity as N→ ∞, i.e.

in the spirit of the Hyperbolic Volume Conjecture. We make the following conjectures

about the colored Jones polynomials of a knot.

Assumption 6.1.1.

The maximum coefficient takes the form AebN where N is the number of colors and A
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Figure 6.4: The plot of 2π log(m(N))
N as a function of N.

and b depend on the knot.

Assumption 6.1.2.

The coefficients take the form of a normal distribution times a sine wave of period 2N.

We also know the following fact:

Theorem 6.1.3 ( [L0̂6]). The growth rate in the breadth of the colored Jones polynomial

is at most quadratic.

Using our first two assumptions we can write out a formula for the coefficients of

the colored Jones polynomial. Using this we write the Nth polynomial in the sequence

as:

J′N,K(q) =
M

∑
n=0

qNn
N−1

∑
k=0

anqk sin(
2π

N
k),

where M is the number of terms of the polynomial, and an is the normal distribution

shaped function centered at M/2 scaled so that the max is AebN . In particular:

an =
AebN

p
1√

2πσ2
e
−(n−M/2)2

2σ2 ,
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where p is the max value of the distribution and σ2 is the variance. We want to think

of this as a colored Jones polynomial see what we get for the left hand side of the

Hyperbolic Volume Conjecture. We first look at each term in the outer sum. We will let

q be a Nth root of unity, i.e. q = e2πi/N .

Summand = qNn
N−1

∑
k=0

anqk sin(
2π

N
k)

= anqNn
N−1

∑
k=0

qk 1
2i
(e

2π

N ki)− e−
2π

N ki))

= anqNn
N−1

∑
k=0

qk 1
2i
(qk−q−k)

=
anqNn

2i

N−1

∑
k=0

q2k−1

=
anqNn

2i
(−N)

N−1

∑
k=0

q2k

=
−NanqNn

2i

The sum goes away since we are summing all the N/2th roots of unity (twice) and thus

this is 1. Now plugging an and evaluating the sum we get:

M

∑
n=0

−NanqNn

2i
=

M

∑
n=0

−N AebN

p
1√

2πσ2 e
−(n−M/2)2

2σ2 qNn

2i

=
−NAebN

p2i
√

2πσ2

M

∑
n=0

e
−(n−M/2)2

2σ2

=
−NAebN

p2i
√

2πσ2
M

M

∑
n=0

e
−(n−M/2)2

2σ2
1
M

=
−NAebN

p2i
√

2πσ2
M

The last sum is a Riemann sum. As M gets large this approximates the area under a

normal distribution curve and thus is approximately 1. Now we have

fN(e2πi/N) =
−NAebN

2pi
√

2πσ2
M
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so

| fN(e2πi/N)|= NAebN

2p
√

2πσ2
M

and

log |( fN(e2πi/N))|
N

=
log( NAebN

2p
√

2πσ2 M)

N

=
log(NA)

N
+

bN
N
− log(2p

√
2πσ2)

N
+

log(M)

N

so taking the limit as N goes to infinity we get:

lim
N→∞

log |( fN(e2πi/N))|
N

= lim
N→∞

log(N)

N
+

bN
N

+
log(2p

√
2πσ2)

N
+

log(M)

N

= b+ lim
N→∞

log(M)

N

Since the growth rate for the breadth is at most quadratic, we have:

lim
N→∞

log |( fN(e2πi/N))|
N

= b+ lim
N→∞

log(N(N−1)c/2)
N

= b+ lim
N→∞

log(N)

N
+

log(N−1)
N

+
log(c/2)

N

= b.

Proposition 6.1.4. If the colored Jones polynomial of a knot satisfies Assumption 6.1.1

and Assumption 6.1.2 then

b = lim
N→∞

log |( fN(e2πi/N))|
N

.

If this is a knot for which the Hyperbolic Volume Conjecture holds,

b =
vol(S3\K)

2π
.

Now, if we don’t make any initial assumptions about the growth rate of the max-

imum coefficients, we can see what we can conclude.

If we let mK(N) be the maximum coefficient of the Colored Jones Polynomial

of a knot K, then

|Jk(N)(e2πi/N)| ≤
M

∑
n=0
|mK(N)| ≤MmK(N),
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where M is the number of terms in the Colored Jones Coefficient. Using 6.1.3, we get

lim
N→∞

log |Jk(N)(e2πi/N)|
N

≤ lim
N→∞

log(a2N2 +a1N +a0)mK(N)

N

= lim
N→∞

log(a2N2 +a1N +a0)

N
+

logmK(N)

N

= lim
N→∞

logmK(N)

N
.

