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Introduction

In angearlier.paper;.a theory..of. g-decay: was_ developed whose. aim was to.
take into account the influence of nuclear structure on a-decay. The theory
was found tb be successful in explaining the fine structure of the Pozll
o-decay. (Relative intensities and coefficiegts in a-y angular correlations -
were obtained in good agreement with measured values).

In this paper we shall briefly outline again the derivation of the
formulas which are then applied to discuss the ground state transitions of
even-even and odd-even nuclei in the region around Pb208 and the fine

- structure of some a-decays in this region.

The nuclear wave functions are approximated by shell model wave functions
and. good agreement is obtained with experimental data.z Finally we shall glve
the formulas that are necessary to treat a-decays of deformed nuclei on the
basis of the unified model.

Derivation of an Expression for the Decay Constant

We consider -a system of A nucleons (Z protons and N neutrons) and des-

cribe it by means of the time dependent Schroedinger equation,
H qS(/..,A,t) = aﬁgb(/--A)t) (1)

Assume for the Hamiltonian the following form,

= EZ: _ £
H = L EA,: + V.. A) (2)
[
V describes the interaction of all the particles. It is further assumed that

the wave function (1.... A;t=0) is known and that this

wave function is the wave function of the parent nucleus.

1. H. J. Mang, Zs. f. Phys. ;&@, 5;2 (1957). For details also H. J. Mang,
Sitzungsberichte der Heildelberger Akademie der Wissenschaften, in press
(1958).

2. J. 0. Rasmussen, Phys. Rev. 113, 1593 (1959), also UCRL report 8517.
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Next we separate off the trivial center of mass motion of the system and

decompose the reméining Hamiltonian in several terms.
/Z:Z
H = Ha23%) + Hy (5.0 A) = 2 Ap + W (GK)

where 1, 2, are protons, 3, 4 are neutrons.

Ha describes the internal motion of a system consisting of two protons
and two neutrons. Hk déscribes the internal motion of the remaining A-L
nucleons. R is the relative distance between the center of mass of particles

1; 2; 3; 4 and the center of mass of the remaining particles 5; 6; ... A; and

B %MZAJR is therefore the operator of the kinetic energy associated with the
relative motion of the two groups nucleons. W(aK) accounts for the interaction
between the two groups of particles. We should mention that the Hamiltonian
H has not lost its symﬁetry properties.

For obvious reasons we shall refer from now on to these two groups of

nucleons as Qq-particle. and daughter nucleus. Consequently we call the
solutions of the equations,

He X5 - e, XC
}—+l< k}‘if_ = EE:K gf#{jr

the internal wave funetions of the ¢g-particle and the daughter nucleus. 1In

(4)

these equations T and 6 are short hand notations for those sets of quantum
numbers that are necessary to determlne the solutlons :K“ and S}; completely.

Furthermore if >( >< and %JK 9¢ are bound state solutions of (L)
the following relation holds,

<XZ'LPSII W k) | X We > =S d . V(R)RRS)

The meaning of this relation is that always when the Q-particle and the

daughter nucleus are well separated in space the interaction between them is
described by a simple potential. Furthermore V(R) approaches the Coulomb
Eiééélsé_ rapidly. For most purposes therefore it will be
sufficient to use instead of V(R).

( R =™ 8.5 - 9.0 - 10713 ca for natural o emitters. )

potential
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These considerations indicate that it might be reasonable to write for the

time-dependent wave funct10n¢ ... Ast),

gS(z....A,.t) = a(t)qﬁ (1... . A) +Z (o[e',‘ ’&:éf’»,i)‘

Z"(:‘L,. (6)

A {l?(f.(f{:? ;{?L<7Et€3> :>V1fn<’;gé‘>~}

A 1s an antisymmetrization and normalization operator, while CPL. (e R)

is a solution of the equation,

2 Pk A L(L¥) Z-2
((Hx&Rre :;M R® +Z(R)Q_€}SD(6R w

and is normalized as follows:

fgohcm) P (€R) R*dAR = §ce-e’) (8)

ce,t)

.To get unique solutions3 for the coefficients a(t) and G‘ ToL ™

it is necessary to impose the condition,

faLG A{X WRERY gt D=0 o)

° ?.'.'FLM

Of course @ (1... A;t) may always becexpanded in the above form (Eq 6) a

long as we sum over a complete set,of function Xx and LIJK . But we know
that for energetic reasons the terms in the sum over T and € corresponding
to unbound states cannot contribute to the (-decay. Therefore we split the
sum into one over bound states only and one in which ¥ or & or both corres-
pond to unbound states and neglect the latter sum. With this approximation
and taking into account angular momentum conservation as well as the fact that
there is only a single bound state of the q-particle we rewrite@(l ..... Ast)

in the following form,

3. H. Casimir, Physica 1, 193 (1934).
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L
P A t) = alt) D )+ /{a ﬁjf{c

Yoo TEL

(10)
P (®e€) %Z ClLy Iy mw b / (n) j

Introducing this expression for QE*into the Schroedlnger equation (l) we
get a system of coupled integrbdifferential equations for a(t) and lgjﬁ_bfé,rj
But this system of equations .decouples and becomes rather simple if one more
approximation is introduced. We neglect nondiagonal matrix elements of the

#
type

" ,l A 2(Z-ner B >
<@JJ6‘0-€ / A= “~r/,‘. i M An ' T / ?33 7L e’

1
wiich means we neglect the interac¢tion of the a-particle with the daughter

- . *% » ) : I}
nucleus via the nuclear forces and take only into account the Coulomb inter-
gction; a reasonable approximation at the G-energies involved in natural
x-decays.

The simplified equations read:

- : M - M
Lk ode) = aw B, + 2 [de 4580 (P, /H‘Ea/ﬁbmm)

o - /\1 .
pt[ﬁ-jn(et)-f-ﬁét)(gbwemé/@v Y = (11)

( E. + Ex "‘€> @Js‘z, (€t) + att) <q5w6'45‘ H/ ¢>0:7 >
where - M |

<@o? / I @07 >
QSmeE' = A {X“ C'D"(a €); Cleu;m ) \/‘* €

If we use V(R) as defined in Eq. (5) instead of the Coulomb potential we

3¢

€%

take into account a part of the nuclear interaction.
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Using standard technlquesuto solve the equations approximtely we get
(Eu -+ F-' "‘L ) t
alt) = 2% a

—Z“-(Eu-i'l"-a‘rjt ~£ (Exr €+ €)E

0
é «e) - EotF-Ev - €,-6 -t ygr <CR:'H-E°| va:’“t‘>

- M M X (12)
s -E | D /
(}y.‘ ' \ﬁ,—si <?7J°"‘€ /H . o/ 0 ) €= Ea-ex'EK+P
~4 (€ E+E-Ey-F i)t

! 1-e* M - >
JZL:S“ [%6 Eo+P-FEi-6y-€ “"'f" I<§°3 IH‘EO I @:’JW‘E >/

The conditions for the approximate solution to be a good one are,

F&|Bo-Ec~Eu| = € (13)
P& | Fo- Ex - €x [
and M .

<CP?J€L€|H l@°7>/

&
has to vary slowly compared to [(Eo'*"h By -€y- 5) + ¢ J
if € varies between €4y *+ ¢ and € -¢". For all natural a-emitters

these_;"conditions are well fulfilled.

