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A precise measurement of the cross section of the process eþe� ! �þ��ð�Þ from threshold to an

energy of 3 GeV is obtained with the initial state radiation (ISR) method using 232 fb�1 of data collected
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with the BABAR detector at eþe� center-of-mass energies near 10.6 GeV. The ISR luminosity is

determined from a study of the leptonic process eþe� ! �þ���ð�Þ. The leading-order hadronic

contribution to the muon magnetic anomaly calculated using the �� cross section measured from

threshold to 1.8 GeV is ð514:1� 2:2ðstatÞ � 3:1ðsystÞÞ� 10�10.

DOI: 10.1103/PhysRevLett.103.231801 PACS numbers: 13.66.Jn, 13.60.Hb, 13.66.Bc

Measurements of the eþe� ! hadrons cross section are
necessary to evaluate dispersion integrals for calculations
of hadronic vacuum polarization (VP). Of particular inter-
est is the contribution ahad� to the muon magnetic moment

anomaly a�, which requires data in a region dominated by

the process eþe� ! �þ��ð�Þ. Comparison of the theo-
retical and measured [1] values of a� shows a discrepancy

of about 3� when current eþe� data [2–4] are used,
possibly hinting at new physics. An approach using �
decay data corrected for isospin breaking, leads to a
smaller difference [5].

The results on �� production reported in this Letter are
obtained with the ISR method [6] using eþe� annihilation
events collected at a center-of-mass (c.m.) energy

ffiffiffi
s

p
near

10.58 GeV. The cross section for eþe� ! X at the reduced

energy
ffiffiffiffi
s0

p ¼ mX, where X can be any final state, is
deduced from a measurement of the radiative process
eþe� ! X� where the photon is emitted by the eþ or
e�; s0 ¼ sð1� 2E�

�=
ffiffiffi
s

p Þ, where E�
� is the c.m. energy of

the ISR photon. In this analysis,
ffiffiffiffi
s0

p
ranges from threshold

to 3 GeV. Two-body ISR processes with X ¼ �þ��ð�Þ
and X ¼ �þ��ð�Þ are measured, where the ISR photon is
detected at large angle and the charged-particle pair can be
accompanied by a final state radiation (FSR) photon.
Obtaining the �� cross section from the ratio of pion to
muon yield reduces significantly the systematic uncer-
tainty. The measured muon cross section is compared to
the QED prediction, and this cross check of the analysis is
termed the QED test.

The
ffiffiffiffi
s0

p
spectrum of eþe� ! X� events is related to the

cross section for the process eþe� ! X through

dNX�

d
ffiffiffiffi
s0

p ¼ dLeff
ISR

d
ffiffiffiffi
s0

p "X�ð
ffiffiffiffi
s0

p
Þ�0

Xð
ffiffiffiffi
s0

p
Þ; (1)

where "X� is the detection efficiency (acceptance) deter-

mined by simulation with corrections obtained from data,
and �0

X is the bare cross section (excluding VP). The
measurement of �0

��ð�Þ uses the effective ISR luminosity

dLeff
ISR=d

ffiffiffiffi
s0

p
provided by the measured mass spectrum of

���ð�Þ events following Eq. (1) in which �0
Xð

ffiffiffiffi
s0

p Þ is the
��ð�Þ bare cross section computed with QED [7]. For the
QED test, the measurement of �0

��ð�Þ uses the effective

ISR luminosity definition as a product of the eþe� inte-
grated luminosity (Lee), the radiator function [6], the ratio
of detection efficiencies for the ISR photon in data and
simulation (not included in "X�), and the VP correction

ð�ðs0Þ=�ð0ÞÞ2. The radiator function, determined by the
simulation, is the probability to radiate one or several

ISR photons so that the produced final state X (excluding

ISR photons) has mass
ffiffiffiffi
s0

p
.

