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Abstract

Differences in health status at older ages are a result of genetic predispositions and physiological responses to exposure accumulation
over the lifespan. These vary across individuals and lead to health status heterogeneity as people age. Chronological age (CA) is a
standard indicator that reflects overall risks of morbidity and mortality. However, CA is only a crude proxy for individuals’ latent
physiological deterioration. An alternative to CA is biological age (BA), an indicator of accumulated age-related biological change
reflected in markers of major physiological systems. We propose and validate two BA estimators that improve upon existing ones.
These estimators (i) are based on a structural equation model (SEM) that represents the relation between BA and CA, (ii) circumvent
the need to impose arbitrary assumptions about the relation between CA and BA, and (iii) provide tools to empirically test the validity
of assumptions the researcher may wish to invoke. We use the US National Health and Nutrition Examination Survey 1988–1994 and
compare results with three commonly used methods to compute BA (principal components—PCA, multiple regression—MLR, and
Klemera–Doubal’s method—KD). We show that SEM-based estimates of BA differ significantly from those generated by PCA and MLR
and are comparable to, but have better predictive power than KD’s. The proposed estimators are flexible, allow testing of assumptions
about functional forms relating BA and CA, and admit a rich interpretation as indicators of accelerated aging.

Keywords: biological age, aging, mortality, biomarkers

Significance Statement:

Several methods have been proposed to estimate biological age (BA) from available biomarkers, all of them rely on linear regression
approaches, and all constrain the functional form of the relation between chronological age (CA) and BA. Structural equation model
(SEM)-based estimators relax assumptions about functional forms and do not impose parameter constraints. Our empirical results
suggest that parameter constraints invoked by other methods are unnecessary and could produce misleading inferences. One of the
proposed BA estimators, outcome-dependent, is the only one that suggests faster underlying physiological deterioration relative
to CA. This is consistent with accelerated biological aging and senescent mortality. SEM-based estimators could provide empirical
evidence to discriminate between competing mechanisms proposed in evolutionary biology to explain senescence and mortality
acceleration.

Introduction
Differences in health status at older ages are the result of
biological processes responsive to accumulation of exposures
across the lifespan. These exposures are highly diverse, their tim-
ing stretches from preconception and in-utero environments to
adulthood, vary widely across individuals, and lead to sizeable
heterogeneity in the pace of health status changes experienced as
people age. Chronological age (CA) is a standard, easy to measure,
indicator of health changes because it is correlated with observ-
able markers such as the incidence of chronic disease, disability,
and death. However, CA is a crude proxy of the underlying physio-
logical processes that induce deterioration. An alternative to CA is
biological age, BA, an indicator of age-related latent physiological
change computed with the aid of a battery of biomarkers of major

physiological domains (1–5). Estimates of BA are more strongly as-
sociated than CA with many physical health outcomes (3, 6) and
also depressive symptoms (7).

Methods currently in use to estimate BA rely on regression
approaches in which BA is modeled as a linear function of CA
and an array of biomarkers. We use the term biological markers
to refer to general indicators of functioning of multiple systems
[including DNA (base pairs sequence), DNA protein production
(transcription, translation), metabolites, and chromatin state and
markers of physiological domains (metabolic, respiratory, cardio-
vascular)]. We reserve the term biomarkers to refer to a subset of
biological markers known as indicators of physiological states.
These include plasma proteins, urine metabolites, and external
markers such as body temperature, blood pressure, pulse, BMI,
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and waist circumference. When no confusion is likely, we will
simply use the shortcut “marker”. Empirical evidence suggests
that the predictive power of a method proposed by Klemera and
Doubal (2) is superior to that of two traditional methods (princi-
pal components—PCA and multiple regression—MLR) (3). In this
paper, we propose two flexible estimators that improve empiri-
cal performance and admit interpretations as indicators of la-
tent physiological deterioration. The first estimator is “outcome-
free” and depends solely on the parameters of a structural equa-
tion model (SEM) that represents relations between a latent con-
struct, BA, observed CA, and observable biomarkers. The second
estimator is “outcome-dependent (OD),” also requires SEM and,
in addition, must be anchored on the modeling of an outcome of
physiological aging. Although the current version of this method
we discuss here uses mortality, other health outcomes are also
plausible anchors.

The next section briefly reviews the concept of biological ag-
ing and the utility of BA. The “Materials and methods” section de-
scribes existing BA estimators, introduces two new ones, and ap-
plies the proposed estimators to the prediction of adult mortality.
The “Data” section summarizes the National Health and Nutrition
Examination Survey (NHANES) 1988–1994 data set and identifies
the biomarkers used in the analysis. In the “Results” section, we
review estimation strategies, compare BA estimates from differ-
ent methods, and examine the behavior of the difference between
BA and CA, �BAt0 , as a predictor of adult mortality. The “Sum-
mary and discussion” section summarizes, identifies limitations,
and proposes extensions.