The problem of determining the decay constant is now reduced to the cal-

culation of the matrix elements I H E° >
, /%L €
But those matrix elements cannot be calculated unléss 29 1S defined
M
in a rigorous way. The somewhat vague statement '"the wave function 59

should describe the parent nucleus of the q-decay" cannot be considered as
a definition of “oy M

A natural way to define @7 would be to obtain it from a consideration
of the formation process of the G-emitter. But on a nuclear time scale all
O-emitters are nearly stable. If it were not for the repulsive Coulomb-

interaction. between the a-particle and the daughter nucleus there would be no

L. W. Heitler, Quantum Theory of Radiation, 3rd edition.
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"
Q-decay at all. Therefore another definition of géa’js suggested. It has to

”

— (0) M » | |
&= @c R o (14) .

v : .

be a bound state solution of a Schroedinger equation. -

HO @3

HO is defined as follows:

Nl

T > v ] 3 . v 3 *
i =H if all nucleons are confined in a spherical

volumeuflowith radius L

e
I

—Vc(r)+VC(ro) if one or more nucleons are outside the above

| defined volume L2, . v, is the Coulomb interaction

between the nucleons inside and those outside -rl.o

N is so defined that the interaction between one selected pfoton (neutron)
and all the others that are in ﬂ?w\is repulsive (zero) if the selected proton
(neutron) is outside S, but mos:cly attractive if the proton (neutron) is
insidedflq. Of course there is a maximum value for T because of the condi-
tion that the eigen value problem with H (Eq. 1%) should have bound state
solutions, This definition assures that HO is equal to the exact. Hamiltonian
H in that part of the configuration space where the nuclear forces between the

nucleons play an important role and therefore g§ should be a very close

oY
approximation to an exact wave function as derived for instance from con-
sidering the formation process of an a-emitter. By means of these assumptions
2
1 o . . ‘s .
about \p B the matrix element can be simplified con51derably.

M - -, =M
< iﬁ*g"}qbwms> - [<2») f}f”&’ < o('{,"A)IH‘Ho'

)((' ‘M {ER) Z Clege i i) y/z_:“ (s.. A)> |
£ 1Y . (15) -
(o' ) : M / § R
[T (R | e O (ko) X R R
Ro ~ ““'?‘ .
M ne

> (LyT; m H-m) }"“ SPJG“

i

%
Of course one may assume llgto be nonspherical if one deals with a deformed nucleus.
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The first eqpallty holds because of H -~ E being a symmetrlc operator and
?%y an antisymmetric wave function and the fact that E = E( in a very
good approximation. The second equallty holds because of the definition of
;'(/., A) (Eq. 1k).
Ro is somewhat smaller than r because of the finite size of the o-
particle. The relation between RO and L is schematically illustrated in
Fig. 1.

MU-18835

Fig. 1,
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Because of the freedom in choosing T and consequently Ro’ r, and hence
RO is chosen so that for R > R .

H-ha

X& \T\L. .‘:.> Z__ C'(LJ‘} m N‘“') >/ \1!)\/? Co=

h

([—:K + €, + 6) XN C@ (‘re%)' Z Gy g, m frum) X_w (P,:_m

Using (15, (16) and integrating by parts on R the following expression is

dbualned for the matrix element in question:

<4>w [ H-Eo | (ﬁo:u €, > = )] 7/71“

*
) ; ~ 'a [
g g g, RE dﬂp‘, { (pw o ¢ (ke

TR

ey
N

R=R,

., '
3@ cpu?mj?( chmwy .

R=

y R
am V4! ! (.
foe - (7m) g T e R
(18)

I/
oM s oo (zder 2 Ly vjé
Cib=[# —r " * i1 RZ €. )

C]b (r\zu.) = O
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and defining a function R
ining uneti GQ?JSA L\)

é'ww- (R) = (z)(f)] R % foég‘w C[fx mn ( @a:)
X ZC(L.JJ'mem)y‘_ (19)

the expression for the decay constant is brought 1nto the following form:
R

e 2 tmp-2 (g ar) . A (R4®)-1)
Rs

P 2MR* 2Rs q (k)
(20)
| 2
C_ (Pa) + Qo . aé—lwe‘t.
-l 3y e I=Req ey dR P,
— 2.
— JD Z: 7:> ('6?0) ¢ C(‘JJ 0L
JLE
where,
D = 2 o
| L < % ( S 91_ R)
° t& (’? q _')2.‘ R DC
o (R, C R+ L Fuse
WL 2net o Tuse 1SRG, OR kg,

PL is the well known barrier penetrability as already derived by Gamow in 1928

and JJS,‘_is the reduced width that accounts for the influence of the nuclear

structure on Q-decay.

For the corpection of our treatment-wmqlthat of other authors we refer to
reference (7).

We should also mention that there is no difficulty in introducing a more
sophisticated potential V(R). One has just to replace everywhere the

Coulomb potential by V(R).
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Application of the theory to a-emitters, in the region of Pb

The theory developed in the preceeding chapter will now be applied to
Q-decays in the region of Pb208. We have reasons to hope that for these
O-emitters the nuclear wave functions may be approximated by some sort of
shell model wave functions. .

The detalls of calculating the function (E;; (R and hence the reduced
width &;Jg‘ will be given in an appendlx At the present time we only list

and discuss the assumptions and compare the results with experimental data.

a. Ground state transitions of even-even and even-o0dd nuclei.
We assume tlst the ground state wave functions of even-even and even-odd
nuclei have the following properties:

1. Even numbers of protons or neutrdns are coupled pair-wise to angular
momentum zero. In an even-odd nucleus therefore the last odd
particle is responsible for the total angular momentum. (The
explicit form of the wave function is given in the appendix). These
are the wave functions with seniority O (even-even) and 1 (odd-even).

2a. There is no configurational mixing and the single particle states
involved as well as the order of their filling are taken from the
spectra of nuclei with one nucleon more or less than,Pb208, or
2b. configurational mixing is taken into account on the basis of the so
called "quasi particle model" . ,
3. For the radisl wave functions, harmonic oscillator wave functions are

used..- That means the single-particle wave functions ne ) are

w4 o

n! o , X 2
By - (Rt [ e Lty T ET
"7
LC(éde/«)Y()X(
Lo D) S et e 5

5. S. T. Belyaev, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 31, No. 11 (1958)
B. R. Mottelson, Lectures at the University of California (1959).

(21)

s)
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Furthermore we assume for the a-particle wave functionXa a Gaussian type

. 1
wave funcgion

3
o o B Gy T 2% 1%

3 = V—-L.:-(W.-'ﬁ) - Vlz= CK\J-L:*) $2= EL(L(‘,-»-K‘R-'J}-‘-W )

0, :
where ;r;(tﬁ)is a singlet spin function of particles i and k. For the

constants @, B and R we are going to use the values:

= 0.175 £2
B = 0.625 £ e
R =9f

These values were chosen sco that the RMS radii of the nuclei agree with the
values given by electron scattering experiments.6 But we shall only calculate
relative transition probabilities and therefore the choice of these parameters
is not too critical. 2
With the above assumptions;(i;’%a, 3) we get for the reduced widths d;vgq_
(where J is the angular momentum of the parent nucleus; J s the angular
momentum of the daughter nucleus; and L , the angular momentum of the

outgoing Q-particle) :

Even-even nuclei:

2
Jo:o = T= N, CZJ.+3'N0) Ny (2J3+3'N3) R N (Re) (23)

16 "\;3 24

Nl is the number of protons in the unfilled subshell with gquantum numbers'n.euh
in the parent nucleus. N. is the number of neutrons in the unfilled subshell
with gquantum numbers n313 J& in the parent nucleus. R involves the radial

8 parts of the wave functions and is given below:

- 6. R. Hofstadter, Rev. Modern Phys. 28, 3, 214 (1956).
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Even-odd nuclei:

é3:.0 B 6 (M- ')(ZJ"'z N )Ny (2g+3=0; ) 1R t’:m,’u(@o)

2 3 : . |
Sl - 400 Gu) b G [32

| ' 2 2
Clbi -3) ] Ropeme Ry | Lo

2735

N :
— CLoad
gJLJ'L' Ty NI C'(JlJZL‘) £y 4) N3(2J3+3—N3) .
2 .
me, m, 2, R
R o by Wy 0 (R.)
N. is again. the number of nucleons in the subshell W, Q,, J,. 1In the first two

k3
cases ( SJJO SJJ.L ) Nl is odd. In the third case ( SJ Wi Nl is even and

where is one more particle in the state ’“;) L)JL in the parent nucleus.

