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Introduction 

In an.Learlier. paper1 a theory~ of, Q:-decay. was, de:veloped .whose .aim was to, . 

take into account the influence of nuclear structure on a-decay. The theory 

was found tb be successful in explaining the fine structure of ~he Po211 

a-decay. (Relative intensities and coefficients in a-y angular correlations 

were obtained in good agreement with measured values). 

In this paper we shall briefly outline again the derivation of the 

formulas which are then applied to discuss the ground state transitions of 

even-even and odd-even nuclei in the region around Pb208 and the fine 

structure of some a-decays in this region. 

The nuclear wave functions are approximated by shell model wave functions 

and good agreement is obtained with experimental data.
2 

Fina],iy we shall· gi'lfe 

the formulas that are necessary to treat a-decays of deformed nuclei on the 

basis of the unified model. 

Derivation of an Expression for the Decay Constant 

We consider a system of A nucleons (Z protons and N neutrons) and des­

cribe it by means of the time dependent Schroedinger equation, 

H 

Assume for the Hamiltonian the following form, 

(l) 

H ~ L -2~ Ll,: + Vrt ... AJ (2) 
i 

V describes the interaction of all the particles. It is further assumed that 

the wave function <:P ( /, ... A; -t:::: 0) is known and that this 

wave function is the wave function of the parent nucleus . 

8 
l. H. J. Mang, Zs. f. Phys. 148, 5f2 (1957). For details also H. J. Mang, 

Sitzungsberichte der Heidelberger Akademie der Wissenschaften, in press 

(1958). 

2. J. 0. Rasmussen, Phys. Rev. 113, 1593 (1959), also UCRL report 8517. 
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Next we separate off the trivial center of mass motion of the system and 

decompose the remaining Hamiltonian iB several terms. 

H Hex (1:23'+) + ( 3) 

where 1, 2, are protons, 3, 4 are neutrons. 

Ha: describes.the internal motion of a system consisting of two protons 

and two neutrons. ~ describes the internal motion of the remaining A-4 

nucleons. R is the relative distance between the center of mass of particles 

lj 2j 3j 4 and the center of mass of the remaining particles 5j 6j ... Aj and 

- h
2 

.A 
2Ml..l R is therefore the operator of the kinetic energy associated with the 

relative motion of the two groups nucleons. W(aK) accounts for the interaction 

between the two groups of particles. We should mention that the Hamiltonian 

H has not lost its symmetry properties. 

For obvious reasons we shall refer from now on to these two groups of 

nucleons as a-particle. and daughter nucleus. Consequently we call the 

solutions of the e~uations, 

r 
HO( X~ = 

( 4) 

H K lj-J; = 

th~ internal wave functions of the a-particle and the daughter nucleus. In 

these equations 'r' and () are short hand notations for 

numbers that are necessary to determine the solutions 
~ !"' "" S' 

Furthermore if X o< X 0( and lJ! J< lfJ>< are bound 

the following relation holds, 

those sets of quantum 
'C" 1r~f:" XO( and Tt< completely. 

state solutions of (4) 

The meaning of this relation is that always when the a-particle and the 

daughter nucleus are well separated in space the interaction between them is 

described by a simple potential. Furthermore V(R) approaches the Coulomb 
2(Z-2)e2 

potential R rapidly. For most purposes therefore it will be 
2(Z-2)e2 

sufficient to use R instead of V(R). 

( R
0 
~ 8.5 - 9.0 lO-l3 em for natural a: emitters. ) 

• 
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These cons.iderations indicate that it might be reasonable to write for the 

time-dependent wave function~(l ... A;t), 

p r 1. . . . A i t ) = a Ct) Po (7. • . • A) 

A is an antisymmetrization and normalization operator, while 

is a solution of the equation, 

t~ L (t..+1) 
2M R .. + 

~ (Z - 2. ) C2.. :a. 

R 

and is normalized as follows: 

To get unique solutions3 for the coefficients a(t) and 

it is necessary to impose the condition, 

( 6) 

Cf,. C~ R) 

(8) 

Of course tfJ (l. .. A;t) may always be-.:cexpanded in the above form (Eq. 6) as 

long as we sum over a complete set 7 of function ?(; and ~~~ But we know 

that for energetic rea sohs the terms in the sum over 't; and 6"" corresponding 

to unbound states cannot contribute to the a-decay. Therefore we split the 

:3um into one over bound states only and one in which 'ii or ~ or both corres­

pond to unbound states and neglect the latter sum. With this approximation 

and taking into account angular momentum conservation as well as the fact that 

-:~here is only a single bound state of the a-particle we rewritep(l. .... A;t) 

:in the following form, 

3. H. Casimir, Physical, 193 (1934). 
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cp(t ... A}t)-

(10) 
'h• ,.._,_ '~> I 

A f X , cp ( ~ J € ) ) C ( 1... J J · ~n<· ;.., ·· h, ) "'-../ ( n ) lJJ_. J \)~ J' 
l <X L. ~· . J / L. R T.k 

Introducing th.is expression for (/J into the Schroedinger equation (1) we 

get a system of coupled integrodifferential equations for a(t) and j}JtS"L..(c.', '() 

But this system of equations decouples and becomes rather simple if one more 

approximation is introduced. We neglect nondiagonal matrix elements of the 

l:.ype 

' vrhich means we neglect the interati;·cion of the ex-particle with the daughter 
** nucleus via the nuclear forces and take only into account the Coulomb inter-

action; a reasonable approximation at the ex-energies involved in natural 

ex-decays. 

The simplified equations read: 

r ~ - M 

i .t a (t) ~ a(t.) E'.Q + ;;;_. I d.~ .8-JfS/€. t) < P~v I H-Eo I cp'J J(S"i, c.· ) 

> - (ll) 

f\1 - /VI < if;,J~L~ I H I cjJO ~ > 
where 

A 
't-* If we use V(R) as defined in Eq. (5) instead of the Coulomb potential we 

take into account a part of the nuclear interaction. 

... 

· .. 
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Using standard techniques
4
to solve the equations approximtely we get 

• J 

Q {t) = It--t- ( E"u + r -t.;) t 

The conditions for the approximate solution to be a good one are) 

~ << I E 0 - E I( - €: 0( I = ~ u 

r t.:< 1 E:- EK' - ~o< I 

(12) 

and M M 12.. 
l< ri; IH-tol~ ) '±'~JS"t..e ~07 , -1 

has to vary slowly compared to [(!Eo+ F'-E"I(- eo<-~) + ,.. J 
if E: varies between Eo + r.. and e:o- r. For all natural a-emitters 

these_·'conditions are well fulfilled. 

to the cal-The problem of determining the decay constant is now reduced 

culation of the matrix elements <cPo: / H-E.,J <P.,:~~.~) 
But those matrix elements cannot be calculated unless ~~ is defined 

in a rigorous way. The somewhat vague statement "the wave function ¢u~,.., 
should describe the parent nucleus of the a-decay" cannot be considered as 

a definition of ¢
0

: • M 

A natural way to define ,/; would be to obtain it from a consideration 't"o, 
of the formation process of the ex-emitter. But on a nuclear time scale all 

ex-emitters are nearly stable. If it were not for the repulsive Coulomb­

interaction. bet;veen the a-particle and the daughter nucleus there would be no 

l~. W. Heitler) Quantum Theory of Radiation) 3rd edition. 
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,., 
ex-decay at all. Therefore another definition of ;r:,. · is suggested. ~;, It has to 

be a bound state solution of a Schroedinger equation. 