BA and senescence: Is BA a useful concept?
Progressive physiological deterioration is of growing interest in
biomedical and aging research, and has been studied using an in-
dicator referred to as BA (2, 4, 8). An ideal estimator of BA should
be based on joint information about multiple domains ranging
from standard biomarkers of selected physiological states such as
blood pressure, glycated hemoglobin, lipid profiles (2), to genetic
markers such as telomere length, to indicators of neurodegener-
ative activity such as plasma NfL, total-tau, and amyloid beta-
40 and -42 (9), to markers of epigenetic modifications, including
DNA’s differentially methylated sites (10). However, and up until
recently, the indicators available to population health researchers
in large, nationally representative surveys are limited to one or at
most two domains, physiological states, and (epi)genetics [more
indicators are available in small epidemiologic and cohort stud-
ies (11, 12)].

Existing methods to estimate BA are based on indicators for
either epigenetic or physiological functioning. For example, epi-
genetic clocks, a surrogate of BA, do not require information
on biomarkers (10) and, conversely, estimators of BA based on
biomarkers include neither epigenetic nor genetic information.
There is some empirical evidence suggesting that BA estimates
based on a limited number of readily available biomarkers are
good predictors of mortality (3, 6), onset of chronic illnesses, in-
cluding stroke and cancer (9), and even cognitive and physical
decline (11). In theory, and because it must reflect latent phys-
iological status, BA should also be sensitive to distal exogenous
stressors, such as socioeconomic and environmental factors, or to
proximate conditions, such as medical interventions and health
behavior modifications. Finally, BA will also be affected by the in-
herent stochasticity of the aging process (13, 14).

Thus defined, BA is a latent variable that need not march
in lockstep with CA within finite life span segments. Thus, for

example, as a result of successful treatment of chronic condi-
tions, physiological functioning may improve, albeit transiently,
and thereby decelerate biological aging even though CA main-
tains its pace of increase. In this case, and only in the range of
ages within which the interventions have effects, there will be a
weak association between BA and CA. This may have happened
in some subpopulations after adoption of interventions to lower
cholesterol and blood pressure (15). The reverse is also possible:
Individuals who are exposed to teratogenes early in life may ex-
perience excess deterioration at adult ages and BA will increase
more rapidly than CA after individuals attain critical ages beyond
which the delayed effects of early exposures is manifested. Sim-
ilarly, adoption of deleterious health behaviors, such as smoking,
poor diet, alcohol consumption, and lack of physical activity, could
accelerate aging above and beyond what is expected from the pas-
sage of CA(An example of apparent disharmony between BA and
CA is findings showing that while the US population is aging (i.e.
average CA is increasing), BA is declining (6, 11)).

Finally, BA may prove useful in two different areas of research.
First, it could provide empirical evidence to discriminate between
competing mechanisms invoked in evolutionary biology to ac-
count for senescence and mortality acceleration (14, 16–20). Fur-
thermore, it will enrich the demographic tool kit to study popu-
lation aging and broaden available empirical evidence, which is
currently limited to the workhorse in the area, e.g. country-based
aggregate mortality rates (21–23).

Results
Summary statistics
Descriptive statistics for the biomarkers included in the NHANES
1988–1994 sample for the total population and for men and
women are shown in Appendix Table S1. About half (52.6%) of
the participants are women with an average age of 49.2 y. Men
are slightly older, with a mean of 50.3 y, and had higher average
values than women in most of the physiological systems, includ-
ing indicators of cardiac, lung, kidney, and liver function. In con-
trast, there were no important gender differences in markers of
metabolic and immune/inflammation. With two exceptions (albu-
min and forced expiratory volume), higher values in a biomarker
are associated with worse underlying physiological status(The ex-
ceptions are consistent with the underlying physiological mean-
ing of these biomarkers: Lower values in FEV correspond to worse
lung functioning while low albumin values are related to heart at-
tack, stroke, functioning loss, and death among older adults (24)).

Tables in the Appendix (Tables S2 to S5) display parameter es-
timates of the linear and nonlinear SEM models for the total, fe-
male, and male samples. According to all three measures of fit
(Appendix Table S5), the linear form of the SEM model performs
marginally better than the log linear form in all three samples.
In both model specifications, the estimated coefficients of effects
of BA on biomarkers are statistically significant, contained within
CIs excluding zero, larger for males than for females, and, finally,
other than those for expiratory volume (FEV) and albumin, posi-
tively associated with BA (see above).

Estimates of BA
We first compute BA using SEM model parameters (Appendix Sec-
tions SI and SII). Each individual in the sample is assigned four
BA values: Two (linear and nonlinear SEM) associated with the
outcome-free method (OF) and two (linear and nonlinear SEM) as-
sociated with the OD estimate. Other estimates of BA are com-
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puted according to each method’s protocol. To test hypotheses
about the relations between BA and CA, we estimate the linear
association between BA and CA, on one hand, and between CA
and the difference between BA and CA (�BAt0 ), on the other. Re-
sults are shown Appendix Table S6. As should be expected from
the method’s assumptions, Klemera–Doubal’s method (KD) pro-
duces an intercept equal to 0 and slope equal to 1 for the linear
association between BA and CA for both females and males. In
contrast, all other methods imply intercepts and slopes that are
statistically different from 0 and 1, respectively, in violation of KD
assumptions. Estimates of the slope of BA on CA in the MLR, PCA,
and the OF SEM are smaller than 1. The OD SEM is the only method
generating an estimated slope greater than 1. For example, among
males, the estimated slopes attain values 0.48 (MLR), 0.62 (PCA),
0.87 (linear and nonlinear OF), and 1.20 (linear and nonlinear OD).
Because the OD method is the only one that uses the outcome
mortality to define BA, the slope of BA on CA will reflect the im-
pact of both age related physiological deterioration assessed by
biomarkers as well as the progression of mortality risks with CA
driven by factors unrelated to the biomarkers. The other methods,
particularly MLR and PCA, suggest decreasing physiological deteri-
oration with CA. This is a pattern that could be explained by mor-
tality selection. If so, it suggest that the OD method is less sensitive
to selection than alternative methods.