Now, if we include Assumption 6.1.1, so that m(k)(N) = AeBN , we get

lim
N→∞

log |Jk(N)(e2πi/N)|
N

≤ lim
N→∞

logmK(N)

N

= lim
N→∞

logAebN

N

= lim
N→∞

logA
N

+
bN
N

= b

So we can conclude the following:

Proposition 6.1.5. The colored Jones polynomial of a knot K satisfies

lim
N→∞

log |Jk(N)(e2πi/N)|
N

≤ lim
N→∞

logmK(N)

N
.

If Assumption 6.1.1 holds, then the colored Jones polynomial satisfies

lim
N→∞

log |Jk(N)(e2πi/N)|
N

≤ b.

So for knots where the Hyperbolic Volume Conjecture holds we get to following

Proposition 6.1.6. For knots for which the Hyperbolic Volume conjecture holds

vol(S3\K)

2π
≤ lim

N→∞

logmK(N)

N

.

Now, if we include Assumption 6.1.1, so that m(k)(N) = AebN , we get

vol(S3\K)

2π
≤ b.
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6.2 Further Analysis on the Coefficients of the Figure 8

Knot

Since the coefficients appear to be periodic, we expect that when we multiply

by (1− qN) or by (qN/2− q−N/2) the coefficients will become 0, or close to zero. We

define the semi-(un)normalized colored Jones polynomial, sJN,K(q) to be

sJN,K(q) = {N}J′N,K(q).

Recall that the un-normalized colored Jones polynomial, JN,K(q) satisfies JN,K(q) =
(−1)N−1{N}
{1} J′N,K(q) so we have that:

±JN,K(q){1}= sJN,K(q) = J′N,K(q){N}

Thus we expect that the coefficients of sJN,41(q) will be zero or small in the

middle. Below is a plot of these coefficients. First, we’ll plot the whole sequence of

coefficients, see Figure 6.5.

Figure 6.5: The coefficients of the 95 colored semi-(un)normalized Jones polynomial
of the figure 8 knot.

Now, we’ll zoom in on the middle coefficients to see how close to zero they are.

See Figure 6.6.
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(a) The middle 3000 coefficients of the
sJ95,41(q).

(b) The middle 2000 coefficients of the
sJ95,41(q).

(c) The middle 1000 coefficients of the
sJ95,41(q).

(d) The middle 400 coefficients of the
sJ95,41(q).

Figure 6.6: We zoom in on the middle coefficients of the semi-(un)normalized colored
Jones polynomial of the figure 8 knot.

In fact, from looking at different N, we observe the following conjecture is true

for all n that we checked. (We checked many of the values of N less than 95. For N > 95,

the calculation takes too long.)

Conjecture 6.2.1. Let c(qi) be the coefficient of the qi term of sJN,41(q). When N is odd,

c(qi) =

{
±1 i =±N/2 or ±3N/2

0 |i|< 2N−1/2 and i 6=±N/2 or ±3N/2

When N is even,

c(qi) =

{
±1 i =±N or ±3N/2

0 |i|< 2N and i 6=±N or ±3N/2

We also want to know what patterns are evident in the coefficients of the un-

normalized colored Jones polynomial of the figure 8 knot. We plot its coefficients below.

See Figure 6.7.
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Figure 6.7: The coefficients of the 95 colored un-normalized Jones polynomial of the
figure 8 knot.

Now we zoom in towards the middle coefficients. Below are the middle 1000

coefficients of J95,41(q). See Figure 6.8. Because of the difference in patterns depending

on the parity of N, we also look at the middle 400 coefficients of J50,41(q). See Figure

6.9.

Figure 6.8: The middle 1000 coefficients of the 95 colored un-normalized Jones poly-
nomial of the figure 8 knot.

Based on these and similar data for other values of N we make the following

conjecture:

Conjecture 6.2.2. Let c(qi) be the coefficient of the qi term of JN,41(q). When N is odd,

c(qi) =


1
−(N−1)

2
≤ i≤ N−1

2
0

(N +1)
2

≤ |i| ≤ 3N−1
2
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Figure 6.9: The middle 400 coefficients of the 50 colored un-normalized Jones polyno-
mial of the figure 8 knot.