Rat it (R,) ., has the following form:
Ma &y M40y

Ml o m, £, (reo) -_—_-[fn,f(h,+f,+-§>! MI.L ("&"'ea_"'i_)!
V‘Jl; quﬂ-
N+

iy
/Msl.c(“;*ej--ri)! M+l (Vn,.-v-é.,,,.-ki)l] 6-(“2+°(F>) 2.

TR <’?°R‘j»;@;;)') ey (L) @]
(25)

2

Z Bg ([3_'_“‘-) C') 3, @(W/z)/?) e o« B K;ﬁﬁ

where,
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-
fa
M_
fl
N
4
S =
2
A
|
|t
N
—
~
+
M\
TN
a
=
+
»
-
o
S

b (arfp) R % L Lty
Reg -1 8

ZN+L = 2 (vi,» M+ Wig ey ) ..,.,.0. oL (.3 e L,'

where the prime means differentiation with respect to the argument 2(a+B )R
The coefficients B‘g are given in Eq. (A8).

With the help of these formulas and using assumption (2a) and the con-
figurations listed in Table 1, we have calculated the reduced widths that are
compared to the experimental data2 in Fig.z,jim; In these diagrams the
experimental and calculated reduced widths are plotted versus the mass number
for the even-even Po isotopes, the even-odd At isotopes and the even-odd Po
isotopes separately.

The reduced width of PoZlo is taken as a standard and set equal to the
experimental reduced width. We hope that in doing this, we minimize the

ambiguities introduced by the choice of the radial wave functions and the set

of parameters o B and Ro'

*It may be shown that varying the parameters within reasonable limits affects
only the absolute magnitude of the radial part of the reduced width R MJmJ (EQ
but leaves nearly unaffected the relative magnitudes we are mainly 1nterested
in. This result indicates also that it 1s sometimes allowed to use a very

handy approximation for the radial part R w@ 0 CP) which arises if one sets
CRANN
B >> . Then
- 4
Ronome, (&) ~ syt |
~ -
’h?,’h,_ 0 (%-0-1.*:‘{_) o’(ha."' L*é) (h3+4*f)-/@*4/%+ﬁ).f

ot

-2«/20 (V”/&)Il L (O(Ro)[_.. (m L (;@2)[*(“@)
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a very useful expression if one wants results quickly. The expression so
obtained is identical with what one would get using the formulas proposed by
Toelhock and Brussaard (P. T. Brussaard and H. A. Tolhoek, . Physica 2k, 233
(1958).) But one has to be very careful in using this expression because

it favors too much'the formation of aéparticles from single particle sﬁétes with

high angular momenta.

¥



Table 1. Shell model configuration for nuclei in the region of PbCC

Proton : Proton :
Element  config.  Neutron configuration Element config. Neutron configuration
P (lh9/2)§ (pl/z)_z(f5/2)_u(p3/z)-2 P Aciiiii (Pl/z)—z(f5/z)56(p3/z)52
Po?t ) (Pl/z)gz(fs/z)au | P " <P1/z>62(f5/z ah(Pa/z)az
po?* " (217205 (£5/5)5 po202 T (myp)y (e )G
PO208 " (P1/2)52 szou " <P1/2)62(f5/2)62
Po>10 " Closed shell Pb206 - (pl/z)c')2
po°te " (2g9/2)g Eb298 " Closed shell
polLh " <2%9/2>g Pp210 e (259/2)2 %i
po?L6 " (Zgg/z)g Pb> e " (2g9/2)g’
po218 " (289/2)2 pp 2l " <2€9/2>§
we ™ <lh9/é>§/z (Pl/z)gz(fS/z)éu(Pé/z)az B oz _(pl/z)az(f5/2)66(p3/2)62
e VARV B (e )R 0 (e
as20T " (217200 (25505 513 S R i I
at?%? " | (®1/2)0 B129” " (pl/z)gz(fs/z)a2
At " Closed shell B1 207 " (pl/z-)[)2
41213 " (2g9/2)§ | 51209 " Closed shell
At2L? " (Zgg/z)g By et " .(2g9/2)g

1E6g-THON



Table 1 (cont'd.)

Proton Proton

Element  config.  Neutron configuration Element config. Neutron configuration

At BL7 (lh9/2 32 (2g9/2)g B 413 1hg ), (Zgg/z)g

1219 ’ (2g9/2)§ B " (2g9/2)g

PP (ng)e (3my )07 (8 5/2 1) B Closea . “(37, /)" “agg ;?2(}9’ 2o
po=®” " (3pl/2)o2 5/2 5/2 7o Ot ) (3P1/2) (2f5/2 5/2 p3/2)6?
po”C" > (3P1/2)02 5/2 5/2 Pb203 ’ (BPl/Z)_ (252 5/2

P07 " (3P1/2)i}2 7o ) (3P1/2)5?(2f5/2);}2

o1l " (Zgg/z /2 P, 207 S ”*(3pl/2)£}2

poct3 " <289/2)§/z Po° o @g9/2)%/2

o215 " <2g9/2>§/2 pott " (2eg 55,

po=tT " (ng/z);/z P ’ (2g9/2)g/2

_L'[_

TE68-THIN
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Reduced width, 8* (Mev)
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Fig. 4.
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The comparison of experimental and calculated reduced widths in Fig. 2,
3, and 4 shows clearly that taking into account the nuclear structure, even in
a very crude approximation, gives results that agree well with the general
features of the experimental data. Especially the behavior of the reduced width -~
when crossing the neutron number 126 is well reproduced

It seems to us, that one no longer needs to introduce a sudden jump of the
nuclear radius at the double magic nucleus Pb208. The increase of the reduced
width when going from N = 126 to N = 123 is quite naturally brought forth by
the change in the single particle states involved in the decay. Particles in
the 2g9 5 subshell for instance are favored over particles in the 3pl/2 and
qu/ subshell 1n forming an Q-particle first because of their higher angular
momentum (compare Eg. 23) and second because the 2g9/2 level belongs to the
next major shell and the radial part of the wave function is therefore also
greater at the edge of the nucleus, which effects the quantity
R{m 0 M8, & my fy, ) Ro ) (compare Eq. 23 and 25).

However, the fact that most of the reduced widths become too small as soon
as one moves away from closed shells indicates that there might be a special
enhancement due to configurational mixing, in particular for eveneeven nuclei.
For’configurational mixing under the influence of a short range attractive
force tends to bring the particles close together,‘an effect which increases
the overlap with the Q-particle wave function in particular as long as one
deals with the'configurational mixing of identical particles.

To get some information about the influence of configurational mixing we
have used wave functions given by the so-called "quasi particle model™ which:
is described in detail in reference 5.

These wave fTunctions are of the following type:

O - /‘(U+V @ty Gomy )]0

for even-even nucle1
and

qbn“' Q:w /— ]— (U/ ’ VJ @’": Q-:v)/o)
J : -

M, + M,
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for even odd nuclei with angular momentum 'J

The wave functions are normalized when

U? + V? =1
J J
The operat:? a;j acting on the vacuum state |O > creates a particle in a
state CEO
The constants U, and Vj are determined so that the energy has a minimum-
and the average value of the particle number < @ / No/;‘ / >
is equal to a. given value N.

