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Abstract
Natural languages exhibit properties that are difficult to explain
from a purely functional perspective. One of these properties is
the systematic lack of upper-bounds in the literal meaning of
scalar expressions. This investigation addresses the develop-
ment and selection of such semantics from a space of possible
alternatives. To do so we put forward a model that integrates
Bayesian learning into the replicator-mutator dynamics com-
monly used in evolutionary game theory. We argue this syn-
thesis to provide a suitable and general model to analyze the
dynamics involved in the use and transmission of language.
Our results shed light on the semantics-pragmatics divide and
show how a learning bias in tandem with functional pressure
may prevent the lexicalization of pragmatic inferences.
Keywords: semantics; pragmatics; iterated learning; evolu-
tionary game theory; scalar expressions

Introduction
Why are natural languages structured the way they are and
not differently? In particular, what factors are involved in
the selection of semantic structure from a space of possible
alternatives? A number of recent studies have began to inves-
tigate such issues, pertaining to the development and emer-
gence of linguistic features (see Steels 2015 and Tamariz &
Kirby 2016 for recent overviews). While different method-
ologies have been put forward to this end, the overarching
argument is one of competing pressures: natural languages
need to enable successful communication, as well as be suited
for acquisition. That is, they need to be well-adapted to the
communicative needs of their users but they also need to be
learnable in order to survive their faithful transmission across
generations.

The present investigation focuses on the interplay of such
selective forces by means of a case study on the lexicalization
of semantic upper-bounds. Using evolutionary game theory,
framed in terms of language use and learning, we investigate
the prevalence of a lack of upper-bounds in the literal mean-
ing of scalar expressions. The innovation of the model lies
in its combination of functional pressure on successful com-
munication, effects of learning biases on (iterated) Bayesian
language learning (Griffiths & Kalish, 2007), and probabilis-
tic models of language use in populations with distinct lex-
ica (Frank & Goodman, 2012; Franke & Jäger, 2014; Bergen

et al., to appear). Our results show that a learning bias for
simple semantic representations coupled with communal lan-
guage exposure can lead to a prevalence of a lack of semantic
upper-bounds provided bounds can be inferred via pragmatic
reasoning. This, in turn, offers an explanation to why certain
pragmatic inferences fail to lexicalize.

Conveying and lexicalizing upper-bounds
A considerably large class of natural language expressions
do not lexicalize an upper-bound. That is, they are truth-
conditionally compatible with more informative or “stronger”
alternatives. Here, informativity is understood as an order
over entailment. Examples in English include, among many
others, numerals such as five and six, scalar adjectives like
cold and big, as well as quantifiers like some and many. The
commonality of these expressions lies in their literal meaning
being compatible with the truth of stronger (relevant) alterna-
tives. For example, if it is true that ‘Bill read five books’ it
may well be true that ‘Bill read six/seven/... books’. Cru-
cially, the latter entails the former; if it is true that ‘some
students came to class’ then this would also hold if it were
true that ‘all students came to class’. Prima facie this pattern
may seem surprising. If it were true that ‘some (but not all)
students came’, then it would putatively serve interlocutors
better if some semantically ruled out the stronger all case.

In practice, however, what is communicated often goes be-
yond the literal meaning of expressions. In particular, mutual
reasoning between interlocutors can lead to the enrichment
of semantic content (Grice, 1975). Such pragmatic reason-
ing is driven by interlocutors’ mutual expectations of rational
language use. In this case the use of a less informative ex-
pression when a more informative one could have been used
can license a defeasible inference that the stronger alternative
does not hold (cf. Horn 1972; Gazdar 1979). In this way,
a hearer who assumes the speaker to be knowledgeable and
cooperative, i.e., able and willing to supply all relevant infor-
mation at her disposition, can infer some to be pragmatically
strengthened to convey an upper-bounded interpretation.

This kind of reasoning was already hinted at above: a
speaker would have used the more informative alternative if
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it were true. Since she did not, her addressee can infer that it
does not hold. Conversely, a speaker who reasons about her
addressee can rely on her drawing this inference. Notwith-
standing, while pragmatic reasoning provides an answer to
how interlocutors may derive and convey upper-bounds, the
question why they are not part of the literal meaning still
stands. More generally, while a divide between semantics and
pragmatics is commonly agreed upon by linguists, under con-
sideration of purely functional pressures this raises the chal-
lenge of providing justifications for the former’s structure.