When N is even,

c(qi) =

 0 −N +1/2≤ i≤ N−1/2

1 N +1/2≤ |i| ≤ 5N−3
2

Visually, we can see this as:

when N is odd:

i −3N+1
2 · · · −N−1

2
−N+1

2 · · · N−1
2

N+1
2 · · · 3N−1

2
c(qi) 0 0 · · ·0 0 1 1 · · · 1 1 0 0 · · ·0 0

when N is even:

i −5N+3
2 · · · −N− 1

2 −N + 1
2 · · · N− 1

2 N + 1
2 · · · 5N−3

2
c(qi) 1 1 · · ·1 1 0 0 · · · 0 0 1 1 · · ·1 1

6.3 What do the conjectures tell us?

First, we will show that Conjecture 6.2.2 implies Conjecture 6.2.1.

Assume N is odd. Then by Conjecture 6.2.2, the coefficients of JN,41(q) look

like:

i −3N+1
2 · · · −N−1

2
−N+1

2 · · · N−1
2

N+1
2 · · · 3N−1

2
c(qi) 0 0 · · ·0 0 1 1 · · · 1 1 0 0 · · ·0 0

So the coefficients of q1/2JN,41(q) look like:
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i −3N+2
2 · · · −N

2
−N+2

2 · · · N
2

N+2
2 · · · 3N−1

2
c(qi) 0 0 · · ·0 0 1 1 · · · 1 1 0 0 · · ·0 0

i −3N
2 · · · −N−2

2
−N

2 · · · N−2
2

N
2 · · · 3N−1

2
c(qi) 0 0 · · ·0 0 1 1 · · · 1 1 0 0 · · ·0 0

And the coefficients of q−1/2JN,41(q) look like:

Subtracting these, we get Conjecture 6.2.1. The proof for the N is even case is

similar.

Now, let’s see what these conjectures tell us about the coefficients of the normal-

ized colored Jones polynomial, J′N,41
(q) Recall that

JN,K(q) = (−1)N−1{N}
{1} J′N,K(q)

=±(q−N+1
2 +q

−N+2
2 + · · ·+q

N−2
2 +q

N−1
2 )J′N,K(q)

By Conjecture 6.2.2, we know that for all N the coefficient of qi is constant for

|i| ≤ N−1
2 . If we look at what terms from J′N,41

(q) will contribute to JN,41(q), we see

that this is only true if for |i| ≤ N−1
2 the coefficient of q

N−(i+1)
2 is equal to the coefficient

of q
N+(i+1)

2 in J′N,41
(q). This tells us that the coefficients aren’t just symmetric about the

constant term, but that for the middle N terms they are also symmetric about qN/2.

6.4 A non-symmetric polynomial of amphichiral knots

Since the figure 8 knot is amphichiral (equivalent to its mirror image), we know

that it’s colored Jones polynomials are symmetric is q and q−1, i.e. J′N,41
(q)= J′N,41

(q−1).

Thus we can rewrite J′N,41
(q) as a polynomial in x = q+q−1. To do this, we’ll use the re-

normalized Chebyshev polynomials of the first kind, T̃n, see A.1. These are the unique

set of polynomials satisfying

T̃n(q+q−1) = qn +q−n

.

Now, we will use these Chebyshev polynomials to find an expression for the

non-symmetric polynomial of the Figure 8 knot, which we’ll call K′N,41
(x). We let x =

q+q−1. We want K′N,41
(q+q−1) = J′N,41

(q)
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We have that

J′N,41
(q) =

N−1

∑
n=0

n−1

∏
j=0
{N− j}{N + j}

=
N−1

∑
n=0

n−1

∏
j=0

qN−q j−q− j +q−N

=
N−1

∑
n=0

n−1

∏
j=0

(qN +qN)− (q j +q− j)

=
N−1

∑
n=0

n−1

∏
j=0

TN(q+q−1)−Tj(q+q−1)

K′N,41
(x) =

N−1

∑
n=0

n−1

∏
j=0

TN(x)−Tj(x)

We can define an analog of this for the un-normalized colored Jones polynomial.

We will show the particular case when N is odd. Since, when N is odd, JN,K(q) =

−[N]J′N,K(q) we get that

JN,41(q) =− [N]J′N,41
(q)

=−

1+

N−1
2

∑
i=1

(q
N−2i+1

2 +q−
N−2i+1

2 )

J′N,41
(q)

=−

1+

N−1
2

∑
i=1

TN−1
2 −i(q+q−1)

J′N,41
(q)

KN,41(x) =−

1+

N−1
2

∑
i=1

TN−1
2 −i(x)

N−1

∑
n=0

n−1

∏
j=0

TN(x)−Tj(x)

Now, we want to look at the coefficients of this new polynomial and see if there

are visible patterns in the coefficients and if we can relate these pattern back to the

patterns visible in the colored Jones polynomial and also to the geometric properties of

the knot.