We form with these wave functions

(B NP, . XD

and get for the reduced width in terms: of the constants Uj Vj’

even-even nuclei,

- _ 29 =1
2 ' 2),+] ) / / JJ_Z
§E < |2 B v U [V Uy s
:'T o de (27)
2)p-) 2

2 VU, [V, v+ U, U] 5 R

The primes refer to the daughter nucleus.The indizes 1 and 3 are defined in Eq. 23.

Even-odd nuclei

4

é;z

Y

2),+
Gk )V2J+ 2 =2 ov, v (z6)

pR
[V Vi, + U, U, T35 £ Rt (R.)

7l M L,

’m 2l ) ) q 23%
\/3 (4,7 [ »0 L(I,‘f L/J (v{; ] - [jvs L<7 +‘L47 LJJ.] 2
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o= (22 BV U [V VU] T

IL
| K

(S, + @)CEIES) ('-&u.)) v, U; : (29)

3-3 .
! | ————
[VaV)'+ U U5 ] T Roaggme, Ry 1+ &«
MJ% “9'& .
S 2),+ U' - | U ! 2.':).':_'
/ == UV, V.V, + Y, UJ.] 2 Ry, (@)
RN

NI ]

The primes refer to the daughter nucleus.

The results obtained with the hélp of (28) for the even-even Po isotopes
and the single particle states listed in Table 2 are compared to experimental
data in Fig. 5. Again the reduced width of PoZlO has been used as a standard.

It is very encouraging to see that the agreement with experimental data
is now better, in particular for nuclei which are already rather far away
from closed shells. We shall not discuss in detail the assumpfions ‘made  1in
the "quasi particle model"™ but conclude with some remarks about assumption (3)

(single—particle wave function and Q-particle wave function).
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As far as the use of oscillator wave functions as single particle wave
functions is concerned this is mainly Jjustified by our lack of knowledge about
the real single particle wave functions. The fact that the "radial part" of
the reduced width varies only slightly when changing the parameters indicates
‘that the approximation used as well as che parameters @ and B are not too
unreasonably chosen.

Concerning the CQ-particle wave function we feel quite sure, that Eq. (22)
provides a good approximatioh to the actual wave function. There are
experimental  as well as some theoretical7 reasons for this feeling. High
energy electron scattering experiments6 show clearly that a Gaussian type

charge density is an extremely good approximation to the real charge density.

Table 2. Single-particle levels in Pb207, Pb209 and Bizo9

Pb207 Pb209 B1209
Energy Energy Energy
(Mev) (Mev) (Mev)
0.000 ] 0.000 2 0.000 1h
301 /2 €9/2 9/2
.51 2f5/2 0.75 1111/2 0.91 | 2f7/2
0.8 1.56 d 1.6 13
1. 14 .1 2
3 113/2 (2 g7/2) ( ) means the assign-
2.34 2f (.7 1i.-,.) ment is not
2 o BEN Ed
7/ ' 1572 certain.
b. Fine structure of the «-decays. POZlO - Pb206; Pole —> Pb207;
2
Bi.lo - T1206; Bile -~ Tl?o7; BiZlZ - T1208.

It has been shown alreadyl that the fine structure of a-decays, where the

parent nucleus has only few.nucleons outside closed shells, provides a very

sensitive test of any theory of G-decay. Also the assumptions about the nuclear

wave functions are tested.

7. H. J. Mang and W. Wild, Zs. f. Phys. 154, 182 (1959).

[
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*%

. , 21 21
The decays of Po O, Pole 5 Bizlo, Bile, and Bi 1z were chosen for the

following reasons: The number of particles outside closed shells is still so
small, that one can hope to perform configurétional mixing calculations. There
are enough and accurate measurements of intensities of (-lines leading to
excited states of the daughter nucleus and also some Q-y angular correlation
measurements. '

9,10,11 . . .

The decay schemes are given in Figs. 6, 7, 8, and 9. The nuclear
wave functions including the possibility of configurational mixing and the
formulas for the reduced widths are given in the appendix. (A 16 .... A 29).
8,9,10,11

In Table 3 are summarized the experimental data and Some .pre-

liminary calculated results.

*¥
This decay has been discussed earlier, but we include it again for the sake

of completeness.

8. S. Singer, Thesis, University of Illinois, 1957.

9. W. Walen and S. Rosenblum, private communications with I. Perlman.

10. W. Jentschke, A. C. Juveland, and G. H. Kinsey, Phys. Rev. 96, 231
(1954). '

11. I. Perlman and J. O. Rasmussen, Handbuch der Physik, Vol. XLII,'an@

the references quoted there.
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Table 3

Parent

Spin Daughter Spin and Energy of Experimental Calculated Amplitudes Remarks
nucleus and nucleus parity - the state reduced reduced of partial
parity of the of the width width waves
of the daughter daughter (1072 Mev) (1072 Mev) experimental
parent nucleus nucleus values in
nucleus (Mev) parentheses
POZIO 0+ Pbggg 0+ 0.000 0.676 0.676 ,
Pb 2+ 0.803 0.931 1.9 The first set of
211 _ 207 amplitudes belongs to
Po 9/2+  Pb 1/2- 0.000 0.286 0.23 L=3 L=5 the 5/2 the second
5/2- 0.570 0.022 0.064 1.00 0.87 0.57 to the 7/2~ state,
3/2- 0.890 0.350 0.30 (1.00) (0.96) (0.55) 210
((25/2+)) 1/2- 0.000 0.020 : L=3 L=5 The Po ground state
3/2- 0.890 0.038 1.00 0.35 transition is used as
13/2+ 1.63L 0.154 1.00) (0.:5) a standard.
Bile 9/2~- 1 207 1/2+ 0.000 0.275 0. 440 Po’10 is used as a
3/ 2+ 0.350 0.258 0.310 standard
520 1. 72200 1- 0.300 0.028 0.03 Po?t0 s used as
((8-)) 0- 0.000 - 0.0022 0.006 a standard. The 8-
state is assumed to be
1lh 2
212 206 ( 9/2 2g9/2)8’
Bi 1- T1 5+ 0.000 0.166 0.166
Lt 0.0k0 0.126 0.150 The ground state tran-
(ht) 0.328 0.058 0.036 sition is used as a
(5+) 0.472 0.125 0.020 standard for the
(3+) 0.L92 0.221 0.080 transition to excited
(6+) 0.617 0.068 states.

"TE"

T1E6Q-THIN
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We discuss the results for each decay separately.

P0210

Fair agreement is obtained with the experimental data when the wave

13

functions given by True and Ford12 and Newby are used.

POle

The transition to . the f5/2 state ies hindered as .it should be. The results

for the amplitudes of the partial waves agree well with the values derived

from -y angular correlations.

211
The results for PoZlo and Po seem to indicate that transitioms involving

state are still more hindered. (The first excited state in Pb206

5/2," ]
mainly pl/2 5/2
The experimentally reduced widths for the transitions from the isomeric

state of Pole have been included in the table to show that the assumption

the 2f

Uisom = 25‘/2 leads to quite normal reduced widths.

Bile

The reduced width of the ground state transition comes out too lérge by a
factor of T.6 but the intensity of the transition to the first excited state
relative to the intensity of the ground state transition agrees well “with .
experiment. Unfortunately, the -y angular correlation is very sensitive to
small EZ admixtures to the M1 transition (3/2 - 1/20. Therefore we have no

reliable information about the amplitudes of the partial waves.