Finally, the distributions of BA estimates are different across
methods. Those computed from either PCA or MLR have larger
variances and are more symmetrical and normal-like than those
from other methods (Appendix Figure S2). Estimates from KD and
the linear and nonlinear variants of the OF method, produce bi-
modal age-patterns, with values concentrated between ages 30
and 40 and 60 to 70. Estimates from the two variants of the OD
method are similarly bi-modal but with later peaks in the age
range 70 to 80.

Peculiarities of the OD method
Estimates from the SEM OD method are trained on observed mor-
tality and have special properties. They depend strongly on the
(mortality) predictive power of the SEM latent variable reflected
in SEM’s factor scores. By construction (see Appendix Sections SI
to SIII), when the effect of factor scores on mortality is zero, the OD
estimate of BA will be identical to CA. Conversely, nonzero effects
will translate into values of BA that depart from CA. None of the
other methods requires this property to identify estimates of BA
different from CA, since their values are unrelated to the predic-
tive power for any outcome we care to choose. But therein lies the
strength of the OD method: If the researcher’s final goal is to pre-
dict an outcome using the mapping of biomarkers on BA, it is best
to use an OD method trained on such outcome. The procedure will
produce both more accurate predictions and BA’s estimates with
a richer interpretation.

The OD method proposed here relies on information about the
predictive power of biomarkers (as reflected in SEM factor scores)
in relation to a well-defined health outcome(In this paper, we use
mortality, but other outcomes such as a chronic condition or even
disability could be a legitimate target). Instead, OF methods only
rely on the power of biomarkers to track chronological age. As a
consequence, comparing the predictive power of an OD and an OF
method is uninformative, unless the predicted outcome is not the
same on which the OD method relies. The claim we are making is
not about superiority of the OD over OF methods. Rather, we argue
that metrics of BA that are outcome-specific are more appealing
because alternative health outcomes are differentially sensitive to

subsets of biomarkers. Physiological aging involves multiple sys-
tems and not all available biomarkers are equally responsive to
them. As a consequence, a measure of BA that is outcome-specific
is more meaningful and more interpretable than one that relies on
the relation between CA and biomarkers but ignores the physio-
logical manifestation of deterioration. If, for example, the set of
biomarkers in the study happens to be biased toward those as-
sociated with metabolic function, it would be more meaningful
to use an indicator of BA that depends on an external manifesta-
tion of metabolic dysfunction, say Type II Diabetes. Some health
outcomes may be strongly related with each other and, in such
cases, the various OD measures of biological age the researcher
could formulate will be related. If so, it would be possible to pre-
dict one health outcome using an OD indicator of BA based on a
different health outcome.

To compute the OD estimate, we first estimate two Gompertz
mortality models: The first is a null model that uses an individ-
ual’s duration under observation in NHANES (since baseline sur-
vey) and a single control for CA at baseline. With appropriate con-
straints, the estimated coefficient of duration corresponds to a
standard Gompertz slope, e.g. reflects the rate of increase of mor-
tality rates with the passage of time. We interpret this as a mea-
sure of the speed of senescence or aging. In a second, augmented
model, we also include SEM factor scores. In doing so, we are ef-
fectively controlling for variables representing physiological de-
terioration that were omitted in the null model. If these factor
scores truly reflect what we think they do, the magnitude of the
estimate of the duration slope in the augmented model should be
lower than in the null model.

Table 1 displays estimates from the SEM linear model. It in-
cludes the null Gompertz hazard model controlling for CA at base-
line, CAt0 , and, in addition, an augmented Gompertz model that
includes a control for SEM’s raw factor scores. Accelerated aging
can be gauged by both the Gompertz slope and, equivalently, by
the mortality rate doubling time associated with each Gompertz
slope (25). Among women, the reduction in slope is of the order
of 30% whereas the increase in the doubling time from 8 to about
11.3 is 42%. This means that physiological deterioration embed-
ded in factors scores, account for an extra 42% in BA accelera-
tion (similar results hold for males). If the set of biomarkers had
been more extensive, the reductions should have been larger. In
the limit, if we could account for all relevant biomarkers as well
as other indicators of systems’ failure, the Gompertz slope in the
augmented model should converge to 0 and only the level param-
eters would be relevant.