We see two main explanations for a lack of semantic upper-
bounds in scalar expressions. The first is that pragmatic rea-
soning offers a general mechanism to strengthen the mean-
ing of a wide range of expressions when the conditions out-
lined above hold. Consequently, cases where cooperativity
or knowledge are not likely to be given are non-committal
to whether stronger alternatives hold. If for all the speaker
knows ‘some students came’ but she does not know whether
‘all came’, then the compatibility of some with (possibly) all
succinctly conveys the speaker’s uncertainty about the latter.
Given that scalar expressions occur in contexts in which their
upper-bounded reading is absent, one could argue for a func-
tional advantage of a lack of semantic upper-bounds: If ex-
pressing such a state of affairs is relevant and contextual cues
provide enough information for a hearer to discern when a
bound is conveyed pragmatically, then doing so is preferred
over enforcing the bound overtly through a longer (more com-
plex) expression, e.g. by stating ‘some but not all’ explicitly.
That is, all else being equal, speakers prefer to communicate
as economically as possible, and pragmatic reasoning enables
them to do so. Additionally, this can be contrasted with the
hypothetical alternative of lexicalizing two expressions – one
with and one lacking an upper-bound. Four conditions may
pressure language to English-like semantics over this alter-
native: (i) contextual cues are very reliable, morphosyntactic
disambiguation is either (ii) not frequently necessary or (iii)
not very costly, or (iv) having larger lexica is more costly
than morphosyntactic disambiguation. In a nutshell (i) and
(ii) place a heavy burden on the ability to retrieve contextual
cues to a degree that is unlikely to undercut the benefit of safe
communication with more expressions. As for (iii) and (iv),
these seem mostly like technical solutions without a proper
empirical basis.

A second explanation targets the contrast of the underlying
semantic representation of upper-bounds and a lack thereof,
positing a learning advantage for the latter. That is, by virtue
of their simpler representations, expressions lacking upper-
bounds are more readily learnable than their bounded coun-
terparts. If a bound can be supplied pragmatically, this dif-
ference may explain the prevalence of such semantics. In the
following we explore this hypothesis. While we do not want
to argue that functional pressures may not play a role, we see
a clear benefit in exploring whether learnability would not
give us additional leverage. Furthermore, it should also be
stressed that these explanations may well be complementary

in that a full-fledged account can reasonably be expected to
involve an interplay between them.

Communication and selective dynamics
We employ evolutionary game theory to investigate the selec-
tion dynamics of language fragments that capture the contrast
between upper-bounded meanings and their unbounded coun-
terparts. Evolutionary game theory offers general and precise
means to model the dynamics of linguistic pressures (Nowak
& Krakauer, 1999; Huttegger & Zollman, 2013). More con-
cretely, our model uses the replicator-mutator dynamics (see
Hofbauer & Sigmund 2003 for an overview). In contrast to
previous models we integrate (iterated) Bayesian learning in
the dynamics (Griffiths & Kalish, 2007), as well as proba-
bilistic language users of varied degrees of pragmatic sophis-
tication (Frank & Goodman, 2012; Franke & Jäger, 2014) to-
gether with multiple lexica (Bergen et al., to appear). In this
way the model synthesizes core insights of previous propos-
als of language use and learning.

Linguistic interactions are represented by signaling games
(Lewis, 1969). An interaction involves two players; a speaker
and a hearer. The speaker has some private information
about the state of the world and tries to convey this infor-
mation to the hearer by sending a message. The hearer
receives the message and interprets it. Communication
is successful if the message’s interpretation matches the
speaker’s information, i.e., when the message is interpreted
correctly. We restrict our attention to games with two states,
S = {s1,s2}, and two messages, M = {m1,m2}. This allows
for a minimal contrast between weaker (non-)upper-bounded
expressions and stronger alternatives in states were a bound
is to be conveyed. Players base their choices on lexica
that specify the semantics of expressions. Formally, a lex-
icon L is a Boolean (|S|, |M|)-matrix such as La and Lb below.

La =
(m1 m2

s1 0 1
s2 1 0

)
Lb =

(m1 m2

s1 1 1
s2 1 0

)
According to La, message m1 is true in s2 and false in s1.