BiZlO

Quite good agreement is obtained for the transition from the 1~ state in
BiZlO to the 1  state in T1206.' We have not calculated any reduced width. for
the transition to the state assignedn” 2 in T1206. If this state is a 2 state

it is certainly of a highly mjked nature because it cannot arise from the Towest

configuration s pl/2 but has to be brought down near to the 1~ state which

1/2
consists mostly of the configuration ( 1/2 pl/Z)l The ass1gnment 8 for the

12. W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958).
13. N. Newby, Thesis, Indiana University (1958).
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. : 210 . S .
isomeric state of Bi is highly tentazive and no conclusion can be drawn
unless more information about this state is available.

21
Bi 2

The reduced widths are given relative to the reduced widths of the ground
state transition. The agreement with the experimental data is as good as one
can expect assuming a pure configuration lh9/2 (2g9/2)0 1111/2 1- for the

.212
cround state of Bi and pure configurations (351/22g9/2 W+ 5+
b
(Zd 2g + o+ gt ‘for the states in T1208. If one compares the reduced
3/2 o/2)3* 1,5+, 10
width of the ground state transition with the reduced width of Po using pure
configuration throughout one gets
82 _.2l2
Bi
7210 - 0-133

Po
The experimental value is 0.245.

The amplitudes of the partial anes are rather sensitive to configuratioml
mixing — much more than the relative intensities as may be shown with the help
of Eq. A 29. Therefore we do not give numerical values.

We may conclude that it seems to be possible to understand the @-decays in
“he region of Pb208 on the basis of the nuclear shell model with the refinement
of configurational mixing for particles outside of closed shells. We hope to
present soon more detailed calculations where configurational mixing has been

taken into account for the parent and daughter nucleus of all the decays we

have discussed above.

(d-decay of deformed nuclei

To treat the a-decay of deformed nuclel, we have to include in our cal-
culations the quadrupole interaction between the O-particle and the daughter

nucleus.lu That means the potential V(R) has to be replaced by

V(R,6,) = V(R) + V quadrupole (30)

Furthermore, the surface S which was defined by rail = R Eq. (16) may now

be no longer spherical but is defined by

"] = P(/+F/ Clens’) ) (31)

1k. A. Bohr, P. O ' Froman and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk.
29, No. 10 (1955). ,
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These modifications lead %o the following expression for the decay constant

X 2 ' -* M - MK
A = ZW(NXZ) ..-5'_ (1o oo A) _-a__ @ -
= % A2 Z.‘ 2M - I Nseue
JoL (32)
N : - MK X ’ : PR
2 pon - Q) dg dg, dS
I Loy, NELE
Where 33; means the derivative normal to the surface .5 defined in Eq. (3&).
M K : .
The final state wave function gﬁ 1s defined as having the
yeeLe

following asymptotic behavior:

@ o et ClLyd,; m M-m') C,OL(RG) X%(_[?_)

JJTuLE R—vw )
m

J

J - J=9¢
Hﬂiﬂ {:DM-M,K XK>€‘ e ()"D""‘”””z"*(‘ 53
. , , ‘ ‘/ZJ-P-I !
‘X\K)G‘ j ' '><o( = Xo( C/Du (% €) 29+
| | 5
Z_", C Ly 3, sk | ?; { DM,K+/‘*’ Xh’;r
yz .
M ) J=by = G(5) 7 g -t
VI(E) e D, o Koo V]
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The unprimed coordinates refer to the "space-fixed system" and the primed
coordinates to the "body-fixed system". ‘

Each term in the sum on J L. is the transition probability to a final
state defined by the angular momenﬁ&g of the daughter nucleus § and the
o-particle L. & is the sum of the/’particle energy and the rotationsl energy.

The phase20 (-1)9(0) is defined in the following way,

— ke
Xee = ;, 'b' AJ.:CT) @J(LL) (34)
- K.

| s T () &
C")q()X-ks‘ =Z; ~I AJ;(G)'¢~ C)

n - -
k = Z_ ki

¢

‘B

To make the expression for the decay constant scmewhat handier for com-
putation we introduce another set of functions which fulfill the following

boundary condition at the surface S:

, 7 M
MoRm 27+ N %’
LJ‘-J:J Lee -~ {DM Ky /L(’-?—)Xk,e‘

7 - L (35)
7-L =g (c) /M
+ &) -DM K- \>/4. >< -k T u/i’ee)r ><°<
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and behave asymptotically for R —> o0 as follows:

: L —

MK m S IE% M 2"+

LP X“ ._/.?._.. L'y’ (JLKG"@). s) ALY
gl‘ge R—DOO J'/..'/a'

‘ 7 w’
C(L'J'Jj /“,K> VZZ_—H {DM m/u' y{_'(%‘) ng.

s
I-b~G(s) 7 y )’ ’ (R
+ & 'DM -K < u<R)X-K6‘ (,LDL{)Q )

where the functions Cfife. are Coulomb-wave functions.

There exists a unitary transformation connecting the two sets of wave

functions.
MK
Wl 7 BL$
IL6€ - &y’ )L €

@Mk _ < _-BL’/,(ILVMK/%
| 4—_. Y 7L 6¢€

-
JJILGE L

Introducing (35) and (37) into the -expression for the decay constant.(32)

we get,
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4° .
- R [ dnts )
| L
y ~ Kok LKy
{Sa?o (;'OA)’ Xo« [ XK & ﬁjm—x,é
L ko= . J-L- 9@

. \\/‘(p‘*‘(

B., + € X_M_

L' Kyrk L,-Ki K (38)
{ ’ B ] -— X(' A) "’a—‘ X '

L,Ko““(e . L’/J D'h. O(
[V e I

+
X ft. K-k € Lo
e ):) L -qto) \/ Ko+ K X f L', vk .
% G L k+k €
1

We have again split the problem into two parts. The "

external problem" to
1 1
calculate the coefficients BL ,“ and the functiors f]; ﬁ and the "

Lj et Lt internal
problem" to perform the integration on fK and '{
The functions fﬁ}‘:}e fulfill the boundary conditions
Lok >‘—" B W
? Lk € — Loy Ly 2741

R —» o0 J

G Ly, 4 k) SDL.e(R)
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LA 6 J #Llé’
#L’k'& = Ly ke T e | (L0)

and an analogous condition for the derivatives at the surface S.

]
-

\ La )2
S |B.]
e | (hl)

Ly

and the following differential equations:
[ 2

\ k L//A.' L &.”
" | 2

= = ’ (R) - by N\
s \/b”'- ) R ?Qa.'c.'e Zﬂ A, Lt Rfﬁk’e‘

>

|

X

* d? L& L(Lw) LA
=+ V(R) + - R
ar* 21 RE ~ %u'&'e:

(h2)

where |

J

: b’
AL owe = Z Tme (UK) €0 G (3L, Kea'-a") s
J |

C(ILys Kok -2 )

and V%L" (R) are the matrix elements of the guadrupole interaction.
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Ua/ .
We should mention t?at our functions.iﬁkt are equivalent to the functions
nge defined by Frbman.

To solve the differential equations (L42) one can either integrate the sys-

15,16,17 or use a three-

tem of coupled differential equations numerically
dimensional W K B method.l8’19

To make things easier from.now.on; we shall return to a spherical surface
8. To justify this we remember, that we have derived the expression for the
decay constant using the equations (1L, (15), and (16). The conditions for
the validity of these equations were that for R < RO the Hamiltonian HO Eq.
(14) was equal to the exact Hamiltonian H and that for R > RO the
Hamiltonian H acting on the final-state wave function reproduced this wave
function Eq. (16). But these two conditions can be fulfilled for a non-
spherical nucleus too, if we are only careful in using approximations for the
wave function of the parent nucleus. One has to be sgye that this wave
function is a good approximation up to R = Ro when i; = 9OO which is the

direction of the minor axis of the nuclear ellipsoid.