E (o) ~ M 

~0~ 

H is defined as follows: 
0 

* i.f all n,ucleons are confire d in a spherical 

0 

H = H 
0 

H 
0 

H-V (r )+V (r ) 
c c 0 

voh.>me ..sl.o with radius r . 
0 

if one or more nucleons are outside the above 

defined volume 120 . V is the Coulomb interaction 
c 

between the nucleons inside and those outside ...fl. o 

is so defined that the interaction between one selected proton (neutron) 

and all the others that are in .f?.,, is repulsive (zero) if the selected pl~oton 

(neutron) is outside nl) but moscly attractive if the proton (neutron) is 

inside ..:..L..,. Of course there is a maximum value for r because of the condi­
o 

tion that the eigen value problem with H 
0 

(Eq. ll~) should have bound state 

solutions. This definition assures that H is equal to the exact.Hamiltonian 
0 

H in that part of the configuration space where the nuclear forces between the 

nucleons play an important role and ·cherefore rF. M should be a very close "i::(\ :J 

approximation to an exact wave function as deri-ved for instance from con-

sidering the formation process of an o:-emitter. 
.,.. ~·I 

By means of these assumptions 

about cJ) the matrix element can be 
~-"' ~·' ... ! 

simplified considerably. 

[ (~) ( ~i'-· ( cp~~AJ/ H- i-/o I 

'7/·'-•ii; ~J,.,(6'"'~.~A) > )(('··~::r ( t t\') • C ( t. J ~J ; in tr 1 kl ) . 
~ I~ . ..... (15) 

Oo 

~ R<-cJ R ·jl. AJ'Lr:: \ .. 

Ro -
M-•>~ 

lJ!J~ 

'o' 

-* 
Of course one may assume JL~to be nonspherical if one deals \vich a deformed nucleus. 
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The first equality holds because of H - E being a symmet·ric operator and 
o (o) . 

an antisymmetric wave function and the fact that E = E in a very 
0 

good approximation. The second equality holds because of the definition of 

P~ : (1. A ) ( E q. 14) . 
R is somewhat smaller than r because of the finite size of the a-

0 0 

particle. The relation between R and r is schematically illustrated in 
0 0 

Fig. l. 

Yo 

(a) (b) 

·. MU-18835 

Fig. 1. 
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Because of the freedom in choosing r and consequently R , r 0 and hence 
0 0 

R is chosen so that for R > R 
0 - 0 

H· 
(16) 

Using(l5, (16) and integrating by parts on R the following expression is 

obtained for the matrix element in question: 
. 1 

< cJ:>,: I H-E 0 I 1;; 01. E, > = [(~){t) J l5. 
fi.. ,,, 

[ cP.: "d cp~ ( r.: E) i 
J R R=R .. 

Introducing for ~ (fvR)the WKB approximation 

I Rt.t. 

(·"~M)~ I 
~ (€~R) ~ 7rl..'- Ri)qt..Js. 

I 

.2. ~, (- ~ qt. d (( ) 
R. 

I 

[ 2M ( J, ( z.-~) e'" J;l ~(1..+1) 
t:, ) J i 

CfL. -1- - -= _.tl- R 2.M R' 

q L. ( ~ LL ) - a 

(17) 

(18) 

~ 

. 
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(19) 

the expression for the decay constant is brought into the following form: 

A I - -)..:t;. 

I 
- ~ 

where) 

p :::: 
!... 

!?,_., 
( Ro ~ (R~J -· 1) L L. llAef (- 2. J" 9~-. d R ) 

_t2. 

Jl. ~ f<J 
lM R~),. 2·Ro 9" (/~-T· . 

(20) 

2.. 

Gl (f<o) 
Rl) d ~7Jn I + ., J ,. 6" '1-Ro~,_(l?~) ~R r?-D. 

L r-:. (~~) • [~~~ 
J L'O 

PL is the well known barrier penetrability as already derived by Gamow in 1928 
and ~ is the reduced width that accounts for the influence of the nuclear 

•J~'Io 

structure on O:··decay. 

For the connection of our treatment witch that of other authors we refer to 

reference (l). 

We should also mention that there is no difficulty in introducing a more 

sophisticated potential V(R). One has just to replace everywhere the 

Coulomb potential by V(R). 

2.. 
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Application of the theory to a-emitters, in the region of Pb
208 

The theory developed in the preceeding chapter will now be applied to 

a-decays in the region of Pb 208 . We have reasons to hope that for these 

a-emitters the nuclear; wave functions may be approximated by some sort of 

shell model wave functions. 

~ (R ) and hence the reduced 
'J~~ 0 

The details of calculating the function 
2. 

width 6~.J~'- w.ill be given in an appendix. At the present time we only list 

and discuss the assumptions and compare the results with experimental data. 

a. Ground state tTansi tions of even,.-even and even-odd nuclei. 

We assume tta t the ground state wave functions of even-even and even-odd 

nuclei have the following properties: 

l. Even numbers of protons or neutrons are coupled pair-wise to angular 

momentum zero. In an even-odd nucleus therefore the last odd 

particle is responsible for the total angular momentum. (The 

explicit form of the wave function is given in the appendix). These 

are the wave functions with sentl.ori ty 0 (even-even) and l (odd-even). 

2a. There is no configurational mixing and the single particle states 

involved as well as the order of their filling are taken from the 

spectra of nuclei with one nucleon more or less than Pb208 , or 

2b. configurational mixing is taken into account on the basis of the so 

called "quasi particle model". 5 

3. 

w:ith, 

For the radial wave functions, harmonic oscillator wave functions are 

used. That means the single-particle wave functions q?~IJ are 

[ 
~. ~! «% } ~ ~t .. ) t L ,. ~t !5. ,_l-

= . lw'Y'""; (tX.,.~ e ' 
(~ .. t .. t ) ! " ( 21) 

'fit~ 
V~(f.) X, (s) 
/e ,; 

0(• 

5. S. T. Belyaev, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 1~, No. ll (1958) 

B. R. Mottelson, Lectures at the University of California (1959). 
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Furthermore we assume for the a-particle wave function/( a Gaussian type a 
f 

. 1 wave unc;t1on 

where ?(0D( t'') is a singlet spin function of particles i and k. For the 

constants a) ~ and R we are going to use the values: 
0 -2 

a 0.175 f 

~ = 0.625 f-
2 

R = 9 f 
0 

(22) 

These values were chosen : .. so that the RMS radii of the nuclei agree with the 

values given by electron scattering experiments. 6 But we shall only calculate 

relative transition probabilities and therefore the choice of these parameters 

is not too critical. 
~ 

the above assumptions-(:LJ )2a, 3) we get for the reduced widths O~s-'-With 

(where 'J is the angular momentum of the parent nucleus; J) the angular 

momentum of the daughter nucleus; and 4 ) the angular momentum of the 

outgoing a-particle) .: 

Even-even nuclei: 

N
1 

is the number of protons in the unfilled subshell with quantum numbers ~,t,J, 

in the parent nucleus. N
3 

is the number of neutrons in the unfilled subshell 

with quantum numbers ~.l.tl Jl in the parent nucleus. R involves the radial 

parts of the wave functions and is given below: 

6. R. Hofstadter) Rev. Modern Phys. 28) 3) 214 (1956). 
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Even-odd nuclei: 

(24) 

L -;.o 
J 

liJl is again the number of nucleons in the subshell ')1,,, e, ' 3, I In the first two 
2.. ('l. f' 

cases (SJ,J,o ()J,J,L ) N1 is odd. In the third case ( ()JLJ,L.) N1 is even and 

-~here is one more particle in the state I'Yil. J~'~- > J1. in the parent nucleus. 