Predicting mortality
Table 2 shows estimated effects on mortality of the difference be-
tween CA and BA, �BAt0 . We use Gompertz survival models for the
risk of death and model the event as a function of duration under
observation, CAt0 , and the difference BA–CA derived from each of
the methods under study. First, the fit of the SEM models is best,
particularly the OD variant, which is clearly superior in Akaike
Information Criterion (AIC) and Bayesian Information Criterion
(BIC) metrics. Second, estimated effects of the difference �BAt0

ranges from a low of 0.031 (PCA) to a high of 0.254 (OD, linear
SEM). We interpret these coefficients as the magnitude of the im-
pact on mortality of cumulative, latent physiological damage not
captured by CAt0 . The two variants of the OD SEM method yield
estimates that are as large as those from other methods. Thus,
while estimated effects in the linear variant of the OF method for
females translates into increases of 10% [100∗exp(.097)] per unit
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Table 1. Parameters of hazard models for the SEM linear and OD estimator.

SEM: linear

CA 95% CI CA and FS(BA) 95% CI

Females
0.087 (8.0) [0.08, 0.09] 0.061 (11.3) [0.06, 0.07]

k 5 × 10−5 [3 × 10−5, 6 × 10−5] 4 × 10−5 [3 × 10−5, 5 × 10−5]
FS(BA) — — 1.517 [1.26, 1.77]

Males
0.080 (8.7) [0.08, 0.08] 0.056 (12.4) [0.05, 0.06]

k 1.1 × 10−4 [9 ×10−5, 1.5 × 10−4] 1 × 10−4 [7 × 10−5, 1.3 × 10−4]
FS(BA) — — 1.837 [1.54, 2.13]

FS(BA) = raw factors scores from SEM model. Column CA shows estimates of β from a null Gompertz model: μ(CA(t)) = k · exp(β · CAt0 ) · exp(β · t). The column CA
and FS(BA) shows estimates from an augmented Gompertz model that also includes FS(BA), namely, μ(CA(t)) = k · exp(β ′ · CAt0 ) · exp(β ′ · t) · exp(γ · FS(BA)). Values
in parentheses in columns CA and CA and FS(BA) are the doubling times associated with slopes (see Appendix Table S7 for SEM nonlinear).

Table 2. Coefficient estimates from Gompertz proportional hazard models using the difference between BA and CA, �BAt0 , as a predictor
of the risk of death (NHANES 1988–1994 and 2015 mortality follow-up).

Parameter KD MLR PCA SEM: linear SEM: nonlinear

OF OD OF OD

Female
�BAt0 0.072∗∗∗ 0.043∗∗∗ 0.031∗∗∗ 0.097∗∗∗ 0.254∗∗∗ 0.071∗∗∗ 0.243∗∗∗

β 0.091∗∗∗ 0.105∗∗∗ 0.098∗∗∗ 0.102∗∗∗ 0.072∗∗∗ 0.097∗∗∗ 0.074∗∗∗

k 0.00003 0.00001 0.00002 0.00002 0.00019 0.00002 0.00016
AIC 13,696.8 13,819.1 13,821.2 13,666.0 12,551.8 13,670.8 12,620.7
BIC 13,716.2 13,838.5 13,840.6 13,685.5 12,571.2 13,690.3 12,640.2

Males
�BAt0 0.061∗∗∗ 0.041∗∗∗ 0.030∗∗∗ 0.083∗∗∗ 0.223∗∗∗ 0.061∗∗∗ 0.215∗∗∗

β 0.083∗∗∗ 0.100∗∗∗ 0.092∗∗∗ 0.093∗∗∗ 0.065∗∗∗ 0.089∗∗∗ 0.067∗∗∗

k 0.00009 0.00003 0.00005 0.00005 0.00043 0.00006 0.00037
AIC 15,733.0 15,839.3 15,819.7 15,710.6 14,478.4 15,726.1 14,546.5
BIC 15,752.1 15,858.4 15,838.8 15,729.7 14,497.6 15,745.2 14,565.6

∗∗∗P-value < 0.000. Parameter estimates correspond to the model: μ(CA(t)) = k · exp(β · CAt0 ) · exp(φ · �BAt0 ) · exp(β · t). Since we constrain the coefficient of CAt0 to
be identical to the coefficient of duration, its value is the same as β in the table.

of difference between BA and CA at baseline, the excess mortal-
ity rate in the OD method is approximately 1.28 = [100∗exp(.254)].
The two SEM linear variants produce estimates similar in mag-
nitude to those from the KD method but are twice as large as
those from MLR and PCA. Finally, note that in all cases, the esti-
mated Gompertz slope for males and females are within the nar-
row range expected for human mortality, 0.07 to 0.12, but the low-
est values are associated with the OD method (13, 14, 17).

To compare the predictive power across models, we estimate
the area under the receiver operating characteristics curve (AUC)
(see Appendix Table S8). Higher AUC values are typically asso-
ciated with better predictive performance. The table shows esti-
mates for three levels of specificity (80% to 90%, 90% to 100%, and
0% to 100%). These results confirm that the SEM-based methods
perform better. For example, the OD method (both linear and non-
linear) has the highest AUC value across all specificity levels and
attains an overall predictive power (0% to 100%) of over 90% for
both women and men.