. Rasmussen and B. Segall, Phys. Rev. 103, 1928 (1956).

15. J. 0O

16. E. M. Pennington and M. A. Preston, Can. J. Phys. 36, 9Lb (15 8).
17. R. R. Chasman and J. O. Rasmussen, UCRL-8632, Phys. Rev. (in press).
18. P. O. FrBman, Mat. Fys. Skr. Dan. Vid. Selsk., Vol. 1, No. 3 (1957).
19. V. G. Nosow, Dokl. Akad. Nauk. SSSR 112, 41k (1957).
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Deformed even-~even Q-emitters

To describe g~decays of even-even nuclei we shall approximate the
intrinsic wave functions)(K )( K by detérminants of Nilsson—single-particle
v ol
wave functions.20 Furthermore, we know that K, = K = 0 for the lowest ‘

intrinsic state and J= O for the ground state of the parent nucleus.

It follows
X ' Lo l/
er_'>_' L B°OR*
>\-3;_ ‘ZMZ L Lo 0

(43)

LO
L'0E&
differential equations than (42).

and the functions f are solutions of the somewhat simpler: system of

_ 2 061 2 | (L+ ' 2. ]
[._.__ A s VIR « B LR o "‘“”}’?‘F::e

2M dR? 2M R%*
. v ‘-”cp |
= - E |/“,, (R) R e , ._ (44)

Lh

20. 8. G. Nilsson, Dan. Mat. Fys. Medd. 29, No. 16 (1955).
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If now the Nilsson states with 3-component of the angular momentumJZ
and_rl are those occupied in the parent nucleus and unoccupied in the daughter

nucleus, we get for GL'

x-&l I ;?;
G’u (R) = C@ (1) CP(J) A ( ?;; CP{:; . (L)
X

) dg, diiy

which may be evaluated with the help of Egs. (A8) and (A32). If it is
necessary to include configurational mixing, we use a linear combination of

terms like that given by Eq. (L5).

Favored decays of deformed even-odd nuclei

A favored decay is characterized by Ko =K; J = Ko; J =K, K1 ...
14,18

We shall further assume that the odd particle is in the same Nilsson

orbit in the parent and in the daughter nucleus. It follows,
! 2 — Lo P4
A S A ST B RS
L ) M ol J
2 (46)

Ll
function fﬂjbf are now different.

-_ t?— _d_l_?:_ ’xl b (L-'f'/)_ Lo
- + Vie) "'.m RL g]ﬁ?hoe = (47)

_Z”; V:L//(E)'.R Lo € ZAKL‘O/“ ﬁLOQ

L

where G is given by Eq. (45). But the differential equation for the.
Lo
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If one neglects the non-diagonal terms connecting pu=0 and p on the left-

hand side of Eq. (47) one gets

L'O L'O
BLJ = BLL. C_(JL‘JJ KO) (48)

1
One may now as an approximation use the BELO from the neighboring even-

even nucleus and get definite predictions for the intensity ratios of tran-
sitions to differént members of a rotational band.lu’l8 The validity of this
approximation has been discussed by Chasman and RaSmussen.17 We refer to their
paper for details. ' In generai, the agreement with the experimental data is

gquite good.lu”18

Unfavored decays of deformed even-odd nuclel

Unfavored decays are characterized by KO # K and we shall assume the K
values to be the z-projections of angular momentum of the odd particle in the
parent and daughter nucleus and the remainder of particles as paired in
"Nilsson orbits".

It follows,

. %2 ‘ L Ky-k
A= 5 2 ‘z"ﬁéj. [‘BAJ '

J L
L' LOOY ¢
[J )
[ 3G Komk , L/ #L KoK - . %cﬁu W~k € ] +
AR L -k € “Tkamk, & AR (19)

- L -Ko=K N
T B, [ ke g

Utk €
L Ky + K Zt

Pa#l—' Mo +¥ € ]
-DR R=R.

Cj‘(q*",'_' *
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where

% ke ek e X .0 - ,
Grrems® = SALGC G ) A (B0 B ) %, Y,y

(50)

o (R) = @) J=q@ S‘A U) c}:)(a) ) A (Cb(z) ci)m))

Kot K
Ko Vo s, dSp/

The function fIICé are now solutions of Eq. (42).
If we neglect again the non-diagonal terms (k;h') in the differential

-

Ko

Eq. (42) we get

L) Ko~k L= ks+ K L' Kok
Ly = &) C’(JL,J/.K K—K)B

(51)

L -k -k

L ~Ko-K L+K,+ K

B., =@ G4y -k ”*”)B

© This may lead to "alternating intensities to successive rotational
states” when L > K + KO because of the sign change of the Clebsch-Gordan

Coefficients when J 1s set equal to K, K+1 ... for the members of a

rotational band as was first pointed out by F. Asaro L in the case of the

2
Cm 43 ¢-decay to the ground band.

21. F. Asaro, private cormunication.
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Appendix
The reduced width is essentially determined by the integral

EJJL, = /?o% [—(g)(i)]}’: ‘ gd,;“ d{K &LQ& [');«(nz,s%)

(A1)
- M
D C(Ly3m M) \/<“2U (5. C_/D("»M}
e 7
The calculation of this integral will be performed in two steps, each of
which Involves different assumptions about the nuclear wave functions.
First, we expand the integral
o
s (0T [0E)°
in terms of single-particle wéve functions.
l ¥ M
-m
N)(Z) £ (s tyﬁm..uq) (0...A)) -
2/\ % K J ]
S ’g' ”:”z”.;nlr‘e:¢zél‘r
- g s Ju Jp I Lo
nn, %3 Wy 4" l)_ 685" J:J;J_)J'r
(A2)

L Jp Ju m, %J MP

ClLya; m Hm) € ey mp,)

G (J3J4 dns my om=rmpm, ) C(JP(/A/ L )mp M-y )

7n’-nb

A (e Drm) A (Pre §
d 0. Jlel ", J@é‘?'n_f Ju My (’4.
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where A means an antisymmetrization and normalization operator. For the
single-particle wave functions we take the harmonic oscillator functions
defined in Eq. (21). As long as we sum over a complete set of quantum
numbers (¢ £¢ 3¢ ) the expansion (A2) means no approximation.