R ~.~. "V~a.e~ (R0 ) , ; has the following form: 
~.? t~ ""''t~'+ 

"'' 
.. 

where, 
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] 
2 where the prime means differentiation with respect to the argument 2(a+~)R . 

'rhe coefficients B g are given in Eq. (A8). 

With the help of these formulas and using assumption (2a) and the con­

figurations listed in Table 1, we have calculated the reduced widths that are 

compared to the experimental data
2 

in Fig. 2,T/l~:. In these diagrams the 

experimental and calculated reduced widths are plotted versus the mass number 

for the even-even Po isotopes, the even-odd At isotopes and the even-odd Po 

isotopes separately.· 
210 

The reduced width of Po is taken as a standard and set equal to the 

experimental reduced width. We hope that in doing this, we minimize the 

ambiguities introduced by the choice of the radial wave functions and the set 

* of parameters a; ~ and R . 
0 

* It may be shown that varying the parameters within reasonable limits affects 

only the absolute magnitude of the radial part of the reduced width R2 ~~~~~,et (~), 
'h,J l.l }j .. ~· 

but leaves nearly unaffected the relative magnitudes we are mainly interested 

in. This result indicates also that it 

handy approximation for the radial part 

~ >>a. Then 

is sometimes 

R
2 

:' "rvlt I '1'1, @~.,. (r?o) 
~~l·l Vl't{''+ 

allowed to use a very 

which arises if one sets 

-A --] ~ 
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a very useful expression if one wants results quickly. The expression so 

obtained is identical with what one would get using the formulas proposed by 

Toelhock and Brussaard (P. T. Brussaard and H. A. Tolho.ek,.,. Physica 24, 233 

(1953).) But one has to be very careful in using this expression because 

it favors too much the formation of ex-particles from single particle states with 

high angular momenta. 

. .. 
i 



Element 
Po202 

p
0

204 

Po206 

Po208 

p
0

210 

2:1.2 
Po 

Po214 

Po216 

Po218 

At203 

At205 

At207 

At209 

At2ll 

At213 

At215 

• 

Table l. Shell model configuration for nuclei in the region of Pb
208 

Proton Proton 

~ ,. 

config. Neutron configuration Element config. Neutron configuration 

~ 

2 
(lh9/2)0 

4 . - -- -~ - 9lf . . .. - - . - -6 
(pl/2) -

2
(f 5/2)- (p3/2) -

2 
Pb

19 c!~:~~ (pl/2) -
2
(f 5/2); (p3/2) ;

2 

<; 

II ) -2 )-4 200 11 )-2 )-4 )-2 
(pl/2 0 (f 5/2 0 Pb (pl/2 0 (f 5/2 0 (p:3/2 0 . 

II ) -2 )-2 202 11 ( )-2( )-4 
(pl/2 0 (f5/2 0 Pb pl/2. 0 f5/2 0 

II -2 204 )-2( )-2 
( pl/ 2) 0 Pb II ( pl/ 2 0 f 5 I 2 0 

II 206 11 ( )-2 Closed shell Pb P1; 2 0 

II (2g9/2)~ 
II ( )4 2g9/2 0 

II ( )6 2g9/2 0 

II ( )8 2g9/2 0 

(lh9/;)~/2 (pl/2);
2
(f5/2);

4
(P3/2);

2 

II (pl/2);2(f5/2);4 

II (pl/2);2(f5/2);2 

" (pl/2)~2 
II 

II 

II 

Closed shell 

2 
(2g9/2)0 

4 
(2g9/2)0 

Pb208 

Pb210 

Pb212 

Pb214 

Bil99 

Bi201 

Bi203 

Bi205 

Bi207 

Bi209 

Bi2ll 

II 

II 

II 

II 

lh9/2 

.. :.tf· 

II 

It 

It 

It 

It 

Closed shell 

2 
( 2g9/2)0 

4 
( 2g9/2)0 

6 
( 2g9/2)0 

(pl/2);
2

(f5/2);
6
(P3/2);

2 

( ) -2( )-4 )-2 
pl/2 0 f5/2 0 (p3/2 0 

) -2( )-4 
(pl/2 0 f5/2 0 

(pl/2);2 (f5/2)~2 

)
-2 

(pl/2 0 

Closed shell 

2 
( 2g9/2)0 

I 
1-' 
0\ 
I 

§ 
I 
CP 
\.0 w 
1-' 



Table 1 (cont 1 d.) 

Proton 
Element config. Neutron configuration Element 

At217 
(lh9/2 )~/2 6 

(2g9/2)0 
Bi213 

At219 II 8 
(2g9/)o 

Bi215 

Po203 2 
(lh9/2 )0 

( )-2( y-3 ( )-2 199 
3Plj2 0 f5/2 5/2 p3/2 0 Pb 

Po205 II -2 ) -3 
(3pl/2)0 (f5/2 5/2 

Pb201 

Po207 II (3pl/2)~2 (f5/2);;2 Pb203 

Po209 II (3pl/2)~f2 Pb205 

Po2ll II 

( 2g9/2)9/2 
Pb207 

Po213 II ( 2 g9/2)~/2 Pb209 

215 Po · II ( 2 g9/2)~/2 Pb2ll 

Po217 II ( 2 g9/2)~/2 Pb213 

.. 

Proton 
config. Neutron configuration 

lh9/2 
4 

(2g9/2)0 
II 6 

(2g9/2)0 

Closed .~- (3pl/2)-2(2f5/2);;2(p3/2)~2 
shell 2 3 

- 2 
II ( 3pl/2f ( 2f5/2);;2(p3/2)~~ 
II 

(jpl/2)-
2

(2f5/2)572 
II (3pl/2)~2 ( 2f5/2);;2 
II .. -(3pl/2)~f2 
II 

(fg9/2)9j2 
II 

( 2g9/2)9/2 

" ( 2g9/2)~/2 

-."'· ,:, 

I 
f-' 

--:] 
I 

C1 
@ 
t-l 
I 

& 
w 
f-' 

'. ~'·'i'. 
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The comparison of experimental and calculated reduced widths in Fig. 2, 

3, and 4 shows clearly that taking into account the nuclear structure, even in 

a very crude approximation, gives results that agree well with the general 

features of the experimental data. Especially the behavior of the reduced width · 

when crossing the neutron number 126 is well reproduced. 