This analysis is based on 232 fb�1 of data recorded with
the BABAR detector [8] at the PEP-II asymmetric-energy
eþe� storage rings. Charged-particle tracks are measured
with a five-layer double-sided silicon vertex tracker (SVT)
together with a 40-layer drift chamber (DCH) inside a
1.5 T superconducting solenoid magnet. The energy and
direction of photons are measured in the CsI(Tl) electro-
magnetic calorimeter (EMC). Charged-particle identifica-
tion (PID) uses ionization loss dE=dx in the SVT and
DCH, the Cherenkov radiation detected in a ring-imaging
device (DIRC), and the shower deposit in the EMC (Ecal)
and in the instrumented flux return (IFR) of the magnet.
Signal and background ISR processes are simulated with

Monte Carlo (MC) event generators based on Ref. [9].
Additional ISR photons are generated with the structure
function method [10], and additional FSR photons with
PHOTOS [11]. Background events from eþe� ! q �q (q ¼
u, d, s, c) are generated with JETSET [12]. The response of
the BABAR detector is simulated with GEANT4 [13].
Two-body ISR events are selected by requiring a photon

with E�
� > 3 GeV and laboratory polar angle in the range

0.35–2.4 rad, and exactly two tracks of opposite charge,
each with momentum p > 1 GeV=c and within the angular
range 0.40–2.45 rad. If several photons are detected, the
ISR photon is chosen to be that with the highest E�

�. The

charged-particle tracks, required to have at least 15 hits in
the DCH, must originate within 5 mm of the collision axis
and extrapolate to DIRC and IFR active areas which ex-
clude low-efficiency regions. An additional criterion based
on a combination of Ecal and dE=dx reduces electron
contamination.
Acceptance and mass-dependent efficiencies for trigger,

reconstruction, PID, and event selection are computed
using the simulation. The ratios of data and MC efficien-
cies have been determined from specific studies, as de-
scribed below, and are applied as mass-dependent
corrections to the MC efficiency. They amount to at most
a few percent and are known to a few permil level or better.
Tracking and PID efficiencies are determined taking

advantage of pair production. For tracking studies, two-
prong ISR candidates are selected on the basis of the ISR
photon and one track. A kinematic fit yields the expected
parameters of the second track. The unbiased sample of
candidate second tracks is used to measure track recon-
struction efficiency. The maximum correlated two-track
loss induced by track overlap in the DCH is 0.6% for pions
and 0.3% for muons.
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Tracks are assigned uniquely to a complete set of PID
classes using a combination of cut-based and likelihood
selectors. The ‘�’ class is addressed first by making use of
track IFR penetration and hit spread distribution, and of the
Ecal value. Tracks failing the ‘�’ identification are labeled
as ‘e’ if they satisfy Ecal=p > 0:8. The ‘K’ class is deter-
mined using DIRC information and dE=dx. Remaining
tracks are labeled as ‘�.’ A tighter selection called ‘�h’
is applied in mass regions where background dominates or
to create a pure pion test sample.

Efficiencies for PID are measured from pure samples of
muon, pion, and kaon pairs obtained from x �x� events
where one track is selected as ‘�’, ‘�h’, or ‘K’, and the
other is used to probe the PID algorithm. The efficiencies
are stored according to momentum and position in the IFR
or the DIRC. The typical efficiency for ‘�’ is 90%, with
10% mis-ID as ‘�.’ The ‘�’ efficiency is strongly momen-
tum dependent because of mis-ID as ‘K’ (1% at 1 GeV=c,
reaching 20% at 6 GeV=c), as ‘�’ (5%–6%), or as
‘e’ (2%).

To obtain the spectra Njj of produced particle pairs of

true type j, a set of three linear relations must be solved.
They involve the Njj, the measured mass distributions for

each ‘ii’-identified final state, and the probabilities "jj0ii0 (i,

j ¼ �, � or K) which represent the product of the mea-
sured efficiencies for each track of true type j to be
identified as ‘i’. Correlations between the PID efficiencies
of the two tracks, due their overlap, have been observed
and parametrized. They are largest for muons where the
correlated PID loss reaches 1.3% of the events below
1 GeV=c2. It is important to control this effect, since it
affects the �� and �� samples in an anticorrelated way.

A contribution (< 10�3) to N�� from p �p� is estimated
from MC simulations and subtracted after reweighting the
rate to agree with the BABAR measurement [14].
Multihadronic background from eþe� ! q �q comes from
low-multiplicity events in which an energetic � originating
from a �0 is mistaken as the ISR photon candidate. To
normalize this rate from JETSET, the �0 yield obtained by
pairing the ISR photon with other photons in the event is
compared in data and MC simulations; JETSET overesti-
mates this background by a factor 1.3. Multihadronic ISR
backgrounds are dominated by eþe� ! �þ���0� and
eþe� ! �þ��2�0� contributions which are estimated
using resonance-based MC generators. An approach simi-
lar to that for q �q is followed to calibrate the background
level from the 3� ISR process, using ! and � signals. The
ratio of data to MC yield is found to be 0:99� 0:04. The
MC estimate for the 2�2�0� process is used and assigned
a 10% systematic uncertainty. A residual radiative Bhabha
background is identifiable only near threshold and at large
mass, where the pion signal vanishes. Its magnitude is
estimated from the distribution of the angle between the
�þ and the ISR photon in the �� c.m. frame at low energy
and its energy dependence obtained from a control sample