The converse holds for m2. In Lb, however, m1 is true in both
s1 and s2. In this way La stands for a language that encodes an
upper-bound for m1, e.g. some but not all, whereas Lb stands
for one where m1 lacks such a bound, e.g. some.

To contrast literal language use to its pragmatic counter-
part we consider two kinds of players. Literal players com-
municate according to the semantics of their lexica. Prag-
matic players reason about their interlocutors and base their
choices on this reasoning. In other words, pragmatic speak-
ers take into account how listeners would interpret a message
and pragmatic listeners take the speaker into account when
interpreting. This kind of signaling behavior shares the core
features common to models of rational language use such as
Rational Speech Act models (Frank & Goodman, 2012) and
Quantal- and Best-Response models (Franke, 2009; Franke &
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Jäger, 2014). Following this line of research, player behav-
ior can be captured by a hierarchy of reasoning types. Literal
players constitute the bottom of the hierarchy, level 0, and are
solely guided by the semantics of their language. Players of
level n+1 behave rationally according to level n behavior of
their interlocutors. Presently, it suffices to consider players
of no order higher than 1 as the cases considered here offer
little room for further pragmatic refinement. Literal hearer
and speaker behavior are summarized in (1) and (2), and their
pragmatic counterparts in (3) and (4).

R0(s|m;L) ∝ P∗(s)Lsm (1)
S0(m|s;L) ∝ exp(λ Lsm) (2)
R1(s|m;L) ∝ P∗(s)S0(m|s;L) (3)
S1(m|s;L) ∝ exp(λ R0(s|m;L)α) (4)

Speakers strive to maximize their communicative success
but may occasionally make mistakes in computing their ex-
pected utility. This is regulated by the soft-max parameter
λ, λ > 0 (Luce, 1959; Sutton & Barto, 1998). Intuitively,
the larger λ the more faithful a speaker’s choices are to the
maximization of expected success. A second parameter α,
α ∈ [0,1], controls the tension between semantics and prag-
matics. Lower α-values lead to more literal signaling whereas
larger values lead to stronger pragmatic behavior. P∗ ∈ ∆(S)
is a prior over states. For simplicity in the following we as-
sume this prior to be common and uniform. Lastly, a player
type is a combination of signaling behavior, i.e., either literal
or pragmatic, and a lexicon.

With these player types at hand population-level dynamics
can be analyzed. The dynamics involve two key components:
communicative fitness and lexicon learnability. The fitness of
a type i is given by its expected utility. That is, the fitness of
type i, fi, in a population x is the sum of its weighted expected
utility, fi = ∑ j x jU(xi,x j), where x j is the proportion of play-
ers of type j in x and U(xi,x j) is the symmetrized expected
utility of xi and x j.1 A type’s fitness indicates how well it
communicates within a population. The average fitness of the
population is Φ, Φ = ∑i xi fi.

The second component is given by a learning matrix Q,
which adds (iterated) Bayesian learning to the dynamics
(Griffiths & Kalish, 2007). It operationalizes the assumption
that new generations of learners combine prior learning biases
with observations over language use. This determines the
probability of adopting a type. As a consequence, lexica that
better explain observations are more likely to be passed onto
the next generation faithfully. Here we assume that the adop-
tion of a lexicon is not solely dependent on how well a par-
ent’s lexicon explains the data but also on its proportional rep-
resentation in the population. The intuition is that it may be
possible that a lexicon that is – in principle – well-suited for

1U(xi,x j) = [US(xi,x j)+UR(xi,x j)]/2. US(xi,x j) and UR(xi,x j),
the expected utility of speaker type xi and hearer type x j and vice
versa, are respectively ∑s P∗(s)∑m Sn(m|s;L)∑s′ Ro(s′|m;L)δ(s,s′)
and US(x j,xi) for n and o being the reasoning level of i and j, and
δ(s,s′) = 1 iff s = s′ and 0 otherwise.

acquisition may nevertheless not be adopted when only few
types of the preceding population used it. More concretely,
Q ji specifies the probability that a child of type j will be of
type i. This is weighted by the probability of being exposed
to type i, N ji = x′iQ ji where x′i is proportion of i in the previ-
ous generation. Q itself depends on observations of linguistic
utterances and a learning prior. The set of possible obser-
vations is given by all combinations between state-message
pairs, O = {