To better assess the implications of estimates in Table 2, we re-
sort to a more easily interpreted metric, namely, life expectancy at
age 65, E(65). We compute predicted values of E(65) using the es-
timated hazard model in alternative scenarios for BA and CA. To
define these scenarios, we vary the difference �BAt0 in the range
between 0 and 5 y, i.e. a typical individual would be between 0
and 5 y biologically younger or older than her CA. We contrast
predicted values of E(65) for individuals whose BA differs from

their CA at baseline with those with BAt0 = CAt0 . Figure 1 displays
values for the corresponding differences. The figure includes four
quadrants, each associated with a combination of difference be-
tween BA and CA (positive or negative) and difference in predicted
E(65) (positive or negative). Two regularities stand out. First, as ex-
pected, all points fall in the upper left and lower right quadrants,
e.g. increases (decreases) in the differences between BA and CA
lead to declining (increasing) E(65). Second, the rate of decline of
E(65) from the OF and OD are larger than in other cases. In partic-
ular, the PC and MLR estimates lead to changes in E(65) that are
shallower and less sensitive to variation of the indicator of physi-
ological deterioration.

Application: Accelerated aging by gender,
race/ethnicity, and education
What is the relation between �BAt0 and individual characteris-
tics? To study this, we estimate models for �BAt0 that include
dummy variables for gender, race/ethnicity, and educational at-
tainment. We use education and race/ethnicity since, in the
United States at least, these are the two most important individ-
ual characteristics associated with poor health and mortality. The
race and ethnicity categories correspond to standard groups em-
ployed in population health literature. The goal is to determine
whether OD estimates lead to inferences about disparities that
are consistent with that depend on more conventional outcomes
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Fig. 1 Relative changes in life expectancy at age 65, E(65), for a given change in BA relative to that of individuals with no cumulative latent
deterioration at baseline BAt0 = CAt0 estimated from Gompertz models from Table 2.

(self-reported health, morbidity, and mortality). Table 3 displays
results. According to AIC and BIC metrics, the SEM methods have
a better overall fit. Also note that, as forced by initial constraints,
the KD’s estimates are close to zero. With the exception of the non-
linear SEM, age effects are negative and statistically significant.
Furthermore, the estimated effects of educational attainment and
race/ethnicity are as expected: Non-Hispanic Blacks and Mexican
American have positive differences �BAt0 , e.g. they are biologi-
cally older. Similarly, those with the lowest education have smaller
differences. In sum, individuals in the most disadvantageous po-
sitions have higher BA, a reflection of more rapid aging. An im-
portant feature of these results is that the absolute magnitude
of estimates from the SEM models are smaller than those from
other methods. This is because methods other than SEM generate
distributions of �BAt0 with larger variances.

Summary and discussion
Summary
We propose a generalized method to estimate BA via an SEM. We
report four main findings. First, SEM-based estimators relax as-
sumptions about functional forms relating CA and BA, avoid im-
posing parameter constraints, and facilitate testing of hypothe-
ses about their relations. The empirical results show that a linear
functional form with slope different from 1 is more suitable and
that parameter constraints imposed by other methods are ques-
tionable, weakly justified, and unnecessary.

Second, predicted values of BA from the SEM-based methods
are comparable to those obtained from KD (2) but very differ-
ent from the remaining methods. The OD estimates we computed
from NHANES cannot be directly compared with those that utilize
epigenetic reads (e.g. PhenoAge) but the proposed method could
be easily extended to do so (see below). In an effort to assess how
different PhenoAge and OD estimates are, we use the US Health
and Retirement Survey (HRS) 2006–2016. This data set includes in-
formation to estimate epigenetic clocks and is the basis for com-
putation of PhenoAge estimates (26). Unfortunately, HRS only in-
cludes five biomarkers thus placing the OD estimator at a disad-
vantage relative to those obtained from NHANES. Appendix Sec-
tion SV shows results. The distributions of BA estimates from Phe-
noAge and OD are different: Relative to OD, PhenoAge follows a
highly smoothed distribution, its location is displaced to the left,
and its variance smaller (see Appendix Figures S3 to S5). Clearly,
OD and PhenoAge are measuring different objects (Appendix Fig-
ure S3). However, even though the OD estimator is based on much
less information, it generates BA age patterns similar to those
from PhenoAge.

Third, predictions of mortality risk based on models that in-
clude the effects of �BAt0 , show that SEM methods lead to im-
proved model fit (AIC and BIC metrics), better predictive accuracy
(AUC) and, in all cases, imply larger mortality risks than PCA or
MLR methods for individuals with the same CA.

Fourth, we show that the OD method allows inclusion of dif-
ferent dimensions of aging and results in models that fit the
data more precisely, at least in the case of mortality in NHANES.
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Table 3. Linear models for the difference between BA and CA, �BAt0 , as a function of sex, race/ethnicity, and education (NHANES 1988–
1994).