It seems to us, that one no longer needs to introduce a sudden jump of the 
208 

nuclear radius at the double magic nucleus Pb . The increase of the reduced 

width when going from N = 126 to N = 128 is quite naturally brought forth by 

the change in the single particle states involved in the decay. Particles in 

the 2g
9

/ 2 subs.hell for instance are favored over particles in the 3p
1

/
2 

and 

2f
5
/

2 
subshell in forming an a-particle first because of their higher angular 

mome~tum (compare Eq. 23) and second because the 2g
9
/

2 
level belongs to the 

next major shell and the radial part of the wave function is therefore also 

greater at the edge of the nucleus, which effects the quantity 

R( ()'1, U, ""~ ~~ k.1 ~J 'H., l~r ; Ra ) (compare Eq. 23 and 25). 

However, the fact that most of the reduced widths become too small as soon 

as one moves away from closed shells indicates that there might be a special 

enhancement due to configurational mixing, in particular for even~even nuclei. 

For configurational mixing under the influence of a short range attractive 
J 

force tends to bring the particles close together, 'an effect which increases 

the overlap with the a-particle wave function in particular as long as one 

deals with the configurational mixing of identical particles. 

To get some information about the influence of configurational mixing we 

have used wave functions given by the so-called "quasi particle model" which: 

is described in detail in reference 5. 

These wave functions are of the following type: 

7/TT(~+ 
.j ?n, 

for even-even nuclei 
and 

cp: -
(26) 



UCRL-8931 

-22-

for even odd nuclei with angular momentum ·~ 

The wave functions are normalized when 

2 2 
U. +V. =l 

J J 

The operator a+. acting on the vacuum state \o >creates a particle in a 

state cp;- mJ 

The constants U. and V. are determined so that the energy has a minimum 

and the average valu~ of th~ particle nPmh8r ( p / No/). / ¢ ) 
is equal to a given value N. 

We form with these wave functions 

and get for the reduced width in terms: of the constants U. V. J 
J J 

even-even nuclei) 

-[~ 
- J, h 

I ~)t-1 

UJ,] 2. 

(27) 

(~.) 12. 
The primes refer to the daughter nucleus.The indizes l and 3 are defin~d in E<;.. 23. 

Even-odd nucle:i, 

2.J:t+l 
VJl 

I 

.2. UJJ (28) 

(R.)] 
2.. 

• R "+~AJ ~ t.J 
'Yij 1./ ?1 J ~ 
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[L 2.JJ+I VJ
3 

u ~3 [ ~l VJ~ + ujl u~.l J 
2J3-I 

l. "-2 
bJ:J L. = --r-

JJ 

(c ~J-1 

~Ot. (2J+I) C(JJI..j± -±) (1-~aw)) I 
2-. + VJ UJ · (29) 

~01.. • 

The primes refer to the daughter nucleus. 

The results obtained with the help of (28) for the even-even Po isotopes 

and the single particle states listed in Table 2 are compared to experimental 
210 

data in Fig. 5. Again the reduced width of Po has been used as a standard. 

It is very encouraging to see that the agreement with experimental data 

is now better) in particular for nuclei which are already rather far away 

from closed shells. We shall not discuss in detail the assumptions ·made in 

the "quasi particle model" but conclude with some remarks about assumption (3) 

(single-particle wave function and a-particle wave function). 
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As far as the use of oscillator wave functions as single particle wave 

functions is concerned this is mainly justified by our lack of knowledge about 

the real single particle wave functions., The fact that the "radial part" of 

the reduced width varies only slightly ·'-.rhen changing the parameters indicates 

that the approximation used as well as ~he parameters a and ~ are not too 

unreasonably chosen. 

Concerning the ex-particle wave function we feel quite sure, that Eq. (22) 

provides a good approximation to the actual wave function. There are 

experimental
6 

as well as some theoretical7 reasons for this feeling. High 

e~ergy electron scattering experiments6 show clearly that a Gaussian type 

charge density is an extremely good approximation to the real charge density. 

Table 2. Single-particle levels in Pb207, Pb209 and Bi209 

Pb207 

Energy" 
(Mev) 

Energy 
(Mev) 

0.000 

0.75 

1. 56 

Pb209 

2g9/2 

liil/2 

3d5/2 

Energy 
(Mev) 

0.000 

0.91 

( 1. 63 

Bi209 

lh9/2 

2f7/2 
1 \3/2) 

0.000 

0.51 

0.89 

l. 63 

2.34 

Jpl/2 

2f5/2 

3P3/2 

lil3/2 

2f7/2 

( 2 .l 2g7/2) ( ) means the assign-
(" '7 ljl- 12) ment is not -- • I 

)/ certain. 

b. Fine structure of the ex-decays. Po210 -> Pb206 ; Po
211 -> Pb

20
7; 

Bi210 -> Tl206; Bi2ll -> Tl207; Bi212 -> Tl208. 
l 

It has been shown already that the fine structure of ex-decays, where the 

parent nucleus has only few nucleons outside closed shells, provides a very 

Gensitive test of any theory of ex-decay. Also the assumptions about the nuclear '-

"l.rave functions are tested. 

7· H. J. Mang and W. Wild, Zs. f. Phys. 154, 182 (1959). 
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** 
The d f P 210 p 211 ecays o o , o Bi

210
, Bi

211
, and Bi

212 
were chosen for the 

following reasons: The number of particles outside closed shells is still so 

small, that one can hope to perform configurational mixing calculations. There 

are enough and accurate measurements of intensities of a-lines leading to 

excited states of the daughter nucleus and also some a-y angular correlation
8 

measurements. 

The decay schemes9,lO,ll are given in Figs. 6, 7, 8, and 9. The nuclear 

wave functions including the possibility of configurational mixing and the 

formulas for the reduced widths are given in the appendix. (A 16 A 29). 

In Table 3 are summarized the experimental data8'9,lO,ll and some pre­

liminary calculated results. 

** This decay has been discussed earlier, but we include it again for the sake 

of completeness. 

8. S. Singer, Thesis, University of Illinois, 1957. 

9. W. Walen and S. Rosenblum, private communications with I. Perlman. 

10. W. Jentschke, A. C. Juveland, and G. H. Kinsey, Phys. Rev. 96, 231 

(1954). 

11. I. Perlman and J. 0. Rasmussen, Handbuch der Physik, Vol. XLII,' an~ 

the references quoted there. 
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Table 3 

Parent Spin Daughter Spin and Energy of Experimental Calculated Amplitudes Remarks 
nucleus and nucleus parity the state reduced reduced of partial 

parity of the of the width width waves 
of the daughter daughter (lo-2 Mev) (lo-2 Mev) experimental 
parent nucleus nucleus values in 
nucleus (Mev) parentheses 

Po210 0+ Pb20 0+ 0.000 0.676 0.676 
Pb206 2+ 0.803 0.931 1.9 The first set of 

Po2ll Pb207 
amplitudes belongs to 

9/2+ l/2- 0.000 0.286 0.23 L=3 L=5 L=7 the 5/2= tl1e second 
5/2- 0.570 0.022 0.064 1.00 0.87 0.57 to the 7/2- state. 
3/2- 0.890 0.350 0.30 (1.00) (0.96) (0.55) 210 

((25/2+)) l/2- 0.000 0.020 L=3 L=5 The Po ground state 
3/2- 0.890 0.038 1.00 0.35 transition is used as 

13/2+ 1.634 0.154 ( l. 00) ( 0. ~:"5) a standard. 