of radiative Bhabha events. It is assigned a 100% system-
atic uncertainty. To suppress the contribution from the
eþe� ! �� process with a photon conversion, which
affects the spectrum at threshold, the vertex of the two
tracks is required to be closer than 5 mm to the collision
axis in the transverse plane. This criterion is applied only to
events in the � tails, defined to lie outside the central region
0:5<m�� < 1:0 GeV=c2. Background contributions to
the N�� spectrum are negligible.

Each event is subjected to two kinematic fits to the
eþe� ! X� hypothesis, where X includes one additional
photon, detected or not. Both fits use the ISR photon
direction and the parameters and covariance matrix of
each charged-particle track. The energy of the ISR photon
is not used, as it has little impact for the relatively low c.m.
energies involved. The two-constraint (2C) ‘‘ISR’’ fit al-
lows an undetected photon collinear with the collision axis,
while the 3C ‘‘FSR’’ fit uses any photon with E� >

25 MeV. When more than one such photon is present,
the best FSR fit is retained. An event with no extra photon
is characterized only by its 	2

ISR value. Most events have

small 	2 values for both fits; an event with only a small
	2
ISR (	2

FSR) indicates the presence of additional ISR (FSR)

radiation. Events where both fits have large 	2 values result
from track or ISR photon resolution effects, the presence of
additional radiated photons, or multihadronic background.
To accommodate the expected background levels, different
criteria in the (	2

ISR, 	
2
FSR) plane are applied depending on

the m�� mass regions. For the central � region, a loose 2D
contour has been optimized to remove the main back-
ground area while maintaining control of the associated
systematic uncertainties. The same procedure is used in the
��� analysis in spite of the very small background. In the
� tails, a tighter 	2 selection is imposed to reduce the
larger background. Samples of 529320 pion and 445631
muon events are selected in the mass range below
3 GeV=c2, where the m�� (m��) mass is calculated from

the best ISR or FSR fit.
The computed acceptance and the 	2 selection effi-

ciency depend on the description of radiative effects in
the generator. The FSR rate is measured from events that
satisfy the FSR fit, with an additional photon (E� >

0:2 GeV) within 20� of either track. The excess in data
relative to the generator prediction using PHOTOS [11] is
ð�4� 6Þ% of total FSR for muons, and ð21� 5Þ% for
pions. This difference results in a ð6� 2Þ � 10�4 correc-
tion. More significant differences are found between data
and the generator for additional ISR photons, since the
latter uses a collinear approximation and an energy cut-
off for very hard photons. Induced kinematical effects have
been studied using the next-to-leading-order (NLO)
PHOKHARA generator [15] at the four-vector level with

fast simulation. Differences in acceptance occur at the
few percent level, and these yield corrections to the QED
test. In contrast, since radiation from the initial state is
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common to the pion and muon channels, the ��ð�Þ cross
section, obtained from the ��=�� ratio, is affected and
corrected only at a few permil level. Additional ISR effects
on the 	2 selection efficiencies factorize in both processes
and cancel in the ratio. The 	2 selection efficiency deter-
mined from muon data applies to pions, after correction for
the effect of secondary interactions and the�=� difference
for additional FSR. Therefore, the measurement of the pion
cross section is to a large extent insensitive to the descrip-
tion of NLO effects in the generator.

The QED test involves two additional factors, both of
which cancel in the ��=�� ratio: Lee and the ISR photon
efficiency, which is measured using a ��� sample se-
lected only on the basis of the two muon tracks. The
QED test is expressed as the ratio of data to the simulated
spectrum, after the latter is corrected using data for all
known detector and reconstruction differences. The gen-
erator is also corrected for its known NLO deficiencies
using the comparison to PHOKHARA. The ratio is consistent
with unity from threshold to 3 GeV=c2, [Fig. 1(a)]. A fit to
a constant value yields (	2=ndf ¼ 55:4=54; ndf ¼ number
of degrees of freedom)

�data
���ð�Þ

�NLO QED
���ð�Þ

� 1 ¼ ð40� 20� 55� 94Þ � 10�4; (2)

where the errors are statistical, systematic from this analy-
sis, and systematic from Lee (measured using Bhabha
scattering events), respectively. The QED test is thus sat-
isfied within an overall accuracy of 1.1%.