When we look at the coefficients of K′N,41
(x), we notice that they grow very

quickly. In order to visualize the patterns, for a polynomial of the form ∑cixi we will

plot ln(|ci|) and
ci

|ci|
ln(|ci|), which we called the “signed log”. None off the coefficients

are 0, so this is well defined. Below are plots of both visualizations for 50 and 95 colors.
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(a) The log of the absolute value of the
coefficients of K′50,41

(x)
(b) The log of the absolute value of the
coefficients of K′95,41

(x)

(c) The signed log of the coefficients
of K′50,41

(x)
(d) The signed log of the coefficients
of K′95,41

(x).

Figure 6.10: These are plots of ln(|ci|) and
ci

|ci|
ln(|ci|) where the ci are the coefficients

of K′N,41
(x) for N = 50 and N = 95

We notice that we get the same basic shape of the coefficients regardless of the

number of colors. The breadth of the Nth polynomial is N2−N. We also want to look

at the growth rate of the maximum coefficients of each of these polynomials. Below is

a plot of the maximum coefficients of the first 50 polynomials for the figure 8 knot.

We again notice that the maximum coefficients seem to be growing exponen-

tially. Once we take the log, the coefficients are still growing like a quadratic function.

Once we take the square root of each coefficients, we notice that they seem to be grow-

ing almost exactly linearly. Let mi be the maximum coefficient K′i,41
(x). The plot of

f (n) =
√

log(m(n) is below along with its line of best fit. The line of best fit has equa-

tion

g(n) = 0.694799n−0.466332.

We have an R2 value of .999999.

We want to know if we can relate the slope of this line to a geometric property

of the knot, specifically to the hyperbolic volume of the knot. The hyperbolic volume of
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Figure 6.11: This is a plot of f (n) =
√

log(m(n)) where mi is the maximum coefficient
K′i,41

(x).

the figure 8 knot is 2.02988. The best relationship we can find is that

e0.6947992√
π/2 = 2.03292.

We now turn our focus to other amphichiral knots. The next one is 63. Since we

don’t have a nice formula for the colored Jones polynomial of 63, we could only find its

colored Jones polynomial up to N=8. We found K′N,63
for the same colors, we noticed

that was had the same pattern arising in the coefficients. When scaled so that they can be

plotted on the unit square by dividing by the maximum coefficient and relabeling the x-

axis, we find the overall shape looks just like the one we had for 41. See Figure 6.12. We

also found the non-symmetric version of other randomly generated polynomials (with

positive and negative integer coefficients) and these also have the same basic shape when

we use the Chebyshev polynomials to get the non-symmetic version. Thus, it seems the

overall shape gives us no new information about the knot. But we can still, hopefully,

get information from the growth rate of its maximum coefficient.

Let m(n) be the maximum coefficient. We notice again that g(n) =
√

logm(n)

grows linearly. See Figure 6.13. Here the line of best fit is

g(n) = 0.837346n+0.370139

.

We also did the same analysis and reached the same conclusions with the knot 83.

Table 6.1 show the comparison between the growth rates and the hyperbolic volumes.

Our best guessed relationships are of the right type of form, but we do not have the same
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Figure 6.12: This is a plot of the log of the magnitude of the coefficients of the colored
Jones polynomial of 41 and 63. The coefficients of 41 correspond to N = 30 and are
plotted using small dots. The coefficients of 63 correspond to N = 8 and are plotted
using larger open circles.

Figure 6.13: This is a plot of f (n) =
√

log(m(n)) where mi is the maximum coefficient
K′i,63

(x).

relationship for each knot. At this stage, we have no idea if these relationships give us

any new information or are just coincidental. Since we could only get a few data points

for the knots 63 and 83, it seems reasonable that those numbers are a bit farther off.