Bi2ll 9/2- Tl207 l/2+ 0.000 0.275 0.440 p 210 . d o lS use as a I 
LA.) 

3/2+ 0.350 0.258 0.310 standard I-' 
I 

Bi210 Tl206 1- 0.300 0.028 0.03 p 210 . d 
1- o lS use as 

((8-)) 0- 0.000 0.0022 0.006 a standard. The 8-
state is assumed to be 

Bi212 Tl206 
(lh9/2 2~/2)8-

1- 5+ 0.000 0.166 0.166 
4+ 0.040 0.126 0.150 The ground state tran-

( 4+) 0.328 0.058 0.036 sition is used as a 
(5+) 0.472 0.125 0.020 standard for the 
(3+) 0.492 0.221 0.080 transition to excited C1 
(6+) 0.617 0.068 states. ~ 

I 
CP 
\0 
LA.) 

1-' 

r 
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We discuss the results for each decay separately. 

Po210 

Fair agreement is obtained with the experimental data when the wave 

functions given by True and Ford
12 

and J.\:ewby13 are used. 

Po2ll 

The transition to the f
5

/
2 

state iE hindered as it should be. The results 

for the amplitudes of the partial waves agree well with the values derived 

from a-y angular correlations. 
210 211 

The results for Po and Po seem to indicate that transitiom involving 

the 2f
5
/ 2 state are still more hindered. (The first excited state in Pb

206 
is 

-1 -1 ) 
mainly p1/ 2 f

512
. 

The experimentally reduced widths for the transitions from the isomeric 

state of Po
211 

have been included in the table to show that the assumption 

'J = 2 S /2 leads to quite normal reduced widths. is om 
Bi2ll 

The reduced width of the ground state transition comes out too large by a 

factor of ~.6 but the intensity of the transition to the first excited state 

relative to the intensity of the ground state transition agrees well :·with_, 

experiment. Unfortunately) the a-y angular correlation is very sensitive to 

E;mall E2 admixtures to the Ml transition (3/2 -> 1j21). Therefore we have no 

reliable information about the amplitudes of the partial waves. 

Bi210 

Quite gqod agreement is obtained for the transition from the 1 state in 

Bi
210 

to the 1- state in T1206 . We have not calculated any reduced width for 

the transition to the state assignedJ . 2 in Tl
206

. If this state is a 2 stat·~ 
it is certainly of 

configuration s~/2 
consists. mastlJY' of 

a highly mtxed nature because it cannot arise from the Iowest 
-1 

p
1

/
2 

but has to be brought down near to the 1 state which 

( -1 -1 ) -the configuration s1/ 2 p1/ 2 1 _. The assignment 8 for the 

12. W. W. True and K. W. Ford) Phys. Rev. 109) 1675 (1958). 

13. N. Newby) Thesis) Indiana University (1958). 
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isomeric state of Bi 
210 

is highly tenta-:~ive and no conclusion can be drawn 

unless more information about this state is available. 

The reduced widths are given relat:~ve to the reduced widths of the ground 

state transition. The agreement with the experimental data is as good as one 

can expect assuming a pure configuration lh
9
/ 2 (2g9; 2 )~ li11; 2 1 _ for the 

ground state of Bi 
212 

and pure configurations (3s~;122g9; 2 ) 4+ 5
+ 

-1 208 ' (2d
3
; 2 2g

9
; 2 )

3
+, 4+,

5
+, 6+ for the states in Tl . If one compares the reduced 

width of the ground state transition with the reduced width of Po
210 

using pure 

configuration throughout one gets 

= 0.133 

The experimental value is 0.245. 

The amplitudes of the partial waves are rather sensitive to configurational 

mixing much more than the relative intensities as may be shown with the help 

of Eq. A 29. Therefore we do not give numerical values. 

We may conclude that it seems to be possible to understand the a-decays in 

-:~he region of Pb
208 

on, the basis of the nuclear shell model with the refinement 

of configurational mixing for particles outside of closed shells. We hbpe to 

present soon more detailed calculations whe:oe configurational mixing has been 

-:~aken into account for the parent and daughter nucleus of all the decays we 

have discussed above. 

a-decay of deformed nuclei 

To treat the a-decay of deformed nuclei, we have to include in our cal­

culations the quadrupole interaction between the a-particle and the daughter 
14 

nucleus. That means the potential V(R) has to be replaced by 

V(R,Qi) = V(R) + Vquadrupole 

Furthermore, the surfaceS which was defined by~~~ 
be no longer spherical but is defined by 

I~ 'I :a R, (I + ~ P:. r (:,-~ ?,Q.); ) 

(30) 

R Eq. (16) may now 
0 

(31) 

14. A. Bohr, P. 0 ·Froman and B. R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 

29, No. 10 (1955). 
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These modifications lead to the following expression for the decay constant 

t,_ ( l !. M 

2M ) cpc'Jti .... A) ;~ ci?::"( 
(32) 

'd 
Where ~ means the derivative normal to the surface .s defined in Eq. (3'11). 

P
,..l<. . 

The final state wave function is defined as having the 
'J~L(' 

following asymptotic behavior: 

~~J .. +I rD J x ..... L M-m) K K > f:" 
+ 

. J - q (IS') _D J . 
E-l) M-m -k' 

J 

(33) 

X CD(R~)· 
0( T ~ 

2.J 1- I 

:G"J+I 

L. C(LJ:l; I' k) f'2~-r·.: 
fA-

'J-1...- 9f~) 

+ E-1) DJ 
MJ 
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The unprimed coordinates refer to the 11 space-fixed system11 and the primed 

coordinates to the 11body-fixed system11
• 

Each term in the sum on J L is the transition probability to a final 

state defined by the angular momentum of the daughter nucleus • and the a- >~ 

a-particle L. € is the sum of the/ particle energy and the rotational energy. 

The phase 20 (-l)9(cr) is defined in the following way, 

X K €) 

k 

L. lJ A J( (<") 
t.. 

-L 
J~ 

-
II 
' t. 

A (~) 
J~ 

(34) 

To make the expression for the decay constant somewhat handier for com­

putation we introduce another set of functions which fulfill the following 

boundary condition at the surface S: 

( R) } fL~ X X... ... ~,.e. 0( 

(35) 
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and behave asymptotically for R -> 00 as follows: 

B ~~ 
J 1 I ( 'J I( 0~ • S) 
"" J ' ) 

C(t..'J' J j !"' K) 

where the functions '-Pl.! E:. are Coulomb-wave functions. 

There exists a unitary transformation connecting the two sets of wave 

functions. 

Mkft- t.~ HI< 

L cp:] J'L' 0£; lf:J,L.~~ - B ~..~ J~ -
t..'J' 

(37) 

- 11 k I 

ct?"J J I. Oli: "' BL~ lJ! M~~ = 

~' 
. 

~J ~L Qc 

Introducing (35) and (37) into the ·expression for the decay constant (32) 
we get, 
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L 
/.., ' 

+ E:t) 

I B 1..,-Y.-K] 
. k,J 

* ry (I ... A) 2.... X . 
I\ ~<., ~ -n. o< 

(38) 

+ 

V ko+k' X 
I L.' -k' s-

2. 