〈
〈s1,mi〉 ,

〈
s2,m j

〉〉
|mi,m j ∈ M}. A member of

O encodes that a teacher produced mi in state s1 and m j in s2.
It encodes one witnessed message for each state. A datum d
is a sequence of length k of members of O. Learners witness
such data sequences. Accordingly, Q ji ∝ ∑d P(d|t j)P(ti|d)
with P(ti|d) ∝ P(ti)P(d|ti). The prior P(t) gives the proba-
bility of a type without witnessing data, i.e., it encodes the
learning bias of players prior to linguistic exposure. The like-
lihood P(d|t) gives the probability of data being produced by
a type. The posterior thusly yields a combination of prior ex-
pectations and data that captures a type’s fit to the data. This,
in turn, regulates the transmission of its lexicon. Putting these
components together, the discrete selection dynamics are cap-
tured by x̂i = ∑ j N ji

x j f j
Φ

(cf. Hofbauer & Sigmund 2003).
As mentioned above, the prior captures the learning bias of

players. For simplicity we assume it to be solely dependent
on lexica and not on a type’s signaling behavior. In particular
it biases learners for simpler semantic representations over
more complex ones. In the following the prior encodes the
intuition that the semantic representation of an upper-bound
is more complex than a lack thereof. Since semantics are
only implicitly represented through a lexicon’s Boolean ma-
trix, the bias is regulated by a parameter c that operates over
cells of a lexicon.2 As illustrated above by lexica La and Lb,
we let s1 stand for a “some but not all”-state and s2 for an
“all”-state. Accordingly, the prior biases players against lex-
ica in which a message m holds true only of the former and
not the latter, as in La. The literal meaning of English some
corresponds to a message true of s1 and s2 in such a frag-
ment. All other semantics are a priori equally probable. Thus,
P(ti) ∝ n−c ·r where n is the total number of states and r that
of upper-bounded messages only true of s1 in ti’s lexicon.

Analysis
We consider a total of 12 player types, obtained by pairing six
lexica with literal and pragmatic signaling behavior. The lex-
ica are specified in Table 1. Lexica L1 to L3 are not optimal
for communication because they assign the same meaning to

2In principle this contrast could be made more precise with an
adequate representational language, e.g., through measures over rep-
resentational complexity. There is a growing effort to develop such
empirically testable representational languages. For instance, the
so-called language of thought has been put to test in various rational
probabilistic models that show encouraging results (see e.g. Katz et
al. 2008; Piantadosi et al. under review, 2012 and references therein).
We think that our assumption is well-warranted as a working hypoth-
esis and decide against such an enrichment given that the introduc-
tion of a larger framework would also require further assumptions
and justifications.
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L1 =
(

0 0
1 1

)
L2 =

(
1 1
0 0

)
L3 =

(
1 1
1 1

)
L4 =

(
0 1
1 0

)
L5 =

(
0 1
1 1

)
L6 =

(
1 1
1 0

)
Table 1: Space of possible lexicon fragments considered.

all their messages. They were included to showcase the se-
lection process for a larger hypothesis space. L4 and L5 are
the crucial lexica that represent upper-bounded semantics and
a lack thereof, respectively. Lastly, L6 is similar to L5 in that
two messages are true of the same state but differs from it in
assigning upper-bounded semantics to m2.

In the following we focus our analysis on the contrast be-
tween literal and pragmatic types using lexica L4 and L5.
Note in particular that the linguistic behavior of pragmatic
L4 and L5 can be close to indistinguishable as both are able
to convey upper-bounds. The former semantically, the lat-
ter pragmatically. Depending on the parameters, however,
there might be slight differences between the probability with
which speakers would (erroneously) use a semantically false
description and that they would (erroneously) use a pragmat-
ically suboptimal description. This contrasts with literal L5,
which lacks the means to convey an upper-bound by m2. Dif-
ferences between pragmatic L4 and L5 are expected to mainly
depend on the learning bias. Things are less clear for literal L5
contrasted with literal/pragmatic L4. The former has a learn-
ing advantage but is expected to fare worse in terms of com-
municative fitness in virtue of ambiguous m2.