Parameter KD MLR PCA SEM: linear SEM: nonlinear

OF OD OF OD

CA 0.003 − 0.474∗∗∗ − 0.352∗∗∗ − 0.125∗∗∗ − 0.122∗∗∗ 0.183∗∗∗ 0.205∗∗∗

Female 0.014 − 0.501∗∗∗ − 0.409 − 0.126 − 0.091 − 0.366∗∗∗ − 0.408∗∗∗

Race/ethnicity (ref= NH-white)
NH

Black
3.603∗∗∗ 3.978∗∗∗ 7.049∗∗∗ 3.425∗∗∗ 3.523∗∗∗ 1.916∗∗∗ 2.039∗∗∗

Mex-
Ame

1.114∗∗∗ 1.042∗∗∗ 1.711∗∗∗ 1.050∗∗∗ 1.105∗∗∗ 0.521∗∗∗ 0.579∗∗∗

Education (ref= less than high school)
HS − 0.907∗∗∗ − 0.947∗∗∗ − 1.995∗∗∗ − 0.777∗∗∗ − 1.003∗∗∗ − 0.630∗∗∗ − 0.609∗∗∗

Coll+ − 1.927∗∗∗ − 2.380∗∗∗ − 4.493∗∗∗ − 1.793∗∗∗ − 1.920∗∗∗ − 1.277∗∗∗ − 1.283∗∗∗

N 8,759 8,759 8,759 8,759 8,759 8,759 8,759
Adj. R2 0.109 0.524 0.277 0.246 0.196 0.459 0.496
AIC 53,256.6 57,636.9 64,824.4 50,290.9 52,937.6 43,628.3 44,077.6
BIC 53,313.2 57,693.5 64,881.0 50,347.5 52,994.2 43,684.9 44,134.2

∗∗∗P-value < 0.000. NH: non-Hispanic; Mex-Ame: Mexican-American; HS: high school; Coll+: some college or more.

Furthermore, when we model the difference �BAt0 as a func-
tion of gender, educational attainment, and race/ethnicity, we
find properly signed and statistically significant estimates of ef-
fects, suggesting that physiological deterioration proceeds more
rapidly among females, those with lower education, and Mexican-
Americans and non-Hispanics Blacks.

Extensions
The framework proposed here may be extended in several di-
rections. First, one could include additional latent constructs in
the SEM to represent different dimensions of BA. For example,
one could introduce an epigenetic domain assessed by multiple
epigenetic (e.g. tissue dependent) clocks and include them side
by side with standard biomarkers representing a partially inde-
pendent second latent variable representing a different domain.
Similarly, a third domain for allostatic load could be added and
assessed via inflammatory markers. An SEM model with these
two additional latent constructs can further elucidate whether
each of them identify complementary, partially overlapping, or
distinct underlying deterioration (27). This approach can produce
both estimates of multiple BAs (one per domain) and/or a sin-
gle, unique, estimate that accounts for the independent contri-
butions of separate BAs. Such an estimator integrates informa-
tion from multiorgan, multicellular, and molecular signatures of
gene expression representing cumulative deterioration. An indi-
cator that efficiently combines information from several biologi-
cal systems should lead to a better understanding of aging, a pro-
cess driven by the joint influences of multiple interacting domains
in the organisms. This approach is in line with systems biology as
it integrates data from different domains to gain an understand-
ing of the system as a whole rather than focusing on individual
factors (28).

Second, extensions of the OD estimators to outcomes differ-
ent from mortality may lead to richer characterizations of the
latent physiological deterioration that drives senescence. Thus,
for example, estimates of BA based on three different and per-
haps related outcomes, such as metabolic disorders, cardiovascu-
lar events, and disability are likely to reveal more than a single
estimate based on only one of them.

Third, an SEM model can also accommodate indicators of dis-
tal and proximate factors. Thus, theories of developmental origins
of health and disease, DOHaD, (29), and life course epidemiology
(30) hypothesize that delayed effects on BA induced by adverse
early conditions are important determinants of adult health. In-
clusion of exposures across the life course might capture the ac-
cumulation of effects posed by chain risk models and will lead to
estimates of their impact on rate of senescence and BA (13).

Fourth, the SEM approach can be applied when the data avail-
able includes assessments of markers at multiple time points. In
this case, the difference between CA and BA becomes a time de-
pendent variable and can provide unique insights on the timing of
occurrence of an outcome chosen as anchor. Trajectories of these
differences will be more informative and can better elucidate the
impact of short-term changes in exposure, interventions, and ex-
ogenous shocks.