In a first step we calculate,

g‘n,tu, n, 4, Il = -5_ CCJPJN /—'; "fvp""“’"r)

™ my T,

C(Jsz. JP; m, Wp'mi) Q (.)3 Jw JNJ My rm-m’,-mj) (A3)

* | %
AT A AT de ( X Y (B) -

' m- *“P
) (2) 3) CP
A ( q?me. \ et ), A ( ('+)

M5 €33 v O J‘-r
ForX we use the a-particle wave function given by Eq. (22)
We transform now the single particle wave functlons from jJ tO/es
coupling and take the inner product with the two singlet spin functions

[+ o 22
XO(lZ) and X°(3M) contained in Xa. Using the standard Racah technique
we get '

| | P
m2ig, Myl = [(2) +1)(2)+1) (2)3+1) (2] -H)]

J,+J3 +0:_"‘ 'ei-f- ety t+i

) . W, 0.0, )32 30p) W(/GJ; b % JN)

(Ak)

22. M. E. Rose, Elementary Theory of Angular Momentum, John Wiley and Sons, New
York, 1957.



UCRL-8931

e
¥ \a -EGreszgy 3

o5 a3 ds dQ _E;>2'.2'“ A

S 543 3 ey e . R,

S C'(JPJ“L‘ My mem, ) C'(ngP fm’m m,) O(ZJQ"JN MSW"‘P J)

LI

S ((I) (> (z)) S( %e(:) /mm(-::)

where S means a symmetrization and normalization operator and

is defined as

@’M -_. l@i':;"q —TL(V——'W) L (o(r‘) >/ (¥)

s

m e

Next we introduce the coordinates ?l ?2 73 and R as defined in Eq. (22)

into the product of the four single particle wave functions. Using the
invarisnce of an oscillator poténtial under the transformation

Ky M IG Ky > 3 % ?3 R we get

_S_ Glpdu Ly mpmmmp ) G (48 )3 mp=t) C (0,4, Jp ™3 Metnp-m; )
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™Mp=rr M= o=y

l ol w -
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. > e 6Ly i b - (85)
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}(’,l+l(‘f+l(}z+ l(."z. = g..z‘*_ {:* §,z' + 17;_/?2.



UCRL-8931

-48-

whereZ(vl+v2+v3+n)+}\, + A +>\3+)\.u-—2(n +n2+n3+n)
+] +,Z +/ [ and >\.l >\2 take only even values.

Integratlng now on §l ?2 f3 andQR we get,

| | ; X
8 N8 ), Mha)y ,/,JVL = [(2\/1'“) (2}3*’) (2/3 +') (2»/'#*’)]

"y [JJJ Ny ’“J‘r

JI*J;‘Q‘ ‘e)_ “".el* +JP*JN+‘,

2 W([l,h by, ;50) e l‘fJ'rj $ JN)

-2« R?

('l) (ol-rp) (F) e (VE?R)L (86)

N : . N-n Lrd
' -
E T(%L.JPJN%.%»_,M!,&{,&) (pé;;) >Z_b% (Z.o(Rz)
nad
where |

H(mL JPJN "y 1 Ny Ny 446/#) =

B Ny Ny 6440 Jpgts [ Ok (ard)! (V3+4)!
V¥, % 6ooL Ok vi vl vy
Vi Va.' Va ) :
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2(Vi+Vatvy)w2m+e b = 2 (e M+ my iy )+ Lrly v b+l

2_N+Lo = 2.(%,*”3_*.772#77*)'#41"(‘#6*[9
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To calculate the coefficients T(% L-JPJN My, my Ny ,0.[1 f; L}-)
we go back to Eq. (A5) and set

-ﬁ
K'I=K“Z=W‘?=LC:'.= ><'

which is equivalent to
—>
§'-=:§2_=t ?3-;-0— QQ-=><‘

Then we expand both sides of Eq. (A5) in powers of x and get a system of linear

equations for the T coefficients which may be solved easily. The result is

T (mL Jpdn MM M3y £, 6 0,) =

N
mn el g+L+4
> @) o (y—'n) Ag (Lo mmemmy 84,8
g=% '2‘ (A7)
where,

4
| @0+ (26,+) (26, +1) (28,+1) | @
A S (Lgpde mommy s £l [““) = [ 2L+ J] .

3
L
C(’(l{?-JP,‘OO) CM:"#JM;OO) CGpin b y00) (2 "). 4

Vo
. , , | 4
n, - %2. . %3 ” %4 ‘/ 2‘ (’"‘ +pl +2L
(me e D) (s Gt )] OutlorE )T (mrler2)! | L\ ey
V% b Y
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(2= 8,14 Sage, Sm,m )]

and

28 = 2(vi+%r vy ) + 414 O 6*'@-"4.

We introduce the above expression into Eg. (A6) and find that we are able to

sum over n. The final result is

WA+l + Lt

YNV C(Jpinls00)
pdnl; °

'”3[)‘)3 'ho,[q.'l.* JP‘}NL'

= =!

(a0 (2000 (295t (200D 2=, 800, Sum ) (22810, Snee Sune) -
2L+ 4

£+, ' &,+0,-)
l+@) T ey
’ AR C(JIJZJP':?L:‘i)C(J?J#JN°é-i) ’
2 2. ) /

(A8)
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vhere the summation is restricted by,

23 = 2(vi+vr ¥+ V) +/,+€+4f!,r—L

We should mention at this point that until now only the assumptions about
the g-particle wave function have been used. All the information about the

nuclear wave functions is contained in the still undetermined coefflclents
#(m"h;?’lj ’har-//pzfplf
s Jz. Vi o w/p./N 4 s
The next step in this development will, of course, be to assume that the

nuclear wave functions may be reasonably approximated by products of single
particle wave functions. Nevertheless, these single particle wave functions
need not be harmonic oscillator wave functions. Because of the relatively
small size of the Q-particle it is sufficient to approximate the radial part
R(r) of the actual single particle wave functions: in the neighborhood of the
point W sy =&e Oy = %o in the following manner.

! 14
2 R
¥ R, (m) = > a, («%)
V,_'-ol (A9)

Ro -Ry & ™ £ R°+R°(
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where Ra is a sort of a-particle radius. The constant & is arbitrary but has

to be the same for all four radial wave functions involved in the calculations.

L
The coefficients 139 of Eq. (A8) are then defined by the following equation.

. |
= Z - Qa a, Q
Bg WYY Y Go Gn Do D (A10)

20 = 2(vi+v+ V) +¥ ) o+ by o+ by = L

But actually we do not know enough about the radial dependence of single-

particle wave functions. Therefore we shall from now on assume that harmonic

oscillator wave functions are good approximations to the radial parts of the

single-particle wave functlons Under this assumption we shall calculate the
'z ™ Mo

ez [()C) (¢

s (@G (s (87

for several cases of interest.
The first case is that treated in §2«-of this paper - even numbers of
particles are "paired" to give total angular momentum zero. That means states

with seniority O. The wave functions of the parent and daughter nucleus are

as follows (only that paft of the wave function is given that refers to unfilled

subshells):
Even-even nuclel
-/
-_— ) 2}.*' ZJ3+' z
—_— }
CDCPwt) = || . N M °
i 0 zf

M2

-

J"M.~ ) nxJ.‘mM —'mﬂ =
) Det @ q? XL ? e
—_— J.‘.MO bt hén

0<M <M, 1\ <M

MR
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oM 2. 4/“13

; ZJI'H 1}3*” -}2:
° = [ = | |
t:l_J‘:’(cl.o,u.%(’d'ﬂ‘) = " ) N2 (M_?_>. (Ne‘z)- .