The learning matrix Q was computed with data sequences
of length 20. Pilot simulations showed that changes in
sequence length influence the population in a predictable
way: smaller values lead to more heterogeneous populations
whereas larger ones lead to more pronounced differences.
This is expected insofar as the likelihood that a sequence
of length 1 was produced by any type is relatively uniform
(modulo prior) whereas the likelihood of types with lexica L1
- L3 to produce, for instance, a sequence of 10 observations
consistently with the same state-message combination is less
likely than for pragmatic players using L4 - L6 or literal L4.
Thus, while noteworthy, sequence length has no direct bear-
ing on the main contrast of interest. Similar considerations
hold for α and λ – set to 1 and 50 in the following. Overall,
lower rationality in λ or more pragmatic violations in α lead
to a higher selection of lexica with semantic upper-bounds.
The fitness of pragmatic behavior increases with higher λ-
/α-values. In other words, these parameters level the func-
tional contrast between L4 and L5. Due to space restrictions
we leave a more detailed analysis of their interaction to future
research and focus on the learning bias instead.

All simulations were initialized with an arbitrary distribu-
tion over types, constituting the population’s first generation,
and were run for 20 generations. This corresponds to a de-
velopmental plateau after which no noteworthy change was

Figure 1: Mean proportions of target types across 20 genera-
tions of 1000 populations (α = 1,λ = 50,k = 20,c = 0.85).

0 .01 0.03 0.05 0.07 0.09 0.85
lit. L1 .001 .002 .002 .004 .004 .002 .004
lit. L2 .001 .002 .001 .001 .001 0 0
lit. L3 .001 .003 .001 .002 .002 .001 .004
lit. L4 .193 .193 .165 .177 .187 .142 .022
lit. L5 .022 .022 .039 .04 .033 .049 .042
lit. L6 .023 .023 .028 .027 .028 .025 .002
prag. L1 .001 .001 .001 .002 .004 .003 .005
prag. L2 .001 .001 .001 .001 .001 0 0
prag. L3 .001 .002 .002 .002 .004 .002 .006
prag. L4 .257 .234 .23 .209 .205 .208 0
prag. L5 .249 .26 .29 .328 .329 .379 .914
prag. L6 .25 .237 .24 .207 .202 .188 0

Table 2: Mean proportion of types in 1000 populations af-
ter 20 generations across different bias values c (α = 1,λ =
50,k = 20).

registered.

Results. We report the mean results obtained from 1000 in-
dependent simulations for each set of parameters. Figure 1
illustrates the development of the target types over 20 gen-
erations with c = 0.85, i.e., a strong bias against semantic
complexity. Figure 2 shows the effect of the learning bias af-
ter 20 generations for c ∈ [0,1]. More detailed results for all
types across a sample of c-values are presented in Table 2.

In sum, the results show that in the present setup a weak
bias is sufficient to lead to a selection of L5 over L4. This
effect increases with the bias’ strength provided L5 users are
pragmatic. That is, such a learning bias may prevent the lexi-
calization of pragmatic inferences and explain the prevalence
of L5-like semantics. However, note that literal L5 is under-
represented across all values of c. This highlights that, while
the bias plays a major role for the contrast between L4 and
L5, in itself it does not enable types that fail to convey an

2084



Figure 2: Mean proportion of pragmatic L4 and L5 types after
20 generations with c∈ [0,1] in 1000 populations (α = 1,λ =
50,k = 20).

upper-bound to establish themselves in the population. This
suggests pragmatic reasoning to be paramount to the selec-
tion of L5-like semantics. That is, neither the learning bias
nor functional pressure alone but their combination lead to
the systematic lack of semantic upper-bounds in scalar ex-
pressions.

Discussion
Broadly speaking these results confirm our expectations that
a lack of semantic upper-bounds coupled with pragmatic rea-
soning can overcome selective pressures and stabilize in a
population provided there is a bias for simpler representa-
tions. This outcome is particularly encouraging in light of the
potential additional advantages of a lack of semantic upper-
bounds discussed above that were not considered here.