Fifth, the estimator of biological age we propose, OD, could
shed light on competing mechanisms invoked in evolutionary bi-
ology to explain senescence and mortality acceleration. Through-
out the paper, we conceptualize senescence as has in geronto-
logical research, namely the slope of the force of mortality at
older ages, also called the rate of aging or Gompertz slope (13, 14).
This parameter reflects the acceleration of physiological deterio-
ration due to cellular death (Hayflick limit), methylation silencing
of DNA regions (coding and noncoding) triggered by environmen-
tal exposures, misfiring of the HPA axis due to stress, etc. Table 1
shows that the measure of physiological deterioration we use (the
structural equation model’s factor scores on which OD depends)
accounts for a sizeable fraction of age acceleration at older ages,
that is, above and beyond what the Gompertz slope suggests. If
the set of biomarkers had been more extensive (and only mildly
correlated with those we currently use), then our estimate of BA
would account for an even larger fraction of the age acceleration.
In the limit, if we could account for all relevant biomarkers, as
well as other indicators of systems’ failure, the Gompertz slope in
the augmented model should converge to 0. In that case, only the
level parameter of the Gompertz function is relevant. This sug-
gests that perhaps it is feasible to assess “components” of the
Gompertz slope associated with the physiological systems a re-
searcher is studying.
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Limitations
The paper has two shortcomings. First, it ignores the role played
by mediating mechanisms. As we argued before, however, and in
contrast to existing methods, the SEM approach can easily accom-
modate a broad spectrum of mediating mechanisms. Second, we
did not test the sensitivity of BA estimates to reductions in the
space of biomarkers used by each method. Consequently, we left
unexplored the issue of whether different combinations of avail-
able biomarkers may influence the robustness of BA estimates.
What sort of predictive losses could be associated if a subset of
biomarkers is entirely missing? How different would the BA esti-
mates be? Is there a way to adjust for these losses? How portable
are these estimates from one study to another?

Conclusion
The proposed methods to estimate BA have distinctive advan-
tages, including additional flexibility and generalizability, produce
estimators with better (mortality-related) predictive power than
alternative ones, and admit richer interpretations as indicators of
latent deterioration processes and accelerated aging.

Materials and methods
Alternative BA estimators
Existing estimators
There are three widely used methods to estimate BA from
biomarkers as an alternative to CA (2, 4, 8). All three methods as-
sume a linear association between CA and biomarkers. The first
method is based on multiple linear regression models (heretofore
MLR), in which a set of biomarkers are included as covariates of
CA and predicted values from the model are interpreted as indica-
tors of BA (4, 5). The second approach uses principal components
(heretofore PCA) to shrink the space of biomarkers to a small
number of principal components while optimizing the amount of
variance explained (8). The third method (2) (heretofore KD), is a
two-step procedure that first computes bivariate regressions be-
tween each biomarker and CA, and then combines parameter es-
timates from these regressions to estimate BA. All three methods
assume a linear association between BA and CA or invoke even
stronger constraints (e.g. unit slope) that are inconsistent with
theoretical arguments suggesting that aging and senescence are
highly nonlinear processes (14) and not always march in lockstep
with CA.

Two new estimators
We propose two new estimators for BA, which we refer to as the
“outcome-free” (OF) and “outcome-dependent” (OD) estimators.
Appendix Sections SI to SIII include an extensive and detailed def-
inition of these estimators.

OF estimator

This estimator requires two stages. First, we formulate a simple
SEM to capture the relations between a latent trait, BA, and ob-
servables, namely, CA and relevant biomarkers. The SEM model is
general for, in addition to the biomarkers, it allows the inclusion of
indicators of other latent individual traits that might be related to
exposures influencing BA and its relation to CA and biomarkers.
The SEM model assumes that BA is a latent variable measured
by observed biomarkers and related to CA by flexible functional
forms (Appendix Figure S1). SEM is well suited since it allows rep-
resentation of the target latent construct (BA), empirical estimates

always reflect the variance–covariance structure of the selected
biomarkers and CA, and, in addition, the model fully accounts for
measurement errors in the explanatory variables, i.e. biomarkers
and CA (31). Thus, an SEM model is primed to capture synergies
between the biomarkers and CA. Moreover, it does not matter if
one uses the original scale of the biomarkers (unstandardized)
or standardizes them, the SEM model produces the same factor
scores in either case (31). Because the methods we propose (OF
and OD) use SEM factor scores to produce BA, it follows that BA is
not affected by biomarkers variable scaling.

In a second stage, we compute factors scores and generate
estimates of BA that are either linearly or nonlinearly related
to CA. SEM’s factor scores [FS(BA)] are unitless quantities that
can be used to rank individuals on the unobserved BA and that
fully reflect measured variables and their relations (i.e. variance–
covariance structure). That is, the FSs can be thought of as a map-
ping of the vector of unknown BAs onto a vector of real values
that preserve the ranking of BA implied by CA and biomarkers.
It is up to the researcher to propose models (as we do here) to
transform these factor scores into fully scaled units (in our case
indicators of biological age). To produce scaled values of BA, we
regress the observed CA (linear case) or ln CA (nonlinear case) on
the FSs. We then take the predicted values of CA as estimates of
BA. In addition, we can test null hypotheses about the values of
the linear and nonlinear parameter estimates. When we fail to
reject the null that constant and slope are 0 and 1 (linear case)
or 1 and 1 (nonlinear case), the SEM model reduces to the very
restricted functional forms assumed in the other three methods
(see Appendix Sections SI to SIII, for further results).

The SEM at the base of the OF estimators has three advan-
tages. First, it represents explicitly an unobserved, latent, process
of physiological deterioration and its parameters. In particular,
the parameters relating CA and BA reflect such process and are
theoretically meaningful. Second, unlike extant methods, the SEM
can include not only biomarkers but also a broad array of observed
variables reflecting exposures to risks and medical or individual
interventions that could directly affect BA and/or the relation be-
tween CA and BA. Third, the SEM model admits not just one, but
multiple functional forms and yields information to empirically
search a functional form that best fits the data.