_ Sy ‘)"’-/Q'Zi Ay . ”
> &) Det{@ 55
J J‘?()’h}

The subscript 1 refers to protons and 3 to neutrons. N is the number of

particles in the subshell with gquantum numbers ) @m in the parent nucleus.
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Even-o0dd nuclei - )
- M 2 ," 2), ) 4,
5 ot S04 .
? (parent) = Neei ) %Ml M .
Ji = 2

J‘m. . J —M -
_>_ @) ' -’- .De‘l'? {@ e ? A%‘f
Ji b My Jil' ”: I w

o<m, v, <'ﬂl%‘
, ¥ ' (a12)
; C)"/“‘ ¥ /u-“ _D .é {@ @_/u%
o< <. 4/(13 JJZJ v J2: &Ny
- Mem EIVETR -
P, compor = |( u)(L_)m) (2!
S Y= Ymm - M | 'm!!: '
/. € ¢ P
0<M, & .‘m% D’e {f(l i ? (i’*h #/l’o’”l
¥ H-m _
1 JJ‘/‘&" 'J_?-/é{%g . - Ady !""-/w?
> @ T nedp P
‘ J2 b M; —h&m

0, 4. /ag.r

Nl is now odd and N, is :even. ]e’h,thave the same meaning as in (All)
There is also the possibility that the "o0dd"-particle in the parent

nucleus is in s single particle state different from the state J A, m,
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ocp LMy

There are now two possibilities for the daughter nucleus:
a. The "odd"-particle is in the state Jp £o Ma
b. The odd"-particle is in the state J’ s ?, ; M, , in which case the

wave function is already given in Eq. (AlZ);

C Mem 2),H 233+l "2
= - I (N,~2)]
LPJ; (dmaphte) M3 _.::2- (M-2)! (R52))
-m =Py =Myt
Wy =T [ " qD 2
} G') Dgt ?82 e)_ f”), Jolo';’l -?ilel”l
o< (ALL)

" @.)J;-/&'--J.-,-ﬂg Dot { qb/u). | @-ﬂ% |
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To perform the integrations on the coordinates of particles 5... A we

expand the determinant wave functions for N, and N3 particles (parent nucleus)

1

in subdeterminants of 2 and Nl-2 (N3-2) rows, so that particles 1,2 and 3,4

are together in‘the subdeterminants of two rows.

With the help of these_éxpansions one gets immediately

—

[G)(i)}‘é Sdi,‘ CE: Lf: - CPJ.J.O(M CE;()?:)

, /
M, (2]#37N) Ny (205 3- N3>] &
l 4 (&/,-H) (2J3+/)

(A15)

Y0 2m . Mem
l E@J, kP,\, OL§&= [ @J,(J.;) | go'm B

z 7 G L m Hom ) [(9:;+a><2ua) qs 02) } (34) -
., , 0

Lz2 3330
euem

[(N.-l)<2J.+2‘N.) N3 (2)r+3=N3 )]
b (2)+1) (2)3+1)

4 g M- | _
[(g)(i)} SCPJ;_ %JJI' OL?K i So'm @5"20) J:fi?

[ (N=1) (2), 4% =N, ) N3 (2)3+3=N; )/
4o (2 +1)(2)41)
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./2. =M ™ ]
[(g)@)] %qb.)z (\f: A3 = V;'::' QCLdh s mrm)

L™ , Ny (2)3+3-N.
‘ 7:24)‘ qD(z,)f_'__ . @(3*) [ 3 (2)+ 3) .
Nida b hla b V2 1300 2. 2 )yt

2

Ny = '4-
(20,41)(2)21) ]

where
-
(L) = 9974, m- ?(“ ? (k)
qS“_] ;C(w wpompe) P o P

From (A8) and the results just given one derives now easily the expressions

2
for the reduced widths &g, given in Eq. (23, 2W).
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We shall now evaluate the reduced width for the cases treated in § 3.

The treatment will be sufficiently general to include configurational mixing

of any type for the nucleons outside closed shells.

1. Two identical nucleons outside closed shells. (Example PoZlO)

Mmoo '
@7 (purent) = z allon )b, )

Jbn b,

| Ny
; C(Ja/zJ; ", M'm') -'(/V.' Z.’) é'

o, M=m, -
Det (7@"72: il @/zéz'”a. . closed ahell - }Z

D@f{.l. Lot sbell .. .. . -}N (416)

M-m . <———s '
%IJ (d;%aktw‘) = i a (J363n3 Jq—eq.'n'«-) *

bl M Jy bRy
Z, Q(Ja‘/unl; oy M-m-"y ) [(N—z)_'(z-z).l] -
m3
-, ~H+m+my
D&t{“@& é.}., ’)nwm}n? /emv\ a MMf .

Det(. . hototett . . ... 0§

Z and N are the proton and neutron number of the parent nucleus.
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We expand the determinants in the wave function of the parent nucleus as

we did earlier (Alk) and get,

[(’2’)@)]& g(ﬁ: LP:M» oLfK _ Z_"C"‘)JerM»rm

m,m,

C (s Iym, =) C:(M‘r*'f m, M=m-s )

(ALT)
m, M-m, -y < “Memim,
A (S ) A B
- JOOI m' Jz'nz ez - J3 es'ng J"fei'- mir
Comparing this expression with Eq. (A2) one finds,
, , ger-
‘(""a"‘z nymy L& 1 'e'+> (g & 6') w-L 2L +1
By pdwt )T 3 V) ‘
Jhadzde plwv ‘ JP N 7 29+ | 8

A .
From this we get for the reduced width 83“. including configurational mixing,

2 N ~
S =\ L a(sm 1 e”s)

Wmy ), e,my ngg’h3 J,J.,. Ny

p R
a("3e3 %3 J‘I'[‘f ’n"f) . ‘é‘JJL( J'e'?,’ lel‘h'z JJ@JW; Jqpv-%y)

(A19)
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2. Two neutrons and two lprotons. outside closed shells (Exdmple Pozlz).
In this case we shall only consider J= 0, J=0,1L = 0. . The daughter

nucleus is the double magié Pb208. A straightforward calculation yields,

2 ) Wty + o+l 14 A
é = G
000

hém L& n, )3(} Yy Jy/lf My A

(A20

P+8 =
. |+ @)
CL(M%, b lama gy & Jo b e /\) 2
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2 +] ' f 4 |

R mtmt, (Ro)

Ny by My Ly

where N is the angulér momentum to which the two neutrons and two protons
respectively are coupled.

' 1
Three nucleons outside closed shells (Examples POle, Bi21 ).

B+ T atmatnains

NV R A Jp

(A21)
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It follows,
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L. Two non-identical nucleons outside a closed shell (Example BiZlO)

" E ) o) h
@J ( parent) = | QJ(/,[,%,‘/J{?MJ) (/\/ Z.)

heim, 4%
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We get tor [(;, (z]‘/zgcﬁ: ‘{TJJM_% s, o |
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It follows for the coefficients 6’ by b da dp du L
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hirda Jp U3 JPJN L

e 9'"' g

My 0y 0z M )y

into (A2) and find that it is possible to sum over J, and Jy

‘We introduce 6(

The result for the reduced width is,’
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5. Four nucleons outside closed shells. Three of them identical.

(Example Biz:L2 and. At212) ‘

quw»t) > szfm 2 by Jukas)

, J:’/'”l /a&"b /3
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We have assumed that two of the three identical nucleons are coupled to
angular momentum zero.

We get,
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and from this we get for the reduced width,
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Deformed nuclei

We shall give the expressions for the two representations now in use for
“he single particle wave function in a deformed potential.
1. Nilsson's representation (isotropic three dimensional harmonic

oscillator functlons in spherical polar coordlnates

Cp (ws) = E aum @ (R) )( (g)
4 Foom! %] =21 ter A
4 M & |
@mc B ,_(%Ut)' @"r) L'n(”z) Yg_ (A30)

Rewriting ﬂsl ightly, .

—— o T -
@_ﬁ_ = E al"'m, C’NIJ)‘ A Q_'A') 43!%
Jém A
_ O | (A31)
Z: 0&“” @um
z
where -0_4.%
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. 2. Asymptotic representation (three dimensional harmonic oscillator

-4

functions separated in cylindrical coordina.tes).
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A straightforward calculation which uses the technique described in

detail for the case of spherical coordinates yields,
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where
A= A+ A, +4,+ 4,

AN = 2(V,+V;+l{?-+l/¢,.) +/A-II *//Z;/*FMJIA'/‘/A-L;/- A
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and AT is displaced by

Hu, (2) H, (2) H,(2) H,(2) = gl A-



This report was prepared as an account of Government
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sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:
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Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained 1in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.