B ]} 
We have again split the problem into two parts. The "external problem" to 

calculate the coefficients BLL ~J..I. and the functioro fLL :J..I. , and the "internal 
J J..L€ 

problem" to perform the integration on J K and ~a· 

The functions f~:,~ fulfill the boundary conditions 

L h ~I B 1.!,~ J/2:j+T' 
ft.:~~ /- t.J Y#f;-

R~ o0 J 
(39) 

· C,' ( 1- J ;; ;' le k ) · ~ €: ( R) 
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( 40) 

and an analogous condition for the derivatives at the surface S. 

1 
L J 

( 41) 

and the following differential equations: 

( 42) 

~· 
/ I 

t_.ll 

where, 

and V~L" (R) are the matrix elements of the quadrupole interaction. 
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We should mention that 
. 18 

L.'~' 
our functions f'l,\'E: are equivalent to the functions 

gLl\. S deflned by Frl3man. 

To solve the differential equations (42) one can either integrate the sys-
. 15 16 17 tern of coupled differential equations numerlcally ) ) or use a three-

dimensional W K B method. 18)l9 

To make things easier, from. ,now. on·;- we shall return to a spherical surface 

S. To justify this we remember) that we have derived the expression for the 

decay constant using the equations (14) (15)) and (16). The conditions for 

the validity of these equations were that for R < R the Hamiltonian H Eq. 
0 0 

(14) was equal to the exact Hamiltonian H and that for R > R the 
0 

Hamiltonian H acting on the final-state wave function reproduced this wave 

function Eq. (16). But these two conditions can be fulfilled for a non­

spherical nucleus too) if we are only careful in using approximations for the 

wave function of the parent nucleus. One has to be sure that this wave 

function is a good approximation up to R = R when ff" = 90° which is the 
0 

direction of the minor axis of the nuclear ellipsoid. 

15. J. 0. Rasmussen and B. Segall, Phys. Rev. 103) 1928 (1956). 

16. E. M. Pennington and M. A. Preston, Can. J. Phys. 36, 944 (19)8). 

17. R. R. Chasman and J. 0. Rasmussen, UCRL-8632) Phys. Rev. (in press). 

18. P. 0. FrBman, Mat. Fys. Skr. Dan. Vid. Selsk.) Vol. 1) No. 3 (1957). 

19. V. G. Nosow) Dokl. Akad. Nauk. SSSR 112 7 414 (1957). 
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Deformed even-even a-emitters 

To describe a-decays of even-even nuclei we shall approximate the 

intrinsic wave functions)( K /( K by det~rminants of Nilsson-single-particle 
20 ° wave functions. Furthermore, we know that K = K = 0 for the lowest , 

0 

intrinsic state and J= 0 for the ground state of the parent nucleus. 

It follows 

L, t"' L L..'o RY,.. 
~ 2rr .13 /..; /..., -= - 0 

~ 2M L./ I.! . 
( 43) 

d ~L' ,.,, 0 L'o 

[ 'dcfL.'o~ 
} R·~, ~l.!oe GL.' ~R ~R. 

where 

I lit , 
[~) (~)] :{. ) o£~. d_fK 61 '-' (rt. ) = R~ otn.'la' X o X~ X or: Y.:o 0 • 

~0 
and the functions fL, 0 ~ are solutions of the somewhat simpler· system of 

differential equations than (42). 

[-~ VfR) L (L.+ I) ~ ]i L.o 
R"' - ~ + t.=\ L(L+t) R .P 

.2.o it!oe 

- -L__ ( 44) 

L II 

20. S. G. Nilsson, Dan. Mat. Fys. Medd. 29) No. 16 (1955). 
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If now the Nilsson states with 3-component of the angular momentumJl 
p 

andJl. are those occupied in the parent nucleus and unoccupied in the daughter 
n 

nucleus) we get for GL' 

G} t..' (R) .. ~A ( ~~~ ~-c~;) A ( ~~'~ ) . ( 45) 

X O< Y~Q ( J) d foe olfl. "Ia) 

1-Ihich may be evaluated with the help of Eqs. (A8) and (A32). If it is 

necessary to include configurational mixing) we use a linear combination of 

terms like that. given by Eq. ( 45). 

~avored decays of deformed even-odd nuclei 

A favored decay is characterized by K = K; J = K; j = K) K+l ... 

We shall further assume
14

)
18 

that the odd ~article is ~n the same Nilsson 

orbit in the parent and in the daughter nucleus. It follows) 

A- ~ ~I I t ,_ :--I -l/ I THL, 
JL4 . L/ 

I I 

B t..o R ~ 
L.J C) • 

[ 
t.' 0 

~ t..' 0 € -

' 
where GL' is given by Eq. (45). But the differential equation for the 

l.t.O 
function fDC C: are now different. 

-L 
1-" 

-1- V(R) + _.t2. i.;(L..+I)- ~ J R) Lo == 
J.M R).. . r~o€. 

1." v 10 I II (12) I R ; I 0 
&.lw rLt'Je 

( 46) 
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If one neglects the non-diagonal terms connecting ~=0 and ~ on the left­

hand side of Eq. (47) one gets 

1..'0 

Bt.J -- (48) 

0 . t· th BL'O ne may now as an approx1ma 10n use e LL from the neighboring even-

even nucleus and get definite predictions for the intensity ratios of tran­

sitions to different members of a rotational band.
14,18 

The validity of this 

approximation has been discussed by Chasman and Rasmussen. 17 We refer to their 

paper for details. In general, the agreement with the experimental data is 
. 14 18 

qu1 te good. ' 

Unfavored decays of deformed even-odd nuclei 

Unf~vored decays are characterized by K f K and we shall assume the K 
0 

values to be the z-projections of angular momentum of the odd particle in the 

parent and daughter nucleus and the remainder of particles as paired in 

"Nilsson orbits". 

It follows, 
I 

L t." L [ B L Ko-K 

A 2.lr - I L. J - T 2M 
J L. l.' 

I L. 1(,-1(' 

[ 'dft I II! ~.->< 
~t<.-K t..' • 

0 ~..: k'o-1< e J + 
l(o-K' ' t.. 

~R t..' 1(0 -k' e: oR 0 I 

-a.c q 1-<o+K J L..
1 

~R. 

( 49) 
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where 

(50) 

~ ~ " .a. ~-..n... 

- ~./-q(~h• r A ( ~ ~:> <PJ•) ) A ( cf) (1) <P(*)) 
'"'V yk'o+K 

The 
Tk 

function f;k'f 

A~ tJ,. o(, fot c;tQ ~I 
are now solutions of Eq. (42). 

If we neglect 

( 42) we get 

again the non-diagonal terms (k,~') in the differential 

Eq. 

I 
L I k'o- k 

B L.J -

This may lead to "alternating intensities to successive rotational 

states" when L > K + K because of the sign change of the. Clebsch-Gordan 
0 

Coefficients when J is set equal to K, K+l ... for the members of a 
21 rotational band as was first pointed out by F. Asaro in the case of the 

243 Cm a-decay to the ground band. 

21. F. Asaro, private communication. 

(51) 
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Appendix 

The reduced width is essentially determined by the integral 

G]JI. = R/t {(~J(f)}Js.. ) cLr. df" cill~Q [ x~(lhH) 

L C ( t... j :11-... M-m ) Y j'~l q;J "'("'o .... A) P )'"' A) J 
'm; 

The calculation of this integral will be performed in two steps) each of 

which involves different assumptions about the nuclear wave functions. 