OD estimator

Computation of OD involves a second stage different from the one
supporting the OF variant. Once the SEM model is estimated and
the FS’s are computed, we define a health outcome of interest, O,
and model it as a function of FS and CA as follows: (i) we first
estimate the probability of observing the outcome O as a function
of both CA and FS, pr(O) = �(FZ, CA) and then as a function solely of
CA, �(CA), where �(.) is a known, one-to-one function; and (ii) we
identify the value of CA, ̂CA, that satisfies the identity �(FS, ̂CA) =
�(̂CA) and we let ̂CA be our estimate of BA. When pr(O), one one hand,
and CA and FS, on the other, are directly related, ̂CA ≥ CA. In this
case, the difference between the two represents the impact of past
accumulated damage which is embedded in the SEM biomarkers.

Although the OD BA estimator defined here uses mortality as
outcome, other outcomes might also be suitable. This opens the
possibility of testing the existence of biological aging in physio-
logical systems that may be responsible for different health out-
comes. Indeed, one could generalize and formulate multiple esti-
mates of BA, each one related to a particular health outcome (see
the “Discussion” section). Our OD method is based on estimation
of a Gompertz proportional hazard model for the observed mor-
tality experiences in the data (see Appendix Section SII for fur-
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ther details). When we do not control for FS, there is an omitted
variable associated with age (underlying deterioration) that influ-
ences the estimated Gompertz slope (and age effect): Because FS
is a variable positively related to mortality and CA, there is an
upward bias in the Gompertz slope. Thus, the difference between
the Gompertz slope estimate in a model without controlling for FS
and in a model that control for it is a measure of accelerated aging
over and above what is reflected by age alone and is attributable
to latent deterioration.

Mortality modeling
To illustrate the use of the new and existing estimators of BA,
we model mortality and seek to retrieve effects of CA, BA, and,
most importantly, differences between the two. We use a simple
parametric (Gompertz) hazard. As most extant data sets, NHANES
contains only one set of biomarkers assessments corresponding
to the time of the baseline interview. Consequently, we estimate a
reduced model with an added fixed covariate, �BAt0 = BAt0 − CAt0 ,
yielding

μ(CA(t)) = k · exp(β · CAt0 ) · exp(β · t) · exp(φ · �BAt0 ) . (1)

The parameter φ is a measure of deterioration as assessed at
time t0, at age CAt0 (see Appendix Section SIII for further details).
Although simplified, the model can still reveal the impact of an
initial condition, namely, the accumulated latent deterioration at
age CAt0 , which is added to the effect of CA. As shown in Table 2,
the fit of [1] to the NHANES data is best in AIC and BIC metrics
when using a linear SEM (OF) to predict BAt0 . Estimates of the area
under the receiver operating characteristics curve (ROC curve)
show that the linear and nonlinear SEM models perform better
than other methods (Appendix Table S8). (All analyses were con-
ducted using the R statistical software version 4.0.1 R Core Team.
2020. Available: http://www.R-project.org/.)

Data
We use data from the third National Health and Nutrition Exam-
ination Survey (NHANES III), a nationally representative, cross-
sectional study conducted by the National Center for Health
Statistics between 1988 and 1994. NHANES III data were col-
lected from at-home interviews and examinations taking place
at a Mobile Examination Center. In this paper, we selected peo-
ple aged 30 to 75 y to focus on the adult population and excluded
older adults (aged 75+) to reduce mortality selection bias. Of the
12,517 NHANES subjects, aged 30 to 75 y, our final analytic sam-
ple included 9,389 participants with complete information on the
biomarkers of interest.

Biomarkers
We selected nine biomarkers representing underlying physiologi-
cal functioning of seven major systems (Appendix Table S1). These
markers have been shown to be associated with adult mortality
and survival (3) and have been used routinely as clinical mark-
ers of underlying diseases (32). Details of data collection and as-
say processing for blood biomarkers are elsewhere (see NCHS
reference manuals at https://wwwn.cdc.gov/nchs/nhanes/nhane
s3/manualsandreports.aspx). As noted in Appendix Section SB.1,
it does not matter if one uses standardized or unstandardized
biomarkers, the SEM model produces the same factor scores in
either case.

Mortality
The NHANES III (1988–1994) includes a mortality follow-up con-
sisting of individual observations linked to National Death Index
records through 2015. We excluded deaths due to HIV, violence,
or accidents as these are unlikely to be due to an age-related pro-
cess. Data on mortality was available for all NHANES participants
covering an interval of time between 21 and 27 y as the baseline in-
formation was collected over a 6-y period, between 1988 and 1994
with a mid-point at about 2003. Our estimates of life expectancy
at age 65, E(65), are similar to those from national-level data from
the National Center for Health Statistics (NCHS) in 2003 (33). For
example, we estimated females’ E(65) to be 19.9 y versus 19.7 y in
NCHS and 16.8 for males, identical to NCHS’s estimates.
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