6.5 Extending this polynomial to non-amphichiral knots

Since we need J′N,K(q) to be symmetric in q and q−1 in order to define K′N,K , we

cannot define this in general for chiral knots. However, since we can get an amphichiral

knot by taking any knot and connect summing it with its mirror image, we can use this
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Table 6.1: Knots Hyperbolic Volumes compared to their maximum coefficient growth
rate

Knot Slope of Growth Rate Hyperbolic Volume Best Guess at Relationship

41 m41 = 0.694799 2.02988 e(m41)
2√

π/2 = 2.03292
63 m63 = 0.837346 5.69302 2e(m63)

√
π/2 = 5.79088

83 m83 = 0.994987 5.23868 π/2e(m83)
√

π/2 = 5.32473

technique to study all knots. To find the colored Jones polynomial, use the fact that

J′N,K1#K2
= J′N,K1

J′N,K2
.

The hyperbolic volume is also multiplicative under connect sum.



Chapter 7

Conclusion and Future Works

Throughout this dissertation, we’ve shown that there are many peculiar patterns

visible in the coefficients of the colored Jones polynomial. We’ve seen that the highest

order and lowest order terms stabilize as we increase the number of colors. We’ve

also seen that are visible patterns in the middle coefficients that may be related to the

hyperbolic volume of the knot.

Our hope is that we can use some of the tools developed in the dissertation

to learn more about these middle patterns. The formula proved for the pretzel knots in

Chapter 4 will hopefully be able to be used to help us gain insight about what happens for

a larger class of knots. By studying what the higher order stability sequences stabilize

to, we hope to be able to combine the higher order terms to give us information about

the middle terms.

Using the new polynomial developed in the last chapter, we hope to gain further

insight about the coefficients of the colored Jones polynomial. We would like to know

whether the distinct pattern visible in the coefficients of the new polynomial for am-

phichiral knots tells us anything about the hyperbolic volume of the knot. Perhaps this

pattern is just a consequence of the coefficients of the Chebyshev polynomials. Since

we can get an amphichiral knot by taking any knot and taking its connect sum with its

mirror image, this may help us gain information about not only amphichiral knots but

about all knots.

We hope that the theorems proved in this dissertation will help push forward the

work being done in the area and that the conjectures laid out in this dissertation will

76
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get people interested in these middle coefficients. There seems to be a lot of interest-

ing phenomena related to the middle coefficients, they certainly warrant some future

explorations.



Appendix A

Chebyshev polynomials

The Chebyshev polynomials come up in various places within this dissertation.

The ones we use both in defining the colored Jones polynomial and in defining the new

non-symmetric polynomial for the figure 8 knot, are slightly different then the standard

Chebyshev polynomials. In this section, we’ll describe the standard Chebyshev polyno-

mials and how they relate to those that we are using.

A.1 Chebyshev polynomials of the 1st Kind

The standard Chebyshev polynomials of the 1st kind, Tn(x) satisfy the following

recurrence relation:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)−Tn−1(x).

They are the unique set of polynomials that satisfy T (cos(θ)) = cos(nθ), or T (q+q−1

2 ) =
qn−q−n

2 .

When defining the non-symmetric polynomial for the figure 8 knot, we need a

set of polynomials satisfying T̃n(q+q−1) = qn+q−n. Thus we can let T̃n(y) = 2Tn(y/2).

Then we get the following recurrence relation:

T̃0(x) = 2

78
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T̃1(x) = x

T̃n+1(x) = xT̃n(x)− T̃n−1(x).

Now, T̃n(x) is the unique set of polynomials that satisfy T̃n(q + q−1) = qn + q−n or

T̃n(2cos(θ)) = 2cos(nθ) .

A.2 Chebyshev polynomials of the 2nd Kind

The standard Chebyshev polynomials of the 2nd kind, Un(x) satisfy the follow-

ing recurrance relation:

U0(x) = 1

U1(x) = 2x

Un+1(x) = 2xUn(x)−Un−1(x).

They are the unique set of polynomials that satisfy

Un(cos(θ)) =
sin((n+1)θ)

sin(θ)
or Un(

q+q−1

2
) =

qn+1−q−n−1

q−q−1

.

When defining the colored Jones polynomial, we need a set of polynomials satis-

fying Sn(q+q−1)= qn+q−n

q−q−1 . Thus we can let Sn(y)=Un(y/2). Then we get the following

recurrence relation:

S0(x) = 1

S1(x) = x

Sn+1(x) = xSn(x)−Sn−1(x).

Now, Sn(x) is the unique set of polynomials that satisfy Sn(q+ q−1) = qn+1−q−n−1

q−q−1 , or

similarly, Sn(2cos(θ)) = sin((n+1)nθ)
sin(θ) .

Notice that the recursive step is the same for the first and second kind in both the

standard and re-normalized Chebyshev polynomials, the only thing that changes is the

initial conditions.
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