First, we expand the integral 

in terms of single-particle wave functions. 

~ : . 
n, n~ 11..1 w.,. 1 • .t;_ tj t..,. J1 Ji. J.) J,. 
~ Jp J, ?n, ~.J l)ln,p 

(Al) 

(A2) 
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where A means an antisymmetrization and normalization operator. For the 

single-particle wave functions we take the harmonic oscillator functions 

defined in Eq. (21). As long as we sum over a complete set of quantum 

numbers ( ')'t.l R. ~ j C:. ) the expansion (A2) means no approximation. 

In a first step we calculate, 

"n\ p- W\ I - 'm,l 

<P, (2> ) A ( cp ( 3) 
ll'll.. £a; J ~ 'h .l 1,3 J 3 

For)( a we use the a-particle wave function given by 

• 

cp'Yn-mp·'l"tta ) 
(if) 

,.., ... Q'+ J~+ 

Eq. (22). 

We transform now the single particle wave functions from jj to~s 

coupling and take the inner product with the two singlet spin functions 

(A3) 

X0
( ) x0

( 4) X R h t h . 
22 

0 
12 and 

0 
3 contained in a· Using the standard aca ec n1que 

we get 

22. M. E. Rose, Elementary Theory of Angular Momentum, J.ohn Wiley and Sons, New 

York, 1957. 
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dfl ( 2.(3 ~ )~-
n 4-rr t 1 

• 

s c cp -(,) cP. ""p(-:;·) s· r~ ~~3) rh ~-~~-::.1 ) 
~, e, ~J. e4. '-Y'J'l:J R3 ~,. R~t J 

where S means a symmetrization and normalization operator and cf)_ "hot 
-~ t.. 

is defined as 

Next we introduce the coordinates f
1 
~ 

2 
f 

3 
and R as defined in Eq. ( 22) 

into the product of the four single particle wave functions. Using the 

* invariance of an oscillator potential under the transformation 

M'"n l.tll lr1 IC4- -> J, ~~ f.l R we get ; 

(A5) 

::;;:--, c; (A ;t. L; f' 'l'rl'"f') C' ( ..\, ~l AijA-' ff'') C( AJ ~ttllj f1 mt71) 
p, 1"-l~A' 

* 
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where 2 (v
1 

+ v
2 

+ v
3 

+ n) + ~1 + ~2 + ~3 + ~4 = 2 (n
1 

+ n2 + n
3 

+ n 4) 

+1
1 

+ L
2 

+ ~ + .f
4

, and ~l ~2 take only even values. 

Integrating now on ~l f 2 f3 andjlR we ge~ 

( WR.) 
L.. 

'"here, 

and 

(A6) 



UCRL-8931 

-49-

To calculate the coefficients T ( 'Yl. L J I" JN 'h- 1 'Y1 1 rnl 'Y1 Lt R,ll. .R1 1,..) 
we go back to Eq. (A5) and set 

which is equivalent to 

Then we expand both sides of Eq. (A5) in powers of x and get a system of linear 

equations for the T coefficients which may be solved easily. The result is 

(A7) 

where} 

~ J. ')3 • .:!...:. • If 
'6 
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and 
2..,S e 2 ( V, + ~ of" '1• VI+ ) + .f, + ~~ ·f f.J +.fIt-/., 

We introduce the above expression into Eq. (A6) and find that we are abl£ to 

sum over n. The final result is 

R,tR~-Jp 
1+0) 

2 

J I ..j. JJ + ~ 2.. + p Lt + 1.. .,. I 

= E-l) C (JpJifL;OO) 

(A8) 

]~ 
2 . 

-2ot R ~ 
e ( v:l(ot+fV 'R) 
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v, + li -4- ':) + j;''l" 

~·) . 

v, : v.. ! ~ .' v"" 1 

where the surr@ation is restricted by, 

We should mention at this point that until now only the assumptions about 

the a-particle wave function have been used. All the information about the 

nuclear wave functions is contained in the still undetermined coefficients 
I (""' ??• YIJ "h't .P, f~.-'J Rtr) 

./()" J, h J) ,/4 J,. JN k 0 

The next step in this development will, of course, be to assume that the 

nuclear wave functions may be reasonably approximated by products of single 

particle wave functions. Nevertheless, these single particle wave functions 

need not be harmonic oscillator wave functions. Because of the relatively 

small size of the a-particle it is sufficient to approximate the radial part 

R(r) of the actual single particle wave functionS.in the neighborhood of the 

point If,= ~e, -~· l(''t • ~o in the following manner. 

(A9) 

R.., + 'R 0( 
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where R is a sort of a-particle radius. The constant a is arbitrary but has a 
to be the same for all four radial wave functions involved in the calculations. 

L. 
The coefficients 13e of Eq. (A8) are then defined by the following equation. 

(AlO) 

But actually we do not know enough about the radial dependence of single­

particle wave functions. Therefore we shall from now on assume that harmonic 

oscillator wave functions are good approximations to the radial parts of the 

we shall calculate the 

for several cases of interest. 

The first case is that treated in § Zt of this paper - even numbers of 

particles are "paired" to give total a~gular momentum zero. That means states 

with seniority 0. The wave functions of the parent and daughter nucleus are 

as follows (only that pa:bt of the wave function is given that refers to unfilled 

sub shells): 

Even-even nuclei 

[(i)(i) N, 



0 lf o ( cl.a.u.~~) :: 

r= 
.:......----~· 
0 < m.a. < I I ' ~ 'm ~ 

'-------:--'1 
o<;~,~. <: •.. <f~ 

.),-~~. .. ' J.- ??l~ 
(:.1 ) 
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(All) 

The subscript 1 refers to protons and 3 to neutrons. N is the number of 

particles in the sub shell with quantum numbers J e ~ in the parent nucleus. 



Even-odd nuclei 

- M p ( pcrtel'l t) -= 
J, 

) 
o"-?n,<::.,.,m¥ 

* /1a 'M 

E.•) 

UCRL-8931 

[( ~)(¥) ' ;· -1 N,-1 !!i N, • NJ ' • 
T 2. 

it··~ M.~. y 

l-('J.-1)(~) J-~ ¥ N~2. (N,-~) 1 (~-2.)! ' 

J,- H?a. ' ' 

~ I JJ-ft~'''J.)-f'~ )~~~ 
L ~') ]}e,t l '1:', I • ' I 

.&.-------· J~ tJ r)J.] 
() 'j-t.i. £." p. ~ 

N
1 

is now odd and N
3 

is even. J l ')L,..~have the same meaning as in (All). 

There is also the possibility that the "odd"-particle in the parent 

nucleus is in a single particle state different from the state J 1 1.. 1 1)1 1 

(Al2) 
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[(¥)(~) w, w,-1 t!J 
• .a.. 