The model gives a justification for lexicalization patterns
found in natural language, as well as for the failure to lexi-
calize certain pragmatic inferences. That is, while the puzzle
raised by semantics is hard to explain by purely functional
means, we suggest part of the answer to lie in learnabil-
ity. Simpler semantic representations are more likely to be
learned, and pragmatic reasoning can counteract functional
disadvantages otherwise incurred. This result is of particu-
lar relevance for the longstanding assumption of a divide and
interaction between semantics and pragmatics and offers an
account of why (certain) pragmatic inferences are not part of
the literal meaning of expressions. It furthermore leaves open
the possibility of such inferences to fossilize when they do
not compete against a lexical simplicity bias.

A virtue of this model is that it allows for analysis spe-
cific modifications and extensions. Straightforward exten-
sions include larger hypothesis spaces, as well as larger or
different lexicon fragments. Another worthwhile modifica-
tion relates to possible disadvantages of pragmatic reasoning.

Figure 3: Mean proportion of pragmatic L4 and L5 types after
20 generations of parental teaching with c ∈ [0,1] in 1000
populations (α = 1,λ = 50,k = 20).

We tacitly assumed pragmatic reasoning to come at no cost.
However, there is experimental evidence for the assumption
that the pragmatic derivation of upper-bounds costs effort and
takes additional processing time (cf. Neys & Schaeken 2007;
Huang & Snedeker 2009). This raises the question at which
point such usage-based cost undercuts the learnability advan-
tage of simpler semantic representations.3

Lastly, a crucial component of this model is the learning
matrix Q together with its weighted variant N. The latter
describes “communal teaching” where learning a lexicon is
influenced by its proportional representation in the preced-
ing generation. This diverges from the mean field dynamics
of classical (dynamic) evolutionary game theory and iterated
learning. Replacing the weighted matrix N by Q, i.e. not
weighting the learning matrix, allows for an inspection of
the model’s predicted outcome for a more classical case of
“parental teaching”. Figure 3 shows the effect of the learning
bias for this case (cf. Figure 2).

Note first that the main result of the prior driving selection
of L5 over L4 holds here as well. However, the resulting popu-
lations are more heterogeneous than in the communal setting.
The intuition behind communal learning was that learning is
influenced by the proportion in which languages are used in a
population. However, a stage of exposure to communal lan-
guage use is currently not represented in the model but only
implicit in the weights applied to the Bayesian learning ma-
trix. This step may be regarded as conceptually problematic
given that it assumes “implicit exposure” to the true distribu-
tion of types in the population. Notwithstanding, we see it as
a first step in the right direction to capture what constitutes

3In the present setup this modification has a straightforward ef-
fect: A penalty for pragmatic signaling lowers the fitness of prag-
matic types, to the advantage of literal types. However, the penalty
needs to be substantial to counteract the functional advantage prag-
matic L5 has over all but L4 together with its learning advantage.
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an important factor in learning pressures. Further, it retains
but strengthens the results obtained from a more standard
learning setup. It is nevertheless important to highlight the
weaker results obtained from parental learning as they sug-
gest a missing piece to our overall account. Ideally one would
expect the dynamics to favor a well-adapted lexicon over time
even when only learning from parents, offering a stronger
justification for the advantage of a lexicon without a popu-
lation’s involvement in the learning process. It is possible
that a more complex setup where the speaker wants to convey
not only bounded but also upper-unbounded states may shed
light on this issue, as discussed in §2. Alternatively, a sim-
ilarity bias over lexica may enable for a gradual adoption of
particular languages. A more involved analysis and compar-
ison between static learning matrices and weighted variants,
as well as an explicit representation of exposure to linguistic
data from the population raise many interesting technical and
conceptual challenges we hope to see addressed in the future.

Conclusion
The development of natural languages is driven by complex
intertwined pressures. Drawing from past insights we put for-
ward a model that allows for a general and malleable inte-
gration of core aspects involved in this process. Chiefly, the
model combines functional pressure, iterated Bayesian learn-
ing, and probabilistic speaker and hearer models. In partic-
ular, this analysis addresses longstanding issues concerning
the semantics-pragmatics divide. It shows that when pres-
sured for learnability and expressivity, the former force drives
for simpler semantic representations inasmuch as pragmatics
can compensate for them in language use. Consequently, se-
mantic patterns can be explained in virtue of the linguistic
behavior of their users and their complexity. Furthermore,
the ease of acquisition of simpler semantics offers an answer
to why natural languages do not lexicalize certain pragmatic
inferences.
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