To correct for resolution and FSR effects, an unfolding
of the background-subtracted and efficiency-corrected
m�� distribution is performed. A separate mass-transfer
matrix is created using simulation for the � central and tail
regions; this provides the probability that an event gener-

ated in a
ffiffiffiffi
s0

p
interval i is reconstructed in a m�� interval j.

The matrix is corrected to account for the larger fraction of
events with bad 	2 values (and consequently poorer mass
resolution) in data compared to the MC simulation because
of the approximate simulation of additional ISR. The
performance and robustness of the unfolding method [16]
have been assessed using test models. For the 2-MeV
intervals, the significant elements of the resulting covari-
ance matrix lie near the diagonal over a typical range of 6–
8 MeV, which corresponds to the energy resolution.
The results for the eþe� ! �þ��ð�Þ bare cross section

[17] including FSR, �0
��ð�Þð

ffiffiffiffi
s0

p Þ, are given in Fig. 1(b).

Prominent features are the dominant � resonance, the
abrupt drop at 0.78 GeV due to ��! interference, a clear
dip at 1.6 GeV resulting from higher � state interference,
and some additional structure near 2.2 GeV. Systematic
uncertainties are estimated from the precision of the data-
MC comparisons and from the measurement procedures
used for the various efficiencies. They are reported in

Table I for 0:3<
ffiffiffiffi
s0

p
< 1:2 GeV. Although larger outside

this range, the systematic uncertainties do not exceed
statistical errors over the full spectrum for the chosen
energy intervals.
The lowest-order contribution of the ��ð�Þ intermedi-

ate state to the muon magnetic anomaly is given by
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FIG. 1 (color online). (a) The ratio of
the measured cross section for eþe� !
�þ���ð�Þ to the NLO QED prediction.
The band represents Eq. (2). (b) The
measured cross section for eþe� !
�þ��ð�Þ from 0.3 to 3 GeV.
(c) Enlarged view of the � region in
energy intervals of 2 MeV. The plotted
errors are from the sum of the diagonal
elements of the statistical and systematic
covariance matrices.
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a��ð�Þ;LO� ¼ 1

4�3

Z 1

4m2
�

ds0Kðs0Þ�0
��ð�Þðs0Þ; (3)

where Kðs0Þ is a known kernel [18]. The integration uses
the measured cross section and the errors are computed
using the full statistical and systematic covariance matri-
ces. The systematic uncertainties for each source are taken
to be fully correlated over all mass regions. The integrated
result from threshold to 1.8 GeV is

a��ð�Þ;LO� ¼ ð514:1� 2:2� 3:1Þ � 10�10; (4)

where the errors are statistical and systematic. This value is
larger than that from a combination of previous eþe� data
[5] (503:5� 3:5), but is in good agreement with the up-
dated value from � decay [5] (515:2� 3:4).

In summary, the cross section for the process eþe� !
�þ��ð�Þ has been measured in the energy range from 0.3
to 3 GeV, using the ISR method. The result for the ��
hadronic contribution to a� has a precision comparable to

that of the combined value from existing eþe� experi-
ments. However, the BABAR central value is larger, which
reduces the deviation of the direct a� measurement from

the standard model prediction.
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TABLE I. Relative systematic uncertainties (in 10�3) on the
eþe� ! �þ��ð�Þ cross section by

ffiffiffiffi
s0

p
intervals (in GeV) up to

1.2 GeV. The statistical part of the efficiency uncertainties is
included in the total statistical uncertainty in each interval.

Source

of uncertainty

ffiffiffiffi
s0

p
(GeV)

0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.9 0.9–1.2

Trigger/filter 5.3 2.7 1.9 1.0 0.5

Tracking 3.8 2.1 2.1 1.1 1.7

�-ID 10.1 2.5 6.2 2.4 4.2

Background 3.5 4.3 5.2 1.0 3.0

Acceptance 1.6 1.6 1.0 1.0 1.6

Kinematic fit (	2) 0.9 0.9 0.3 0.3 0.9

Correlated �� ID loss 3.0 2.0 3.0 1.3 2.0

��=�� noncancel. 2.7 1.4 1.6 1.1 1.3

Unfolding 1.0 2.7 2.7 1.0 1.3

ISR luminosity (��) 3.4 3.4 3.4 3.4 3.4

Total uncertainty 13.8 8.1 10.2 5.0 6.5
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