J.-»t., I I' o J,- ,.,.~ 
G-t) L 

There are now two possibilities for the daughter nucleus: 

a. The "odd"-particle is in the state Jz. J, l)t'-

b. The )'odd"-particle is in the state J
1 
>I, ; ?11 ; in which case the 

wave function is already given in E~. {Al~ , 
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To perform the integrations on the coordinates of particles 5 ... A we 

expand the determinant wave functions for N
1 

and N
3 

particles (parent nucleus) 

in subdeterminants of 2 and N
1

-2 (N
3

-2) rows, so that particles 1,2 and 3,4 
are together in the subdeterminants of two rows. 

With the help of these expansions one gets immediately 

--

r ~ {16) • 6 -'±' o.~ 
J I J1 0 

l.J,- I 

l-c~.-1 > < 2..J, + l-~>~, > ""l c 2-J-:+l- "'J > J ~ 
'+ (7..J 1+1) (2-J3 +t) 

(Al5) 
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where 

UCRL-8931 

IV3 ( 2.J:t-t- l- IV.J ) 

4. I 2-J! + I 

cp m-;'t-
( 4.) 

J' 

From (A8) and the results just given one derives now easily the expressions 

, for the reduced widths ~~J~ given in Eq. ( 23, 24). 
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We shall now evaluate the reduced width for the cases treated in § 3. 
The treatment will be sufficiently general to include configurational mixing 

of any type for the nucleons outside closed shells. 

l. Two identical nucleons outsi.de closed shells. 210 (Example Po ) 

a ( J, e, '11,1 J2. e.2 ~~) . 

I Z,: C(J.J,:lj ..... 11-m,). (tO z!)--r.. 

D e, t { ,..j:.. 'Me 
. "±" J I I, 1')11 

.. 

L C: ( JJJ,.J j ma-J H-m-???J) { (N-2)!(Z-2) i J 
l')n.3 

duud 4kie .. . ' . . ' 
Z-2. 

Z and N are the proton and neutron number ·of the parent nucleus. 

(Al6) 
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We expand the determinants in the wave function of the parent nucleus as 

we did earlier (Al4) and get, 

(A17) 

H-~, ) 
(2) A 

J2 'n2 fl 

Comparing this expression with Eq. (A2) one finds, 

(Al8) 
2. 

From this we get for the reduced width 6, including configurational mixing, 
'JJI. 

(Al9) 



-· 
[

(2J,+I) (2J:J.+I} (Z)7+1){2j,.+J) 

2. J+ I 

I+ 

/'"I( I') G l J, J:z. J; r -;:_ 
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2. Two neutrons and two protons outside closed shells (Exa~ple Po
212

). 

In this case we shall only consider J= o, J = 0, L = 0. The daughter 

nucleus is the double magic Pb208 . A straightforward calculation yields, 

) : 
J,-rJJ+P2 +f~t-+l+~ 

G-•) 

(A20 
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2 

(
(2J,+I)(2h+I)(2.J1tl )(2J..-+I) 

~A +I · 

where ~ is the angular momentum to which the two neutrons and two protons 

respectively are coupled. 

3· Three nucleons outside closed shells (Examples Po
211

, Bi
211

). 

L C ( J, J~J,. j ?n, 11-mJ-""') C ( h J,. '] j ..,, 11-.,J) 
m, m~3 

. , . . . } ~ 

(A21) 
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It followE, 

(A22) 

where 

J = J~ 
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4. Two non-identical nucleons outside a closed shell (Example Bi
210

) 

(A23) 

D d { cP~:c --;.._,~~ f'- a dne.< A/.de- .. L-2.. 

De__t { ,+,-"'~""··~,;;...5 f-' eo.. dm-1 4~ J 
~j~ I N-2 



UCRL-8931 

-64-

We get for [ (~)(i)J ~ ) cf lj; JM-»< dJ. 

K~X~)] { . ~. <P: tp;-~ c~:~K 

(A24) 

. fr ('h-,1'17z. 'YIJ IYI'f f. Rl. RJ R'+) 
It follows for the co rr· · t e .lClen s J,J2 JJ J~.+ J,. j,., L 

(A25) 
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and Q,...,l,J,~~ll-h. J,.J,.,L 
(} IMJ QJ JJ IM't et.t- J~t 

:Lnto (A2) and find that it is possible to sum over Jp and j w 
The result for the reduced width is,· 

2. 

6 "Jj L 

J,+ h. +JJ + J,. + e 1-.1'+ + :J+ i 
CLJ ( J2. 12. tn2. J., R*" 'VI~+ ) E-•) 

2. 

(A26) 
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5. Four nucleons outside closed shells. Three of them identical. 

(Example Bi
212 

and At
212

) 

) . a J c J. R, 11._ 1, t, ""'' ) 
Jz !2 ll-1, J, f6 n, 

• j Z-2. 

" 6 ' • 0 } 

N-2. 

We have assumed that two of the three identical nucleons are coupled to 

angular momentum zero. 

We get, 

(A27) 
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""-/ . 

·~· 

J 
and from this we get for the reduced width, 
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-· 
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l'-t Et) e. +.Rl-L . 

2. 

+ 

(A29) 
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Deformed nuclei 

We shall give the expressions for the two representations now in use for 

-'~he single particle wave function in a deformed potential. 

l. Nilsson's representation (isotropic three dimensional harmonic 

oscillator functions in spherical polar coordinates). 

Rewriting ~_n:lightly J . 

= 

vrhere 

--

(A30) 

(A3l) 



.. 
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vre get for an n. 0 .n. ' 
(} I . ~~ 't-

2 . . 
' ... · .... '' . . ' ' 

~' . ·. . . . . ' . ' 

J1l.I'Vi, J2 R2.11.2. J:1fs ?1..? j'+-l'~-11~t- j~>JwL 

..a..'+ 
oL J~.t- ~'+''VI..- C: ( J,J:d,.JL, n2) 

2. Asymptotic representati.on (three dimensional harmonic oscillator 

functions separated :j..n cylindric,al coordinates). 

where 

H (~ z J =-r 

'K" :: { 1J cp) ·z } 

(A32) 

(A33) 
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A straightforward calculation which uses the technique described in 

detail for the case of spherical coordinates yields, 

2 

1-s, !"' s.? 

= 

(A34) 
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J-l 'L ( 
v ~(~'t~)· z) . "" Bs !S! E,)J 0':!) N-s L_/ 

~~f +-lA.../ .~ 
§ 

LIA.I 
( ~ (o<tf1) ""') 

IlL/ I -iA..cp 
• C v~(_QI.-(J),-;) ,. -e 

VJ- rr ~ 

where 

A. '::t IL, + ILL + !L.J + 4...,. 

r?£,1 = { ~ ; ({) j ·z 1 

( V,-+1 A..,/) CVL t-/.i..t-1) c~ +IA:t ') (v'+ t-IlL'+/) 
B~ =. v.t v,! ~ 1 Y'+-! v,-~ ~~ -.I.L v~- 4.1 · v,..-h.if. 

I ~ 'J It 'f' j_ j . /J 
E• J "'l, +'I? .. +- #o?..1 + t, ~t-

( 1 A.a.. I ~e.~! ~""! 
~s- :<.(.~~+~~- +t.) .... ;,J -;-/tt., 1 +-/A..~.; .;./4_~/.,./A.y/- A.. 

and A 't is ciisfla,~ec.. by 
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